From d2ccfe071a654c64bba31de7496c15830801eb15 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Wed, 10 Jul 2024 18:55:30 +0400 Subject: [PATCH 01/25] Add ContinuousBatchingPipeline constructor similar to LLMPipeline That allows LLMPipeline to create ContinuousBatchingPipeline as a backend. There's also a constructor accepting ireq, which can be used if the model was already transformed appropriately for ContinuousBatchingPipeline. But it feels it's going to be misleading and it simpler just to throw if such constructor is called with ContinuousBatchingPipeline backend. --- .github/workflows/causal_lm_cpp.yml | 2 +- .github/workflows/genai_python_lib.yml | 4 +-- .../continuous_batching_accuracy.cpp | 4 ++- .../genai/continuous_batching_pipeline.hpp | 19 ++++++++++++- .../include/openvino/genai/llm_pipeline.hpp | 4 +-- src/cpp/include/openvino/genai/tokenizer.hpp | 2 +- src/cpp/src/continuous_batching_pipeline.cpp | 27 +++++++++++++------ 7 files changed, 46 insertions(+), 16 deletions(-) diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 80089a4e81..18cc89a8f0 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -648,7 +648,7 @@ jobs: python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - cmake -DCMAKE_BUILD_TYPE=Releas -S ./ -B ./build/ + cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/ cmake --build ./build/ --config Release -j - name: Run gtests run: | diff --git a/.github/workflows/genai_python_lib.yml b/.github/workflows/genai_python_lib.yml index 640a293fa4..e53c0d8819 100644 --- a/.github/workflows/genai_python_lib.yml +++ b/.github/workflows/genai_python_lib.yml @@ -10,7 +10,7 @@ env: w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2024.3.0-15945-a349dc82f9a/w_openvino_toolkit_windows_2024.3.0.dev20240708_x86_64.zip jobs: ubuntu_genai_python_lib: - # A tokenizers' dependency fails to compile on ubuntu-20 n CenOS7 env. + # A tokenizers' dependency fails to compile on ubuntu-20 in CenOS7 env. runs-on: ubuntu-22.04 env: # A tokenizers' dependency fails to compile with Ninja in CenOS7 env. @@ -86,7 +86,7 @@ jobs: - run: python -m pytest ./tests/python_tests/test_generate_api.py -m precommit continuous_batching_python_lib_ubuntu: - # A tokenizers' dependency fails to compile on ubuntu-20 n CenOS7 env. + # A tokenizers' dependency fails to compile on ubuntu-20 in CenOS7 env. runs-on: ubuntu-22.04 env: # A tokenizers' dependency fails to compile with Ninja in CenOS7 env. diff --git a/samples/cpp/continuous_batching_accuracy/continuous_batching_accuracy.cpp b/samples/cpp/continuous_batching_accuracy/continuous_batching_accuracy.cpp index 6e0cb5034f..77485e36db 100644 --- a/samples/cpp/continuous_batching_accuracy/continuous_batching_accuracy.cpp +++ b/samples/cpp/continuous_batching_accuracy/continuous_batching_accuracy.cpp @@ -78,7 +78,9 @@ int main(int argc, char* argv[]) try { // vLLM specific params scheduler_config.max_num_seqs = 2; - ov::genai::ContinuousBatchingPipeline pipe(models_path, scheduler_config); + // It's possible to construct a Tokenizer from a different path. + // If the Tokenizer isn't specified, it's loaded from the same folder. + ov::genai::ContinuousBatchingPipeline pipe(models_path, ov::genai::Tokenizer{models_path}, scheduler_config); std::vector generation_results = pipe.generate(prompts, sampling_params); for (size_t request_id = 0; request_id < generation_results.size(); ++request_id) { diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index e30892f9c3..be9a5fd8c1 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -32,7 +32,24 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { const std::string& device = "CPU", const ov::AnyMap& plugin_config = {}); - std::shared_ptr get_tokenizer(); + /** + * @brief Constructs a ContinuousBatchingPipeline when ov::genai::Tokenizer is initialized manually using file from the different dirs. + * + * @param model_path Path to the dir with model, tokenizer .xml/.bin files, and generation_configs.json + * @param scheduler_config + * @param tokenizer manually initialized ov::genai::Tokenizer + * @param device optional device + * @param plugin_config optional plugin_config + */ + ContinuousBatchingPipeline( + const std::string& model_path, + const ov::genai::Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device="CPU", + const ov::AnyMap& plugin_config={} + ); + + ov::genai::Tokenizer get_tokenizer(); ov::genai::GenerationConfig get_config() const; diff --git a/src/cpp/include/openvino/genai/llm_pipeline.hpp b/src/cpp/include/openvino/genai/llm_pipeline.hpp index b6c8f70a2f..88982a54c2 100644 --- a/src/cpp/include/openvino/genai/llm_pipeline.hpp +++ b/src/cpp/include/openvino/genai/llm_pipeline.hpp @@ -116,10 +116,10 @@ class OPENVINO_GENAI_EXPORTS LLMPipeline { ); /** - * @brief Constructs a LLMPipeline when ov::Tokenizer is initialized manually using file from the different dirs. + * @brief Constructs a LLMPipeline when ov::genai::Tokenizer is initialized manually using file from the different dirs. * * @param model_path Path to the dir with model, tokenizer .xml/.bin files, and generation_configs.json - * @param tokenizer manually initialized ov::Tokenizer + * @param tokenizer manually initialized ov::genai::Tokenizer * @param device optional device * @param plugin_config optional plugin_config */ diff --git a/src/cpp/include/openvino/genai/tokenizer.hpp b/src/cpp/include/openvino/genai/tokenizer.hpp index a9f3e112b8..f12d900a8a 100644 --- a/src/cpp/include/openvino/genai/tokenizer.hpp +++ b/src/cpp/include/openvino/genai/tokenizer.hpp @@ -26,7 +26,7 @@ struct TokenizedInputs { class OPENVINO_GENAI_EXPORTS Tokenizer { public: /** - * @brief ov::Tokenizer constructor. + * @brief ov::genai::Tokenizer constructor. * @param tokenizer_path openvino_tokenizer.xml and openvino_detokenizer.xml should be located in the tokenizer_path */ Tokenizer(const std::string& tokenizer_path); diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index dbacf3c243..27c183ddd8 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -19,7 +19,7 @@ using namespace ov::genai; void apply_paged_attention_transformations(std::shared_ptr model, DeviceConfig& device_config); class ContinuousBatchingPipeline::Impl { - std::shared_ptr m_tokenizer; + ov::genai::Tokenizer m_tokenizer; std::shared_ptr m_scheduler; std::shared_ptr m_cache_manager; std::shared_ptr m_model_runner; @@ -69,9 +69,9 @@ class ContinuousBatchingPipeline::Impl { } public: - Impl(const std::string& models_path, const SchedulerConfig& scheduler_config, const std::string device, const ov::AnyMap& plugin_config) { + Impl(const std::string& models_path, const Tokenizer& tokenizer, const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& plugin_config) : + m_tokenizer{tokenizer} { ov::Core core; - m_tokenizer = std::make_shared(models_path); // The model can be compiled for GPU as well std::shared_ptr model = core.read_model(models_path + "/openvino_model.xml"); @@ -104,6 +104,9 @@ class ContinuousBatchingPipeline::Impl { // read default generation config } + Impl(const std::string& models_path, const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& plugin_config) + : Impl{models_path, Tokenizer(models_path), scheduler_config, device, plugin_config} {} + ov::genai::GenerationConfig get_config() const { return m_generation_config; } @@ -112,19 +115,19 @@ class ContinuousBatchingPipeline::Impl { return m_pipeline_metrics; } - std::shared_ptr get_tokenizer() { + ov::genai::Tokenizer get_tokenizer() { return m_tokenizer; } GenerationHandle add_request(uint64_t request_id, std::string prompt, ov::genai::GenerationConfig sampling_params) { - sampling_params.set_eos_token_id(m_tokenizer->get_eos_token_id()); + sampling_params.set_eos_token_id(m_tokenizer.get_eos_token_id()); sampling_params.validate(); ov::Tensor input_ids; { static ManualTimer timer("tokenize"); timer.start(); - input_ids = m_tokenizer->encode(prompt).input_ids; + input_ids = m_tokenizer.encode(prompt).input_ids; timer.end(); } @@ -262,7 +265,7 @@ class ContinuousBatchingPipeline::Impl { auto num_outputs = std::min(sampling_params[generation_idx].num_return_sequences, generation_outputs.size()); for (size_t generation_output_idx = 0; generation_output_idx < num_outputs; ++generation_output_idx) { const auto& generation_output = generation_outputs[generation_output_idx]; - std::string output_text = m_tokenizer->decode(generation_output.generated_token_ids); + std::string output_text = m_tokenizer.decode(generation_output.generated_token_ids); result.m_generation_ids.push_back(output_text); result.m_scores.push_back(generation_output.score); } @@ -282,7 +285,15 @@ ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::string& model m_impl = std::make_shared(models_path, scheduler_config, device, plugin_config); } -std::shared_ptr ContinuousBatchingPipeline::get_tokenizer() { +ContinuousBatchingPipeline::ContinuousBatchingPipeline( + const std::string& model_path, + const Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& plugin_config +) : m_impl{std::make_shared(model_path, tokenizer, scheduler_config, device, plugin_config)} {} + +ov::genai::Tokenizer ContinuousBatchingPipeline::get_tokenizer() { return m_impl->get_tokenizer(); } From ab0f43c70cd280783c38ad04f95dbe68d166896f Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 17:05:02 +0400 Subject: [PATCH 02/25] Use CB as backend --- .../genai/continuous_batching_pipeline.hpp | 6 +- .../openvino/genai/generation_handle.hpp | 14 ++ src/cpp/src/continuous_batching_pipeline.cpp | 82 ++++++--- src/cpp/src/llm_pipeline.cpp | 156 +++++++++++++++++- src/python/py_generate_pipeline.cpp | 6 +- 5 files changed, 229 insertions(+), 35 deletions(-) diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index be9a5fd8c1..f13cc55c43 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -55,13 +55,15 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { PipelineMetrics get_metrics() const; - GenerationHandle add_request(uint64_t request_id, std::string prompt, ov::genai::GenerationConfig sampling_params); + GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, const ov::genai::GenerationConfig& sampling_params); + GenerationHandle add_request(uint64_t request_id, const std::string& prompt, const ov::genai::GenerationConfig& sampling_params); void step(); bool has_non_finished_requests(); // more high level interface, which can process multiple prompts in continuous batching manner - std::vector generate(const std::vector& prompts, std::vector sampling_params); + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params); + std::vector generate(const std::vector& prompts, const std::vector& sampling_params); }; } diff --git a/src/cpp/include/openvino/genai/generation_handle.hpp b/src/cpp/include/openvino/genai/generation_handle.hpp index d0ddbc3a32..556f4b812f 100644 --- a/src/cpp/include/openvino/genai/generation_handle.hpp +++ b/src/cpp/include/openvino/genai/generation_handle.hpp @@ -18,6 +18,20 @@ enum class GenerationStatus { DROPPED_BY_HANDLE = 4 // Status set when generation handle is dropped }; +struct EncodedGenerationResult { + // request ID - obsolete when handle API is approved as handle will connect results with prompts. + uint64_t m_request_id; + + // in a generic case we have multiple generation results per initial prompt + // depending on sampling parameters (e.g. beam search or parallel sampling) + std::vector> m_generation_ids; + // scores + std::vector m_scores; + + // Status of generation + GenerationStatus m_status = GenerationStatus::RUNNING; +}; + struct GenerationResult { // request ID - obsolete when handle API is approved as handle will connect results with prompts. uint64_t m_request_id; diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 27c183ddd8..4b8d1a319c 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -6,6 +6,7 @@ #include #include "openvino/genai/continuous_batching_pipeline.hpp" +#include "openvino/genai/generation_handle.hpp" #include "openvino/genai/tokenizer.hpp" #include "cache_manager.hpp" #include "sampler.hpp" @@ -119,18 +120,10 @@ class ContinuousBatchingPipeline::Impl { return m_tokenizer; } - GenerationHandle add_request(uint64_t request_id, std::string prompt, ov::genai::GenerationConfig sampling_params) { + GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, ov::genai::GenerationConfig sampling_params) { sampling_params.set_eos_token_id(m_tokenizer.get_eos_token_id()); sampling_params.validate(); - ov::Tensor input_ids; - { - static ManualTimer timer("tokenize"); - timer.start(); - input_ids = m_tokenizer.encode(prompt).input_ids; - timer.end(); - } - SequenceGroup::Ptr sequence_group = std::make_shared(request_id, input_ids, sampling_params, m_scheduler->get_config().block_size); { @@ -140,6 +133,14 @@ class ContinuousBatchingPipeline::Impl { return std::make_unique(sequence_group->get_generation_stream(), sampling_params); } + GenerationHandle add_request(uint64_t request_id, const std::string& prompt, ov::genai::GenerationConfig sampling_params) { + static ManualTimer timer("tokenize"); + timer.start(); + ov::Tensor input_ids = m_tokenizer.encode(prompt).input_ids; + timer.end(); + return add_request(request_id, input_ids, sampling_params); + } + void step() { static ManualTimer step_timer("step()"); step_timer.start(); @@ -237,16 +238,20 @@ class ContinuousBatchingPipeline::Impl { return !m_awaiting_requests.empty() || !m_requests.empty(); } - std::vector generate(const std::vector prompts, std::vector sampling_params) { + std::vector generate( + const std::vector& input_ids, + const std::vector& sampling_params + ) { OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); - OPENVINO_ASSERT(prompts.size() == sampling_params.size()); + OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); std::vector generations; - for (size_t request_id = 0; request_id < prompts.size(); ++request_id) { - generations.push_back(add_request(request_id, prompts[request_id], sampling_params[request_id])); + for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { + OPENVINO_ASSERT(1 == input_ids[request_id].get_shape().at(0), "Use multiple tensors to pass a batch."); + generations.push_back(add_request(request_id, input_ids[request_id], sampling_params[request_id])); } - std::vector results; + std::vector results; results.reserve(m_awaiting_requests.size()); while (has_non_finished_requests()) { @@ -255,7 +260,7 @@ class ContinuousBatchingPipeline::Impl { for (size_t generation_idx = 0; generation_idx < generations.size(); ++generation_idx) { const auto& generation = generations[generation_idx]; - GenerationResult result; + EncodedGenerationResult result; result.m_request_id = 1; std::vector generation_outputs = generation->read_all(); std::sort(generation_outputs.begin(), generation_outputs.end(), [=] (GenerationOutput& r1, GenerationOutput& r2) { @@ -265,17 +270,42 @@ class ContinuousBatchingPipeline::Impl { auto num_outputs = std::min(sampling_params[generation_idx].num_return_sequences, generation_outputs.size()); for (size_t generation_output_idx = 0; generation_output_idx < num_outputs; ++generation_output_idx) { const auto& generation_output = generation_outputs[generation_output_idx]; - std::string output_text = m_tokenizer.decode(generation_output.generated_token_ids); - result.m_generation_ids.push_back(output_text); + result.m_generation_ids.push_back(generation_output.generated_token_ids); result.m_scores.push_back(generation_output.score); } result.m_status = generation->get_status(); - results.push_back(result); + results.push_back(std::move(result)); } - - OPENVINO_ASSERT(results.size() == prompts.size()); return results; } + + std::vector generate(const std::vector& prompts, std::vector sampling_params) { + std::vector input_ids; + input_ids.reserve(prompts.size()); + for (const std::string& prompt : prompts) { + static ManualTimer timer("tokenize"); + timer.start(); + input_ids.push_back(m_tokenizer.encode(prompt).input_ids); + timer.end(); + } + std::vector encoded = generate(input_ids, sampling_params); + std::vector decoded; + decoded.reserve(encoded.size()); + for (EncodedGenerationResult& res : encoded) { + std::vector generated; + generated.reserve(res.m_generation_ids.size()); + for (const std::vector& tokens : res.m_generation_ids) { + generated.push_back(m_tokenizer.decode(tokens)); + } + decoded.push_back(GenerationResult{ + res.m_request_id, + std::move(generated), + std::move(res.m_scores), + res.m_status + }); + } + return decoded; + } }; ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::string& models_path, @@ -305,10 +335,14 @@ PipelineMetrics ContinuousBatchingPipeline::get_metrics() const{ return m_impl->get_metrics(); } -GenerationHandle ContinuousBatchingPipeline::add_request(uint64_t request_id, std::string prompt, ov::genai::GenerationConfig sampling_params) { +GenerationHandle ContinuousBatchingPipeline::add_request(uint64_t request_id, const std::string& prompt, const ov::genai::GenerationConfig& sampling_params) { return m_impl->add_request(request_id, prompt, sampling_params); } +GenerationHandle ContinuousBatchingPipeline::add_request(uint64_t request_id, const ov::Tensor& input_ids, const ov::genai::GenerationConfig& sampling_params) { + return m_impl->add_request(request_id, input_ids, sampling_params); +} + void ContinuousBatchingPipeline::step() { m_impl->step(); } @@ -317,6 +351,10 @@ bool ContinuousBatchingPipeline::has_non_finished_requests() { return m_impl->has_non_finished_requests(); } -std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, std::vector sampling_params) { +std::vector ContinuousBatchingPipeline::generate(const std::vector& input_ids, const std::vector& sampling_params) { + return m_impl->generate(input_ids, sampling_params); +} + +std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, const std::vector& sampling_params) { return m_impl->generate(prompts, sampling_params); } \ No newline at end of file diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 200ce5a635..2fa3cb963e 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -7,6 +7,7 @@ #include #include #include +#include "openvino/genai/continuous_batching_pipeline.hpp" #include "openvino/genai/generation_config.hpp" #include "openvino/genai/llm_pipeline.hpp" #include "llm_pipeline_base.hpp" @@ -286,14 +287,147 @@ std::pair generation_config(const GenerationConfig& config) { } // namespace genai } // namespace ov -using namespace std; +namespace { +using namespace ov::genai; + +template struct overloaded : Ts... {using Ts::operator()...;}; +template overloaded(Ts...) -> overloaded; + +Tokenizer dont_construct() { + OPENVINO_THROW("Continuous Batching backend can't be constructed" + "from ireq because the model must be transformed"); +} + +class ContinuousBatchingAdapter final : public LLMPipelineImplBase { +public: + ov::genai::ContinuousBatchingPipeline m_impl; + + ContinuousBatchingAdapter( + const ov::InferRequest& request, + const ov::genai::Tokenizer& tokenizer, + OptionalGenerationConfig generation_config + ): LLMPipelineImplBase{dont_construct()}, m_impl{"", {}} {} + + ContinuousBatchingAdapter( + const std::filesystem::path& model_path, + const Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& plugin_config + ): LLMPipelineImplBase{tokenizer}, m_impl{ + model_path.string(), + tokenizer, + SchedulerConfig{}, + device, + plugin_config + } {} + + ContinuousBatchingAdapter( + const std::filesystem::path& model_path, + const std::string& device, + const ov::AnyMap& plugin_config + ): LLMPipelineImplBase{Tokenizer(model_path.string())}, m_impl{ + model_path.string(), + m_tokenizer, + SchedulerConfig{}, + device, + plugin_config + } {} + + DecodedResults generate( + StringInputs inputs, + OptionalGenerationConfig generation_config, + StreamerVariant streamer + ) override { + EncodedInputs input_ids_att = std::visit(overloaded{ + [this](const std::string& prompt) { + return m_tokenizer.encode(prompt); + }, + [this](std::vector& prompts) { + return m_tokenizer.encode(prompts); + } + }, inputs); + EncodedResults encoded = generate(input_ids_att, generation_config, streamer); + return {m_tokenizer.decode(encoded.tokens), encoded.scores}; + } + + EncodedResults generate( + const EncodedInputs& inputs, + OptionalGenerationConfig generation_config, + StreamerVariant streamer + ) override { + if (std::holds_alternative(streamer)) { + OPENVINO_THROW("streamer isn't supported for Continuous Batching"); + } + std::vector input_ids = std::visit(overloaded{ + [](const ov::Tensor& inp) { + size_t batch_size = inp.get_shape().at(0); + if (1 == batch_size) { + return std::vector{inp}; + } + std::vector input_ids; + input_ids.reserve(batch_size); + size_t max_len = inp.get_shape().at(1); + const int64_t* const source = inp.data(); + for (size_t batch_id = 0; batch_id < batch_size; ++batch_id) { + input_ids.emplace_back(ov::element::i64, ov::Shape(1, max_len)); + int64_t* destination = input_ids.back().data(); + std::copy_n(source + batch_id * max_len, max_len, destination); + } + return input_ids; + }, + [](const TokenizedInputs& inp) { + size_t batch_size = inp.input_ids.get_shape().at(0); + std::vector input_ids; + input_ids.reserve(batch_size); + size_t max_len = inp.input_ids.get_shape().at(1); + const int64_t* const source = inp.input_ids.data(); + const int64_t* const attention_mask = inp.attention_mask.data(); + for (size_t batch_id = 0; batch_id < batch_size; ++batch_id) { + input_ids.emplace_back(ov::element::i64, ov::Shape(1, max_len)); + int64_t* destination = input_ids.back().data(); + size_t copy_count = 0; + for (size_t idx = 0; idx < max_len; ++idx) { + if (1 == attention_mask[batch_id * max_len + idx]) { + destination[copy_count++] = source[batch_id * max_len + idx]; + } + } + input_ids.back().set_shape({1, copy_count}); + } + return input_ids; + } + }, inputs); + const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; + // -1 == config.eos_token_id and config.validate() are handled in m_impl. + std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}); + std::vector> tokens; + std::vector scores; + for (EncodedGenerationResult& res : generated) { + std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(tokens)); + std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(scores)); + } + return {std::move(tokens), std::move(scores)}; + } + + void start_chat() override { + OPENVINO_THROW("start_chat() isn't implemented."); + } + + void finish_chat() override { + OPENVINO_THROW("finish_chat() isn't implemented."); + } +}; +} ov::genai::LLMPipeline::LLMPipeline( const ov::InferRequest& request, const ov::genai::Tokenizer& tokenizer, OptionalGenerationConfig generation_config ) { - m_pimpl = std::make_unique(request, tokenizer, generation_config); + if (std::getenv("USE_CONTINUOUS_BATCHING")) { + m_pimpl = std::make_unique(request, tokenizer, generation_config); + } else { + m_pimpl = std::make_unique(request, tokenizer, generation_config); + } } ov::genai::LLMPipeline::LLMPipeline( @@ -302,10 +436,12 @@ ov::genai::LLMPipeline::LLMPipeline( const std::string& device, const ov::AnyMap& plugin_config ) { - if (device == "NPU") { - m_pimpl = make_unique(std::filesystem::path(model_path), tokenizer, device, plugin_config); + if (std::getenv("USE_CONTINUOUS_BATCHING")) { + m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); + } else if ("NPU" == device) { + m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); } else { - m_pimpl = make_unique(std::filesystem::path(model_path), tokenizer, device, plugin_config); + m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); } } @@ -314,10 +450,12 @@ ov::genai::LLMPipeline::LLMPipeline( const std::string& device, const ov::AnyMap& config ) { - if (device == "NPU") { - m_pimpl = make_unique(std::filesystem::path(path), device, config); + if (std::getenv("USE_CONTINUOUS_BATCHING")) { + m_pimpl = std::make_unique(path, device, config); + } else if ("NPU" == device) { + m_pimpl = std::make_unique(path, device, config); } else { - m_pimpl = make_unique(std::filesystem::path(path), device, config); + m_pimpl = std::make_unique(path, device, config); } } @@ -338,7 +476,7 @@ void ov::genai::LLMPipeline::finish_chat() { } void ov::genai::LLMPipeline::set_generation_config(const GenerationConfig& config) { - int64_t default_eos_token_id = m_pimpl->m_generation_config.eos_token_id;; + int64_t default_eos_token_id = m_pimpl->m_generation_config.eos_token_id; m_pimpl->m_generation_config = config; // if eos_token_id was not provided in config forward from default config if (config.eos_token_id == -1) diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index 784fcd8e3c..e3783e7f4e 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -599,11 +599,13 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def(py::init([](const std::string& model_path, const SchedulerConfig& config) { ScopedVar env_manager(ov_tokenizers_module_path()); return std::make_unique(model_path, config); - })) + }), py::arg("device") = "CPU") // TODO: other ctors .def("get_tokenizer", &ContinuousBatchingPipeline::get_tokenizer) .def("get_config", &ContinuousBatchingPipeline::get_config) - .def("add_request", &ContinuousBatchingPipeline::add_request) + .def("add_request", py::overload_cast(&ContinuousBatchingPipeline::add_request)) + .def("add_request", py::overload_cast(&ContinuousBatchingPipeline::add_request)) .def("step", &ContinuousBatchingPipeline::step) .def("has_non_finished_requests", &ContinuousBatchingPipeline::has_non_finished_requests) .def("generate", &ContinuousBatchingPipeline::generate); + .def("generate", py::overload_cast(&ContinuousBatchingPipeline::generate)) } From 05cf5d33b908143f129dca24741dcdeafd3a3d52 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 18:32:17 +0400 Subject: [PATCH 03/25] Update bindings --- src/python/py_generate_pipeline.cpp | 10 +++++++--- tests/python_tests/common.py | 2 +- tests/python_tests/test_sampling.py | 4 ++-- 3 files changed, 10 insertions(+), 6 deletions(-) diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index 784fcd8e3c..7cd6e04306 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -596,10 +596,14 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def_readwrite("max_num_seqs", &SchedulerConfig::max_num_seqs); py::class_(m, "ContinuousBatchingPipeline") - .def(py::init([](const std::string& model_path, const SchedulerConfig& config) { + .def(py::init([](const std::string& model_path, const SchedulerConfig& scheduler_config, const std::string& device, const std::map& plugin_config) { ScopedVar env_manager(ov_tokenizers_module_path()); - return std::make_unique(model_path, config); - })) + return std::make_unique(model_path, scheduler_config, device, properties_to_any_map(plugin_config)); + }), py::arg("model_path"), py::arg("scheduler_config"), py::arg("device") = "CPU", py::arg("plugin_config") = ov::AnyMap({})) + .def(py::init([](const std::string& model_path, const ov::genai::Tokenizer& tokenizer, const SchedulerConfig& scheduler_config, const std::string& device, const std::map& plugin_config) { + ScopedVar env_manager(ov_tokenizers_module_path()); + return std::make_unique(model_path, tokenizer, scheduler_config, device, properties_to_any_map(plugin_config)); + }), py::arg("model_path"), py::arg("tokenizer"), py::arg("scheduler_config"), py::arg("device") = "CPU", py::arg("plugin_config") = ov::AnyMap({})) .def("get_tokenizer", &ContinuousBatchingPipeline::get_tokenizer) .def("get_config", &ContinuousBatchingPipeline::get_config) .def("add_request", &ContinuousBatchingPipeline::add_request) diff --git a/tests/python_tests/common.py b/tests/python_tests/common.py index 9b53a6b78b..2ec96f671c 100644 --- a/tests/python_tests/common.py +++ b/tests/python_tests/common.py @@ -273,7 +273,7 @@ def run_continuous_batching( prompts: List[str], generation_configs : List[GenerationConfig] ) -> List[GenerationResult]: - pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), scheduler_config) + pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), scheduler_config, "CPU", {}) output = pipe.generate(prompts, generation_configs) del pipe shutil.rmtree(model_path) diff --git a/tests/python_tests/test_sampling.py b/tests/python_tests/test_sampling.py index f4f35deace..ae6fbe4b49 100644 --- a/tests/python_tests/test_sampling.py +++ b/tests/python_tests/test_sampling.py @@ -7,7 +7,7 @@ import sys from dataclasses import dataclass from pathlib import Path -from openvino_genai import ContinuousBatchingPipeline, GenerationConfig +from openvino_genai import ContinuousBatchingPipeline, GenerationConfig, Tokenizer from typing import List from common import run_test_pipeline, get_models_list, get_model_and_tokenizer, save_ov_model_from_optimum, \ @@ -205,7 +205,7 @@ def test_post_oom_health(tmp_path): model_path : Path = tmp_path / model_id save_ov_model_from_optimum(model, hf_tokenizer, model_path) - pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), scheduler_config) + pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix()) scheduler_config) # First run should return incomplete response output = pipe.generate(["What is OpenVINO?"], generation_configs) assert(len(output)) From 96fcf7764dea00eba4317bf53392a44c83eeb98c Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 18:43:08 +0400 Subject: [PATCH 04/25] comma --- tests/python_tests/test_sampling.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/python_tests/test_sampling.py b/tests/python_tests/test_sampling.py index ae6fbe4b49..c02804527b 100644 --- a/tests/python_tests/test_sampling.py +++ b/tests/python_tests/test_sampling.py @@ -205,7 +205,7 @@ def test_post_oom_health(tmp_path): model_path : Path = tmp_path / model_id save_ov_model_from_optimum(model, hf_tokenizer, model_path) - pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix()) scheduler_config) + pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix()), scheduler_config) # First run should return incomplete response output = pipe.generate(["What is OpenVINO?"], generation_configs) assert(len(output)) From e278a14131bebb9a7e1f3a0661208b79c70a1dad Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 20:37:27 +0400 Subject: [PATCH 05/25] pass --- .../openvino/genai/scheduler_config.hpp | 2 +- src/cpp/src/llm_pipeline.cpp | 19 +- src/python/py_generate_pipeline.cpp | 4 +- tests/python_tests/test_generate_api.py | 793 ++++-------------- 4 files changed, 161 insertions(+), 657 deletions(-) diff --git a/src/cpp/include/openvino/genai/scheduler_config.hpp b/src/cpp/include/openvino/genai/scheduler_config.hpp index 787060d07e..9d808fd424 100644 --- a/src/cpp/include/openvino/genai/scheduler_config.hpp +++ b/src/cpp/include/openvino/genai/scheduler_config.hpp @@ -16,7 +16,7 @@ struct SchedulerConfig { std::size_t num_kv_blocks = 0; // total size of KV cache in GB - std::size_t cache_size = 0; + std::size_t cache_size = 1; // block size for KV cache std::size_t block_size = 32; diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 1c96d75522..41acc3d071 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -403,7 +403,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { - if (std::holds_alternative(streamer)) { + if (!std::holds_alternative(streamer)) { OPENVINO_THROW("streamer isn't supported for Continuous Batching"); } std::vector input_ids = std::visit(overloaded{ @@ -446,6 +446,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { }, inputs); const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; // -1 == config.eos_token_id and config.validate() are handled in m_impl. + std::cout << "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa\n"; std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}); std::vector> tokens; std::vector scores; @@ -456,7 +457,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { return {std::move(tokens), std::move(scores)}; } - void start_chat() override { + void start_chat(const std::string& system_message) override { OPENVINO_THROW("start_chat() isn't implemented."); } @@ -471,11 +472,7 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::genai::Tokenizer& tokenizer, OptionalGenerationConfig generation_config ) { - if (std::getenv("USE_CONTINUOUS_BATCHING")) { - m_pimpl = std::make_unique(request, tokenizer, generation_config); - } else { - m_pimpl = std::make_unique(request, tokenizer, generation_config); - } + m_pimpl = std::make_unique(request, tokenizer, generation_config); } ov::genai::LLMPipeline::LLMPipeline( @@ -484,8 +481,8 @@ ov::genai::LLMPipeline::LLMPipeline( const std::string& device, const ov::AnyMap& plugin_config ) { - if (std::getenv("USE_CONTINUOUS_BATCHING")) { - m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); + if ("CB" == device) { + m_pimpl = std::make_unique(model_path, tokenizer, "CPU", plugin_config); } else if ("NPU" == device) { m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); } else { @@ -498,8 +495,8 @@ ov::genai::LLMPipeline::LLMPipeline( const std::string& device, const ov::AnyMap& config ) { - if (std::getenv("USE_CONTINUOUS_BATCHING")) { - m_pimpl = std::make_unique(path, device, config); + if ("CB" == device) { + m_pimpl = std::make_unique(path, "CPU", config); } else if ("NPU" == device) { m_pimpl = std::make_unique(path, device, config); } else { diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index ced1e7c8b3..942c7a284a 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -610,6 +610,6 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def("add_request", py::overload_cast(&ContinuousBatchingPipeline::add_request)) .def("step", &ContinuousBatchingPipeline::step) .def("has_non_finished_requests", &ContinuousBatchingPipeline::has_non_finished_requests) - .def("generate", &ContinuousBatchingPipeline::generate); - .def("generate", py::overload_cast(&ContinuousBatchingPipeline::generate)) + .def("generate", py::overload_cast&, const std::vector&>(&ContinuousBatchingPipeline::generate)) + .def("generate", py::overload_cast&, const std::vector&>(&ContinuousBatchingPipeline::generate)); } diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 40eba92277..84488fe015 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -1,675 +1,182 @@ # Copyright (C) 2023-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 +import functools import openvino_genai as ov_genai -from openvino_genai import StopCriteria +import pathlib import pytest -import transformers -from typing import Union, List, Dict, Optional -import numpy as np -import openvino as ov -import sys -from pathlib import Path -import torch +from typing import Dict, Tuple from ov_genai_test_utils import ( - get_models_list, - read_model, - load_pipe, - load_tok, - model_tmp_path, - STOP_CRITERIA_MAP, + get_models_list, + get_chat_models_list, + read_model, + load_tok, + model_tmp_path, + get_chat_templates ) -def run_hf_ov_genai_comparison_batched(model_descr, generation_config: Dict, prompts: Union[str, List[str]]): - device = 'CPU' - model_id, path, tokenizer, model, pipe = model_descr - config = generation_config.copy() # to avoid side effects - num_beams = config['num_beams'] if 'num_beams' in config else 1 - config['num_return_sequences'] = num_beams - - if not isinstance(prompts, list): - prompts = [prompts] - - if 'do_sample' not in config: - # Some HF models have default do_sample = True, and if we set beam search generation config - # it conflicts with `diversity_penalty` and/or `num_beam_groups`. - # Need to set exlicitly to False, but only if test arguments omitted this arg. - # Do not apply 'repetition_penalty' if sampling is not used. - config['do_sample'] = False - config['repetition_penalty'] = None - - generation_config_hf = config.copy() - if generation_config_hf.get('stop_criteria'): - generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] - generation_config_hf.pop('ignore_eos', None) - - # Encode the batch of prompts - tokenizer.padding_side = "left" - encoded_prompts = tokenizer(prompts, return_tensors='pt', padding=True, truncation=True, add_special_tokens=True) - prompt_ids, attention_mask = encoded_prompts['input_ids'], encoded_prompts['attention_mask'] - - hf_encoded_outputs = model.generate(prompt_ids, attention_mask=attention_mask, **generation_config_hf) - - hf_outputs = [] - for idx, hf_encoded_out in enumerate(hf_encoded_outputs): - prompt_count = idx // num_beams - hf_outputs.append(tokenizer.decode(hf_encoded_out[prompt_ids[prompt_count].shape[0]:], skip_special_tokens=True)) - - ov_outputs = pipe.generate(prompts, **config).texts - - hf_outputs.sort() - ov_outputs.sort() - for i, (hf_output, ov_output) in enumerate(zip(hf_outputs, ov_outputs)): - if hf_output != ov_output: - print(f'hf_output: {hf_output}') - print(f'ov_output: {ov_output}') - assert hf_output == ov_output - -def run_hf_ov_genai_comparison(model_descr, generation_config: Dict, prompt: str): - device = 'CPU' - model_id, path, tokenizer, model, pipe = model_descr - - config = generation_config.copy() # to avoid side effects - - if 'do_sample' not in config: - # Some HF models have default do_sample = True, and if we set beam search generation config - # it conflicts with `diversity_penalty` and/or `num_beam_groups`. - # Need to set exlicitly to False, but only if test arguments omitted this arg. - # Do not apply 'repetition_penalty' if sampling is not used. - config['do_sample'] = False - config['repetition_penalty'] = None - - generation_config_hf = config.copy() - if generation_config_hf.get('stop_criteria'): - generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] - generation_config_hf.pop('ignore_eos', None) +configs = [ + dict(max_new_tokens=20), + dict(num_beam_groups=3, num_beams=15, num_return_sequences=1, max_new_tokens=10, diversity_penalty=1.0) +] - encoded_prompt = tokenizer.encode(prompt, return_tensors='pt', add_special_tokens=True) - hf_encoded_output = model.generate(encoded_prompt, **generation_config_hf) - hf_output = tokenizer.decode(hf_encoded_output[0, encoded_prompt.shape[1]:], skip_special_tokens=True) - ov_output = pipe.generate(prompt, **config) - if config.get('num_return_sequences', 1) > 1: - assert hf_output in ov_output.texts - else: - if hf_output != ov_output: - print(f'hf_output: {hf_output}') - print(f'ov_output: {ov_output}') +questions = [ + '1+1=', + 'What is the previous answer?', + 'Why is the Sun yellow?', + 'What was my first question?' +] - assert hf_output == ov_output -def hf_ov_genai_tensors_comparison( - model_descr, - generation_config: Dict, - input_ids: np.ndarray, - attention_mask: Optional[np.array] = None - ): +@pytest.mark.parametrize("generation_config", configs) +@pytest.mark.parametrize("model_descr", get_chat_models_list()) +@pytest.mark.precommit +def test_chat_compare_with_HF(model_descr, generation_config: Dict): device = 'CPU' - model_id, path, tokenizer, model, pipe = model_descr - - config = generation_config.copy() # to avoid side effects - - if 'do_sample' not in config: - # Some HF models have default do_sample = True, and if we set beam search generation config - # it conflicts with `diversity_penalty` and/or `num_beam_groups`. - # Need to set exlicitly to False, but only if test arguments omitted this arg. - # Do not apply 'repetition_penalty' if sampling is not used. - config['do_sample'] = False - config['repetition_penalty'] = None + chat_history_hf = [] + chat_history_ov = [] + chat_prompt = '' - generation_config_hf = config.copy() - if generation_config_hf.get('stop_criteria'): - generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] - generation_config_hf.pop('ignore_eos', None) + # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. + # Need to regenerate openvino_tokenizer/detokenizer. + model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) + + pipe.start_chat() + for prompt in questions: + chat_history_hf.append({'role': 'user', 'content': prompt}) + chat_history_ov.append({'role': 'user', 'content': prompt}) + + chat_prompt = tokenizer.apply_chat_template(chat_history_hf, tokenize=False, add_generation_prompt=True) + tokenized = tokenizer(chat_prompt, return_tensors='pt', add_special_tokens=False) + + answer = model_opt.generate(**tokenized, **generation_config, do_sample=False, repetition_penalty = None) + answer_str = tokenizer.decode(answer[0, tokenized['input_ids'].numel():], skip_special_tokens=True) + chat_history_hf.append({'role': 'assistant', 'content': answer_str}) + + answer_ov = pipe.generate(prompt, **generation_config) + chat_history_ov.append({'role': 'assistant', 'content': answer_ov}) + + pipe.finish_chat() - if attention_mask is not None: - inputs_ov = ov_genai.TokenizedInputs(ov.Tensor(input_ids), ov.Tensor(attention_mask)) - inputs_hf = dict(inputs=torch.tensor(input_ids), attention_mask=torch.tensor(attention_mask)) - else: - inputs_hf = dict(inputs=torch.tensor(input_ids)) - inputs_ov = ov.Tensor(input_ids) - - hf_output = model.generate(**inputs_hf, **generation_config_hf) - - pipe = ov_genai.LLMPipeline(str(path), device) - ov_output = pipe.generate(inputs_ov, **config) - - hf_res = hf_output[0, input_ids.shape[1]:].numpy() - ov_res = np.array(ov_output.tokens, dtype=np.int64) - assert np.all(ov_res == hf_res) + if chat_history_ov != chat_history_hf: + print(f'hf_output: {chat_history_hf}') + print(f'ov_output: {chat_history_ov}') + assert chat_history_ov == chat_history_hf -test_cases = [ - (dict(max_new_tokens=20), 'table is made of'), - (dict(max_new_tokens=20), '你好! 你好嗎?'), - (dict(num_beam_groups=3, num_beams=15, num_return_sequences=15, max_new_tokens=30, diversity_penalty=1.0), 'Alan Turing was a'), - (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'table is made of'), - (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'The Sun is yellow because'), - (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.5), 'The Sun is yellow because'), -] -@pytest.mark.parametrize("generation_config,prompt", test_cases) -@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.parametrize("generation_config", configs) +@pytest.mark.parametrize("model_descr", get_chat_models_list()) @pytest.mark.precommit -def test_decoding(model_descr, generation_config, prompt): - run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) - -input_tensors_list = [ - # input_ids, attention_mask - (np.array([[1, 4, 42]], dtype=np.int64), None), - (np.array([[1, 4, 42]], dtype=np.int64), np.array([[1, 1, 1]], dtype=np.int64)), -] -@pytest.mark.parametrize("inputs", input_tensors_list) -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.xfail( - raises=TypeError, - reason="pybind was unable to find overloads with tensor inputs on Linux", - strict=False, - condition=sys.platform == "linux" -) -@pytest.mark.precommit -def test_ov_tensors(model_descr, inputs): - hf_ov_genai_tensors_comparison(read_model(model_descr), dict(max_new_tokens=20), *inputs) - - -prompts = [ - 'table is made of', - '你好! 你好嗎?', - 'Alan Turing was a', - 'The Sun is yellow because', - ['The Sun is yellow because', 'Alan Turing was a', 'Alan Turing was a'] -] -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.parametrize("prompt", prompts) -@pytest.mark.precommit -@pytest.mark.xfail( - raises=TypeError, - reason="pybind was unable to find ov::Tensor from openvino yet", - strict=False, - condition=sys.platform in ["linux", "win32"] -) -def test_genai_tokenizer_encode(model_descr, prompt): - model_id, path, tokenizer, model, pipe = read_model(model_descr) - tok = pipe.get_tokenizer() +def test_chat_compare_text_history_with_HF(model_descr, generation_config: Dict): + # compares with HF when history in ov_genai is save as a text + device = 'CPU' + chat_history_hf = [] + chat_history_ov = [] + chat_prompt = '' - encoded_ov = tok.encode(prompt).input_ids.data - if isinstance(prompt, list): - encoded_hf = tokenizer.batch_encode_plus(prompt)['input_ids'] - for tokens_ov, tokens_hf in zip(encoded_ov, encoded_hf): - assert np.all(tokens_ov == tokens_hf) - else: - encoded_hf = tokenizer.encode(prompt) - assert np.all(encoded_hf == encoded_ov[0]) - -encoded_prompts = [ - [1, 1591, 338, 1754, 310], - [1, 17102, 323, 3864, 471, 263], + # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. + # Need to regenerate openvino_tokenizer/detokenizer. + model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) - # chineze characters - [1, 29871, 30919, 31076, 30584, 29871, 30919, 31076, 232, 154, 145, 30882], - - # On meta-llama/Meta-Llama-3-8B-Instruct this becomes longer after removing the last token - [3113, 264, 364, 267], - - # batched tokens - [[1, 1591, 338, 1754, 310], [1, 1591, 338, 1754, 310], [1, 17102, 323, 3864, 471, 263]] -] -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.parametrize("encoded_prompt", encoded_prompts) -@pytest.mark.precommit -@pytest.mark.xfail( - raises=TypeError, - reason="pybind was unable to find ov::Tensor from openvino yet", - strict=False, - condition=sys.platform in ["linux", "win32"] -) -def test_genai_tokenizer_decode(model_descr, encoded_prompt): - model_id, path, tokenizer, model, pipe = read_model(model_descr) - tok = pipe.get_tokenizer() - decoded_ov = tok.decode(encoded_prompt) + for prompt in questions: + chat_history_hf.append({'role': 'user', 'content': prompt}) + chat_history_ov.append({'role': 'user', 'content': prompt}) + + chat_prompt = tokenizer.apply_chat_template(chat_history_hf, tokenize=False, add_generation_prompt=True) + tokenized = tokenizer(chat_prompt, return_tensors='pt', add_special_tokens=False) + + answer = model_opt.generate(**tokenized, **generation_config, do_sample=False, repetition_penalty = None) + answer_str = tokenizer.decode(answer[0, tokenized['input_ids'].numel():], skip_special_tokens=True) + chat_history_hf.append({'role': 'assistant', 'content': answer_str}) + + chat_prompt = pipe.get_tokenizer().apply_chat_template(chat_history_ov, add_generation_prompt=True) + answer_ov = pipe.generate(chat_prompt, **generation_config) + chat_history_ov.append({'role': 'assistant', 'content': answer_ov}) + + if chat_history_ov != chat_history_hf: + print(f'hf_output: {chat_history_hf}') + print(f'ov_output: {chat_history_ov}') + assert chat_history_ov == chat_history_hf + + +@pytest.mark.parametrize("generation_config", configs) +@pytest.mark.parametrize("model_descr", get_chat_models_list()) +@pytest.mark.precommit +def test_chat_compare_statefull_vs_text_history(model_descr, generation_config: Dict): + # Check that when history is stored in KV cache results are the same as when history stored in a text. + device ='CPU' - if isinstance(encoded_prompt[0], list): - decoded_hf = tokenizer.batch_decode(encoded_prompt, skip_special_tokens=True) - for tokens_ov, tokens_hf in zip(decoded_ov, decoded_hf): - assert np.all(tokens_ov == tokens_hf) - else: - decoded_hf = tokenizer.decode(encoded_prompt, skip_special_tokens=True) - assert decoded_hf == decoded_ov - - -test_configs = [ - dict(max_new_tokens=20), - dict(max_new_tokens=200, ignore_eos=True), - dict(max_new_tokens=20, num_beam_groups=3, num_beams=15, diversity_penalty=1.0) -] -batched_prompts = [ - ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], - ['hello', 'Here is the longest nowel ever: '], - ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], - ['table is made', 'table is made [force left pad tokens]'] -] -@pytest.mark.parametrize("generation_config", test_configs) -@pytest.mark.parametrize("prompts", batched_prompts) -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.precommit -def test_multibatch(model_descr, generation_config, prompts): - run_hf_ov_genai_comparison_batched(read_model(model_descr), generation_config, prompts) - - -prompts = ['The Sun is yellow because', 'Difference between Jupiter and Mars is that', 'table is made of'] -@pytest.mark.parametrize("num_beam_groups", [2, 3, 8]) -@pytest.mark.parametrize("group_size", [5, 3, 10]) -@pytest.mark.parametrize("max_new_tokens", [20, 15]) -@pytest.mark.parametrize("diversity_penalty", [1.0 , 1.5]) -@pytest.mark.parametrize("prompt", prompts) -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.precommit -def test_beam_search_decoding(model_descr, num_beam_groups, group_size, - max_new_tokens, diversity_penalty, prompt): - generation_config = dict( - num_beam_groups=num_beam_groups, - num_beams=num_beam_groups * group_size, - diversity_penalty=diversity_penalty, - num_return_sequences=num_beam_groups * group_size, - max_new_tokens=max_new_tokens, - ) - run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) - - -@pytest.mark.parametrize("stop_criteria", [StopCriteria.NEVER, StopCriteria.EARLY, StopCriteria.HEURISTIC]) -@pytest.mark.parametrize("prompt", prompts) -@pytest.mark.parametrize("max_new_tokens", [10, 80]) -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.precommit -def test_stop_criteria(model_descr, stop_criteria, prompt, max_new_tokens): - # todo: with EARLY stop_criteria looks like HF return unvalid out with sentence - # while genai ends sentence with - if (stop_criteria == StopCriteria.EARLY): - pytest.skip() - generation_config = dict( - num_beam_groups=2, - num_beams=2 * 3, - diversity_penalty=1.0, - num_return_sequences=2 * 3, - max_new_tokens=max_new_tokens, - stop_criteria=stop_criteria, - ) - run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) - - -# test long sequences -@pytest.mark.parametrize("num_beam_groups", [2]) -@pytest.mark.parametrize("group_size", [5]) -@pytest.mark.parametrize("max_new_tokens", [800, 2000]) -@pytest.mark.parametrize("prompt", prompts) -@pytest.mark.parametrize("model_descr", get_models_list()) -@pytest.mark.skip(reason="Will be enabled in nightly since the test are computationally expensive") -@pytest.mark.nightly -def test_beam_search_long_sentences(model_descr, num_beam_groups, group_size, - max_new_tokens, prompt): - generation_config = dict( - num_beam_groups=num_beam_groups, - num_beams=num_beam_groups * group_size, - diversity_penalty=1.0, - num_return_sequences=num_beam_groups * group_size, - max_new_tokens=max_new_tokens, - ) - run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) - - -def user_defined_callback(subword): - print(subword) - - -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -@pytest.mark.precommit -def test_callback_one_string(callback): - pipe = read_model(get_models_list()[0])[4] - generation_config = pipe.get_generation_config() - generation_config.max_new_tokens = 10 - pipe.generate('table is made of', generation_config, callback) - - -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -@pytest.mark.precommit -def test_callback_batch_fail(callback): - pipe = read_model(get_models_list()[0])[4] - with pytest.raises(RuntimeError): - pipe.generate(['1', '2'], ov_genai.GenerationConfig(), callback) - - -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -@pytest.mark.precommit -def test_callback_kwargs_one_string(callback): - pipe = read_model(get_models_list()[0])[4] - pipe.generate('table is made of', max_new_tokens=10, streamer=callback) - -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -@pytest.mark.precommit -@pytest.mark.parametrize("model_descr", get_models_list()) -def test_callback_decoding_metallama(model_descr, callback): - # On metallam this prompt generates output which can shorten after adding new tokens. - # Test that streamer correctly handles such cases. - prompt = 'I have an interview about product speccing with the company Weekend Health. Give me an example of a question they might ask with regards about a new feature' - if model_descr[0] != 'meta-llama/Meta-Llama-3-8B-Instruct': - pytest.skip() - pipe = read_model(model_descr)[4] - pipe.generate(prompt, max_new_tokens=300, streamer=callback) - - -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -@pytest.mark.precommit -def test_callback_kwargs_batch_fail(callback): - pipe = read_model(get_models_list()[0])[4] - with pytest.raises(RuntimeError): - pipe.generate(['1', '2'], max_new_tokens=10, streamer=callback) - - -class Printer(ov_genai.StreamerBase): - def __init__(self, tokenizer): - # super() may work, but once you begin mixing Python and C++ - # multiple inheritance, things will fall apart due to - # differences between Python’s MRO and C++’s mechanisms. - ov_genai.StreamerBase.__init__(self) - self.tokenizer = tokenizer - def put(self, token_id): - # print(self.tokenizer.decode([token_id])) # Incorrect way to print, but easy to implement - print(token_id) # print only token because self.tokenizer.decode([token_id]) are not implemented yet - def end(self): - print('end') - - -@pytest.mark.precommit -def test_streamer_one_string(): - pipe = read_model(get_models_list()[0])[4] - generation_config = pipe.get_generation_config() - generation_config.max_new_tokens = 10 - printer = Printer(pipe.get_tokenizer()) - pipe.generate('table is made of', generation_config, printer) - - -@pytest.mark.precommit -def test_streamer_batch_fail(): - pipe = read_model(get_models_list()[0])[4] - printer = Printer(pipe.get_tokenizer()) - with pytest.raises(RuntimeError): - pipe.generate(['1', '2'], ov_genai.GenerationConfig(), printer) - - -@pytest.mark.precommit -def test_streamer_kwargs_one_string(): - pipe = read_model(get_models_list()[0])[4] - printer = Printer(pipe.get_tokenizer()) - pipe.generate('table is made of', max_new_tokens=10, do_sample=False, streamer=printer) - - -@pytest.mark.precommit -def test_streamer_kwargs_batch_fail(): - pipe = read_model(get_models_list()[0])[4] - printer = Printer(pipe.get_tokenizer()) - with pytest.raises(RuntimeError): - pipe.generate('', num_beams=2, streamer=printer) - - -@pytest.mark.precommit -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -def test_operator_with_callback_one_string(callback): - pipe = read_model(get_models_list()[0])[4] - ten_tokens = pipe.get_generation_config() - ten_tokens.max_new_tokens = 10 - pipe('talbe is made of', ten_tokens, callback) - - -@pytest.mark.precommit -@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) -def test_operator_with_callback_batch_fail(callback): - pipe = read_model(get_models_list()[0])[4] - with pytest.raises(RuntimeError): - pipe(['1', '2'], ov_genai.GenerationConfig(), callback) - - -@pytest.mark.precommit -def test_operator_with_streamer_kwargs_one_string(): - pipe = read_model(get_models_list()[0])[4] - printer = Printer(pipe.get_tokenizer()) - pipe('hi', max_new_tokens=10, do_sample=True, streamer=printer) - - -@pytest.mark.precommit -def test_operator_with_streamer_kwargs_batch_fail(): - pipe = read_model(get_models_list()[0])[4] - printer = Printer(pipe.get_tokenizer()) - with pytest.raises(RuntimeError): - pipe('', num_beams=2, streamer=printer) - - -@pytest.mark.precommit -def test_load_special_tokens_ids_1(model_tmp_path): - # test when there is an available config.json - config_json = { - "pad_token_id": 422, - "bos_token_id": 42, - "eos_token_id": 37, - } - tok = load_tok([(config_json, "config.json")], model_tmp_path[1]) - assert tok.get_pad_token_id() == config_json['pad_token_id'] - assert tok.get_bos_token_id() == config_json['bos_token_id'] - assert tok.get_eos_token_id() == config_json['eos_token_id'] - - -@pytest.mark.precommit -def test_load_special_tokens_str_2(model_tmp_path): - # test with special_tokens_map - special_tokens_map_json = { - "pad_token": {"content": ""}, - "bos_token": {"content": ""}, - "eos_token": {"content": ""}, - } - tok = load_tok([(special_tokens_map_json, "special_tokens_map.json")], model_tmp_path[1]) - assert tok.get_pad_token() == special_tokens_map_json['pad_token']["content"] - assert tok.get_bos_token() == special_tokens_map_json['bos_token']["content"] - assert tok.get_eos_token() == special_tokens_map_json['eos_token']["content"] - - -@pytest.mark.precommit -def test_load_special_tokens_3_(model_tmp_path): - # special_tokens_map is not available - # but tokenize_config.json exists - # will load both string and integer representations - tok_config_json = { - "added_tokens_decoder": { - "422": {"content": ""}, - "37": {"content": ""}, - "42": {"content": ""}, - }, - "pad_token": "", - "bos_token": "", - "eos_token": "", - } - - tok = load_tok([(tok_config_json, "tokenizer_config.json")], model_tmp_path[1]) - assert tok.get_pad_token() == tok_config_json['pad_token'] - assert tok.get_bos_token() == tok_config_json['bos_token'] - assert tok.get_eos_token() == tok_config_json['eos_token'] - - assert tok.get_pad_token_id() == 422 - assert tok.get_bos_token_id() == 37 - assert tok.get_eos_token_id() == 42 - - -@pytest.mark.precommit -def test_load_special_tokens_3(model_tmp_path): - # both config.json is availabel and tokenizer_config.json available - # check that it does not read int values from tokenizer_config.json if they are in config.json - tok_config_json = { - "added_tokens_decoder": { - # integers differ from config.json to check they don't override config.json - "777": {"content": ""}, - "888": {"content": ""}, - "656": {"content": ""}, - }, - "pad_token": "", - "bos_token": "", - "eos_token": "", - } - config_json = { - "pad_token_id": 422, - "bos_token_id": 42, - "eos_token_id": 37, - } - configs = [ - (tok_config_json, "tokenizer_config.json"), - (config_json, "config.json") - ] - tok = load_tok(configs, model_tmp_path[1]) - assert tok.get_pad_token_id() == config_json['pad_token_id'] - assert tok.get_bos_token_id() == config_json['bos_token_id'] - assert tok.get_eos_token_id() == config_json['eos_token_id'] - - assert tok.get_pad_token() == tok_config_json['pad_token'] - assert tok.get_bos_token() == tok_config_json['bos_token'] - assert tok.get_eos_token() == tok_config_json['eos_token'] - - -@pytest.mark.precommit -@pytest.mark.xfail( - raises=AssertionError, - reason="CVS-143410 ov tokenizer should be aligned with hf", - strict=False, -) -def test_load_special_tokens_4(model_tmp_path): - # only string representation is provided, find token integers by inference - model_id, temp_path = model_tmp_path - tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) + chat_history_with_kv_cache = [] + chat_history_ov = [] - special_tokens_map_json = {} - token_str_int_map = {} - special_token_names = ['pad_token', 'bos_token', 'eos_token'] - for token_str in special_token_names: - if hasattr(tokenizer, token_str): - token_val = getattr(tokenizer, token_str) - special_tokens_map_json.update({token_str: {"content": token_val}}) - token_id = tokenizer(token_val, add_special_tokens=False)['input_ids'][0] - token_str_int_map.update({token_str: token_id}) - - # since only string representations are present in the json will try to get by inference - tok = load_tok([(special_tokens_map_json, "special_tokens_map.json")], temp_path) - - # check ids inferred correctly for special tokens existing if HF tokenizer - if 'pad_token' in token_str_int_map: - assert tok.get_pad_token_id() == token_str_int_map['pad_token'] - if 'bos_token' in token_str_int_map: - assert tok.get_bos_token_id() == token_str_int_map['bos_token'] - if 'eos_token' in token_str_int_map: - assert tok.get_eos_token_id() == token_str_int_map['eos_token'] - - -invalid_configs = [ - dict(num_beam_groups=3, num_beams=15, do_sample=True), - dict(do_sample=True), # no eos_token_id no max_new_tokens, no max_len - dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos - dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty - dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp - dict(top_p=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_p - dict(top_k=0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_k + # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. + # Need to regenerate openvino_tokenizer/detokenizer. + model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) + pipe_with_kv_cache = ov_genai.LLMPipeline(str(path), device, config={"ENABLE_MMAP": False}) + + pipe_with_kv_cache.start_chat() + for question in questions: + chat_history_with_kv_cache.append({'role': 'user', 'content': question}) + answer = pipe_with_kv_cache.generate(question, **generation_config) + chat_history_with_kv_cache.append({'role': 'assistant', 'content': answer}) + + chat_history_ov.append({'role': 'user', 'content': question}) + prompt = pipe.get_tokenizer().apply_chat_template(chat_history_ov, add_generation_prompt=True) + answer = pipe.generate(prompt, **generation_config) + chat_history_ov.append({'role': 'assistant', 'content': answer}) + pipe_with_kv_cache.finish_chat() + + if chat_history_ov != chat_history_with_kv_cache: + print(f'kvcache_hist: {chat_history_with_kv_cache}') + print(f'text_history: {chat_history_ov}') + assert chat_history_ov == chat_history_with_kv_cache + + +conversation = [ + {'role': 'user', 'content': '1+1='}, + {'role': 'assistant', 'content': '1 + 1 = 2'}, + {'role': 'user', 'content': 'What is the previous answer?'}, + {'role': 'assistant', 'content': 'The previous answer was: 1 + 1 = 2. \n Please ask me your next question.'}, + {'role': 'user', 'content': 'Why is the sun yellow?'}, + {'role': 'assistant', 'content': 'Because it emits yeloow light.'}, + {'role': 'user', 'content': 'What was my first question?'}, ] -@pytest.mark.parametrize("generation_config", invalid_configs) -@pytest.mark.precommit -def test_invalid_configs(model_tmp_path, generation_config): - model_id, temp_path = model_tmp_path - config_json = {} - pipe = load_pipe([(config_json, "config.json")], temp_path) - with pytest.raises(RuntimeError): - pipe.generate('blah blah', **generation_config) - - @pytest.mark.precommit -def test_valid_configs(model_tmp_path): - model_id, temp_path = model_tmp_path - pipe = load_pipe([({"eos_token_id": 37}, "config.json")], temp_path) - - config = ov_genai.GenerationConfig() - config.do_sample = True # no eos_token_id but it's loaded from config.json - pipe.set_generation_config(config) +@pytest.mark.parametrize('chat_config', get_chat_templates()) +def test_apply_chat_template(model_tmp_path, chat_config: Tuple[str, Dict]): + tokenizer_config = chat_config[1] -invalid_py_configs = [ - dict(num_beam_groups=3, num_beams=15, do_sample=True), - dict(unexisting_key_name=True), # no eos_token_id no max_new_tokens, no max_len - dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos - dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty - dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp - dict(top_p=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_p - dict(top_k=0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_k -] -@pytest.mark.precommit -@pytest.mark.parametrize("generation_config", invalid_py_configs) -def test_python_generation_config_validation(model_tmp_path, generation_config): - model_id, temp_path = model_tmp_path - pipe = load_pipe([({"eos_token_id": 37}, "config.json")], temp_path) + # Will load openvino_model for tiny-random-phi as a placeholder + # but indeed only Tokenizer and apply_chat_template will be tested. + model_id, path, tokenizer, opt_model, pipe = read_model(get_models_list()[0]) - # 'unexisting_key_name' key validity is checked in pybind and ValueError will be returned - # instead of RuntimeError, which is returned when GenerationConfig values are validated - return_exception_type = ValueError if 'unexisting_key_name' in generation_config else RuntimeError - with pytest.raises(return_exception_type): - pipe.set_generation_config(ov_genai.GenerationConfig(**generation_config)) - - -@pytest.mark.precommit -def test_unicode_pybind_decoding_1(): - # On this model this prompt generates unfinished utf string. - # Test that pybind will not fail. - model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') - pipe = read_model((model_id, path))[4] - res_str = pipe.generate(',', max_new_tokens=4) - assert '�' == res_str[-1] - - - -@pytest.mark.precommit -def test_unicode_pybind_decoding_2(): - # On this model this prompt generates unfinished utf string. - # Test that pybind will not fail. - model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') - pipe = read_model((model_id, path))[4] - res_str = pipe.generate([","], max_new_tokens=4) - assert '�' == res_str.texts[0][-1] + full_history_str_hf = tokenizer.apply_chat_template(conversation, + add_generation_prompt=False, + tokenize=False, + **tokenizer_config) + + tok = load_tok([(tokenizer_config, "tokenizer_config.json")], model_tmp_path[1]) + full_history_str = tok.apply_chat_template(conversation, add_generation_prompt=False) + if full_history_str != full_history_str_hf: + print(f'hf reference: {full_history_str_hf}') + print(f'ov_genai out: {full_history_str}') + assert full_history_str == full_history_str_hf -@pytest.mark.precommit -def test_unicode_pybind_decoding_3(): - # On this model this prompt generates unfinished utf-8 string - # and streams it. Test that pybind will not fail while we pass string to python. - model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') - pipe = read_model((model_id, path))[4] - res_str = [] - pipe.generate(",", max_new_tokens=4, streamer=lambda x: res_str.append(x)) - assert '�' == res_str[-1] +@functools.lru_cache(1) +def get_continuous_batching(path): + return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -@pytest.mark.skip(reason="probably both models ov + hf doesn't fit to memory") +@pytest.mark.parametrize("prompt", questions) @pytest.mark.precommit -@pytest.mark.skipif(sys.platform.startswith("win"), reason="not enough space for this model on Win") -def test_left_pad(): - # test left pad tokenizer post processing implementation - prompts = [ - "The Sun is yellow because", - "The Sun is yellow because [force left pad tokens]" - ] - models = read_model(("microsoft/phi-1_5", Path("phi-1_5/"))) - - config = { - "max_new_tokens": 20, - "num_beam_groups": 2, - "num_beams": 2, - "num_return_sequences": 2, - "do_sample": False, - "diversity_penalty": 1.0, - # phi 1_5 has no eos_token_id in model configuration - # ov genai will detect eos_token_id from tokenizer config - # hf implementation doesn't fetch it from tokenizer config and defaults to None - # align ov genai and hf by setting eos_token_id explicitly - "eos_token_id": 50256, - } - - models[2].pad_token = models[2].eos_token - run_hf_ov_genai_comparison_batched(models, config, prompts) +def test_continuous_batching_vs_stateful(question): + model_id, path, tokenizer, model, pipe = read_model("TinyLlama/TinyLlama-1.1B-Chat-v1.0", pathlib.Path("TinyLlama-1.1B-Chat-v1.0")) + cb = get_continuous_batching(path) + config = ov_genai.GenerationConfig() + config.max_new_tokens = 100 + gen = cb.generate(question, config) + ref = pipe.generate(question, config) + assert gen == ref From 47fa22c2b112f470f0d7bcb028f75494d220f435 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 20:39:43 +0400 Subject: [PATCH 06/25] conflict --- tests/python_tests/test_generate_api.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 84488fe015..32b297da7d 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -170,7 +170,7 @@ def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -@pytest.mark.parametrize("prompt", questions) +@pytest.mark.parametrize("question", questions) @pytest.mark.precommit def test_continuous_batching_vs_stateful(question): model_id, path, tokenizer, model, pipe = read_model("TinyLlama/TinyLlama-1.1B-Chat-v1.0", pathlib.Path("TinyLlama-1.1B-Chat-v1.0")) From 2094ba67e1eda3d60944fefeb4c1077053a9fa1a Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 20:44:01 +0400 Subject: [PATCH 07/25] conflict --- .github/workflows/genai_python_lib.yml | 91 +------------------------ tests/python_tests/test_generate_api.py | 5 +- 2 files changed, 6 insertions(+), 90 deletions(-) diff --git a/.github/workflows/genai_python_lib.yml b/.github/workflows/genai_python_lib.yml index 294ff88633..34d5fbf924 100644 --- a/.github/workflows/genai_python_lib.yml +++ b/.github/workflows/genai_python_lib.yml @@ -11,7 +11,7 @@ env: jobs: ubuntu_genai_python_lib: # A tokenizers' dependency fails to compile on ubuntu-20 n CenOS7 env. - runs-on: ubuntu-22.04 + runs-on: ubuntu-22.04-16-cores env: # A tokenizers' dependency fails to compile with Ninja in CenOS7 env. CMAKE_GENERATOR: Unix Makefiles @@ -83,91 +83,4 @@ jobs: # cmd evaluates variables in a different way. Setting PYTHONPATH before setupvars.bat instead of doing that after solves that. - run: set "PYTHONPATH=./build/" && call ./ov/setupvars.bat && python -m pytest ./tests/python_tests/ - run: call ./ov/setupvars.bat && python -m pip install . --verbose - - run: python -m pytest ./tests/python_tests/test_generate_api.py -m precommit - - continuous_batching_python_lib_ubuntu: - # A tokenizers' dependency fails to compile on ubuntu-20 n CenOS7 env. - runs-on: ubuntu-22.04 - env: - # A tokenizers' dependency fails to compile with Ninja in CenOS7 env. - CMAKE_GENERATOR: Unix Makefiles - CMAKE_BUILD_PARALLEL_LEVEL: null - steps: - - uses: actions/checkout@v4 - with: - submodules: recursive - - uses: actions/setup-python@v4 - with: - python-version: 3.8 - # Install CentOS7 instead of Ubuntu to match PyPI distribution ABI. - - name: Install OpenVINO - run: | - mkdir ./ov/ - curl ${{ env.l_ov_centos_link }} | tar --directory ./ov/ --strip-components 1 -xz - sudo ./ov/install_dependencies/install_openvino_dependencies.sh - - name: Install dependencies and build - run: | - source ./ov/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --upgrade-strategy eager - cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/ - cmake --build ./build/ --config Release -j - - run: source ./ov/setupvars.sh && PYTHONPATH=./build/:$PYTHONPATH python -m pytest ./tests/python_tests/test_sampling.py -m precommit - - run: source ./ov/setupvars.sh && PYTHONPATH=./build/:$PYTHONPATH python -m pytest ./tests/python_tests/test_preemption.py -m precommit - - run: source ./ov/setupvars.sh && python -m pip install . - - run: python -m pytest ./tests/python_tests/test_preemption.py -m precommit - - continuous_batching_python_lib_windows: - runs-on: windows-latest - defaults: - run: - shell: cmd - steps: - - uses: actions/checkout@v4 - with: - submodules: recursive - - uses: actions/setup-python@v4 - with: - python-version: 3.8 - - - name: Install OpenVINO - run: | - curl --output ov.zip ${{ env.w_ov_link }} - unzip -d ov ov.zip - dirs=(ov/*) && mv ov/*/* ov && rmdir "${dirs[@]}" - shell: bash - - name: Install dependencies and build - run: | - call .\ov\setupvars.bat - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --upgrade-strategy eager - cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/ - cmake --build ./build/ --config Release -j - - run: set "PYTHONPATH=./build/" && call ./ov/setupvars.bat && python -m pytest ./tests/python_tests/test_sampling.py -m precommit - - run: set "PYTHONPATH=./build/" && call ./ov/setupvars.bat && python -m pytest ./tests/python_tests/test_preemption.py -m precommit - - run: call ./ov/setupvars.bat && python -m pip install . --verbose - - run: python -m pytest ./tests/python_tests/test_preemption.py -m precommit - - - continuous_batching_python_lib_macos: - runs-on: macos-12 - steps: - - uses: actions/checkout@v4 - with: - submodules: recursive - - uses: actions/setup-python@v4 - with: - python-version: 3.8 - - name: Install OpenVINO - run: | - mkdir ./ov/ - curl ${{ env.m_ov_link }} | tar --directory ./ov/ --strip-components 1 -xz - brew install coreutils scons - - name: Download, convert and build - run: | - source ./ov/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --upgrade-strategy eager - cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/ - cmake --build ./build/ --config Release -j - - run: source ./ov/setupvars.sh && PYTHONPATH=./build/:$PYTHONPATH python -m pytest ./tests/python_tests/test_sampling.py -m precommit - - run: source ./ov/setupvars.sh && PYTHONPATH=./build/:$PYTHONPATH python -m pytest ./tests/python_tests/test_preemption.py -m precommit - - run: source ./ov/setupvars.sh && python -m pip install . - - run: python -m pytest ./tests/python_tests/test_preemption.py -m precommit + - run: python -m pytest ./tests/python_tests/ diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 32b297da7d..3849dae1dd 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -173,7 +173,10 @@ def get_continuous_batching(path): @pytest.mark.parametrize("question", questions) @pytest.mark.precommit def test_continuous_batching_vs_stateful(question): - model_id, path, tokenizer, model, pipe = read_model("TinyLlama/TinyLlama-1.1B-Chat-v1.0", pathlib.Path("TinyLlama-1.1B-Chat-v1.0")) + model_id, path, tokenizer, model, pipe = read_model(( + "TinyLlama/TinyLlama-1.1B-Chat-v1.0", + pathlib.Path("TinyLlama-1.1B-Chat-v1.0") + )) cb = get_continuous_batching(path) config = ov_genai.GenerationConfig() config.max_new_tokens = 100 From 78361a989efbd7485ff7990a1793d7ce65b9c7fb Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 20:57:25 +0400 Subject: [PATCH 08/25] clean --- src/cpp/src/continuous_batching_pipeline.cpp | 8 +++--- src/cpp/src/llm_pipeline.cpp | 27 +++++++++----------- 2 files changed, 15 insertions(+), 20 deletions(-) diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 4b8d1a319c..7e822379c3 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -123,7 +123,6 @@ class ContinuousBatchingPipeline::Impl { GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, ov::genai::GenerationConfig sampling_params) { sampling_params.set_eos_token_id(m_tokenizer.get_eos_token_id()); sampling_params.validate(); - SequenceGroup::Ptr sequence_group = std::make_shared(request_id, input_ids, sampling_params, m_scheduler->get_config().block_size); { @@ -238,10 +237,7 @@ class ContinuousBatchingPipeline::Impl { return !m_awaiting_requests.empty() || !m_requests.empty(); } - std::vector generate( - const std::vector& input_ids, - const std::vector& sampling_params - ) { + std::vector generate( const std::vector& input_ids, const std::vector& sampling_params) { OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); @@ -276,6 +272,8 @@ class ContinuousBatchingPipeline::Impl { result.m_status = generation->get_status(); results.push_back(std::move(result)); } + + OPENVINO_ASSERT(results.size() == input_ids.size()); return results; } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 41acc3d071..d2168c67f8 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -446,7 +446,6 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { }, inputs); const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; // -1 == config.eos_token_id and config.validate() are handled in m_impl. - std::cout << "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa\n"; std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}); std::vector> tokens; std::vector scores; @@ -480,29 +479,27 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::genai::Tokenizer& tokenizer, const std::string& device, const ov::AnyMap& plugin_config -) { +): m_pimpl{[&]() -> std::unique_ptr { if ("CB" == device) { - m_pimpl = std::make_unique(model_path, tokenizer, "CPU", plugin_config); - } else if ("NPU" == device) { - m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); - } else { - m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); + return std::make_unique(model_path, tokenizer, "CPU", plugin_config); + } if ("NPU" == device) { + return std::make_unique(model_path, tokenizer, device, plugin_config); } -} + return std::make_unique(model_path, tokenizer, device, plugin_config); +}()} {} ov::genai::LLMPipeline::LLMPipeline( const std::string& path, const std::string& device, const ov::AnyMap& config -) { +): m_pimpl{[&]() -> std::unique_ptr { if ("CB" == device) { - m_pimpl = std::make_unique(path, "CPU", config); - } else if ("NPU" == device) { - m_pimpl = std::make_unique(path, device, config); - } else { - m_pimpl = std::make_unique(path, device, config); + return std::make_unique(path, "CPU", config); + } if ("NPU" == device) { + return std::make_unique(path, device, config); } -} + return std::make_unique(path, device, config); +}()} {} ov::genai::GenerationConfig ov::genai::LLMPipeline::get_generation_config() const { return m_pimpl->m_generation_config; From 691fefc0026d2913fe47a1e3452d230054a93873 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 21:01:14 +0400 Subject: [PATCH 09/25] verify status --- src/cpp/src/llm_pipeline.cpp | 3 +++ 1 file changed, 3 insertions(+) diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index d2168c67f8..cfeedbfc2a 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -450,6 +450,9 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { std::vector> tokens; std::vector scores; for (EncodedGenerationResult& res : generated) { + if (GenerationStatus::FINISHED != res.m_status) { + OPENVINO_THROW("Got unfinished GenerationStatus"); + } std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(tokens)); std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(scores)); } From 18253285427b7b1a3a1ab2f689a45488c088cd3a Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 21:16:36 +0400 Subject: [PATCH 10/25] conflict --- src/cpp/src/continuous_batching_pipeline.cpp | 4 +- src/cpp/src/llm_pipeline.cpp | 16 +- tests/python_tests/test_generate_api.py | 800 +++++++++++++++---- 3 files changed, 665 insertions(+), 155 deletions(-) diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 7e822379c3..ad190bd007 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -237,7 +237,7 @@ class ContinuousBatchingPipeline::Impl { return !m_awaiting_requests.empty() || !m_requests.empty(); } - std::vector generate( const std::vector& input_ids, const std::vector& sampling_params) { + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params) { OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); @@ -266,7 +266,7 @@ class ContinuousBatchingPipeline::Impl { auto num_outputs = std::min(sampling_params[generation_idx].num_return_sequences, generation_outputs.size()); for (size_t generation_output_idx = 0; generation_output_idx < num_outputs; ++generation_output_idx) { const auto& generation_output = generation_outputs[generation_output_idx]; - result.m_generation_ids.push_back(generation_output.generated_token_ids); + result.m_generation_ids.push_back(std::move(generation_output.generated_token_ids)); result.m_scores.push_back(generation_output.score); } result.m_status = generation->get_status(); diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index cfeedbfc2a..2fcd773181 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -348,11 +348,11 @@ Tokenizer dont_construct() { class ContinuousBatchingAdapter final : public LLMPipelineImplBase { public: - ov::genai::ContinuousBatchingPipeline m_impl; + ContinuousBatchingPipeline m_impl; ContinuousBatchingAdapter( const ov::InferRequest& request, - const ov::genai::Tokenizer& tokenizer, + const Tokenizer& tokenizer, OptionalGenerationConfig generation_config ): LLMPipelineImplBase{dont_construct()}, m_impl{"", {}} {} @@ -447,16 +447,16 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; // -1 == config.eos_token_id and config.validate() are handled in m_impl. std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}); - std::vector> tokens; - std::vector scores; + std::vector> plain_tokens; + std::vector plain_scores; for (EncodedGenerationResult& res : generated) { if (GenerationStatus::FINISHED != res.m_status) { OPENVINO_THROW("Got unfinished GenerationStatus"); } - std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(tokens)); - std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(scores)); + std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(plain_tokens)); + std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(plain_scores)); } - return {std::move(tokens), std::move(scores)}; + return {std::move(plain_tokens), std::move(plain_scores)}; } void start_chat(const std::string& system_message) override { @@ -474,7 +474,7 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::genai::Tokenizer& tokenizer, OptionalGenerationConfig generation_config ) { - m_pimpl = std::make_unique(request, tokenizer, generation_config); + m_pimpl = std::make_unique(request, tokenizer, generation_config); } ov::genai::LLMPipeline::LLMPipeline( diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 3849dae1dd..d994d52fe3 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -1,168 +1,679 @@ # Copyright (C) 2023-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -import functools import openvino_genai as ov_genai -import pathlib +from openvino_genai import StopCriteria import pytest -from typing import Dict, Tuple +import transformers +from typing import Union, List, Dict, Optional +import numpy as np +import openvino as ov +import sys +from pathlib import Path +import torch +import functools from ov_genai_test_utils import ( - get_models_list, - get_chat_models_list, - read_model, - load_tok, - model_tmp_path, - get_chat_templates + get_models_list, + read_model, + load_pipe, + load_tok, + model_tmp_path, + STOP_CRITERIA_MAP, ) -configs = [ - dict(max_new_tokens=20), - dict(num_beam_groups=3, num_beams=15, num_return_sequences=1, max_new_tokens=10, diversity_penalty=1.0) -] +def run_hf_ov_genai_comparison_batched(model_descr, generation_config: Dict, prompts: Union[str, List[str]]): + device = 'CPU' + model_id, path, tokenizer, model, pipe = model_descr + config = generation_config.copy() # to avoid side effects + num_beams = config['num_beams'] if 'num_beams' in config else 1 + config['num_return_sequences'] = num_beams + + if not isinstance(prompts, list): + prompts = [prompts] + if 'do_sample' not in config: + # Some HF models have default do_sample = True, and if we set beam search generation config + # it conflicts with `diversity_penalty` and/or `num_beam_groups`. + # Need to set exlicitly to False, but only if test arguments omitted this arg. + # Do not apply 'repetition_penalty' if sampling is not used. + config['do_sample'] = False + config['repetition_penalty'] = None + + generation_config_hf = config.copy() + if generation_config_hf.get('stop_criteria'): + generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] + generation_config_hf.pop('ignore_eos', None) -questions = [ - '1+1=', - 'What is the previous answer?', - 'Why is the Sun yellow?', - 'What was my first question?' -] + # Encode the batch of prompts + tokenizer.padding_side = "left" + encoded_prompts = tokenizer(prompts, return_tensors='pt', padding=True, truncation=True, add_special_tokens=True) + prompt_ids, attention_mask = encoded_prompts['input_ids'], encoded_prompts['attention_mask'] + + hf_encoded_outputs = model.generate(prompt_ids, attention_mask=attention_mask, **generation_config_hf) + hf_outputs = [] + for idx, hf_encoded_out in enumerate(hf_encoded_outputs): + prompt_count = idx // num_beams + hf_outputs.append(tokenizer.decode(hf_encoded_out[prompt_ids[prompt_count].shape[0]:], skip_special_tokens=True)) -@pytest.mark.parametrize("generation_config", configs) -@pytest.mark.parametrize("model_descr", get_chat_models_list()) -@pytest.mark.precommit -def test_chat_compare_with_HF(model_descr, generation_config: Dict): + ov_outputs = pipe.generate(prompts, **config).texts + + hf_outputs.sort() + ov_outputs.sort() + for i, (hf_output, ov_output) in enumerate(zip(hf_outputs, ov_outputs)): + if hf_output != ov_output: + print(f'hf_output: {hf_output}') + print(f'ov_output: {ov_output}') + assert hf_output == ov_output + +def run_hf_ov_genai_comparison(model_descr, generation_config: Dict, prompt: str): device = 'CPU' - chat_history_hf = [] - chat_history_ov = [] - chat_prompt = '' + model_id, path, tokenizer, model, pipe = model_descr + + config = generation_config.copy() # to avoid side effects + + if 'do_sample' not in config: + # Some HF models have default do_sample = True, and if we set beam search generation config + # it conflicts with `diversity_penalty` and/or `num_beam_groups`. + # Need to set exlicitly to False, but only if test arguments omitted this arg. + # Do not apply 'repetition_penalty' if sampling is not used. + config['do_sample'] = False + config['repetition_penalty'] = None + + generation_config_hf = config.copy() + if generation_config_hf.get('stop_criteria'): + generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] + generation_config_hf.pop('ignore_eos', None) + + encoded_prompt = tokenizer.encode(prompt, return_tensors='pt', add_special_tokens=True) + hf_encoded_output = model.generate(encoded_prompt, **generation_config_hf) + hf_output = tokenizer.decode(hf_encoded_output[0, encoded_prompt.shape[1]:], skip_special_tokens=True) + + ov_output = pipe.generate(prompt, **config) + if config.get('num_return_sequences', 1) > 1: + assert hf_output in ov_output.texts + else: + if hf_output != ov_output: + print(f'hf_output: {hf_output}') + print(f'ov_output: {ov_output}') + + assert hf_output == ov_output + +def hf_ov_genai_tensors_comparison( + model_descr, + generation_config: Dict, + input_ids: np.ndarray, + attention_mask: Optional[np.array] = None + ): + device = 'CPU' + model_id, path, tokenizer, model, pipe = model_descr + + config = generation_config.copy() # to avoid side effects + + if 'do_sample' not in config: + # Some HF models have default do_sample = True, and if we set beam search generation config + # it conflicts with `diversity_penalty` and/or `num_beam_groups`. + # Need to set exlicitly to False, but only if test arguments omitted this arg. + # Do not apply 'repetition_penalty' if sampling is not used. + config['do_sample'] = False + config['repetition_penalty'] = None - # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. - # Need to regenerate openvino_tokenizer/detokenizer. - model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) - - pipe.start_chat() - for prompt in questions: - chat_history_hf.append({'role': 'user', 'content': prompt}) - chat_history_ov.append({'role': 'user', 'content': prompt}) - - chat_prompt = tokenizer.apply_chat_template(chat_history_hf, tokenize=False, add_generation_prompt=True) - tokenized = tokenizer(chat_prompt, return_tensors='pt', add_special_tokens=False) - - answer = model_opt.generate(**tokenized, **generation_config, do_sample=False, repetition_penalty = None) - answer_str = tokenizer.decode(answer[0, tokenized['input_ids'].numel():], skip_special_tokens=True) - chat_history_hf.append({'role': 'assistant', 'content': answer_str}) - - answer_ov = pipe.generate(prompt, **generation_config) - chat_history_ov.append({'role': 'assistant', 'content': answer_ov}) - - pipe.finish_chat() + generation_config_hf = config.copy() + if generation_config_hf.get('stop_criteria'): + generation_config_hf['early_stopping'] = STOP_CRITERIA_MAP[generation_config_hf.pop('stop_criteria')] + generation_config_hf.pop('ignore_eos', None) - if chat_history_ov != chat_history_hf: - print(f'hf_output: {chat_history_hf}') - print(f'ov_output: {chat_history_ov}') - assert chat_history_ov == chat_history_hf + if attention_mask is not None: + inputs_ov = ov_genai.TokenizedInputs(ov.Tensor(input_ids), ov.Tensor(attention_mask)) + inputs_hf = dict(inputs=torch.tensor(input_ids), attention_mask=torch.tensor(attention_mask)) + else: + inputs_hf = dict(inputs=torch.tensor(input_ids)) + inputs_ov = ov.Tensor(input_ids) + + hf_output = model.generate(**inputs_hf, **generation_config_hf) + + pipe = ov_genai.LLMPipeline(str(path), device) + ov_output = pipe.generate(inputs_ov, **config) + hf_res = hf_output[0, input_ids.shape[1]:].numpy() + ov_res = np.array(ov_output.tokens, dtype=np.int64) + assert np.all(ov_res == hf_res) -@pytest.mark.parametrize("generation_config", configs) -@pytest.mark.parametrize("model_descr", get_chat_models_list()) + +test_cases = [ + (dict(max_new_tokens=20), 'table is made of'), + (dict(max_new_tokens=20), '你好! 你好嗎?'), + (dict(num_beam_groups=3, num_beams=15, num_return_sequences=15, max_new_tokens=30, diversity_penalty=1.0), 'Alan Turing was a'), + (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'table is made of'), + (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.0), 'The Sun is yellow because'), + (dict(num_beam_groups=2, num_beams=8, num_return_sequences=8, max_new_tokens=20, diversity_penalty=1.5), 'The Sun is yellow because'), +] +@pytest.mark.parametrize("generation_config,prompt", test_cases) +@pytest.mark.parametrize("model_descr", get_models_list()) @pytest.mark.precommit -def test_chat_compare_text_history_with_HF(model_descr, generation_config: Dict): - # compares with HF when history in ov_genai is save as a text - device = 'CPU' - chat_history_hf = [] - chat_history_ov = [] - chat_prompt = '' - - # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. - # Need to regenerate openvino_tokenizer/detokenizer. - model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) +def test_decoding(model_descr, generation_config, prompt): + run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) + +input_tensors_list = [ + # input_ids, attention_mask + (np.array([[1, 4, 42]], dtype=np.int64), None), + (np.array([[1, 4, 42]], dtype=np.int64), np.array([[1, 1, 1]], dtype=np.int64)), +] +@pytest.mark.parametrize("inputs", input_tensors_list) +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.xfail( + raises=TypeError, + reason="pybind was unable to find overloads with tensor inputs on Linux", + strict=False, + condition=sys.platform == "linux" +) +@pytest.mark.precommit +def test_ov_tensors(model_descr, inputs): + hf_ov_genai_tensors_comparison(read_model(model_descr), dict(max_new_tokens=20), *inputs) + + +prompts = [ + 'table is made of', + '你好! 你好嗎?', + 'Alan Turing was a', + 'The Sun is yellow because', + ['The Sun is yellow because', 'Alan Turing was a', 'Alan Turing was a'] +] +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.precommit +@pytest.mark.xfail( + raises=TypeError, + reason="pybind was unable to find ov::Tensor from openvino yet", + strict=False, + condition=sys.platform in ["linux", "win32"] +) +def test_genai_tokenizer_encode(model_descr, prompt): + model_id, path, tokenizer, model, pipe = read_model(model_descr) + tok = pipe.get_tokenizer() - for prompt in questions: - chat_history_hf.append({'role': 'user', 'content': prompt}) - chat_history_ov.append({'role': 'user', 'content': prompt}) - - chat_prompt = tokenizer.apply_chat_template(chat_history_hf, tokenize=False, add_generation_prompt=True) - tokenized = tokenizer(chat_prompt, return_tensors='pt', add_special_tokens=False) - - answer = model_opt.generate(**tokenized, **generation_config, do_sample=False, repetition_penalty = None) - answer_str = tokenizer.decode(answer[0, tokenized['input_ids'].numel():], skip_special_tokens=True) - chat_history_hf.append({'role': 'assistant', 'content': answer_str}) - - chat_prompt = pipe.get_tokenizer().apply_chat_template(chat_history_ov, add_generation_prompt=True) - answer_ov = pipe.generate(chat_prompt, **generation_config) - chat_history_ov.append({'role': 'assistant', 'content': answer_ov}) - - if chat_history_ov != chat_history_hf: - print(f'hf_output: {chat_history_hf}') - print(f'ov_output: {chat_history_ov}') - assert chat_history_ov == chat_history_hf - - -@pytest.mark.parametrize("generation_config", configs) -@pytest.mark.parametrize("model_descr", get_chat_models_list()) -@pytest.mark.precommit -def test_chat_compare_statefull_vs_text_history(model_descr, generation_config: Dict): - # Check that when history is stored in KV cache results are the same as when history stored in a text. - device ='CPU' + encoded_ov = tok.encode(prompt).input_ids.data + if isinstance(prompt, list): + encoded_hf = tokenizer.batch_encode_plus(prompt)['input_ids'] + for tokens_ov, tokens_hf in zip(encoded_ov, encoded_hf): + assert np.all(tokens_ov == tokens_hf) + else: + encoded_hf = tokenizer.encode(prompt) + assert np.all(encoded_hf == encoded_ov[0]) + +encoded_prompts = [ + [1, 1591, 338, 1754, 310], + [1, 17102, 323, 3864, 471, 263], - chat_history_with_kv_cache = [] - chat_history_ov = [] + # chineze characters + [1, 29871, 30919, 31076, 30584, 29871, 30919, 31076, 232, 154, 145, 30882], + + # On meta-llama/Meta-Llama-3-8B-Instruct this becomes longer after removing the last token + [3113, 264, 364, 267], + + # batched tokens + [[1, 1591, 338, 1754, 310], [1, 1591, 338, 1754, 310], [1, 17102, 323, 3864, 471, 263]] +] +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.parametrize("encoded_prompt", encoded_prompts) +@pytest.mark.precommit +@pytest.mark.xfail( + raises=TypeError, + reason="pybind was unable to find ov::Tensor from openvino yet", + strict=False, + condition=sys.platform in ["linux", "win32"] +) +def test_genai_tokenizer_decode(model_descr, encoded_prompt): + model_id, path, tokenizer, model, pipe = read_model(model_descr) + tok = pipe.get_tokenizer() + decoded_ov = tok.decode(encoded_prompt) - # HF in chat scenario does not add special tokens, but openvino tokenizer by default is converted with add_special_tokens=True. - # Need to regenerate openvino_tokenizer/detokenizer. - model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat'), add_special_tokens=False) - pipe_with_kv_cache = ov_genai.LLMPipeline(str(path), device, config={"ENABLE_MMAP": False}) - - pipe_with_kv_cache.start_chat() - for question in questions: - chat_history_with_kv_cache.append({'role': 'user', 'content': question}) - answer = pipe_with_kv_cache.generate(question, **generation_config) - chat_history_with_kv_cache.append({'role': 'assistant', 'content': answer}) - - chat_history_ov.append({'role': 'user', 'content': question}) - prompt = pipe.get_tokenizer().apply_chat_template(chat_history_ov, add_generation_prompt=True) - answer = pipe.generate(prompt, **generation_config) - chat_history_ov.append({'role': 'assistant', 'content': answer}) - pipe_with_kv_cache.finish_chat() - - if chat_history_ov != chat_history_with_kv_cache: - print(f'kvcache_hist: {chat_history_with_kv_cache}') - print(f'text_history: {chat_history_ov}') - assert chat_history_ov == chat_history_with_kv_cache - - -conversation = [ - {'role': 'user', 'content': '1+1='}, - {'role': 'assistant', 'content': '1 + 1 = 2'}, - {'role': 'user', 'content': 'What is the previous answer?'}, - {'role': 'assistant', 'content': 'The previous answer was: 1 + 1 = 2. \n Please ask me your next question.'}, - {'role': 'user', 'content': 'Why is the sun yellow?'}, - {'role': 'assistant', 'content': 'Because it emits yeloow light.'}, - {'role': 'user', 'content': 'What was my first question?'}, + if isinstance(encoded_prompt[0], list): + decoded_hf = tokenizer.batch_decode(encoded_prompt, skip_special_tokens=True) + for tokens_ov, tokens_hf in zip(decoded_ov, decoded_hf): + assert np.all(tokens_ov == tokens_hf) + else: + decoded_hf = tokenizer.decode(encoded_prompt, skip_special_tokens=True) + assert decoded_hf == decoded_ov + + +test_configs = [ + dict(max_new_tokens=20), + dict(max_new_tokens=200, ignore_eos=True), + dict(max_new_tokens=20, num_beam_groups=3, num_beams=15, diversity_penalty=1.0) ] +batched_prompts = [ + ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], + ['hello', 'Here is the longest nowel ever: '], + ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], + ['table is made', 'table is made [force left pad tokens]'] +] +@pytest.mark.parametrize("generation_config", test_configs) +@pytest.mark.parametrize("prompts", batched_prompts) +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.precommit +def test_multibatch(model_descr, generation_config, prompts): + run_hf_ov_genai_comparison_batched(read_model(model_descr), generation_config, prompts) + + +prompts = ['The Sun is yellow because', 'Difference between Jupiter and Mars is that', 'table is made of'] +@pytest.mark.parametrize("num_beam_groups", [2, 3, 8]) +@pytest.mark.parametrize("group_size", [5, 3, 10]) +@pytest.mark.parametrize("max_new_tokens", [20, 15]) +@pytest.mark.parametrize("diversity_penalty", [1.0 , 1.5]) +@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.precommit +def test_beam_search_decoding(model_descr, num_beam_groups, group_size, + max_new_tokens, diversity_penalty, prompt): + generation_config = dict( + num_beam_groups=num_beam_groups, + num_beams=num_beam_groups * group_size, + diversity_penalty=diversity_penalty, + num_return_sequences=num_beam_groups * group_size, + max_new_tokens=max_new_tokens, + ) + run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) + + +@pytest.mark.parametrize("stop_criteria", [StopCriteria.NEVER, StopCriteria.EARLY, StopCriteria.HEURISTIC]) +@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.parametrize("max_new_tokens", [10, 80]) +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.precommit +def test_stop_criteria(model_descr, stop_criteria, prompt, max_new_tokens): + # todo: with EARLY stop_criteria looks like HF return unvalid out with sentence + # while genai ends sentence with + if (stop_criteria == StopCriteria.EARLY): + pytest.skip() + generation_config = dict( + num_beam_groups=2, + num_beams=2 * 3, + diversity_penalty=1.0, + num_return_sequences=2 * 3, + max_new_tokens=max_new_tokens, + stop_criteria=stop_criteria, + ) + run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) + + +# test long sequences +@pytest.mark.parametrize("num_beam_groups", [2]) +@pytest.mark.parametrize("group_size", [5]) +@pytest.mark.parametrize("max_new_tokens", [800, 2000]) +@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.parametrize("model_descr", get_models_list()) +@pytest.mark.skip(reason="Will be enabled in nightly since the test are computationally expensive") +@pytest.mark.nightly +def test_beam_search_long_sentences(model_descr, num_beam_groups, group_size, + max_new_tokens, prompt): + generation_config = dict( + num_beam_groups=num_beam_groups, + num_beams=num_beam_groups * group_size, + diversity_penalty=1.0, + num_return_sequences=num_beam_groups * group_size, + max_new_tokens=max_new_tokens, + ) + run_hf_ov_genai_comparison(read_model(model_descr), generation_config, prompt) + + +def user_defined_callback(subword): + print(subword) + + +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +@pytest.mark.precommit +def test_callback_one_string(callback): + pipe = read_model(get_models_list()[0])[4] + generation_config = pipe.get_generation_config() + generation_config.max_new_tokens = 10 + pipe.generate('table is made of', generation_config, callback) + + +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +@pytest.mark.precommit +def test_callback_batch_fail(callback): + pipe = read_model(get_models_list()[0])[4] + with pytest.raises(RuntimeError): + pipe.generate(['1', '2'], ov_genai.GenerationConfig(), callback) + + +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) @pytest.mark.precommit -@pytest.mark.parametrize('chat_config', get_chat_templates()) -def test_apply_chat_template(model_tmp_path, chat_config: Tuple[str, Dict]): - tokenizer_config = chat_config[1] +def test_callback_kwargs_one_string(callback): + pipe = read_model(get_models_list()[0])[4] + pipe.generate('table is made of', max_new_tokens=10, streamer=callback) + +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +@pytest.mark.precommit +@pytest.mark.parametrize("model_descr", get_models_list()) +def test_callback_decoding_metallama(model_descr, callback): + # On metallam this prompt generates output which can shorten after adding new tokens. + # Test that streamer correctly handles such cases. + prompt = 'I have an interview about product speccing with the company Weekend Health. Give me an example of a question they might ask with regards about a new feature' + if model_descr[0] != 'meta-llama/Meta-Llama-3-8B-Instruct': + pytest.skip() + pipe = read_model(model_descr)[4] + pipe.generate(prompt, max_new_tokens=300, streamer=callback) + + +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +@pytest.mark.precommit +def test_callback_kwargs_batch_fail(callback): + pipe = read_model(get_models_list()[0])[4] + with pytest.raises(RuntimeError): + pipe.generate(['1', '2'], max_new_tokens=10, streamer=callback) + + +class Printer(ov_genai.StreamerBase): + def __init__(self, tokenizer): + # super() may work, but once you begin mixing Python and C++ + # multiple inheritance, things will fall apart due to + # differences between Python’s MRO and C++’s mechanisms. + ov_genai.StreamerBase.__init__(self) + self.tokenizer = tokenizer + def put(self, token_id): + # print(self.tokenizer.decode([token_id])) # Incorrect way to print, but easy to implement + print(token_id) # print only token because self.tokenizer.decode([token_id]) are not implemented yet + def end(self): + print('end') - # Will load openvino_model for tiny-random-phi as a placeholder - # but indeed only Tokenizer and apply_chat_template will be tested. - model_id, path, tokenizer, opt_model, pipe = read_model(get_models_list()[0]) + +@pytest.mark.precommit +def test_streamer_one_string(): + pipe = read_model(get_models_list()[0])[4] + generation_config = pipe.get_generation_config() + generation_config.max_new_tokens = 10 + printer = Printer(pipe.get_tokenizer()) + pipe.generate('table is made of', generation_config, printer) + + +@pytest.mark.precommit +def test_streamer_batch_fail(): + pipe = read_model(get_models_list()[0])[4] + printer = Printer(pipe.get_tokenizer()) + with pytest.raises(RuntimeError): + pipe.generate(['1', '2'], ov_genai.GenerationConfig(), printer) + + +@pytest.mark.precommit +def test_streamer_kwargs_one_string(): + pipe = read_model(get_models_list()[0])[4] + printer = Printer(pipe.get_tokenizer()) + pipe.generate('table is made of', max_new_tokens=10, do_sample=False, streamer=printer) + + +@pytest.mark.precommit +def test_streamer_kwargs_batch_fail(): + pipe = read_model(get_models_list()[0])[4] + printer = Printer(pipe.get_tokenizer()) + with pytest.raises(RuntimeError): + pipe.generate('', num_beams=2, streamer=printer) + + +@pytest.mark.precommit +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +def test_operator_with_callback_one_string(callback): + pipe = read_model(get_models_list()[0])[4] + ten_tokens = pipe.get_generation_config() + ten_tokens.max_new_tokens = 10 + pipe('talbe is made of', ten_tokens, callback) + + +@pytest.mark.precommit +@pytest.mark.parametrize("callback", [print, user_defined_callback, lambda subword: print(subword)]) +def test_operator_with_callback_batch_fail(callback): + pipe = read_model(get_models_list()[0])[4] + with pytest.raises(RuntimeError): + pipe(['1', '2'], ov_genai.GenerationConfig(), callback) + + +@pytest.mark.precommit +def test_operator_with_streamer_kwargs_one_string(): + pipe = read_model(get_models_list()[0])[4] + printer = Printer(pipe.get_tokenizer()) + pipe('hi', max_new_tokens=10, do_sample=True, streamer=printer) + + +@pytest.mark.precommit +def test_operator_with_streamer_kwargs_batch_fail(): + pipe = read_model(get_models_list()[0])[4] + printer = Printer(pipe.get_tokenizer()) + with pytest.raises(RuntimeError): + pipe('', num_beams=2, streamer=printer) + + +@pytest.mark.precommit +def test_load_special_tokens_ids_1(model_tmp_path): + # test when there is an available config.json + config_json = { + "pad_token_id": 422, + "bos_token_id": 42, + "eos_token_id": 37, + } + tok = load_tok([(config_json, "config.json")], model_tmp_path[1]) + assert tok.get_pad_token_id() == config_json['pad_token_id'] + assert tok.get_bos_token_id() == config_json['bos_token_id'] + assert tok.get_eos_token_id() == config_json['eos_token_id'] + + +@pytest.mark.precommit +def test_load_special_tokens_str_2(model_tmp_path): + # test with special_tokens_map + special_tokens_map_json = { + "pad_token": {"content": ""}, + "bos_token": {"content": ""}, + "eos_token": {"content": ""}, + } + tok = load_tok([(special_tokens_map_json, "special_tokens_map.json")], model_tmp_path[1]) + assert tok.get_pad_token() == special_tokens_map_json['pad_token']["content"] + assert tok.get_bos_token() == special_tokens_map_json['bos_token']["content"] + assert tok.get_eos_token() == special_tokens_map_json['eos_token']["content"] + + +@pytest.mark.precommit +def test_load_special_tokens_3_(model_tmp_path): + # special_tokens_map is not available + # but tokenize_config.json exists + # will load both string and integer representations + tok_config_json = { + "added_tokens_decoder": { + "422": {"content": ""}, + "37": {"content": ""}, + "42": {"content": ""}, + }, + "pad_token": "", + "bos_token": "", + "eos_token": "", + } + + tok = load_tok([(tok_config_json, "tokenizer_config.json")], model_tmp_path[1]) + assert tok.get_pad_token() == tok_config_json['pad_token'] + assert tok.get_bos_token() == tok_config_json['bos_token'] + assert tok.get_eos_token() == tok_config_json['eos_token'] + + assert tok.get_pad_token_id() == 422 + assert tok.get_bos_token_id() == 37 + assert tok.get_eos_token_id() == 42 + + +@pytest.mark.precommit +def test_load_special_tokens_3(model_tmp_path): + # both config.json is availabel and tokenizer_config.json available + # check that it does not read int values from tokenizer_config.json if they are in config.json + tok_config_json = { + "added_tokens_decoder": { + # integers differ from config.json to check they don't override config.json + "777": {"content": ""}, + "888": {"content": ""}, + "656": {"content": ""}, + }, + "pad_token": "", + "bos_token": "", + "eos_token": "", + } + config_json = { + "pad_token_id": 422, + "bos_token_id": 42, + "eos_token_id": 37, + } + configs = [ + (tok_config_json, "tokenizer_config.json"), + (config_json, "config.json") + ] + tok = load_tok(configs, model_tmp_path[1]) + assert tok.get_pad_token_id() == config_json['pad_token_id'] + assert tok.get_bos_token_id() == config_json['bos_token_id'] + assert tok.get_eos_token_id() == config_json['eos_token_id'] + + assert tok.get_pad_token() == tok_config_json['pad_token'] + assert tok.get_bos_token() == tok_config_json['bos_token'] + assert tok.get_eos_token() == tok_config_json['eos_token'] + + +@pytest.mark.precommit +@pytest.mark.xfail( + raises=AssertionError, + reason="CVS-143410 ov tokenizer should be aligned with hf", + strict=False, +) +def test_load_special_tokens_4(model_tmp_path): + # only string representation is provided, find token integers by inference + model_id, temp_path = model_tmp_path + tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) - full_history_str_hf = tokenizer.apply_chat_template(conversation, - add_generation_prompt=False, - tokenize=False, - **tokenizer_config) + special_tokens_map_json = {} + token_str_int_map = {} + special_token_names = ['pad_token', 'bos_token', 'eos_token'] + for token_str in special_token_names: + if hasattr(tokenizer, token_str): + token_val = getattr(tokenizer, token_str) + special_tokens_map_json.update({token_str: {"content": token_val}}) + token_id = tokenizer(token_val, add_special_tokens=False)['input_ids'][0] + token_str_int_map.update({token_str: token_id}) + + # since only string representations are present in the json will try to get by inference + tok = load_tok([(special_tokens_map_json, "special_tokens_map.json")], temp_path) + + # check ids inferred correctly for special tokens existing if HF tokenizer + if 'pad_token' in token_str_int_map: + assert tok.get_pad_token_id() == token_str_int_map['pad_token'] + if 'bos_token' in token_str_int_map: + assert tok.get_bos_token_id() == token_str_int_map['bos_token'] + if 'eos_token' in token_str_int_map: + assert tok.get_eos_token_id() == token_str_int_map['eos_token'] + + +invalid_configs = [ + dict(num_beam_groups=3, num_beams=15, do_sample=True), + dict(do_sample=True), # no eos_token_id no max_new_tokens, no max_len + dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos + dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty + dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp + dict(top_p=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_p + dict(top_k=0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_k +] +@pytest.mark.parametrize("generation_config", invalid_configs) +@pytest.mark.precommit +def test_invalid_configs(model_tmp_path, generation_config): + model_id, temp_path = model_tmp_path + config_json = {} + pipe = load_pipe([(config_json, "config.json")], temp_path) + with pytest.raises(RuntimeError): + pipe.generate('blah blah', **generation_config) + + +@pytest.mark.precommit +def test_valid_configs(model_tmp_path): + model_id, temp_path = model_tmp_path + pipe = load_pipe([({"eos_token_id": 37}, "config.json")], temp_path) + + config = ov_genai.GenerationConfig() + config.do_sample = True # no eos_token_id but it's loaded from config.json + pipe.set_generation_config(config) + +invalid_py_configs = [ + dict(num_beam_groups=3, num_beams=15, do_sample=True), + dict(unexisting_key_name=True), # no eos_token_id no max_new_tokens, no max_len + dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos + dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty + dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp + dict(top_p=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_p + dict(top_k=0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid top_k +] +@pytest.mark.precommit +@pytest.mark.parametrize("generation_config", invalid_py_configs) +def test_python_generation_config_validation(model_tmp_path, generation_config): + model_id, temp_path = model_tmp_path + pipe = load_pipe([({"eos_token_id": 37}, "config.json")], temp_path) - tok = load_tok([(tokenizer_config, "tokenizer_config.json")], model_tmp_path[1]) - full_history_str = tok.apply_chat_template(conversation, add_generation_prompt=False) - if full_history_str != full_history_str_hf: - print(f'hf reference: {full_history_str_hf}') - print(f'ov_genai out: {full_history_str}') - assert full_history_str == full_history_str_hf + # 'unexisting_key_name' key validity is checked in pybind and ValueError will be returned + # instead of RuntimeError, which is returned when GenerationConfig values are validated + return_exception_type = ValueError if 'unexisting_key_name' in generation_config else RuntimeError + with pytest.raises(return_exception_type): + pipe.set_generation_config(ov_genai.GenerationConfig(**generation_config)) + + +@pytest.mark.precommit +def test_unicode_pybind_decoding_1(): + # On this model this prompt generates unfinished utf string. + # Test that pybind will not fail. + model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') + pipe = read_model((model_id, path))[4] + res_str = pipe.generate(',', max_new_tokens=4) + assert '�' == res_str[-1] + + + +@pytest.mark.precommit +def test_unicode_pybind_decoding_2(): + # On this model this prompt generates unfinished utf string. + # Test that pybind will not fail. + model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') + pipe = read_model((model_id, path))[4] + res_str = pipe.generate([","], max_new_tokens=4) + assert '�' == res_str.texts[0][-1] + + +@pytest.mark.precommit +def test_unicode_pybind_decoding_3(): + # On this model this prompt generates unfinished utf-8 string + # and streams it. Test that pybind will not fail while we pass string to python. + model_id, path = 'katuni4ka/tiny-random-phi3', Path('tiny-random-phi3') + pipe = read_model((model_id, path))[4] + res_str = [] + pipe.generate(",", max_new_tokens=4, streamer=lambda x: res_str.append(x)) + assert '�' == res_str[-1] + + +@pytest.mark.skip(reason="probably both models ov + hf doesn't fit to memory") +@pytest.mark.precommit +@pytest.mark.skipif(sys.platform.startswith("win"), reason="not enough space for this model on Win") +def test_left_pad(): + # test left pad tokenizer post processing implementation + prompts = [ + "The Sun is yellow because", + "The Sun is yellow because [force left pad tokens]" + ] + models = read_model(("microsoft/phi-1_5", Path("phi-1_5/"))) + + config = { + "max_new_tokens": 20, + "num_beam_groups": 2, + "num_beams": 2, + "num_return_sequences": 2, + "do_sample": False, + "diversity_penalty": 1.0, + # phi 1_5 has no eos_token_id in model configuration + # ov genai will detect eos_token_id from tokenizer config + # hf implementation doesn't fetch it from tokenizer config and defaults to None + # align ov genai and hf by setting eos_token_id explicitly + "eos_token_id": 50256, + } + + models[2].pad_token = models[2].eos_token + run_hf_ov_genai_comparison_batched(models, config, prompts) @functools.lru_cache(1) @@ -170,16 +681,15 @@ def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -@pytest.mark.parametrize("question", questions) +@pytest.mark.parametrize("generation_config", test_configs) +@pytest.mark.parametrize("prompts", batched_prompts) @pytest.mark.precommit -def test_continuous_batching_vs_stateful(question): +def test_continuous_batching_vs_stateful(batched_prompts): model_id, path, tokenizer, model, pipe = read_model(( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", - pathlib.Path("TinyLlama-1.1B-Chat-v1.0") + Path("TinyLlama-1.1B-Chat-v1.0") )) cb = get_continuous_batching(path) - config = ov_genai.GenerationConfig() - config.max_new_tokens = 100 - gen = cb.generate(question, config) - ref = pipe.generate(question, config) + gen = cb.generate(batched_prompts, **test_configs) + ref = pipe.generate(batched_prompts, **test_configs) assert gen == ref From 6a3275ef85cdbdbcb517eecd94698f15103302d7 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 21:18:04 +0400 Subject: [PATCH 11/25] args --- tests/python_tests/test_generate_api.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index d994d52fe3..3ef5b6aa98 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -681,10 +681,10 @@ def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -@pytest.mark.parametrize("generation_config", test_configs) -@pytest.mark.parametrize("prompts", batched_prompts) +@pytest.mark.parametrize("test_configs", test_configs) +@pytest.mark.parametrize("batched_prompts", batched_prompts) @pytest.mark.precommit -def test_continuous_batching_vs_stateful(batched_prompts): +def test_continuous_batching_vs_stateful(batched_prompts, test_configs): model_id, path, tokenizer, model, pipe = read_model(( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", Path("TinyLlama-1.1B-Chat-v1.0") From a5f2cd6ad9adb7294ad9c60a04c025c3246cac62 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 21:41:40 +0400 Subject: [PATCH 12/25] test --- .../include/openvino/genai/llm_pipeline.hpp | 2 +- tests/python_tests/test_generate_api.py | 27 +++++++++++-------- 2 files changed, 17 insertions(+), 12 deletions(-) diff --git a/src/cpp/include/openvino/genai/llm_pipeline.hpp b/src/cpp/include/openvino/genai/llm_pipeline.hpp index 84dc02bd58..abd4ee5a44 100644 --- a/src/cpp/include/openvino/genai/llm_pipeline.hpp +++ b/src/cpp/include/openvino/genai/llm_pipeline.hpp @@ -14,7 +14,7 @@ namespace ov { namespace genai { -// Return flag corresponds whether generation should be stopped: false means continue generation, true means stop. +// Return flag correspods whether generation should be stopped: false means continue generation, true means stop. using StreamerVariant = std::variant, std::shared_ptr, std::monostate>; using OptionalGenerationConfig = std::optional; using EncodedInputs = std::variant; diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 3ef5b6aa98..df019b0a22 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -23,7 +23,6 @@ def run_hf_ov_genai_comparison_batched(model_descr, generation_config: Dict, prompts: Union[str, List[str]]): - device = 'CPU' model_id, path, tokenizer, model, pipe = model_descr config = generation_config.copy() # to avoid side effects num_beams = config['num_beams'] if 'num_beams' in config else 1 @@ -68,7 +67,6 @@ def run_hf_ov_genai_comparison_batched(model_descr, generation_config: Dict, pro assert hf_output == ov_output def run_hf_ov_genai_comparison(model_descr, generation_config: Dict, prompt: str): - device = 'CPU' model_id, path, tokenizer, model, pipe = model_descr config = generation_config.copy() # to avoid side effects @@ -76,7 +74,7 @@ def run_hf_ov_genai_comparison(model_descr, generation_config: Dict, prompt: str if 'do_sample' not in config: # Some HF models have default do_sample = True, and if we set beam search generation config # it conflicts with `diversity_penalty` and/or `num_beam_groups`. - # Need to set exlicitly to False, but only if test arguments omitted this arg. + # Need to set explicitly to False, but only if test arguments omitted this arg. # Do not apply 'repetition_penalty' if sampling is not used. config['do_sample'] = False config['repetition_penalty'] = None @@ -245,7 +243,7 @@ def test_genai_tokenizer_decode(model_descr, encoded_prompt): ] batched_prompts = [ ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], - ['hello', 'Here is the longest nowel ever: '], + ['hello', 'Here is the longest novel ever: '], ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], ['table is made', 'table is made [force left pad tokens]'] ] @@ -681,15 +679,22 @@ def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -@pytest.mark.parametrize("test_configs", test_configs) -@pytest.mark.parametrize("batched_prompts", batched_prompts) +@pytest.mark.parametrize("prompts", [ + 'table is made of', + '你好! 你好嗎?', + 'Alan Turing was a', + 'The Sun is yellow because', + ['The Sun is yellow because', 'Alan Turing was a', 'Alan Turing was a'] +]) @pytest.mark.precommit -def test_continuous_batching_vs_stateful(batched_prompts, test_configs): +def test_continuous_batching_vs_stateful(prompts): model_id, path, tokenizer, model, pipe = read_model(( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", Path("TinyLlama-1.1B-Chat-v1.0") )) - cb = get_continuous_batching(path) - gen = cb.generate(batched_prompts, **test_configs) - ref = pipe.generate(batched_prompts, **test_configs) - assert gen == ref + config = ov_genai.GenerationConfig() + config.max_new_tokens = 100 + assert ( + get_continuous_batching(path).generate(prompts, config) + == pipe.generate(batched_prompts, config) + ) From 771fc29b31cd64592ab12a6e36897648f49652e3 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 22:03:58 +0400 Subject: [PATCH 13/25] tests --- src/cpp/src/llm_pipeline.cpp | 4 +-- tests/python_tests/test_generate_api.py | 33 ++++++++++++++----------- 2 files changed, 21 insertions(+), 16 deletions(-) diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 2fcd773181..2edeb264e9 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -435,9 +435,9 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { int64_t* destination = input_ids.back().data(); size_t copy_count = 0; for (size_t idx = 0; idx < max_len; ++idx) { - if (1 == attention_mask[batch_id * max_len + idx]) { + // if (1 == attention_mask[batch_id * max_len + idx]) { destination[copy_count++] = source[batch_id * max_len + idx]; - } + // } } input_ids.back().set_shape({1, copy_count}); } diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index df019b0a22..687e1a6f40 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -678,23 +678,28 @@ def test_left_pad(): def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') - -@pytest.mark.parametrize("prompts", [ - 'table is made of', - '你好! 你好嗎?', - 'Alan Turing was a', - 'The Sun is yellow because', - ['The Sun is yellow because', 'Alan Turing was a', 'Alan Turing was a'] -]) +test_configs = [ + dict(max_new_tokens=20), + dict(max_new_tokens=200, ignore_eos=True), + dict(max_new_tokens=20, num_beam_groups=3, num_beams=15, diversity_penalty=1.0) +] +batched_prompts = [ + ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], + ['hello', 'Here is the longest novel ever: '], + ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], + ['table is made', 'table is made [force left pad tokens]'] +] +@pytest.mark.parametrize("generation_config", test_configs) +@pytest.mark.parametrize("prompt", batched_prompts) @pytest.mark.precommit -def test_continuous_batching_vs_stateful(prompts): - model_id, path, tokenizer, model, pipe = read_model(( +def test_continuous_batching_vs_stateful(prompt, generation_config): + model_id, path, tokenizer, model, stateful = read_model(( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", Path("TinyLlama-1.1B-Chat-v1.0") )) config = ov_genai.GenerationConfig() config.max_new_tokens = 100 - assert ( - get_continuous_batching(path).generate(prompts, config) - == pipe.generate(batched_prompts, config) - ) + cb = get_continuous_batching(path) + vanilla = cb.generate(prompt, **generation_config) + ref = stateful.generate(prompt, **generation_config) + assert vanilla == ref From 5c615bf29b3bb990e7411b87a5cdbb2f9e1308a0 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Thu, 11 Jul 2024 22:03:58 +0400 Subject: [PATCH 14/25] tests --- src/cpp/src/llm_pipeline.cpp | 4 ++-- tests/python_tests/test_generate_api.py | 18 ++++-------------- 2 files changed, 6 insertions(+), 16 deletions(-) diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 2edeb264e9..2fcd773181 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -435,9 +435,9 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { int64_t* destination = input_ids.back().data(); size_t copy_count = 0; for (size_t idx = 0; idx < max_len; ++idx) { - // if (1 == attention_mask[batch_id * max_len + idx]) { + if (1 == attention_mask[batch_id * max_len + idx]) { destination[copy_count++] = source[batch_id * max_len + idx]; - // } + } } input_ids.back().set_shape({1, copy_count}); } diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 687e1a6f40..a6ea9bcc13 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -678,19 +678,9 @@ def test_left_pad(): def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') -test_configs = [ - dict(max_new_tokens=20), - dict(max_new_tokens=200, ignore_eos=True), - dict(max_new_tokens=20, num_beam_groups=3, num_beams=15, diversity_penalty=1.0) -] -batched_prompts = [ - ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], - ['hello', 'Here is the longest novel ever: '], - ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], - ['table is made', 'table is made [force left pad tokens]'] -] + @pytest.mark.parametrize("generation_config", test_configs) -@pytest.mark.parametrize("prompt", batched_prompts) +@pytest.mark.parametrize("prompt", prompts) @pytest.mark.precommit def test_continuous_batching_vs_stateful(prompt, generation_config): model_id, path, tokenizer, model, stateful = read_model(( @@ -700,6 +690,6 @@ def test_continuous_batching_vs_stateful(prompt, generation_config): config = ov_genai.GenerationConfig() config.max_new_tokens = 100 cb = get_continuous_batching(path) - vanilla = cb.generate(prompt, **generation_config) + generated = cb.generate(prompt, **generation_config) ref = stateful.generate(prompt, **generation_config) - assert vanilla == ref + assert generated == ref From 3afc16d751d19f757ee44a2a9e9d7046ba9cdc86 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Fri, 12 Jul 2024 13:39:50 +0400 Subject: [PATCH 15/25] test --- tests/python_tests/test_generate_api.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index a6ea9bcc13..4d53f25766 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -12,6 +12,7 @@ from pathlib import Path import torch import functools +import math from ov_genai_test_utils import ( get_models_list, read_model, @@ -680,7 +681,7 @@ def get_continuous_batching(path): @pytest.mark.parametrize("generation_config", test_configs) -@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.parametrize("prompt", batched_prompts) @pytest.mark.precommit def test_continuous_batching_vs_stateful(prompt, generation_config): model_id, path, tokenizer, model, stateful = read_model(( @@ -691,5 +692,9 @@ def test_continuous_batching_vs_stateful(prompt, generation_config): config.max_new_tokens = 100 cb = get_continuous_batching(path) generated = cb.generate(prompt, **generation_config) - ref = stateful.generate(prompt, **generation_config) - assert generated == ref + reference = stateful.generate(prompt, **generation_config) + assert generated.texts == reference.texts + if 1 != generation_config.get("num_beams", 1): + # Stateful puts zeroes to generated.scores. Don't compare them. + for gen, ref in zip(generated.scores, reference.scores): + assert math.isclose(gen, ref, abs_tol=0.0001) From 67f47172e91931e208fc749c18a7151481f69331 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Fri, 12 Jul 2024 13:44:39 +0400 Subject: [PATCH 16/25] remove caching --- tests/python_tests/test_generate_api.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 4d53f25766..232edc1b85 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -11,7 +11,6 @@ import sys from pathlib import Path import torch -import functools import math from ov_genai_test_utils import ( get_models_list, @@ -675,7 +674,6 @@ def test_left_pad(): run_hf_ov_genai_comparison_batched(models, config, prompts) -@functools.lru_cache(1) def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') From d26723f747cafa8d042f97033821773176b32c06 Mon Sep 17 00:00:00 2001 From: Anastasiia Pnevskaia Date: Fri, 12 Jul 2024 15:38:28 +0200 Subject: [PATCH 17/25] Clear beam search info. --- src/cpp/src/continuous_batching_pipeline.cpp | 1 + src/cpp/src/sampler.hpp | 6 ++++++ 2 files changed, 7 insertions(+) diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index dbacf3c243..beeabf4d01 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -269,6 +269,7 @@ class ContinuousBatchingPipeline::Impl { result.m_status = generation->get_status(); results.push_back(result); } + m_sampler->clear_beam_search_info(); OPENVINO_ASSERT(results.size() == prompts.size()); return results; diff --git a/src/cpp/src/sampler.hpp b/src/cpp/src/sampler.hpp index 5dc44b491f..cbc48a995b 100644 --- a/src/cpp/src/sampler.hpp +++ b/src/cpp/src/sampler.hpp @@ -247,6 +247,8 @@ class Sampler { SamplerOutput sample(std::vector & sequence_groups, ov::Tensor logits); void set_seed(size_t seed) { rng_engine.seed(seed); } + + void clear_beam_search_info(); }; SamplerOutput Sampler::sample(std::vector & sequence_groups, ov::Tensor logits) { @@ -578,4 +580,8 @@ void GroupBeamSearcher::select_next_tokens(const ov::Tensor& logits, SamplerOutp } } } + +void Sampler::clear_beam_search_info() { + m_beam_search_info.clear(); +} } From d223d68f81742bd035958ff168ba36641dc0a071 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 09:04:11 +0400 Subject: [PATCH 18/25] -am cache --- tests/python_tests/test_generate_api.py | 2 ++ thirdparty/openvino_tokenizers | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 232edc1b85..4d53f25766 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -11,6 +11,7 @@ import sys from pathlib import Path import torch +import functools import math from ov_genai_test_utils import ( get_models_list, @@ -674,6 +675,7 @@ def test_left_pad(): run_hf_ov_genai_comparison_batched(models, config, prompts) +@functools.lru_cache(1) def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 880d569cd2..c615ec5ae5 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 880d569cd2f5d52165b940542e2f9190172ed2cb +Subproject commit c615ec5ae550da770606ce9f82775cf50e71082d From 238ea8bff582c15e9b444ee76efee831417d22e8 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 10:16:32 +0400 Subject: [PATCH 19/25] updte --- tests/python_tests/test_generate_api.py | 2 -- thirdparty/openvino_tokenizers | 2 +- 2 files changed, 1 insertion(+), 3 deletions(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 4d53f25766..232edc1b85 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -11,7 +11,6 @@ import sys from pathlib import Path import torch -import functools import math from ov_genai_test_utils import ( get_models_list, @@ -675,7 +674,6 @@ def test_left_pad(): run_hf_ov_genai_comparison_batched(models, config, prompts) -@functools.lru_cache(1) def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index c615ec5ae5..2fb700042a 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit c615ec5ae550da770606ce9f82775cf50e71082d +Subproject commit 2fb700042acfc3e734941fbbc332af2de17024a4 From 5a4c878e14c014d632a9247ecd4a6f449f45be85 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 14:13:25 +0400 Subject: [PATCH 20/25] Revert "Merge remote-tracking branch 'popovaan/clear_beam_info' into use-CB-as-backend" This reverts commit c28a023396e85a3d6db87eedd548ff5b60967368, reversing changes made to 67f47172e91931e208fc749c18a7151481f69331. --- src/cpp/src/continuous_batching_pipeline.cpp | 1 - src/cpp/src/sampler.hpp | 6 ------ 2 files changed, 7 deletions(-) diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 1b682153ba..ad190bd007 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -272,7 +272,6 @@ class ContinuousBatchingPipeline::Impl { result.m_status = generation->get_status(); results.push_back(std::move(result)); } - m_sampler->clear_beam_search_info(); OPENVINO_ASSERT(results.size() == input_ids.size()); return results; diff --git a/src/cpp/src/sampler.hpp b/src/cpp/src/sampler.hpp index 1bcee8a1b7..095c795a42 100644 --- a/src/cpp/src/sampler.hpp +++ b/src/cpp/src/sampler.hpp @@ -247,8 +247,6 @@ class Sampler { SamplerOutput sample(std::vector & sequence_groups, ov::Tensor logits); void set_seed(size_t seed) { rng_engine.seed(seed); } - - void clear_beam_search_info(); }; SamplerOutput Sampler::sample(std::vector & sequence_groups, ov::Tensor logits) { @@ -580,8 +578,4 @@ void GroupBeamSearcher::select_next_tokens(const ov::Tensor& logits, SamplerOutp } } } - -void Sampler::clear_beam_search_info() { - m_beam_search_info.clear(); -} } From cf35f190b5f7e3d2d2f08303b0096bdc9ba0ccc6 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 14:13:57 +0400 Subject: [PATCH 21/25] revert spelling --- tests/python_tests/test_generate_api.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 232edc1b85..4089b3f93f 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -243,7 +243,7 @@ def test_genai_tokenizer_decode(model_descr, encoded_prompt): ] batched_prompts = [ ['table is made', 'They sky is blue because', 'Difference between Jupiter and Mars is that'], - ['hello', 'Here is the longest novel ever: '], + ['hello', 'Here is the longest nowel ever: '], ['Alan Turing was a', 'return 0', '你好! 你好嗎?'], ['table is made', 'table is made [force left pad tokens]'] ] From 12061afdd1f1f2248ac816343b685f59e5e0a129 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 14:46:31 +0400 Subject: [PATCH 22/25] relax abs_tol --- tests/python_tests/test_generate_api.py | 2 +- thirdparty/openvino_tokenizers | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 4089b3f93f..3c84e55f78 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -695,4 +695,4 @@ def test_continuous_batching_vs_stateful(prompt, generation_config): if 1 != generation_config.get("num_beams", 1): # Stateful puts zeroes to generated.scores. Don't compare them. for gen, ref in zip(generated.scores, reference.scores): - assert math.isclose(gen, ref, abs_tol=0.0001) + assert math.isclose(gen, ref, abs_tol=0.0003) diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 2fb700042a..880d569cd2 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 2fb700042acfc3e734941fbbc332af2de17024a4 +Subproject commit 880d569cd2f5d52165b940542e2f9190172ed2cb From 6d7a468f256884f13e9e6505e62adc496b4a1d8b Mon Sep 17 00:00:00 2001 From: Wovchena Date: Mon, 15 Jul 2024 22:55:13 +0400 Subject: [PATCH 23/25] lru_cache --- tests/python_tests/test_generate_api.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 3c84e55f78..4662a6e4a2 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -11,6 +11,7 @@ import sys from pathlib import Path import torch +import functools import math from ov_genai_test_utils import ( get_models_list, @@ -674,6 +675,7 @@ def test_left_pad(): run_hf_ov_genai_comparison_batched(models, config, prompts) +@functools.lru_cache(1) def get_continuous_batching(path): return ov_genai.LLMPipeline(str(path), ov_genai.Tokenizer(str(path)), 'CB') From c6d345a7bce94338dbffc6c18f2adef26d492a0c Mon Sep 17 00:00:00 2001 From: Wovchena Date: Tue, 16 Jul 2024 23:35:43 +0400 Subject: [PATCH 24/25] Add CB streaming --- .../genai/continuous_batching_pipeline.hpp | 5 ++-- .../openvino/genai/generation_handle.hpp | 1 + src/cpp/src/continuous_batching_pipeline.cpp | 28 +++++++++++++------ src/cpp/src/generation_handle.cpp | 4 +++ src/cpp/src/generation_stream.hpp | 3 ++ src/cpp/src/llm_pipeline.cpp | 16 ++++++++--- src/cpp/src/synchronized_queue.hpp | 6 ++++ src/python/py_generate_pipeline.cpp | 16 +++++++++-- tests/python_tests/test_generate_api.py | 13 +++++++++ thirdparty/openvino_tokenizers | 2 +- 10 files changed, 76 insertions(+), 18 deletions(-) diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index f13cc55c43..e9a1add9f5 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -10,6 +10,7 @@ #include "openvino/genai/tokenizer.hpp" #include "openvino/genai/generation_config.hpp" #include "openvino/genai/generation_handle.hpp" +#include "openvino/genai/streamer_base.hpp" #include "openvino/genai/visibility.hpp" namespace ov::genai { @@ -63,7 +64,7 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { bool has_non_finished_requests(); // more high level interface, which can process multiple prompts in continuous batching manner - std::vector generate(const std::vector& input_ids, const std::vector& sampling_params); - std::vector generate(const std::vector& prompts, const std::vector& sampling_params); + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer=nullptr); + std::vector generate(const std::vector& prompts, const std::vector& sampling_params, const std::shared_ptr& streamer=nullptr); }; } diff --git a/src/cpp/include/openvino/genai/generation_handle.hpp b/src/cpp/include/openvino/genai/generation_handle.hpp index 556f4b812f..8d00ae0e9b 100644 --- a/src/cpp/include/openvino/genai/generation_handle.hpp +++ b/src/cpp/include/openvino/genai/generation_handle.hpp @@ -74,6 +74,7 @@ class OPENVINO_GENAI_EXPORTS GenerationHandleImpl { bool can_read(); + GenerationOutputs back(); // Reads result of a generation for single iteration GenerationOutputs read(); // Reads all generated tokens for all sequences diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index cfdbae3a06..970b47c5b1 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -238,7 +238,7 @@ class ContinuousBatchingPipeline::Impl { return !m_awaiting_requests.empty() || !m_requests.empty(); } - std::vector generate(const std::vector& input_ids, const std::vector& sampling_params) { + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer) { OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); @@ -251,8 +251,18 @@ class ContinuousBatchingPipeline::Impl { std::vector results; results.reserve(m_awaiting_requests.size()); - while (has_non_finished_requests()) { + bool continue_generation = true; + while (has_non_finished_requests() && continue_generation) { step(); + if (streamer) { + std::unordered_map token = generations.at(0).get()->back(); + OPENVINO_ASSERT(1 == token.size()); + OPENVINO_ASSERT(1 == token.begin()->second.generated_token_ids.size()); + continue_generation = !streamer->put(token.begin()->second.generated_token_ids.at(0)); + } + } + if (streamer) { + streamer->end(); } for (size_t generation_idx = 0; generation_idx < generations.size(); ++generation_idx) { @@ -278,7 +288,7 @@ class ContinuousBatchingPipeline::Impl { return results; } - std::vector generate(const std::vector& prompts, std::vector sampling_params) { + std::vector generate(const std::vector& prompts, std::vector sampling_params, const std::shared_ptr& streamer) { std::vector input_ids; input_ids.reserve(prompts.size()); for (const std::string& prompt : prompts) { @@ -287,7 +297,7 @@ class ContinuousBatchingPipeline::Impl { input_ids.push_back(m_tokenizer.encode(prompt).input_ids); timer.end(); } - std::vector encoded = generate(input_ids, sampling_params); + std::vector encoded = generate(input_ids, sampling_params, streamer); std::vector decoded; decoded.reserve(encoded.size()); for (EncodedGenerationResult& res : encoded) { @@ -350,10 +360,10 @@ bool ContinuousBatchingPipeline::has_non_finished_requests() { return m_impl->has_non_finished_requests(); } -std::vector ContinuousBatchingPipeline::generate(const std::vector& input_ids, const std::vector& sampling_params) { - return m_impl->generate(input_ids, sampling_params); +std::vector ContinuousBatchingPipeline::generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer) { + return m_impl->generate(input_ids, sampling_params, streamer); } -std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, const std::vector& sampling_params) { - return m_impl->generate(prompts, sampling_params); -} \ No newline at end of file +std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, const std::vector& sampling_params, const std::shared_ptr& streamer) { + return m_impl->generate(prompts, sampling_params, streamer); +} diff --git a/src/cpp/src/generation_handle.cpp b/src/cpp/src/generation_handle.cpp index a0187025ec..26cc12604f 100644 --- a/src/cpp/src/generation_handle.cpp +++ b/src/cpp/src/generation_handle.cpp @@ -20,6 +20,10 @@ bool GenerationHandleImpl::can_read() { return m_generation_stream->can_read(); } +std::unordered_map GenerationHandleImpl::back() { + return m_generation_stream->back(); +} + std::unordered_map GenerationHandleImpl::read() { return m_generation_stream->read(); } diff --git a/src/cpp/src/generation_stream.hpp b/src/cpp/src/generation_stream.hpp index 0d51897e82..1ac2eefef9 100644 --- a/src/cpp/src/generation_stream.hpp +++ b/src/cpp/src/generation_stream.hpp @@ -31,6 +31,9 @@ class GenerationStream { } // Retriving vector of pairs as we can generate multiple outputs for a single prompt + GenerationOutputs back() { + return m_output_queue.back(); + } GenerationOutputs read() { return m_output_queue.pull(); } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 2fcd773181..1e654b4ddf 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -403,9 +403,6 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { - if (!std::holds_alternative(streamer)) { - OPENVINO_THROW("streamer isn't supported for Continuous Batching"); - } std::vector input_ids = std::visit(overloaded{ [](const ov::Tensor& inp) { size_t batch_size = inp.get_shape().at(0); @@ -446,7 +443,18 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { }, inputs); const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; // -1 == config.eos_token_id and config.validate() are handled in m_impl. - std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}); + std::shared_ptr streamer_ptr = std::visit(overloaded{ + [this](std::monostate) -> std::shared_ptr { + return nullptr; + }, + [this](const std::shared_ptr& streamer) { + return streamer; + }, + [this](std::function& streamer) -> std::shared_ptr { + return std::make_unique(m_tokenizer, streamer); + } + }, streamer); + std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}, streamer_ptr); std::vector> plain_tokens; std::vector plain_scores; for (EncodedGenerationResult& res : generated) { diff --git a/src/cpp/src/synchronized_queue.hpp b/src/cpp/src/synchronized_queue.hpp index 0c2cd3180d..bd025f1b7d 100644 --- a/src/cpp/src/synchronized_queue.hpp +++ b/src/cpp/src/synchronized_queue.hpp @@ -17,6 +17,12 @@ class SynchronizedQueue SynchronizedQueue(const SynchronizedQueue&&) = delete; SynchronizedQueue& operator=(const SynchronizedQueue&) = delete; + T back() { + std::unique_lock lock(m_mutex); + m_cv.wait(lock, [this]{return !m_queue.empty();}); + return m_queue.back(); + } + T pull() { std::unique_lock lock(m_mutex); m_cv.wait(lock, [this]{return !m_queue.empty();}); diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index 942c7a284a..e8ce0b0a24 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -610,6 +610,18 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def("add_request", py::overload_cast(&ContinuousBatchingPipeline::add_request)) .def("step", &ContinuousBatchingPipeline::step) .def("has_non_finished_requests", &ContinuousBatchingPipeline::has_non_finished_requests) - .def("generate", py::overload_cast&, const std::vector&>(&ContinuousBatchingPipeline::generate)) - .def("generate", py::overload_cast&, const std::vector&>(&ContinuousBatchingPipeline::generate)); + .def( + "generate", + py::overload_cast&, const std::vector&, const std::shared_ptr&>(&ContinuousBatchingPipeline::generate), + py::arg("input_ids"), + py::arg("sampling_params"), + py::arg("streamer") = nullptr + ) + .def( + "generate", + py::overload_cast&, const std::vector&, const std::shared_ptr&>(&ContinuousBatchingPipeline::generate), + py::arg("propts"), + py::arg("sampling_params"), + py::arg("streamer") = nullptr + ); } diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 4662a6e4a2..a796aa07e1 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -698,3 +698,16 @@ def test_continuous_batching_vs_stateful(prompt, generation_config): # Stateful puts zeroes to generated.scores. Don't compare them. for gen, ref in zip(generated.scores, reference.scores): assert math.isclose(gen, ref, abs_tol=0.0003) + +@pytest.mark.parametrize("prompt", prompts) +@pytest.mark.precommit +def test_cb_streamer_vs_return_vs_stateful(prompt): + model_id, path, tokenizer, model, stateful = read_model(( + "TinyLlama/TinyLlama-1.1B-Chat-v1.0", + Path("TinyLlama-1.1B-Chat-v1.0") + )) + cb = get_continuous_batching(path) + streamed = [] + generated = cb.generate(prompt, max_new_tokens=20, streamer=lambda subword: streamed.append(subword)) + reference = stateful.generate(prompt, max_new_tokens=20) + assert generated == "".join(streamed) == reference diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 04795c1b78..880d569cd2 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 04795c1b78c61e3294d1744c78a8ebb5e129256c +Subproject commit 880d569cd2f5d52165b940542e2f9190172ed2cb From bc56ca64eb30a9ebf4fea20323ff2e09079a7809 Mon Sep 17 00:00:00 2001 From: Wovchena Date: Wed, 17 Jul 2024 10:01:37 +0400 Subject: [PATCH 25/25] use StreamerVariant --- .../genai/continuous_batching_pipeline.hpp | 5 +-- src/cpp/src/continuous_batching_pipeline.cpp | 31 ++++++++++++++----- src/cpp/src/llm_pipeline.cpp | 13 +------- src/python/py_generate_pipeline.cpp | 10 +++--- 4 files changed, 32 insertions(+), 27 deletions(-) diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index e9a1add9f5..43c3f4f802 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -10,6 +10,7 @@ #include "openvino/genai/tokenizer.hpp" #include "openvino/genai/generation_config.hpp" #include "openvino/genai/generation_handle.hpp" +#include "openvino/genai/llm_pipeline.hpp" #include "openvino/genai/streamer_base.hpp" #include "openvino/genai/visibility.hpp" @@ -64,7 +65,7 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { bool has_non_finished_requests(); // more high level interface, which can process multiple prompts in continuous batching manner - std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer=nullptr); - std::vector generate(const std::vector& prompts, const std::vector& sampling_params, const std::shared_ptr& streamer=nullptr); + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const ov::genai::StreamerVariant& streamer=std::monostate{}); + std::vector generate(const std::vector& prompts, const std::vector& sampling_params, const ov::genai::StreamerVariant& streamer=std::monostate{}); }; } diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 970b47c5b1..08a66ef92f 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -12,11 +12,15 @@ #include "sampler.hpp" #include "model_runner.hpp" #include "scheduler.hpp" +#include "text_callback_streamer.hpp" #include "timer.hpp" #include "debug_utils.hpp" using namespace ov::genai; +template struct overloaded : Ts... {using Ts::operator()...;}; +template overloaded(Ts...) -> overloaded; + void apply_paged_attention_transformations(std::shared_ptr model, DeviceConfig& device_config); class ContinuousBatchingPipeline::Impl { @@ -238,9 +242,20 @@ class ContinuousBatchingPipeline::Impl { return !m_awaiting_requests.empty() || !m_requests.empty(); } - std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer) { + std::vector generate(const std::vector& input_ids, const std::vector& sampling_params, const StreamerVariant& streamer) { OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); + const std::shared_ptr& streamer_ptr = std::visit(overloaded{ + [](std::monostate) -> std::shared_ptr { + return nullptr; + }, + [](const std::shared_ptr& streamer) { + return streamer; + }, + [this](const std::function& streamer) -> std::shared_ptr { + return std::make_unique(m_tokenizer, streamer); + } + }, streamer); std::vector generations; for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { @@ -254,15 +269,15 @@ class ContinuousBatchingPipeline::Impl { bool continue_generation = true; while (has_non_finished_requests() && continue_generation) { step(); - if (streamer) { + if (streamer_ptr) { std::unordered_map token = generations.at(0).get()->back(); OPENVINO_ASSERT(1 == token.size()); OPENVINO_ASSERT(1 == token.begin()->second.generated_token_ids.size()); - continue_generation = !streamer->put(token.begin()->second.generated_token_ids.at(0)); + continue_generation = !streamer_ptr->put(token.begin()->second.generated_token_ids.at(0)); } } - if (streamer) { - streamer->end(); + if (streamer_ptr) { + streamer_ptr->end(); } for (size_t generation_idx = 0; generation_idx < generations.size(); ++generation_idx) { @@ -288,7 +303,7 @@ class ContinuousBatchingPipeline::Impl { return results; } - std::vector generate(const std::vector& prompts, std::vector sampling_params, const std::shared_ptr& streamer) { + std::vector generate(const std::vector& prompts, std::vector sampling_params, const StreamerVariant& streamer) { std::vector input_ids; input_ids.reserve(prompts.size()); for (const std::string& prompt : prompts) { @@ -360,10 +375,10 @@ bool ContinuousBatchingPipeline::has_non_finished_requests() { return m_impl->has_non_finished_requests(); } -std::vector ContinuousBatchingPipeline::generate(const std::vector& input_ids, const std::vector& sampling_params, const std::shared_ptr& streamer) { +std::vector ContinuousBatchingPipeline::generate(const std::vector& input_ids, const std::vector& sampling_params, const StreamerVariant& streamer) { return m_impl->generate(input_ids, sampling_params, streamer); } -std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, const std::vector& sampling_params, const std::shared_ptr& streamer) { +std::vector ContinuousBatchingPipeline::generate(const std::vector& prompts, const std::vector& sampling_params, const StreamerVariant& streamer) { return m_impl->generate(prompts, sampling_params, streamer); } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 1e654b4ddf..acf7059e7d 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -443,18 +443,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { }, inputs); const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; // -1 == config.eos_token_id and config.validate() are handled in m_impl. - std::shared_ptr streamer_ptr = std::visit(overloaded{ - [this](std::monostate) -> std::shared_ptr { - return nullptr; - }, - [this](const std::shared_ptr& streamer) { - return streamer; - }, - [this](std::function& streamer) -> std::shared_ptr { - return std::make_unique(m_tokenizer, streamer); - } - }, streamer); - std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}, streamer_ptr); + std::vector generated = m_impl.generate(input_ids, std::vector{input_ids.size(), config}, streamer); std::vector> plain_tokens; std::vector plain_scores; for (EncodedGenerationResult& res : generated) { diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index e8ce0b0a24..6df19bf137 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -612,16 +612,16 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def("has_non_finished_requests", &ContinuousBatchingPipeline::has_non_finished_requests) .def( "generate", - py::overload_cast&, const std::vector&, const std::shared_ptr&>(&ContinuousBatchingPipeline::generate), + py::overload_cast&, const std::vector&, const ov::genai::StreamerVariant&>(&ContinuousBatchingPipeline::generate), py::arg("input_ids"), py::arg("sampling_params"), - py::arg("streamer") = nullptr + py::arg("streamer") = std::monostate{} ) .def( "generate", - py::overload_cast&, const std::vector&, const std::shared_ptr&>(&ContinuousBatchingPipeline::generate), - py::arg("propts"), + py::overload_cast&, const std::vector&, const ov::genai::StreamerVariant&>(&ContinuousBatchingPipeline::generate), + py::arg("prompts"), py::arg("sampling_params"), - py::arg("streamer") = nullptr + py::arg("streamer") = std::monostate{} ); }