From 6cd66d0274ddc8fde544643f74113fb6c40d2394 Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Wed, 20 Nov 2024 19:17:38 +0100 Subject: [PATCH 001/113] Text2Image Readme update: decode method usage (#1237) --- samples/cpp/text2image/README.md | 6 ++-- samples/python/text2image/README.md | 4 ++- .../src/image_generation/flux_pipeline.hpp | 36 ++++++++++--------- 3 files changed, 27 insertions(+), 19 deletions(-) diff --git a/samples/cpp/text2image/README.md b/samples/cpp/text2image/README.md index c5ffd53a84..ac736b2383 100644 --- a/samples/cpp/text2image/README.md +++ b/samples/cpp/text2image/README.md @@ -46,14 +46,16 @@ You can also add a callback to the `main.cpp` file to interrupt the image genera Please find the template of the callback usage below. ```cpp -auto callback = [](size_t step, ov::Tensor& intermediate_res) -> bool { +ov::genai::Text2ImagePipeline pipe(models_path, device); + +auto callback = [&](size_t step, ov::Tensor& intermediate_res) -> bool { std::cout << "Image generation step: " << step << std::endl; + ov::Tensor img = pipe.decode(intermediate_res); // get intermediate image tensor if (your_condition) // return true if you want to interrupt image generation return true; return false; }; -ov::genai::Text2ImagePipeline pipe(models_path, device); ov::Tensor image = pipe.generate(prompt, ... ov::genai::callback(callback) diff --git a/samples/python/text2image/README.md b/samples/python/text2image/README.md index 9421061885..2e841673d3 100644 --- a/samples/python/text2image/README.md +++ b/samples/python/text2image/README.md @@ -46,13 +46,15 @@ You can also add a callback to the `main.py` file to interrupt the image generat Please find the template of the callback usage below. ```python +pipe = openvino_genai.Text2ImagePipeline(model_dir, device) + def callback(step, intermediate_res): print("Image generation step: ", step) + image_tensor = pipe.decode(intermediate_res) # get intermediate image tensor if your_condition: # return True if you want to interrupt image generation return True return False -pipe = openvino_genai.Text2ImagePipeline(model_dir, device) image = pipe.generate( ... callback = callback diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index 101401d434..e684443e47 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -297,33 +297,33 @@ class FluxPipeline : public DiffusionPipeline { ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, const ov::AnyMap& properties) override { - ImageGenerationConfig generation_config = m_generation_config; - generation_config.update_generation_config(properties); + m_custom_generation_config = m_generation_config; + m_custom_generation_config.update_generation_config(properties); if (!initial_image) { // in case of typical text to image generation, we need to ignore 'strength' - generation_config.strength = 1.0f; + m_custom_generation_config.strength = 1.0f; } const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); const auto& transformer_config = m_transformer->get_config(); - if (generation_config.height < 0) - generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor; - if (generation_config.width < 0) - generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor; + if (m_custom_generation_config.height < 0) + m_custom_generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor; + if (m_custom_generation_config.width < 0) + m_custom_generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor; - check_inputs(generation_config, initial_image); + check_inputs(m_custom_generation_config, initial_image); - compute_hidden_states(positive_prompt, generation_config); + compute_hidden_states(positive_prompt, m_custom_generation_config); - ov::Tensor latents = prepare_latents(initial_image, generation_config); + ov::Tensor latents = prepare_latents(initial_image, m_custom_generation_config); size_t image_seq_len = latents.get_shape()[1]; float mu = m_scheduler->calculate_shift(image_seq_len); - float linspace_end = 1.0f / generation_config.num_inference_steps; - std::vector sigmas = numpy_utils::linspace(1.0f, linspace_end, generation_config.num_inference_steps, true); + float linspace_end = 1.0f / m_custom_generation_config.num_inference_steps; + std::vector sigmas = numpy_utils::linspace(1.0f, linspace_end, m_custom_generation_config.num_inference_steps, true); m_scheduler->set_timesteps_with_sigma(sigmas, mu); std::vector timesteps = m_scheduler->get_float_timesteps(); @@ -345,7 +345,7 @@ class FluxPipeline : public DiffusionPipeline { ov::Tensor noise_pred_tensor = m_transformer->infer(latents, timestep); - auto scheduler_step_result = m_scheduler->step(noise_pred_tensor, latents, inference_step, generation_config.generator); + auto scheduler_step_result = m_scheduler->step(noise_pred_tensor, latents, inference_step, m_custom_generation_config.generator); latents = scheduler_step_result["latent"]; if (do_callback) { @@ -355,12 +355,16 @@ class FluxPipeline : public DiffusionPipeline { } } - latents = unpack_latents(latents, generation_config.height, generation_config.width, vae_scale_factor); + latents = unpack_latents(latents, m_custom_generation_config.height, m_custom_generation_config.width, vae_scale_factor); return m_vae->decode(latents); } ov::Tensor decode(const ov::Tensor latent) override { - return m_vae->decode(latent); + ov::Tensor unpacked_latent = unpack_latents(latent, + m_custom_generation_config.height, + m_custom_generation_config.width, + m_vae->get_vae_scale_factor()); + return m_vae->decode(unpacked_latent); } private: @@ -407,7 +411,7 @@ class FluxPipeline : public DiffusionPipeline { std::shared_ptr m_clip_text_encoder; std::shared_ptr m_t5_text_encoder; std::shared_ptr m_vae; - + ImageGenerationConfig m_custom_generation_config; }; } // namespace genai From cd05c8eb9ce1eb22411c2107afcdb1b3e2344fa9 Mon Sep 17 00:00:00 2001 From: Anastasiia Pnevskaia Date: Wed, 20 Nov 2024 20:03:33 +0100 Subject: [PATCH 002/113] Fixed passing of generation config params to VLM generate. (#1180) - Fixed passing of generation config params to VLM generate(). - Updated generation config params params list in `update_config_from_kwargs()` method. Ticket: CVS-157050 --------- Co-authored-by: Ilya Lavrenov --- .../openvino/genai/generation_config.hpp | 2 +- src/cpp/src/llm_pipeline_static.cpp | 7 + src/cpp/src/utils.hpp | 22 +- .../openvino_genai/py_openvino_genai.pyi | 2 +- src/python/py_image_generation_pipelines.cpp | 108 +-------- src/python/py_tokenizer.cpp | 13 +- src/python/py_utils.cpp | 209 ++++++++++++------ src/python/py_utils.hpp | 2 +- src/python/py_vlm_pipeline.cpp | 44 +--- src/python/py_whisper_pipeline.cpp | 55 +---- tests/cpp/utils.cpp | 21 ++ tests/python_tests/test_generate_api.py | 11 +- tests/python_tests/test_sampling.py | 6 +- 13 files changed, 220 insertions(+), 282 deletions(-) create mode 100644 tests/cpp/utils.cpp diff --git a/src/cpp/include/openvino/genai/generation_config.hpp b/src/cpp/include/openvino/genai/generation_config.hpp index 22edcb98c0..8d23b298ba 100644 --- a/src/cpp/include/openvino/genai/generation_config.hpp +++ b/src/cpp/include/openvino/genai/generation_config.hpp @@ -156,7 +156,7 @@ static constexpr ov::Property ignore_eos{"ignore_eos"}; static constexpr ov::Property min_new_tokens{"min_new_tokens"}; static constexpr ov::Property> stop_strings{"stop_strings"}; static constexpr ov::Property include_stop_str_in_output{"include_stop_str_in_output"}; -static constexpr ov::Property>> stop_token_ids{"stop_token_ids"}; +static constexpr ov::Property> stop_token_ids{"stop_token_ids"}; static constexpr ov::Property num_beam_groups{"num_beam_groups"}; static constexpr ov::Property num_beams{"num_beams"}; diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 40089384a8..2beb7d64be 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -530,6 +530,13 @@ template T pop_or_default(ov::AnyMap& config, const std::string& key, const T& default_value) { auto anyopt = pop_option(config, key); if (anyopt.has_value()) { + if (anyopt.value().empty()) { + if (ov::genai::utils::is_container) + return T{}; + else { + OPENVINO_THROW("Got empty ov::Any for key: " + key); + } + } return anyopt.value().as(); } return default_value; diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 9adc46c87a..3487fccb81 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -2,6 +2,7 @@ // SPDX-License-Identifier: Apache-2.0 #pragma once +#include #include "openvino/genai/llm_pipeline.hpp" #include "openvino/runtime/core.hpp" @@ -12,6 +13,16 @@ namespace ov { namespace genai { namespace utils { +// Variable template that checks if a type has begin() and end() member functions +template +constexpr bool is_container = false; + +template +constexpr bool is_container().begin()), + decltype(std::declval().end())>> = true; + + Tensor init_attention_mask(const Tensor& position_ids); void print_tensor(const ov::Tensor& tensor); @@ -31,7 +42,16 @@ template void read_anymap_param(const ov::AnyMap& config_map, const std::string& name, T& param) { auto it = config_map.find(name); if (it != config_map.end()) { - param = it->second.as::value>(); + if (it->second.empty()) { + if (ov::genai::utils::is_container) + param = T{}; + else { + OPENVINO_THROW("Got empty ov::Any for parameter name: " + name); + } + } + else { + param = it->second.as::value>(); + } } } diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index a16b74b703..df290a9744 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1296,7 +1296,7 @@ class Tokenizer: openvino_genai.Tokenizer object is used to initialize Tokenizer if it's located in a different path than the main model. """ - def __init__(self, tokenizer_path: os.PathLike, properties: dict[str, typing.Any] = {}) -> None: + def __init__(self, tokenizer_path: os.PathLike, properties: dict[str, typing.Any] = {}, **kwargs) -> None: ... def apply_chat_template(self, history: list[dict[str, str]], add_generation_prompt: bool, chat_template: str = '') -> str: """ diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index f70faaca61..dade8a170e 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -67,108 +67,6 @@ auto text2image_generate_docstring = R"( )"; -void update_image_generation_config_from_kwargs( - ov::genai::ImageGenerationConfig& config, - const py::kwargs& kwargs) { - for (const auto& item : kwargs) { - std::string key = py::cast(item.first); - py::object value = py::cast(item.second); - - if (key == "prompt_2") { - config.prompt_2 = py::cast(value); - } else if (key == "prompt_3") { - config.prompt_3 = py::cast(value); - } else if (key == "negative_prompt") { - config.negative_prompt = py::cast(value); - } else if (key == "negative_prompt_2") { - config.negative_prompt_2 = py::cast(value); - } else if (key == "negative_prompt_3") { - config.negative_prompt_3 = py::cast(value); - } else if (key == "num_images_per_prompt") { - config.num_images_per_prompt = py::cast(value); - } else if (key == "guidance_scale") { - config.guidance_scale = py::cast(value); - } else if (key == "height") { - config.height = py::cast(value); - } else if (key == "width") { - config.width = py::cast(value); - } else if (key == "num_inference_steps") { - config.num_inference_steps = py::cast(value); - } else if (key == "generator") { - auto py_generator = py::cast>(value); - config.generator = py_generator; - } else if (key == "adapters") { - config.adapters = py::cast(value); - } else if (key == "strength") { - config.strength = py::cast(value); - } else if (key == "max_sequence_length") { - config.max_sequence_length = py::cast(value); - } else { - throw(std::invalid_argument("'" + key + "' is unexpected parameter name. " - "Use help(openvino_genai.ImageGenerationConfig) to get list of acceptable parameters.")); - } - } -} - -ov::AnyMap text2image_kwargs_to_any_map(const py::kwargs& kwargs, bool allow_compile_properties=true) { - ov::AnyMap params = {}; - - for (const auto& item : kwargs) { - std::string key = py::cast(item.first); - py::object value = py::cast(item.second); - - if (key == "prompt_2") { - params.insert({ov::genai::prompt_2(std::move(py::cast(value)))}); - } else if (key == "prompt_3") { - params.insert({ov::genai::prompt_3(std::move(py::cast(value)))}); - } else if (key == "negative_prompt") { - params.insert({ov::genai::negative_prompt(std::move(py::cast(value)))}); - } else if (key == "negative_prompt_2") { - params.insert({ov::genai::negative_prompt_2(std::move(py::cast(value)))}); - } else if (key == "negative_prompt_3") { - params.insert({ov::genai::negative_prompt_3(std::move(py::cast(value)))}); - } else if (key == "num_images_per_prompt") { - params.insert({ov::genai::num_images_per_prompt(std::move(py::cast(value)))}); - } else if (key == "guidance_scale") { - params.insert({ov::genai::guidance_scale(std::move(py::cast(value)))}); - } else if (key == "height") { - params.insert({ov::genai::height(std::move(py::cast(value)))}); - } else if (key == "width") { - params.insert({ov::genai::width(std::move(py::cast(value)))}); - } else if (key == "num_inference_steps") { - params.insert({ov::genai::num_inference_steps(std::move(py::cast(value)))}); - } else if (key == "generator") { - auto py_generator =py::cast>(value); - params.insert({ov::genai::generator(std::move(py_generator))}); - } else if (key == "adapters") { - params.insert({ov::genai::adapters(std::move(py::cast(value)))}); - } else if (key == "strength") { - params.insert({ov::genai::strength(std::move(py::cast(value)))}); - } else if (key == "max_sequence_length") { - params.insert({ov::genai::max_sequence_length(std::move(py::cast(value)))}); - } else if (key == "callback") { - params.insert({ov::genai::callback(std::move(py::cast>(value)))}); - } - else { - if (allow_compile_properties) { - // convert arbitrary objects to ov::Any - // not supported properties are not checked, as these properties are passed to compile(), which will throw exception in case of unsupported property - if (pyutils::py_object_is_any_map(value)) { - auto map = pyutils::py_object_to_any_map(value); - params.insert(map.begin(), map.end()); - } else { - params[key] = pyutils::py_object_to_any(value); - } - } - else { - // generate doesn't run compile(), so only Text2ImagePipeline specific properties are allowed - throw(std::invalid_argument("'" + key + "' is unexpected parameter name. " - "Use help(openvino_genai.Text2ImagePipeline.generate) to get list of acceptable parameters.")); - } - } - } - return params; -} } // namespace @@ -230,7 +128,7 @@ void init_image_generation_pipelines(py::module_& m) { .def("update_generation_config", []( ov::genai::ImageGenerationConfig config, const py::kwargs& kwargs) { - update_image_generation_config_from_kwargs(config, kwargs); + config.update_generation_config(pyutils::kwargs_to_any_map(kwargs)); }); auto text2image_pipeline = py::class_(m, "Text2ImagePipeline", "This class is used for generation with text-to-image models.") @@ -252,7 +150,7 @@ void init_image_generation_pipelines(py::module_& m) { const py::kwargs& kwargs ) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); - return std::make_unique(models_path, device, text2image_kwargs_to_any_map(kwargs, true)); + return std::make_unique(models_path, device, pyutils::kwargs_to_any_map(kwargs)); }), py::arg("models_path"), "folder with exported model files.", py::arg("device"), "device on which inference will be done", @@ -289,7 +187,7 @@ void init_image_generation_pipelines(py::module_& m) { const std::string& prompt, const py::kwargs& kwargs ) -> py::typing::Union { - ov::AnyMap params = text2image_kwargs_to_any_map(kwargs, false); + ov::AnyMap params = pyutils::kwargs_to_any_map(kwargs); return py::cast(pipe.generate(prompt, params)); }, py::arg("prompt"), "Input string", diff --git a/src/python/py_tokenizer.cpp b/src/python/py_tokenizer.cpp index b3c52cd28b..2ccccff4c0 100644 --- a/src/python/py_tokenizer.cpp +++ b/src/python/py_tokenizer.cpp @@ -30,9 +30,18 @@ void init_tokenizer(py::module_& m) { R"(openvino_genai.Tokenizer object is used to initialize Tokenizer if it's located in a different path than the main model.)") - .def(py::init([](const std::filesystem::path& tokenizer_path, const std::map& properties) { + .def(py::init([](const std::filesystem::path& tokenizer_path, const std::map& properties, const py::kwargs& kwargs) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); - return std::make_unique(tokenizer_path, pyutils::properties_to_any_map(properties)); + auto kwargs_properties = pyutils::kwargs_to_any_map(kwargs); + if (properties.size()) { + PyErr_WarnEx(PyExc_DeprecationWarning, + "'properties' parameters is deprecated, please use kwargs to pass config properties instead.", + 1); + auto map_properties = pyutils::properties_to_any_map(properties); + kwargs_properties.insert(map_properties.begin(), map_properties.end()); + } + + return std::make_unique(tokenizer_path, kwargs_properties); }), py::arg("tokenizer_path"), py::arg("properties") = ov::AnyMap({})) .def("encode", [](Tokenizer& tok, std::vector& prompts, bool add_special_tokens) { diff --git a/src/python/py_utils.cpp b/src/python/py_utils.cpp index a2e8630059..579fe6b789 100644 --- a/src/python/py_utils.cpp +++ b/src/python/py_utils.cpp @@ -6,11 +6,15 @@ #include #include #include +#include #include #include "tokenizers_path.hpp" #include "openvino/genai/llm_pipeline.hpp" +#include "openvino/genai/visual_language/pipeline.hpp" +#include "openvino/genai/image_generation/generation_config.hpp" +#include "openvino/genai/whisper_generation_config.hpp" namespace py = pybind11; namespace ov::genai::pybind::utils { @@ -43,7 +47,7 @@ bool py_object_is_any_map(const py::object& py_obj) { }); } -ov::Any py_object_to_any(const py::object& py_obj); +ov::Any py_object_to_any(const py::object& py_obj, std::string property_name); ov::AnyMap py_object_to_any_map(const py::object& py_obj) { OPENVINO_ASSERT(py_object_is_any_map(py_obj), "Unsupported attribute type."); @@ -54,16 +58,34 @@ ov::AnyMap py_object_to_any_map(const py::object& py_obj) { if (py_object_is_any_map(value)) { return_value[key] = py_object_to_any_map(value); } else { - return_value[key] = py_object_to_any(value); + return_value[key] = py_object_to_any(value, key); } } return return_value; } -ov::Any py_object_to_any(const py::object& py_obj) { +ov::Any py_object_to_any(const py::object& py_obj, std::string property_name) { // Python types + // TODO: Remove this after ov::Any is fixed to allow pass types, that can be casted to target type. Ticket: 157622 + std::set size_t_properties = { + "max_new_tokens", + "max_length", + "min_new_tokens", + "logprobs", + "num_beam_groups", + "num_beams", + "num_return_sequences", + "no_repeat_ngram_size", + "top_k", + "rng_seed", + "num_assistant_tokens", + "max_initial_timestamp_index", + "num_images_per_prompt", + "num_inference_steps", + "max_sequence_length" + }; + py::object float_32_type = py::module_::import("numpy").attr("float32"); - if (py::isinstance(py_obj)) { return py_obj.cast(); } else if (py::isinstance(py_obj)) { @@ -71,16 +93,19 @@ ov::Any py_object_to_any(const py::object& py_obj) { } else if (py::isinstance(py_obj)) { return py_obj.cast(); } else if (py::isinstance(py_obj)) { - return py_obj.cast(); + return py_obj.cast(); } else if (py::isinstance(py_obj, float_32_type)) { return py_obj.cast(); } else if (py::isinstance(py_obj)) { + if (size_t_properties.find(property_name) != size_t_properties.end()) { + return py_obj.cast(); + } return py_obj.cast(); } else if (py::isinstance(py_obj)) { return {}; } else if (py::isinstance(py_obj)) { auto _list = py_obj.cast(); - enum class PY_TYPE : int { UNKNOWN = 0, STR, INT, FLOAT, BOOL, PARTIAL_SHAPE }; + enum class PY_TYPE : int { UNKNOWN = 0, STR, INT, FLOAT, BOOL, PARTIAL_SHAPE, TENSOR}; PY_TYPE detected_type = PY_TYPE::UNKNOWN; for (const auto& it : _list) { auto check_type = [&](PY_TYPE type) { @@ -88,7 +113,7 @@ ov::Any py_object_to_any(const py::object& py_obj) { detected_type = type; return; } - OPENVINO_THROW("Incorrect attribute. Mixed types in the list are not allowed."); + OPENVINO_THROW("Incorrect value in \"" + property_name + "\". Mixed types in the list are not allowed."); }; if (py::isinstance(it)) { check_type(PY_TYPE::STR); @@ -100,6 +125,8 @@ ov::Any py_object_to_any(const py::object& py_obj) { check_type(PY_TYPE::BOOL); } else if (py::isinstance(it)) { check_type(PY_TYPE::PARTIAL_SHAPE); + } else if (py::isinstance(it)) { + check_type(PY_TYPE::TENSOR); } } @@ -117,10 +144,89 @@ ov::Any py_object_to_any(const py::object& py_obj) { return _list.cast>(); case PY_TYPE::PARTIAL_SHAPE: return _list.cast>(); + case PY_TYPE::TENSOR: + return _list.cast>(); + default: + OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); + } + + } else if (py::isinstance(py_obj)) { + auto _dict = py_obj.cast(); + enum class PY_TYPE : int { UNKNOWN = 0, STR, INT}; + PY_TYPE detected_key_type = PY_TYPE::UNKNOWN; + PY_TYPE detected_value_type = PY_TYPE::UNKNOWN; + for (const auto& it : _dict) { + auto check_type = [&](PY_TYPE type, PY_TYPE& detected_type) { + if (detected_type == PY_TYPE::UNKNOWN || detected_type == type) { + detected_type = type; + return; + } + OPENVINO_THROW("Incorrect value in \"" + property_name + "\". Mixed types in the dict are not allowed."); + }; + // check key type + if (py::isinstance(it.first)) { + check_type(PY_TYPE::STR, detected_key_type); + } + + // check value type + if (py::isinstance(it.second)) { + check_type(PY_TYPE::INT, detected_value_type); + } + } + if (_dict.empty()) { + return ov::Any(); + } + + switch (detected_key_type) { + case PY_TYPE::STR: + switch (detected_value_type) { + case PY_TYPE::INT: + return _dict.cast>(); + default: + OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); + } + default: + OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); + } + } else if (py::isinstance(py_obj)) { + auto _set = py_obj.cast(); + enum class PY_TYPE : int { UNKNOWN = 0, STR, INT, FLOAT, BOOL}; + PY_TYPE detected_type = PY_TYPE::UNKNOWN; + for (const auto& it : _set) { + auto check_type = [&](PY_TYPE type) { + if (detected_type == PY_TYPE::UNKNOWN || detected_type == type) { + detected_type = type; + return; + } + OPENVINO_THROW("Incorrect value in \"" + property_name + "\". Mixed types in the set are not allowed."); + }; + if (py::isinstance(it)) { + check_type(PY_TYPE::STR); + } else if (py::isinstance(it)) { + check_type(PY_TYPE::INT); + } else if (py::isinstance(it)) { + check_type(PY_TYPE::FLOAT); + } else if (py::isinstance(it)) { + check_type(PY_TYPE::BOOL); + } + } + + if (_set.empty()) + return ov::Any(); + + switch (detected_type) { + case PY_TYPE::STR: + return _set.cast>(); + case PY_TYPE::FLOAT: + return _set.cast>(); + case PY_TYPE::INT: + return _set.cast>(); + case PY_TYPE::BOOL: + return _set.cast>(); default: - OPENVINO_ASSERT(false, "Unsupported attribute type."); + OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); } - + // OV types } else if (py_object_is_any_map(py_obj)) { return py_object_to_any_map(py_obj); @@ -156,18 +262,33 @@ ov::Any py_object_to_any(const py::object& py_obj) { return py::cast>(py_obj); } else if (py::isinstance(py_obj)) { return py::cast(py_obj); - } else if (py::isinstance(py_obj)) { + } else if (py::isinstance(py_obj)) { return py::cast(py_obj); + } else if (py::isinstance(py_obj)) { + return py::cast(py_obj); + } else if (py::isinstance(py_obj)) { + return py::cast(py_obj); + } else if (py::isinstance(py_obj)) { + return py::cast(py_obj); + } else if (py::isinstance(py_obj)) { + return py::cast(py_obj); + } else if (py::isinstance(py_obj)) { + return py::cast>(py_obj); + } else if (py::isinstance(py_obj) && property_name == "callback") { + return py::cast>(py_obj); + } else if ((py::isinstance(py_obj) || py::isinstance(py_obj) || py::isinstance(py_obj)) && property_name == "streamer") { + auto streamer = py::cast(py_obj); + return ov::genai::streamer(pystreamer_to_streamer(streamer)).second; } else if (py::isinstance(py_obj)) { return py_obj; } - OPENVINO_ASSERT(false, "Unsupported attribute type."); + OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); } std::map properties_to_any_map(const std::map& properties) { std::map properties_to_cpp; for (const auto& property : properties) { - properties_to_cpp[property.first] = py_object_to_any(property.second); + properties_to_cpp[property.first] = py_object_to_any(property.second, property.first); } return properties_to_cpp; } @@ -179,11 +300,16 @@ ov::AnyMap kwargs_to_any_map(const py::kwargs& kwargs) { for (const auto& item : kwargs) { std::string key = py::cast(item.first); py::object value = py::cast(item.second); - if (utils::py_object_is_any_map(value)) { + // we need to unpack only dictionaries, which are passed with "config" name, + // because there are dictionary properties that should not be unpacked + if (utils::py_object_is_any_map(value) && key == "config") { auto map = utils::py_object_to_any_map(value); params.insert(map.begin(), map.end()); } else { - params[key] = utils::py_object_to_any(value); + if (py::isinstance(value)) { + OPENVINO_ASSERT(!py::isinstance(value), "Property \"", key, "\" can't be None."); + } + params[key] = utils::py_object_to_any(value, key); } } @@ -227,60 +353,9 @@ ov::genai::OptionalGenerationConfig update_config_from_kwargs(const ov::genai::O ov::genai::GenerationConfig res_config; if(config.has_value()) res_config = *config; - - for (const auto& item : kwargs) { - std::string key = py::cast(item.first); - py::object value = py::cast(item.second); - - if (item.second.is_none()) { - // Even if argument key name does not fit GenerationConfig name - // it's not an error if it's not defined. - // Some HF configs can have parameters for methods currently unsupported in ov_genai - // but if their values are not set / None, then this should not block - // us from reading such configs, e.g. {"typical_p": None, 'top_p': 1.0,...} - return res_config; - } - if (key == "max_new_tokens") { - res_config.max_new_tokens = py::cast(item.second); - } else if (key == "max_length") { - res_config.max_length = py::cast(item.second); - } else if (key == "ignore_eos") { - res_config.ignore_eos = py::cast(item.second); - } else if (key == "num_beam_groups") { - res_config.num_beam_groups = py::cast(item.second); - } else if (key == "num_beams") { - res_config.num_beams = py::cast(item.second); - } else if (key == "diversity_penalty") { - res_config.diversity_penalty = py::cast(item.second); - } else if (key == "length_penalty") { - res_config.length_penalty = py::cast(item.second); - } else if (key == "num_return_sequences") { - res_config.num_return_sequences = py::cast(item.second); - } else if (key == "no_repeat_ngram_size") { - res_config.no_repeat_ngram_size = py::cast(item.second); - } else if (key == "stop_criteria") { - res_config.stop_criteria = py::cast(item.second); - } else if (key == "temperature") { - res_config.temperature = py::cast(item.second); - } else if (key == "top_p") { - res_config.top_p = py::cast(item.second); - } else if (key == "top_k") { - res_config.top_k = py::cast(item.second); - } else if (key == "do_sample") { - res_config.do_sample = py::cast(item.second); - } else if (key == "repetition_penalty") { - res_config.repetition_penalty = py::cast(item.second); - } else if (key == "eos_token_id") { - res_config.set_eos_token_id(py::cast(item.second)); - } else if (key == "adapters") { - res_config.adapters = py::cast(item.second); - } else { - throw(std::invalid_argument("'" + key + "' is incorrect GenerationConfig parameter name. " - "Use help(openvino_genai.GenerationConfig) to get list of acceptable parameters.")); - } - } - + res_config.update_generation_config(kwargs_to_any_map(kwargs)); return res_config; } + } // namespace ov::genai::pybind::utils diff --git a/src/python/py_utils.hpp b/src/python/py_utils.hpp index 9213060660..20094196a6 100644 --- a/src/python/py_utils.hpp +++ b/src/python/py_utils.hpp @@ -28,7 +28,7 @@ py::list handle_utf8(const std::vector& decoded_res); py::str handle_utf8(const std::string& text); -ov::Any py_object_to_any(const py::object& py_obj); +ov::Any py_object_to_any(const py::object& py_obj, std::string property_name); bool py_object_is_any_map(const py::object& py_obj); diff --git a/src/python/py_vlm_pipeline.cpp b/src/python/py_vlm_pipeline.cpp index 30e2e04a14..9572652204 100644 --- a/src/python/py_vlm_pipeline.cpp +++ b/src/python/py_vlm_pipeline.cpp @@ -72,46 +72,6 @@ py::object call_vlm_generate( return py::cast(pipe.generate(prompt, images, updated_config, streamer)); } -ov::AnyMap vlm_kwargs_to_any_map(const py::kwargs& kwargs, bool allow_compile_properties=true) { - ov::AnyMap params = {}; - - for (const auto& item : kwargs) { - std::string key = py::cast(item.first); - py::object value = py::cast(item.second); - - if (key == "images") { - params.insert({ov::genai::images(std::move(py::cast>(value)))}); - } else if (key == "image") { - params.insert({ov::genai::image(std::move(py::cast(value)))}); - } else if (key == "generation_config") { - params.insert({ov::genai::generation_config(std::move(py::cast(value)))}); - } else if (key == "streamer") { - auto py_streamer = py::cast(value); - params.insert({ov::genai::streamer(std::move(pyutils::pystreamer_to_streamer(py_streamer)))}); - - } - else { - if (allow_compile_properties) { - // convert arbitrary objects to ov::Any - // not supported properties are not checked, as these properties are passed to compile(), which will throw exception in case of unsupported property - if (pyutils::py_object_is_any_map(value)) { - auto map = pyutils::py_object_to_any_map(value); - params.insert(map.begin(), map.end()); - } else { - params[key] = pyutils::py_object_to_any(value); - } - } - else { - // generate doesn't run compile(), so only VLMPipeline specific properties are allowed - throw(std::invalid_argument("'" + key + "' is unexpected parameter name. " - "Use help(openvino_genai.VLMPipeline.generate) to get list of acceptable parameters.")); - } - } - } - - return params; -} - void init_vlm_pipeline(py::module_& m) { py::class_(m, "VLMPipeline", "This class is used for generation with VLMs") .def(py::init([]( @@ -120,7 +80,7 @@ void init_vlm_pipeline(py::module_& m) { const py::kwargs& kwargs ) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); - return std::make_unique(models_path, device, vlm_kwargs_to_any_map(kwargs, true)); + return std::make_unique(models_path, device, pyutils::kwargs_to_any_map(kwargs)); }), py::arg("models_path"), "folder with exported model files", py::arg("device"), "device on which inference will be done" @@ -177,7 +137,7 @@ void init_vlm_pipeline(py::module_& m) { const std::string& prompt, const py::kwargs& kwargs ) -> py::typing::Union { - return py::cast(pipe.generate(prompt, vlm_kwargs_to_any_map(kwargs, false))); + return py::cast(pipe.generate(prompt, pyutils::kwargs_to_any_map(kwargs))); }, py::arg("prompt"), "Input string", (vlm_generate_kwargs_docstring + std::string(" \n ")).c_str() diff --git a/src/python/py_whisper_pipeline.cpp b/src/python/py_whisper_pipeline.cpp index 3bf777f739..d34bd5f3b6 100644 --- a/src/python/py_whisper_pipeline.cpp +++ b/src/python/py_whisper_pipeline.cpp @@ -162,60 +162,7 @@ OptionalWhisperGenerationConfig update_whisper_config_from_kwargs(const Optional WhisperGenerationConfig res_config; if (config.has_value()) res_config = *config; - - for (const auto& item : kwargs) { - std::string key = py::cast(item.first); - py::object value = py::cast(item.second); - - if (item.second.is_none()) { - // Even if argument key name does not fit GenerationConfig name - // it's not an error if it's not defined. - // Some HF configs can have parameters for methods currently unsupported in ov_genai - // but if their values are not set / None, then this should not block - // us from reading such configs, e.g. {"typical_p": None, 'top_p': 1.0,...} - return res_config; - } - - if (key == "max_new_tokens") { - res_config.max_new_tokens = py::cast(item.second); - } else if (key == "max_length") { - res_config.max_length = py::cast(item.second); - } else if (key == "decoder_start_token_id") { - res_config.decoder_start_token_id = py::cast(item.second); - } else if (key == "pad_token_id") { - res_config.pad_token_id = py::cast(item.second); - } else if (key == "translate_token_id") { - res_config.translate_token_id = py::cast(item.second); - } else if (key == "transcribe_token_id") { - res_config.transcribe_token_id = py::cast(item.second); - } else if (key == "no_timestamps_token_id") { - res_config.no_timestamps_token_id = py::cast(item.second); - } else if (key == "max_initial_timestamp_index") { - res_config.max_initial_timestamp_index = py::cast(item.second); - } else if (key == "begin_suppress_tokens") { - res_config.begin_suppress_tokens = py::cast>(item.second); - } else if (key == "suppress_tokens") { - res_config.suppress_tokens = py::cast>(item.second); - } else if (key == "is_multilingual") { - res_config.is_multilingual = py::cast(item.second); - } else if (key == "language") { - res_config.language = py::cast(item.second); - } else if (key == "lang_to_id") { - res_config.lang_to_id = py::cast>(item.second); - } else if (key == "task") { - res_config.task = py::cast(item.second); - } else if (key == "return_timestamps") { - res_config.return_timestamps = py::cast(item.second); - } else if (key == "eos_token_id") { - res_config.set_eos_token_id(py::cast(item.second)); - } else { - throw(std::invalid_argument( - "'" + key + - "' is incorrect WhisperGenerationConfig parameter name. " - "Use help(openvino_genai.WhisperGenerationConfig) to get list of acceptable parameters.")); - } - } - + res_config.update_generation_config(pyutils::kwargs_to_any_map(kwargs)); return res_config; } diff --git a/tests/cpp/utils.cpp b/tests/cpp/utils.cpp new file mode 100644 index 0000000000..d00edae6fb --- /dev/null +++ b/tests/cpp/utils.cpp @@ -0,0 +1,21 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#include +#include "utils.hpp" + + +using namespace ov::genai::utils; +using map_type = std::map; + +TEST(TestIsContainer, test_is_container) { + EXPECT_EQ(is_container, false); + EXPECT_EQ(is_container, false); + EXPECT_EQ(is_container, false); + EXPECT_EQ(is_container, false); + EXPECT_EQ(is_container, true); + EXPECT_EQ(is_container>, true); + EXPECT_EQ(is_container, true); + EXPECT_EQ(is_container>, true); +} \ No newline at end of file diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index ba934e3bda..80df79f31b 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -38,7 +38,7 @@ def run_hf_ov_genai_comparison_batched(model_descr, generation_config: Dict, pro # Need to set explicitly to False, but only if test arguments omitted this arg. # Do not apply 'repetition_penalty' if sampling is not used. config['do_sample'] = False - config['repetition_penalty'] = None + config['repetition_penalty'] = 1.0 # 1.0 means no penalty generation_config_hf = config.copy() if generation_config_hf.get('stop_criteria'): @@ -78,7 +78,7 @@ def run_hf_ov_genai_comparison(model_descr, generation_config: Dict, prompt: str # Need to set explicitly to False, but only if test arguments omitted this arg. # Do not apply 'repetition_penalty' if sampling is not used. config['do_sample'] = False - config['repetition_penalty'] = None + config['repetition_penalty'] = 1.0 # 1.0 means no penalty generation_config_hf = config.copy() if generation_config_hf.get('stop_criteria'): @@ -117,7 +117,7 @@ def hf_ov_genai_tensors_comparison( # Need to set explicitly to False, but only if test arguments omitted this arg. # Do not apply 'repetition_penalty' if sampling is not used. config['do_sample'] = False - config['repetition_penalty'] = None + config['repetition_penalty'] = 1.0 # 1.0 means no penalty generation_config_hf = config.copy() if generation_config_hf.get('stop_criteria'): @@ -635,7 +635,8 @@ def test_valid_configs(model_tmp_path): invalid_py_configs = [ dict(num_beam_groups=3, num_beams=15, do_sample=True), - dict(unexisting_key_name=True), # no eos_token_id no max_new_tokens, no max_len + # TODO: Currently unexpected params do not cause exceptions. Need to implement it in c++ and return this test + # dict(unexisting_key_name=True), # no eos_token_id no max_new_tokens, no max_len dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp @@ -763,7 +764,7 @@ def run_perf_metrics_collection(model_descr, generation_config: Dict, prompt: st # Need to set explicitly to False, but only if test arguments omitted this arg. # Do not apply 'repetition_penalty' if sampling is not used. config['do_sample'] = False - config['repetition_penalty'] = None + config['repetition_penalty'] = 1.0 # 1.0 means no penalty return pipe.generate([prompt], **config).perf_metrics diff --git a/tests/python_tests/test_sampling.py b/tests/python_tests/test_sampling.py index 9973e20e1d..9aa6931d85 100644 --- a/tests/python_tests/test_sampling.py +++ b/tests/python_tests/test_sampling.py @@ -334,7 +334,7 @@ def test_echo_without_completion(tmp_path, get_generation_config, max_num_batche model_path : Path = tmp_path / model_id save_ov_model_from_optimum(model, hf_tokenizer, model_path) - pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix(), {}), scheduler_config, "CPU", {}) + pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix()), scheduler_config, "CPU", {}) outputs = pipe.generate(["What is OpenVINO?"], generation_configs) assert(len(outputs)) @@ -361,7 +361,7 @@ def test_echo_with_completion(tmp_path, get_generation_config, max_num_batched_t model_path : Path = tmp_path / model_id save_ov_model_from_optimum(model, hf_tokenizer, model_path) - pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix(), {}), scheduler_config, "CPU", {}) + pipe = ContinuousBatchingPipeline(model_path.absolute().as_posix(), Tokenizer(model_path.absolute().as_posix()), scheduler_config, "CPU", {}) outputs = pipe.generate(["What is OpenVINO?"], generation_configs) assert(len(outputs)) @@ -389,7 +389,7 @@ def test_post_oom_health(tmp_path, sampling_config): models_path : Path = tmp_path / model_id save_ov_model_from_optimum(model, hf_tokenizer, models_path) - pipe = ContinuousBatchingPipeline(models_path.absolute().as_posix(), Tokenizer(models_path.absolute().as_posix(), {}), scheduler_config, "CPU", {}) + pipe = ContinuousBatchingPipeline(models_path.absolute().as_posix(), Tokenizer(models_path.absolute().as_posix()), scheduler_config, "CPU", {}) # First run should return incomplete response output = pipe.generate(["What is OpenVINO?"], generation_configs) assert (len(output)) From 89865c3e3856abec5fe6b7896a5e42cb81f5ff75 Mon Sep 17 00:00:00 2001 From: Helena Kloosterman Date: Thu, 21 Nov 2024 07:28:53 +0100 Subject: [PATCH 003/113] Update Python VLM example in README (#1178) Existing example uses an undefined "read_image" function, and using max_new_tokens in pipe.generate() resulted in an error with latest nightly. I updated the example to work out of the box. Makes it a bit longer, but this section is hidden by default in the README, so it doesn't add to visual clutter for people just visiting the repo. Also added links to the relevant samples. --------- Co-authored-by: Vladimir Zlobin --- README.md | 25 +++++++++++++++++++++---- 1 file changed, 21 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index fe18205028..c1217a0215 100644 --- a/README.md +++ b/README.md @@ -117,17 +117,34 @@ optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code -- ### Run generation using VLMPipeline API in Python +See [Visual Language Chat](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples/python/visual_language_chat) for a demo application. + +Run the following command to download a sample image: + +```sh +curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg" +``` + ```python +import numpy as np +import openvino as ov import openvino_genai as ov_genai -#Will run model on CPU, GPU is a possible option +from PIL import Image + +# Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU pipe = ov_genai.VLMPipeline("./MiniCPM-V-2_6/", "CPU") -rgb = read_image("cat.jpg") -print(pipe.generate(prompt, image=rgb, max_new_tokens=100)) + +image = Image.open("dog.jpg") +image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) +image_data = ov.Tensor(image_data) + +prompt = "Can you describe the image?" +print(pipe.generate(prompt, image=image_data, max_new_tokens=100)) ``` ### Run generation using VLMPipeline in C++ -Code below requires installation of C++ compatible package (see [here](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html#archive-installation) for more details) +Code below requires installation of C++ compatible package (see [here](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html#archive-installation) for more details). See [Visual Language Chat](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples/cpp/visual_language_chat) for a demo application. ```cpp #include "load_image.hpp" From 799454f5731518e795193721a77b44c95b45fb0f Mon Sep 17 00:00:00 2001 From: Vladimir Zlobin Date: Thu, 21 Nov 2024 13:59:58 +0400 Subject: [PATCH 004/113] Install deployment and export requirements.txt (#1231) (#1241) Ticket 157649 Co-authored-by: Ilya Lavrenov --- samples/CMakeLists.txt | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt index 229eccb3fe..860ced072b 100644 --- a/samples/CMakeLists.txt +++ b/samples/CMakeLists.txt @@ -14,8 +14,12 @@ add_subdirectory(cpp/text2image) add_subdirectory(cpp/visual_language_chat) add_subdirectory(cpp/whisper_speech_recognition) -install(FILES requirements.txt DESTINATION samples - COMPONENT cpp_samples_genai) +install(FILES + deployment-requirements.txt + export-requirements.txt + requirements.txt + DESTINATION samples + COMPONENT cpp_samples_genai) install(DIRECTORY cpp/beam_search_causal_lm From 5d5fe7512398778681e0e2d2f5325e9c7995a7d0 Mon Sep 17 00:00:00 2001 From: Vladimir Zlobin Date: Thu, 21 Nov 2024 18:08:22 +0400 Subject: [PATCH 005/113] Allow missing OpenVINODeveloperPackage (#1243) Compiliung GenAI against ov archives prints Warning: Please, install pybind11-stubgen==2.5.1 otherwise --- src/python/CMakeLists.txt | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/src/python/CMakeLists.txt b/src/python/CMakeLists.txt index 898e18b895..25d81277d6 100644 --- a/src/python/CMakeLists.txt +++ b/src/python/CMakeLists.txt @@ -182,12 +182,14 @@ if(pybind11_stubgen_AVAILABLE) VERBATIM) add_custom_target(${TARGET_NAME}_stub ALL DEPENDS ${output_file}) -else() +elseif(OpenVINODeveloperPackage_FOUND) # Produce warning message at build time as well add_custom_command(OUTPUT pybind11_stub_gen_not_found.txt COMMAND ${CMAKE_COMMAND} -E cmake_echo_color --red "Warning: Please, install ${pybind11_stubgen_dep}") add_custom_target(${TARGET_NAME}_stub ALL DEPENDS pybind11_stub_gen_not_found.txt) +else() + add_custom_target(${TARGET_NAME}_stub ALL) endif() add_dependencies(${TARGET_NAME}_stub ${TARGET_NAME}) From ac7d39ffe66b04a52df69ad7950b4d7963d7f681 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Thu, 21 Nov 2024 22:08:05 +0100 Subject: [PATCH 006/113] parametrize decode in Tokenizers --- src/cpp/include/openvino/genai/tokenizer.hpp | 45 +++++++++- .../src/make_combine_segments_stateful.cpp | 44 ++++++++++ .../src/make_combine_segments_stateful.hpp | 37 +++++++++ src/cpp/src/tokenizer.cpp | 82 +++++++++++-------- src/python/py_tokenizer.cpp | 24 ++++-- tests/python_tests/test_chat_generate_api.py | 21 +++++ 6 files changed, 208 insertions(+), 45 deletions(-) diff --git a/src/cpp/include/openvino/genai/tokenizer.hpp b/src/cpp/include/openvino/genai/tokenizer.hpp index bcb8da68a3..e90e9c80de 100644 --- a/src/cpp/include/openvino/genai/tokenizer.hpp +++ b/src/cpp/include/openvino/genai/tokenizer.hpp @@ -87,23 +87,59 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens vector storing tokens + * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} * @return sequence string */ - std::string decode(std::vector tokens); - + std::string decode(std::vector tokens, const ov::AnyMap& detokenization_params = {}); + + /** + * @brief decode sequence of tokens + * @param tokens vector storing tokens + * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) + * @return sequence string + */ + template + util::EnableIfAllStringAny decode(std::vector& tokens, Properties&&... properties) { + return decode(tokens, AnyMap{std::forward(properties)...}); + } + /** * @brief decode tokens. * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] + * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} + * @return vector of std::string, with size = batch_size + */ + std::vector decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params = {}); + + /** + * @brief decode sequence of tokens + * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] + * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) * @return vector of std::string, with size = batch_size */ - std::vector decode(ov::Tensor tokens); + template + util::EnableIfAllStringAny, Properties...> decode(ov::Tensor tokens, Properties&&... properties) { + return decode(tokens, AnyMap{std::forward(properties)...}); + } /** * @brief batched decoding of tokens. * @param tokens vector of vectors with tokens, tokens.size() is equal to batch_size + * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} * @return vector of std::string, with size equal to batch_size */ - std::vector decode(std::vector> tokens); + std::vector decode(std::vector> tokens, const ov::AnyMap& detokenization_params = {}); + + /** + * @brief decode sequence of tokens + * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] + * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) + * @return vector of std::string, with size = batch_size + */ + template + util::EnableIfAllStringAny, Properties...> decode(std::vector> tokens, Properties&&... properties) { + return decode(tokens, AnyMap{std::forward(properties)...}); + } /** * @brief Embeds input prompts with special tags for a chat scenario. @@ -143,6 +179,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { }; static constexpr ov::Property add_special_tokens{"add_special_tokens"}; +static constexpr ov::Property skip_special_tokens{"skip_special_tokens"}; } // namespace genai } // namespace ov diff --git a/src/cpp/src/make_combine_segments_stateful.cpp b/src/cpp/src/make_combine_segments_stateful.cpp index 2285c172dc..26c58b8fca 100644 --- a/src/cpp/src/make_combine_segments_stateful.cpp +++ b/src/cpp/src/make_combine_segments_stateful.cpp @@ -4,6 +4,8 @@ #include "make_combine_segments_stateful.hpp" #include "openvino/op/constant.hpp" #include "openvino/op/select.hpp" +#include "openvino/op/slice.hpp" +#include "openvino/op/multiply.hpp" #include "openvino/op/read_value.hpp" #include "openvino/op/assign.hpp" @@ -44,3 +46,45 @@ bool ov::genai::MakeCombineSegmentsSatateful::run_on_model(const std::shared_ptr model->add_variables({variable}); return true; } + +bool ov::genai::MakeVocabDecoderSatateful::run_on_model(const std::shared_ptr& model) { + + std::shared_ptr vocab_decoder_node; + for (auto node: model->get_ordered_ops()) { + if (strcmp(node->get_type_info().name, "VocabDecoder") == 0) { + vocab_decoder_node = node; + } + } + auto val = vocab_decoder_node->input_value(4); + auto val_type = vocab_decoder_node->input_value(4).get_element_type(); + + if (!vocab_decoder_node || !vocab_decoder_node->input_value(4).get_element_type().is_integral_number()) { + return false; + } + + std::shared_ptr skip_tokens_const = std::dynamic_pointer_cast(vocab_decoder_node->get_input_node_shared_ptr(4)); + if (!skip_tokens_const) { + return false; + } + + + auto start_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{0}); + auto int_max_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{std::numeric_limits::max()}); + auto one_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{1}); + + // By default, INT_MAX will multiply with 1 and all skip_tokens will be selected. + op::util::VariableInfo var_info{ov::Shape{1}, ov::element::i32, SKIP_SPECIAL_TOKENS_VAR_ID}; + auto variable = std::make_shared(var_info); + auto read_value = std::make_shared(one_const, variable); + // if flag is set, then slice up to the int_max which means skip all tokens. + auto stop = std::make_shared(int_max_const, read_value); + + std::shared_ptr slice_node = std::make_shared(skip_tokens_const, start_const, stop, one_const); + + vocab_decoder_node->input(4).replace_source_output(slice_node->output(0)); + + auto assign = std::make_shared(read_value, variable); + model->add_sinks({assign}); + model->add_variables({variable}); + return true; +} \ No newline at end of file diff --git a/src/cpp/src/make_combine_segments_stateful.hpp b/src/cpp/src/make_combine_segments_stateful.hpp index 6365497140..307c6199c8 100644 --- a/src/cpp/src/make_combine_segments_stateful.hpp +++ b/src/cpp/src/make_combine_segments_stateful.hpp @@ -38,7 +38,44 @@ class MakeCombineSegmentsSatateful : public ov::pass::ModelPass { bool run_on_model(const std::shared_ptr& model) override; }; +/** + * @brief This pass modifies tokenizer ov::Model so that special tokens adding will be + * enabled or disabled depending on stateful value. + * + * +--------------+ + * | DefaultMode | + * +--------------+ + * | + * v + * +------------+ +-----------+ + * | ReadValue | | INT_MAX | + * +------------+ +-----------+ + * \ / + * \ / + * v v + * +--------------------+ +---------+ +---------+ + * | Const with tokens | | start | | Mul | + * +--------------------+ +---------+ +---------+ + * \ | / + * \ | / + * v v v + * +-----------------+ + * | Slice | + * +-----------------+ + * | + * v + * +----------------------+ + * | VocabDecoder | + * +----------------------+ +**/ +class MakeVocabDecoderSatateful : public ov::pass::ModelPass { +public: + OPENVINO_RTTI("MakeVocabDecoderSatateful", "0"); + bool run_on_model(const std::shared_ptr& model) override; +}; + const std::string ADD_SPECIAL_TOKENS_VAR_ID = "add_special_tokens"; +const std::string SKIP_SPECIAL_TOKENS_VAR_ID = "skip_special_tokens"; } // namespace genai } // namespace ov diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index f52417a94e..78b94915dd 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -10,6 +10,7 @@ #include #include +#include "openvino/pass/visualize_tree.hpp" #include "openvino/pass/manager.hpp" #include "openvino/runtime/core.hpp" #include "openvino/genai/tokenizer.hpp" @@ -73,7 +74,8 @@ class Tokenizer::TokenizerImpl { std::unique_ptr> m_ireq_queue_detokenizer; // To change the adding special tokens mode we use a statefull subgraph, // this flag holds the current state value of the CompiledModel. - bool m_add_special_tokens = true; + bool m_add_special_tokens = true; + bool m_skip_special_tokens = false; bool m_older_than_24_5 = false; int64_t m_pad_token_id = -1; @@ -86,11 +88,16 @@ class Tokenizer::TokenizerImpl { std::string m_chat_template = {}; - void set_state_if_necessary(CircularBufferQueueElementGuard& infer_request_guard, bool add_special_tokens) { + void set_state_if_necessary(CircularBufferQueueElementGuard& infer_request_guard, const ov::AnyMap& params) { + bool add_special_tokens_flag = true; + bool skip_special_tokens_flag = false; + ov::genai::utils::read_anymap_param(params, add_special_tokens.name(), add_special_tokens_flag); + ov::genai::utils::read_anymap_param(params, skip_special_tokens.name(), skip_special_tokens_flag); + // If user requested add_special_tokens mode different from the current one, // need to set state variable. // If requested mode matches the stored state set, then don't touch states. - if (add_special_tokens == m_add_special_tokens) { + if (add_special_tokens_flag == m_add_special_tokens && skip_special_tokens_flag == m_skip_special_tokens) { return; } if (m_older_than_24_5) { @@ -100,19 +107,23 @@ class Tokenizer::TokenizerImpl { return; } - // auto states = m_ireq_queue_tokenizer->get(0).query_state(); + // add_special_tokens is managed by Select op with a bool input. ov::Tensor add_special_tensor = ov::Tensor(ov::element::boolean, {}); - *add_special_tensor.data() = add_special_tokens; + *add_special_tensor.data() = add_special_tokens_flag; + + // skip_special_tokens is managed by multiplication with a number, therefore i32. + ov::Tensor skip_special_tensor = ov::Tensor(ov::element::i32, {1}); + *skip_special_tensor.data() = skip_special_tokens_flag; for (auto& state: infer_request_guard.get().query_state()) { - if (state.get_name().find(ov::genai::ADD_SPECIAL_TOKENS_VAR_ID) == std::string::npos) { - // It's not add_special_tokens flag state. - continue; + if (state.get_name().find(ov::genai::ADD_SPECIAL_TOKENS_VAR_ID) != std::string::npos) { + state.set_state(add_special_tensor); + } else if (state.get_name().find(ov::genai::SKIP_SPECIAL_TOKENS_VAR_ID) != std::string::npos) { + state.set_state(skip_special_tensor); } - state.set_state(add_special_tensor); - break; } - m_add_special_tokens = add_special_tokens; + m_add_special_tokens = add_special_tokens_flag; + m_skip_special_tokens = skip_special_tokens_flag; } TokenizerImpl() = default; @@ -135,15 +146,25 @@ class Tokenizer::TokenizerImpl { auto device = "CPU"; // currently openvino_tokenizer supports only CPU auto ov_tokenizer = core.read_model(tokenizer_path / "openvino_tokenizer.xml"); + std::shared_ptr ov_detokenizer; + if (std::filesystem::exists(tokenizer_path / "openvino_detokenizer.xml")) { + ov_detokenizer = core.read_model(tokenizer_path / "openvino_detokenizer.xml"); + } m_older_than_24_5 = ov_tokenizer->get_rt_info().count("openvino_tokenizers_version") != 1; - ov::pass::Manager manager; - manager.register_pass(); - manager.run_passes(ov_tokenizer); + ov::pass::Manager manager_tok; + manager_tok.register_pass(); + manager_tok.run_passes(ov_tokenizer); + + ov::pass::Manager manager_detok; + manager_detok.register_pass("before.svg"); + manager_detok.register_pass(); + manager_detok.register_pass("after.svg"); + manager_detok.run_passes(ov_detokenizer); m_tokenizer = core.compile_model(ov_tokenizer, device, properties); if (std::filesystem::exists(tokenizer_path / "openvino_detokenizer.xml")) { - m_detokenizer = core.compile_model(tokenizer_path / "openvino_detokenizer.xml", device, properties); + m_detokenizer = core.compile_model(ov_detokenizer, device, properties); } @@ -298,11 +319,8 @@ class Tokenizer::TokenizerImpl { } TokenizedInputs encode(std::string prompt, const ov::AnyMap& tokenization_params = {}) { - bool add_special_tokens_flag = true; - ov::genai::utils::read_anymap_param(tokenization_params, add_special_tokens.name(), add_special_tokens_flag); - CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_tokenizer.get()); - set_state_if_necessary(infer_request_guard, add_special_tokens_flag); + set_state_if_necessary(infer_request_guard, tokenization_params); size_t batch_size = 1; infer_request_guard.get().set_input_tensor(ov::Tensor{ov::element::string, {batch_size}, &prompt}); infer_request_guard.get().start_async(); @@ -316,11 +334,8 @@ class Tokenizer::TokenizerImpl { TokenizedInputs encode(std::vector& prompts, const ov::AnyMap& tokenization_params = {}) { TokenizedInputs unpadded; { - bool add_special_tokens_flag = true; - ov::genai::utils::read_anymap_param(tokenization_params, add_special_tokens.name(), add_special_tokens_flag); - CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_tokenizer.get()); - set_state_if_necessary(infer_request_guard, add_special_tokens_flag); + set_state_if_necessary(infer_request_guard, tokenization_params); infer_request_guard.get().set_input_tensor(ov::Tensor{ov::element::string, {prompts.size()}, prompts.data()}); auto size_ = infer_request_guard.get().get_input_tensor().get_shape(); infer_request_guard.get().start_async(); @@ -343,10 +358,11 @@ class Tokenizer::TokenizerImpl { return {input_ids_, attention_mask_}; } - std::string decode(std::vector tokens) { + std::string decode(std::vector tokens, const ov::AnyMap& detokenization_params = {}) { OPENVINO_ASSERT(m_detokenizer, "Detokenize model has not been provided. Tokenizer::decode is not available"); CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_detokenizer.get()); + set_state_if_necessary(infer_request_guard, detokenization_params); size_t batch_size = 1; infer_request_guard.get().set_input_tensor(ov::Tensor{ov::element::i64, {batch_size, tokens.size()}, tokens.data()}); infer_request_guard.get().start_async(); @@ -354,12 +370,13 @@ class Tokenizer::TokenizerImpl { return infer_request_guard.get().get_output_tensor().data()[0]; } - std::vector decode(ov::Tensor tokens) { + std::vector decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params = {}) { OPENVINO_ASSERT(m_detokenizer, "Detokenize model has not been provided. Tokenizer::decode is not available"); OPENVINO_ASSERT(tokens.get_element_type() == ov::element::i64, "tokens tensor element type should be an i64"); OPENVINO_ASSERT(tokens.get_shape().size() == 2, "tokens tensor should of rank 2 with shape [batch_size, seq_len]"); CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_detokenizer.get()); + set_state_if_necessary(infer_request_guard, detokenization_params); infer_request_guard.get().set_input_tensor(tokens); infer_request_guard.get().start_async(); infer_request_guard.get().wait(); @@ -369,7 +386,7 @@ class Tokenizer::TokenizerImpl { return std::vector(res_data, res_data + res.get_shape()[0]); } - std::vector decode(std::vector> lines) { + std::vector decode(std::vector> lines, const ov::AnyMap& detokenization_params = {}) { OPENVINO_ASSERT(m_detokenizer, "Detokenize model has not been provided. Tokenizer::decode is not available"); auto compare_lengths = [](const std::vector& a, const std::vector& b) { @@ -388,6 +405,7 @@ class Tokenizer::TokenizerImpl { } CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_detokenizer.get()); + set_state_if_necessary(infer_request_guard, detokenization_params); infer_request_guard.get().set_input_tensor(tokens); infer_request_guard.get().start_async(); infer_request_guard.get().wait(); @@ -517,16 +535,16 @@ TokenizedInputs Tokenizer::encode(std::initializer_list& text, cons return encode(std::vector(text.begin(), text.end()), tokenization_params); } -std::string Tokenizer::decode(std::vector tokens) { - return m_pimpl->decode(tokens); +std::string Tokenizer::decode(std::vector tokens, const ov::AnyMap& detokenization_params) { + return m_pimpl->decode(tokens, detokenization_params); } -std::vector Tokenizer::decode(ov::Tensor tokens) { - return m_pimpl->decode(tokens); +std::vector Tokenizer::decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params) { + return m_pimpl->decode(tokens, detokenization_params); } -std::vector Tokenizer::decode(std::vector> lines) { - return m_pimpl->decode(lines); +std::vector Tokenizer::decode(std::vector> lines, const ov::AnyMap& detokenization_params) { + return m_pimpl->decode(lines, detokenization_params); } int64_t Tokenizer::get_bos_token_id() const { diff --git a/src/python/py_tokenizer.cpp b/src/python/py_tokenizer.cpp index 2ccccff4c0..db4643a65c 100644 --- a/src/python/py_tokenizer.cpp +++ b/src/python/py_tokenizer.cpp @@ -63,27 +63,33 @@ void init_tokenizer(py::module_& m) { .def( "decode", - [](Tokenizer& tok, std::vector& tokens) -> py::str { - return pyutils::handle_utf8(tok.decode(tokens)); + [](Tokenizer& tok, std::vector& tokens, bool skip_special_tokens) -> py::str { + ov::AnyMap detokenization_params; + detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; + return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode a sequence into a string prompt.)" ) .def( "decode", - [](Tokenizer& tok, ov::Tensor& tokens) -> py::typing::List { - return pyutils::handle_utf8(tok.decode(tokens)); + [](Tokenizer& tok, ov::Tensor& tokens, bool skip_special_tokens) -> py::typing::List { + ov::AnyMap detokenization_params; + detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; + return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode tensor into a list of string prompts.)") .def( "decode", - [](Tokenizer& tok, std::vector>& tokens) -> py::typing::List { - return pyutils::handle_utf8(tok.decode(tokens)); + [](Tokenizer& tok, std::vector>& tokens, bool skip_special_tokens) -> py::typing::List { + ov::AnyMap detokenization_params; + detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; + return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode a batch of tokens into a list of string prompt.)") .def("apply_chat_template", [](Tokenizer& tok, diff --git a/tests/python_tests/test_chat_generate_api.py b/tests/python_tests/test_chat_generate_api.py index 25d0798994..a87a2c7555 100644 --- a/tests/python_tests/test_chat_generate_api.py +++ b/tests/python_tests/test_chat_generate_api.py @@ -217,3 +217,24 @@ def test_add_special_tokens(add_special_tokens, prompt): res_genai = genai_tokenzier.encode(prompt, add_special_tokens).input_ids.data res_hf = hf_tokenizer(prompt, return_tensors="np", add_special_tokens=add_special_tokens)["input_ids"] assert np.all(res_genai == res_hf) + +@pytest.mark.precommit +@pytest.mark.nightly +@pytest.mark.parametrize("add_special_tokens", [True, False]) +@pytest.mark.parametrize("skip_special_tokens", [True, False]) +@pytest.mark.parametrize("prompt", prompts) +def test_add_special_tokens(add_special_tokens, skip_special_tokens, prompt): + import numpy as np + model_descr = get_chat_models_list()[0] + model_id, path, hf_tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat')) + genai_tokenizer = pipe.get_tokenizer() + + # Calling encode with add_special_tokens will set state flag. + res_genai = genai_tokenizer.encode(prompt, add_special_tokens).input_ids.data + res_hf = hf_tokenizer(prompt, return_tensors="np", add_special_tokens=add_special_tokens)["input_ids"] + assert np.all(res_genai == res_hf) + + # Decode with skip_special_tokens + decoded_genai = genai_tokenizer.decode(res_genai, skip_special_tokens=skip_special_tokens) + decoded_hf = hf_tokenizer.decode(res_hf[0], skip_special_tokens=skip_special_tokens) + assert decoded_genai == decoded_hf From e46466d94124aa73daa34a91cf94a7e0ce4e1265 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Thu, 21 Nov 2024 22:10:47 +0100 Subject: [PATCH 007/113] rename pass --- .github/labeler.yml | 4 ++-- ...ine_segments_stateful.cpp => make_tokenizer_stateful.cpp} | 2 +- ...ine_segments_stateful.hpp => make_tokenizer_stateful.hpp} | 0 src/cpp/src/tokenizer.cpp | 5 +---- 4 files changed, 4 insertions(+), 7 deletions(-) rename src/cpp/src/{make_combine_segments_stateful.cpp => make_tokenizer_stateful.cpp} (98%) rename src/cpp/src/{make_combine_segments_stateful.hpp => make_tokenizer_stateful.hpp} (100%) diff --git a/.github/labeler.yml b/.github/labeler.yml index c5d0db312c..c162f6aff4 100644 --- a/.github/labeler.yml +++ b/.github/labeler.yml @@ -8,8 +8,8 @@ - 'src/cpp/src/tokenizers_path.hpp' - 'src/cpp/src/circular_buffer_queue.hpp' - 'src/cpp/src/synchronized_queue.hpp' -- 'src/cpp/src/make_combine_segments_stateful.cpp' -- 'src/cpp/src/make_combine_segments_stateful.hpp' +- 'src/cpp/src/make_tokenizer_stateful.cpp' +- 'src/cpp/src/make_tokenizer_stateful.hpp' - 'src/python/py_tokenizer.cpp' - 'thirdparty/openvino_tokenizers' - 'tests/python_tests/tokenizer_configs.py' diff --git a/src/cpp/src/make_combine_segments_stateful.cpp b/src/cpp/src/make_tokenizer_stateful.cpp similarity index 98% rename from src/cpp/src/make_combine_segments_stateful.cpp rename to src/cpp/src/make_tokenizer_stateful.cpp index 26c58b8fca..538a935e56 100644 --- a/src/cpp/src/make_combine_segments_stateful.cpp +++ b/src/cpp/src/make_tokenizer_stateful.cpp @@ -1,7 +1,7 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 -#include "make_combine_segments_stateful.hpp" +#include "make_tokenizer_stateful.hpp" #include "openvino/op/constant.hpp" #include "openvino/op/select.hpp" #include "openvino/op/slice.hpp" diff --git a/src/cpp/src/make_combine_segments_stateful.hpp b/src/cpp/src/make_tokenizer_stateful.hpp similarity index 100% rename from src/cpp/src/make_combine_segments_stateful.hpp rename to src/cpp/src/make_tokenizer_stateful.hpp diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index 78b94915dd..fc6ba75d90 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -10,12 +10,11 @@ #include #include -#include "openvino/pass/visualize_tree.hpp" #include "openvino/pass/manager.hpp" #include "openvino/runtime/core.hpp" #include "openvino/genai/tokenizer.hpp" -#include "make_combine_segments_stateful.hpp" +#include "make_tokenizer_stateful.hpp" #include "tokenizers_path.hpp" #include "circular_buffer_queue.hpp" #include "json_utils.hpp" @@ -157,9 +156,7 @@ class Tokenizer::TokenizerImpl { manager_tok.run_passes(ov_tokenizer); ov::pass::Manager manager_detok; - manager_detok.register_pass("before.svg"); manager_detok.register_pass(); - manager_detok.register_pass("after.svg"); manager_detok.run_passes(ov_detokenizer); m_tokenizer = core.compile_model(ov_tokenizer, device, properties); From ff8846ae599bc2a05b3173c0dd05a027a376e32c Mon Sep 17 00:00:00 2001 From: guozhong wang Date: Fri, 22 Nov 2024 09:11:36 +0800 Subject: [PATCH 008/113] Fix wrong token latency when batch size is greater than 1 (#1244) Fix the wrong 2nd token latency when batch size is greater than 1. python benchmark.py -m /mnt/llm_irs/models_6c715998_ww45.4_optimum/llama-2-7b-chat/pytorch/dldt/FP16 -n 1 --genai -ic 128 -bs 16 [ INFO ] [Average] P[0] Input token size: 128, 1st token latency: **0.36 ms/16tokens**, **2nd token latency: 1958228200.33 ms/16tokens**, 2nd tokens throughput: **0.00** 16tokenss/s Fix result: [ INFO ] [Average] P[0] Input token size: 128, 1st token latency: 91.54 ms/16tokens, 2nd token latency: 69.81 ms/16tokens, 2nd tokens throughput: 229.18 tokens/s --- tools/llm_bench/llm_bench_utils/metrics_print.py | 4 ++-- tools/llm_bench/task/speech_to_text_generation.py | 4 ++-- tools/llm_bench/task/text_generation.py | 4 ++-- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/tools/llm_bench/llm_bench_utils/metrics_print.py b/tools/llm_bench/llm_bench_utils/metrics_print.py index 905decf72b..de9d0126f8 100644 --- a/tools/llm_bench/llm_bench_utils/metrics_print.py +++ b/tools/llm_bench/llm_bench_utils/metrics_print.py @@ -149,7 +149,7 @@ def output_avg_statis_tokens(prompt_dict, prompt_idx_list, iter_data_list, batch avg_input_size = int(avg_input_size / index_num) if avg_2nd_tokens_latency > 0: avg_2nd_token_tput = (1 / avg_2nd_tokens_latency) * batch_size * 1000 - latency_unit = 'token' if is_text_gen is True else 'step' + tput_unit = latency_unit = 'token' if is_text_gen is True else 'step' if batch_size > 1: if is_text_gen is True: latency_unit = '{}tokens'.format(batch_size) @@ -157,7 +157,7 @@ def output_avg_statis_tokens(prompt_dict, prompt_idx_list, iter_data_list, batch latency_unit = '{}steps'.format(batch_size) avg_1st_token_latency = 'NA' if avg_1st_token_latency < 0 else f'{avg_1st_token_latency:.2f} ms/{latency_unit}' avg_2nd_tokens_latency = 'NA' if avg_2nd_tokens_latency < 0 else f'{avg_2nd_tokens_latency:.2f} ms/{latency_unit}' - avg_2nd_token_tput = 'NA' if avg_2nd_tokens_latency == 'NA' else f'{avg_2nd_token_tput:.2f} {latency_unit}s/s' + avg_2nd_token_tput = 'NA' if avg_2nd_tokens_latency == 'NA' else f'{avg_2nd_token_tput:.2f} {tput_unit}s/s' prefix = f'[ INFO ] [Average] P[{p_idx}]L[{loop_idx}]' if loop_idx != -1 else f'[ INFO ] [Average] P[{p_idx}]' if is_text_gen is True: output_info = '' diff --git a/tools/llm_bench/task/speech_to_text_generation.py b/tools/llm_bench/task/speech_to_text_generation.py index ad49109bab..be9c9ab295 100644 --- a/tools/llm_bench/task/speech_to_text_generation.py +++ b/tools/llm_bench/task/speech_to_text_generation.py @@ -51,10 +51,10 @@ def run_speech_2_txt_generation(input_param, args, md5_list, iter_data_list): ) end = time.perf_counter() perf_metrics = result_text.perf_metrics - first_token_time = perf_metrics.get_ttft().mean / args["batch_size"] + first_token_time = perf_metrics.get_ttft().mean second_tokens_durations = ( np.array(perf_metrics.raw_metrics.m_new_token_times[1:]) - - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) / args["batch_size"] + - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) ).tolist() tm_list = (np.array([first_token_time] + second_tokens_durations) / 1000).tolist() tm_infer_list = [] diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 029bcdf16d..7718773560 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -240,10 +240,10 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data per_token_time = generation_time * 1000 / (num_tokens / args['batch_size']) else: log.warning("No generated tokens") - first_token_time = (perf_metrics.get_ttft().mean - perf_metrics.raw_metrics.tokenization_durations[-1] / 1000) / args["batch_size"] + first_token_time = (perf_metrics.get_ttft().mean - perf_metrics.raw_metrics.tokenization_durations[-1] / 1000) * args["batch_size"] second_tokens_durations = ( np.array(perf_metrics.raw_metrics.m_new_token_times[1:]) - - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) / args["batch_size"] + - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) ).tolist() tm_list = np.array([first_token_time] + second_tokens_durations) / 1000 From 4529dec255b603d711a479f1a90c4cbec9ae3ebf Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Fri, 22 Nov 2024 10:49:11 +0100 Subject: [PATCH 009/113] fix typos --- src/cpp/include/openvino/genai/tokenizer.hpp | 28 ++++++++++---------- src/cpp/src/make_tokenizer_stateful.cpp | 17 +++++------- src/python/py_tokenizer.cpp | 6 ++--- tests/python_tests/test_chat_generate_api.py | 3 ++- 4 files changed, 25 insertions(+), 29 deletions(-) diff --git a/src/cpp/include/openvino/genai/tokenizer.hpp b/src/cpp/include/openvino/genai/tokenizer.hpp index e90e9c80de..8d2d63ea80 100644 --- a/src/cpp/include/openvino/genai/tokenizer.hpp +++ b/src/cpp/include/openvino/genai/tokenizer.hpp @@ -47,7 +47,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief encode a single prompt * @param prompt std::string with input prompt - * @param tokenization_params AnyMap with tokenization parameters, e.g. {'add_special_tokens', false} + * @param tokenization_params AnyMap with tokenization parameters, e.g. {"add_special_tokens", false} * @return pair of [input_ids, attention_mask] */ TokenizedInputs encode(const std::string prompt, const ov::AnyMap& tokenization_params = {}); @@ -55,7 +55,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief encode batch of prompts. Left padding will be applied by default * @param prompts vector storing batch of prompts - * @param tokenization_params AnyMap with tokenization parameters, e.g. {'add_special_tokens', false} + * @param tokenization_params AnyMap with tokenization parameters, e.g. {"add_special_tokens", false} * @return pair of [input_ids, attention_mask] */ TokenizedInputs encode(std::vector& prompt, const ov::AnyMap& tokenization_params = {}); @@ -87,7 +87,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens vector storing tokens - * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} + * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return sequence string */ std::string decode(std::vector tokens, const ov::AnyMap& detokenization_params = {}); @@ -95,18 +95,18 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens vector storing tokens - * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) + * @param detokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) * @return sequence string */ template - util::EnableIfAllStringAny decode(std::vector& tokens, Properties&&... properties) { - return decode(tokens, AnyMap{std::forward(properties)...}); + util::EnableIfAllStringAny decode(std::vector& tokens, Properties&&... detokenization_params) { + return decode(tokens, AnyMap{std::forward(detokenization_params)...}); } /** * @brief decode tokens. * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] - * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} + * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return vector of std::string, with size = batch_size */ std::vector decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params = {}); @@ -114,18 +114,18 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] - * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) + * @param detokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) * @return vector of std::string, with size = batch_size */ template - util::EnableIfAllStringAny, Properties...> decode(ov::Tensor tokens, Properties&&... properties) { - return decode(tokens, AnyMap{std::forward(properties)...}); + util::EnableIfAllStringAny, Properties...> decode(ov::Tensor tokens, Properties&&... detokenization_params) { + return decode(tokens, AnyMap{std::forward(detokenization_params)...}); } /** * @brief batched decoding of tokens. * @param tokens vector of vectors with tokens, tokens.size() is equal to batch_size - * @param tokenization_params AnyMap with detokenization parameters, e.g. {'skip_special_tokens', false} + * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return vector of std::string, with size equal to batch_size */ std::vector decode(std::vector> tokens, const ov::AnyMap& detokenization_params = {}); @@ -133,12 +133,12 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] - * @param tokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) + * @param detokenization_params detokenization parameters, e.g. ov::genai::skip_special_tokens(true) * @return vector of std::string, with size = batch_size */ template - util::EnableIfAllStringAny, Properties...> decode(std::vector> tokens, Properties&&... properties) { - return decode(tokens, AnyMap{std::forward(properties)...}); + util::EnableIfAllStringAny, Properties...> decode(std::vector> tokens, Properties&&... detokenization_params) { + return decode(tokens, AnyMap{std::forward(detokenization_params)...}); } /** diff --git a/src/cpp/src/make_tokenizer_stateful.cpp b/src/cpp/src/make_tokenizer_stateful.cpp index 538a935e56..3551e713c9 100644 --- a/src/cpp/src/make_tokenizer_stateful.cpp +++ b/src/cpp/src/make_tokenizer_stateful.cpp @@ -48,25 +48,20 @@ bool ov::genai::MakeCombineSegmentsSatateful::run_on_model(const std::shared_ptr } bool ov::genai::MakeVocabDecoderSatateful::run_on_model(const std::shared_ptr& model) { - std::shared_ptr vocab_decoder_node; for (auto node: model->get_ordered_ops()) { - if (strcmp(node->get_type_info().name, "VocabDecoder") == 0) { + if (strcmp(node->get_type_info().name, "VocabDecoder") == 0) vocab_decoder_node = node; - } } - auto val = vocab_decoder_node->input_value(4); - auto val_type = vocab_decoder_node->input_value(4).get_element_type(); - if (!vocab_decoder_node || !vocab_decoder_node->input_value(4).get_element_type().is_integral_number()) { + if (!vocab_decoder_node || vocab_decoder_node->get_input_size() < 5) + return false; + if (!vocab_decoder_node->input_value(4).get_element_type().is_integral_number()) return false; - } std::shared_ptr skip_tokens_const = std::dynamic_pointer_cast(vocab_decoder_node->get_input_node_shared_ptr(4)); - if (!skip_tokens_const) { + if (!skip_tokens_const) return false; - } - auto start_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{0}); auto int_max_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{std::numeric_limits::max()}); @@ -87,4 +82,4 @@ bool ov::genai::MakeVocabDecoderSatateful::run_on_model(const std::shared_ptradd_sinks({assign}); model->add_variables({variable}); return true; -} \ No newline at end of file +} diff --git a/src/python/py_tokenizer.cpp b/src/python/py_tokenizer.cpp index db4643a65c..dae2ffe775 100644 --- a/src/python/py_tokenizer.cpp +++ b/src/python/py_tokenizer.cpp @@ -68,7 +68,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = true, + py::arg("tokens"), py::arg("skip_special_tokens") = false, R"(Decode a sequence into a string prompt.)" ) @@ -79,7 +79,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = true, + py::arg("tokens"), py::arg("skip_special_tokens") = false, R"(Decode tensor into a list of string prompts.)") .def( @@ -89,7 +89,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = true, + py::arg("tokens"), py::arg("skip_special_tokens") = false, R"(Decode a batch of tokens into a list of string prompt.)") .def("apply_chat_template", [](Tokenizer& tok, diff --git a/tests/python_tests/test_chat_generate_api.py b/tests/python_tests/test_chat_generate_api.py index a87a2c7555..efd1d87416 100644 --- a/tests/python_tests/test_chat_generate_api.py +++ b/tests/python_tests/test_chat_generate_api.py @@ -219,6 +219,7 @@ def test_add_special_tokens(add_special_tokens, prompt): assert np.all(res_genai == res_hf) @pytest.mark.precommit +@pytest.mark.xfail(reason="Need to turn them back on when openvino_tokenizers will be updated.") @pytest.mark.nightly @pytest.mark.parametrize("add_special_tokens", [True, False]) @pytest.mark.parametrize("skip_special_tokens", [True, False]) @@ -235,6 +236,6 @@ def test_add_special_tokens(add_special_tokens, skip_special_tokens, prompt): assert np.all(res_genai == res_hf) # Decode with skip_special_tokens - decoded_genai = genai_tokenizer.decode(res_genai, skip_special_tokens=skip_special_tokens) + decoded_genai = genai_tokenizer.decode(res_genai, skip_special_tokens=skip_special_tokens)[0] decoded_hf = hf_tokenizer.decode(res_hf[0], skip_special_tokens=skip_special_tokens) assert decoded_genai == decoded_hf From 18e8d5b59c9f4776a59811db4f299c2da1ea974f Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Fri, 22 Nov 2024 16:12:08 +0400 Subject: [PATCH 010/113] [WWB]: Updated readme with the latest information (#1248) --- tools/who_what_benchmark/README.md | 34 ++++++++++++++++++++---------- 1 file changed, 23 insertions(+), 11 deletions(-) diff --git a/tools/who_what_benchmark/README.md b/tools/who_what_benchmark/README.md index 012782bad3..0e597859d2 100644 --- a/tools/who_what_benchmark/README.md +++ b/tools/who_what_benchmark/README.md @@ -9,12 +9,12 @@ WWB provides default datasets for the supported use cases. However, it is relati * Command-line interface for Hugging Face and OpenVINO models and API to support broader inference backends. * Simple and quick accuracy test for compressed, quantized, pruned, distilled LLMs. It works with any model that supports HuggingFace Transformers text generation API including: * HuggingFace Transformers compressed models via [Bitsandbytes](https://huggingface.co/docs/transformers/main_classes/quantization#transformers.BitsAndBytesConfig) + * [OpenVINO](https://github.com/openvinotoolkit/openvino) and [NNCF](https://github.com/openvinotoolkit/nncf) via [Optimum-Intel](https://github.com/huggingface/optimum-intel) and OpenVINO [GenAI](https://github.com/openvinotoolkit/openvino.genai) * [GPTQ](https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig) via HuggingFace API * Llama.cpp via [BigDL-LLM](https://github.com/intel-analytics/BigDL/tree/main/python/llm) - * [OpenVINO](https://github.com/openvinotoolkit/openvino) and [NNCF](https://github.com/openvinotoolkit/nncf) via [Optimum-Intel](https://github.com/huggingface/optimum-intel) * Support of custom datasets of the user choice -* Validation of text-to-image pipelines. Computes similarity score between generated images: - * Supports Diffusers library and Optimum-Intel via `Text2ImageEvaluator` class. +* Validation of text-to-image pipelines. Computes similarity score between generated images with Diffusers library, Optimum-Intel, and OpenVINO GenAI via `Text2ImageEvaluator` class. +* Validation of Visual Language pipelines. Computes similarity score between generated images with Diffusers library, Optimum-Intel, and OpenVINO GenAI via `VisualTextEvaluator` class. ### Installation Install WWB and its requirements from the source using `pip` or any other package manager. For example, @@ -41,18 +41,30 @@ wwb --target-model phi-3-openvino --gt-data gt.csv --model-type text wwb --target-model phi-3-openvino --gt-data gt.csv --model-type text --genai ``` -### Compare Text-to-image models (Diffusers) +> **NOTE**: use --verbose option for debug to see the outputs with the largest difference. + +### Compare Text-to-image models ```sh -# Export FP16 model to OpenVINO -optimum-cli export openvino -m SimianLuo/LCM_Dreamshaper_v7 --weight-format fp16 sd-lcm-fp16 # Export model with 8-bit quantized weights to OpenVINO optimum-cli export openvino -m SimianLuo/LCM_Dreamshaper_v7 --weight-format int8 sd-lcm-int8 -# Collect the references and save the mappling in the .json file. -# Reference images will be stored in the "reference" subfolder under the same path with .json. -wwb --base-model sd-lcm-fp16 --gt-data lcm_test/sd_xl.json --model-type text-to-image +# Collect the references and save the mappling in the .csv file. +# Reference images will be stored in the "reference" subfolder under the same path with .csv. +wwb --base-model SimianLuo/LCM_Dreamshaper_v7--gt-data lcm_test/gt.csv --model-type text-to-image --hf +# Compute the metric +# Target images will be stored in the "target" subfolder under the same path with .csv. +wwb --target-model sd-lcm-int8 --gt-data lcm_test/gt.csv --model-type text-to-image --genai +``` + +### Compare Visual Language Models (VLMs) +```sh +# Export FP16 model to OpenVINO +optimum-cli export openvino -m llava-hf/llava-v1.6-mistral-7b-hf --weight-format int8 llava-int8 +# Collect the references and save the mappling in the .csv file. +# Reference images will be stored in the "reference" subfolder under the same path with .csv. +wwb --base-model llava-hf/llava-v1.6-mistral-7b-hf --gt-data llava_test/gt.csv --model-type visual-text --hf # Compute the metric -# Target images will be stored in the "target" subfolder under the same path with .json. -wwb --target-model sd-lcm-int8 --gt-data lcm_test/sd_xl.json --model-type text-to-image +# Target images will be stored in the "target" subfolder under the same path with .csv. +wwb --target-model llava-int8 --gt-data llava_test/gt.csv --model-type visual-text --genai ``` ### API From d490c18aabe6c9491fab6d6601948e91f10d6fc3 Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Mon, 25 Nov 2024 10:38:04 +0300 Subject: [PATCH 011/113] [WWB]: Added ability to compare results for previously collected outputs w/o models provided (#1238) - Compare outputs collected from the previous runs - Kept only "similarity" metric by default as the only one that is used in CI Example: ```shell optimum-cli export openvino -m Qwen/Qwen2-0.5B-Instruct --weight-format fp16 models/Qwen2-0.5B-Instruct-fp16 mkdir qwen2_N_FP16 # References from NAT FP16 wwb --base-model Qwen/Qwen2-0.5B-Instruct --gt-data qwen2_N_FP16/gt.csv --hf --num-samples 4 # Compare N_O_FP16, save Optimum data for references wwb --target-model models/Qwen2-0.5B-Instruct-fp16 --gt-data qwen2_N_FP16/gt.csv --output qwen2_N_O_FP16 --num-samples 4 # Compare N_G_FP16, save GenAI data for references wwb --target-model models/Qwen2-0.5B-Instruct-fp16 --gt-data qwen2_N_FP16/gt.csv --genai --output qwen2_N_G_FP16 --num-samples 4 # Compare O_G_FP16, use pre-generated grout truth and target data from the previous runs wwb --target-data qwen2_N_G_FP16/target.csv --gt-data qwen2_N_O_FP16/target.csv --genai --output qwen2_O_G_FP16 --num-samples 4 # The same for INT8 optimum-cli export openvino -m Qwen/Qwen2-0.5B-Instruct --weight-format int8 models/Qwen2-0.5B-Instruct-int8 # Compare N_G_INT8, save GenAI data for references wwb --target-model models/Qwen2-0.5B-Instruct-int8 --gt-data qwen2_N_FP16/gt.csv --genai --output qwen2_N_G_INT8 --num-samples 4 ``` --- .../tests/test_cli_image.py | 166 ++++++++++-------- .../who_what_benchmark/tests/test_cli_text.py | 128 ++++++++------ .../who_what_benchmark/tests/test_cli_vlm.py | 142 ++++++++------- .../whowhatbench/registry.py | 2 +- .../whowhatbench/text2image_evaluator.py | 14 +- .../whowhatbench/text_evaluator.py | 10 +- .../whowhatbench/visualtext_evaluator.py | 8 +- tools/who_what_benchmark/whowhatbench/wwb.py | 59 ++++--- 8 files changed, 298 insertions(+), 231 deletions(-) diff --git a/tools/who_what_benchmark/tests/test_cli_image.py b/tools/who_what_benchmark/tests/test_cli_image.py index 374df2a1ec..b2c2015f80 100644 --- a/tools/who_what_benchmark/tests/test_cli_image.py +++ b/tools/who_what_benchmark/tests/test_cli_image.py @@ -14,7 +14,6 @@ def run_wwb(args): logger.info(" ".join(["TRANSFOREMRS_VERBOSITY=debug wwb"] + args)) result = subprocess.run(["wwb"] + args, capture_output=True, text=True) logger.info(result) - print(" ".join(["TRANSFOREMRS_VERBOSITY=debug wwb"] + args)) return result @@ -27,7 +26,7 @@ def run_wwb(args): ], ) def test_image_model_types(model_id, model_type, backend): - GT_FILE = "test_sd.json" + GT_FILE = "test_sd.csv" wwb_args = [ "--base-model", model_id, @@ -70,79 +69,94 @@ def test_image_model_types(model_id, model_type, backend): ], ) def test_image_model_genai(model_id, model_type): - GT_FILE = "test_sd.json" - MODEL_PATH = tempfile.TemporaryDirectory().name - - result = subprocess.run(["optimum-cli", "export", - "openvino", "-m", model_id, - MODEL_PATH], capture_output=True, text=True) - assert result.returncode == 0 - - wwb_args = [ - "--base-model", - MODEL_PATH, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - ] - result = run_wwb(wwb_args) - assert result.returncode == 0 - assert os.path.exists(GT_FILE) - assert os.path.exists("reference") - - wwb_args = [ - "--target-model", - MODEL_PATH, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - "--genai", - ] - result = run_wwb(wwb_args) - - assert result.returncode == 0 - assert "Metrics for model" in result.stderr - similarity = float(str(result.stderr).split(" ")[-1]) - assert similarity >= 0.98 - assert os.path.exists("target") - - output_dir = tempfile.TemporaryDirectory().name - wwb_args = [ - "--target-model", - MODEL_PATH, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - "--output", - output_dir, - ] - result = run_wwb(wwb_args) - assert os.path.exists(os.path.join(output_dir, "target")) - assert os.path.exists(os.path.join(output_dir, "target.json")) - - try: - os.remove(GT_FILE) - except OSError: - pass - shutil.rmtree("reference", ignore_errors=True) - shutil.rmtree("target", ignore_errors=True) - shutil.rmtree(MODEL_PATH, ignore_errors=True) - shutil.rmtree(output_dir, ignore_errors=True) + with tempfile.TemporaryDirectory() as temp_dir: + GT_FILE = os.path.join(temp_dir, "gt.csv") + MODEL_PATH = os.path.join(temp_dir, model_id.replace("/", "--")) + + result = subprocess.run(["optimum-cli", "export", + "openvino", "-m", model_id, + MODEL_PATH], + capture_output=True, text=True) + assert result.returncode == 0 + + wwb_args = [ + "--base-model", + MODEL_PATH, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 + assert os.path.exists(GT_FILE) + assert os.path.exists(os.path.join(temp_dir, "reference")) + + wwb_args = [ + "--target-model", + MODEL_PATH, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + "--genai", + ] + result = run_wwb(wwb_args) + + assert result.returncode == 0 + assert "Metrics for model" in result.stderr + similarity = float(str(result.stderr).split(" ")[-1]) + assert similarity >= 0.98 + assert os.path.exists(os.path.join(temp_dir, "target")) + + output_dir = tempfile.TemporaryDirectory().name + wwb_args = [ + "--target-model", + MODEL_PATH, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + "--output", + output_dir, + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 + assert os.path.exists(os.path.join(output_dir, "target")) + assert os.path.exists(os.path.join(output_dir, "target.csv")) + + # test w/o models + wwb_args = [ + "--target-data", + os.path.join(output_dir, "target.csv"), + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 + + shutil.rmtree("reference", ignore_errors=True) + shutil.rmtree("target", ignore_errors=True) + shutil.rmtree(MODEL_PATH, ignore_errors=True) + shutil.rmtree(output_dir, ignore_errors=True) @pytest.mark.parametrize( @@ -152,7 +166,7 @@ def test_image_model_genai(model_id, model_type): ], ) def test_image_custom_dataset(model_id, model_type, backend): - GT_FILE = "test_sd.json" + GT_FILE = "test_sd.csv" wwb_args = [ "--base-model", model_id, diff --git a/tools/who_what_benchmark/tests/test_cli_text.py b/tools/who_what_benchmark/tests/test_cli_text.py index cf71adc08a..0baf60a5a4 100644 --- a/tools/who_what_benchmark/tests/test_cli_text.py +++ b/tools/who_what_benchmark/tests/test_cli_text.py @@ -73,29 +73,28 @@ def test_text_target_model(): @pytest.fixture def test_text_gt_data(): - with tempfile.NamedTemporaryFile(suffix=".csv") as tmpfile: - temp_file_name = tmpfile.name + with tempfile.TemporaryDirectory() as temp_dir: + temp_file_name = os.path.join(temp_dir, "gt.csv") - result = run_wwb( - [ - "--base-model", - base_model_path, - "--gt-data", - temp_file_name, - "--dataset", - "EleutherAI/lambada_openai,en", - "--dataset-field", - "text", - "--split", - "test", - "--num-samples", - "2", - "--device", - "CPU", - ] - ) - data = pd.read_csv(temp_file_name) - os.remove(temp_file_name) + result = run_wwb( + [ + "--base-model", + base_model_path, + "--gt-data", + temp_file_name, + "--dataset", + "EleutherAI/lambada_openai,en", + "--dataset-field", + "text", + "--split", + "test", + "--num-samples", + "2", + "--device", + "CPU", + ] + ) + data = pd.read_csv(temp_file_name) assert result.returncode == 0 assert len(data["questions"].values) == 2 @@ -107,6 +106,8 @@ def test_text_output_directory(): [ "--base-model", base_model_path, + "--gt-data", + os.path.join(temp_dir, "gt.csv"), "--target-model", target_model_path, "--num-samples", @@ -121,7 +122,23 @@ def test_text_output_directory(): assert "Metrics for model" in result.stderr assert os.path.exists(os.path.join(temp_dir, "metrics_per_qustion.csv")) assert os.path.exists(os.path.join(temp_dir, "metrics.csv")) - assert os.path.exists(os.path.join(temp_dir, "target.json")) + assert os.path.exists(os.path.join(temp_dir, "target.csv")) + + # test measurtement w/o models + result = run_wwb( + [ + "--gt-data", + os.path.join(temp_dir, "gt.csv"), + "--target-data", + os.path.join(temp_dir, "target.csv"), + "--num-samples", + "2", + "--device", + "CPU", + ] + ) + assert result.returncode == 0 + assert "Metrics for model" in result.stderr def test_text_verbose(): @@ -143,46 +160,43 @@ def test_text_verbose(): def test_text_language_autodetect(): - temp_file_name = tempfile.NamedTemporaryFile(suffix=".csv").name - - result = run_wwb( - [ - "--base-model", - "Qwen/Qwen2-0.5B", - "--gt-data", - temp_file_name, - "--num-samples", - "2", - "--device", - "CPU", - ] - ) - data = pd.read_csv(temp_file_name) - os.remove(temp_file_name) + with tempfile.TemporaryDirectory() as temp_dir: + temp_file_name = os.path.join(temp_dir, "gt.csv") + result = run_wwb( + [ + "--base-model", + "Qwen/Qwen2-0.5B", + "--gt-data", + temp_file_name, + "--num-samples", + "2", + "--device", + "CPU", + ] + ) + data = pd.read_csv(temp_file_name) assert result.returncode == 0 assert "马克" in data["prompts"].values[0] def test_text_hf_model(): - with tempfile.NamedTemporaryFile(suffix=".csv") as tmpfile: - temp_file_name = tmpfile.name - - result = run_wwb( - [ - "--base-model", - model_id, - "--gt-data", - temp_file_name, - "--num-samples", - "2", - "--device", - "CPU", - "--hf", - ] - ) - data = pd.read_csv(temp_file_name) - os.remove(temp_file_name) + with tempfile.TemporaryDirectory() as temp_dir: + temp_file_name = os.path.join(temp_dir, "gt.csv") + result = run_wwb( + [ + "--base-model", + model_id, + "--gt-data", + temp_file_name, + "--num-samples", + "2", + "--device", + "CPU", + "--hf", + ] + ) + data = pd.read_csv(temp_file_name) assert result.returncode == 0 assert len(data["prompts"].values) == 2 diff --git a/tools/who_what_benchmark/tests/test_cli_vlm.py b/tools/who_what_benchmark/tests/test_cli_vlm.py index d45283493e..5b33abf33c 100644 --- a/tools/who_what_benchmark/tests/test_cli_vlm.py +++ b/tools/who_what_benchmark/tests/test_cli_vlm.py @@ -24,70 +24,88 @@ def run_wwb(args): ], ) def test_vlm_basic(model_id, model_type): - GT_FILE = tempfile.NamedTemporaryFile(suffix=".json").name - MODEL_PATH = tempfile.TemporaryDirectory().name + with tempfile.TemporaryDirectory() as temp_dir: + GT_FILE = os.path.join(temp_dir, "gt.csv") + MODEL_PATH = os.path.join(temp_dir, model_id.replace("/", "--")) - result = subprocess.run(["optimum-cli", "export", - "openvino", "-m", model_id, - MODEL_PATH, "--task", - "image-text-to-text", - "--trust-remote-code"], - capture_output=True, - text=True, - ) - assert result.returncode == 0 + result = subprocess.run(["optimum-cli", "export", + "openvino", "-m", model_id, + MODEL_PATH, "--task", + "image-text-to-text", + "--trust-remote-code"], + capture_output=True, + text=True, + ) + assert result.returncode == 0 - wwb_args = [ - "--base-model", - model_id, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - "--hf", - ] - result = run_wwb(wwb_args) - assert result.returncode == 0 + # Collect reference with HF model + wwb_args = [ + "--base-model", + model_id, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + "--hf", + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 - wwb_args = [ - "--target-model", - MODEL_PATH, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - ] - result = run_wwb(wwb_args) - assert result.returncode == 0 + # test Optimum + wwb_args = [ + "--target-model", + MODEL_PATH, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 - wwb_args = [ - "--target-model", - MODEL_PATH, - "--num-samples", - "1", - "--gt-data", - GT_FILE, - "--device", - "CPU", - "--model-type", - model_type, - "--genai", - ] - result = run_wwb(wwb_args) - assert result.returncode == 0 + # test GenAI + wwb_args = [ + "--target-model", + MODEL_PATH, + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + "--genai", + "--output", + "target", + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 - try: - os.remove(GT_FILE) - except OSError: - pass - shutil.rmtree("reference", ignore_errors=True) - shutil.rmtree("target", ignore_errors=True) - shutil.rmtree(MODEL_PATH, ignore_errors=True) + # test w/o models + wwb_args = [ + "--target-data", + "target/target.csv", + "--num-samples", + "1", + "--gt-data", + GT_FILE, + "--device", + "CPU", + "--model-type", + model_type, + "--genai", + ] + result = run_wwb(wwb_args) + assert result.returncode == 0 + shutil.rmtree("reference", ignore_errors=True) + shutil.rmtree("target", ignore_errors=True) + shutil.rmtree(MODEL_PATH, ignore_errors=True) diff --git a/tools/who_what_benchmark/whowhatbench/registry.py b/tools/who_what_benchmark/whowhatbench/registry.py index 85fabf618e..0cfbf8e440 100644 --- a/tools/who_what_benchmark/whowhatbench/registry.py +++ b/tools/who_what_benchmark/whowhatbench/registry.py @@ -29,7 +29,7 @@ def dump_predictions(self, csv_name: str): pass @abstractmethod - def score(self, model, **kwargs): + def score(self, model_or_data, **kwargs): pass @abstractmethod diff --git a/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py b/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py index 2663414917..1ff7ff5e21 100644 --- a/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py +++ b/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py @@ -84,15 +84,19 @@ def __init__( def get_generation_fn(self): return self.generation_fn - def score(self, model, gen_image_fn=None, output_dir=None, **kwargs): - model.resolution = self.resolution + def score(self, model_or_data, gen_image_fn=None, output_dir=None, **kwargs): if output_dir is None: image_folder = os.path.join(self.gt_dir, "target") else: image_folder = os.path.join(output_dir, "target") - predictions = self._generate_data( - model, gen_image_fn, image_folder - ) + + if isinstance(model_or_data, str) and os.path.exists(model_or_data): + predictions = pd.read_csv(model_or_data, keep_default_na=False) + else: + model_or_data.resolution = self.resolution + predictions = self._generate_data( + model_or_data, gen_image_fn, image_folder + ) self.predictions = predictions all_metrics_per_prompt = {} diff --git a/tools/who_what_benchmark/whowhatbench/text_evaluator.py b/tools/who_what_benchmark/whowhatbench/text_evaluator.py index eb89083496..50ce224def 100644 --- a/tools/who_what_benchmark/whowhatbench/text_evaluator.py +++ b/tools/who_what_benchmark/whowhatbench/text_evaluator.py @@ -1,5 +1,6 @@ from typing import Any, Union +import os import pandas as pd from tqdm import tqdm @@ -97,7 +98,7 @@ def __init__( tokenizer: Any = None, gt_data: str = None, test_data: Union[str, list] = None, - metrics=("similarity", "divergency"), + metrics="similarity", similarity_model_id: str = "sentence-transformers/all-mpnet-base-v2", max_new_tokens=128, crop_question=True, @@ -155,8 +156,11 @@ def __init__( def get_generation_fn(self): return self.generation_fn - def score(self, model, gen_answer_fn=None, **kwargs): - predictions = self._generate_data(model, gen_answer_fn, self.generation_config) + def score(self, model_or_data, gen_answer_fn=None, **kwargs): + if isinstance(model_or_data, str) and os.path.exists(model_or_data): + predictions = pd.read_csv(model_or_data, keep_default_na=False) + else: + predictions = self._generate_data(model_or_data, gen_answer_fn, self.generation_config) self.predictions = predictions all_metrics_per_prompt = {} diff --git a/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py b/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py index ef10bdafcf..99027971d8 100644 --- a/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py +++ b/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py @@ -1,5 +1,6 @@ from typing import Any, Union +import os import datasets import pandas as pd from diffusers.utils.loading_utils import load_image @@ -64,8 +65,11 @@ def __init__( seqs_per_request=seqs_per_request, ) - def score(self, model, gen_answer_fn=None, **kwargs): - predictions = self._generate_data(model, gen_answer_fn) + def score(self, model_or_data, gen_answer_fn=None, **kwargs): + if isinstance(model_or_data, str) and os.path.exists(model_or_data): + predictions = pd.read_csv(model_or_data, keep_default_na=False) + else: + predictions = self._generate_data(model_or_data, gen_answer_fn, self.generation_config) self.predictions = predictions all_metrics_per_prompt = {} diff --git a/tools/who_what_benchmark/whowhatbench/wwb.py b/tools/who_what_benchmark/whowhatbench/wwb.py index f3c5f8224a..0a01a8e8df 100644 --- a/tools/who_what_benchmark/whowhatbench/wwb.py +++ b/tools/who_what_benchmark/whowhatbench/wwb.py @@ -271,12 +271,17 @@ def parse_args(): default=None, help="Tokenizer for divergency metric. If not provided, it will be load from base_model or target_model.", ) - parser.add_argument( "--gt-data", default=None, - help="CSV file containing GT outputs from base_model. If defined and exists then base_model will not used." - " If the files does not exist, it will be generated by base_model evaluation.", + help="CSV file containing GT outputs from --base-model. If defined and exists then --base-model will not used." + " If the files does not exist, it will be generated by --base-model evaluation.", + ) + parser.add_argument( + "--target-data", + default=None, + help="CSV file containing outputs from target model. If defined and exists then --target-model will not used." + " If the files does not exist, it will be generated by --target-model evaluation.", ) parser.add_argument( "--model-type", @@ -385,14 +390,11 @@ def parse_args(): def check_args(args): - if args.base_model is None and args.target_model is None: - raise ValueError( - "Wether --base-model or --target-model should be provided") if args.base_model is None and args.gt_data is None: raise ValueError("Wether --base-model or --gt-data should be provided") - if args.target_model is None and args.gt_data is None: + if args.target_model is None and args.gt_data is None and args.target_data: raise ValueError( - "Wether --target-model or --gt-data should be provided") + "Wether --target-model, --target-data or --gt-data should be provided") def load_tokenizer(args): @@ -405,7 +407,7 @@ def load_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.base_model, trust_remote_code=True ) - else: + elif args.target_model is not None: tokenizer = AutoTokenizer.from_pretrained( args.target_model, trust_remote_code=True ) @@ -419,7 +421,7 @@ def load_processor(args): processor = AutoProcessor.from_pretrained( args.base_model, trust_remote_code=True ) - else: + elif args.target_model is not None: processor = AutoProcessor.from_pretrained( args.target_model, trust_remote_code=True ) @@ -611,20 +613,27 @@ def main(): evaluator.dump_gt(args.gt_data) del base_model - if args.target_model: - target_model = load_model( - args.model_type, - args.target_model, - args.device, - args.ov_config, - args.hf, - args.genai, - ) - all_metrics_per_question, all_metrics = evaluator.score( - target_model, - evaluator.get_generation_fn() if args.genai else None, - output_dir=args.output - ) + if args.target_data or args.target_model: + if args.target_data and os.path.exists(args.target_data): + all_metrics_per_question, all_metrics = evaluator.score( + args.target_data, + None, + output_dir=args.output + ) + else: + target_model = load_model( + args.model_type, + args.target_model, + args.device, + args.ov_config, + args.hf, + args.genai, + ) + all_metrics_per_question, all_metrics = evaluator.score( + target_model, + evaluator.get_generation_fn() if args.genai else None, + output_dir=args.output + ) logger.info("Metrics for model: %s", args.target_model) logger.info(all_metrics) @@ -635,7 +644,7 @@ def main(): df.to_csv(os.path.join(args.output, "metrics_per_qustion.csv")) df = pd.DataFrame(all_metrics) df.to_csv(os.path.join(args.output, "metrics.csv")) - evaluator.dump_predictions(os.path.join(args.output, "target.json")) + evaluator.dump_predictions(os.path.join(args.output, "target.csv")) if args.verbose and args.target_model is not None: if args.model_type == "text" or args.model_type == "visual-text": From 43caa0b1352e8508b91ac658c143231fe16ead9c Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Mon, 25 Nov 2024 13:32:29 +0400 Subject: [PATCH 012/113] use genai callback in image gen and switch to genai by default (#1249) CVS-157814 --- .github/workflows/llm_bench-python.yml | 18 ++--- tools/llm_bench/README.md | 5 +- tools/llm_bench/benchmark.py | 3 +- .../llm_bench/llm_bench_utils/config_class.py | 15 ++-- .../llm_bench_utils/metrics_print.py | 17 +++-- .../llm_bench/llm_bench_utils/model_utils.py | 15 +++- tools/llm_bench/llm_bench_utils/ov_utils.py | 69 ++++++++++++++++--- tools/llm_bench/task/image_generation.py | 14 ++-- 8 files changed, 108 insertions(+), 48 deletions(-) diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 0ac47d1aa0..77f26d33a0 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -66,28 +66,28 @@ jobs: python ./tools/llm_bench/benchmark.py -m tiny-random-qwen -d cpu -n 1 -f pt env: GIT_LFS_SKIP_SMUDGE: 0 - - name: Test tiny-random-baichuan2 on Linux + - name: Test tiny-random-baichuan2 on Linux Optimum Intel run: | optimum-cli export openvino --model katuni4ka/tiny-random-baichuan2 --trust-remote-code --weight-format fp16 ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16 - python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 - - name: Test tiny-stable-diffusion on Linux + python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 --optimum + - name: Test tiny-stable-diffusion on Linux Optimum Intel run: | optimum-cli export openvino --model segmind/tiny-sd --trust-remote-code --weight-format fp16 ./ov_models/tiny-sd/pytorch/dldt/FP16/ - python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-sd/pytorch/dldt/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 + python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-sd/pytorch/dldt/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --optimum - name: Test dreamlike-anime on Linux with GenAI run: | optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 ov_models/dreamlike-art-dreamlike-anime-1.0/FP16 - python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --genai + python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 - name: Test dreamlike-anime on Linux with GenAI and LoRA run: | wget -O ./ov_models/soulcard.safetensors https://civitai.com/api/download/models/72591 - python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --genai --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7 + python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7 - name: Test TinyLlama-1.1B-Chat-v1.0 in Speculative Deconding mode on Linux run: | optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format fp16 ov_models/TinyLlama-1.1B-Chat-v1.0/FP16 optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format int8 ov_models/TinyLlama-1.1B-Chat-v1.0/INT8 - python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --genai --assistant_confidence_threshold 0.4 - python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --genai --num_assistant_tokens 5 + python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --assistant_confidence_threshold 0.4 + python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --num_assistant_tokens 5 - name: Test whisper-tiny on Linux run: | GIT_LFS_SKIP_SMUDGE=1 git clone --depth 1 --branch main --single-branch https://huggingface.co/datasets/facebook/multilingual_librispeech @@ -97,8 +97,8 @@ jobs: tar zxvf data/mls_polish/train/audio/3283_1447_000.tar.gz -C data/mls_polish/train/audio/3283_1447_000/ cd .. optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ./ov_models/whisper-tiny + python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --optimum python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 - python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --genai - name: WWB Tests run: | GIT_CLONE_PROTECTION_ACTIVE=false pip install -r ${{ env.WWB_PATH }}/requirements.txt diff --git a/tools/llm_bench/README.md b/tools/llm_bench/README.md index d3f643b58f..87f6e91271 100755 --- a/tools/llm_bench/README.md +++ b/tools/llm_bench/README.md @@ -161,11 +161,10 @@ For example, `--load_config config.json` as following will result in streams.num ## 6. Execution on CPU device -OpenVINO is by default built with [oneTBB](https://github.com/oneapi-src/oneTBB/) threading library, while Torch uses [OpenMP](https://www.openmp.org/). Both threading libraries have ['busy-wait spin'](https://gcc.gnu.org/onlinedocs/libgomp/GOMP_005fSPINCOUNT.html) by default. When running LLM pipeline on CPU device, there is threading overhead in the switching between inference on CPU with OpenVINO (oneTBB) and postprocessing (For example: greedy search or beam search) with Torch (OpenMP). +OpenVINO is by default built with [oneTBB](https://github.com/oneapi-src/oneTBB/) threading library, while Torch uses [OpenMP](https://www.openmp.org/). Both threading libraries have ['busy-wait spin'](https://gcc.gnu.org/onlinedocs/libgomp/GOMP_005fSPINCOUNT.html) by default. When running LLM pipeline on CPU device, there is threading overhead in the switching between inference on CPU with OpenVINO (oneTBB) and postprocessing (For example: greedy search or beam search) with Torch (OpenMP). The default benchmarking scenarion uses OpenVINO GenAI that implements own postprocessing api without additional dependencies. **Alternative solutions** -1. Use --genai option which uses OpenVINO genai API instead of optimum-intel API. In this case postprocessing is executed with OpenVINO genai API. -2. Without --genai option which uses optimum-intel API, set environment variable [OMP_WAIT_POLICY](https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fWAIT_005fPOLICY.html) to PASSIVE which will disable OpenMP 'busy-wait', and benchmark.py will limit the Torch thread number by default to avoid using CPU cores which is in 'busy-wait' by OpenVINO inference. Users can also set the number with --set_torch_thread option. +1. With --optimum option which uses optimum-intel API, set environment variable [OMP_WAIT_POLICY](https://gcc.gnu.org/onlinedocs/libgomp/OMP_005fWAIT_005fPOLICY.html) to PASSIVE which will disable OpenMP 'busy-wait', and benchmark.py will limit the Torch thread number by default to avoid using CPU cores which is in 'busy-wait' by OpenVINO inference. Users can also set the number with --set_torch_thread option. ## 7. Additional Resources diff --git a/tools/llm_bench/benchmark.py b/tools/llm_bench/benchmark.py index d652c8b48f..fe5068b009 100644 --- a/tools/llm_bench/benchmark.py +++ b/tools/llm_bench/benchmark.py @@ -130,7 +130,8 @@ def get_argprser(): ) parser.add_argument('-od', '--output_dir', help='Save the input text and generated text, images to files') llm_bench_utils.model_utils.add_stateful_model_arguments(parser) - parser.add_argument("--genai", action="store_true", help="Use OpenVINO GenAI optimized pipelines for benchmarking") + parser.add_argument("--genai", action="store_true", help="[DEPRECATED] Use OpenVINO GenAI optimized pipelines for benchmarking. Enabled by default") + parser.add_argument("--optimum", action="store_true", help="Use Optimum Intel pipelines for benchmarking") parser.add_argument( "--lora", nargs='*', diff --git a/tools/llm_bench/llm_bench_utils/config_class.py b/tools/llm_bench/llm_bench_utils/config_class.py index 2f6cd95664..12385d2879 100644 --- a/tools/llm_bench/llm_bench_utils/config_class.py +++ b/tools/llm_bench/llm_bench_utils/config_class.py @@ -7,9 +7,7 @@ from optimum.intel.openvino import ( OVModelForCausalLM, OVModelForSeq2SeqLM, - OVStableDiffusionPipeline, - OVLatentConsistencyModelPipeline, - OVStableDiffusionXLPipeline, + OVDiffusionPipeline, OVModelForSpeechSeq2Seq ) from llm_bench_utils.ov_model_classes import OVMPTModel, OVLDMSuperResolutionPipeline, OVChatGLMModel @@ -22,19 +20,14 @@ 'falcon': AutoTokenizer, } +IMAGE_GEN_CLS = OVDiffusionPipeline + OV_MODEL_CLASSES_MAPPING = { 'decoder': OVModelForCausalLM, 't5': OVModelForSeq2SeqLM, 'blenderbot': OVModelForSeq2SeqLM, 'falcon': OVModelForCausalLM, 'mpt': OVMPTModel, - 'stable-diffusion-xl': OVStableDiffusionXLPipeline, - 'sdxl': OVStableDiffusionXLPipeline, - 'lcm-sdxl': OVStableDiffusionXLPipeline, - 'ssd-': OVStableDiffusionXLPipeline, - 'lcm-ssd-': OVStableDiffusionXLPipeline, - 'stable_diffusion': OVStableDiffusionPipeline, - 'lcm': OVLatentConsistencyModelPipeline, 'replit': OVMPTModel, 'codet5': OVModelForSeq2SeqLM, 'codegen2': OVModelForCausalLM, @@ -57,7 +50,7 @@ } USE_CASES = { - 'image_gen': ['stable-diffusion-', 'ssd-', 'deepfloyd-if', 'tiny-sd', 'small-sd', 'lcm-', 'sdxl', 'dreamlike'], + 'image_gen': ['stable-diffusion-', 'ssd-', 'tiny-sd', 'small-sd', 'lcm-', 'sdxl', 'dreamlike', "flux"], 'speech2text': ['whisper'], 'image_cls': ['vit'], 'code_gen': ['replit', 'codegen2', 'codegen', 'codet5', "stable-code"], diff --git a/tools/llm_bench/llm_bench_utils/metrics_print.py b/tools/llm_bench/llm_bench_utils/metrics_print.py index de9d0126f8..73e83dc672 100644 --- a/tools/llm_bench/llm_bench_utils/metrics_print.py +++ b/tools/llm_bench/llm_bench_utils/metrics_print.py @@ -97,12 +97,17 @@ def print_stable_diffusion_infer_latency(iter_str, iter_data, stable_diffusion, prefix = f'[{iter_str}][P{prompt_idx}]' log.info(f"{prefix} First step of unet latency: {iter_data['first_token_latency']:.2f} ms/step, " f"other steps of unet latency: {iter_data['other_tokens_avg_latency']:.2f} ms/step",) - log.info(f"{prefix} Text encoder latency: {stable_diffusion.get_text_encoder_latency():.2f} ms/step, " - f"unet latency: {stable_diffusion.get_unet_latency():.2f} ms/step, " - f"vae decoder latency: {stable_diffusion.get_vae_decoder_latency():.2f} ms/step, " - f"text encoder step count: {stable_diffusion.get_text_encoder_step_count()}, " - f"unet step count: {stable_diffusion.get_unet_step_count()}, " - f"vae decoder step count: {stable_diffusion.get_vae_decoder_step_count()}",) + has_text_encoder_time = stable_diffusion.get_text_encoder_step_count() != -1 + log_str = ( + f"{prefix} Text encoder latency: {stable_diffusion.get_text_encoder_latency():.2f}" if has_text_encoder_time else f"{prefix} Text encoder latency: N/A " + f"unet latency: {stable_diffusion.get_unet_latency():.2f} ms/step, " + f"vae decoder latency: {stable_diffusion.get_vae_decoder_latency():.2f} ms/step, ") + if has_text_encoder_time: + log_str += f"text encoder step count: {stable_diffusion.get_text_encoder_step_count()}, " + log_str += ( + f"unet step count: {stable_diffusion.get_unet_step_count()}, " + f"vae decoder step count: {stable_diffusion.get_vae_decoder_step_count()}") + log.info(log_str) def print_ldm_unet_vqvae_infer_latency(iter_num, iter_data, tms=None, warm_up=False, prompt_idx=-1): diff --git a/tools/llm_bench/llm_bench_utils/model_utils.py b/tools/llm_bench/llm_bench_utils/model_utils.py index 6539bef232..f72557b6c5 100644 --- a/tools/llm_bench/llm_bench_utils/model_utils.py +++ b/tools/llm_bench/llm_bench_utils/model_utils.py @@ -95,6 +95,13 @@ def analyze_args(args): model_args['torch_compile_input_module'] = args.torch_compile_input_module model_args['media'] = args.media + optimum = args.optimum + + if optimum and args.genai: + raise RuntimeError("`--genai` and `--optimum` can not be selected in the same time") + model_args["optimum"] = optimum + model_args["genai"] = not optimum + has_torch_compile_options = any([args.torch_compile_options is not None, args.torch_compile_options is not None, args.torch_compile_dynamic]) if model_args["torch_compile_backend"] is None and has_torch_compile_options: log.warning("torch.compile configuration options provided, but backend is not selected, openvino backend will be used") @@ -102,7 +109,6 @@ def analyze_args(args): model_args['convert_tokenizer'] = args.convert_tokenizer model_args['subsequent'] = args.subsequent model_args['output_dir'] = args.output_dir - model_args['genai'] = args.genai model_args['lora'] = args.lora model_args['lora_alphas'] = args.lora_alphas model_args["use_cb"] = args.use_cb @@ -135,7 +141,7 @@ def analyze_args(args): model_args['model_type'] = get_model_type(model_name, use_case, model_framework) model_args['model_name'] = model_name - if (args.use_cb or args.draft_model) and not args.genai: + if (args.use_cb or args.draft_model) and optimum: raise RuntimeError("Continuous batching mode supported only via OpenVINO GenAI") cb_config = None if args.cb_config: @@ -169,6 +175,11 @@ def get_use_case(model_name_or_path): config = json.loads(config_file.read_text()) except Exception: config = None + if (Path(model_name_or_path) / "model_index.json").exists(): + diffusers_config = json.loads((Path(model_name_or_path) / "model_index.json").read_text()) + pipe_type = diffusers_config.get("_class_name") + if pipe_type in ["StableDiffusionPipeline", "StableDiffusionXLPipeline", "StableDiffusion3Pipeline", "FluxPipeline", "LatentConsistencyModelPipeline"]: + return "image_gen", pipe_type.replace("Pipeline", "") if config is not None: for case, model_ids in USE_CASES.items(): diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index cf0d0d831c..9ebd1363e3 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -11,7 +11,7 @@ import json import types from llm_bench_utils.hook_common import get_bench_hook -from llm_bench_utils.config_class import OV_MODEL_CLASSES_MAPPING, TOKENIZE_CLASSES_MAPPING, DEFAULT_MODEL_CLASSES +from llm_bench_utils.config_class import OV_MODEL_CLASSES_MAPPING, TOKENIZE_CLASSES_MAPPING, DEFAULT_MODEL_CLASSES, IMAGE_GEN_CLS import openvino.runtime.opset13 as opset from transformers import pipeline @@ -171,11 +171,13 @@ def create_text_gen_model(model_path, device, **kwargs): if not model_path_existed: raise RuntimeError(f'==Failure ==: model path:{model_path} does not exist') else: - if kwargs.get("genai", False) and is_genai_available(log_msg=True): + if kwargs.get("genai", True) and is_genai_available(log_msg=True): if model_class not in [OV_MODEL_CLASSES_MAPPING[default_model_type], OV_MODEL_CLASSES_MAPPING["mpt"], OV_MODEL_CLASSES_MAPPING["chatglm"]]: log.warning("OpenVINO GenAI based benchmarking is not available for {model_type}. Will be switched to default benchmarking") else: + log.info("Selected OpenVINO GenAI for benchmarking") return create_genai_text_gen_model(model_path, device, ov_config, **kwargs) + log.info("Selected Optimum Intel for benchmarking") remote_code = False try: model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=False) @@ -295,23 +297,23 @@ def convert_ov_tokenizer(tokenizer_path): def create_image_gen_model(model_path, device, **kwargs): - default_model_type = DEFAULT_MODEL_CLASSES[kwargs['use_case']] - model_type = kwargs.get('model_type', default_model_type) - model_class = OV_MODEL_CLASSES_MAPPING[model_type] + model_class = IMAGE_GEN_CLS model_path = Path(model_path) ov_config = kwargs['config'] if not Path(model_path).exists(): raise RuntimeError(f'==Failure ==: model path:{model_path} does not exist') else: - if kwargs.get("genai", False) and is_genai_available(log_msg=True): + if kwargs.get("genai", True) and is_genai_available(log_msg=True): + log.info("Selected OpenVINO GenAI for benchmarking") return create_genai_image_gen_model(model_path, device, ov_config, **kwargs) + log.info("Selected Optimum Intel for benchmarking") start = time.perf_counter() ov_model = model_class.from_pretrained(model_path, device=device, ov_config=ov_config) end = time.perf_counter() from_pretrained_time = end - start log.info(f'From pretrained time: {from_pretrained_time:.2f}s') - return ov_model, from_pretrained_time, False + return ov_model, from_pretrained_time, False, None def get_genai_clip_text_encoder(model_index_data, model_path, device, ov_config): @@ -350,6 +352,51 @@ def get_genai_unet_model(model_index_data, model_path, device, ov_config): def create_genai_image_gen_model(model_path, device, ov_config, **kwargs): import openvino_genai + class PerfCollector: + def __init__(self) -> types.NoneType: + self.iteration_time = [] + self.start_time = time.perf_counter() + self.duration = -1 + + def __call__(self, step, latents): + self.iteration_time.append(time.perf_counter() - self.start_time) + self.start_time = time.perf_counter() + return False + + def reset(self): + self.iteration_time = [] + self.start_time = time.perf_counter() + self.duration = -1 + + def get_1st_unet_latency(self): + return self.iteration_time[0] * 1000 if len(self.iteration_time) > 0 else 0 + + def get_2nd_unet_latency(self): + return sum(self.iteration_time[1:]) / (len(self.iteration_time) - 1) * 1000 if len(self.iteration_time) > 1 else 0 + + def get_unet_latency(self): + return (sum(self.iteration_time) / len(self.iteration_time)) * 1000 if len(self.iteration_time) > 0 else 0 + + def get_vae_decoder_latency(self): + if self.duration != -1: + vae_time = self.duration - sum(self.iteration_time) + return vae_time * 1000 + return 0 + + def get_text_encoder_latency(self): + return -1 + + def get_text_encoder_step_count(self): + return -1 + + def get_unet_step_count(self): + return len(self.iteration_time) + + def get_vae_decoder_step_count(self): + return 1 + + callback = PerfCollector() + adapter_config = get_lora_config(kwargs.get("lora", None), kwargs.get("lora_alphas", [])) if adapter_config: ov_config['adapters'] = adapter_config @@ -393,7 +440,7 @@ def create_genai_image_gen_model(model_path, device, ov_config, **kwargs): end = time.perf_counter() log.info(f'Pipeline initialization time: {end - start:.2f}s') - return t2i_pipe, end - start, True + return t2i_pipe, end - start, True, callback def create_ldm_super_resolution_model(model_path, device, **kwargs): @@ -414,7 +461,7 @@ def create_ldm_super_resolution_model(model_path, device, **kwargs): def create_genai_speech_2_txt_model(model_path, device, **kwargs): import openvino_genai as ov_genai - if kwargs.get("genai", False) is False: + if kwargs.get("genai", True) is False: raise RuntimeError('==Failure the command line does not set --genai ==') if is_genai_available(log_msg=True) is False: raise RuntimeError('==Failure genai is not enable ==') @@ -442,11 +489,13 @@ def create_speech_2txt_model(model_path, device, **kwargs): if not model_path_existed: raise RuntimeError(f'==Failure ==: model path:{model_path} does not exist') else: - if kwargs.get("genai", False) and is_genai_available(log_msg=True): + if kwargs.get("genai", True) and is_genai_available(log_msg=True): if model_class not in [OV_MODEL_CLASSES_MAPPING[default_model_type]]: log.warning("OpenVINO GenAI based benchmarking is not available for {model_type}. Will be switched to default bencmarking") else: + log.info("Selected OpenVINO GenAI for benchmarking") return create_genai_speech_2_txt_model(model_path, device, **kwargs) + log.info("Selected Optimum Intel for benchmarking") start = time.perf_counter() ov_model = model_class.from_pretrained( model_path, diff --git a/tools/llm_bench/task/image_generation.py b/tools/llm_bench/task/image_generation.py index b6260568bf..f227898ef6 100644 --- a/tools/llm_bench/task/image_generation.py +++ b/tools/llm_bench/task/image_generation.py @@ -41,7 +41,7 @@ def collects_input_args(image_param, model_type, model_name): return input_args -def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption): +def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption, callback=None): set_seed(args['seed']) input_text = image_param['prompt'] input_args = collects_input_args(image_param, args['model_type'], args['model_name']) @@ -104,7 +104,7 @@ def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, stable_diffusion_hook.clear_statistics() -def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption): +def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption, callback=None): set_seed(args['seed']) input_text = image_param['prompt'] input_args = collects_input_args(image_param, args['model_type'], args['model_name']) @@ -125,9 +125,11 @@ def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data if num == 0 and args["output_dir"] is not None: for bs_idx, in_text in enumerate(input_text_list): llm_bench_utils.output_file.output_image_input_text(in_text, args, image_id, bs_idx, proc_id) + callback.reset() start = time.perf_counter() - res = pipe.generate(input_text, **input_args).data + res = pipe.generate(input_text, **input_args, callback=callback).data end = time.perf_counter() + callback.duration = end - start if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: mem_consumption.end_collect_momory_consumption() max_rss_mem_consumption, max_shared_mem_consumption, max_uss_mem_consumption = mem_consumption.get_max_memory_consumption() @@ -155,7 +157,7 @@ def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, max_uss_mem=max_uss_mem_consumption, - stable_diffusion=None, + stable_diffusion=callback, prompt_idx=image_id ) metrics_print.print_generated(num, warm_up=(num == 0), generated=rslt_img_fn, prompt_idx=image_id) @@ -163,7 +165,7 @@ def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data def run_image_generation_benchmark(model_path, framework, device, args, num_iters, mem_consumption): - pipe, pretrain_time, use_genai = FW_UTILS[framework].create_image_gen_model(model_path, device, **args) + pipe, pretrain_time, use_genai, callback = FW_UTILS[framework].create_image_gen_model(model_path, device, **args) iter_data_list = [] input_image_list = get_image_prompt(args) if framework == "ov" and not use_genai: @@ -198,7 +200,7 @@ def run_image_generation_benchmark(model_path, framework, device, args, num_iter for image_id, image_param in enumerate(image_list): p_idx = prompt_idx_list[image_id] iter_timestamp[num][p_idx]['start'] = datetime.datetime.now().isoformat() - image_gen_fn(image_param, num, prompt_idx_list[image_id], pipe, args, iter_data_list, proc_id, mem_consumption) + image_gen_fn(image_param, num, prompt_idx_list[image_id], pipe, args, iter_data_list, proc_id, mem_consumption, callback) iter_timestamp[num][p_idx]['end'] = datetime.datetime.now().isoformat() prefix = '[warm-up]' if num == 0 else '[{}]'.format(num) log.info(f"{prefix}[P{p_idx}] start: {iter_timestamp[num][p_idx]['start']}, end: {iter_timestamp[num][p_idx]['end']}") From 21037497e6958c7df020131d77984a953a4beb08 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Mon, 25 Nov 2024 12:09:04 +0100 Subject: [PATCH 013/113] align with the openvino_tokenizers --- src/cpp/include/openvino/genai/tokenizer.hpp | 6 +++--- src/cpp/src/make_tokenizer_stateful.cpp | 13 +++++++++---- src/cpp/src/tokenizer.cpp | 5 ++--- src/python/py_tokenizer.cpp | 6 +++--- 4 files changed, 17 insertions(+), 13 deletions(-) diff --git a/src/cpp/include/openvino/genai/tokenizer.hpp b/src/cpp/include/openvino/genai/tokenizer.hpp index 8d2d63ea80..36f63d2b5e 100644 --- a/src/cpp/include/openvino/genai/tokenizer.hpp +++ b/src/cpp/include/openvino/genai/tokenizer.hpp @@ -87,7 +87,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode sequence of tokens * @param tokens vector storing tokens - * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} + * @param detokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return sequence string */ std::string decode(std::vector tokens, const ov::AnyMap& detokenization_params = {}); @@ -106,7 +106,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief decode tokens. * @param tokens ov::Tensor with tokens with shape [batch_size, seq_len] - * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} + * @param detokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return vector of std::string, with size = batch_size */ std::vector decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params = {}); @@ -125,7 +125,7 @@ class OPENVINO_GENAI_EXPORTS Tokenizer { /** * @brief batched decoding of tokens. * @param tokens vector of vectors with tokens, tokens.size() is equal to batch_size - * @param tokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} + * @param detokenization_params AnyMap with detokenization parameters, e.g. {"skip_special_tokens", false} * @return vector of std::string, with size equal to batch_size */ std::vector decode(std::vector> tokens, const ov::AnyMap& detokenization_params = {}); diff --git a/src/cpp/src/make_tokenizer_stateful.cpp b/src/cpp/src/make_tokenizer_stateful.cpp index 3551e713c9..4685b0e715 100644 --- a/src/cpp/src/make_tokenizer_stateful.cpp +++ b/src/cpp/src/make_tokenizer_stateful.cpp @@ -60,7 +60,8 @@ bool ov::genai::MakeVocabDecoderSatateful::run_on_model(const std::shared_ptr skip_tokens_const = std::dynamic_pointer_cast(vocab_decoder_node->get_input_node_shared_ptr(4)); - if (!skip_tokens_const) + std::shared_ptr skip_tokens_slice = std::dynamic_pointer_cast(vocab_decoder_node->get_input_node_shared_ptr(4)); + if (!skip_tokens_const && !skip_tokens_slice) return false; auto start_const = std::make_shared(ov::element::i32, ov::Shape{1}, std::vector{0}); @@ -74,10 +75,14 @@ bool ov::genai::MakeVocabDecoderSatateful::run_on_model(const std::shared_ptr(int_max_const, read_value); - std::shared_ptr slice_node = std::make_shared(skip_tokens_const, start_const, stop, one_const); + // If already has slice just replace the stop input. + if (skip_tokens_slice) { + skip_tokens_slice->input(2).replace_source_output(stop); + } else { + std::shared_ptr slice_node = std::make_shared(skip_tokens_const, start_const, stop, one_const); + vocab_decoder_node->input(4).replace_source_output(slice_node->output(0)); + } - vocab_decoder_node->input(4).replace_source_output(slice_node->output(0)); - auto assign = std::make_shared(read_value, variable); model->add_sinks({assign}); model->add_variables({variable}); diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index fc6ba75d90..d0a472a40f 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -74,7 +74,7 @@ class Tokenizer::TokenizerImpl { // To change the adding special tokens mode we use a statefull subgraph, // this flag holds the current state value of the CompiledModel. bool m_add_special_tokens = true; - bool m_skip_special_tokens = false; + bool m_skip_special_tokens = true; bool m_older_than_24_5 = false; int64_t m_pad_token_id = -1; @@ -89,7 +89,7 @@ class Tokenizer::TokenizerImpl { void set_state_if_necessary(CircularBufferQueueElementGuard& infer_request_guard, const ov::AnyMap& params) { bool add_special_tokens_flag = true; - bool skip_special_tokens_flag = false; + bool skip_special_tokens_flag = true; ov::genai::utils::read_anymap_param(params, add_special_tokens.name(), add_special_tokens_flag); ov::genai::utils::read_anymap_param(params, skip_special_tokens.name(), skip_special_tokens_flag); @@ -164,7 +164,6 @@ class Tokenizer::TokenizerImpl { m_detokenizer = core.compile_model(ov_detokenizer, device, properties); } - const size_t INFER_REQUEST_QUEUE_SIZE = m_tokenizer.get_property(ov::optimal_number_of_infer_requests); m_ireq_queue_tokenizer = std::make_unique>( INFER_REQUEST_QUEUE_SIZE, diff --git a/src/python/py_tokenizer.cpp b/src/python/py_tokenizer.cpp index dae2ffe775..db4643a65c 100644 --- a/src/python/py_tokenizer.cpp +++ b/src/python/py_tokenizer.cpp @@ -68,7 +68,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = false, + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode a sequence into a string prompt.)" ) @@ -79,7 +79,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = false, + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode tensor into a list of string prompts.)") .def( @@ -89,7 +89,7 @@ void init_tokenizer(py::module_& m) { detokenization_params[ov::genai::skip_special_tokens.name()] = skip_special_tokens; return pyutils::handle_utf8(tok.decode(tokens, detokenization_params)); }, - py::arg("tokens"), py::arg("skip_special_tokens") = false, + py::arg("tokens"), py::arg("skip_special_tokens") = true, R"(Decode a batch of tokens into a list of string prompt.)") .def("apply_chat_template", [](Tokenizer& tok, From d26233b172d60063e50257058513a560e8e591b1 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Mon, 25 Nov 2024 12:56:37 +0100 Subject: [PATCH 014/113] update signature --- src/python/openvino_genai/py_openvino_genai.pyi | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index df290a9744..5e4d2dd7b2 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1303,17 +1303,17 @@ class Tokenizer: Embeds input prompts with special tags for a chat scenario. """ @typing.overload - def decode(self, tokens: list[int]) -> str: + def decode(self, tokens: list[int], skip_special_tokens: bool = True) -> str: """ Decode a sequence into a string prompt. """ @typing.overload - def decode(self, tokens: openvino._pyopenvino.Tensor) -> list[str]: + def decode(self, tokens: openvino._pyopenvino.Tensor, skip_special_tokens: bool = True) -> list[str]: """ Decode tensor into a list of string prompts. """ @typing.overload - def decode(self, tokens: list[list[int]]) -> list[str]: + def decode(self, tokens: list[list[int]], skip_special_tokens: bool = True) -> list[str]: """ Decode a batch of tokens into a list of string prompt. """ From 111bb5bb2afe5b6cc4b01ea935ed7af38c6075de Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Tue, 26 Nov 2024 10:45:37 +0100 Subject: [PATCH 015/113] add barier for AnyMap key names, apply review comments --- src/cpp/src/tokenizer.cpp | 30 ++++++++++++++++++++++-------- 1 file changed, 22 insertions(+), 8 deletions(-) diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index d0a472a40f..41f9a6abd4 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -55,6 +55,14 @@ ov::genai::TokenizedInputs pad_left(ov::Tensor& input_ids, ov::Tensor& attention return {input_ids, attention_mask}; } +void check_arguments(const ov::AnyMap& parameters, std::set allowed_argnames) { + for (const auto& [key, value] : parameters) { + if (allowed_argnames.find(key) == allowed_argnames.end()) { + OPENVINO_THROW("unacceptable parameter key: " + key); + } + } +} + constexpr char bos_token_key_name[] = "bos_token"; constexpr char eos_token_key_name[] = "eos_token"; constexpr char pad_token_key_name[] = "pad_token"; @@ -88,8 +96,8 @@ class Tokenizer::TokenizerImpl { std::string m_chat_template = {}; void set_state_if_necessary(CircularBufferQueueElementGuard& infer_request_guard, const ov::AnyMap& params) { - bool add_special_tokens_flag = true; - bool skip_special_tokens_flag = true; + bool add_special_tokens_flag = m_add_special_tokens; + bool skip_special_tokens_flag = m_skip_special_tokens; ov::genai::utils::read_anymap_param(params, add_special_tokens.name(), add_special_tokens_flag); ov::genai::utils::read_anymap_param(params, skip_special_tokens.name(), skip_special_tokens_flag); @@ -145,7 +153,7 @@ class Tokenizer::TokenizerImpl { auto device = "CPU"; // currently openvino_tokenizer supports only CPU auto ov_tokenizer = core.read_model(tokenizer_path / "openvino_tokenizer.xml"); - std::shared_ptr ov_detokenizer; + std::shared_ptr ov_detokenizer = nullptr; if (std::filesystem::exists(tokenizer_path / "openvino_detokenizer.xml")) { ov_detokenizer = core.read_model(tokenizer_path / "openvino_detokenizer.xml"); } @@ -155,12 +163,11 @@ class Tokenizer::TokenizerImpl { manager_tok.register_pass(); manager_tok.run_passes(ov_tokenizer); - ov::pass::Manager manager_detok; - manager_detok.register_pass(); - manager_detok.run_passes(ov_detokenizer); - m_tokenizer = core.compile_model(ov_tokenizer, device, properties); - if (std::filesystem::exists(tokenizer_path / "openvino_detokenizer.xml")) { + if (ov_detokenizer) { + ov::pass::Manager manager_detok; + manager_detok.register_pass(); + manager_detok.run_passes(ov_detokenizer); m_detokenizer = core.compile_model(ov_detokenizer, device, properties); } @@ -516,30 +523,37 @@ Tokenizer::Tokenizer(const std::filesystem::path& tokenizer_path, const ov::AnyM } TokenizedInputs Tokenizer::encode(const std::string prompt, const ov::AnyMap& tokenization_params) { + check_arguments(tokenization_params, {ov::genai::add_special_tokens.name()}); return m_pimpl->encode(std::move(prompt), tokenization_params); } TokenizedInputs Tokenizer::encode(std::vector& prompts, const ov::AnyMap& tokenization_params) { + check_arguments(tokenization_params, {ov::genai::add_special_tokens.name()}); return m_pimpl->encode(prompts, tokenization_params); } TokenizedInputs Tokenizer::encode(std::vector&& prompts, const ov::AnyMap& tokenization_params) { + check_arguments(tokenization_params, {ov::genai::add_special_tokens.name()}); return m_pimpl->encode(prompts, tokenization_params); } TokenizedInputs Tokenizer::encode(std::initializer_list& text, const ov::AnyMap& tokenization_params) { + check_arguments(tokenization_params, {ov::genai::add_special_tokens.name()}); return encode(std::vector(text.begin(), text.end()), tokenization_params); } std::string Tokenizer::decode(std::vector tokens, const ov::AnyMap& detokenization_params) { + check_arguments(detokenization_params, {ov::genai::skip_special_tokens.name()}); return m_pimpl->decode(tokens, detokenization_params); } std::vector Tokenizer::decode(ov::Tensor tokens, const ov::AnyMap& detokenization_params) { + check_arguments(detokenization_params, {ov::genai::skip_special_tokens.name()}); return m_pimpl->decode(tokens, detokenization_params); } std::vector Tokenizer::decode(std::vector> lines, const ov::AnyMap& detokenization_params) { + check_arguments(detokenization_params, {ov::genai::skip_special_tokens.name()}); return m_pimpl->decode(lines, detokenization_params); } From 3da2aebb6829856d25f391ae5f0e9d069cca6cd9 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Wed, 27 Nov 2024 00:04:10 +0400 Subject: [PATCH 016/113] [Build] Use officially released py-build-cmake version (#1253) --- pyproject.toml | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index c9d5dce207..de3e5b5a9e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,16 +3,31 @@ name = "openvino-genai" version = "2025.0.0.0" description = "Library of the most popular Generative AI model pipelines, optimized execution methods, and samples" requires-python = ">=3.9" -readme = {file = "src/README.md", content-type="text/markdown"} -license = {text = "OSI Approved :: Apache Software License"} +readme = { file = "src/README.md", content-type="text/markdown" } +license = { "file" = "LICENSE" } authors = [ { name = "OpenVINO Developers", email = "openvino@intel.com" }, ] classifiers = [ + "Development Status :: 5 - Production/Stable", + "License :: OSI Approved :: Apache Software License", + "Intended Audience :: Developers", + "Intended Audience :: Science/Research", + "Topic :: Scientific/Engineering :: Artificial Intelligence", + "Topic :: Software Development :: Libraries :: Python Modules", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3.13", + "Operating System :: Unix", + "Operating System :: POSIX :: Linux", + "Operating System :: Microsoft :: Windows", + "Operating System :: MacOS", + "Programming Language :: C++", + "Programming Language :: C", + "Programming Language :: Python :: 3 :: Only", + "Programming Language :: Python :: Implementation :: CPython" ] dependencies = [ "openvino_tokenizers~=2025.0.0.0.dev" @@ -36,7 +51,7 @@ options = {"BUILD_TOKENIZERS" = "OFF"} [build-system] requires = [ - "py-build-cmake@git+https://github.com/tttapa/py-build-cmake@7ab73da351c7140f06d727a8705bece4cf544cd9", + "py-build-cmake==0.3.0", "openvino~=2025.0.0.0.dev", "pybind11-stubgen==2.5.1", "cmake~=3.23.0" From fa1e95e965f915b0a1dab3b548967329f87925eb Mon Sep 17 00:00:00 2001 From: Dmitry Matveev Date: Wed, 27 Nov 2024 16:08:54 +0000 Subject: [PATCH 017/113] NPUW Deref: Baseline - don't hold pointers to the orig models (#1259) --- src/cpp/src/llm_pipeline_static.cpp | 32 ++++++++++++++--------------- src/cpp/src/llm_pipeline_static.hpp | 4 ---- 2 files changed, 16 insertions(+), 20 deletions(-) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 2beb7d64be..597b5f69ac 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -675,45 +675,45 @@ void StaticLLMPipeline::setupAndCompileModels( // NB: Get information about NPU if available auto npudesc = extract_npu_descriptor(core); // (1) Read the template model - this will be kvcache model - m_kvcache_model = core.read_model((models_path / "openvino_model.xml").string()); + auto kvcache_model = core.read_model((models_path / "openvino_model.xml").string()); // (2) Expose KV-cache input and output layers from kvcache model - ov::pass::StatefulToStateless().run_on_model(m_kvcache_model); + ov::pass::StatefulToStateless().run_on_model(kvcache_model); // (3) Align u4 ZP constants - align_u4_zp_constants(m_kvcache_model); + align_u4_zp_constants(kvcache_model); // (4) Clone the model - this will be prefill - m_prefill_model = m_kvcache_model->clone(); - m_prefill_model->set_friendly_name(m_kvcache_model->get_friendly_name() + "_prefill"); + auto prefill_model = kvcache_model->clone(); + prefill_model->set_friendly_name(kvcache_model->get_friendly_name() + "_prefill"); // (5) Reshape both models to static shape const uint32_t kMaxPromptLen = align_to(pop_int_and_cast(properties, "MAX_PROMPT_LEN").value_or(1024u), 64u); const uint32_t kMinResponseLen = align_to(pop_int_and_cast(properties, "MIN_RESPONSE_LEN").value_or(128u), 64u); ModelDesc model_desc = get_modeldesc_from_json(models_path / "config.json"); KVAxesPosition axes = get_kv_axes(model_desc.type); m_kvcache_desc = KVCacheDesc { kMaxPromptLen, kMaxPromptLen + kMinResponseLen, 0u, axes.seq_len, false}; - reshape_to_static(m_prefill_model, m_kvcache_desc.max_prompt_size, m_kvcache_desc.max_prompt_size, axes); - reshape_to_static(m_kvcache_model, 1u, m_kvcache_desc.total_size, axes); + reshape_to_static(prefill_model, m_kvcache_desc.max_prompt_size, m_kvcache_desc.max_prompt_size, axes); + reshape_to_static(kvcache_model, 1u, m_kvcache_desc.total_size, axes); // (6) Apply opt layout if applicable // NB: Try to apply opt transpose only for Llama-2-7b-chat-hf model if ( model_desc.name_or_path == "meta-llama/Llama-2-7b-chat-hf" || (model_desc.type == "llama" && model_desc.num_key_value_heads == 32)) { - if (optimize_value_tensors(m_kvcache_model)) { + if (optimize_value_tensors(kvcache_model)) { // NB: Check if TransposeValueTensors transformation was applied m_kvcache_desc.v_tensors_transposed = true; - m_prefill_model = cvt_value_tensors_layout(m_prefill_model); + prefill_model = cvt_value_tensors_layout(prefill_model); } } // (7) Replace KV-cache tensors for the entire cache to tensors only for new token (before concat) - m_kvcache_model = redirect_new_kv_to_output(m_kvcache_model); + kvcache_model = redirect_new_kv_to_output(kvcache_model); // (8) Convert kvcache tensors to fp16 precision - m_kvcache_model = cvt_kvcache_to_fp16(m_kvcache_model); - m_prefill_model = cvt_kvcache_to_fp16(m_prefill_model); + kvcache_model = cvt_kvcache_to_fp16(kvcache_model); + prefill_model = cvt_kvcache_to_fp16(prefill_model); // (9) Compile both model auto prefill_config = pop_or_default( - properties, "PREFILL_CONFIG", get_default_prefill_config(m_prefill_model, npudesc) + properties, "PREFILL_CONFIG", get_default_prefill_config(prefill_model, npudesc) ); // NB: GENERATE_HINT is only applicable for default generate config! auto generate_hint = str_to_hint(pop_or_default(properties, "GENERATE_HINT", "FAST_COMPILE")); auto generate_config = pop_or_default( - properties, "GENERATE_CONFIG", get_default_generate_config(m_kvcache_model, npudesc, generate_hint) + properties, "GENERATE_CONFIG", get_default_generate_config(kvcache_model, npudesc, generate_hint) ); merge_config_with(prefill_config, properties); merge_config_with(generate_config, properties); @@ -722,10 +722,10 @@ void StaticLLMPipeline::setupAndCompileModels( drop_cache_dir(generate_config); m_kvcache_request = core.compile_model( - m_kvcache_model, device, generate_config + kvcache_model, device, generate_config ).create_infer_request(); m_prefill_request = core.compile_model( - m_prefill_model, device, prefill_config + prefill_model, device, prefill_config ).create_infer_request(); } diff --git a/src/cpp/src/llm_pipeline_static.hpp b/src/cpp/src/llm_pipeline_static.hpp index 2f9969f5d7..d8e59d867a 100644 --- a/src/cpp/src/llm_pipeline_static.hpp +++ b/src/cpp/src/llm_pipeline_static.hpp @@ -61,10 +61,6 @@ class StaticLLMPipeline final : public LLMPipelineImplBase { bool v_tensors_transposed; }; - // FIXME: Ideally, we don't need to keep those - std::shared_ptr m_kvcache_model; - std::shared_ptr m_prefill_model; - KVCacheDesc m_kvcache_desc; ov::InferRequest m_kvcache_request; ov::InferRequest m_prefill_request; From 86068a5377466045ecda18c2181495e83ddeb19f Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Thu, 28 Nov 2024 11:34:24 +0100 Subject: [PATCH 018/113] Text2Image SDXL fix for GPU (#1266) CVS-156801 --- .../image_generation/stable_diffusion_xl_pipeline.hpp | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp index e7c8c35ce3..3c9130898f 100644 --- a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp @@ -111,12 +111,19 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { OPENVINO_THROW("Unsupported '", unet, "' UNet type"); } + // Temporary fix for GPU + ov::AnyMap updated_roperties = properties; + if (device.find("GPU") != std::string::npos && + updated_roperties.find("INFERENCE_PRECISION_HINT") == updated_roperties.end()) { + updated_roperties["INFERENCE_PRECISION_HINT"] = ov::element::f32; + } + const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) - m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_decoder", device, updated_roperties); else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { - m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, updated_roperties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); } From 13f1b446b593843397f29fabf90f91c14791f204 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Thu, 28 Nov 2024 19:16:16 +0400 Subject: [PATCH 019/113] Try to drop --pre (#1269) - `--pre` is not required for OpenVINO wheels as `~=2025.0.0.0.dev` already ensures that pre-releases can be installed - `--pre` affects all other packages, which leads to installation of unstable versions and broken whisper CI https://github.com/openvinotoolkit/openvino.genai/actions/runs/12056078081/job/33618027551?pr=1267 --- .../actions/install_python_deps/action.yml | 4 +- .github/workflows/causal_lm_cpp.yml | 60 +++++++++---------- .github/workflows/lcm_dreamshaper_cpp.yml | 4 +- .github/workflows/linux.yml | 6 +- .github/workflows/mac.yml | 6 +- .../workflows/stable_diffusion_1_5_cpp.yml | 4 +- .github/workflows/windows.yml | 8 +-- samples/deployment-requirements.txt | 3 +- samples/export-requirements.txt | 3 +- src/README.md | 2 +- 10 files changed, 49 insertions(+), 51 deletions(-) diff --git a/.github/actions/install_python_deps/action.yml b/.github/actions/install_python_deps/action.yml index 8f269cc42e..3b42f5fd9b 100644 --- a/.github/actions/install_python_deps/action.yml +++ b/.github/actions/install_python_deps/action.yml @@ -11,5 +11,5 @@ runs: shell: bash run: | source ${{ inputs.ov_dir }}/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index c75ac3214c..ce3ac5f046 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -46,8 +46,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model openlm-research/open_llama_3b_v2 open_llama_3b_v2 optimum-cli export openvino -m TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T wget https://huggingface.co/smangrul/tinyllama_lora_sql/resolve/main/adapter_model.safetensors?download=true -O adapter_model.safetensors @@ -105,8 +105,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - name: Compare env: @@ -241,8 +241,8 @@ jobs: - name: Download and convert model run: | call .\ov\setupvars.bat - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 optimum-cli export openvino -m TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T curl -o adapter_model.safetensors -s -L https://huggingface.co/smangrul/tinyllama_lora_sql/resolve/main/adapter_model.safetensors?download=true @@ -299,8 +299,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model Qwen/Qwen-7B-Chat Qwen-7B-Chat - run: > . ./ov/setupvars.sh @@ -333,8 +333,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model Qwen/Qwen1.5-7B-Chat Qwen1.5-7B-Chat - run: > . ./ov/setupvars.sh @@ -368,8 +368,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model microsoft/phi-2 phi-2 - run: > . ./ov/setupvars.sh @@ -403,8 +403,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model argilla/notus-7b-v1 notus-7b-v1 - run: > . ./ov/setupvars.sh @@ -438,8 +438,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model databricks/dolly-v2-3b dolly-v2-3b optimum-cli export openvino --trust-remote-code --weight-format fp16 --model databricks/dolly-v2-7b dolly-v2-7b - name: run and compare @@ -488,8 +488,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 optimum-cli export openvino --trust-remote-code --weight-format fp16 --model Qwen/Qwen-7B-Chat Qwen-7B-Chat --task text-generation-with-past - name: run and compare @@ -560,8 +560,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model microsoft/phi-1_5 phi-1_5 - name: Run Generation run: | @@ -615,8 +615,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model ikala/redpajama-3b-chat redpajama-3b-chat - name: Run Generation run: | @@ -670,8 +670,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - name: Compare env: @@ -863,8 +863,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - name: Run gtests run: | @@ -909,8 +909,8 @@ jobs: - name: Download and convert and model run: | call .\ov\setupvars.bat - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - name: Run gtests run: | @@ -954,8 +954,8 @@ jobs: - name: Download and convert and model run: | source ./ov/setupvars.sh - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - name: Run gtests run: | diff --git a/.github/workflows/lcm_dreamshaper_cpp.yml b/.github/workflows/lcm_dreamshaper_cpp.yml index 6bd25cbdfe..233be9e5c0 100644 --- a/.github/workflows/lcm_dreamshaper_cpp.yml +++ b/.github/workflows/lcm_dreamshaper_cpp.yml @@ -59,7 +59,7 @@ jobs: - name: Install python dependencies run: | source openvino_lcm_cpp/bin/activate - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install -r ./samples/requirements.txt - name: Download and convert models and tokenizer @@ -119,7 +119,7 @@ jobs: - name: Install python dependencies run: | . "./openvino_lcm_cpp/Scripts/Activate.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install -r ./samples/requirements.txt - name: Download and convert models and tokenizer diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml index 3c3e0347e7..44e115423c 100644 --- a/.github/workflows/linux.yml +++ b/.github/workflows/linux.yml @@ -258,7 +258,7 @@ jobs: - name: Test bindings run: | source ${OV_INSTALL_DIR}/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_chat_generate_api.py::test_set_chat_template env: PYTHONPATH: "./build/:$PYTHONPATH" @@ -349,7 +349,7 @@ jobs: - name: Test bindings run: | source ${OV_INSTALL_DIR}/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k test_smoke env: PYTHONPATH: "./build/:$PYTHONPATH" @@ -437,7 +437,7 @@ jobs: run: | source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --find-links ${OV_INSTALL_DIR}/wheels - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels + python -m pip install -r ./samples/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny whisper-tiny diff --git a/.github/workflows/mac.yml b/.github/workflows/mac.yml index 935d6556b3..5b1b7622ac 100644 --- a/.github/workflows/mac.yml +++ b/.github/workflows/mac.yml @@ -224,7 +224,7 @@ jobs: - name: Test bindings run: | source ${OV_INSTALL_DIR}/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_chat_generate_api.py::test_set_chat_template env: PYTHONPATH: "./build/:$PYTHONPATH" @@ -288,7 +288,7 @@ jobs: - name: Test bindings run: | source ${OV_INSTALL_DIR}/setupvars.sh - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k test_smoke env: PYTHONPATH: "./build/:$PYTHONPATH" @@ -354,7 +354,7 @@ jobs: run: | source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --find-links ${OV_INSTALL_DIR}/wheels - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels + python -m pip install -r ./samples/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny whisper-tiny diff --git a/.github/workflows/stable_diffusion_1_5_cpp.yml b/.github/workflows/stable_diffusion_1_5_cpp.yml index f36ac43839..8a262cfd97 100644 --- a/.github/workflows/stable_diffusion_1_5_cpp.yml +++ b/.github/workflows/stable_diffusion_1_5_cpp.yml @@ -59,7 +59,7 @@ jobs: - name: Install python dependencies run: | source openvino_sd_cpp/bin/activate - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install -r ./samples/requirements.txt - name: Download and convert models and tokenizer @@ -133,7 +133,7 @@ jobs: - name: Install python dependencies run: | . "./openvino_sd_cpp/Scripts/Activate.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install -r ./samples/requirements.txt - name: Download and convert models and tokenizer diff --git a/.github/workflows/windows.yml b/.github/workflows/windows.yml index 1e4164aa0b..17a1abb288 100644 --- a/.github/workflows/windows.yml +++ b/.github/workflows/windows.yml @@ -235,7 +235,7 @@ jobs: - name: Test bindings run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_chat_generate_api.py::test_set_chat_template env: PYTHONPATH: "./build/" # cmd evaluates variables in a different way. Setting PYTHONPATH before setupvars.bat instead of doing that after solves that. @@ -299,7 +299,7 @@ jobs: - name: Test bindings run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k test_smoke env: PYTHONPATH: "./build/" # cmd evaluates variables in a different way. Setting PYTHONPATH before setupvars.bat instead of doing that after solves that. @@ -363,7 +363,7 @@ jobs: - name: Test bindings run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels --upgrade-strategy eager + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_vlm_api.py env: PYTHONPATH: "./build/" # cmd evaluates variables in a different way. Setting PYTHONPATH before setupvars.bat instead of doing that after solves that. @@ -425,7 +425,7 @@ jobs: run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --find-links ${env:OV_INSTALL_DIR}/wheels - python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels + python -m pip install -r ./samples/requirements.txt --find-links ${env:OV_INSTALL_DIR}/wheels optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny whisper-tiny diff --git a/samples/deployment-requirements.txt b/samples/deployment-requirements.txt index c29f496c84..ceac668e9c 100644 --- a/samples/deployment-requirements.txt +++ b/samples/deployment-requirements.txt @@ -1,5 +1,4 @@ --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly ---pre openvino_genai~=2025.0.0.0.dev librosa==0.10.2 # For Whisper -pillow==11.0.0 # Image processing +pillow==11.0.0 # Image processing for VLMs diff --git a/samples/export-requirements.txt b/samples/export-requirements.txt index a84926f746..aa9a0ccea9 100644 --- a/samples/export-requirements.txt +++ b/samples/export-requirements.txt @@ -1,12 +1,11 @@ --extra-index-url https://download.pytorch.org/whl/cpu --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly ---pre openvino-tokenizers~=2025.0.0.0.dev optimum-intel @ git+https://github.com/huggingface/optimum-intel.git numpy<2.0.0; sys_platform == 'darwin' einops==0.8.0 # For Qwen transformers_stream_generator==0.0.5 # For Qwen -diffusers==0.31.0 +diffusers==0.31.0 # For image generation pipelines timm==1.0.11 # For exporting InternVL2 torchvision # For visual language models transformers>=4.43 # For Whisper diff --git a/src/README.md b/src/README.md index 9a96daa9d2..c90bc8f4e4 100644 --- a/src/README.md +++ b/src/README.md @@ -37,7 +37,7 @@ If you want to try OpenVINO GenAI with different dependencies versions (**not** git clone --recursive https://github.com/openvinotoolkit/openvino.genai.git cd openvino.genai # Install python dependencies - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly + python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt ``` From 079f1d521319e0d2443a185754902e47b77c5e8c Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Thu, 28 Nov 2024 21:15:38 +0400 Subject: [PATCH 020/113] Fixed pyi file build when OpenVINO_DIR is externally defined (#1271) --- src/python/CMakeLists.txt | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/src/python/CMakeLists.txt b/src/python/CMakeLists.txt index 25d81277d6..75a2fd59a7 100644 --- a/src/python/CMakeLists.txt +++ b/src/python/CMakeLists.txt @@ -114,6 +114,21 @@ elseif(DEFINED PY_BUILD_CMAKE_PACKAGE_NAME AND NOT WIN32) # in case of wheel build, pybind11-stubgen is always available via pyproject.toml's build-system # except Win32 where we have issues with pybind11_stubgen executable which cannot import its own module set(pybind11_stubgen_AVAILABLE ON) + + # by default, wheel build is performed with build-isolation, which means that some variables like PYTHONPATH + # are not available. But if user called setupvars.sh, then OpenVINO dir is available, while PYTHONPATH - no. + # In this case, we will have mismatch on Linux when OpenVINO can point on build dir / install dir, while + # PYTHONPATH points out to locally installed tmp OpenVINO wheel (build against wheel). + # Ways to handle it: + # - setting PYTHONPATH to $ENV{INTEL_OPENVINO_DIR}/python if INTEL_OPENVINO_DIR is defined. It means we are building against + # OpenVINO archive or installation tree + # - if it's not defined, we cannot do any guesses and hence, disable pybind11-stubgen usage + if(DEFINED ENV{INTEL_OPENVINO_DIR}) + set(openvino_pythonpath "$ENV{INTEL_OPENVINO_DIR}/python") + elseif(LINUX AND NOT OpenVINO_DIR STREQUAL OpenVINO_DIR_PY) + # here we imply that OpenVINO_DIR_PY points to manylinux, while OpenVINO_DIR point to Ubuntu binaries + set(pybind11_stubgen_AVAILABLE OFF) + endif() endif() # but we also need to check whether OpenVINO is installed From bc5f4dbe751d603ef6e94afd133d9ee6e469fd88 Mon Sep 17 00:00:00 2001 From: Alexey Smirnov Date: Thu, 28 Nov 2024 19:39:00 +0000 Subject: [PATCH 021/113] StaticLLMPipeline: Decide when to enable NPUW_DQ_FULL property (#1258) Based on (yet to be) supported OV properties from the NPU Plugin enable NPUW_DQ_FULL. releases/2024/5 mirror: https://github.com/openvinotoolkit/openvino.genai/pull/1272 Dependencies * https://github.com/openvinotoolkit/openvino/pull/27678 needs to be merged first * https://github.com/openvinotoolkit/openvino/pull/27789 --- src/cpp/src/llm_pipeline_static.cpp | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 597b5f69ac..db2adbd19e 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -457,6 +457,7 @@ void merge_config_with(ov::AnyMap& lhs, const ov::AnyMap& rhs) { struct NPUDesc { std::string arch; int64_t max_tiles; + bool compiler_dq; }; std::optional extract_npu_descriptor(ov::Core& core) { @@ -466,7 +467,14 @@ std::optional extract_npu_descriptor(ov::Core& core) { } const auto arch = core.get_property("NPU", ov::device::architecture); const auto max_tiles = core.get_property("NPU", ov::intel_npu::max_tiles); - return std::make_optional(NPUDesc{arch, max_tiles}); + + bool compiler_dq = false; + const auto device_caps = core.get_property("NPU", ov::device::capabilities); + if (std::find(device_caps.begin(), device_caps.end(), + "COMPILER_DYNAMIC_QUANTIZATION") != device_caps.end()) { + compiler_dq = true; + } + return std::make_optional(NPUDesc{arch, max_tiles, compiler_dq}); } ov::AnyMap get_baseline_common_config() { @@ -508,6 +516,9 @@ ov::AnyMap get_default_prefill_config(const std::shared_ptr& model, npudesc->max_tiles != -1) { config.emplace("NPU_DPU_GROUPS", npudesc->max_tiles); } + if (npudesc.has_value() && npudesc->compiler_dq) { + config.emplace("NPUW_DQ_FULL", "NO"); + } return config; } @@ -523,6 +534,9 @@ ov::AnyMap get_default_generate_config(const std::shared_ptr& model, if (npudesc.has_value() && npudesc->arch == "4000") { config.emplace("NPU_DPU_GROUPS", 4); } + if (npudesc.has_value() && npudesc->compiler_dq) { + config.emplace("NPUW_DQ_FULL", "NO"); + } return config; } From b43d31ed0604ec7add9af42ee62bb7d5d6a0abe8 Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Fri, 29 Nov 2024 11:50:46 +0300 Subject: [PATCH 022/113] Enable Phi-3.5-vision in HF format. Enable use of LLMs as a text embedding models for similarity compute. (#1276) Now it is possible to use `--data-encoder Qwen/Qwen2.5-1.5B` to plug LLM as a model for embedding computation. --- .../whowhatbench/whowhat_metrics.py | 8 +++++++- tools/who_what_benchmark/whowhatbench/wwb.py | 11 ++++++++--- 2 files changed, 15 insertions(+), 4 deletions(-) diff --git a/tools/who_what_benchmark/whowhatbench/whowhat_metrics.py b/tools/who_what_benchmark/whowhatbench/whowhat_metrics.py index bbf96a3312..2d1da24168 100644 --- a/tools/who_what_benchmark/whowhatbench/whowhat_metrics.py +++ b/tools/who_what_benchmark/whowhatbench/whowhat_metrics.py @@ -3,6 +3,7 @@ """ from difflib import SequenceMatcher +from transformers import AutoTokenizer from PIL import Image import torch import torch.nn.functional as F @@ -109,7 +110,12 @@ def evaluate_divergency(tokenizer, data_gold, data_prediction): class TextSimilarity: def __init__(self, model_id) -> None: - self.model = SentenceTransformer(model_id) + tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) + if hasattr(tokenizer, "pad_token") and tokenizer.pad_token: + pad_token = tokenizer.pad_token + else: + pad_token = tokenizer.eos_token + self.model = SentenceTransformer(model_id, tokenizer_kwargs={"pad_token": pad_token}, trust_remote_code=True) def evaluate(self, gt, prediction): return evaluate_similarity(self.model, gt, prediction) diff --git a/tools/who_what_benchmark/whowhatbench/wwb.py b/tools/who_what_benchmark/whowhatbench/wwb.py index 0a01a8e8df..f9aea15b47 100644 --- a/tools/who_what_benchmark/whowhatbench/wwb.py +++ b/tools/who_what_benchmark/whowhatbench/wwb.py @@ -178,9 +178,14 @@ def load_visual_text_model( model_id, trust_remote_code=True, device_map=device.lower() ) except ValueError: - model = AutoModel.from_pretrained( - model_id, trust_remote_code=True, device_map=device.lower() - ) + try: + model = AutoModel.from_pretrained( + model_id, trust_remote_code=True, device_map=device.lower() + ) + except ValueError: + model = AutoModelForCausalLM.from_pretrained( + model_id, trust_remote_code=True, device_map=device.lower(), _attn_implementation="eager", use_flash_attention_2=False + ) model.eval() elif use_genai: logger.info("Using OpenVINO GenAI API") From 402958b8975275fd3873c09c5095ca84abc2cea9 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 29 Nov 2024 21:18:13 +0400 Subject: [PATCH 023/113] [Python] Update docs with str => PathLike (#1278) --- .../openvino_genai/py_openvino_genai.pyi | 38 +++++++++---------- src/python/py_image_generation_models.cpp | 24 ++++++------ src/python/py_image_generation_pipelines.cpp | 4 +- src/python/py_llm_pipeline.cpp | 4 +- src/python/py_lora_adapter.cpp | 2 +- src/python/py_vlm_pipeline.cpp | 2 +- src/python/py_whisper_pipeline.cpp | 2 +- 7 files changed, 38 insertions(+), 38 deletions(-) diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 5e4d2dd7b2..1c386dc097 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -19,7 +19,7 @@ class Adapter: def __init__(self, path: os.PathLike) -> None: """ Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. - path (str): Path to adapter file in safetensors format. + path (os.PathLike): Path to adapter file in safetensors format. """ class AdapterConfig: """ @@ -162,20 +162,20 @@ class AutoencoderKL: def __init__(self, vae_decoder_path: os.PathLike) -> None: """ AutoencoderKL class initialized only with decoder model. - vae_decoder_path (str): VAE decoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. """ @typing.overload def __init__(self, vae_encoder_path: os.PathLike, vae_decoder_path: os.PathLike) -> None: """ AutoencoderKL class initialized with both encoder and decoder models. - vae_encoder_path (str): VAE encoder directory. - vae_decoder_path (str): VAE decoder directory. + vae_encoder_path (os.PathLike): VAE encoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. """ @typing.overload def __init__(self, vae_decoder_path: os.PathLike, device: str, **kwargs) -> None: """ AutoencoderKL class initialized only with decoder model. - vae_decoder_path (str): VAE decoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. device (str): Device on which inference will be done. kwargs: Device properties. """ @@ -183,8 +183,8 @@ class AutoencoderKL: def __init__(self, vae_encoder_path: os.PathLike, vae_decoder_path: os.PathLike, device: str, **kwargs) -> None: """ AutoencoderKL class initialized only with both encoder and decoder models. - vae_encoder_path (str): VAE encoder directory. - vae_decoder_path (str): VAE decoder directory. + vae_encoder_path (os.PathLike): VAE encoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. device (str): Device on which inference will be done. kwargs: Device properties. """ @@ -228,13 +228,13 @@ class CLIPTextModel: def __init__(self, root_dir: os.PathLike) -> None: """ CLIPTextModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. """ @typing.overload def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: """ CLIPTextModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. """ @@ -277,13 +277,13 @@ class CLIPTextModelWithProjection: def __init__(self, root_dir: os.PathLike) -> None: """ CLIPTextModelWithProjection class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. """ @typing.overload def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: """ CLIPTextModelWithProjection class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. """ @@ -790,7 +790,7 @@ class LLMPipeline: def __init__(self, models_path: os.PathLike, tokenizer: Tokenizer, device: str, config: dict[str, typing.Any] = {}, **kwargs) -> None: """ LLMPipeline class constructor for manually created openvino_genai.Tokenizer. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. tokenizer (openvino_genai.Tokenizer): tokenizer object. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. Add {"scheduler_config": ov_genai.SchedulerConfig} to config properties to create continuous batching pipeline. @@ -800,7 +800,7 @@ class LLMPipeline: def __init__(self, models_path: os.PathLike, device: str, config: dict[str, typing.Any] = {}, **kwargs) -> None: """ LLMPipeline class constructor. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. Add {"scheduler_config": ov_genai.SchedulerConfig} to config properties to create continuous batching pipeline. kwargs: Device properties. @@ -1231,13 +1231,13 @@ class Text2ImagePipeline: def __init__(self, models_path: os.PathLike) -> None: """ Text2ImagePipeline class constructor. - models_path (str): Path to the folder with exported model files. + models_path (os.PathLike): Path to the folder with exported model files. """ @typing.overload def __init__(self, models_path: os.PathLike, device: str, **kwargs) -> None: """ Text2ImagePipeline class constructor. - models_path (str): Path with exported model files. + models_path (os.PathLike): Path with exported model files. device (str): Device to run the model on (e.g., CPU, GPU). kwargs: Text2ImagePipeline properties """ @@ -1360,13 +1360,13 @@ class UNet2DConditionModel: def __init__(self, root_dir: os.PathLike) -> None: """ UNet2DConditionModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. """ @typing.overload def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: """ UNet2DConditionModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. """ @@ -1403,7 +1403,7 @@ class VLMPipeline: """ device on which inference will be done VLMPipeline class constructor. - models_path (str): Path to the folder with exported model files. + models_path (os.PathLike): Path to the folder with exported model files. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. kwargs: Device properties """ @@ -1640,7 +1640,7 @@ class WhisperPipeline: def __init__(self, models_path: os.PathLike, device: str, **kwargs) -> None: """ WhisperPipeline class constructor. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. device (str): Device to run the model on (e.g., CPU, GPU). """ def generate(self, raw_speech_input: list[float], generation_config: WhisperGenerationConfig | None = None, streamer: typing.Callable[[str], bool] | ChunkStreamerBase | None = None, **kwargs) -> WhisperDecodedResults: diff --git a/src/python/py_image_generation_models.cpp b/src/python/py_image_generation_models.cpp index 221fc7363e..72a8970cb4 100644 --- a/src/python/py_image_generation_models.cpp +++ b/src/python/py_image_generation_models.cpp @@ -31,7 +31,7 @@ void init_clip_text_model(py::module_& m) { py::arg("root_dir"), "Model root directory", R"( CLIPTextModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. )") .def(py::init([]( const std::filesystem::path& root_dir, @@ -45,7 +45,7 @@ void init_clip_text_model(py::module_& m) { py::arg("device"), "Device on which inference will be done", R"( CLIPTextModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. )") @@ -101,7 +101,7 @@ void init_unet2d_condition_model(py::module_& m) { py::arg("root_dir"), "Model root directory", R"( UNet2DConditionModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. )") .def(py::init([]( const std::filesystem::path& root_dir, @@ -114,7 +114,7 @@ void init_unet2d_condition_model(py::module_& m) { py::arg("device"), "Device on which inference will be done", R"( UNet2DConditionModel class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. )") @@ -172,7 +172,7 @@ void init_autoencoder_kl(py::module_& m) { py::arg("vae_decoder_path"), "VAE decoder directory", R"( AutoencoderKL class initialized only with decoder model. - vae_decoder_path (str): VAE decoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. )") .def(py::init([]( const std::filesystem::path& vae_encoder_path, @@ -184,8 +184,8 @@ void init_autoencoder_kl(py::module_& m) { py::arg("vae_decoder_path"), "VAE decoder directory", R"( AutoencoderKL class initialized with both encoder and decoder models. - vae_encoder_path (str): VAE encoder directory. - vae_decoder_path (str): VAE decoder directory. + vae_encoder_path (os.PathLike): VAE encoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. )") .def(py::init([]( const std::filesystem::path& vae_decoder_path, @@ -198,7 +198,7 @@ void init_autoencoder_kl(py::module_& m) { py::arg("device"), "Device on which inference will be done", R"( AutoencoderKL class initialized only with decoder model. - vae_decoder_path (str): VAE decoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. device (str): Device on which inference will be done. kwargs: Device properties. )") @@ -215,8 +215,8 @@ void init_autoencoder_kl(py::module_& m) { py::arg("device"), "Device on which inference will be done", R"( AutoencoderKL class initialized only with both encoder and decoder models. - vae_encoder_path (str): VAE encoder directory. - vae_decoder_path (str): VAE decoder directory. + vae_encoder_path (os.PathLike): VAE encoder directory. + vae_decoder_path (os.PathLike): VAE decoder directory. device (str): Device on which inference will be done. kwargs: Device properties. )") @@ -276,7 +276,7 @@ void init_clip_text_model_with_projection(py::module_& m) { py::arg("root_dir"), "Model root directory", R"( CLIPTextModelWithProjection class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. )") .def(py::init([]( const std::filesystem::path& root_dir, @@ -290,7 +290,7 @@ void init_clip_text_model_with_projection(py::module_& m) { py::arg("device"), "Device on which inference will be done", R"( CLIPTextModelWithProjection class - root_dir (str): Model root directory. + root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. )") diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index dade8a170e..d0d2f18a92 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -141,7 +141,7 @@ void init_image_generation_pipelines(py::module_& m) { py::arg("models_path"), "folder with exported model files.", R"( Text2ImagePipeline class constructor. - models_path (str): Path to the folder with exported model files. + models_path (os.PathLike): Path to the folder with exported model files. )") .def(py::init([]( @@ -156,7 +156,7 @@ void init_image_generation_pipelines(py::module_& m) { py::arg("device"), "device on which inference will be done", R"( Text2ImagePipeline class constructor. - models_path (str): Path with exported model files. + models_path (os.PathLike): Path with exported model files. device (str): Device to run the model on (e.g., CPU, GPU). kwargs: Text2ImagePipeline properties )") diff --git a/src/python/py_llm_pipeline.cpp b/src/python/py_llm_pipeline.cpp index 030688d821..7255022238 100644 --- a/src/python/py_llm_pipeline.cpp +++ b/src/python/py_llm_pipeline.cpp @@ -122,7 +122,7 @@ void init_llm_pipeline(py::module_& m) { py::arg("config") = ov::AnyMap({}), "openvino.properties map", R"( LLMPipeline class constructor for manually created openvino_genai.Tokenizer. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. tokenizer (openvino_genai.Tokenizer): tokenizer object. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. Add {"scheduler_config": ov_genai.SchedulerConfig} to config properties to create continuous batching pipeline. @@ -151,7 +151,7 @@ void init_llm_pipeline(py::module_& m) { py::arg("config") = ov::AnyMap({}), "openvino.properties map", R"( LLMPipeline class constructor. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. Add {"scheduler_config": ov_genai.SchedulerConfig} to config properties to create continuous batching pipeline. kwargs: Device properties. diff --git a/src/python/py_lora_adapter.cpp b/src/python/py_lora_adapter.cpp index 3186a7ca5c..7f98b67064 100644 --- a/src/python/py_lora_adapter.cpp +++ b/src/python/py_lora_adapter.cpp @@ -23,7 +23,7 @@ void init_lora_adapter(py::module_& m) { py::arg("path"), "path", R"( Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. - path (str): Path to adapter file in safetensors format. + path (os.PathLike): Path to adapter file in safetensors format. )") .def( "__bool__", diff --git a/src/python/py_vlm_pipeline.cpp b/src/python/py_vlm_pipeline.cpp index 9572652204..fc58ddc913 100644 --- a/src/python/py_vlm_pipeline.cpp +++ b/src/python/py_vlm_pipeline.cpp @@ -86,7 +86,7 @@ void init_vlm_pipeline(py::module_& m) { py::arg("device"), "device on which inference will be done" R"( VLMPipeline class constructor. - models_path (str): Path to the folder with exported model files. + models_path (os.PathLike): Path to the folder with exported model files. device (str): Device to run the model on (e.g., CPU, GPU). Default is 'CPU'. kwargs: Device properties )") diff --git a/src/python/py_whisper_pipeline.cpp b/src/python/py_whisper_pipeline.cpp index d34bd5f3b6..7ecf71d2f0 100644 --- a/src/python/py_whisper_pipeline.cpp +++ b/src/python/py_whisper_pipeline.cpp @@ -323,7 +323,7 @@ void init_whisper_pipeline(py::module_& m) { "openvino.properties map", R"( WhisperPipeline class constructor. - models_path (str): Path to the model file. + models_path (os.PathLike): Path to the model file. device (str): Device to run the model on (e.g., CPU, GPU). )") From 6dd8261f2e6c8b5d2920fc22f89feb4edd7bfed1 Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Fri, 29 Nov 2024 19:10:51 +0100 Subject: [PATCH 024/113] Txt2img models from buffer (#1279) --- .../genai/image_generation/autoencoder_kl.hpp | 56 ++++++++++++++++++- .../image_generation/clip_text_model.hpp | 27 +++++++++ .../clip_text_model_with_projection.hpp | 27 +++++++++ .../flux_transformer_2d_model.hpp | 26 ++++++++- .../sd3_transformer_2d_model.hpp | 22 ++++++++ .../image_generation/t5_encoder_model.hpp | 23 +++++++- .../unet2d_condition_model.hpp | 27 +++++++++ .../models/autoencoder_kl.cpp | 54 ++++++++++++++++++ .../models/clip_text_model.cpp | 19 +++++++ .../clip_text_model_with_projection.cpp | 19 +++++++ .../models/flux_transformer_2d_model.cpp | 25 ++++++++- .../models/sd3_transformer_2d_model.cpp | 19 +++++++ .../models/t5_encoder_model.cpp | 17 ++++++ .../models/unet2d_condition_model.cpp | 19 +++++++ 14 files changed, 372 insertions(+), 8 deletions(-) diff --git a/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp b/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp index b838fbfd97..347925727a 100644 --- a/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp +++ b/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp @@ -45,13 +45,37 @@ class OPENVINO_GENAI_EXPORTS AutoencoderKL { const std::string& device, const ov::AnyMap& properties = {}); + AutoencoderKL(const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config); + + AutoencoderKL(const std::string& vae_encoder_model, + const Tensor& vae_encoder_weights, + const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config); + + AutoencoderKL(const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + const ov::AnyMap& properties = {}); + + AutoencoderKL(const std::string& vae_encoder_model, + const Tensor& vae_encoder_weights, + const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> AutoencoderKL(const std::filesystem::path& vae_decoder_path, const std::string& device, Properties&&... properties) : AutoencoderKL(vae_decoder_path, device, ov::AnyMap{std::forward(properties)...}) { } - + template ::value, bool>::type = true> AutoencoderKL(const std::filesystem::path& vae_encoder_path, @@ -60,6 +84,36 @@ class OPENVINO_GENAI_EXPORTS AutoencoderKL { Properties&&... properties) : AutoencoderKL(vae_encoder_path, vae_decoder_path, device, ov::AnyMap{std::forward(properties)...}) { } + template ::value, bool>::type = true> + AutoencoderKL(const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + Properties&&... properties) + : AutoencoderKL(vae_decoder_model, + vae_decoder_weights, + vae_decoder_config, + device, + ov::AnyMap{std::forward(properties)...}) { } + + template ::value, bool>::type = true> + AutoencoderKL(const std::string& vae_encoder_model, + const Tensor& vae_encoder_weights, + const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + Properties&&... properties) + : AutoencoderKL(vae_encoder_model, + vae_encoder_weights, + vae_decoder_model, + vae_decoder_weights, + vae_decoder_config, + device, + ov::AnyMap{std::forward(properties)...}) { } + AutoencoderKL(const AutoencoderKL&); AutoencoderKL& reshape(int batch_size, int height, int width); diff --git a/src/cpp/include/openvino/genai/image_generation/clip_text_model.hpp b/src/cpp/include/openvino/genai/image_generation/clip_text_model.hpp index 26f28abac2..a3b9ebbd88 100644 --- a/src/cpp/include/openvino/genai/image_generation/clip_text_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/clip_text_model.hpp @@ -33,6 +33,18 @@ class OPENVINO_GENAI_EXPORTS CLIPTextModel { const std::string& device, const ov::AnyMap& properties = {}); + CLIPTextModel(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer); + + CLIPTextModel(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> CLIPTextModel(const std::filesystem::path& root_dir, @@ -40,6 +52,21 @@ class OPENVINO_GENAI_EXPORTS CLIPTextModel { Properties&&... properties) : CLIPTextModel(root_dir, device, ov::AnyMap{std::forward(properties)...}) { } + template ::value, bool>::type = true> + CLIPTextModel(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + Properties&&... properties) + : CLIPTextModel(model, + weights, + config, + clip_tokenizer, + device, + ov::AnyMap{std::forward(properties)...}) { } + CLIPTextModel(const CLIPTextModel&); const Config& get_config() const; diff --git a/src/cpp/include/openvino/genai/image_generation/clip_text_model_with_projection.hpp b/src/cpp/include/openvino/genai/image_generation/clip_text_model_with_projection.hpp index 157e378026..563fb8711d 100644 --- a/src/cpp/include/openvino/genai/image_generation/clip_text_model_with_projection.hpp +++ b/src/cpp/include/openvino/genai/image_generation/clip_text_model_with_projection.hpp @@ -33,6 +33,18 @@ class OPENVINO_GENAI_EXPORTS CLIPTextModelWithProjection { const std::string& device, const ov::AnyMap& properties = {}); + CLIPTextModelWithProjection(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer); + + CLIPTextModelWithProjection(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> CLIPTextModelWithProjection(const std::filesystem::path& root_dir, @@ -40,6 +52,21 @@ class OPENVINO_GENAI_EXPORTS CLIPTextModelWithProjection { Properties&&... properties) : CLIPTextModelWithProjection(root_dir, device, ov::AnyMap{std::forward(properties)...}) { } + template ::value, bool>::type = true> + CLIPTextModelWithProjection(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + Properties&&... properties) + : CLIPTextModelWithProjection(model, + weights, + config, + clip_tokenizer, + device, + ov::AnyMap{std::forward(properties)...}) { } + CLIPTextModelWithProjection(const CLIPTextModelWithProjection&); const Config& get_config() const; diff --git a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp index 03defd5350..f0f89d03d7 100644 --- a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp @@ -28,14 +28,36 @@ class OPENVINO_GENAI_EXPORTS FluxTransformer2DModel { explicit FluxTransformer2DModel(const std::filesystem::path& root_dir); FluxTransformer2DModel(const std::filesystem::path& root_dir, - const std::string& device, - const ov::AnyMap& properties = {}); + const std::string& device, + const ov::AnyMap& properties = {}); + + FluxTransformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor); + + FluxTransformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties = {}); template ::value, bool>::type = true> FluxTransformer2DModel(const std::filesystem::path& root_dir, const std::string& device, Properties&&... properties) : FluxTransformer2DModel(root_dir, device, ov::AnyMap{std::forward(properties)...}) {} + template ::value, bool>::type = true> + FluxTransformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + Properties&&... properties) + : FluxTransformer2DModel(model, weights, config, vae_scale_factor, device, ov::AnyMap{std::forward(properties)...}) {} + FluxTransformer2DModel(const FluxTransformer2DModel&); const Config& get_config() const; diff --git a/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp b/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp index 9f3f8ec5f5..e4641066ec 100644 --- a/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp @@ -34,11 +34,33 @@ class OPENVINO_GENAI_EXPORTS SD3Transformer2DModel { const std::string& device, const ov::AnyMap& properties = {}); + SD3Transformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor); + + SD3Transformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> SD3Transformer2DModel(const std::filesystem::path& root_dir, const std::string& device, Properties&&... properties) : SD3Transformer2DModel(root_dir, device, ov::AnyMap{std::forward(properties)...}) {} + template ::value, bool>::type = true> + SD3Transformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + Properties&&... properties) + : SD3Transformer2DModel(model, weights, config, vae_scale_factor, device, ov::AnyMap{std::forward(properties)...}) {} + SD3Transformer2DModel(const SD3Transformer2DModel&); const Config& get_config() const; diff --git a/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp b/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp index d72b7ab411..717871d1d9 100644 --- a/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp @@ -26,13 +26,32 @@ class OPENVINO_GENAI_EXPORTS T5EncoderModel { const std::string& device, const ov::AnyMap& properties = {}); + T5EncoderModel(const std::string& model, + const Tensor& weights, + const Tokenizer& tokenizer); + + T5EncoderModel(const std::string&model, + const Tensor& weights, + const Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> T5EncoderModel(const std::filesystem::path& root_dir, - const std::string& device, - Properties&&... properties) + const std::string& device, + Properties&&... properties) : T5EncoderModel(root_dir, device, ov::AnyMap{std::forward(properties)...}) { } + template ::value, bool>::type = true> + T5EncoderModel(const std::string& model, + const Tensor& weights, + const Tokenizer& tokenizer, + const std::string& device, + Properties&&... properties) + : T5EncoderModel(model, weights, tokenizer, device, ov::AnyMap{std::forward(properties)...}) { } + T5EncoderModel(const T5EncoderModel&); T5EncoderModel& reshape(int batch_size, int max_sequence_length); diff --git a/src/cpp/include/openvino/genai/image_generation/unet2d_condition_model.hpp b/src/cpp/include/openvino/genai/image_generation/unet2d_condition_model.hpp index 85a370b449..4acfd2ce9b 100644 --- a/src/cpp/include/openvino/genai/image_generation/unet2d_condition_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/unet2d_condition_model.hpp @@ -36,6 +36,18 @@ class OPENVINO_GENAI_EXPORTS UNet2DConditionModel { const std::string& device, const ov::AnyMap& properties = {}); + UNet2DConditionModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor); + + UNet2DConditionModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties = {}); + template ::value, bool>::type = true> UNet2DConditionModel(const std::filesystem::path& root_dir, @@ -43,6 +55,21 @@ class OPENVINO_GENAI_EXPORTS UNet2DConditionModel { Properties&&... properties) : UNet2DConditionModel(root_dir, device, ov::AnyMap{std::forward(properties)...}) { } + template ::value, bool>::type = true> + UNet2DConditionModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + Properties&&... properties) + : UNet2DConditionModel(model, + weights, + config, + vae_scale_factor, + device, + ov::AnyMap{std::forward(properties)...}) { } + UNet2DConditionModel(const UNet2DConditionModel&); const Config& get_config() const; diff --git a/src/cpp/src/image_generation/models/autoencoder_kl.cpp b/src/cpp/src/image_generation/models/autoencoder_kl.cpp index d7eaf18bf4..7c38cd77fa 100644 --- a/src/cpp/src/image_generation/models/autoencoder_kl.cpp +++ b/src/cpp/src/image_generation/models/autoencoder_kl.cpp @@ -129,6 +129,60 @@ AutoencoderKL::AutoencoderKL(const std::filesystem::path& vae_encoder_path, } } +AutoencoderKL::AutoencoderKL(const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config) + : m_config(vae_decoder_config) { + ov::Core core = utils::singleton_core(); + m_decoder_model = core.read_model(vae_decoder_model, vae_decoder_weights); + // apply VaeImageProcessor postprocessing steps by merging them into the VAE decoder model + merge_vae_image_post_processing(); +} + +AutoencoderKL::AutoencoderKL(const std::string& vae_encoder_model, + const Tensor& vae_encoder_weights, + const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config) + : AutoencoderKL(vae_decoder_model, vae_decoder_weights, vae_decoder_config) { + ov::Core core = utils::singleton_core(); + m_encoder_model = core.read_model(vae_encoder_model, vae_encoder_weights); + // apply VaeImageProcessor pre-processing steps by merging them into the VAE encoder + merge_vae_image_pre_processing(); +} + +AutoencoderKL::AutoencoderKL(const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + const ov::AnyMap& properties) + : AutoencoderKL(vae_decoder_model, vae_decoder_weights, vae_decoder_config) { + if (auto filtered_properties = extract_adapters_from_properties(properties)) { + compile(device, *filtered_properties); + } else { + compile(device, properties); + } +} + +AutoencoderKL::AutoencoderKL(const std::string& vae_encoder_model, + const Tensor& vae_encoder_weights, + const std::string& vae_decoder_model, + const Tensor& vae_decoder_weights, + const Config& vae_decoder_config, + const std::string& device, + const ov::AnyMap& properties) + : AutoencoderKL(vae_encoder_model, + vae_encoder_weights, + vae_decoder_model, + vae_decoder_weights, + vae_decoder_config) { + if (auto filtered_properties = extract_adapters_from_properties(properties)) { + compile(device, *filtered_properties); + } else { + compile(device, properties); + } +} + AutoencoderKL::AutoencoderKL(const AutoencoderKL&) = default; AutoencoderKL& AutoencoderKL::reshape(int batch_size, int height, int width) { diff --git a/src/cpp/src/image_generation/models/clip_text_model.cpp b/src/cpp/src/image_generation/models/clip_text_model.cpp index f5a4d0940b..d2dab30bcf 100644 --- a/src/cpp/src/image_generation/models/clip_text_model.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model.cpp @@ -48,6 +48,25 @@ CLIPTextModel::CLIPTextModel(const std::filesystem::path& root_dir, compile(device, properties); } +CLIPTextModel::CLIPTextModel(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer) : + m_clip_tokenizer(clip_tokenizer), m_config(config) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +CLIPTextModel::CLIPTextModel(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + const ov::AnyMap& properties) : + CLIPTextModel(model, weights, config, clip_tokenizer) { + compile(device, properties); +} + CLIPTextModel::CLIPTextModel(const CLIPTextModel&) = default; const CLIPTextModel::Config& CLIPTextModel::get_config() const { diff --git a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp index 9a89fd73bc..13c7f5a442 100644 --- a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp @@ -39,6 +39,25 @@ CLIPTextModelWithProjection::CLIPTextModelWithProjection(const std::filesystem:: compile(device, properties); } +CLIPTextModelWithProjection::CLIPTextModelWithProjection(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer) : + m_clip_tokenizer(clip_tokenizer), m_config(config) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +CLIPTextModelWithProjection::CLIPTextModelWithProjection(const std::string& model, + const Tensor& weights, + const Config& config, + const Tokenizer& clip_tokenizer, + const std::string& device, + const ov::AnyMap& properties) : + CLIPTextModelWithProjection(model, weights, config, clip_tokenizer) { + compile(device, properties); +} + CLIPTextModelWithProjection::CLIPTextModelWithProjection(const CLIPTextModelWithProjection&) = default; const CLIPTextModelWithProjection::Config& CLIPTextModelWithProjection::get_config() const { diff --git a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp index 92439be423..8bb66995b4 100644 --- a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp @@ -37,6 +37,25 @@ FluxTransformer2DModel::FluxTransformer2DModel(const std::filesystem::path& root compile(device, properties); } +FluxTransformer2DModel::FluxTransformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor) : + m_config(config), m_vae_scale_factor(vae_scale_factor) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +FluxTransformer2DModel::FluxTransformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties) : + FluxTransformer2DModel(model, weights, config, vae_scale_factor) { + compile(device, properties); +} + FluxTransformer2DModel::FluxTransformer2DModel(const FluxTransformer2DModel&) = default; const FluxTransformer2DModel::Config& FluxTransformer2DModel::get_config() const { @@ -44,9 +63,9 @@ const FluxTransformer2DModel::Config& FluxTransformer2DModel::get_config() const } FluxTransformer2DModel& FluxTransformer2DModel::reshape(int batch_size, - int height, - int width, - int tokenizer_model_max_length) { + int height, + int width, + int tokenizer_model_max_length) { OPENVINO_ASSERT(m_model, "Model has been already compiled. Cannot reshape already compiled model"); // hidden_states=latent_model_input, diff --git a/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp index 38e3dad290..70dddb0476 100644 --- a/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp @@ -39,6 +39,25 @@ SD3Transformer2DModel::SD3Transformer2DModel(const std::filesystem::path& root_d compile(device, properties); } +SD3Transformer2DModel::SD3Transformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor) : + m_config(config), m_vae_scale_factor(vae_scale_factor) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +SD3Transformer2DModel::SD3Transformer2DModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties) : + SD3Transformer2DModel(model, weights, config, vae_scale_factor) { + compile(device, properties); +} + SD3Transformer2DModel::SD3Transformer2DModel(const SD3Transformer2DModel&) = default; const SD3Transformer2DModel::Config& SD3Transformer2DModel::get_config() const { diff --git a/src/cpp/src/image_generation/models/t5_encoder_model.cpp b/src/cpp/src/image_generation/models/t5_encoder_model.cpp index 2efe4986e8..e7629b2f26 100644 --- a/src/cpp/src/image_generation/models/t5_encoder_model.cpp +++ b/src/cpp/src/image_generation/models/t5_encoder_model.cpp @@ -27,6 +27,23 @@ T5EncoderModel::T5EncoderModel(const std::filesystem::path& root_dir, compile(device, properties); } +T5EncoderModel::T5EncoderModel(const std::string& model, + const Tensor& weights, + const Tokenizer& tokenizer) : + m_tokenizer(tokenizer) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +T5EncoderModel::T5EncoderModel(const std::string& model, + const Tensor& weights, + const Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties) : + T5EncoderModel(model, weights, tokenizer) { + compile(device, properties); +} + T5EncoderModel::T5EncoderModel(const T5EncoderModel&) = default; T5EncoderModel& T5EncoderModel::reshape(int batch_size, int max_sequence_length) { diff --git a/src/cpp/src/image_generation/models/unet2d_condition_model.cpp b/src/cpp/src/image_generation/models/unet2d_condition_model.cpp index 413acb638b..ca65c9d9d6 100644 --- a/src/cpp/src/image_generation/models/unet2d_condition_model.cpp +++ b/src/cpp/src/image_generation/models/unet2d_condition_model.cpp @@ -42,6 +42,25 @@ UNet2DConditionModel::UNet2DConditionModel(const std::filesystem::path& root_dir compile(device, properties); } +UNet2DConditionModel::UNet2DConditionModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor) : + m_config(config), m_vae_scale_factor(vae_scale_factor) { + ov::Core core = utils::singleton_core(); + m_model = core.read_model(model, weights); +} + +UNet2DConditionModel::UNet2DConditionModel(const std::string& model, + const Tensor& weights, + const Config& config, + const size_t vae_scale_factor, + const std::string& device, + const ov::AnyMap& properties) : + UNet2DConditionModel(model, weights, config, vae_scale_factor) { + compile(device, properties); +} + UNet2DConditionModel::UNet2DConditionModel(const UNet2DConditionModel&) = default; const UNet2DConditionModel::Config& UNet2DConditionModel::get_config() const { From f59a638b5d245fde6a478d1ed4bdb0cd727bde16 Mon Sep 17 00:00:00 2001 From: Alexey Smirnov Date: Sat, 30 Nov 2024 02:15:16 +0000 Subject: [PATCH 025/113] StaticLLMPipeline: Handle CACHE_DIR for NPUW (#1267) E-149053 --- src/cpp/src/llm_pipeline_static.cpp | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index db2adbd19e..ac89881e3e 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -585,8 +585,10 @@ ov::Tensor make_tensor_slice(ov::Tensor tensor, size_t dim, size_t start_pos, si return ov::Tensor(tensor, start_shape, end_shape); } -void drop_cache_dir(ov::AnyMap& config) { - if (config.count("NPU_USE_NPUW") != 0u) { +void set_npuw_cache_dir(ov::AnyMap& config) { + std::optional cache_dir = get_option(config, "CACHE_DIR"); + if (config.count("NPU_USE_NPUW") != 0u && cache_dir) { + config.emplace("NPUW_CACHE_DIR", cache_dir.value()); pop_option(config, "CACHE_DIR"); } } @@ -731,9 +733,9 @@ void StaticLLMPipeline::setupAndCompileModels( ); merge_config_with(prefill_config, properties); merge_config_with(generate_config, properties); - // FIXME: Drop CACHE_DIR option if NPUW is enabled - drop_cache_dir(prefill_config); - drop_cache_dir(generate_config); + // Replace CACHE_DIR option if NPUW is enabled + set_npuw_cache_dir(prefill_config); + set_npuw_cache_dir(generate_config); m_kvcache_request = core.compile_model( kvcache_model, device, generate_config From 6f160e0ca8fdaaae1a6a9327dbf6c6e5fa45eaa1 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Sat, 30 Nov 2024 21:33:50 +0400 Subject: [PATCH 026/113] CB: drop profiling as it drops performance (#1280) --- src/cpp/src/continuous_batching_impl.cpp | 22 ++----------------- src/cpp/src/llm_pipeline.cpp | 4 ++-- .../speculative_decoding_impl.cpp | 2 +- src/cpp/src/utils.cpp | 2 +- src/cpp/src/utils.hpp | 2 +- src/cpp/src/whisper_pipeline.cpp | 2 +- 6 files changed, 8 insertions(+), 26 deletions(-) diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index 73bf4ec083..901c5c64be 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -21,7 +21,7 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::ContinuousBatchingImpl( ov::Core core; - auto [core_properties, compile_properties] = utils::split_core_complile_config(properties); + auto [core_properties, compile_properties] = utils::split_core_compile_config(properties); core.set_property(core_properties); // The model can be compiled for GPU as well @@ -57,7 +57,7 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::init( } SchedulerConfig updated_config = scheduler_config; - // update KV number in scheduler config + // update KV blocks number in scheduler config if (scheduler_config.num_kv_blocks != device_config.get_num_kv_blocks()) { updated_config.num_kv_blocks = device_config.get_num_kv_blocks(); } @@ -166,24 +166,6 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::step() { timer.start(); logits = m_model_runner->forward(m_requests, scheduler_output); timer.end(); - - ov::InferRequest infer_request = m_model_runner->get_infer_request(); - ov::CompiledModel compiled_model = infer_request.get_compiled_model(); - const bool is_profiling_enabled = compiled_model.get_property(ov::enable_profiling); - - // collect detailed statistic - if (is_profiling_enabled) { - std::vector profiling_info = m_model_runner->get_infer_request().get_profiling_info(); - for (const ov::ProfilingInfo& info : profiling_info) { - double current_time = info.real_time.count(); - if (info.node_type == "PagedAttentionExtension") { - m_perf.m_paged_attention_time_ms += current_time; - } else if (info.node_type == "FullyConnected") { - m_perf.m_matmul_time_ms += current_time; - } - m_perf.m_infer_total_ms += current_time; - } - } } #ifdef DEBUG_CACHE_STATE_DUMP diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 62a72b1cbd..14d558e431 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -63,7 +63,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { { ov::Core core; if (auto filtered_plugin_config = extract_adapters_from_properties(plugin_config, &m_generation_config.adapters)) { - auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_complile_config(*filtered_plugin_config); + auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_compile_config(*filtered_plugin_config); core.set_property(core_plugin_config); auto model = core.read_model(models_path / "openvino_model.xml"); m_generation_config.adapters->set_tensor_name_prefix("base_model.model.model."); @@ -71,7 +71,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { utils::slice_matmul_statefull_model(model); m_model_runner = core.compile_model(model, device, compile_plugin_config).create_infer_request(); } else { - auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_complile_config(plugin_config); + auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_compile_config(plugin_config); core.set_property(core_plugin_config); auto model = core.read_model(models_path / "openvino_model.xml"); utils::slice_matmul_statefull_model(model); diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index 0f43555a5f..4e43fdadc9 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -31,7 +31,7 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl( const ov::genai::ModelDesc draft_model_desc, const ov::AnyMap& tokenizer_properties) { ov::Core core; - auto [core_properties, compile_properties] = ov::genai::utils::split_core_complile_config(main_properties); + auto [core_properties, compile_properties] = ov::genai::utils::split_core_compile_config(main_properties); core.set_property(core_properties); std::filesystem::path openvino_model_name = "openvino_model.xml", diff --git a/src/cpp/src/utils.cpp b/src/cpp/src/utils.cpp index 50c2e0c49e..f1718a8a5d 100644 --- a/src/cpp/src/utils.cpp +++ b/src/cpp/src/utils.cpp @@ -203,7 +203,7 @@ ProcessorConfig from_any_map( * There are not supported by `core.compile` function plugin options like `ENABLE_MMAP` * Move this options to `core.set_property` config */ -std::pair split_core_complile_config(const ov::AnyMap& properties) { +std::pair split_core_compile_config(const ov::AnyMap& properties) { const std::vector unsupported_by_compile_properties{"ENABLE_MMAP"}; ov::AnyMap core_properties; ov::AnyMap compile_properties{properties}; diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 3487fccb81..fb58022d5f 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -78,7 +78,7 @@ ProcessorConfig from_any_map( const ProcessorConfig& initial ); -std::pair split_core_complile_config(const ov::AnyMap& properties); +std::pair split_core_compile_config(const ov::AnyMap& properties); ov::genai::TokenizedInputs subtract_chat_tokenized_inputs(const ov::genai::TokenizedInputs& minuend, const ov::genai::TokenizedInputs& subtrahend); diff --git a/src/cpp/src/whisper_pipeline.cpp b/src/cpp/src/whisper_pipeline.cpp index a90b281c6e..5c31d85fec 100644 --- a/src/cpp/src/whisper_pipeline.cpp +++ b/src/cpp/src/whisper_pipeline.cpp @@ -53,7 +53,7 @@ class WhisperPipeline::WhisperPipelineStatefulImpl : public WhisperPipeline::Whi const ov::AnyMap& properties) : WhisperPipelineImplBase{models_path} { ov::Core core = utils::singleton_core(); - auto [core_properties, compile_properties] = ov::genai::utils::split_core_complile_config(properties); + auto [core_properties, compile_properties] = ov::genai::utils::split_core_compile_config(properties); core.set_property(core_properties); m_models.encoder = From cbb1fa0c5700bcc568266090a367467b9e9a805f Mon Sep 17 00:00:00 2001 From: Anastasiia Pnevskaia Date: Mon, 2 Dec 2024 20:26:24 +0100 Subject: [PATCH 027/113] VLM performance metrics. (#1263) VLM performance metrics. Ticket: CVS-156661 --------- Co-authored-by: Vladimir Zlobin --- .github/workflows/causal_lm_cpp.yml | 15 +++- .../cpp/visual_language_chat/CMakeLists.txt | 17 ++++ samples/cpp/visual_language_chat/README.md | 41 ++++++++++ .../visual_language_chat/benchmark_vlm.cpp | 82 +++++++++++++++++++ samples/python/visual_language_chat/README.md | 39 +++++++++ .../visual_language_chat/benchmark_vlm.py | 76 +++++++++++++++++ .../genai/visual_language/perf_metrics.hpp | 34 ++++++++ .../genai/visual_language/pipeline.hpp | 14 +++- .../openvino/genai/whisper_pipeline.hpp | 2 +- .../src/visual_language/inputs_embedder.cpp | 54 +++++++----- .../src/visual_language/inputs_embedder.hpp | 3 +- src/cpp/src/visual_language/perf_metrics.cpp | 36 ++++++++ src/cpp/src/visual_language/pipeline.cpp | 48 +++++++++-- .../openvino_genai/py_openvino_genai.pyi | 71 ++++++++++++++-- src/python/py_vlm_pipeline.cpp | 67 +++++++++++++-- src/python/py_whisper_pipeline.cpp | 2 +- tests/python_tests/test_vlm_api.py | 36 ++++++++ 17 files changed, 589 insertions(+), 48 deletions(-) create mode 100644 samples/cpp/visual_language_chat/benchmark_vlm.cpp create mode 100755 samples/python/visual_language_chat/benchmark_vlm.py create mode 100644 src/cpp/include/openvino/genai/visual_language/perf_metrics.hpp create mode 100644 src/cpp/src/visual_language/perf_metrics.cpp diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index ce3ac5f046..4466e437e9 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -727,7 +727,7 @@ jobs: ov_link: ${{ env.l_u22_ov_link }} - uses: ./.github/actions/build_app with: - build_target: 'visual_language_chat py_openvino_genai' + build_target: 'visual_language_chat benchmark_vlm py_openvino_genai' - uses: ./.github/actions/install_python_deps - name: Download and convert tiny-random-minicpmv-2_6 model and an image run: | @@ -754,6 +754,12 @@ jobs: && ./build/samples/cpp/visual_language_chat/visual_language_chat ./tiny-random-minicpmv-2_6/ ./images/ <<< $'Describe the images?' | tee cpp.txt timeout-minutes: 2 + - name: Run benchmark_vlm C++ sample - tiny-random-minicpmv-2_6 + run: > + set -o pipefail + && source ./ov/setupvars.sh + && ./build/samples/cpp/visual_language_chat/benchmark_vlm -m ./tiny-random-minicpmv-2_6/ -i ./images/cat.png -n 3 + timeout-minutes: 2 - name: Run visual_language_chat Python sample - tiny-random-minicpmv-2_6 run: > set -o pipefail @@ -762,6 +768,13 @@ jobs: <<< $'Describe the images?' | tee py.txt env: PYTHONPATH: "./build/" + - name: Run benchmark_vlm Python sample - tiny-random-minicpmv-2_6 + run: > + set -o pipefail + && source ./ov/setupvars.sh + && ./samples/python/visual_language_chat/benchmark_vlm.py -m ./tiny-random-minicpmv-2_6/ -i ./images/cat.png -n 3 + env: + PYTHONPATH: "./build/" - name: Encode cpp.txt with Python encoding instead of terminal one shell: python run: | diff --git a/samples/cpp/visual_language_chat/CMakeLists.txt b/samples/cpp/visual_language_chat/CMakeLists.txt index 9a1b21632f..9d3dea68a3 100644 --- a/samples/cpp/visual_language_chat/CMakeLists.txt +++ b/samples/cpp/visual_language_chat/CMakeLists.txt @@ -13,6 +13,8 @@ file(DOWNLOAD ${CMAKE_BINARY_DIR}/stb_image.h EXPECTED_HASH MD5=27932e6fb3a2f26aee2fc33f2cb4e696) +# create main sample executable + add_executable(visual_language_chat visual_language_chat.cpp load_image.cpp) target_include_directories(visual_language_chat PRIVATE "${CMAKE_CURRENT_SOUCE_DIR}" "${CMAKE_BINARY_DIR}") target_link_libraries(visual_language_chat PRIVATE openvino::genai) @@ -26,3 +28,18 @@ install(TARGETS visual_language_chat RUNTIME DESTINATION samples_bin/ COMPONENT samples_bin EXCLUDE_FROM_ALL) + +# create benchmark executable + +add_executable(benchmark_vlm benchmark_vlm.cpp load_image.cpp) +target_include_directories(benchmark_vlm PRIVATE "${CMAKE_CURRENT_SOUCE_DIR}" "${CMAKE_BINARY_DIR}") +target_link_libraries(benchmark_vlm PRIVATE openvino::genai cxxopts::cxxopts) +set_target_properties(benchmark_vlm PROPERTIES + COMPILE_PDB_NAME benchmark_vlm + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS benchmark_vlm + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) \ No newline at end of file diff --git a/samples/cpp/visual_language_chat/README.md b/samples/cpp/visual_language_chat/README.md index 96b1c78ec0..39364d51ee 100644 --- a/samples/cpp/visual_language_chat/README.md +++ b/samples/cpp/visual_language_chat/README.md @@ -2,6 +2,12 @@ This example showcases inference of Visual language models (VLMs): [`openbmb/MiniCPM-V-2_6`](https://huggingface.co/openbmb/MiniCPM-V-2_6). The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `ov::genai::VLMPipeline` and runs the simplest deterministic greedy sampling algorithm. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant. + +There are two sample files: + - [`visual_language_chat.cpp`](./visual_language_chat.cpp) demonstrates basic usage of the VLM pipeline. + - [`benchmark_vlm.cpp`](./benchmark_vlm.cpp) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics. + + ## Download and convert the model and tokenizers The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. @@ -25,6 +31,41 @@ Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is See [SUPPORTED_MODELS.md](../../../src/docs/SUPPORTED_MODELS.md#visual-language-models) for the list of supported models. +## Run benchmark: + +```sh +benchmark_vlm [OPTIONS] +``` + +### Options + +- `-m, --model`(default: `.`): Path to the model and tokenizers base directory. +- `-p, --prompt` (default: `What is on the image?`): The prompt to generate text. +- `-i, --image` (default: `image.jpg`): Path to the image. +- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. +- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. +- `-n, --num_iter` (default: `3`): Number of iterations. +- `-d, --device` (default: `"CPU"`): Device to run the model on. + +### Output: + +``` +benchmark_vlm -m miniCPM-V-2_6 -i 319483352-d5fbbd1a-d484-415c-88cb-9986625b7b11.jpg -n 3 +``` + +``` +Load time: 1982.00 ms +Generate time: 13820.99 ± 64.62 ms +Tokenization time: 1.26 ± 0.09 ms +Detokenization time: 0.33 ± 0.05 ms +Embeddings preparation time: 5733.85 ± 26.34 ms +TTFT: 11246.98 ± 80.55 ms +TPOT: 135.45 ± 4.73 ms/token +Throughput: 7.38 ± 0.26 tokens/s +``` + +For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics). + ### Troubleshooting #### Unicode characters encoding error on Windows diff --git a/samples/cpp/visual_language_chat/benchmark_vlm.cpp b/samples/cpp/visual_language_chat/benchmark_vlm.cpp new file mode 100644 index 0000000000..858a626fd5 --- /dev/null +++ b/samples/cpp/visual_language_chat/benchmark_vlm.cpp @@ -0,0 +1,82 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include +#include + +#include "load_image.hpp" +#include + + +int main(int argc, char* argv[]) try { + cxxopts::Options options("benchmark_vlm", "Help command"); + + options.add_options() + ("m,model", "Path to model and tokenizers base directory", cxxopts::value()->default_value(".")) + ("p,prompt", "Prompt", cxxopts::value()->default_value("What is on the image?")) + ("i,image", "Image", cxxopts::value()->default_value("image.jpg")) + ("nw,num_warmup", "Number of warmup iterations", cxxopts::value()->default_value(std::to_string(1))) + ("n,num_iter", "Number of iterations", cxxopts::value()->default_value(std::to_string(3))) + ("mt,max_new_tokens", "Maximal number of new tokens", cxxopts::value()->default_value(std::to_string(20))) + ("d,device", "device", cxxopts::value()->default_value("CPU")) + ("h,help", "Print usage"); + + cxxopts::ParseResult result; + try { + result = options.parse(argc, argv); + } catch (const cxxopts::exceptions::exception& e) { + std::cout << e.what() << "\n\n"; + std::cout << options.help() << std::endl; + return EXIT_FAILURE; + } + + if (result.count("help")) { + std::cout << options.help() << std::endl; + return EXIT_SUCCESS; + } + + std::string prompt = result["prompt"].as(); + const std::string models_path = result["model"].as(); + const std::string image_path = result["image"].as(); + std::string device = result["device"].as(); + size_t num_warmup = result["num_warmup"].as(); + size_t num_iter = result["num_iter"].as(); + ov::Tensor image = utils::load_image(image_path); + + ov::genai::GenerationConfig config; + config.max_new_tokens = result["max_new_tokens"].as(); + + ov::genai::VLMPipeline pipe(models_path, device); + + for (size_t i = 0; i < num_warmup; i++) + pipe.generate(prompt, ov::genai::image(image), ov::genai::generation_config(config)); + + auto res = pipe.generate(prompt, ov::genai::image(image), ov::genai::generation_config(config)); + auto metrics = res.perf_metrics; + for (size_t i = 0; i < num_iter - 1; i++) { + res = pipe.generate(prompt, ov::genai::image(image), ov::genai::generation_config(config)); + metrics = metrics + res.perf_metrics; + } + + std::cout << std::fixed << std::setprecision(2); + std::cout << "Load time: " << metrics.get_load_time() << " ms" << std::endl; + std::cout << "Generate time: " << metrics.get_generate_duration().mean << " ± " << metrics.get_generate_duration().std << " ms" << std::endl; + std::cout << "Tokenization time: " << metrics.get_tokenization_duration().mean << " ± " << metrics.get_tokenization_duration().std << " ms" << std::endl; + std::cout << "Detokenization time: " << metrics.get_detokenization_duration().mean << " ± " << metrics.get_detokenization_duration().std << " ms" << std::endl; + std::cout << "Embeddings preparation time: " << metrics.get_prepare_embeddings_duration().mean << " ± " << metrics.get_prepare_embeddings_duration().std << " ms" << std::endl; + std::cout << "TTFT: " << metrics.get_ttft().mean << " ± " << metrics.get_ttft().std << " ms" << std::endl; + std::cout << "TPOT: " << metrics.get_tpot().mean << " ± " << metrics.get_tpot().std << " ms/token " << std::endl; + std::cout << "Throughput: " << metrics.get_throughput().mean << " ± " << metrics.get_throughput().std << " tokens/s" << std::endl; + + return 0; +} catch (const std::exception& error) { + try { + std::cerr << error.what() << '\n'; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} catch (...) { + try { + std::cerr << "Non-exception object thrown\n"; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} diff --git a/samples/python/visual_language_chat/README.md b/samples/python/visual_language_chat/README.md index e8744a8c8f..52bc5ff082 100644 --- a/samples/python/visual_language_chat/README.md +++ b/samples/python/visual_language_chat/README.md @@ -2,6 +2,10 @@ This example showcases inference of text-generation Vision Language Models (VLMs): `miniCPM-V-2_6` and other models with the same signature. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `openvino_genai.VLMPipeline` and configures it for the chat scenario. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/minicpm-v-multimodal-chatbot) which provides an example of Visual-language assistant. +There are two sample files: + - [`visual_language_chat.py`](./visual_language_chat.py) demonstrates basic usage of the VLM pipeline. + - [`benchmark_vlm.py`](./benchmark_vlm.py) shows how to benchmark a VLM in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text and calculating various performance metrics. + ## Download and convert the model and tokenizers The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. @@ -27,6 +31,41 @@ Modify the source code to change the device for inference to the GPU. See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models. +## Run benchmark: + +```sh +python benchmark_vlm.py [OPTIONS] +``` + +### Options + +- `-m, --model`(default: `.`): Path to the model and tokenizers base directory. +- `-p, --prompt` (default: `What is on the image?`): The prompt to generate text. +- `-i, --image` (default: `image.jpg`): Path to the image. +- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. +- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. +- `-n, --num_iter` (default: `3`): Number of iterations. +- `-d, --device` (default: `"CPU"`): Device to run the model on. + +### Output: + +``` +python benchmark_vlm.py -m miniCPM-V-2_6 -i 319483352-d5fbbd1a-d484-415c-88cb-9986625b7b11.jpg -n 3 +``` + +``` +Load time: 1982.00 ms +Generate time: 13820.99 ± 64.62 ms +Tokenization time: 1.26 ± 0.09 ms +Detokenization time: 0.33 ± 0.05 ms +Embeddings preparation time: 5733.85 ± 26.34 ms +TTFT: 11246.98 ± 80.55 ms +TPOT: 135.45 ± 4.73 ms/token +Throughput: 7.38 ± 0.26 tokens/s +``` + +For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics). + ### Troubleshooting #### Unicode characters encoding error on Windows diff --git a/samples/python/visual_language_chat/benchmark_vlm.py b/samples/python/visual_language_chat/benchmark_vlm.py new file mode 100755 index 0000000000..4a8f50de73 --- /dev/null +++ b/samples/python/visual_language_chat/benchmark_vlm.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 +# Copyright (C) 2023-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import argparse +import openvino_genai as ov_genai +from PIL import Image +from openvino import Tensor +import numpy as np + + +def read_image(path: str) -> Tensor: + ''' + + Args: + path: The path to the image. + + Returns: the ov.Tensor containing the image. + + ''' + pic = Image.open(path).convert("RGB") + image_data = np.array(pic.getdata()).reshape(1, pic.size[1], pic.size[0], 3).astype(np.uint8) + return Tensor(image_data) + + +def main(): + parser = argparse.ArgumentParser(description="Help command") + parser.add_argument("-m", "--model", type=str, help="Path to model and tokenizers base directory") + parser.add_argument("-p", "--prompt", type=str, default="The Sky is blue because", help="Prompt") + parser.add_argument("-i", "--image", type=str, default="image.jpg", help="Image") + parser.add_argument("-nw", "--num_warmup", type=int, default=1, help="Number of warmup iterations") + parser.add_argument("-n", "--num_iter", type=int, default=2, help="Number of iterations") + parser.add_argument("-mt", "--max_new_tokens", type=int, default=20, help="Maximal number of new tokens") + parser.add_argument("-d", "--device", type=str, default="CPU", help="Device") + + args = parser.parse_args() + + # Perf metrics is stored in VLMDecodedResults. + # In order to get VLMDecodedResults instead of a string input should be a list. + prompt = args.prompt + models_path = args.model + image = read_image(args.image) + device = args.device + num_warmup = args.num_warmup + num_iter = args.num_iter + + config = ov_genai.GenerationConfig() + config.max_new_tokens = args.max_new_tokens + + pipe = ov_genai.VLMPipeline(models_path, device) + + for _ in range(num_warmup): + pipe.generate(prompt, images=image, generation_config=config) + + res = pipe.generate(prompt, images=image, generation_config=config) + perf_metrics = res.perf_metrics + for _ in range(num_iter - 1): + res = pipe.generate(prompt, images=image, generation_config=config) + perf_metrics += res.perf_metrics + + print(f"Load time: {perf_metrics.get_load_time():.2f} ms") + print( + f"Generate time: {perf_metrics.get_generate_duration().mean:.2f} ± {perf_metrics.get_generate_duration().std:.2f} ms") + print( + f"Tokenization time: {perf_metrics.get_tokenization_duration().mean:.2f} ± {perf_metrics.get_tokenization_duration().std:.2f} ms") + print( + f"Detokenization time: {perf_metrics.get_detokenization_duration().mean:.2f} ± {perf_metrics.get_detokenization_duration().std:.2f} ms") + print( + f"Embeddings preparation time: {perf_metrics.get_prepare_embeddings_duration().mean:.2f} ± {perf_metrics.get_prepare_embeddings_duration().std:.2f} ms") + print(f"TTFT: {perf_metrics.get_ttft().mean:.2f} ± {perf_metrics.get_ttft().std:.2f} ms") + print(f"TPOT: {perf_metrics.get_tpot().mean:.2f} ± {perf_metrics.get_tpot().std:.2f} ms") + print(f"Throughput : {perf_metrics.get_throughput().mean:.2f} ± {perf_metrics.get_throughput().std:.2f} tokens/s") + + +if __name__ == "__main__": + main() diff --git a/src/cpp/include/openvino/genai/visual_language/perf_metrics.hpp b/src/cpp/include/openvino/genai/visual_language/perf_metrics.hpp new file mode 100644 index 0000000000..18476a5e7f --- /dev/null +++ b/src/cpp/include/openvino/genai/visual_language/perf_metrics.hpp @@ -0,0 +1,34 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "openvino/genai/perf_metrics.hpp" +#include "openvino/genai/visibility.hpp" + + +namespace ov::genai { + +struct OPENVINO_GENAI_EXPORTS VLMRawPerfMetrics { + /** @brief Duration of preparation of embeddings */ + std::vector prepare_embeddings_durations; +}; + +struct OPENVINO_GENAI_EXPORTS VLMPerfMetrics : public PerfMetrics { + /** @brief Mean and standard deviation of preparation of embeddings in milliseconds */ + MeanStdPair prepare_embeddings_duration; + + MeanStdPair get_prepare_embeddings_duration(); + + VLMPerfMetrics() = default; + + VLMPerfMetrics(PerfMetrics& perf_metrics) : PerfMetrics(perf_metrics){}; + + void evaluate_statistics(std::optional start_time = std::nullopt) override; + + VLMPerfMetrics operator+(const VLMPerfMetrics& metrics) const; + + VLMRawPerfMetrics vlm_raw_metrics; +}; + +} \ No newline at end of file diff --git a/src/cpp/include/openvino/genai/visual_language/pipeline.hpp b/src/cpp/include/openvino/genai/visual_language/pipeline.hpp index fcd684bbb0..2c122650d4 100644 --- a/src/cpp/include/openvino/genai/visual_language/pipeline.hpp +++ b/src/cpp/include/openvino/genai/visual_language/pipeline.hpp @@ -10,9 +10,15 @@ #include "openvino/genai/llm_pipeline.hpp" #include "openvino/genai/streamer_base.hpp" #include "openvino/genai/tokenizer.hpp" +#include "openvino/genai/visual_language/perf_metrics.hpp" namespace ov::genai { +class OPENVINO_GENAI_EXPORTS VLMDecodedResults : public DecodedResults{ +public: + VLMPerfMetrics perf_metrics; +}; + /// @brief A Visual language modeling pipeline class used to generate a /// response or run a chat given a prompt and an image. class OPENVINO_GENAI_EXPORTS VLMPipeline { @@ -52,7 +58,7 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { /// @param generation_config A config to follow for text generation. /// @param streamer A streamer to acquire intermediate result. /// @return A string generated by a model. - DecodedResults generate( + VLMDecodedResults generate( const std::string& prompt, const std::vector& rgbs, const GenerationConfig& generation_config, @@ -65,7 +71,7 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { /// @param generation_config A config to follow for text generation. /// @param streamer A streamer to acquire intermediate result. /// @return A string generated by a model. - DecodedResults generate( + VLMDecodedResults generate( const std::string& prompt, const ov::Tensor& rgb, const GenerationConfig& generation_config, @@ -78,7 +84,7 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { /// for its members, StreamerVariant a single image or multiple /// images. /// @return A string generated by a model. - DecodedResults generate( + VLMDecodedResults generate( const std::string& prompt, const ov::AnyMap& config_map ); @@ -92,7 +98,7 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { /// ov::AnyMap. /// @return A string generated by a model. template - util::EnableIfAllStringAny generate( + util::EnableIfAllStringAny generate( const std::string& prompt, Properties&&... properties ) { diff --git a/src/cpp/include/openvino/genai/whisper_pipeline.hpp b/src/cpp/include/openvino/genai/whisper_pipeline.hpp index b52fe3a846..6078298c60 100644 --- a/src/cpp/include/openvino/genai/whisper_pipeline.hpp +++ b/src/cpp/include/openvino/genai/whisper_pipeline.hpp @@ -40,7 +40,7 @@ struct OPENVINO_GENAI_EXPORTS WhisperRawPerfMetrics { }; struct OPENVINO_GENAI_EXPORTS WhisperPerfMetrics : public PerfMetrics { - /** @brief Mean and standart deviation of Features Extraction Duration in milliseconds */ + /** @brief Mean and standard deviation of Features Extraction Duration in milliseconds */ MeanStdPair features_extraction_duration; MeanStdPair get_features_extraction_duration(); diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index 4b67cbe00f..6b0fe82333 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -1,6 +1,7 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#include "openvino/genai/visual_language/perf_metrics.hpp" #include "visual_language/inputs_embedder.hpp" #include "visual_language/clip.hpp" @@ -40,7 +41,7 @@ class InputsEmbedder::IInputsEmbedder { bool m_is_cache_empty = true; public: - virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images) = 0; + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) = 0; EmbeddingsModel get_embedding_model() const { return m_embedding; @@ -91,7 +92,7 @@ class InputsEmbedder::IInputsEmbedder { m_embedding(model_dir, m_vlm_config.scale_emb, device, device_config), m_tokenizer{model_dir.string(), device_config} { } - ov::Tensor get_encoded_input_ids(const std::string& prompt, const std::string& chat_template_fallback = "") { + ov::Tensor get_encoded_input_ids(const std::string& prompt, ov::genai::VLMPerfMetrics& metrics, const std::string& chat_template_fallback = "") { ov::Tensor encoded_input_ids; if (m_is_chat_conversation) { // KV cache in model already contains prompts and answers from previous iterations. @@ -111,6 +112,7 @@ class InputsEmbedder::IInputsEmbedder { // Use fallback chat template if it was not found in tokenizer_config.json new_templated_chat_history = m_tokenizer.apply_chat_template(m_history, add_generation_prompt, chat_template_fallback); } + auto start_tokenizer_time = std::chrono::steady_clock::now(); ov::Tensor new_chat_tokens = m_tokenizer.encode(new_templated_chat_history).input_ids; if (m_is_cache_empty) { encoded_input_ids = new_chat_tokens; @@ -124,9 +126,14 @@ class InputsEmbedder::IInputsEmbedder { {new_chat_tokens}, prev_chat_tokens ).input_ids; } + auto end_tokenizer_time = std::chrono::steady_clock::now(); + metrics.raw_metrics.tokenization_durations.emplace_back(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); m_templated_chat_history = std::move(new_templated_chat_history); } else { + auto start_tokenizer_time = std::chrono::steady_clock::now(); encoded_input_ids = m_tokenizer.encode(prompt).input_ids; + auto end_tokenizer_time = std::chrono::steady_clock::now(); + metrics.raw_metrics.tokenization_durations.emplace_back(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); } return encoded_input_ids; } @@ -198,7 +205,7 @@ class InputsEmbedderMiniCPM : public InputsEmbedder::IInputsEmbedder { m_pos_embed_cache = get_2d_sincos_pos_embed(m_vlm_config.hidden_size, {70, 70}); } - virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images) override { + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string images_prompt; std::vector embeds; @@ -233,19 +240,23 @@ class InputsEmbedderMiniCPM : public InputsEmbedder::IInputsEmbedder { } images_prompt += prompt; - ov::Tensor encoded_input = get_encoded_input_ids(images_prompt); + ov::Tensor encoded_input = get_encoded_input_ids(images_prompt, metrics); ov::Tensor inputs_embeds = m_embedding.infer(encoded_input); OPENVINO_ASSERT( m_vlm_config.hidden_size == inputs_embeds.get_shape().at(2), "Unexpected embedding size" ); + auto start_tokenizer_time = std::chrono::steady_clock::now(); ov::Tensor special_tokens = m_tokenizer.encode( m_vlm_config.im_start + m_vlm_config.im_end + m_vlm_config.slice_start + m_vlm_config.slice_end ).input_ids; + auto end_tokenizer_time = std::chrono::steady_clock::now(); + OPENVINO_ASSERT(metrics.raw_metrics.tokenization_durations.size() > 0); + metrics.raw_metrics.tokenization_durations[metrics.raw_metrics.tokenization_durations.size() - 1] += ov::genai::MicroSeconds(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); OPENVINO_ASSERT( 4 == special_tokens.get_shape().at(1), "Every special token must be represented with a single int." @@ -290,7 +301,6 @@ class InputsEmbedderMiniCPM : public InputsEmbedder::IInputsEmbedder { if (!m_is_chat_conversation) { m_image_id = 0; } - return inputs_embeds; } @@ -484,7 +494,7 @@ class InputsEmbedderLLaVA : public InputsEmbedder::IInputsEmbedder { const ov::AnyMap device_config) : IInputsEmbedder(vlm_config, model_dir, device, device_config) { } - virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images) override { + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_token = m_vlm_config.im_start; // Adapted from llava-1.5-7b-hf chat_template.json std::string chat_template_fallback = "{% for message in messages %}{% if message['role'] == 'user' %}{{ 'USER: ' + message['content'] + ' ' }}{% else %}{{ 'ASSISTANT: ' + message['content'] + ' ' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}"; @@ -502,16 +512,18 @@ class InputsEmbedderLLaVA : public InputsEmbedder::IInputsEmbedder { } formatted_prompt += prompt; - ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt, chat_template_fallback); + ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt, metrics, chat_template_fallback); ov::Tensor text_embeds = m_embedding.infer(input_ids); if (images.empty()) { return text_embeds; } - + auto start_tokenizer_time = std::chrono::steady_clock::now(); ov::Tensor encoded_image_token = m_tokenizer.encode(m_vlm_config.im_start, ov::genai::add_special_tokens(false)).input_ids; + auto end_tokenizer_time = std::chrono::steady_clock::now(); + OPENVINO_ASSERT(metrics.raw_metrics.tokenization_durations.size() > 0); + metrics.raw_metrics.tokenization_durations[metrics.raw_metrics.tokenization_durations.size() - 1] += ov::genai::MicroSeconds(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); int64_t image_token_id = encoded_image_token.data()[encoded_image_token.get_size() - 1]; - return merge_text_and_image_embeddings_llava(input_ids, text_embeds, image_embeds, image_token_id); } @@ -587,7 +599,7 @@ class InputsEmbedderLLaVANext : public InputsEmbedderLLaVA { const ov::AnyMap device_config) : InputsEmbedderLLaVA(vlm_config, model_dir, device, device_config) { } - virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images) override { + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_token = m_vlm_config.im_start; // Adapted from llava-1.5-7b-hf chat_template.json std::string chat_template_fallback = "{% for message in messages %}{% if message['role'] == 'user' %}{{ 'USER: ' + message['content'] + ' ' }}{% else %}{{ 'ASSISTANT: ' + message['content'] + ' ' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}"; @@ -619,16 +631,18 @@ class InputsEmbedderLLaVANext : public InputsEmbedderLLaVA { } formatted_prompt += prompt; - ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt, chat_template_fallback); + ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt, metrics, chat_template_fallback); ov::Tensor text_embeds = m_embedding.infer(input_ids); if (images.empty()) { return text_embeds; } - + auto start_tokenizer_time = std::chrono::steady_clock::now(); ov::Tensor encoded_image_token = m_tokenizer.encode(m_vlm_config.im_start, ov::genai::add_special_tokens(false)).input_ids; + auto end_tokenizer_time = std::chrono::steady_clock::now(); + OPENVINO_ASSERT(metrics.raw_metrics.tokenization_durations.size() > 0); + metrics.raw_metrics.tokenization_durations[metrics.raw_metrics.tokenization_durations.size() - 1] += ov::genai::MicroSeconds(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); int64_t image_token_id = encoded_image_token.data()[encoded_image_token.get_size() - 1]; - return merge_text_and_image_embeddings_llava(input_ids, text_embeds, image_embeds, image_token_id); } @@ -903,7 +917,7 @@ class InputsEmbedderInternVLChat : public InputsEmbedder::IInputsEmbedder { const ov::AnyMap device_config) : IInputsEmbedder(vlm_config, model_dir, device, device_config) { } - virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images) override { + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_start_token = m_vlm_config.image_start_token; std::string image_context_token = m_vlm_config.image_context_token; std::string image_end_token = m_vlm_config.image_end_token; @@ -931,16 +945,18 @@ class InputsEmbedderInternVLChat : public InputsEmbedder::IInputsEmbedder { } formatted_prompt += prompt; - ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt); + ov::Tensor input_ids = get_encoded_input_ids(formatted_prompt, metrics); ov::Tensor text_embeds = m_embedding.infer(input_ids); if (images.empty()) { return text_embeds; } - + auto start_tokenizer_time = std::chrono::steady_clock::now(); ov::Tensor encoded_image_context_token = m_tokenizer.encode(image_context_token, ov::genai::add_special_tokens(false)).input_ids; + auto end_tokenizer_time = std::chrono::steady_clock::now(); + OPENVINO_ASSERT(metrics.raw_metrics.tokenization_durations.size() > 0); + metrics.raw_metrics.tokenization_durations[metrics.raw_metrics.tokenization_durations.size() - 1] += ov::genai::MicroSeconds(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); int64_t image_context_token_id = encoded_image_context_token.data()[encoded_image_context_token.get_size() - 1]; - return merge_text_and_image_embeddings_internvl(input_ids, text_embeds, image_embeds, image_context_token_id); } @@ -1023,8 +1039,8 @@ InputsEmbedder::InputsEmbedder(const VLMConfig& vlm_config, } } -ov::Tensor InputsEmbedder::get_inputs_embeds(const std::string& prompt, const std::vector& images) { - return m_impl->get_inputs_embeds(prompt, images); +ov::Tensor InputsEmbedder::get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) { + return m_impl->get_inputs_embeds(prompt, images, metrics); } EmbeddingsModel InputsEmbedder::get_embedding_model() const { diff --git a/src/cpp/src/visual_language/inputs_embedder.hpp b/src/cpp/src/visual_language/inputs_embedder.hpp index 15df273ee8..cfe7327805 100644 --- a/src/cpp/src/visual_language/inputs_embedder.hpp +++ b/src/cpp/src/visual_language/inputs_embedder.hpp @@ -14,6 +14,7 @@ #include "visual_language/embedding_model.hpp" namespace ov::genai { +struct VLMPerfMetrics; class InputsEmbedder { public: @@ -23,7 +24,7 @@ class InputsEmbedder { const ov::AnyMap device_config); // compute input embedding for prompt and multiple images - ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images); + ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics); // returns embedding model which converts token_id(s) to embedding vectors EmbeddingsModel get_embedding_model() const; diff --git a/src/cpp/src/visual_language/perf_metrics.cpp b/src/cpp/src/visual_language/perf_metrics.cpp new file mode 100644 index 0000000000..a3afb83641 --- /dev/null +++ b/src/cpp/src/visual_language/perf_metrics.cpp @@ -0,0 +1,36 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/visual_language/perf_metrics.hpp" + +namespace ov::genai { +MeanStdPair calc_mean_and_std(const std::vector& durations); + +MeanStdPair VLMPerfMetrics::get_prepare_embeddings_duration() { + evaluate_statistics(); + return prepare_embeddings_duration; +} + +void VLMPerfMetrics::evaluate_statistics(std::optional start_time) { + if (m_evaluated) { + return; + } + + prepare_embeddings_duration = ov::genai::calc_mean_and_std(vlm_raw_metrics.prepare_embeddings_durations); + PerfMetrics::evaluate_statistics(start_time); +}; + +VLMPerfMetrics VLMPerfMetrics::operator+(const VLMPerfMetrics& right) const { + PerfMetrics base_result = PerfMetrics::operator+(right); + VLMPerfMetrics result{base_result}; + + result.vlm_raw_metrics = vlm_raw_metrics; + + auto& result_prepare_embeddings_durations = result.vlm_raw_metrics.prepare_embeddings_durations; + auto& right_prepare_embeddings_durations = right.vlm_raw_metrics.prepare_embeddings_durations; + result_prepare_embeddings_durations.insert(result_prepare_embeddings_durations.end(), + right_prepare_embeddings_durations.begin(), + right_prepare_embeddings_durations.end()); + return result; +} +} \ No newline at end of file diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 9ece0ff754..8059c60896 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -5,6 +5,7 @@ #include #include "openvino/genai/visual_language/pipeline.hpp" +#include "openvino/genai/visual_language/perf_metrics.hpp" #include "openvino/genai/tokenizer.hpp" #include "visual_language/vlm_config.hpp" @@ -50,6 +51,8 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { bool m_is_chat_conversation; // InputsEmbedder std::shared_ptr m_inputs_embedder; + // Load pipeline time + float m_load_time_ms = 0; VLMPipelineImpl( const std::filesystem::path& models_dir, @@ -80,18 +83,24 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { } } - DecodedResults generate( + VLMDecodedResults generate( const std::string& prompt, const std::vector& rgbs, GenerationConfig generation_config, const StreamerVariant& streamer ) { + auto generate_start_time = std::chrono::steady_clock::now(); + VLMPerfMetrics perf_metrics; + auto& raw_counters = perf_metrics.raw_metrics; + auto& raw_vlm_counters = perf_metrics.vlm_raw_metrics; // If eos_token_id was not provided, take value from default m_generation_config if (generation_config.eos_token_id == -1) generation_config.set_eos_token_id(m_generation_config.eos_token_id); generation_config.validate(); - ov::Tensor inputs_embeds = m_inputs_embedder->get_inputs_embeds(prompt, rgbs); + auto start_get_inputs_embeds = std::chrono::steady_clock::now(); + ov::Tensor inputs_embeds = m_inputs_embedder->get_inputs_embeds(prompt, rgbs, perf_metrics); + auto end_get_inputs_embeds = std::chrono::steady_clock::now(); Sampler sampler = Sampler(m_tokenizer); @@ -136,11 +145,13 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { std::tie(encoded_result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, sampler, requests, position_ids, m_embedding, std::nullopt); - DecodedResults decoded; + auto decode_start_time = std::chrono::steady_clock::now(); + VLMDecodedResults decoded; for (size_t idx = 0; idx < encoded_result.tokens.size(); ++idx) { decoded.texts.push_back(m_tokenizer.decode(encoded_result.tokens.at(idx))); decoded.scores.push_back(encoded_result.scores.at(idx)); } + auto decode_end_time = std::chrono::steady_clock::now(); std::string decoded_results = decoded.texts.at(0); if (m_is_chat_conversation) { @@ -149,10 +160,26 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { m_language.reset_state(); m_language.get_tensor("attention_mask").set_shape({1, 0}); } + auto generate_end_time = std::chrono::steady_clock::now(); + decoded.perf_metrics = encoded_result.perf_metrics; + + // Common perf metrics + auto& res_raw_counters = decoded.perf_metrics.raw_metrics; + decoded.perf_metrics.load_time = m_load_time_ms; + res_raw_counters.generate_durations.emplace_back(PerfMetrics::get_microsec(generate_end_time - generate_start_time)); + res_raw_counters.detokenization_durations.emplace_back(PerfMetrics::get_microsec(decode_end_time - decode_start_time)); + res_raw_counters.tokenization_durations.insert(res_raw_counters.tokenization_durations.end(), raw_counters.tokenization_durations.begin(), raw_counters.tokenization_durations.end()); + + // VLM specific perf metrics + decoded.perf_metrics.vlm_raw_metrics.prepare_embeddings_durations.emplace_back(PerfMetrics::get_microsec(end_get_inputs_embeds - start_get_inputs_embeds)); + + // Evaluate statistics + decoded.perf_metrics.m_evaluated = false; + decoded.perf_metrics.evaluate_statistics(generate_start_time); return decoded; } - DecodedResults generate( + VLMDecodedResults generate( const std::string& prompt, const ov::AnyMap& config_map ) { @@ -222,11 +249,16 @@ VLMPipeline::VLMPipeline( const std::filesystem::path& models_dir, const std::string& device, const ov::AnyMap& properties -) : m_pimpl{std::make_unique(models_dir, device, properties)} {} +) { + auto start_time = std::chrono::steady_clock::now(); + m_pimpl = std::make_unique(models_dir, device, properties); + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); +} ov::genai::VLMPipeline::~VLMPipeline() = default; -DecodedResults VLMPipeline::generate( +VLMDecodedResults VLMPipeline::generate( const std::string& prompt, const std::vector& rgbs, const GenerationConfig& generation_config, @@ -235,7 +267,7 @@ DecodedResults VLMPipeline::generate( return m_pimpl->generate(prompt, rgbs, generation_config, streamer); } -DecodedResults VLMPipeline::generate( +VLMDecodedResults VLMPipeline::generate( const std::string& prompt, const ov::Tensor& rgb, const GenerationConfig& generation_config, @@ -244,7 +276,7 @@ DecodedResults VLMPipeline::generate( return m_pimpl->generate(prompt, {rgb}, generation_config, streamer); } -DecodedResults VLMPipeline::generate( +VLMDecodedResults VLMPipeline::generate( const std::string& prompt, const ov::AnyMap& config_map ) { diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 1c386dc097..644863ac04 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -5,7 +5,7 @@ from __future__ import annotations import openvino._pyopenvino import os import typing -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] class Adapter: """ Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. @@ -1395,6 +1395,48 @@ class UNet2DConditionModel: ... def set_hidden_states(self, tensor_name: str, encoder_hidden_states: openvino._pyopenvino.Tensor) -> None: ... +class VLMDecodedResults: + """ + + Structure to store resulting batched text outputs and scores for each batch. + The first num_return_sequences elements correspond to the first batch element. + + Parameters: + texts: vector of resulting sequences. + scores: scores for each sequence. + metrics: performance metrics with tpot, ttft, etc. of type openvino_genai.VLMPerfMetrics. + """ + def __init__(self) -> None: + ... + def __str__(self) -> str: + ... + @property + def perf_metrics(self) -> VLMPerfMetrics: + ... + @property + def scores(self) -> list[float]: + ... + @property + def texts(self) -> list[str]: + ... +class VLMPerfMetrics(PerfMetrics): + """ + + Structure with raw performance metrics for each generation before any statistics are calculated. + + :param get_prepare_embeddings_duration: Returns mean and standard deviation of embeddings preparation duration in milliseconds + :type get_prepare_embeddings_duration: MeanStdPair + + :param vlm_raw_metrics: VLM specific raw metrics + :type VLMRawPerfMetrics: + """ + def __init__(self) -> None: + ... + def get_prepare_embeddings_duration(self) -> MeanStdPair: + ... + @property + def vlm_raw_metrics(self) -> VLMRawPerfMetrics: + ... class VLMPipeline: """ This class is used for generation with VLMs @@ -1410,7 +1452,7 @@ class VLMPipeline: def finish_chat(self) -> None: ... @typing.overload - def generate(self, prompt: str, images: list[openvino._pyopenvino.Tensor], generation_config: GenerationConfig, streamer: typing.Callable[[str], bool] | StreamerBase | None = None, **kwargs) -> DecodedResults: + def generate(self, prompt: str, images: list[openvino._pyopenvino.Tensor], generation_config: GenerationConfig, streamer: typing.Callable[[str], bool] | StreamerBase | None = None, **kwargs) -> VLMDecodedResults: """ Generates sequences for VLMs. @@ -1430,10 +1472,10 @@ class VLMPipeline: :type : Dict :return: return results in decoded form - :rtype: DecodedResults + :rtype: VLMDecodedResults """ @typing.overload - def generate(self, prompt: str, images: openvino._pyopenvino.Tensor, generation_config: GenerationConfig, streamer: typing.Callable[[str], bool] | StreamerBase | None = None, **kwargs) -> DecodedResults: + def generate(self, prompt: str, images: openvino._pyopenvino.Tensor, generation_config: GenerationConfig, streamer: typing.Callable[[str], bool] | StreamerBase | None = None, **kwargs) -> VLMDecodedResults: """ Generates sequences for VLMs. @@ -1453,10 +1495,10 @@ class VLMPipeline: :type : Dict :return: return results in decoded form - :rtype: DecodedResults + :rtype: VLMDecodedResults """ @typing.overload - def generate(self, prompt: str, **kwargs) -> DecodedResults: + def generate(self, prompt: str, **kwargs) -> VLMDecodedResults: """ Generates sequences for VLMs. @@ -1472,7 +1514,7 @@ class VLMPipeline: streamer: Callable[[str], bool], ov.genai.StreamerBase - streamer either as a lambda with a boolean returning flag whether generation should be stopped :return: return results in decoded form - :rtype: DecodedResults + :rtype: VLMDecodedResults """ def get_generation_config(self) -> GenerationConfig: ... @@ -1484,6 +1526,19 @@ class VLMPipeline: ... def start_chat(self, system_message: str = '') -> None: ... +class VLMRawPerfMetrics: + """ + + Structure with VLM specific raw performance metrics for each generation before any statistics are calculated. + + :param prepare_embeddings_durations: Durations of embeddings preparation. + :type prepare_embeddings_durations: List[MicroSeconds] + """ + def __init__(self) -> None: + ... + @property + def prepare_embeddings_durations(self) -> list[float]: + ... class WhisperDecodedResultChunk: """ @@ -1620,7 +1675,7 @@ class WhisperPerfMetrics(PerfMetrics): Structure with raw performance metrics for each generation before any statistics are calculated. - :param get_features_extraction_duration: Returns mean and standart deviation of features extraction duration in milliseconds + :param get_features_extraction_duration: Returns mean and standard deviation of features extraction duration in milliseconds :type get_features_extraction_duration: MeanStdPair :param whisper_raw_metrics: Whisper specific raw metrics diff --git a/src/python/py_vlm_pipeline.cpp b/src/python/py_vlm_pipeline.cpp index fc58ddc913..340cb3da62 100644 --- a/src/python/py_vlm_pipeline.cpp +++ b/src/python/py_vlm_pipeline.cpp @@ -11,6 +11,7 @@ #include #include "openvino/genai/visual_language/pipeline.hpp" +#include "openvino/genai/visual_language/perf_metrics.hpp" #include "tokenizers_path.hpp" #include "py_utils.hpp" @@ -37,7 +38,7 @@ auto vlm_generate_docstring = R"( :type : Dict :return: return results in decoded form - :rtype: DecodedResults + :rtype: VLMDecodedResults )"; auto vlm_generate_kwargs_docstring = R"( @@ -55,7 +56,34 @@ auto vlm_generate_kwargs_docstring = R"( streamer: Callable[[str], bool], ov.genai.StreamerBase - streamer either as a lambda with a boolean returning flag whether generation should be stopped :return: return results in decoded form - :rtype: DecodedResults + :rtype: VLMDecodedResults +)"; + +auto raw_perf_metrics_docstring = R"( + Structure with VLM specific raw performance metrics for each generation before any statistics are calculated. + + :param prepare_embeddings_durations: Durations of embeddings preparation. + :type prepare_embeddings_durations: List[MicroSeconds] +)"; + +auto perf_metrics_docstring = R"( + Structure with raw performance metrics for each generation before any statistics are calculated. + + :param get_prepare_embeddings_duration: Returns mean and standard deviation of embeddings preparation duration in milliseconds + :type get_prepare_embeddings_duration: MeanStdPair + + :param vlm_raw_metrics: VLM specific raw metrics + :type VLMRawPerfMetrics: +)"; + +auto decoded_results_docstring = R"( + Structure to store resulting batched text outputs and scores for each batch. + The first num_return_sequences elements correspond to the first batch element. + + Parameters: + texts: vector of resulting sequences. + scores: scores for each sequence. + metrics: performance metrics with tpot, ttft, etc. of type openvino_genai.VLMPerfMetrics. )"; py::object call_vlm_generate( @@ -73,6 +101,35 @@ py::object call_vlm_generate( } void init_vlm_pipeline(py::module_& m) { + py::class_(m, "VLMRawPerfMetrics", raw_perf_metrics_docstring) + .def(py::init<>()) + .def_property_readonly("prepare_embeddings_durations", [](const ov::genai::VLMRawPerfMetrics& rw) { + return pyutils::get_ms(rw, &ov::genai::VLMRawPerfMetrics::prepare_embeddings_durations); + }); + + py::class_(m, "VLMPerfMetrics", perf_metrics_docstring) + .def(py::init<>()) + .def("get_prepare_embeddings_duration", &ov::genai::VLMPerfMetrics::get_prepare_embeddings_duration) + .def_readonly("vlm_raw_metrics", &ov::genai::VLMPerfMetrics::vlm_raw_metrics); + + py::class_(m, "VLMDecodedResults", decoded_results_docstring) + .def(py::init<>()) + .def_property_readonly("texts", [](const ov::genai::VLMDecodedResults &dr) -> py::typing::List { return pyutils::handle_utf8((std::vector)dr); }) + .def_readonly("scores", &ov::genai::VLMDecodedResults::scores) + .def_readonly("perf_metrics", &ov::genai::VLMDecodedResults::perf_metrics) + .def("__str__", [](const ov::genai::VLMDecodedResults &dr) -> py::str { + auto valid_utf8_strings = pyutils::handle_utf8((std::vector)dr); + py::str res; + if (valid_utf8_strings.size() == 1) + return valid_utf8_strings[0]; + + for (size_t i = 0; i < valid_utf8_strings.size() - 1; i++) { + res += py::str(std::to_string(dr.scores[i])) + py::str(": ") + valid_utf8_strings[i] + py::str("\n"); + } + res += py::str(std::to_string(dr.scores.back())) + py::str(": ") + valid_utf8_strings[valid_utf8_strings.size() - 1]; + return res; + }); + py::class_(m, "VLMPipeline", "This class is used for generation with VLMs") .def(py::init([]( const std::filesystem::path& models_path, @@ -105,7 +162,7 @@ void init_vlm_pipeline(py::module_& m) { const ov::genai::GenerationConfig& generation_config, const pyutils::PyBindStreamerVariant& streamer, const py::kwargs& kwargs - ) -> py::typing::Union { + ) -> py::typing::Union { return call_vlm_generate(pipe, prompt, images, generation_config, streamer, kwargs); }, py::arg("prompt"), "Input string", @@ -122,7 +179,7 @@ void init_vlm_pipeline(py::module_& m) { const ov::genai::GenerationConfig& generation_config, const pyutils::PyBindStreamerVariant& streamer, const py::kwargs& kwargs - ) -> py::typing::Union { + ) -> py::typing::Union { return call_vlm_generate(pipe, prompt, {images}, generation_config, streamer, kwargs); }, py::arg("prompt"), "Input string", @@ -136,7 +193,7 @@ void init_vlm_pipeline(py::module_& m) { [](ov::genai::VLMPipeline& pipe, const std::string& prompt, const py::kwargs& kwargs - ) -> py::typing::Union { + ) -> py::typing::Union { return py::cast(pipe.generate(prompt, pyutils::kwargs_to_any_map(kwargs))); }, py::arg("prompt"), "Input string", diff --git a/src/python/py_whisper_pipeline.cpp b/src/python/py_whisper_pipeline.cpp index 7ecf71d2f0..49152c03f4 100644 --- a/src/python/py_whisper_pipeline.cpp +++ b/src/python/py_whisper_pipeline.cpp @@ -147,7 +147,7 @@ auto raw_perf_metrics_docstring = R"( auto perf_metrics_docstring = R"( Structure with raw performance metrics for each generation before any statistics are calculated. - :param get_features_extraction_duration: Returns mean and standart deviation of features extraction duration in milliseconds + :param get_features_extraction_duration: Returns mean and standard deviation of features extraction duration in milliseconds :type get_features_extraction_duration: MeanStdPair :param whisper_raw_metrics: Whisper specific raw metrics diff --git a/tests/python_tests/test_vlm_api.py b/tests/python_tests/test_vlm_api.py index 0cb2e509f3..f0482300b4 100644 --- a/tests/python_tests/test_vlm_api.py +++ b/tests/python_tests/test_vlm_api.py @@ -86,3 +86,39 @@ def test_sampling(config, cache): image = get_image_by_link(image_links[0]) pipe = VLMPipeline(models_path, "CPU") pipe.generate(prompts[0], image=image, generation_config=config) + +@pytest.mark.precommit +def test_perf_metrics(cache): + import numpy as np + models_path = get_ov_model(cache) + + images = [get_image_by_link(image_links[0])] + + pipe = VLMPipeline(models_path, "CPU") + result = pipe.generate(prompts[0], images=images, generation_config=get_greedy()) + + perf_metrics = result.perf_metrics + + assert perf_metrics is not None + + assert perf_metrics.get_load_time() > 0 + assert perf_metrics.get_num_generated_tokens() > 0 + assert perf_metrics.get_num_input_tokens() > 0 + assert perf_metrics.get_ttft().mean > 0 + assert perf_metrics.get_tpot().mean > 0 + assert perf_metrics.get_ipot().mean > 0 + assert perf_metrics.get_throughput().mean > 0 + assert perf_metrics.get_inference_duration().mean > 0 + assert perf_metrics.get_generate_duration().mean > 0 + assert perf_metrics.get_tokenization_duration().mean > 0 + assert perf_metrics.get_detokenization_duration().mean > 0 + assert perf_metrics.get_detokenization_duration().mean > 0 + assert perf_metrics.get_prepare_embeddings_duration().mean > 0 + + # assert that calculating statistics manually from the raw counters we get the same results as from PerfMetrics + vlm_raw_metrics = perf_metrics.vlm_raw_metrics + + raw_dur = np.array(vlm_raw_metrics.prepare_embeddings_durations) / 1000 + mean_dur, std_dur = perf_metrics.get_prepare_embeddings_duration() + assert np.allclose(mean_dur, np.mean(raw_dur)) + assert np.allclose(std_dur, np.std(raw_dur)) From 3c9fd767c842dc04a8942f08c2cf7725b5701871 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Tue, 3 Dec 2024 16:55:25 +0400 Subject: [PATCH 028/113] CB: fixed scheduler perf on old platforms (#1284) Ported https://github.com/openvinotoolkit/openvino.genai/pull/1283 to current master --- src/cpp/src/block_manager.hpp | 20 ++++++++++++++------ src/cpp/src/sequence_group.hpp | 3 +++ 2 files changed, 17 insertions(+), 6 deletions(-) diff --git a/src/cpp/src/block_manager.hpp b/src/cpp/src/block_manager.hpp index c96c17bd15..dc82897dc8 100644 --- a/src/cpp/src/block_manager.hpp +++ b/src/cpp/src/block_manager.hpp @@ -12,7 +12,6 @@ #include "sequence_group.hpp" - namespace ov::genai { class KVCacheBlock { @@ -188,7 +187,10 @@ class CacheStateDumper; */ class BlockAllocator { std::vector> m_free_blocks; - int m_total_num_blocks; + // We keep m_free_blocks_num instead of m_free_blocks[X].size() to WA old CXX library implementation issue for std::list::size() + // see https://stackoverflow.com/questions/13157164/why-isnt-stdlist-size-constant-time + std::vector m_free_blocks_num; + size_t m_total_num_blocks; friend class CacheStateDumper; size_t m_num_layers; bool m_enable_prefix_caching; @@ -202,8 +204,8 @@ class BlockAllocator { * @param num_layers The number of separate attention layers with KV caches in the LLM associated with the pipeline. * Blocks returned will be vectors with this size, each vector entry to be associated with a separate layer's KV cache. */ - BlockAllocator(int num_blocks, bool enable_prefix_caching, size_t num_layers = 1) : - m_total_num_blocks(num_blocks), m_num_layers(num_layers), m_enable_prefix_caching(enable_prefix_caching), m_overwriteable_blocks(num_layers) { + BlockAllocator(size_t num_blocks, bool enable_prefix_caching, size_t num_layers = 1) : + m_free_blocks_num(num_layers, num_blocks), m_total_num_blocks(num_blocks), m_num_layers(num_layers), m_enable_prefix_caching(enable_prefix_caching), m_overwriteable_blocks(num_layers) { OPENVINO_ASSERT(num_layers != 0, "num_layers must be non-zero"); m_free_blocks.resize(m_num_layers); for (auto& per_layer_block_list : m_free_blocks) { @@ -224,7 +226,7 @@ class BlockAllocator { * @return Number of free blocks for this layer. */ size_t num_free_blocks(size_t layer_idx) const { - return m_free_blocks[layer_idx].size() + m_overwriteable_blocks.num_blocks(); + return m_free_blocks_num[layer_idx] + num_overwriteable_blocks(); } /** @@ -270,6 +272,7 @@ class BlockAllocator { block_ptr->release(); if (block_ptr->is_free()) { m_free_blocks[layer_idx].push_back(block_ptr); + ++m_free_blocks_num[layer_idx]; } } @@ -325,6 +328,7 @@ class BlockAllocator { // actual collision case for (size_t layer_idx = 0; layer_idx < colliding_blocks_per_layer.size(); layer_idx++) { m_free_blocks[layer_idx].push_back(colliding_blocks_per_layer[layer_idx]); + ++m_free_blocks_num[layer_idx]; } } m_overwriteable_blocks.add(blocks_for_all_layers); @@ -333,12 +337,14 @@ class BlockAllocator { // TODO (vshampor): more fine-grained hash store control for (size_t layer_idx = 0; layer_idx < blocks_for_all_layers.size(); layer_idx++) { m_free_blocks[layer_idx].push_back(blocks_for_all_layers[layer_idx]); + ++m_free_blocks_num[layer_idx]; } } } else { for (size_t layer_idx = 0; layer_idx < blocks_for_all_layers.size(); layer_idx++) { m_free_blocks[layer_idx].push_back(blocks_for_all_layers[layer_idx]); + ++m_free_blocks_num[layer_idx]; } } } @@ -368,6 +374,7 @@ class BlockAllocator { KVCacheBlock::Ptr allocated_block = m_free_blocks[layer_idx].front(); allocated_block->increment(); m_free_blocks[layer_idx].pop_front(); + --m_free_blocks_num[layer_idx]; return allocated_block; } @@ -386,7 +393,7 @@ class BlockAllocator { OPENVINO_ASSERT(m_enable_prefix_caching); OPENVINO_ASSERT(can_allocate_blocks(1)); - if (m_free_blocks[0].size() > 0) { + if (m_free_blocks_num[0] > 0) { // allocate new empty block BlocksPerLayer allocated_blocks; allocated_blocks.reserve(m_num_layers); @@ -396,6 +403,7 @@ class BlockAllocator { allocated_block->set_hash(hash); allocated_blocks.push_back(allocated_block); m_free_blocks[i].pop_front(); + --m_free_blocks_num[i]; } cached_blocks[hash] = allocated_blocks; return allocated_blocks; diff --git a/src/cpp/src/sequence_group.hpp b/src/cpp/src/sequence_group.hpp index c5be82f0f2..6755255fe8 100644 --- a/src/cpp/src/sequence_group.hpp +++ b/src/cpp/src/sequence_group.hpp @@ -477,6 +477,9 @@ class SequenceGroup { } void clear_waiting_sequences() { + if (!is_waiting()) + return; + for (size_t seq_id = 0; seq_id < m_sequences.size(); ++seq_id) { if (m_sequences[seq_id]->is_waiting()) { m_sequences[seq_id]->set_status(SequenceStatus::RUNNING); From 1feb06752b8c48c747b85e6bef9142231a69ae6f Mon Sep 17 00:00:00 2001 From: Anastasiia Pnevskaia Date: Tue, 3 Dec 2024 17:22:28 +0100 Subject: [PATCH 029/113] Fix for AnyMap properties. (#1282) GENERATE_CONFIG and PREFILL_CONFIG should be casted to ov::AnyMap, instead of std::map, which currently causes error. Ticket: CVS-157910 --- src/python/py_utils.cpp | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/src/python/py_utils.cpp b/src/python/py_utils.cpp index 579fe6b789..9d33318f0a 100644 --- a/src/python/py_utils.cpp +++ b/src/python/py_utils.cpp @@ -84,6 +84,11 @@ ov::Any py_object_to_any(const py::object& py_obj, std::string property_name) { "num_inference_steps", "max_sequence_length" }; + // These properties should be casted to ov::AnyMap, instead of std::map. + std::set any_map_properties = { + "GENERATE_CONFIG", + "PREFILL_CONFIG", + }; py::object float_32_type = py::module_::import("numpy").attr("float32"); if (py::isinstance(py_obj)) { @@ -150,7 +155,7 @@ ov::Any py_object_to_any(const py::object& py_obj, std::string property_name) { OPENVINO_THROW("Property \"" + property_name + "\" got unsupported type."); } - } else if (py::isinstance(py_obj)) { + } else if (py::isinstance(py_obj) && any_map_properties.find(property_name) == any_map_properties.end()) { auto _dict = py_obj.cast(); enum class PY_TYPE : int { UNKNOWN = 0, STR, INT}; PY_TYPE detected_key_type = PY_TYPE::UNKNOWN; From e2fa0d002117bbfe6d9a6a4cc413e583c4455131 Mon Sep 17 00:00:00 2001 From: Eugene Smirnov Date: Tue, 3 Dec 2024 19:33:40 +0000 Subject: [PATCH 030/113] StaticLLMPipeline: Introduced NPUW_UNFOLD_IREQ for hint FAST_COMPILE (#1275) E-149055 --- src/cpp/src/llm_pipeline_static.cpp | 22 ++++++++++++++++++---- 1 file changed, 18 insertions(+), 4 deletions(-) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index ac89881e3e..4bb84dfc05 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -233,15 +233,26 @@ enum class GenerateHint { BEST_PERF }; +std::string to_string(GenerateHint h) { + switch(h) { + case GenerateHint::FAST_COMPILE : + return "FAST_COMPILE"; + case GenerateHint::BEST_PERF : + return "BEST_PERF"; + default: + OPENVINO_THROW("Unsupported value for type GenerateHint provided"); + } +} + GenerateHint str_to_hint(const std::string& str) { - if (str == "FAST_COMPILE") { + if (str == to_string(GenerateHint::FAST_COMPILE)) { return GenerateHint::FAST_COMPILE; } - if (str == "BEST_PERF") { + if (str == to_string(GenerateHint::BEST_PERF)) { return GenerateHint::BEST_PERF; } OPENVINO_THROW("Unsupported \"GENERATE_HINT\" provided: " + - str + ". Please select either \"FAST_COMPILE\" or \"BEST_PERF\"."); + str + ". Please select either \"" + to_string(GenerateHint::BEST_PERF) + "\" or \"" + to_string(GenerateHint::FAST_COMPILE) +"\"."); } std::shared_ptr cvt_kvcache_to_fp16(const std::shared_ptr& model) { @@ -534,6 +545,9 @@ ov::AnyMap get_default_generate_config(const std::shared_ptr& model, if (npudesc.has_value() && npudesc->arch == "4000") { config.emplace("NPU_DPU_GROUPS", 4); } + if (hint == GenerateHint::FAST_COMPILE) { + config.emplace("NPUW_UNFOLD_IREQS", "YES"); + } if (npudesc.has_value() && npudesc->compiler_dq) { config.emplace("NPUW_DQ_FULL", "NO"); } @@ -727,7 +741,7 @@ void StaticLLMPipeline::setupAndCompileModels( properties, "PREFILL_CONFIG", get_default_prefill_config(prefill_model, npudesc) ); // NB: GENERATE_HINT is only applicable for default generate config! - auto generate_hint = str_to_hint(pop_or_default(properties, "GENERATE_HINT", "FAST_COMPILE")); + auto generate_hint = str_to_hint(pop_or_default(properties, "GENERATE_HINT", to_string(GenerateHint::FAST_COMPILE))); auto generate_config = pop_or_default( properties, "GENERATE_CONFIG", get_default_generate_config(kvcache_model, npudesc, generate_hint) ); From 2891e21be98427845321bdc6b82801975fa2bf31 Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Wed, 4 Dec 2024 20:46:25 +0400 Subject: [PATCH 031/113] Do not report infer latency for genai for avoid confusion (#1295) CVS-158466 --- tools/llm_bench/task/speech_to_text_generation.py | 7 ++++--- tools/llm_bench/task/text_generation.py | 4 ++-- 2 files changed, 6 insertions(+), 5 deletions(-) diff --git a/tools/llm_bench/task/speech_to_text_generation.py b/tools/llm_bench/task/speech_to_text_generation.py index be9c9ab295..f1e7ac54a0 100644 --- a/tools/llm_bench/task/speech_to_text_generation.py +++ b/tools/llm_bench/task/speech_to_text_generation.py @@ -57,7 +57,7 @@ def run_speech_2_txt_generation(input_param, args, md5_list, iter_data_list): - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) ).tolist() tm_list = (np.array([first_token_time] + second_tokens_durations) / 1000).tolist() - tm_infer_list = [] + tm_infer_list = None result_text = result_text.texts[0] else: start = time.perf_counter() @@ -71,8 +71,9 @@ def run_speech_2_txt_generation(input_param, args, md5_list, iter_data_list): tm_infer_list = whisper_hook.get_time_infer_list() log.debug('latency of all tokens:') [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] - log.debug('latency of all infers:') - [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_infer_list)] + if tm_infer_list is not None: + log.debug('latency of all infers:') + [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_infer_list)] generation_time = end - start out_data = processor.tokenizer(result_text, return_tensors='pt') out_tokens = out_data['input_ids'] if 'input_ids' in out_data else out_data diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 7718773560..63ce0d8cae 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -272,7 +272,7 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data num, iter_data, tm_list.tolist(), - [], + None, warm_up=(num == 0), max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, @@ -394,7 +394,7 @@ def run_text_generation_genai_with_stream(input_text, num, model, tokenizer, arg iter_num=num, iter_data=iter_data, tms=tm_list, - tms_infer=[], + tms_infer=None, warm_up=(num == 0), max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, From bc388a3b61b281428eb96c791cf275f8c6bea2b2 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Wed, 4 Dec 2024 21:11:07 +0400 Subject: [PATCH 032/113] [Sampling] Add EOS to stop_token_ids (#1294) CVS-157863 --- src/cpp/src/generation_config.cpp | 4 ++++ src/cpp/src/llm_pipeline.cpp | 1 - 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/src/cpp/src/generation_config.cpp b/src/cpp/src/generation_config.cpp index 1fe735622f..3d7e05a762 100644 --- a/src/cpp/src/generation_config.cpp +++ b/src/cpp/src/generation_config.cpp @@ -49,6 +49,10 @@ GenerationConfig::GenerationConfig(const std::filesystem::path& json_path) { // note that logprobs is not present in HF GenerationConfig read_json_param(data, "logprobs", logprobs); + // append EOS to stop_token_ids + if (eos_token_id != -1) + set_eos_token_id(eos_token_id); + if (data.contains("early_stopping")) { auto field_type = data["early_stopping"].type(); if (field_type == nlohmann::json::value_t::string && data["early_stopping"] == "never") { diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 14d558e431..5d82a96010 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -264,7 +264,6 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { size_t block_size = 1; bool enable_prefix_caching = false; - config.stop_token_ids.insert(config.eos_token_id); for (size_t request_id = 0; request_id < batch_size; request_id++) { SequenceGroup::Ptr sequence_group; if (is_chat_conversation && !m_is_cache_empty) { From 0b81108cf70c63e27b47030e0b071a0ac8ef9718 Mon Sep 17 00:00:00 2001 From: Ekaterina Shiryaeva Date: Wed, 4 Dec 2024 22:51:49 +0100 Subject: [PATCH 033/113] StaticWhisperPipeline: fix encoder input_features reshape (#1293) --- src/cpp/src/whisper_pipeline_static.cpp | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/src/cpp/src/whisper_pipeline_static.cpp b/src/cpp/src/whisper_pipeline_static.cpp index 20fb1f2855..9937082a81 100644 --- a/src/cpp/src/whisper_pipeline_static.cpp +++ b/src/cpp/src/whisper_pipeline_static.cpp @@ -432,15 +432,17 @@ void reshape_to_static(std::shared_ptr model, const uint32_t input_si model->reshape(new_shapes); } -void reshape_to_static_encoder(std::shared_ptr model) { +void reshape_to_static_encoder(std::shared_ptr model, const size_t feature_size) { std::map new_shapes; for (auto input : model->inputs()) { const auto& input_name = input.get_any_name(); ov::PartialShape new_shape; if (input_name.find("input_features") != std::string::npos) { const auto& partial_shape = input.get_partial_shape(); + OPENVINO_ASSERT(partial_shape.size() >= 3); new_shape = partial_shape; new_shape[0] = 1; // batch_dim + new_shape[1] = feature_size; } new_shapes.emplace(input_name, new_shape); } @@ -540,7 +542,7 @@ WhisperPipeline::StaticWhisperPipeline::StaticWhisperPipeline(const std::filesys size_t max_sequence_length = 448; - reshape_to_static_encoder(encoder_model); + reshape_to_static_encoder(encoder_model, m_feature_extractor.feature_size); auto last_hidden_state_shape = get_encoder_hidden_state_shape(encoder_model); reshape_to_static(decoder_model, 4, 4, last_hidden_state_shape); From e6a435fdf4b4c14d0c664aaf7fe1d763b341faff Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Thu, 5 Dec 2024 07:50:54 +0300 Subject: [PATCH 034/113] Fixed import issues for onnx>=1.17 (#1301) --- .../whowhatbench/visualtext_evaluator.py | 5 ++-- tools/who_what_benchmark/whowhatbench/wwb.py | 27 +++++-------------- 2 files changed, 10 insertions(+), 22 deletions(-) diff --git a/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py b/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py index 99027971d8..f0989e9041 100644 --- a/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py +++ b/tools/who_what_benchmark/whowhatbench/visualtext_evaluator.py @@ -4,8 +4,6 @@ import datasets import pandas as pd from diffusers.utils.loading_utils import load_image -from optimum.intel.openvino.modeling_visual_language import \ - MODEL_TYPE_TO_CLS_MAPPING from tqdm import tqdm from transformers import set_seed @@ -114,6 +112,9 @@ def _generate_data(self, model, gen_answer_fn=None, generation_config=None): def default_gen_answer( model, prompt, image, processor, tokenizer, max_new_tokens, crop_question ): + + from optimum.intel.openvino.modeling_visual_language import \ + MODEL_TYPE_TO_CLS_MAPPING preprocess_inputs = MODEL_TYPE_TO_CLS_MAPPING[ model.config.model_type ].preprocess_inputs diff --git a/tools/who_what_benchmark/whowhatbench/wwb.py b/tools/who_what_benchmark/whowhatbench/wwb.py index f9aea15b47..e7feebc1b2 100644 --- a/tools/who_what_benchmark/whowhatbench/wwb.py +++ b/tools/who_what_benchmark/whowhatbench/wwb.py @@ -9,16 +9,13 @@ import logging import os +from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModel, AutoModelForVision2Seq +import openvino as ov + import pandas as pd from datasets import load_dataset from diffusers import DiffusionPipeline -from optimum.exporters.tasks import TasksManager -from optimum.intel import OVPipelineForText2Image -from optimum.intel.openvino import OVModelForCausalLM, OVModelForVisualCausalLM -from optimum.utils import NormalizedConfigManager, NormalizedTextConfig from PIL import Image -from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModel, AutoModelForVision2Seq -import openvino as ov from whowhatbench import EVALUATOR_REGISTRY @@ -26,14 +23,6 @@ logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) -TasksManager._SUPPORTED_MODEL_TYPE["stablelm-epoch"] = ( - TasksManager._SUPPORTED_MODEL_TYPE["llama"] -) -NormalizedConfigManager._conf["stablelm-epoch"] = NormalizedTextConfig.with_args( - num_layers="num_hidden_layers", - num_attention_heads="num_attention_heads", -) - class GenAIModelWrapper: """ @@ -81,6 +70,7 @@ def load_text_model( model = load_text_genai_pipeline(model_id, device, ov_config) else: logger.info("Using Optimum API") + from optimum.intel.openvino import OVModelForCausalLM try: model = OVModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, device=device, ov_config=ov_config @@ -100,11 +90,6 @@ def load_text_model( return model -TEXT2IMAGE_TASK2CLASS = { - "text-to-image": OVPipelineForText2Image, -} - - def load_text2image_genai_pipeline(model_dir, device="CPU", ov_config=None): try: import openvino_genai @@ -132,7 +117,8 @@ def load_text2image_model( model_id, trust_remote_code=True) else: logger.info("Using Optimum API") - TEXT2IMAGEPipeline = TEXT2IMAGE_TASK2CLASS[model_type] + from optimum.intel import OVPipelineForText2Image + TEXT2IMAGEPipeline = OVPipelineForText2Image try: model = TEXT2IMAGEPipeline.from_pretrained( @@ -192,6 +178,7 @@ def load_visual_text_model( model = load_visual_text_genai_pipeline(model_id, device, ov_config) else: logger.info("Using Optimum API") + from optimum.intel.openvino import OVModelForVisualCausalLM try: model = OVModelForVisualCausalLM.from_pretrained( model_id, trust_remote_code=True, device=device, ov_config=ov_config From 3ca509f862c9ee9d9dc68fc3b09daaf3d0ac0cc7 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Thu, 5 Dec 2024 12:48:25 +0400 Subject: [PATCH 035/113] updated py-build-cmake to 0.3.2 version (#1306) --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index de3e5b5a9e..bc8d1b294d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -51,7 +51,7 @@ options = {"BUILD_TOKENIZERS" = "OFF"} [build-system] requires = [ - "py-build-cmake==0.3.0", + "py-build-cmake==0.3.2", "openvino~=2025.0.0.0.dev", "pybind11-stubgen==2.5.1", "cmake~=3.23.0" From d294db9469c4795bed24ebfb1318cc68adc682e0 Mon Sep 17 00:00:00 2001 From: zhaohongbo Date: Thu, 5 Dec 2024 17:03:39 +0800 Subject: [PATCH 036/113] Genai/optimum support streaming output (#1290) Support chunk streaming mode, mainly to reduce the number of decode calls, thereby improving performance --- tools/llm_bench/benchmark.py | 29 ++- tools/llm_bench/llm_bench_utils/ov_utils.py | 240 +++++++++++++++++++- tools/llm_bench/task/text_generation.py | 89 ++++++-- 3 files changed, 328 insertions(+), 30 deletions(-) diff --git a/tools/llm_bench/benchmark.py b/tools/llm_bench/benchmark.py index fe5068b009..bd5a5716a7 100644 --- a/tools/llm_bench/benchmark.py +++ b/tools/llm_bench/benchmark.py @@ -155,6 +155,8 @@ def get_argprser(): help='Stop the generation even if output token size does not achieve infer_count or max token size ({DEFAULT_OUTPUT_TOKEN_SIZE}}).' ) parser.add_argument('--set_torch_thread', default=0, type=num_infer_count_type, help='Set the number of Torch thread. ') + parser.add_argument('-tl', '--tokens_len', type=int, required=False, help='The length of tokens print each time in streaming mode, chunk streaming.') + parser.add_argument('--streaming', action='store_true', help='Set whether to use streaming mode, only applicable to LLM.') return parser.parse_args() @@ -170,10 +172,23 @@ def get_argprser(): def main(): logging_kwargs = {"encoding": "utf-8"} if sys.version_info[1] > 8 else {} - log.basicConfig(format='[ %(levelname)s ] %(message)s', level=os.environ.get("LOGLEVEL", log.INFO), stream=sys.stdout, **logging_kwargs) + log.basicConfig( + format='[ %(levelname)s ] %(message)s', + level=os.environ.get("LOGLEVEL", log.INFO), + stream=sys.stdout, + **logging_kwargs + ) args = get_argprser() - model_path, framework, model_args, model_name = llm_bench_utils.model_utils.analyze_args(args) + if args.tokens_len is not None and not args.streaming: + log.error("--tokens_len requires --streaming to be set.") + exit(1) + if args.streaming and args.tokens_len is None: + log.error("--streaming requires --tokens_len to be set.") + exit(1) + model_path, framework, model_args, model_name = ( + llm_bench_utils.model_utils.analyze_args(args) + ) # Set the device for running OpenVINO backend for torch.compile() if model_args['torch_compile_backend']: ov_torch_backend_device = str(args.device) @@ -208,8 +223,14 @@ def main(): if args.memory_consumption: mem_consumption.start_collect_mem_consumption_thread() try: - iter_data_list, pretrain_time, iter_timestamp = CASE_TO_BENCH[model_args['use_case']]( - model_path, framework, args.device, model_args, args.num_iters, mem_consumption) + if model_args['use_case'] in ['text_gen', 'code_gen']: + iter_data_list, pretrain_time, iter_timestamp = CASE_TO_BENCH[model_args['use_case']]( + model_path, framework, args.device, args.tokens_len, args.streaming, model_args, + args.num_iters, mem_consumption) + else: + iter_data_list, pretrain_time, iter_timestamp = CASE_TO_BENCH[model_args['use_case']]( + model_path, framework, args.device, model_args, args.num_iters, + mem_consumption) if args.report is not None or args.report_json is not None: model_precision = '' if framework == 'ov': diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index 9ebd1363e3..c5fa422824 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -2,7 +2,7 @@ # Copyright (C) 2023-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from pathlib import Path -from transformers import AutoConfig, AutoProcessor +from transformers import AutoConfig, AutoProcessor, AutoTokenizer from openvino.runtime import Core import openvino as ov import logging as log @@ -11,9 +11,17 @@ import json import types from llm_bench_utils.hook_common import get_bench_hook -from llm_bench_utils.config_class import OV_MODEL_CLASSES_MAPPING, TOKENIZE_CLASSES_MAPPING, DEFAULT_MODEL_CLASSES, IMAGE_GEN_CLS +from llm_bench_utils.config_class import ( + OV_MODEL_CLASSES_MAPPING, + TOKENIZE_CLASSES_MAPPING, + DEFAULT_MODEL_CLASSES, + IMAGE_GEN_CLS +) import openvino.runtime.opset13 as opset from transformers import pipeline +import openvino_genai as ov_genai +import queue +from transformers.generation.streamers import BaseStreamer def generate_simplified(self, *args, **kwargs): @@ -525,3 +533,231 @@ def is_genai_available(log_msg=False): log.warning(ex) return False return True + + +class GenaiChunkStreamer(ov_genai.StreamerBase): + """ + A custom streamer class for handling token streaming and detokenization with buffering. + + Attributes: + tokenizer (Tokenizer): The tokenizer used for encoding and decoding tokens. + tokens_cache (list): A buffer to accumulate tokens for detokenization. + text_queue (Queue): A synchronized queue for storing decoded text chunks. + print_len (int): The length of the printed text to manage incremental decoding. + """ + + def __init__(self, tokenizer, tokens_len=1): + """ + Initializes the IterableStreamer with the given tokenizer. + + Args: + tokenizer (Tokenizer): The tokenizer to use for encoding and decoding tokens. + """ + super().__init__() + self.tokenizer = tokenizer + self.tokens_cache = [] + self.text_queue = queue.Queue() + self.print_len = 0 + self.tokens_len = tokens_len + + def __iter__(self): + """ + Returns the iterator object itself. + """ + return self + + def __next__(self): + """ + Returns the next value from the text queue. + + Returns: + str: The next decoded text chunk. + + Raises: + StopIteration: If there are no more elements in the queue. + """ + value = self.text_queue.get() # get() will be blocked until a token is available. + if value is None: + raise StopIteration + return value + + def get_stop_flag(self): + """ + Checks whether the generation process should be stopped. + + Returns: + bool: Always returns False in this implementation. + """ + return False + + def put_word(self, word: str): + """ + Puts a word into the text queue. + + Args: + word (str): The word to put into the queue. + """ + self.text_queue.put(word) + + def put(self, token_id: int) -> bool: + """ + Processes a token and manages the decoding buffer. Adds decoded text to the queue. + + Args: + token_id (int): The token_id to process. + + Returns: + bool: True if generation should be stopped, False otherwise. + """ + self.tokens_cache.append(token_id) + if len(self.tokens_cache) % self.tokens_len == 0: + text = self.tokenizer.decode(self.tokens_cache) + + word = '' + if len(text) > self.print_len and '\n' == text[-1]: + # Flush the cache after the new line symbol. + word = text[self.print_len:] + self.tokens_cache = [] + self.print_len = 0 + elif len(text) >= 3 and text[-3:] == chr(65533): + # Don't print incomplete text. + pass + elif len(text) > self.print_len: + # It is possible to have a shorter text after adding new token. + # Print to output only if text lengh is increaesed. + word = text[self.print_len:] + self.print_len = len(text) + self.put_word(word) + + if self.get_stop_flag(): + # When generation is stopped from streamer then end is not called, need to call it here manually. + self.end() + return True # True means stop generation + else: + return False # False means continue generation + else: + return False + + def end(self): + """ + Flushes residual tokens from the buffer and puts a None value in the queue to signal the end. + """ + text = self.tokenizer.decode(self.tokens_cache) + if len(text) > self.print_len: + word = text[self.print_len:] + self.put_word(word) + self.tokens_cache = [] + self.print_len = 0 + self.put_word(None) + + +class OptimumChunkStreamer(BaseStreamer): + """ + Simple text streamer that prints the token(s) to stdout as soon as entire words are formed. + + The API for the streamer classes is still under development and may change in the future. + + Parameters: + tokenizer (`AutoTokenizer`): + The tokenized used to decode the tokens. + skip_prompt (`bool`, *optional*, defaults to `False`): + Whether to skip the prompt to `.generate()` or not. Useful e.g. for chatbots. + decode_kwargs (`dict`, *optional*): + Additional keyword arguments to pass to the tokenizer's `decode` method. + Examples: + ```python + >>> from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer + >>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2") + >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") + >>> inputs = tok(["An increasing sequence: one,"], return_tensors="pt") + >>> streamer = TextStreamer(tok) + >>> # Despite returning the usual output, the streamer will also print the generated text to stdout. + >>> _ = model.generate(**inputs, streamer=streamer, max_new_tokens=20) + An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven, + ``` + """ + def __init__(self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, + tokens_len: int = 1, **decode_kwargs): + self.tokenizer = tokenizer + self.skip_prompt = skip_prompt + self.decode_kwargs = decode_kwargs + # variables used in the streaming process + self.token_cache = [] + self.print_len = 0 + self.next_tokens_are_prompt = True + self.tokens_len = tokens_len + + def put(self, value): + """ + Receives tokens, decodes them, and prints them to stdout as soon as they form entire words. + """ + if len(value.shape) > 1 and value.shape[0] > 1: + raise ValueError("TextStreamer only supports batch size 1") + elif len(value.shape) > 1: + value = value[0] + if self.skip_prompt and self.next_tokens_are_prompt: + self.next_tokens_are_prompt = False + return + # Add the new token to the cache and decodes the entire thing. + self.token_cache.extend(value.tolist()) + if len(self.token_cache) % self.tokens_len == 0: + text = self.tokenizer.decode( + self.token_cache, **self.decode_kwargs + ) + # After the symbol for a new line, we flush the cache. + if text.endswith("\n"): + printable_text = text[self.print_len:] + self.token_cache = [] + self.print_len = 0 + # If the last token is a CJK character, we print the characters. + elif len(text) > 0 and self._is_chinese_char(ord(text[-1])): + printable_text = text[self.print_len:] + self.print_len += len(printable_text) + # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, + # which may change with the subsequent token -- there are probably smarter ways to do this!) + else: + printable_text = text[self.print_len: text.rfind(" ") + 1] + self.print_len += len(printable_text) + self.on_finalized_text(printable_text) + + def end(self): + """Flushes any remaining cache and prints a newline to stdout.""" + # Flush the cache, if it exists + if len(self.token_cache) > 0: + text = self.tokenizer.decode( + self.token_cache, **self.decode_kwargs + ) + printable_text = text[self.print_len:] + self.token_cache = [] + self.print_len = 0 + else: + printable_text = "" + self.next_tokens_are_prompt = True + self.on_finalized_text(printable_text, stream_end=True) + + def on_finalized_text(self, text: str, stream_end: bool = False): + """Prints the new text to stdout. If the stream is ending, also prints a newline.""" + print(text, flush=True, end="" if not stream_end else None) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + return False diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 63ce0d8cae..5fbf950d2c 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -10,9 +10,11 @@ import llm_bench_utils.model_utils as model_utils import numpy as np import hashlib +import threading import llm_bench_utils.metrics_print as metrics_print import llm_bench_utils.output_csv from transformers import set_seed +from llm_bench_utils.ov_utils import GenaiChunkStreamer, OptimumChunkStreamer import llm_bench_utils.output_json import llm_bench_utils.output_file import llm_bench_utils.gen_output_data as gen_output_data @@ -24,7 +26,7 @@ def run_text_generation(input_text, num, model, tokenizer, args, iter_data_list, md5_list, - prompt_index, bench_hook, model_precision, proc_id, mem_consumption): + prompt_index, bench_hook, tokens_len, streaming, model_precision, proc_id, mem_consumption): set_seed(args['seed']) input_text_list = [input_text] * args['batch_size'] if args["output_dir"] is not None and num == 0: @@ -53,25 +55,48 @@ def run_text_generation(input_text, num, model, tokenizer, args, iter_data_list, mem_consumption.start_collect_memory_consumption() max_gen_tokens = DEFAULT_OUTPUT_TOKEN_SIZE if args['infer_count'] is None else args['infer_count'] start = time.perf_counter() - if args['infer_count'] is not None and args['end_token_stopping'] is False: - model.generation_config.eos_token_id = None - model.config.eos_token_id = None - result = model.generate( - **input_data, - max_new_tokens=int(max_gen_tokens), - num_beams=args['num_beams'], - use_cache=True, - eos_token_id=None, - do_sample=False - ) + if streaming: + if args['infer_count'] is not None and args['end_token_stopping'] is False: + model.generation_config.eos_token_id = None + model.config.eos_token_id = None + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + eos_token_id=None, + do_sample=False, + streamer=OptimumChunkStreamer(tokenizer, tokens_len=tokens_len) + ) + else: + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + do_sample=False, + streamer=OptimumChunkStreamer(tokenizer, tokens_len=tokens_len) + ) else: - result = model.generate( - **input_data, - max_new_tokens=int(max_gen_tokens), - num_beams=args['num_beams'], - use_cache=True, - do_sample=False - ) + if args['infer_count'] is not None and args['end_token_stopping'] is False: + model.generation_config.eos_token_id = None + model.config.eos_token_id = None + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + eos_token_id=None, + do_sample=False + ) + else: + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + do_sample=False + ) end = time.perf_counter() if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: mem_consumption.end_collect_momory_consumption() @@ -172,7 +197,7 @@ def run_text_generation(input_text, num, model, tokenizer, args, iter_data_list, def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data_list, md5_list, prompt_index, - streamer, model_precision, proc_id, mem_consumption): + streamer, tokens_len, streaming, model_precision, proc_id, mem_consumption): set_seed(args['seed']) input_text_list = [input_text] * args['batch_size'] if args["output_dir"] is not None and num == 0: @@ -208,7 +233,23 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data config_info += f" assistant_confidence_threshold {gen_config.assistant_confidence_threshold}" log.info(config_info) start = time.perf_counter() - generation_result = model.generate(input_text_list, gen_config) + if streaming: + text_print_streamer = GenaiChunkStreamer(model.get_tokenizer(), tokens_len) + + def token_printer(): + # Getting next elements from iterable will be blocked until a new token is available. + for word in text_print_streamer: + print(word, end='', flush=True) + printer_thread = threading.Thread(target=token_printer, daemon=True) + printer_thread.start() + generation_result = model.generate( + input_text_list, + gen_config, + streamer=text_print_streamer + ) + printer_thread.join() + else: + generation_result = model.generate(input_text_list, gen_config) end = time.perf_counter() generated_text = generation_result.texts perf_metrics = generation_result.perf_metrics @@ -300,7 +341,7 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data def run_text_generation_genai_with_stream(input_text, num, model, tokenizer, args, iter_data_list, md5_list, - prompt_index, streamer, model_precision, proc_id, mem_consumption): + prompt_index, streamer, tokens_len, streaming, model_precision, proc_id, mem_consumption): set_seed(args['seed']) input_text_list = [input_text] * args['batch_size'] if args["output_dir"] is not None and num == 0: @@ -422,7 +463,7 @@ def run_text_generation_genai_with_stream(input_text, num, model, tokenizer, arg streamer.reset() -def run_text_generation_benchmark(model_path, framework, device, args, num_iters, mem_consumption): +def run_text_generation_benchmark(model_path, framework, device, tokens_len, streaming, args, num_iters, mem_consumption): model, tokenizer, pretrain_time, bench_hook, use_genai = FW_UTILS[framework].create_text_gen_model(model_path, device, **args) model_precision = model_utils.get_model_precision(model_path.parts) iter_data_list = [] @@ -461,7 +502,7 @@ def run_text_generation_benchmark(model_path, framework, device, args, num_iters log.info(f'[warm-up][P{p_idx}] Input text: {input_text}') iter_timestamp[num][p_idx]['start'] = datetime.datetime.now().isoformat() text_gen_fn(input_text, num, model, tokenizer, args, iter_data_list, md5_list, - p_idx, bench_hook, model_precision, proc_id, mem_consumption) + p_idx, bench_hook, tokens_len, streaming, model_precision, proc_id, mem_consumption) iter_timestamp[num][p_idx]['end'] = datetime.datetime.now().isoformat() prefix = '[warm-up]' if num == 0 else '[{}]'.format(num) log.info(f"{prefix}[P{p_idx}] start: {iter_timestamp[num][p_idx]['start']}, end: {iter_timestamp[num][p_idx]['end']}") From 3a1bd24d1c84401249872d8803fa69428a6cb25e Mon Sep 17 00:00:00 2001 From: Aamir Nazir Date: Thu, 5 Dec 2024 15:46:31 +0400 Subject: [PATCH 037/113] `create_image_gen_model` for PT framework does not return callback (#1310) When trying to benchmark a Stable diffusion 3 model with pt framework, the `create_image_gen_model` does not return the expected callback in [image generation task](https://github.com/openvinotoolkit/openvino.genai/blob/d294db9469c4795bed24ebfb1318cc68adc682e0/tools/llm_bench/task/image_generation.py#L168) Error Traceback: ``` [ ERROR ] An exception occurred [ INFO ] Traceback (most recent call last): File "openvino.genai/tools/llm_bench/benchmark.py", line 211, in main iter_data_list, pretrain_time, iter_timestamp = CASE_TO_BENCH[model_args['use_case']]( File "openvino.genai/tools/llm_bench/task/image_generation.py", line 171, in run_image_generation_benchmark pipe, pretrain_time, use_genai, callback = FW_UTILS[framework].create_image_gen_model(model_path, device, **args) ValueError: not enough values to unpack (expected 4, got 3) ``` --- tools/llm_bench/llm_bench_utils/pt_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tools/llm_bench/llm_bench_utils/pt_utils.py b/tools/llm_bench/llm_bench_utils/pt_utils.py index 74abb2bcc6..4c41efad01 100644 --- a/tools/llm_bench/llm_bench_utils/pt_utils.py +++ b/tools/llm_bench/llm_bench_utils/pt_utils.py @@ -156,7 +156,7 @@ def create_image_gen_model(model_path, device, **kwargs): backend = kwargs['torch_compile_backend'] compiled_model = run_torch_compile(pipe, backend) pipe = compiled_model - return pipe, from_pretrain_time, False + return pipe, from_pretrain_time, False, None def create_ldm_super_resolution_model(model_path, device, **kwargs): From b26fc8b7a484e0f66accba89ea9f972c6d23fda7 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Thu, 5 Dec 2024 15:51:29 +0400 Subject: [PATCH 038/113] Sd3 text encoder refactoring (#1313) - Added unified function `concat` which accepts tensors and axis to concat on - Optimized `padding_right` function to avoid padding second tensor before calling this function - Optimized split by batch to avoid memory copy --- .../src/image_generation/flux_pipeline.hpp | 2 +- src/cpp/src/image_generation/numpy_utils.cpp | 51 +++- src/cpp/src/image_generation/numpy_utils.hpp | 7 +- .../stable_diffusion_3_pipeline.hpp | 257 +++++------------- 4 files changed, 112 insertions(+), 205 deletions(-) diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index e684443e47..65d9ca30d3 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -399,7 +399,7 @@ class FluxPipeline : public DiffusionPipeline { void check_inputs(const ImageGenerationConfig& generation_config, ov::Tensor initial_image) const override { check_image_size(generation_config.width, generation_config.height); - OPENVINO_ASSERT(generation_config.max_sequence_length <= 512, "T5's 'max_sequence_length' must be less than 512"); + OPENVINO_ASSERT(generation_config.max_sequence_length <= 512, "T5's 'max_sequence_length' must be less or equal to 512"); OPENVINO_ASSERT(generation_config.negative_prompt == std::nullopt, "Negative prompt is not used by FluxPipeline"); OPENVINO_ASSERT(generation_config.negative_prompt_2 == std::nullopt, "Negative prompt 2 is not used by FluxPipeline"); diff --git a/src/cpp/src/image_generation/numpy_utils.cpp b/src/cpp/src/image_generation/numpy_utils.cpp index fa9da5dd8d..83052dbbf5 100644 --- a/src/cpp/src/image_generation/numpy_utils.cpp +++ b/src/cpp/src/image_generation/numpy_utils.cpp @@ -74,7 +74,9 @@ std::vector interp(const std::vector& x, const std::vector< return interp_res; } -void concat_3d_by_rows(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { +namespace { + +void concat_3d_axis_2(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); OPENVINO_ASSERT(shape_1[0] == shape_2[0] && shape_1[1] == shape_2[1], "Tensors for concatenation must have the same dimensions"); @@ -91,7 +93,7 @@ void concat_3d_by_rows(const float* data_1, const float* data_2, float* res, con } } -void concat_2d_by_rows(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { +void concat_2d_axis_1(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { OPENVINO_ASSERT(shape_1.size() == 2 && shape_2.size() == 2, "Shape dimensions must be 2"); OPENVINO_ASSERT(shape_1[0] == shape_2[0], "Tensors for concatenation must have the same dimensions"); @@ -108,7 +110,7 @@ void concat_2d_by_rows(const float* data_1, const float* data_2, float* res, con } } -void concat_3d_by_cols(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { +void concat_3d_axis_1(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); OPENVINO_ASSERT(shape_1[0] == shape_2[0] && shape_1[2] == shape_2[2], "Tensors for concatenation must have the same dimensions"); @@ -123,7 +125,7 @@ void concat_3d_by_cols(const float* data_1, const float* data_2, float* res, con } } -void concat_3d_by_channels(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { +void concat_3d_axis_0(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); OPENVINO_ASSERT(shape_1[1] == shape_2[1] && shape_1[2] == shape_2[2], "Tensors for concatenation must have the same dimensions"); @@ -134,7 +136,7 @@ void concat_3d_by_channels(const float* data_1, const float* data_2, float* res, std::memcpy(res + size_1, data_2, size_2 * sizeof(float)); } -void concat_2d_by_channels(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { +void concat_2d_axis_0(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { OPENVINO_ASSERT(shape_1.size() == 2 && shape_2.size() == 2, "Shape dimensions must be 2"); OPENVINO_ASSERT(shape_1[1] == shape_2[1], "Tensors for concatenation must have the same dimensions"); @@ -145,6 +147,45 @@ void concat_2d_by_channels(const float* data_1, const float* data_2, float* res, std::memcpy(res + size_1, data_2, size_2 * sizeof(float)); } +} // namespace + +ov::Tensor concat(ov::Tensor tensor_1, ov::Tensor tensor_2, int axis) { + ov::Shape shape_1 = tensor_1.get_shape(), shape_2 = tensor_2.get_shape(); + size_t rank = shape_1.size(); + + const size_t MAX_RANK = 3; + OPENVINO_ASSERT(rank <= MAX_RANK, "Maximum support rank of concatenated tensors is ", MAX_RANK, ", given rank is ", rank); + + OPENVINO_ASSERT(rank == shape_2.size(), "Shapes for concatenated tensors must have the same rank"); + OPENVINO_ASSERT(tensor_1.get_element_type() == ov::element::f32 && tensor_2.get_element_type() == ov::element::f32, + "Concat supports only tensor of fp32 data type"); + + if (axis < 0) { + axis += rank; + } + + ov::Shape dst_shape(rank); + for (size_t d = 0; d < rank; ++d) { + OPENVINO_ASSERT(d == axis || shape_1[d] == shape_2[d], "Dimension ", d, " must be the same for tensor_1 (", shape_1[d], ") and tensor_2 (", shape_2[d], ")"); + dst_shape[d] = d == axis ? shape_1[d] + shape_2[d] : shape_1[d]; + } + + typedef void (*concat_func_type) (const float*, const float*, float*, const ov::Shape, const ov::Shape); + concat_func_type concat_funcs [MAX_RANK][MAX_RANK] = { + { nullptr, nullptr, nullptr }, + { concat_2d_axis_0, concat_2d_axis_1, nullptr }, + { concat_3d_axis_0, concat_3d_axis_1, concat_3d_axis_2 } + }; + + concat_func_type concat_func = concat_funcs[rank - 1][axis]; + OPENVINO_ASSERT(concat_func != nullptr, "Unsupported combination of input tensors rank ", rank, " and axis ", axis); + + ov::Tensor dst_tensor(tensor_1.get_element_type(), dst_shape); + concat_func(tensor_1.data(), tensor_2.data(), dst_tensor.data(), shape_1, shape_2); + + return dst_tensor; +} + void batch_copy(ov::Tensor src, ov::Tensor dst, size_t src_batch, size_t dst_batch, size_t batch_size) { const ov::Shape src_shape = src.get_shape(), dst_shape = dst.get_shape(); ov::Coordinate src_start(src_shape.size(), 0), src_end = src_shape; diff --git a/src/cpp/src/image_generation/numpy_utils.hpp b/src/cpp/src/image_generation/numpy_utils.hpp index 31b072e491..48c5192621 100644 --- a/src/cpp/src/image_generation/numpy_utils.hpp +++ b/src/cpp/src/image_generation/numpy_utils.hpp @@ -46,11 +46,8 @@ void rescale_zero_terminal_snr(std::vector& betas); // np.interp(...) implementation std::vector interp(const std::vector& x, const std::vector& xp, const std::vector& fp); -void concat_3d_by_rows(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2); -void concat_3d_by_cols(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2); -void concat_3d_by_channels(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2); -void concat_2d_by_rows(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2); -void concat_2d_by_channels(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2); +// concats two tensors by a given dimension +ov::Tensor concat(ov::Tensor tensor_1, ov::Tensor tensor_2, int axis); void batch_copy(ov::Tensor src, ov::Tensor dst, size_t src_batch, size_t dst_batch, size_t batch_size = 1); ov::Tensor repeat(const ov::Tensor input, const size_t num_images_per_prompt); diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp index 30c8831980..74058a829b 100644 --- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp @@ -17,39 +17,35 @@ namespace { // src - input tensor with data for padding -// res - zeros tonsor with target shape -void padding_right(const float* src, float* res, const ov::Shape src_size, const ov::Shape res_size) { - OPENVINO_ASSERT(src_size[0] == res_size[0] && src_size[1] == res_size[1], - "Tensors for padding_right must have the same dimensions"); - - for (size_t i = 0; i < res_size[0]; ++i) { - for (size_t j = 0; j < res_size[1]; ++j) { - size_t offset_1 = (i * res_size[1] + j) * res_size[2]; - size_t offset_2 = (i * src_size[1] + j) * src_size[2]; - - std::memcpy(res + offset_1, src + offset_2, src_size[2] * sizeof(float)); +// res - tensor with target shape, remaining side will be padded with zeros +void padding_right(ov::Tensor src, ov::Tensor res) { + const ov::Shape src_shape = src.get_shape(), res_shape = res.get_shape(); + OPENVINO_ASSERT(src_shape.size() == 3 && src_shape.size() == res_shape.size(), "Rank of tensors within 'padding_right' must be 3"); + OPENVINO_ASSERT(src_shape[0] == res_shape[0] && src_shape[1] == res_shape[1], "Tensors for padding_right must have the same dimensions"); + + const float* src_data = src.data(); + float* res_data = res.data(); + + for (size_t i = 0; i < res_shape[0]; ++i) { + for (size_t j = 0; j < res_shape[1]; ++j) { + size_t offset_1 = (i * res_shape[1] + j) * res_shape[2]; + size_t offset_2 = (i * src_shape[1] + j) * src_shape[2]; + + std::memcpy(res_data + offset_1, src_data + offset_2, src_shape[2] * sizeof(float)); + std::fill_n(res_data + offset_1 + src_shape[2], res_shape[2] - src_shape[2], 0.0f); } } } -ov::Tensor split_2d_by_batch(const ov::Tensor input, size_t batch_num) { - ov::Tensor result(input.get_element_type(), {1, input.get_shape()[1]}); - - size_t shift = batch_num * input.get_shape()[1]; - std::memcpy(result.data(), input.data() + shift, result.get_shape()[1] * sizeof(float)); - - return result; -} - -ov::Tensor split_3d_by_batch(const ov::Tensor input, size_t batch_num) { - ov::Tensor result(input.get_element_type(), {1, input.get_shape()[1], input.get_shape()[2]}); +// returns tensor, which shares data with input tensor and pointing to a given batch slice +ov::Tensor get_tensor_batch(const ov::Tensor input, size_t batch_id) { + ov::Shape target_shape = input.get_shape(); + target_shape[0] = 1; - size_t shift = batch_num * input.get_shape()[1] * input.get_shape()[2]; - std::memcpy(result.data(), - input.data() + shift, - result.get_shape()[1] * input.get_shape()[2] * sizeof(float)); + void * target_data = input.data() + batch_id * ov::shape_size(target_shape); + ov::Tensor target_tensor(input.get_element_type(), target_shape, target_data); - return result; + return target_tensor; } } // namespace @@ -227,49 +223,35 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { ov::Tensor prompt_embeds_inp, pooled_prompt_embeds_inp; // 1. Encode positive prompt: - std::string prompt_2_str = - generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; - std::string prompt_3_str = - generation_config.prompt_3 != std::nullopt ? *generation_config.prompt_3 : positive_prompt; - - std::string negative_prompt_1_str = generation_config.negative_prompt != std::nullopt - ? *generation_config.negative_prompt - : std::string{}; - std::string negative_prompt_2_str = generation_config.negative_prompt_2 != std::nullopt - ? *generation_config.negative_prompt_2 - : negative_prompt_1_str; - std::string negative_prompt_3_str = generation_config.negative_prompt_3 != std::nullopt - ? *generation_config.negative_prompt_3 - : negative_prompt_1_str; + std::string prompt_2_str = generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; + std::string prompt_3_str = generation_config.prompt_3 != std::nullopt ? *generation_config.prompt_3 : positive_prompt; + + std::string negative_prompt_1_str = generation_config.negative_prompt != std::nullopt ? *generation_config.negative_prompt : std::string{}; + std::string negative_prompt_2_str = generation_config.negative_prompt_2 != std::nullopt ? *generation_config.negative_prompt_2 : negative_prompt_1_str; + std::string negative_prompt_3_str = generation_config.negative_prompt_3 != std::nullopt ? *generation_config.negative_prompt_3 : negative_prompt_1_str; // text_encoder_1_output - stores positive and negative pooled_prompt_embeds - ov::Tensor text_encoder_1_output = - m_clip_text_encoder_1->infer(positive_prompt, - negative_prompt_1_str, - do_classifier_free_guidance(generation_config.guidance_scale)); + ov::Tensor text_encoder_1_output = m_clip_text_encoder_1->infer(positive_prompt, negative_prompt_1_str, do_classifier_free_guidance(generation_config.guidance_scale)); // text_encoder_1_hidden_state - stores positive and negative prompt_embeds size_t idx_hidden_state_1 = m_clip_text_encoder_1->get_config().num_hidden_layers + 1; ov::Tensor text_encoder_1_hidden_state = m_clip_text_encoder_1->get_output_tensor(idx_hidden_state_1); // text_encoder_2_output - stores positive and negative pooled_prompt_2_embeds - ov::Tensor text_encoder_2_output = - m_clip_text_encoder_2->infer(prompt_2_str, - negative_prompt_2_str, - do_classifier_free_guidance(generation_config.guidance_scale)); + ov::Tensor text_encoder_2_output = m_clip_text_encoder_2->infer(prompt_2_str, negative_prompt_2_str, do_classifier_free_guidance(generation_config.guidance_scale)); // text_encoder_2_hidden_state - stores positive and negative prompt_2_embeds size_t idx_hidden_state_2 = m_clip_text_encoder_2->get_config().num_hidden_layers + 1; ov::Tensor text_encoder_2_hidden_state = m_clip_text_encoder_2->get_output_tensor(idx_hidden_state_2); - // get positive prompt_2_embed_out + // get positive prompt_2_embed_out ov::Tensor pooled_prompt_embed_out, prompt_embed_out, pooled_prompt_2_embed_out, prompt_2_embed_out; if (do_classifier_free_guidance(generation_config.guidance_scale)) { - pooled_prompt_embed_out = split_2d_by_batch(text_encoder_1_output, 1); - prompt_embed_out = split_3d_by_batch(text_encoder_1_hidden_state, 1); - pooled_prompt_2_embed_out = split_2d_by_batch(text_encoder_2_output, 1); - prompt_2_embed_out = split_3d_by_batch(text_encoder_2_hidden_state, 1); + pooled_prompt_embed_out = get_tensor_batch(text_encoder_1_output, 1); + prompt_embed_out = get_tensor_batch(text_encoder_1_hidden_state, 1); + pooled_prompt_2_embed_out = get_tensor_batch(text_encoder_2_output, 1); + prompt_2_embed_out = get_tensor_batch(text_encoder_2_hidden_state, 1); } else { pooled_prompt_embed_out = text_encoder_1_output; prompt_embed_out = text_encoder_1_hidden_state; @@ -291,73 +273,36 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { } // concatenate hidden_states from two encoders - ov::Shape pr_emb_shape = prompt_embed.get_shape(); - ov::Shape pr_emb_2_shape = prompt_2_embed.get_shape(); - - ov::Shape clip_prompt_embeds_shape = {pr_emb_shape[0], pr_emb_shape[1], pr_emb_shape[2] + pr_emb_2_shape[2]}; - ov::Tensor clip_prompt_embeds(prompt_embed.get_element_type(), clip_prompt_embeds_shape); - - const float* pr_emb_1_data = prompt_embed.data(); - const float* pr_emb_2_data = prompt_2_embed.data(); - float* clip_prompt_embeds_data = clip_prompt_embeds.data(); - - numpy_utils::concat_3d_by_rows(pr_emb_1_data, pr_emb_2_data, clip_prompt_embeds_data, pr_emb_shape, pr_emb_2_shape); + ov::Tensor clip_prompt_embeds = numpy_utils::concat(prompt_embed, prompt_2_embed, -1); + ov::Shape clip_prompt_embeds_shape = clip_prompt_embeds.get_shape(); // TODO: text_encoder_3 ov::Shape t5_prompt_embed_shape = {generation_config.num_images_per_prompt, m_clip_text_encoder_1->get_config().max_position_embeddings, transformer_config.joint_attention_dim}; - - std::vector t5_prompt_embed(ov::shape_size(t5_prompt_embed_shape), 0.0f); + ov::Tensor t5_prompt_embed(ov::element::f32, t5_prompt_embed_shape); + std::fill_n(t5_prompt_embed.data(), t5_prompt_embed.get_size(), 0.0f); // padding for clip_prompt_embeds - ov::Shape pad_embeds_shape = {clip_prompt_embeds_shape[0], - clip_prompt_embeds_shape[1], - t5_prompt_embed_shape[2]}; + ov::Shape pad_embeds_shape = {clip_prompt_embeds_shape[0], clip_prompt_embeds_shape[1], t5_prompt_embed_shape[2]}; + ov::Tensor pad_embeds(ov::element::f32, pad_embeds_shape); - std::vector pad_embeds(ov::shape_size(pad_embeds_shape), 0.0f); - padding_right(clip_prompt_embeds_data, pad_embeds.data(), clip_prompt_embeds_shape, pad_embeds_shape); + padding_right(clip_prompt_embeds, pad_embeds); // prompt_embeds = torch.cat([pad_embeds, t5_prompt_embed], dim=-2) - ov::Shape prompt_embeds_shape = {pad_embeds_shape[0], - pad_embeds_shape[1] + t5_prompt_embed_shape[1], - pad_embeds_shape[2]}; - ov::Tensor prompt_embeds(ov::element::f32, prompt_embeds_shape); - float* prompt_embeds_data = prompt_embeds.data(); - numpy_utils::concat_3d_by_cols(pad_embeds.data(), - t5_prompt_embed.data(), - prompt_embeds_data, - pad_embeds_shape, - t5_prompt_embed_shape); - + ov::Tensor prompt_embeds = numpy_utils::concat(pad_embeds, t5_prompt_embed, -2); // pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) - ov::Shape p_pr_emb_shape = pooled_prompt_embed.get_shape(); - ov::Shape p_pr_emb_2_shape = pooled_prompt_2_embed.get_shape(); - - const float* pooled_prompt_embed_data = pooled_prompt_embed.data(); - const float* pooled_prompt_2_embed_data = pooled_prompt_2_embed.data(); - - ov::Shape pooled_prompt_embeds_shape = {p_pr_emb_shape[0], p_pr_emb_shape[1] + p_pr_emb_2_shape[1]}; - ov::Tensor pooled_prompt_embeds(ov::element::f32, pooled_prompt_embeds_shape); - float* pooled_prompt_embeds_data = pooled_prompt_embeds.data(); - - numpy_utils::concat_2d_by_rows(pooled_prompt_embed_data, - pooled_prompt_2_embed_data, - pooled_prompt_embeds_data, - p_pr_emb_shape, - p_pr_emb_2_shape); - // From steps above we'll use prompt_embeds and pooled_prompt_embeds tensors + ov::Tensor pooled_prompt_embeds = numpy_utils::concat(pooled_prompt_embed, pooled_prompt_2_embed, -1); if (do_classifier_free_guidance(generation_config.guidance_scale)) { // 2. Encode negative prompt: - ov::Tensor negative_pooled_prompt_embed_out = split_2d_by_batch(text_encoder_1_output, 0); - ov::Tensor negative_prompt_embed_out = split_3d_by_batch(text_encoder_1_hidden_state, 0); - ov::Tensor negative_pooled_prompt_2_embed_out = split_2d_by_batch(text_encoder_2_output, 0); - ov::Tensor negative_prompt_2_embed_out = split_3d_by_batch(text_encoder_2_hidden_state, 0); + ov::Tensor negative_pooled_prompt_embed_out = get_tensor_batch(text_encoder_1_output, 0); + ov::Tensor negative_prompt_embed_out = get_tensor_batch(text_encoder_1_hidden_state, 0); + ov::Tensor negative_pooled_prompt_2_embed_out = get_tensor_batch(text_encoder_2_output, 0); + ov::Tensor negative_prompt_2_embed_out = get_tensor_batch(text_encoder_2_hidden_state, 0); - ov::Tensor negative_pooled_prompt_embed, negative_prompt_embed, negative_pooled_prompt_2_embed, - negative_prompt_2_embed; + ov::Tensor negative_pooled_prompt_embed, negative_prompt_embed, negative_pooled_prompt_2_embed, negative_prompt_2_embed; if (generation_config.num_images_per_prompt == 1) { negative_pooled_prompt_embed = negative_pooled_prompt_embed_out; negative_prompt_embed = negative_prompt_embed_out; @@ -371,100 +316,24 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { } // concatenate hidden_states from two encoders - ov::Shape n_pr_emb_1_shape = negative_prompt_embed.get_shape(); - ov::Shape n_pr_emb_2_shape = negative_prompt_2_embed.get_shape(); - - ov::Shape neg_clip_prompt_embeds_shape = {n_pr_emb_1_shape[0], - n_pr_emb_1_shape[1], - n_pr_emb_1_shape[2] + n_pr_emb_2_shape[2]}; - ov::Tensor neg_clip_prompt_embeds(prompt_embed.get_element_type(), neg_clip_prompt_embeds_shape); + ov::Tensor neg_clip_prompt_embeds = numpy_utils::concat(negative_prompt_embed, negative_prompt_2_embed, -1); - const float* neg_pr_emb_1_data = negative_prompt_embed.data(); - const float* neg_pr_emb_2_data = negative_prompt_2_embed.data(); - float* neg_clip_prompt_embeds_data = neg_clip_prompt_embeds.data(); - - numpy_utils::concat_3d_by_rows(neg_pr_emb_1_data, - neg_pr_emb_2_data, - neg_clip_prompt_embeds_data, - n_pr_emb_1_shape, - n_pr_emb_2_shape); - - std::vector t5_neg_prompt_embed( - t5_prompt_embed_shape[0] * t5_prompt_embed_shape[1] * t5_prompt_embed_shape[2], - 0.0f); + // TODO: replace with actual T5 embeddings once they are supported by SD3 + ov::Tensor t5_neg_prompt_embed = t5_prompt_embed; // padding for neg_clip_prompt_embeds - ov::Shape neg_pad_embeds_shape = {neg_clip_prompt_embeds_shape[0], - neg_clip_prompt_embeds_shape[1], - t5_prompt_embed_shape[2]}; - - std::vector neg_pad_embeds( - neg_pad_embeds_shape[0] * neg_pad_embeds_shape[1] * neg_pad_embeds_shape[2], - 0.0f); - - padding_right(neg_clip_prompt_embeds_data, - neg_pad_embeds.data(), - neg_clip_prompt_embeds_shape, - neg_pad_embeds_shape); + padding_right(neg_clip_prompt_embeds, pad_embeds); // negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) - ov::Shape neg_prompt_embeds_shape = {neg_pad_embeds_shape[0], - neg_pad_embeds_shape[1] + t5_prompt_embed_shape[1], - neg_pad_embeds_shape[2]}; - ov::Tensor neg_prompt_embeds(ov::element::f32, neg_prompt_embeds_shape); - float* neg_prompt_embeds_data = neg_prompt_embeds.data(); - - numpy_utils::concat_3d_by_cols(neg_pad_embeds.data(), - t5_neg_prompt_embed.data(), - neg_prompt_embeds_data, - neg_pad_embeds_shape, - t5_prompt_embed_shape); - - // neg_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], - // dim=-1) - ov::Shape neg_pooled_pr_emb_shape = negative_pooled_prompt_embed.get_shape(); - ov::Shape neg_pooled_pr_2_emb_shape = negative_pooled_prompt_2_embed.get_shape(); - - const float* neg_pooled_pr_emb_data = negative_pooled_prompt_embed.data(); - const float* neg_pooled_pr_2_emb_data = negative_pooled_prompt_2_embed.data(); - - ov::Shape neg_pooled_prompt_embeds_shape = {neg_pooled_pr_emb_shape[0], - neg_pooled_pr_emb_shape[1] + neg_pooled_pr_2_emb_shape[1]}; - ov::Tensor neg_pooled_prompt_embeds(ov::element::f32, neg_pooled_prompt_embeds_shape); - float* neg_pooled_prompt_embeds_data = neg_pooled_prompt_embeds.data(); - - numpy_utils::concat_2d_by_rows(neg_pooled_pr_emb_data, - neg_pooled_pr_2_emb_data, - neg_pooled_prompt_embeds_data, - neg_pooled_pr_emb_shape, - neg_pooled_pr_2_emb_shape); - // From steps above we'll use neg_prompt_embeds and neg_pooled_prompt_embeds tensors - - // Fill in transformer inputs: concat positive and negative prompt_embeds - ov::Shape prompt_embeds_inp_shape = {prompt_embeds_shape[0] + neg_prompt_embeds_shape[0], - prompt_embeds_shape[1], - prompt_embeds_shape[2]}; - prompt_embeds_inp = ov::Tensor(ov::element::f32, prompt_embeds_inp_shape); - float* prompt_embeds_inp_data = prompt_embeds_inp.data(); - numpy_utils::concat_3d_by_channels(neg_prompt_embeds_data, - prompt_embeds_data, - prompt_embeds_inp_data, - neg_prompt_embeds_shape, - prompt_embeds_shape); - - ov::Shape pooled_prompt_embeds_inp_shape = { - neg_pooled_prompt_embeds_shape[0] + pooled_prompt_embeds_shape[0], - pooled_prompt_embeds_shape[1]}; - - pooled_prompt_embeds_inp = ov::Tensor(ov::element::f32, pooled_prompt_embeds_inp_shape); - float* pooled_prompt_embeds_input_data = pooled_prompt_embeds_inp.data(); - numpy_utils::concat_2d_by_channels(neg_pooled_prompt_embeds_data, - pooled_prompt_embeds_data, - pooled_prompt_embeds_input_data, - neg_pooled_prompt_embeds_shape, - pooled_prompt_embeds_shape); + ov::Tensor neg_prompt_embeds = numpy_utils::concat(pad_embeds, t5_neg_prompt_embed, -2); + // neg_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) + ov::Tensor neg_pooled_prompt_embeds = numpy_utils::concat(negative_pooled_prompt_embed, negative_pooled_prompt_2_embed, -1); + + // 3. Fill in transformer inputs: concat positive and negative prompt_embeds + prompt_embeds_inp = numpy_utils::concat(neg_prompt_embeds, prompt_embeds, 0); + pooled_prompt_embeds_inp = numpy_utils::concat(neg_pooled_prompt_embeds, pooled_prompt_embeds, 0); } else { - // Fill in transformer inputs + // 3. Fill in transformer inputs prompt_embeds_inp = prompt_embeds; pooled_prompt_embeds_inp = pooled_prompt_embeds; } @@ -642,7 +511,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { const bool is_classifier_free_guidance = do_classifier_free_guidance(generation_config.guidance_scale); - OPENVINO_ASSERT(generation_config.max_sequence_length < 512, "T5's 'max_sequence_length' must be less than 512"); + OPENVINO_ASSERT(generation_config.max_sequence_length <= 512, "T5's 'max_sequence_length' must be less or equal to 512"); OPENVINO_ASSERT( generation_config.prompt_3 == std::nullopt || generation_config.negative_prompt_3 == std::nullopt, "T5Encoder is not currently supported, 'prompt_3' and 'negative_prompt_3' can't be used. Please, add " From 6f6a38a26f84ddcab69c8d140603c5c4e0e942b3 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Thu, 5 Dec 2024 19:38:35 +0400 Subject: [PATCH 039/113] Ported from release (#1307) - https://github.com/openvinotoolkit/openvino.genai/pull/1298 - https://github.com/openvinotoolkit/openvino.genai/pull/1296 --------- Co-authored-by: Irina Efode Co-authored-by: Pavel Esir --- .../include/openvino/genai/perf_metrics.hpp | 2 - ...batching_for_speculative_decoding_impl.cpp | 51 +++++++++++-------- ...batching_for_speculative_decoding_impl.hpp | 2 +- .../speculative_decoding_impl.cpp | 17 +++++-- .../openvino_genai/py_openvino_genai.pyi | 38 ++++++++------ src/python/py_perf_metrics.cpp | 40 ++++++++------- 6 files changed, 88 insertions(+), 62 deletions(-) diff --git a/src/cpp/include/openvino/genai/perf_metrics.hpp b/src/cpp/include/openvino/genai/perf_metrics.hpp index 1bbb80458a..659239be66 100644 --- a/src/cpp/include/openvino/genai/perf_metrics.hpp +++ b/src/cpp/include/openvino/genai/perf_metrics.hpp @@ -27,8 +27,6 @@ using MicroSeconds = std::chrono::duration>; * @param m_batch_sizes Batch sizes for each generate call. * @param m_durations Total durations for each generate call in microseconds. * @param m_inference_durations Total inference duration for each generate call in microseconds. - * @param num_generated_tokens Total number of tokens generated. - * @param num_input_tokens Total number of tokens in the input prompt. */ struct OPENVINO_GENAI_EXPORTS RawPerfMetrics { std::vector generate_durations; diff --git a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp index 9e4840ecfd..06a51b38be 100644 --- a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp @@ -176,6 +176,7 @@ init_request( sequence->append_token(token_ids[i], log_probs[i]); if (is_update_logit_processor) { logit_processor.register_new_generated_token(token_ids[i]); + logit_processor.update_generated_len(sequence->get_generated_len()); } } @@ -256,38 +257,44 @@ ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::update prompt_len = request->get_prompt_len(), updated_context_len = min_candidate_len + prompt_len, max_new_tokens = request->get_sampling_parameters().max_new_tokens; - // prompt phase - if (request->get_context_len() < request->get_prompt_len() && result.inserted_tokens_cnt == 0) { - return result; + size_t generated_len = request->get_context_len() >= request->get_prompt_len() ? request->get_context_len() - request->get_prompt_len() + 1 : 0; + if (generated_len > 0 && result.removed_tokens_cnt > 0) { + request->update_processed_tokens_num(num_processed_tokens - result.removed_tokens_cnt + 1); } - size_t generated_len = request->get_context_len() - request->get_prompt_len(); - if (num_processed_tokens > 0) { - request->update_processed_tokens_num(num_processed_tokens - result.removed_tokens_cnt); - generated_len -= result.removed_tokens_cnt; + if (result.inserted_tokens_cnt > 0 && result.removed_tokens_cnt == 0) { + request->set_num_validated_tokens(result.inserted_tokens_cnt); } - request->set_num_validated_tokens(result.inserted_tokens_cnt); - request->pause_generation(false); - generated_len += result.inserted_tokens_cnt; - // to pause `draft_model` generation in case of `generated_len >= max_new_tokens - 1` to generate last token by `main_model` - if (!m_is_validation_mode_enabled && (generated_len >= max_new_tokens - 1 || result.inserted_tokens_cnt == 0)) { - request->pause_generation(true); + if (!m_is_validation_mode_enabled) { + bool pause_gen_status = false; + generated_len -= result.removed_tokens_cnt; + generated_len += result.inserted_tokens_cnt; + if (generated_len >= max_new_tokens - 1 || generated_len != 0 && result.inserted_tokens_cnt == 0) { + pause_gen_status = true; + } + request->pause_generation(pause_gen_status); } break; } - return result; } void -ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::pull_awaiting_requests() { - ContinuousBatchingImpl::_pull_awaiting_requests(); +ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::pull_awaiting_requests(bool is_pause_request) { + std::lock_guard lock{m_awaiting_requests_mutex}; + if (is_pause_request) { + for (auto& awaiting_request : m_awaiting_requests) { + awaiting_request->pause_generation(true); + } + } + m_requests.insert(m_requests.end(), m_awaiting_requests.begin(), m_awaiting_requests.end()); + m_awaiting_requests.clear(); } void ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::multistep() { + bool to_generate = true; size_t generated_tokens_cnt = 0; // cycle to generate several tokens per one iteration for speculative decoding case - bool to_generate = true; while (to_generate) { generated_tokens_cnt++; @@ -299,18 +306,20 @@ void ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::m if (!sampling_params.is_speculative_decoding()) { // generate only one token in case of non speculative decoding request->pause_generation(true); + } else if (request->get_num_processed_tokens() >= request->get_prompt_len() && + (request->get_num_processed_tokens() - request->get_prompt_len() + 1) >= sampling_params.max_new_tokens - 1) { + request->pause_generation(true); } else if (request->get_num_processed_tokens() == 0 && sampling_params.num_return_sequences > 1) { request->pause_generation(true); } else if (sampling_params.num_assistant_tokens <= generated_tokens_cnt && sampling_params.assistant_confidence_threshold == 0.f) { request->pause_generation(true); - } else if (request->get_context_len() >= request->get_prompt_len() && - (request->get_context_len() - request->get_prompt_len()) >= sampling_params.max_new_tokens - 1) { - request->pause_generation(true); } else if (sampling_params.max_new_tokens == 0) { request->pause_generation(true); + } else if (request->get_num_processed_tokens() == request->get_prompt_len()) { + request->pause_generation(true); } to_generate |= request->can_generate_tokens(); } } } -} +} \ No newline at end of file diff --git a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.hpp b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.hpp index 682448ed16..1c98969d36 100644 --- a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.hpp +++ b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.hpp @@ -26,7 +26,7 @@ class ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl : void multistep(); void finish_request(int64_t request_id = -1); - void pull_awaiting_requests(); + void pull_awaiting_requests(bool is_pause_request = false); GeneratedRequests get_generated_requests(); UpdateRequestResult update_request(uint64_t request_id, const GeneratedSequences& candidates, bool is_update_logit_processor); diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index 4e43fdadc9..ecce79ac4e 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -31,7 +31,7 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl( const ov::genai::ModelDesc draft_model_desc, const ov::AnyMap& tokenizer_properties) { ov::Core core; - auto [core_properties, compile_properties] = ov::genai::utils::split_core_compile_config(main_properties); + auto [core_properties, compile_properties] = utils::split_core_compile_config(main_properties); core.set_property(core_properties); std::filesystem::path openvino_model_name = "openvino_model.xml", @@ -97,8 +97,11 @@ GenerationHandle ContinuousBatchingPipeline::SpeculativeDecodingImpl::add_request(uint64_t request_id, const ov::Tensor& input_ids, ov::genai::GenerationConfig sampling_params) { + m_sd_metrics.set_generated_len(request_id, sampling_params.max_new_tokens); std::lock_guard lock(m_draft_generations_mutex); - m_draft_generations.insert({request_id, m_draft_pipeline->add_request(request_id, input_ids, sampling_params)}); + auto draft_sampling_params = sampling_params; + draft_sampling_params.ignore_eos = true; + m_draft_generations.insert({request_id, m_draft_pipeline->add_request(request_id, input_ids, draft_sampling_params)}); return m_main_pipeline->add_request(request_id, input_ids, sampling_params); }; @@ -106,8 +109,11 @@ GenerationHandle ContinuousBatchingPipeline::SpeculativeDecodingImpl::add_request(uint64_t request_id, const std::string& prompt, ov::genai::GenerationConfig sampling_params) { + m_sd_metrics.set_generated_len(request_id, sampling_params.max_new_tokens); std::lock_guard lock(m_draft_generations_mutex); - m_draft_generations.insert({request_id, m_draft_pipeline->add_request(request_id, prompt, sampling_params)}); + auto draft_sampling_params = sampling_params; + draft_sampling_params.ignore_eos = true; + m_draft_generations.insert({request_id, m_draft_pipeline->add_request(request_id, prompt, draft_sampling_params)}); return m_main_pipeline->add_request(request_id, prompt, sampling_params); } @@ -131,7 +137,7 @@ void print_generated_request(const ov::genai::GeneratedRequests& requests) { void ContinuousBatchingPipeline::SpeculativeDecodingImpl::step() { // this blocks adding new requests during step as it may break coherence between main and draft models std::lock_guard lock{m_draft_generations_mutex}; - m_draft_pipeline->pull_awaiting_requests(); + m_draft_pipeline->pull_awaiting_requests(true); m_main_pipeline->pull_awaiting_requests(); // generate candidates by draft model @@ -208,6 +214,7 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::generate(const std::vector< std::vector main_generations; for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { + m_sd_metrics.set_generated_len(request_id, sampling_params[request_id].max_new_tokens); OPENVINO_ASSERT(1 == input_ids[request_id].get_shape().at(0), "Use multiple tensors to pass a batch."); main_generations.push_back(m_main_pipeline->add_request(request_id, input_ids[request_id], sampling_params[request_id])); @@ -291,4 +298,4 @@ SpeculativeDecodingMetrics ContinuousBatchingPipeline::SpeculativeDecodingImpl::get_speculative_decoding_metrics() { return m_sd_metrics; }; -} +} \ No newline at end of file diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 644863ac04..7c6555f38f 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1012,32 +1012,32 @@ class RawPerfMetrics: Structure with raw performance metrics for each generation before any statistics are calculated. - :param generate_durations: Durations for each generate call in microseconds. - :type generate_durations: List[MicroSeconds] + :param generate_durations: Durations for each generate call in milliseconds. + :type generate_durations: List[float] - :param tokenization_durations: Durations for the tokenization process in microseconds. - :type tokenization_durations: List[MicroSeconds] + :param tokenization_durations: Durations for the tokenization process in milliseconds. + :type tokenization_durations: List[float] - :param detokenization_durations: Durations for the detokenization process in microseconds. - :type detokenization_durations: List[MicroSeconds] + :param detokenization_durations: Durations for the detokenization process in milliseconds. + :type detokenization_durations: List[float] - :param m_times_to_first_token: Times to the first token for each call in microseconds. - :type m_times_to_first_token: List[MicroSeconds] + :param m_times_to_first_token: Times to the first token for each call in milliseconds. + :type m_times_to_first_token: List[float] :param m_new_token_times: Timestamps of generation every token or batch of tokens in milliseconds. - :type m_new_token_times: List[MilliSeconds] + :type m_new_token_times: List[double] + + :param token_infer_durations : Inference time for each token in milliseconds. + :type batch_sizes: List[float] :param m_batch_sizes: Batch sizes for each generate call. :type m_batch_sizes: List[int] - :param m_durations: Total durations for each generate call in microseconds. - :type m_durations: List[MicroSeconds] - - :param num_generated_tokens: Total number of tokens generated. - :type num_generated_tokens: int + :param m_durations: Total durations for each generate call in milliseconds. + :type m_durations: List[float] - :param num_input_tokens: Total number of tokens in the input prompt. - :type num_input_tokens: int + :param inference_durations : Total inference duration for each generate call in milliseconds. + :type batch_sizes: List[float] """ def __init__(self) -> None: ... @@ -1048,6 +1048,9 @@ class RawPerfMetrics: def generate_durations(self) -> list[float]: ... @property + def inference_durations(self) -> list[float]: + ... + @property def m_batch_sizes(self) -> list[int]: ... @property @@ -1060,6 +1063,9 @@ class RawPerfMetrics: def m_times_to_first_token(self) -> list[float]: ... @property + def token_infer_durations(self) -> list[float]: + ... + @property def tokenization_durations(self) -> list[float]: ... class Scheduler: diff --git a/src/python/py_perf_metrics.cpp b/src/python/py_perf_metrics.cpp index 1bc90c23a5..1d17e34905 100644 --- a/src/python/py_perf_metrics.cpp +++ b/src/python/py_perf_metrics.cpp @@ -23,32 +23,32 @@ namespace { auto raw_perf_metrics_docstring = R"( Structure with raw performance metrics for each generation before any statistics are calculated. - :param generate_durations: Durations for each generate call in microseconds. - :type generate_durations: List[MicroSeconds] + :param generate_durations: Durations for each generate call in milliseconds. + :type generate_durations: List[float] - :param tokenization_durations: Durations for the tokenization process in microseconds. - :type tokenization_durations: List[MicroSeconds] + :param tokenization_durations: Durations for the tokenization process in milliseconds. + :type tokenization_durations: List[float] - :param detokenization_durations: Durations for the detokenization process in microseconds. - :type detokenization_durations: List[MicroSeconds] + :param detokenization_durations: Durations for the detokenization process in milliseconds. + :type detokenization_durations: List[float] - :param m_times_to_first_token: Times to the first token for each call in microseconds. - :type m_times_to_first_token: List[MicroSeconds] + :param m_times_to_first_token: Times to the first token for each call in milliseconds. + :type m_times_to_first_token: List[float] :param m_new_token_times: Timestamps of generation every token or batch of tokens in milliseconds. - :type m_new_token_times: List[MilliSeconds] + :type m_new_token_times: List[double] + + :param token_infer_durations : Inference time for each token in milliseconds. + :type batch_sizes: List[float] :param m_batch_sizes: Batch sizes for each generate call. :type m_batch_sizes: List[int] - :param m_durations: Total durations for each generate call in microseconds. - :type m_durations: List[MicroSeconds] - - :param num_generated_tokens: Total number of tokens generated. - :type num_generated_tokens: int + :param m_durations: Total durations for each generate call in milliseconds. + :type m_durations: List[float] - :param num_input_tokens: Total number of tokens in the input prompt. - :type num_input_tokens: int + :param inference_durations : Total inference duration for each generate call in milliseconds. + :type batch_sizes: List[float] )"; auto perf_metrics_docstring = R"( @@ -137,10 +137,16 @@ void init_perf_metrics(py::module_& m) { .def_property_readonly("m_new_token_times", [](const RawPerfMetrics &rw) { return timestamp_to_ms(rw, &RawPerfMetrics::m_new_token_times); }) + .def_property_readonly("token_infer_durations", [](const RawPerfMetrics &rw) { + return pyutils::get_ms(rw, &RawPerfMetrics::m_token_infer_durations); + }) + .def_readonly("m_batch_sizes", &RawPerfMetrics::m_batch_sizes) .def_property_readonly("m_durations", [](const RawPerfMetrics &rw) { return pyutils::get_ms(rw, &RawPerfMetrics::m_durations); }) - .def_readonly("m_batch_sizes", &RawPerfMetrics::m_batch_sizes); + .def_property_readonly("inference_durations", [](const RawPerfMetrics &rw) { + return pyutils::get_ms(rw, &RawPerfMetrics::m_inference_durations); + }); py::class_(m, "MeanStdPair") .def(py::init<>()) From 00bf3e9e47164d7c6ecc29f31a95ca5767d68efc Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Thu, 5 Dec 2024 19:30:44 +0100 Subject: [PATCH 040/113] T5 encoder for SD3 Pipeline (#1316) ```python prompt = "An urban park on a sunny day" prompt_2 = "A cartoon, dreamy anime background" prompt_3 = "Mysterious atmosphere" negative_prompt = "no people" negative_prompt_2 = "no buildings" negative_prompt_3 = "no lakes" image_tensor = pipe.generate( prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, num_inference_steps=10, generator=Generator(100) ) ``` ![image](https://github.com/user-attachments/assets/da80f066-b83d-442c-a23c-1801170a55fc) --- .../image_generation/t5_encoder_model.hpp | 5 +- .../image_generation/text2image_pipeline.hpp | 1 + .../src/image_generation/flux_pipeline.hpp | 10 +-- .../models/t5_encoder_model.cpp | 20 ++++- .../stable_diffusion_3_pipeline.hpp | 86 ++++++++++--------- .../stable_diffusion_pipeline.hpp | 6 +- .../stable_diffusion_xl_pipeline.hpp | 8 +- .../image_generation/text2image_pipeline.cpp | 3 +- 8 files changed, 83 insertions(+), 56 deletions(-) diff --git a/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp b/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp index 717871d1d9..11797226eb 100644 --- a/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/t5_encoder_model.hpp @@ -65,7 +65,10 @@ class OPENVINO_GENAI_EXPORTS T5EncoderModel { return compile(device, ov::AnyMap{std::forward(properties)...}); } - ov::Tensor infer(const std::string& pos_prompt, int max_sequence_length); + ov::Tensor infer(const std::string& pos_prompt, + const std::string& neg_prompt, + bool do_classifier_free_guidance, + int max_sequence_length); ov::Tensor get_output_tensor(const size_t idx); diff --git a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp index cdfe372df9..be594f13fc 100644 --- a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp @@ -72,6 +72,7 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { const std::shared_ptr& scheduler, const CLIPTextModelWithProjection& clip_text_model_1, const CLIPTextModelWithProjection& clip_text_model_2, + const T5EncoderModel& t5_encoder_model, const SD3Transformer2DModel& transformer, const AutoencoderKL& vae); diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index 65d9ca30d3..32650b9288 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -246,7 +246,7 @@ class FluxPipeline : public DiffusionPipeline { m_clip_text_encoder->infer(positive_prompt, "", false); ov::Tensor pooled_prompt_embeds_out = m_clip_text_encoder->get_output_tensor(1); - ov::Tensor prompt_embeds_out = m_t5_text_encoder->infer(prompt_2_str, generation_config.max_sequence_length); + ov::Tensor prompt_embeds_out = m_t5_text_encoder->infer(prompt_2_str, "", false, generation_config.max_sequence_length); ov::Tensor pooled_prompt_embeds, prompt_embeds; if (generation_config.num_images_per_prompt == 1) { @@ -407,10 +407,10 @@ class FluxPipeline : public DiffusionPipeline { OPENVINO_ASSERT(generation_config.prompt_3 == std::nullopt, "Prompt 3 is not used by FluxPipeline"); } - std::shared_ptr m_transformer; - std::shared_ptr m_clip_text_encoder; - std::shared_ptr m_t5_text_encoder; - std::shared_ptr m_vae; + std::shared_ptr m_transformer = nullptr; + std::shared_ptr m_clip_text_encoder = nullptr; + std::shared_ptr m_t5_text_encoder = nullptr; + std::shared_ptr m_vae = nullptr; ImageGenerationConfig m_custom_generation_config; }; diff --git a/src/cpp/src/image_generation/models/t5_encoder_model.cpp b/src/cpp/src/image_generation/models/t5_encoder_model.cpp index e7629b2f26..8c6df34667 100644 --- a/src/cpp/src/image_generation/models/t5_encoder_model.cpp +++ b/src/cpp/src/image_generation/models/t5_encoder_model.cpp @@ -70,7 +70,7 @@ T5EncoderModel& T5EncoderModel::compile(const std::string& device, const ov::Any return *this; } -ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, int max_sequence_length) { +ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, const std::string& neg_prompt, bool do_classifier_free_guidance, int max_sequence_length) { OPENVINO_ASSERT(m_request, "T5 encoder model must be compiled first. Cannot infer non-compiled model"); const int32_t pad_token_id = m_tokenizer.get_pad_token_id(); @@ -93,10 +93,24 @@ ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, int max_sequence "infer's max_sequence_length ", max_sequence_length); if (input_ids_shape[0] == 0 || input_ids_shape[1] == 0) { - input_ids.set_shape({1, static_cast(max_sequence_length)}); + size_t batch_size = do_classifier_free_guidance ? 2 : 1; + input_ids.set_shape({batch_size, static_cast(max_sequence_length)}); } - perform_tokenization(pos_prompt, input_ids); + size_t current_batch_idx = 0; + if (do_classifier_free_guidance) { + perform_tokenization(neg_prompt, + ov::Tensor(input_ids, {current_batch_idx , 0}, + {current_batch_idx + 1, input_ids.get_shape()[1]})); + ++current_batch_idx; + } else { + // Negative prompt is ignored when --guidanceScale < 1.0 + } + + // perform_tokenization(pos_prompt, input_ids); + perform_tokenization(pos_prompt, + ov::Tensor(input_ids, {current_batch_idx , 0}, + {current_batch_idx + 1, input_ids.get_shape()[1]})); // text embeddings m_request.set_tensor("input_ids", input_ids); diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp index 74058a829b..5a5057062c 100644 --- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp @@ -80,13 +80,12 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } - // TODO: - // const std::string text_encoder_3 = data["text_encoder_3"][1].get(); - // if (text_encoder_2 == "T5EncoderModel") { - // m_t5_encoder = std::make_shared(root_dir / "text_encoder_3"); - // } else { - // OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); - // } + const std::string text_encoder_3 = data["text_encoder_3"][1].get(); + if (text_encoder_3 == "T5EncoderModel") { + m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3"); + } else { + m_t5_text_encoder = nullptr; + } const std::string transformer = data["transformer"][1].get(); if (transformer == "SD3Transformer2DModel") { @@ -142,13 +141,10 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } - // TODO: - // const std::string text_encoder_3 = data["text_encoder_3"][1].get(); - // if (text_encoder_2 == "T5EncoderModel") { - // m_t5_encoder = std::make_shared(root_dir / "text_encoder_3", device, properties); - // } else { - // OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); - // } + const std::string text_encoder_3 = data["text_encoder_3"][1].get(); + if (text_encoder_3 == "T5EncoderModel") { + m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3", device, properties); + } const std::string transformer = data["transformer"][1].get(); if (transformer == "SD3Transformer2DModel") { @@ -179,11 +175,13 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { StableDiffusion3Pipeline(PipelineType pipeline_type, const CLIPTextModelWithProjection& clip_text_model_1, const CLIPTextModelWithProjection& clip_text_model_2, + const T5EncoderModel& t5_encoder_model, const SD3Transformer2DModel& transformer, const AutoencoderKL& vae) : DiffusionPipeline(pipeline_type), m_clip_text_encoder_1(std::make_shared(clip_text_model_1)), m_clip_text_encoder_2(std::make_shared(clip_text_model_2)), + m_t5_text_encoder(std::make_shared(t5_encoder_model)), m_vae(std::make_shared(vae)), m_transformer(std::make_shared(transformer)) { initialize_generation_config("StableDiffusion3Pipeline"); @@ -199,6 +197,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { do_classifier_free_guidance(guidance_scale) ? 2 : 1; // Transformer accepts 2x batch in case of CFG m_clip_text_encoder_1->reshape(batch_size_multiplier); m_clip_text_encoder_2->reshape(batch_size_multiplier); + m_t5_text_encoder->reshape(batch_size_multiplier, m_generation_config.max_sequence_length); m_transformer->reshape(num_images_per_prompt * batch_size_multiplier, height, width, @@ -211,6 +210,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { m_clip_text_encoder_1->compile(device, properties); m_clip_text_encoder_2->compile(device, properties); + m_t5_text_encoder->compile(device, properties); m_transformer->compile(device, properties); m_vae->compile(device, properties); } @@ -244,44 +244,56 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { size_t idx_hidden_state_2 = m_clip_text_encoder_2->get_config().num_hidden_layers + 1; ov::Tensor text_encoder_2_hidden_state = m_clip_text_encoder_2->get_output_tensor(idx_hidden_state_2); - // get positive prompt_2_embed_out - ov::Tensor pooled_prompt_embed_out, prompt_embed_out, pooled_prompt_2_embed_out, prompt_2_embed_out; + ov::Tensor text_encoder_3_output; + if (m_t5_text_encoder == nullptr) { + ov::Shape t5_prompt_embed_shape = {generation_config.num_images_per_prompt, + m_clip_text_encoder_1->get_config().max_position_embeddings, + transformer_config.joint_attention_dim}; + text_encoder_3_output = ov::Tensor(ov::element::f32, t5_prompt_embed_shape); + std::fill_n(text_encoder_3_output.data(), text_encoder_3_output.get_size(), 0.0f); + } else { + text_encoder_3_output = m_t5_text_encoder->infer(prompt_3_str, + negative_prompt_3_str, + do_classifier_free_guidance(generation_config.guidance_scale), + m_generation_config.max_sequence_length); + } + + ov::Tensor pooled_prompt_embed_out, prompt_embed_out, pooled_prompt_2_embed_out, prompt_2_embed_out, t5_prompt_embed_out; if (do_classifier_free_guidance(generation_config.guidance_scale)) { pooled_prompt_embed_out = get_tensor_batch(text_encoder_1_output, 1); prompt_embed_out = get_tensor_batch(text_encoder_1_hidden_state, 1); pooled_prompt_2_embed_out = get_tensor_batch(text_encoder_2_output, 1); prompt_2_embed_out = get_tensor_batch(text_encoder_2_hidden_state, 1); + t5_prompt_embed_out = get_tensor_batch(text_encoder_3_output, 1); } else { pooled_prompt_embed_out = text_encoder_1_output; prompt_embed_out = text_encoder_1_hidden_state; pooled_prompt_2_embed_out = text_encoder_2_output; prompt_2_embed_out = text_encoder_2_hidden_state; + t5_prompt_embed_out = text_encoder_3_output; } - ov::Tensor pooled_prompt_embed, prompt_embed, pooled_prompt_2_embed, prompt_2_embed; + ov::Tensor pooled_prompt_embed, prompt_embed, pooled_prompt_2_embed, prompt_2_embed, t5_prompt_embed; if (generation_config.num_images_per_prompt == 1) { pooled_prompt_embed = pooled_prompt_embed_out; prompt_embed = prompt_embed_out; pooled_prompt_2_embed = pooled_prompt_2_embed_out; prompt_2_embed = prompt_2_embed_out; + t5_prompt_embed = t5_prompt_embed_out; } else { pooled_prompt_embed = numpy_utils::repeat(pooled_prompt_embed_out, generation_config.num_images_per_prompt); prompt_embed = numpy_utils::repeat(prompt_embed_out, generation_config.num_images_per_prompt); pooled_prompt_2_embed = numpy_utils::repeat(pooled_prompt_2_embed_out, generation_config.num_images_per_prompt); prompt_2_embed = numpy_utils::repeat(prompt_2_embed_out, generation_config.num_images_per_prompt); + t5_prompt_embed = numpy_utils::repeat(t5_prompt_embed_out, generation_config.num_images_per_prompt); } // concatenate hidden_states from two encoders ov::Tensor clip_prompt_embeds = numpy_utils::concat(prompt_embed, prompt_2_embed, -1); ov::Shape clip_prompt_embeds_shape = clip_prompt_embeds.get_shape(); - // TODO: text_encoder_3 - ov::Shape t5_prompt_embed_shape = {generation_config.num_images_per_prompt, - m_clip_text_encoder_1->get_config().max_position_embeddings, - transformer_config.joint_attention_dim}; - ov::Tensor t5_prompt_embed(ov::element::f32, t5_prompt_embed_shape); - std::fill_n(t5_prompt_embed.data(), t5_prompt_embed.get_size(), 0.0f); + ov::Shape t5_prompt_embed_shape = t5_prompt_embed.get_shape(); // padding for clip_prompt_embeds ov::Shape pad_embeds_shape = {clip_prompt_embeds_shape[0], clip_prompt_embeds_shape[1], t5_prompt_embed_shape[2]}; @@ -301,31 +313,32 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { ov::Tensor negative_prompt_embed_out = get_tensor_batch(text_encoder_1_hidden_state, 0); ov::Tensor negative_pooled_prompt_2_embed_out = get_tensor_batch(text_encoder_2_output, 0); ov::Tensor negative_prompt_2_embed_out = get_tensor_batch(text_encoder_2_hidden_state, 0); - - ov::Tensor negative_pooled_prompt_embed, negative_prompt_embed, negative_pooled_prompt_2_embed, negative_prompt_2_embed; + ov::Tensor negative_t5_prompt_embed_out = get_tensor_batch(text_encoder_3_output, 0); + + ov::Tensor negative_pooled_prompt_embed, negative_prompt_embed, negative_pooled_prompt_2_embed, + negative_prompt_2_embed, negative_t5_prompt_embed; if (generation_config.num_images_per_prompt == 1) { negative_pooled_prompt_embed = negative_pooled_prompt_embed_out; negative_prompt_embed = negative_prompt_embed_out; negative_pooled_prompt_2_embed = negative_pooled_prompt_2_embed_out; negative_prompt_2_embed = negative_prompt_2_embed_out; + negative_t5_prompt_embed = negative_t5_prompt_embed_out; } else { negative_pooled_prompt_embed = numpy_utils::repeat(negative_pooled_prompt_embed_out, generation_config.num_images_per_prompt); negative_prompt_embed = numpy_utils::repeat(negative_prompt_embed_out, generation_config.num_images_per_prompt); negative_pooled_prompt_2_embed = numpy_utils::repeat(negative_pooled_prompt_2_embed_out, generation_config.num_images_per_prompt); negative_prompt_2_embed = numpy_utils::repeat(negative_prompt_2_embed_out, generation_config.num_images_per_prompt); + negative_t5_prompt_embed = numpy_utils::repeat(negative_t5_prompt_embed_out, generation_config.num_images_per_prompt); } // concatenate hidden_states from two encoders ov::Tensor neg_clip_prompt_embeds = numpy_utils::concat(negative_prompt_embed, negative_prompt_2_embed, -1); - // TODO: replace with actual T5 embeddings once they are supported by SD3 - ov::Tensor t5_neg_prompt_embed = t5_prompt_embed; - // padding for neg_clip_prompt_embeds padding_right(neg_clip_prompt_embeds, pad_embeds); // negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) - ov::Tensor neg_prompt_embeds = numpy_utils::concat(pad_embeds, t5_neg_prompt_embed, -2); + ov::Tensor neg_prompt_embeds = numpy_utils::concat(pad_embeds, negative_t5_prompt_embed, -2); // neg_pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1) ov::Tensor neg_pooled_prompt_embeds = numpy_utils::concat(negative_pooled_prompt_embed, negative_pooled_prompt_2_embed, -1); @@ -512,10 +525,6 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { const bool is_classifier_free_guidance = do_classifier_free_guidance(generation_config.guidance_scale); OPENVINO_ASSERT(generation_config.max_sequence_length <= 512, "T5's 'max_sequence_length' must be less or equal to 512"); - OPENVINO_ASSERT( - generation_config.prompt_3 == std::nullopt || generation_config.negative_prompt_3 == std::nullopt, - "T5Encoder is not currently supported, 'prompt_3' and 'negative_prompt_3' can't be used. Please, add " - "support."); OPENVINO_ASSERT(is_classifier_free_guidance || generation_config.negative_prompt == std::nullopt, "Negative prompt is not used when guidance scale < 1.0"); OPENVINO_ASSERT(is_classifier_free_guidance || generation_config.negative_prompt_2 == std::nullopt, @@ -543,12 +552,11 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { friend class Text2ImagePipeline; friend class Image2ImagePipeline; - std::shared_ptr m_clip_text_encoder_1; - std::shared_ptr m_clip_text_encoder_2; - // TODO: - // std::shared_ptr m_t5_encoder; - std::shared_ptr m_transformer; - std::shared_ptr m_vae; + std::shared_ptr m_clip_text_encoder_1 = nullptr; + std::shared_ptr m_clip_text_encoder_2 = nullptr; + std::shared_ptr m_t5_text_encoder = nullptr; + std::shared_ptr m_transformer = nullptr; + std::shared_ptr m_vae = nullptr; }; } // namespace genai diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp index 629c99270c..b7153f282a 100644 --- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp @@ -377,9 +377,9 @@ class StableDiffusionPipeline : public DiffusionPipeline { friend class Text2ImagePipeline; friend class Image2ImagePipeline; - std::shared_ptr m_clip_text_encoder; - std::shared_ptr m_unet; - std::shared_ptr m_vae; + std::shared_ptr m_clip_text_encoder = nullptr; + std::shared_ptr m_unet = nullptr; + std::shared_ptr m_vae = nullptr; }; } // namespace genai diff --git a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp index 3c9130898f..a7eb84bd3d 100644 --- a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp @@ -547,10 +547,10 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { friend class Image2ImagePipeline; bool m_force_zeros_for_empty_prompt = true; - std::shared_ptr m_clip_text_encoder; - std::shared_ptr m_clip_text_encoder_with_projection; - std::shared_ptr m_unet; - std::shared_ptr m_vae; + std::shared_ptr m_clip_text_encoder = nullptr; + std::shared_ptr m_clip_text_encoder_with_projection = nullptr; + std::shared_ptr m_unet = nullptr; + std::shared_ptr m_vae = nullptr; }; } // namespace genai diff --git a/src/cpp/src/image_generation/text2image_pipeline.cpp b/src/cpp/src/image_generation/text2image_pipeline.cpp index e0ecfeb452..66dda88454 100644 --- a/src/cpp/src/image_generation/text2image_pipeline.cpp +++ b/src/cpp/src/image_generation/text2image_pipeline.cpp @@ -100,9 +100,10 @@ Text2ImagePipeline Text2ImagePipeline::stable_diffusion_3( const std::shared_ptr& scheduler, const CLIPTextModelWithProjection& clip_text_model_1, const CLIPTextModelWithProjection& clip_text_model_2, + const T5EncoderModel& t5_encoder_model, const SD3Transformer2DModel& transformer, const AutoencoderKL& vae){ - auto impl = std::make_shared(PipelineType::TEXT_2_IMAGE, clip_text_model_1, clip_text_model_2, transformer, vae); + auto impl = std::make_shared(PipelineType::TEXT_2_IMAGE, clip_text_model_1, clip_text_model_2, t5_encoder_model, transformer, vae); assert(scheduler != nullptr); impl->set_scheduler(scheduler); From 7d8912ff9df9bcfacf0044d108963cb7618bff69 Mon Sep 17 00:00:00 2001 From: Alexander Suslov Date: Thu, 5 Dec 2024 23:11:43 +0400 Subject: [PATCH 041/113] Update requirements (#1305) Reopen PR https://github.com/openvinotoolkit/openvino.genai/pull/1291 --- .github/workflows/linux.yml | 2 ++ .github/workflows/llm_bench-python.yml | 14 ++++------- .github/workflows/mac.yml | 2 ++ .github/workflows/windows.yml | 2 ++ tests/python_tests/requirements.txt | 1 - .../python_tests/test_cache_optimizations.py | 3 ++- tools/who_what_benchmark/README.md | 23 +++++++++++++------ tools/who_what_benchmark/requirements.txt | 5 ++-- 8 files changed, 32 insertions(+), 20 deletions(-) diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml index 44e115423c..2916c340bf 100644 --- a/.github/workflows/linux.yml +++ b/.github/workflows/linux.yml @@ -267,6 +267,7 @@ jobs: run: | source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels + python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests --ignore ./tests/python_tests/test_whisper_generate_api.py --ignore ./tests/python_tests/test_vlm_api.py -k "not test_set_chat_template" - run: > @@ -358,6 +359,7 @@ jobs: run: | source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels + python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k "not test_smoke" genai_package: diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 77f26d33a0..0486a2a746 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -101,11 +101,9 @@ jobs: python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 - name: WWB Tests run: | - GIT_CLONE_PROTECTION_ACTIVE=false pip install -r ${{ env.WWB_PATH }}/requirements.txt pip install git+https://github.com/huggingface/optimum-intel.git - GIT_CLONE_PROTECTION_ACTIVE=false pip install ${{ env.WWB_PATH }} - python -m pip install -U --pre openvino openvino-tokenizers openvino-genai --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --force-reinstall - python -m pytest -v tools/who_what_benchmark/tests + GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }} + python -m pytest -v ${{ env.WWB_PATH }}/tests stateful: runs-on: ubuntu-20.04 steps: @@ -122,9 +120,7 @@ jobs: grep beam_idx pytorch/dldt/FP32/openvino_model.xml - name: WWB Tests run: | - GIT_CLONE_PROTECTION_ACTIVE=false pip install -r tools/who_what_benchmark/requirements.txt - pip install git+https://github.com/huggingface/optimum-intel.git - GIT_CLONE_PROTECTION_ACTIVE=false pip install tools/who_what_benchmark/ pip install pytest - python -m pip install -U --pre openvino openvino-tokenizers openvino-genai --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --force-reinstall - python -m pytest -v tools/who_what_benchmark/tests + pip install git+https://github.com/huggingface/optimum-intel.git + GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }} + python -m pytest -v ${{ env.WWB_PATH }}/tests diff --git a/.github/workflows/mac.yml b/.github/workflows/mac.yml index 5b1b7622ac..7a4ee31beb 100644 --- a/.github/workflows/mac.yml +++ b/.github/workflows/mac.yml @@ -234,6 +234,7 @@ jobs: source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels python -c "from openvino_genai import LLMPipeline" + python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/ --ignore ./tests/python_tests/test_whisper_generate_api.py --ignore ./tests/python_tests/test_vlm_api.py -k "not test_set_chat_template" genai_python_lib_whisper: @@ -298,6 +299,7 @@ jobs: source ${OV_INSTALL_DIR}/setupvars.sh python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels python -c "from openvino_genai import LLMPipeline" + python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k "not test_smoke" genai_package: diff --git a/.github/workflows/windows.yml b/.github/workflows/windows.yml index 17a1abb288..649d678c02 100644 --- a/.github/workflows/windows.yml +++ b/.github/workflows/windows.yml @@ -244,6 +244,7 @@ jobs: run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" python -m pip install . --verbose --find-links ${env:OV_INSTALL_DIR}/wheels + python -m pip install ./tools/who_what_benchmark --find-links ${env:OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/ --ignore ./tests/python_tests/test_whisper_generate_api.py --ignore ./tests/python_tests/test_vlm_api.py -k "not test_set_chat_template" genai_python_lib_whisper: @@ -308,6 +309,7 @@ jobs: run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" python -m pip install . --verbose --find-links ${env:OV_INSTALL_DIR}/wheels + python -m pip install ./tools/who_what_benchmark --find-links ${env:OV_INSTALL_DIR}/wheels python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k "not test_smoke" genai_python_lib_vlm: diff --git a/tests/python_tests/requirements.txt b/tests/python_tests/requirements.txt index bf13b0de7f..f0dbef2700 100644 --- a/tests/python_tests/requirements.txt +++ b/tests/python_tests/requirements.txt @@ -3,7 +3,6 @@ optimum-intel @ git+https://github.com/huggingface/optimum-intel.git numpy<2.0.0; sys_platform == 'darwin' onnx==1.16.1 pytest -tools/who_what_benchmark # requirements for specific models # - hf-tiny-model-private/tiny-random-RoFormerForCausalLM diff --git a/tests/python_tests/test_cache_optimizations.py b/tests/python_tests/test_cache_optimizations.py index a34e604382..45704f9dc6 100644 --- a/tests/python_tests/test_cache_optimizations.py +++ b/tests/python_tests/test_cache_optimizations.py @@ -7,7 +7,6 @@ import pytest -import whowhatbench from optimum.intel.openvino import OVModelForCausalLM from openvino_genai import ContinuousBatchingPipeline, SchedulerConfig, GenerationResult, GenerationConfig, CacheEvictionConfig, AggregationMode @@ -97,6 +96,8 @@ class CacheOptTestStruct: ]) @pytest.mark.parametrize("enable_prefix_caching", [True, False]) # prefix caching shouldn't impact similarity def test_cache_optimized_generation_is_similar_to_unoptimized(converted_model, test_struct, enable_prefix_caching): + import whowhatbench + seqs_per_request = 32 scheduler_config = get_scheduler_config(test_struct.num_kv_blocks) diff --git a/tools/who_what_benchmark/README.md b/tools/who_what_benchmark/README.md index 0e597859d2..cc16beb390 100644 --- a/tools/who_what_benchmark/README.md +++ b/tools/who_what_benchmark/README.md @@ -17,13 +17,22 @@ WWB provides default datasets for the supported use cases. However, it is relati * Validation of Visual Language pipelines. Computes similarity score between generated images with Diffusers library, Optimum-Intel, and OpenVINO GenAI via `VisualTextEvaluator` class. ### Installation -Install WWB and its requirements from the source using `pip` or any other package manager. For example, - -* `python -m venv eval_env` -* `source eval_env/bin/activate` -* `pip install -r requirements.txt` -* `pip install openvino.genai` to validate with OpenVINO GenAI API -* `pip install .` +To install WWB and its dependencies, follow these steps: +1. Set up a Python virtual environment (recommended): +``` + python -m venv eval_env + source eval_env/bin/activate +``` +2. Install WWB from the source directory: +``` + pip install . +``` +To install WWB with nightly builds of openvino, openvino-tokenizers, and openvino-genai, use the following command: +``` +PIP_PRE=1 \ +PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly \ +pip install . +``` ## Usage ### Compare Text-generation Models (LLMs) diff --git a/tools/who_what_benchmark/requirements.txt b/tools/who_what_benchmark/requirements.txt index bea6453c6b..9d151abbf3 100644 --- a/tools/who_what_benchmark/requirements.txt +++ b/tools/who_what_benchmark/requirements.txt @@ -1,9 +1,10 @@ transformers>=4.35.2 sentence-transformers>=2.2.2 -openvino>=2024.3.0 +openvino +openvino-tokenizers +openvino-genai openvino-telemetry optimum-intel>=1.19.0 -openvino-tokenizers pandas>=2.0.3 numpy>=1.23.5 tqdm>=4.66.1 From c2a8f979cde9096c0cfa9ef2ad298e9ef3c0295a Mon Sep 17 00:00:00 2001 From: Anastasiia Pnevskaia Date: Thu, 5 Dec 2024 22:05:30 +0100 Subject: [PATCH 042/113] Fixed number of input tokens for VLM. (#1317) Fixed number of input tokens for VLM. --- src/cpp/src/visual_language/pipeline.cpp | 1 + tests/python_tests/test_vlm_api.py | 25 ++++++++++++------------ 2 files changed, 13 insertions(+), 13 deletions(-) diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 8059c60896..17cf30e90f 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -165,6 +165,7 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { // Common perf metrics auto& res_raw_counters = decoded.perf_metrics.raw_metrics; + decoded.perf_metrics.num_input_tokens = prompt_ids.get_size(); decoded.perf_metrics.load_time = m_load_time_ms; res_raw_counters.generate_durations.emplace_back(PerfMetrics::get_microsec(generate_end_time - generate_start_time)); res_raw_counters.detokenization_durations.emplace_back(PerfMetrics::get_microsec(decode_end_time - decode_start_time)); diff --git a/tests/python_tests/test_vlm_api.py b/tests/python_tests/test_vlm_api.py index f0482300b4..b4df6492bb 100644 --- a/tests/python_tests/test_vlm_api.py +++ b/tests/python_tests/test_vlm_api.py @@ -101,19 +101,18 @@ def test_perf_metrics(cache): assert perf_metrics is not None - assert perf_metrics.get_load_time() > 0 - assert perf_metrics.get_num_generated_tokens() > 0 - assert perf_metrics.get_num_input_tokens() > 0 - assert perf_metrics.get_ttft().mean > 0 - assert perf_metrics.get_tpot().mean > 0 - assert perf_metrics.get_ipot().mean > 0 - assert perf_metrics.get_throughput().mean > 0 - assert perf_metrics.get_inference_duration().mean > 0 - assert perf_metrics.get_generate_duration().mean > 0 - assert perf_metrics.get_tokenization_duration().mean > 0 - assert perf_metrics.get_detokenization_duration().mean > 0 - assert perf_metrics.get_detokenization_duration().mean > 0 - assert perf_metrics.get_prepare_embeddings_duration().mean > 0 + assert 0 < perf_metrics.get_load_time() < 2000 + assert 0 < perf_metrics.get_num_generated_tokens() < 100 + assert 0 < perf_metrics.get_num_input_tokens() < 100 + assert 0 < perf_metrics.get_ttft().mean < 1000 + assert 0 < perf_metrics.get_tpot().mean < 100 + assert 0 < perf_metrics.get_ipot().mean < 100 + assert 0 < perf_metrics.get_throughput().mean < 1000 + assert 0 < perf_metrics.get_inference_duration().mean < 1000 + assert 0 < perf_metrics.get_generate_duration().mean < 1000 + assert 0 < perf_metrics.get_tokenization_duration().mean < 100 + assert 0 < perf_metrics.get_detokenization_duration().mean < 10 + assert 0 < perf_metrics.get_prepare_embeddings_duration().mean < 100 # assert that calculating statistics manually from the raw counters we get the same results as from PerfMetrics vlm_raw_metrics = perf_metrics.vlm_raw_metrics From 76b6c719b28643f09b6158e2341e49772c06186a Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 6 Dec 2024 09:53:47 +0400 Subject: [PATCH 043/113] Update dependabot.yml (#1321) Currently, dependabot does not update pyproject.toml deps --- .github/dependabot.yml | 33 +++++++++++++++++++++++++++++---- 1 file changed, 29 insertions(+), 4 deletions(-) diff --git a/.github/dependabot.yml b/.github/dependabot.yml index 1d7fa918f9..c8885263ee 100644 --- a/.github/dependabot.yml +++ b/.github/dependabot.yml @@ -1,18 +1,43 @@ +# See help here: https://docs.github.com/en/free-pro-team@latest/github/administering-a-repository/enabling-and-disabling-version-updates + version: 2 updates: - package-ecosystem: "pip" directory: "./tests/python_tests/" schedule: - interval: "weekly" + interval: "daily" + time: "09:00" + timezone: "Europe/Dublin" + versioning-strategy: increase-if-necessary + - package-ecosystem: "pip" directory: "./tools/llm_bench/" schedule: - interval: "weekly" + interval: "daily" + time: "09:00" + timezone: "Europe/Dublin" + versioning-strategy: increase-if-necessary + - package-ecosystem: "pip" directory: "./tools/who_what_benchmark/" schedule: - interval: "weekly" + interval: "daily" + time: "09:00" + timezone: "Europe/Dublin" + versioning-strategy: increase-if-necessary + - package-ecosystem: "pip" directory: "samples/" schedule: - interval: "weekly" + interval: "daily" + time: "09:00" + timezone: "Europe/Dublin" + versioning-strategy: increase-if-necessary + + - package-ecosystem: "pip" + directory: "/" + schedule: + interval: "daily" + time: "09:00" + timezone: "Europe/Dublin" + versioning-strategy: increase-if-necessary From b74b0b5ad95b9a81533fe2b992750f5fab587c58 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 6 Dec 2024 11:43:50 +0400 Subject: [PATCH 044/113] GHA: use latest nightly (#1323) --- .github/workflows/causal_lm_cpp.yml | 8 ++++---- .github/workflows/job_vlm_sample_llava.yml | 2 +- .github/workflows/lcm_dreamshaper_cpp.yml | 4 ++-- .github/workflows/stable_diffusion_1_5_cpp.yml | 4 ++-- 4 files changed, 9 insertions(+), 9 deletions(-) diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 4466e437e9..e5d5e35aea 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -16,10 +16,10 @@ concurrency: cancel-in-progress: true env: - l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/l_openvino_toolkit_ubuntu20_2025.0.0.dev20241105_x86_64.tgz - l_u22_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241105_x86_64.tgz - m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/m_openvino_toolkit_macos_12_6_2025.0.0.dev20241105_x86_64.tgz - w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/w_openvino_toolkit_windows_2025.0.0.dev20241105_x86_64.zip + l_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu20_2025.0.0.dev20241205_x86_64.tgz + l_u22_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241205_x86_64.tgz + m_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/m_openvino_toolkit_macos_12_6_2025.0.0.dev20241205_x86_64.tgz + w_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/w_openvino_toolkit_windows_2025.0.0.dev20241205_x86_64.zip jobs: cpp-multinomial-greedy_causal_lm-ubuntu: runs-on: ubuntu-20.04-8-cores diff --git a/.github/workflows/job_vlm_sample_llava.yml b/.github/workflows/job_vlm_sample_llava.yml index 7394464026..166284bd4b 100644 --- a/.github/workflows/job_vlm_sample_llava.yml +++ b/.github/workflows/job_vlm_sample_llava.yml @@ -11,7 +11,7 @@ on: type: string env: - l_u22_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241105_x86_64.tgz + l_u22_ov_link: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241205_x86_64.tgz jobs: visual_language_chat_sample-ubuntu-llava: diff --git a/.github/workflows/lcm_dreamshaper_cpp.yml b/.github/workflows/lcm_dreamshaper_cpp.yml index 233be9e5c0..63663e633c 100644 --- a/.github/workflows/lcm_dreamshaper_cpp.yml +++ b/.github/workflows/lcm_dreamshaper_cpp.yml @@ -18,8 +18,8 @@ concurrency: env: PYTHON_VERSION: '3.9' - LINUX_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241105_x86_64.tgz - WINDOWS_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/w_openvino_toolkit_windows_2025.0.0.dev20241105_x86_64.zip + LINUX_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu22_2025.0.0.dev20241205_x86_64.tgz + WINDOWS_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/w_openvino_toolkit_windows_2025.0.0.dev20241205_x86_64.zip OV_INSTALL_DIR: ${{ github.workspace }}/ov jobs: diff --git a/.github/workflows/stable_diffusion_1_5_cpp.yml b/.github/workflows/stable_diffusion_1_5_cpp.yml index 8a262cfd97..602f2ae2c8 100644 --- a/.github/workflows/stable_diffusion_1_5_cpp.yml +++ b/.github/workflows/stable_diffusion_1_5_cpp.yml @@ -18,8 +18,8 @@ concurrency: env: PYTHON_VERSION: '3.10' - LINUX_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/l_openvino_toolkit_ubuntu20_2025.0.0.dev20241105_x86_64.tgz - WINDOWS_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17289-7cf2bbb8391/w_openvino_toolkit_windows_2025.0.0.dev20241105_x86_64.zip + LINUX_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu20_2025.0.0.dev20241205_x86_64.tgz + WINDOWS_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/w_openvino_toolkit_windows_2025.0.0.dev20241205_x86_64.zip OV_INSTALL_DIR: ${{ github.workspace }}/ov jobs: From b31b06c471474f98ff1b3e394d239c35e59dd888 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Fri, 6 Dec 2024 07:53:56 +0000 Subject: [PATCH 045/113] Bump timm from 1.0.11 to 1.0.12 (#1328) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [timm](https://github.com/huggingface/pytorch-image-models) from 1.0.11 to 1.0.12.
Release notes

Sourced from timm's releases.

Release v1.0.12

Nov 28, 2024

Nov 12, 2024

  • Optimizer factory refactor
    • New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits
    • Add list_optimizers, get_optimizer_class, get_optimizer_info to reworked create_optimizer_v2 fn to explore optimizers, get info or class
    • deprecate optim.optim_factory, move fns to optim/_optim_factory.py and optim/_param_groups.py and encourage import via timm.optim
  • Add Adopt (https://github.com/iShohei220/adopt) optimizer
  • Add 'Big Vision' variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer
  • Fix original Adafactor to pick better factorization dims for convolutions
  • Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit
  • dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke

Oct 31, 2024

Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat

Oct 19, 2024

  • Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from MengqingCao that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.

What's Changed

... (truncated)

Commits
  • 553ded5 Version 1.0.12
  • 464885e See if we can avoid some model / layer pickle issues with the aa attr in Conv...
  • 5fe5f9d Add a different mnv4 conv-small weight
  • 303f769 Add cautious mars, improve test reliability by skipping grad diff for first step
  • 82e8677 Make LaProp weight decay match typical PyTorch 'decoupled' behaviour where it...
  • 886eb77 Update README, missed small discrep in adafactor min dim update
  • e3e434b To be technically correct, need to check the in-place _ ver of op
  • 7c32d3b Work around _foreach_maximum issue, need scalar other support
  • 7cf6836 Cautious optimizer impl plus some typing cleanup.
  • aeb1ed7 Keep basic optim test LR range closer to before w/ updated code
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=timm&package-manager=pip&previous-version=1.0.11&new-version=1.0.12)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- samples/export-requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/samples/export-requirements.txt b/samples/export-requirements.txt index aa9a0ccea9..2d56a6ced2 100644 --- a/samples/export-requirements.txt +++ b/samples/export-requirements.txt @@ -6,6 +6,6 @@ numpy<2.0.0; sys_platform == 'darwin' einops==0.8.0 # For Qwen transformers_stream_generator==0.0.5 # For Qwen diffusers==0.31.0 # For image generation pipelines -timm==1.0.11 # For exporting InternVL2 +timm==1.0.12 # For exporting InternVL2 torchvision # For visual language models transformers>=4.43 # For Whisper From e8069af8d01624113f534decb1ec7065ab05a4b1 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 6 Dec 2024 12:53:09 +0400 Subject: [PATCH 046/113] Update llm_bench-python.yml (#1330) --- .github/workflows/llm_bench-python.yml | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 0486a2a746..2c8f6a358a 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -4,16 +4,13 @@ name: llm_bench Python Test on: - push: - branches: [ "master" ] - paths: - - tools/llm_bench/** - - tools/who_what_benchmark/** + workflow_dispatch: pull_request: - paths: - - tools/llm_bench/** - - tools/who_what_benchmark/** - - .github/workflows/llm_bench-python.yml + merge_group: + push: + branches: + - master + - 'releases/**' permissions: read-all # Required by https://github.com/ossf/scorecard/blob/e23b8ad91fd6a64a0a971ca4fc0a4d1650725615/docs/checks.md#token-permissions From 61b5c4fcb8488d51fc6299725dbecdaf17e77ac7 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Fri, 6 Dec 2024 08:53:21 +0000 Subject: [PATCH 047/113] Bump librosa from 0.10.2 to 0.10.2.post1 (#1326) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [librosa](https://github.com/librosa/librosa) from 0.10.2 to 0.10.2.post1.
Release notes

Sourced from librosa's releases.

0.10.2.post1

What's Changed

Full Changelog: https://github.com/librosa/librosa/compare/0.10.2...0.10.2.post1

Changelog

Sourced from librosa's changelog.

v0.10.2.post1

2024-05-14

Maintenance - [#1839](https://github.com/librosa/librosa/issues/1839)_ Updated minimum matplotlib to 3.5.0. There are no changes to the code in this release, only package metadata and tests.

.. _#1839: librosa/librosa#1839

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=librosa&package-manager=pip&previous-version=0.10.2&new-version=0.10.2.post1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- samples/deployment-requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/samples/deployment-requirements.txt b/samples/deployment-requirements.txt index ceac668e9c..cd206285e2 100644 --- a/samples/deployment-requirements.txt +++ b/samples/deployment-requirements.txt @@ -1,4 +1,4 @@ --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino_genai~=2025.0.0.0.dev -librosa==0.10.2 # For Whisper +librosa==0.10.2.post1 # For Whisper pillow==11.0.0 # Image processing for VLMs From 20ddb3d66334d7f3a4eeb13b79815cddac710f48 Mon Sep 17 00:00:00 2001 From: Artur Paniukov Date: Fri, 6 Dec 2024 18:56:32 +0400 Subject: [PATCH 048/113] [LLMBench] Update Token Counting (#1303) CVS-154817 Tokenizers can add special tokens during tokenization, which can result in: ```python len(tokens) != len(tokenizer.encode(tokenizer.decode(tokens))) ``` The issue was fixed by moving tokenization and detokenization out of the GenAI LLM pipeline. --- tools/llm_bench/task/text_generation.py | 28 +++++++++++++++++-------- 1 file changed, 19 insertions(+), 9 deletions(-) diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 5fbf950d2c..3f5b5ed301 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -210,7 +210,12 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data mem_consumption.start_collect_memory_consumption() max_gen_tokens = DEFAULT_OUTPUT_TOKEN_SIZE if args['infer_count'] is None else args['infer_count'] tokenizer = model.get_tokenizer() + + tokenization_start = time.perf_counter() input_data = tokenizer.encode(input_text_list) + tokenization_end = time.perf_counter() + tokenization_time = [(tokenization_end - tokenization_start) * 1000] + num_input_tokens = input_data.input_ids.shape[1] if args['batch_size'] > 1: out_str = '[warm-up]' if num == 0 else '[{}]'.format(num) @@ -243,23 +248,32 @@ def token_printer(): printer_thread = threading.Thread(target=token_printer, daemon=True) printer_thread.start() generation_result = model.generate( - input_text_list, + input_data, gen_config, streamer=text_print_streamer ) printer_thread.join() else: - generation_result = model.generate(input_text_list, gen_config) + generation_result = model.generate(input_data, gen_config) end = time.perf_counter() - generated_text = generation_result.texts + generated_tokens = np.array(generation_result.tokens) + perf_metrics = generation_result.perf_metrics + if streaming: + tokenization_time.append(np.mean(perf_metrics.raw_metrics.detokenization_durations) / 1000) + generated_text = tokenizer.decode(generated_tokens) + else: + detokenization_start = time.perf_counter() + generated_text = tokenizer.decode(generated_tokens) + detokenization_end = time.perf_counter() + tokenization_time.append((detokenization_end - detokenization_start) * 1000) + if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: mem_consumption.end_collect_momory_consumption() max_rss_mem_consumption, max_shared_mem_consumption, max_uss_mem_consumption = mem_consumption.get_max_memory_consumption() mem_consumption.clear_max_memory_consumption() generation_time = end - start - generated_tokens = [tokenizer.encode(text).input_ids.data for text in generated_text] # Only text_gen need to minus length of input_data, because generated_text may include input_text num_tokens = 0 result_md5_list = [] @@ -281,7 +295,7 @@ def token_printer(): per_token_time = generation_time * 1000 / (num_tokens / args['batch_size']) else: log.warning("No generated tokens") - first_token_time = (perf_metrics.get_ttft().mean - perf_metrics.raw_metrics.tokenization_durations[-1] / 1000) * args["batch_size"] + first_token_time = (perf_metrics.get_ttft().mean) * args["batch_size"] second_tokens_durations = ( np.array(perf_metrics.raw_metrics.m_new_token_times[1:]) - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) @@ -290,10 +304,6 @@ def token_printer(): tm_list = np.array([first_token_time] + second_tokens_durations) / 1000 log.debug('latency of all tokens:') [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] - tokenization_time = ( - np.mean(perf_metrics.raw_metrics.tokenization_durations) / 1000, - np.mean(perf_metrics.raw_metrics.detokenization_durations) / 1000 - ) iter_data = gen_output_data.gen_iterate_data( iter_idx=num, in_size=num_input_tokens * args['batch_size'], From b5075393c540ced6cbc1a5e64942294911085a0b Mon Sep 17 00:00:00 2001 From: Yaroslav Tarkan Date: Fri, 6 Dec 2024 18:13:21 +0300 Subject: [PATCH 049/113] [Port] [VLM] Support compile OV model and weight from buffer (#1339) Ported https://github.com/openvinotoolkit/openvino.genai/pull/1264 --- .../genai/visual_language/pipeline.hpp | 44 ++++++++- .../src/visual_language/embedding_model.cpp | 14 +++ .../src/visual_language/embedding_model.hpp | 6 ++ .../src/visual_language/inputs_embedder.cpp | 93 ++++++++++++++++++- .../src/visual_language/inputs_embedder.hpp | 8 ++ src/cpp/src/visual_language/pipeline.cpp | 65 +++++++++++++ .../src/visual_language/vision_encoder.cpp | 19 +++- .../src/visual_language/vision_encoder.hpp | 26 +++++- 8 files changed, 265 insertions(+), 10 deletions(-) diff --git a/src/cpp/include/openvino/genai/visual_language/pipeline.hpp b/src/cpp/include/openvino/genai/visual_language/pipeline.hpp index 2c122650d4..43f8a9b8b3 100644 --- a/src/cpp/include/openvino/genai/visual_language/pipeline.hpp +++ b/src/cpp/include/openvino/genai/visual_language/pipeline.hpp @@ -19,11 +19,16 @@ class OPENVINO_GENAI_EXPORTS VLMDecodedResults : public DecodedResults{ VLMPerfMetrics perf_metrics; }; +/// @brief A map of models for VLMPipeline constructor. +/// Key is model name (e.g. "vision_embeddings", "text_embeddings", "language", "resampler") +/// and value is a pair of model IR as string and weights as tensor. +using ModelsMap = std::map>; + /// @brief A Visual language modeling pipeline class used to generate a /// response or run a chat given a prompt and an image. class OPENVINO_GENAI_EXPORTS VLMPipeline { public: - /// @brief Construct a pipeline form a folder containing tokenizer + /// @brief Construct a pipeline from a folder containing tokenizer /// and model IRs. /// @param models_path A folder to read tokenizer and model IRs. /// @param device Inference device. A tokenizer is always compiled @@ -35,7 +40,25 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { const ov::AnyMap& properties = {} ); - /// @brief Construct a pipeline form a folder containing tokenizer + /// @brief Construct a pipeline from a map of models and their weights. + /// @param models_map A map where key is model name (e.g. "vision_embeddings", "text_embeddings", "language", "resampler") + /// and value is a pair of model IR as string and weights as tensor. + /// @param tokenizer A tokenizer. + /// @param config_dir_path A path to directory containing config.json. + /// @param device Inference device. A tokenizer is always compiled + /// for CPU. + /// @param properties A config to pass to ov::Core::compile_model(). + /// @param generation_config Optional generation configuration for the pipeline. + VLMPipeline( + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap& properties = {}, + const ov::genai::GenerationConfig& generation_config = {} + ); + + /// @brief Construct a pipeline from a folder containing tokenizer /// and model IRs. Accepts arbitrary list of optional properties. /// @param models_path A folder to read tokenizer and model IRs. /// @param device Inference device. A tokenizer is always compiled @@ -48,6 +71,23 @@ class OPENVINO_GENAI_EXPORTS VLMPipeline { Properties&&... properties) : VLMPipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { } + /// @brief Construct a pipeline from a map of models and their weights. + /// @param models_map A map where key is model name (e.g. "vision_embeddings", "text_embeddings", "language", "resampler") + /// and value is a pair of model IR as string and weights as tensor. + /// @param tokenizer A tokenizer. + /// @param config_dir_path A path to directory containing config.json. + /// @param device Inference device. A tokenizer is always compiled + /// for CPU. + /// @param properties A config to pass to ov::Core::compile_model(). + template ::value, bool>::type = true> + VLMPipeline( + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + Properties&&... properties) + : VLMPipeline(models_map, tokenizer, config_dir_path, device, ov::AnyMap{std::forward(properties)...}) { } + /// @brief Default destructor. ~VLMPipeline(); diff --git a/src/cpp/src/visual_language/embedding_model.cpp b/src/cpp/src/visual_language/embedding_model.cpp index 4c29e07fd5..88ddfc39cd 100644 --- a/src/cpp/src/visual_language/embedding_model.cpp +++ b/src/cpp/src/visual_language/embedding_model.cpp @@ -29,6 +29,20 @@ EmbeddingsModel::EmbeddingsModel(const std::filesystem::path& model_dir, m_request = compiled_model.create_infer_request(); } +EmbeddingsModel::EmbeddingsModel(const std::string& model, + const ov::Tensor& weights, + const float scale_emb, + const std::string& device, + const ov::AnyMap& properties) { + ov::Core core = utils::singleton_core(); + std::shared_ptr m_model = core.read_model(model, weights); + // apply embedding postprocessing step by merging them into the model + merge_postprocess(m_model, scale_emb); + + ov::CompiledModel compiled_model = core.compile_model(m_model, device, properties); + m_request = compiled_model.create_infer_request(); +} + ov::Tensor EmbeddingsModel::infer(ov::Tensor input_idx) { OPENVINO_ASSERT(m_request, "Text embeddings decoder model must be compiled first. Cannot infer non-compiled model"); diff --git a/src/cpp/src/visual_language/embedding_model.hpp b/src/cpp/src/visual_language/embedding_model.hpp index e7de9bafba..5e85e03026 100644 --- a/src/cpp/src/visual_language/embedding_model.hpp +++ b/src/cpp/src/visual_language/embedding_model.hpp @@ -29,6 +29,12 @@ class EmbeddingsModel { const std::string& device, const ov::AnyMap& properties); + EmbeddingsModel(const std::string& model, + const ov::Tensor& weights, + const float scale_emb, + const std::string& device, + const ov::AnyMap& properties); + EmbeddingsModel() = default; ov::Tensor infer(ov::Tensor input_idx); diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index 6b0fe82333..ced17a2ebd 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -18,6 +18,8 @@ constexpr size_t BATCH_SIZE = 1; namespace ov::genai { +const ModelsMap::mapped_type& get_model_weights_pair(const ModelsMap& models_map, const std::string& key); + class InputsEmbedder::IInputsEmbedder { protected: // VLM config @@ -88,9 +90,34 @@ class InputsEmbedder::IInputsEmbedder { const std::string& device, const ov::AnyMap device_config) : m_vlm_config{vlm_config}, - m_vision_encoder(model_dir, m_vlm_config.model_type, device, device_config, utils::singleton_core()), + m_vision_encoder(model_dir, m_vlm_config.model_type, device, device_config), m_embedding(model_dir, m_vlm_config.scale_emb, device, device_config), m_tokenizer{model_dir.string(), device_config} { } + + IInputsEmbedder( + const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) : + m_vlm_config{vlm_config}, + m_vision_encoder( + get_model_weights_pair(models_map, "vision_embeddings").first, + get_model_weights_pair(models_map, "vision_embeddings").second, + config_dir_path, + m_vlm_config.model_type, + device, + device_config + ), + m_embedding( + get_model_weights_pair(models_map, "text_embeddings").first, + get_model_weights_pair(models_map, "text_embeddings").second, + m_vlm_config.scale_emb, + device, + device_config + ), + m_tokenizer(tokenizer) { } ov::Tensor get_encoded_input_ids(const std::string& prompt, ov::genai::VLMPerfMetrics& metrics, const std::string& chat_template_fallback = "") { ov::Tensor encoded_input_ids; @@ -205,6 +232,24 @@ class InputsEmbedderMiniCPM : public InputsEmbedder::IInputsEmbedder { m_pos_embed_cache = get_2d_sincos_pos_embed(m_vlm_config.hidden_size, {70, 70}); } + InputsEmbedderMiniCPM( + const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) : + IInputsEmbedder(vlm_config, models_map, tokenizer, config_dir_path, device, device_config) { + m_resampler = utils::singleton_core().compile_model( + get_model_weights_pair(models_map, "resampler").first, + get_model_weights_pair(models_map, "resampler").second, + device, + device_config + ).create_infer_request(); + + m_pos_embed_cache = get_2d_sincos_pos_embed(m_vlm_config.hidden_size, {70, 70}); + } + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string images_prompt; std::vector embeds; @@ -494,6 +539,15 @@ class InputsEmbedderLLaVA : public InputsEmbedder::IInputsEmbedder { const ov::AnyMap device_config) : IInputsEmbedder(vlm_config, model_dir, device, device_config) { } + InputsEmbedderLLaVA( + const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) : + IInputsEmbedder(vlm_config, models_map, tokenizer, config_dir_path, device, device_config) { } + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_token = m_vlm_config.im_start; // Adapted from llava-1.5-7b-hf chat_template.json @@ -599,6 +653,15 @@ class InputsEmbedderLLaVANext : public InputsEmbedderLLaVA { const ov::AnyMap device_config) : InputsEmbedderLLaVA(vlm_config, model_dir, device, device_config) { } + InputsEmbedderLLaVANext( + const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) : + InputsEmbedderLLaVA(vlm_config, models_map, tokenizer, config_dir_path, device, device_config) { } + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_token = m_vlm_config.im_start; // Adapted from llava-1.5-7b-hf chat_template.json @@ -917,6 +980,15 @@ class InputsEmbedderInternVLChat : public InputsEmbedder::IInputsEmbedder { const ov::AnyMap device_config) : IInputsEmbedder(vlm_config, model_dir, device, device_config) { } + InputsEmbedderInternVLChat( + const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) : + IInputsEmbedder(vlm_config, models_map, tokenizer, config_dir_path, device, device_config) { } + virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) override { std::string image_start_token = m_vlm_config.image_start_token; std::string image_context_token = m_vlm_config.image_context_token; @@ -1039,6 +1111,25 @@ InputsEmbedder::InputsEmbedder(const VLMConfig& vlm_config, } } +InputsEmbedder::InputsEmbedder(const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config) { + if (vlm_config.model_type == VLMModelType::MINICPM) { + m_impl = std::make_shared(vlm_config, models_map, tokenizer, config_dir_path, device, device_config); + } else if (vlm_config.model_type == VLMModelType::LLAVA) { + m_impl = std::make_shared(vlm_config, models_map, tokenizer, config_dir_path, device, device_config); + } else if (vlm_config.model_type == VLMModelType::LLAVA_NEXT) { + m_impl = std::make_shared(vlm_config, models_map, tokenizer, config_dir_path, device, device_config); + } else if (vlm_config.model_type == VLMModelType::INTERNVL_CHAT) { + m_impl = std::make_shared(vlm_config, models_map, tokenizer, config_dir_path, device, device_config); + } else { + OPENVINO_THROW("Unsupported model type in VLM InputsEmbedder class. Please, create feature request on new model support"); + } +} + ov::Tensor InputsEmbedder::get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) { return m_impl->get_inputs_embeds(prompt, images, metrics); } diff --git a/src/cpp/src/visual_language/inputs_embedder.hpp b/src/cpp/src/visual_language/inputs_embedder.hpp index cfe7327805..0e3a3533e2 100644 --- a/src/cpp/src/visual_language/inputs_embedder.hpp +++ b/src/cpp/src/visual_language/inputs_embedder.hpp @@ -8,6 +8,7 @@ #include #include "openvino/genai/tokenizer.hpp" +#include "openvino/genai/visual_language/pipeline.hpp" #include "openvino/runtime/tensor.hpp" #include "openvino/runtime/infer_request.hpp" #include "visual_language/vlm_config.hpp" @@ -23,6 +24,13 @@ class InputsEmbedder { const std::string& device, const ov::AnyMap device_config); + InputsEmbedder(const VLMConfig& vlm_config, + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap device_config); + // compute input embedding for prompt and multiple images ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics); diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 17cf30e90f..f7508acb35 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -28,6 +28,17 @@ constexpr size_t BATCH_SIZE = 1; } // namespace +namespace ov::genai { + +const ModelsMap::mapped_type& get_model_weights_pair(const ModelsMap& models_map, const std::string& key) { + auto it = models_map.find(key); + if (it != models_map.end()) { + return it->second; + } + OPENVINO_THROW("Model with key '", key, "' not found in models map."); +} + +} class ov::genai::VLMPipeline::VLMPipelineImpl { public: @@ -64,6 +75,11 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { models_dir, "config.json" ) }, + m_generation_config{ + utils::from_config_json_if_exists( + models_dir, "generation_config.json" + ) + }, m_is_chat_conversation{false} { m_inputs_embedder = std::make_shared( m_vlm_config, models_dir, device, properties); @@ -83,6 +99,41 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { } } + VLMPipelineImpl( + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config + ) : + m_vlm_config{ + utils::from_config_json_if_exists( + config_dir_path, "config.json" + ) + }, + m_generation_config{generation_config}, + m_is_chat_conversation{false} { + + m_inputs_embedder = std::make_shared( + m_vlm_config, models_map, tokenizer, config_dir_path, device, properties); + + m_tokenizer = m_inputs_embedder->get_tokenizer(); + m_embedding = m_inputs_embedder->get_embedding_model(); + + auto m_language_pair = get_model_weights_pair(models_map, "language"); + m_language = utils::singleton_core().compile_model( + m_language_pair.first, m_language_pair.second, device, properties + ).create_infer_request(); + + m_language.get_tensor("attention_mask").set_shape({1, 0}); + + // If eos_token_id was not provided, take value + if (m_generation_config.eos_token_id == -1) { + m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id()); + } + } + VLMDecodedResults generate( const std::string& prompt, const std::vector& rgbs, @@ -257,6 +308,20 @@ VLMPipeline::VLMPipeline( m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); } +VLMPipeline::VLMPipeline( + const ModelsMap& models_map, + const Tokenizer& tokenizer, + const std::filesystem::path& config_dir_path, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config +) { + auto start_time = std::chrono::steady_clock::now(); + m_pimpl = std::make_unique(models_map, tokenizer, config_dir_path, device, properties, generation_config); + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); +} + ov::genai::VLMPipeline::~VLMPipeline() = default; VLMDecodedResults VLMPipeline::generate( diff --git a/src/cpp/src/visual_language/vision_encoder.cpp b/src/cpp/src/visual_language/vision_encoder.cpp index dde2b89291..f3a4c90e80 100644 --- a/src/cpp/src/visual_language/vision_encoder.cpp +++ b/src/cpp/src/visual_language/vision_encoder.cpp @@ -610,14 +610,29 @@ ov::Tensor get_pixel_values_internvl(const ov::Tensor& image, const ProcessorCon } } -VisionEncoder::VisionEncoder(const std::filesystem::path& model_dir, const VLMModelType model_type, const std::string& device, const ov::AnyMap device_config, ov::Core core) : +VisionEncoder::VisionEncoder(const std::filesystem::path& model_dir, const VLMModelType model_type, const std::string& device, const ov::AnyMap device_config) : model_type(model_type) { - m_vision_encoder = core.compile_model(model_dir / "openvino_vision_embeddings_model.xml", device, device_config).create_infer_request(); + m_vision_encoder = utils::singleton_core().compile_model(model_dir / "openvino_vision_embeddings_model.xml", device, device_config).create_infer_request(); m_processor_config = utils::from_config_json_if_exists( model_dir, "preprocessor_config.json" ); } +VisionEncoder::VisionEncoder( + const std::string& model, + const ov::Tensor& weights, + const std::filesystem::path& config_dir_path, + const VLMModelType model_type, + const std::string& device, + const ov::AnyMap device_config +) : + model_type(model_type) { + m_vision_encoder = utils::singleton_core().compile_model(model, weights, device, device_config).create_infer_request(); + m_processor_config = utils::from_config_json_if_exists( + config_dir_path, "preprocessor_config.json" + ); +} + EncodedImage VisionEncoder::encode(const ov::Tensor& image, const ProcessorConfig& config) { if (model_type == VLMModelType::MINICPM) { return encode_minicpm(image, config); diff --git a/src/cpp/src/visual_language/vision_encoder.hpp b/src/cpp/src/visual_language/vision_encoder.hpp index a95abb838c..d94a898353 100644 --- a/src/cpp/src/visual_language/vision_encoder.hpp +++ b/src/cpp/src/visual_language/vision_encoder.hpp @@ -62,18 +62,34 @@ class VisionEncoder { ) : m_vision_encoder{encoder}, m_processor_config{processor_config} {} /// @brief Construct the encoder from model_dir. - /// @param model_dir A folder containing openvino_embedding.xml and + /// @param model_dir A folder containing openvino_vision_embeddings_model.xml and /// preprocessor_config.json. + /// @param model_type A type of VLM model. /// @param device A device to compile the encoder for. /// @param device_config A config to be passed to /// ov::Core::compile_model(). - /// @param core ov::Core to be used to compile the model. explicit VisionEncoder( const std::filesystem::path& model_dir, const VLMModelType model_type, - const std::string& device="CPU", - const ov::AnyMap device_config={}, - ov::Core core=ov::Core{} + const std::string& device, + const ov::AnyMap device_config={} + ); + + /// @brief Construct the encoder from models map. + /// @param model Model IR as string (openvino_vision_embeddings_model.xml) + /// @param weights Model weights as tensor (openvino_vision_embeddings_model.bin) + /// @param config_dir_path A path to directory containing preprocessor_config.json. + /// @param model_type A type of VLM model. + /// @param device A device to compile the encoder for. + /// @param device_config A config to be passed to + /// ov::Core::compile_model(). + explicit VisionEncoder( + const std::string& model, + const ov::Tensor& weights, + const std::filesystem::path& config_dir_path, + const VLMModelType model_type, + const std::string& device, + const ov::AnyMap device_config={} ); /// @brief Compute embeddings of an image. From ee91fcfa1b43c7cd42be58688832318fe6e8b0af Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Fri, 6 Dec 2024 19:33:38 +0100 Subject: [PATCH 050/113] bump openvino_tokenizers version (#1333) --- .github/workflows/causal_lm_cpp.yml | 16 ++++++++-------- tests/python_tests/test_chat_generate_api.py | 1 - thirdparty/openvino_tokenizers | 2 +- 3 files changed, 9 insertions(+), 10 deletions(-) diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index e5d5e35aea..1d1486c385 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -118,7 +118,7 @@ jobs: import transformers with open('pred.txt', 'r') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('Why is the Sun yellow?', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) @@ -134,7 +134,7 @@ jobs: import transformers with open('pred.txt', 'r') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('69', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) @@ -150,7 +150,7 @@ jobs: import transformers with open('pred.txt', 'r') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('Hi', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) @@ -166,7 +166,7 @@ jobs: import transformers with open('pred.txt', 'r') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('return 0', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) @@ -182,7 +182,7 @@ jobs: import transformers with open('pred.txt', 'r', errors='ignore') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('你好! 你好嗎?', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) @@ -198,7 +198,7 @@ jobs: import transformers with open('pred.txt', 'r', errors='ignore') as file: predictions = file.read() - tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') + tokenizer = transformers.AutoTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') prompts = [ 'Alan Turing was a', 'return 0', @@ -681,9 +681,9 @@ jobs: printf 'What is 2 + 2?\nWhat is the previous answer?\nAdd 1 to it.\nSubtract 5 from it.\nWhy is the sun yellow?\nWhat was my first question?\n' > ./input.txt timeout 30s ./build/samples/cpp/chat_sample/chat_sample ./TinyLlama-1.1B-Chat-v1.0/ < input.txt > ./pred.txt python -c " - from transformers import LlamaTokenizer, AutoModelForCausalLM + from transformers import AutoTokenizer, AutoModelForCausalLM model_id = 'TinyLlama/TinyLlama-1.1B-Chat-v1.0' - tokenizer = LlamaTokenizer.from_pretrained(model_id) + tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompts = ['What is 2 + 2?', 'What is the previous answer?', 'Add 1 to it.', 'Subtract 5 from it.', 'Why is the sun yellow?', 'What was my first question?'] def gen_prompt(prompt): diff --git a/tests/python_tests/test_chat_generate_api.py b/tests/python_tests/test_chat_generate_api.py index efd1d87416..68c25e5391 100644 --- a/tests/python_tests/test_chat_generate_api.py +++ b/tests/python_tests/test_chat_generate_api.py @@ -219,7 +219,6 @@ def test_add_special_tokens(add_special_tokens, prompt): assert np.all(res_genai == res_hf) @pytest.mark.precommit -@pytest.mark.xfail(reason="Need to turn them back on when openvino_tokenizers will be updated.") @pytest.mark.nightly @pytest.mark.parametrize("add_special_tokens", [True, False]) @pytest.mark.parametrize("skip_special_tokens", [True, False]) diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 306dcd8dae..904046825b 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 306dcd8daec36bbc680c50c68de1e954f42b0ab8 +Subproject commit 904046825b6378bae74f16f302b40599aa88d5b3 From 2106a7d84d9cf9f301a6afcf52d8f964d723fd98 Mon Sep 17 00:00:00 2001 From: Aamir Nazir Date: Mon, 9 Dec 2024 11:24:29 +0400 Subject: [PATCH 051/113] Update README.md (#1342) --- tools/llm_bench/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tools/llm_bench/README.md b/tools/llm_bench/README.md index 87f6e91271..bcb7436189 100755 --- a/tools/llm_bench/README.md +++ b/tools/llm_bench/README.md @@ -42,7 +42,7 @@ optimum-cli export openvino --model --weight-format ` : model_id for downloading from [huggngface_hub](https://huggingface.co/models) or path with directory where pytorch model located. +* `--model ` : model_id for downloading from [huggingface_hub](https://huggingface.co/models) or path with directory where pytorch model located. * `--weight-format ` : precision for model conversion. Available options: `fp32, fp16, int8, int4, mxfp4` * ``: output directory for saving generated OpenVINO model. From d91123a375c62a0012e3239adfb1c6fc14b4bcbf Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 9 Dec 2024 10:41:48 +0000 Subject: [PATCH 052/113] Bump py-build-cmake from 0.3.2 to 0.3.3 (#1345) Bumps [py-build-cmake](https://github.com/tttapa/py-build-cmake) from 0.3.2 to 0.3.3.
Release notes

Sourced from py-build-cmake's releases.

0.3.3

Full Changelog: https://github.com/tttapa/py-build-cmake/compare/0.3.2...0.3.3

Commits
  • b2f0da7 Version 0.3.3
  • e865d1e [CI] enable PyPy builds and tests
  • 576b2ad [Test] add FindPython test case with SOABI checks
  • 55bd1d4 Unique paths in Python_ROOT_DIR
  • b6a6d6b Add SOABI and SOSABI variables for native PyPy
  • e43d63b Add Python_INCLUDE_DIR hint for PyPy
  • f3c90ac Revert "Improve FindPython hints"
  • eaad351 Version 0.3.3.dev0
  • See full diff in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=py-build-cmake&package-manager=pip&previous-version=0.3.2&new-version=0.3.3)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- pyproject.toml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pyproject.toml b/pyproject.toml index bc8d1b294d..5f952010f2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -51,7 +51,7 @@ options = {"BUILD_TOKENIZERS" = "OFF"} [build-system] requires = [ - "py-build-cmake==0.3.2", + "py-build-cmake==0.3.3", "openvino~=2025.0.0.0.dev", "pybind11-stubgen==2.5.1", "cmake~=3.23.0" From d465c5bc43c706459ebba4b02925b57cb7bbb56f Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Mon, 9 Dec 2024 13:44:58 +0100 Subject: [PATCH 053/113] FLUX dev and lite models support (#1340) ```python prompt = "A cat holding a sign that says hello world" image_tensor = pipe.generate( prompt, num_inference_steps=5, generator=Generator(42) ) ``` Freepik/flux.1-lite-8B-alpha: ![image](https://github.com/user-attachments/assets/fbc60a4e-bc55-470b-92bd-a80ae454504c) black-forest-labs/FLUX.1-dev: ![image](https://github.com/user-attachments/assets/4163efff-637d-4877-b46d-9462836ace17) --- .../genai/image_generation/flux_transformer_2d_model.hpp | 1 + src/cpp/src/image_generation/flux_pipeline.hpp | 6 ++++++ .../image_generation/models/flux_transformer_2d_model.cpp | 3 +++ src/docs/SUPPORTED_MODELS.md | 3 +++ 4 files changed, 13 insertions(+) diff --git a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp index f0f89d03d7..c49eb56b21 100644 --- a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp @@ -20,6 +20,7 @@ class OPENVINO_GENAI_EXPORTS FluxTransformer2DModel { public: struct Config { size_t in_channels = 64; + bool guidance_embeds = false; size_t m_default_sample_size = 128; explicit Config(const std::filesystem::path& config_path); diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index 32650b9288..8a9d6aba5c 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -269,6 +269,12 @@ class FluxPipeline : public DiffusionPipeline { ov::Tensor latent_image_ids = prepare_latent_image_ids(generation_config.num_images_per_prompt, height / 2, width / 2); + if (m_transformer->get_config().guidance_embeds) { + ov::Tensor guidance = ov::Tensor(ov::element::f32, {generation_config.num_images_per_prompt}); + std::fill_n(guidance.data(), guidance.get_size(), static_cast(generation_config.guidance_scale)); + m_transformer->set_hidden_states("guidance", guidance); + } + m_transformer->set_hidden_states("pooled_projections", pooled_prompt_embeds); m_transformer->set_hidden_states("encoder_hidden_states", prompt_embeds); m_transformer->set_hidden_states("txt_ids", text_ids); diff --git a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp index 8bb66995b4..3c6bb94505 100644 --- a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp @@ -21,6 +21,7 @@ FluxTransformer2DModel::Config::Config(const std::filesystem::path& config_path) using utils::read_json_param; read_json_param(data, "in_channels", in_channels); + read_json_param(data, "guidance_embeds", guidance_embeds); file.close(); } @@ -95,6 +96,8 @@ FluxTransformer2DModel& FluxTransformer2DModel::reshape(int batch_size, name_to_shape[input_name] = {height * width / 4, name_to_shape[input_name][1]}; } else if (input_name == "txt_ids") { name_to_shape[input_name] = {tokenizer_model_max_length, name_to_shape[input_name][1]}; + } else if (input_name == "guidance") { + name_to_shape[input_name] = {batch_size}; } } diff --git a/src/docs/SUPPORTED_MODELS.md b/src/docs/SUPPORTED_MODELS.md index c79b2b2ba3..c041e349ed 100644 --- a/src/docs/SUPPORTED_MODELS.md +++ b/src/docs/SUPPORTED_MODELS.md @@ -208,6 +208,9 @@ The pipeline can work with other similar topologies produced by `optimum-intel` From 4b9dd6a48daac6ef8efe95d3a617887ba399dbd2 Mon Sep 17 00:00:00 2001 From: Vladimir Zlobin Date: Mon, 9 Dec 2024 23:04:55 +0400 Subject: [PATCH 054/113] Port to master (#1335) Ported from https://github.com/openvinotoolkit/openvino.genai/pull/1319 and https://github.com/openvinotoolkit/openvino.genai/pull/1219 --------- Co-authored-by: Ilya Lavrenov --- .../openvino/genai/generation_config.hpp | 8 +++--- src/cpp/src/generation_config.cpp | 3 +++ .../openvino_genai/py_openvino_genai.pyi | 18 ++++++------- src/python/py_generation_config.cpp | 6 ++--- tests/python_tests/test_generate_api.py | 26 +++++++++++++++++++ 5 files changed, 45 insertions(+), 16 deletions(-) diff --git a/src/cpp/include/openvino/genai/generation_config.hpp b/src/cpp/include/openvino/genai/generation_config.hpp index 8d23b298ba..2402f57fba 100644 --- a/src/cpp/include/openvino/genai/generation_config.hpp +++ b/src/cpp/include/openvino/genai/generation_config.hpp @@ -36,11 +36,11 @@ enum class StopCriteria { EARLY, HEURISTIC, NEVER }; * @param max_new_tokens the maximum numbers of tokens to generate, excluding the number of tokens in the prompt. max_new_tokens has priority over max_length. * @param ignore_eos if set to true, then generation will not stop even if token is met. * @param eos_token_id token_id of (end of sentence) - * @param min_new_tokens set 0 probability for eos_token_id for the first eos_token_id generated tokens. Ignored for non continuous batching. + * @param min_new_tokens set 0 probability for eos_token_id for the first eos_token_id generated tokens. * - * @param stop_strings vector of strings that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + * @param stop_strings A set of strings that will cause pipeline to stop generating further tokens. * @param include_stop_str_in_output if set to true stop string that matched generation will be included in generation output (default: false) - * @param stop_token_ids vector of tokens that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + * @param stop_token_ids A set of tokens that will cause pipeline to stop generating further tokens. * @param echo if set to true, output will include user prompt (default: false). * @param logprobs number of top logprobs computed for each position, if set to 0, logprobs are not computed and value 0.0 is returned. * Currently only single top logprob can be returned, so any logprobs > 1 is treated as logprobs == 1. (default: 0). @@ -154,7 +154,7 @@ static constexpr ov::Property max_new_tokens{"max_new_tokens"}; static constexpr ov::Property max_length{"max_length"}; static constexpr ov::Property ignore_eos{"ignore_eos"}; static constexpr ov::Property min_new_tokens{"min_new_tokens"}; -static constexpr ov::Property> stop_strings{"stop_strings"}; +static constexpr ov::Property> stop_strings{"stop_strings"}; static constexpr ov::Property include_stop_str_in_output{"include_stop_str_in_output"}; static constexpr ov::Property> stop_token_ids{"stop_token_ids"}; diff --git a/src/cpp/src/generation_config.cpp b/src/cpp/src/generation_config.cpp index 3d7e05a762..0829e8376a 100644 --- a/src/cpp/src/generation_config.cpp +++ b/src/cpp/src/generation_config.cpp @@ -131,6 +131,9 @@ bool GenerationConfig::is_speculative_decoding() const { } void GenerationConfig::validate() const { + OPENVINO_ASSERT(eos_token_id == -1 || stop_token_ids.find(eos_token_id) != stop_token_ids.end(), + "'stop_token_ids' must contain 'eos_token_id'. Please, call 'set_eos_token_id' with 'eos_token_id' value"); + OPENVINO_ASSERT(!do_sample || num_beams == 1, "Beam search with sampling is not supported yet. " "Please either set do_sample=false to use beam search " diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 7c6555f38f..b13ee37f24 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -483,10 +483,10 @@ class GenerationConfig: max_new_tokens: the maximum numbers of tokens to generate, excluding the number of tokens in the prompt. max_new_tokens has priority over max_length. ignore_eos: if set to true, then generation will not stop even if token is met. eos_token_id: token_id of (end of sentence) - min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. Ignored for non continuous batching. - stop_strings: list of strings that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. + stop_strings: a set of strings that will cause pipeline to stop generating further tokens. include_stop_str_in_output: if set to true stop string that matched generation will be included in generation output (default: false) - stop_token_ids: list of tokens that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + stop_token_ids: a set of tokens that will cause pipeline to stop generating further tokens. echo: if set to true, the model will echo the prompt in the output. logprobs: number of top logprobs computed for each position, if set to 0, logprobs are not computed and value 0.0 is returned. Currently only single top logprob can be returned, so any logprobs > 1 is treated as logprobs == 1. (default: 0). @@ -756,10 +756,10 @@ class LLMPipeline: max_new_tokens: the maximum numbers of tokens to generate, excluding the number of tokens in the prompt. max_new_tokens has priority over max_length. ignore_eos: if set to true, then generation will not stop even if token is met. eos_token_id: token_id of (end of sentence) - min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. Ignored for non continuous batching. - stop_strings: list of strings that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. + stop_strings: a set of strings that will cause pipeline to stop generating further tokens. include_stop_str_in_output: if set to true stop string that matched generation will be included in generation output (default: false) - stop_token_ids: list of tokens that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + stop_token_ids: a set of tokens that will cause pipeline to stop generating further tokens. echo: if set to true, the model will echo the prompt in the output. logprobs: number of top logprobs computed for each position, if set to 0, logprobs are not computed and value 0.0 is returned. Currently only single top logprob can be returned, so any logprobs > 1 is treated as logprobs == 1. (default: 0). @@ -837,10 +837,10 @@ class LLMPipeline: max_new_tokens: the maximum numbers of tokens to generate, excluding the number of tokens in the prompt. max_new_tokens has priority over max_length. ignore_eos: if set to true, then generation will not stop even if token is met. eos_token_id: token_id of (end of sentence) - min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. Ignored for non continuous batching. - stop_strings: list of strings that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. + stop_strings: a set of strings that will cause pipeline to stop generating further tokens. include_stop_str_in_output: if set to true stop string that matched generation will be included in generation output (default: false) - stop_token_ids: list of tokens that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + stop_token_ids: a set of tokens that will cause pipeline to stop generating further tokens. echo: if set to true, the model will echo the prompt in the output. logprobs: number of top logprobs computed for each position, if set to 0, logprobs are not computed and value 0.0 is returned. Currently only single top logprob can be returned, so any logprobs > 1 is treated as logprobs == 1. (default: 0). diff --git a/src/python/py_generation_config.cpp b/src/python/py_generation_config.cpp index dc5ec98ed6..d24a915dd6 100644 --- a/src/python/py_generation_config.cpp +++ b/src/python/py_generation_config.cpp @@ -40,10 +40,10 @@ char generation_config_docstring[] = R"( max_new_tokens: the maximum numbers of tokens to generate, excluding the number of tokens in the prompt. max_new_tokens has priority over max_length. ignore_eos: if set to true, then generation will not stop even if token is met. eos_token_id: token_id of (end of sentence) - min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. Ignored for non continuous batching. - stop_strings: list of strings that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + min_new_tokens: set 0 probability for eos_token_id for the first eos_token_id generated tokens. + stop_strings: a set of strings that will cause pipeline to stop generating further tokens. include_stop_str_in_output: if set to true stop string that matched generation will be included in generation output (default: false) - stop_token_ids: list of tokens that will cause pipeline to stop generating further tokens. Ignored for non continuous batching. + stop_token_ids: a set of tokens that will cause pipeline to stop generating further tokens. echo: if set to true, the model will echo the prompt in the output. logprobs: number of top logprobs computed for each position, if set to 0, logprobs are not computed and value 0.0 is returned. Currently only single top logprob can be returned, so any logprobs > 1 is treated as logprobs == 1. (default: 0). diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index 80df79f31b..d17f3c0232 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -844,3 +844,29 @@ def test_batch_switch(): pipe = read_model(('katuni4ka/tiny-random-phi3', Path('tiny-random-phi3')))[4] pipe.generate(["a"], max_new_tokens=2) pipe.generate(["1", "2"], max_new_tokens=2) + + +@pytest.mark.precommit +@pytest.mark.nightly +def test_stop_token_ids(): + pipe = read_model(('katuni4ka/tiny-random-phi3', Path('tiny-random-phi3')))[4] + res = pipe.generate( + ov.Tensor([(1,)]), + max_new_tokens=3, + stop_token_ids={-1, 9935, pipe.get_tokenizer().get_eos_token_id()}, + include_stop_str_in_output=False + ) + assert 2 == len(res.tokens[0]) + assert 9935 in res.tokens[0] + + +@pytest.mark.precommit +@pytest.mark.nightly +def test_stop_strings(): + pipe = read_model(('katuni4ka/tiny-random-phi3', Path('tiny-random-phi3')))[4] + res = pipe.generate( + "", + max_new_tokens=5, + stop_strings={"ignored", "боль"} + ) + assert "боль" not in res From 2364213c77917e53f7f43f3a4fa43ef07fb5258e Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Tue, 10 Dec 2024 16:17:03 +0400 Subject: [PATCH 055/113] Keep requirements.txt in production ready state (#1344) Ported https://github.com/openvinotoolkit/openvino.genai/pull/1346 --- samples/deployment-requirements.txt | 1 + samples/export-requirements.txt | 1 + 2 files changed, 2 insertions(+) diff --git a/samples/deployment-requirements.txt b/samples/deployment-requirements.txt index cd206285e2..428e0955a5 100644 --- a/samples/deployment-requirements.txt +++ b/samples/deployment-requirements.txt @@ -1,3 +1,4 @@ +--extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino_genai~=2025.0.0.0.dev librosa==0.10.2.post1 # For Whisper diff --git a/samples/export-requirements.txt b/samples/export-requirements.txt index 2d56a6ced2..797b680b9a 100644 --- a/samples/export-requirements.txt +++ b/samples/export-requirements.txt @@ -1,4 +1,5 @@ --extra-index-url https://download.pytorch.org/whl/cpu +--extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino-tokenizers~=2025.0.0.0.dev optimum-intel @ git+https://github.com/huggingface/optimum-intel.git From 1373314ff97c40e1554bdb52d245fff060a7587f Mon Sep 17 00:00:00 2001 From: wenyi5608 <93560477+wenyi5608@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:48:39 +0800 Subject: [PATCH 056/113] Update vision_encoder.cpp for miniCPM (#1322) Modified the visual image functions that convert NCHW to NCkernel (HW/kernel*kernel) to match the Python implementation --- .../src/visual_language/vision_encoder.cpp | 60 +++++++++++++++---- 1 file changed, 48 insertions(+), 12 deletions(-) diff --git a/src/cpp/src/visual_language/vision_encoder.cpp b/src/cpp/src/visual_language/vision_encoder.cpp index f3a4c90e80..0842524820 100644 --- a/src/cpp/src/visual_language/vision_encoder.cpp +++ b/src/cpp/src/visual_language/vision_encoder.cpp @@ -309,35 +309,71 @@ EncodedImage llava_image_embed_make_with_bytes_slice(clip_ctx& ctx_clip, const o std::vector> imgs = ::slice_image(source, max_slice_nums, scale_resolution, patch_size, never_split); std::vector> results; std::vector> sizes; + const size_t channels = 3; std::vector> preprocessed{imgs.size()}; - size_t max_h = 0, max_w = 0, n_images = 0; - std::transform(imgs.begin(), imgs.end(), preprocessed.begin(), [&ctx_clip, &max_h, &max_w, &n_images](const std::vector& row) { + size_t max_h = 0, max_w = 0, n_images = 0, max_size = 0; + std::transform(imgs.begin(), imgs.end(), preprocessed.begin(), [&ctx_clip, &max_h, &max_w, &max_size, &n_images](const std::vector& row) { std::vector processed_row{row.size()}; - std::transform(row.begin(), row.end(), processed_row.begin(), [&ctx_clip, &max_h, &max_w, &n_images](const clip_image_u8& raw) { + std::transform(row.begin(), row.end(), processed_row.begin(), [&ctx_clip, &max_h, &max_w, &max_size, &n_images](const clip_image_u8& raw) { clip_image_f32 im = clip_image_preprocess(ctx_clip, raw); - max_h = std::max(size_t(im.ny), max_h); - max_w = std::max(size_t(im.nx), max_w); + if (size_t(im.ny) * size_t(im.nx) > max_size) { + max_size = size_t(im.ny) * size_t(im.nx); + max_h = size_t(im.ny); + max_w = size_t(im.nx); + } ++n_images; return im; }); return processed_row; }); - ov::Tensor batched_images{ov::element::f32, {n_images, 3, max_h, max_w}}; - float* batched_data = batched_images.data(); - const clip_image_f32& resized_preprocessed = preprocessed.at(0).at(0); - std::copy(resized_preprocessed.buf.begin(), resized_preprocessed.buf.end(), batched_data); + ov::Tensor pixel_values{ov::element::f32, {n_images, channels, patch_size, max_size / patch_size}}; + size_t d3_all_pixel = pixel_values.get_shape().at(3); + float* pixel_value_data = pixel_values.data(); + + //image chw to 1*c*kernel*hw/kernel and padding zero + clip_image_f32& resized_preprocessed = preprocessed.at(0).at(0); + size_t img_h = resized_preprocessed.ny; + size_t img_w = resized_preprocessed.nx; + ov::Tensor clip_img{ov::element::f32, {1, channels, img_h, img_w}, resized_preprocessed.buf.data()}; + ov::Tensor clip_pixel_values = preprocess_for_encoder(clip_img, patch_size); + + float* clip_value_data = clip_pixel_values.data(); + size_t batch_pixel = 1; + size_t d3_clip_pixel = clip_pixel_values.get_shape().at(3); + for (size_t c_idx = 0; c_idx < channels; ++c_idx) { + for (size_t k_idx = 0; k_idx < patch_size; k_idx++) { + std::copy(clip_value_data, clip_value_data + d3_clip_pixel, pixel_value_data); + clip_value_data += d3_clip_pixel; + pixel_value_data += d3_all_pixel; + } + } + if (1 < preprocessed.size()) { for (size_t row = 1; row < preprocessed.size(); ++row) { size_t n_slices = preprocessed.at(row).size(); for (size_t col = 0; col < n_slices; ++col) { - const clip_image_f32& elem = preprocessed.at(row).at(col); - std::copy(elem.buf.begin(), elem.buf.end(), batched_data + ((row - 1) * n_slices + col + 1) * 3 * max_h * max_w); + clip_image_f32& elem = preprocessed.at(row).at(col); + img_h = elem.ny; + img_w = elem.nx; + ov::Tensor clip_img{ov::element::f32, {1, channels, img_h, img_w}, elem.buf.data()}; + ov::Tensor clip_pixel_values = preprocess_for_encoder(clip_img, patch_size); + + d3_clip_pixel = clip_pixel_values.get_shape().at(3); + clip_value_data = clip_pixel_values.data(); + pixel_value_data = pixel_values.data() + batch_pixel * channels * patch_size * d3_all_pixel; + for (size_t c_idx = 0; c_idx < channels; ++c_idx) { + for (size_t k_idx = 0; k_idx < patch_size; k_idx++) { + std::copy(clip_value_data, clip_value_data + d3_clip_pixel, pixel_value_data); + clip_value_data += d3_clip_pixel; + pixel_value_data += d3_all_pixel; + } + } + batch_pixel++; } } } - ov::Tensor pixel_values = preprocess_for_encoder(batched_images, patch_size); encoder.set_tensor("pixel_values", pixel_values); ov::Tensor patch_attention_mask{ov::element::f32, {pixel_values.get_shape().at(0), 1, max_h / patch_size * max_w / patch_size}}; From c4857e3ce0d526f6918498a836eeecd059506476 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Tue, 10 Dec 2024 20:32:14 +0400 Subject: [PATCH 057/113] Added Python API for other image generation models (#1349) --- .../flux_transformer_2d_model.hpp | 4 +- .../sd3_transformer_2d_model.hpp | 2 +- .../image_generation/text2image_pipeline.hpp | 2 +- .../models/flux_transformer_2d_model.cpp | 1 - src/python/openvino_genai/__init__.py | 3 + src/python/openvino_genai/__init__.pyi | 5 +- .../openvino_genai/py_openvino_genai.pyi | 143 +++++- src/python/py_image_generation_models.cpp | 428 ++++++++++++------ src/python/py_image_generation_pipelines.cpp | 8 + 9 files changed, 455 insertions(+), 141 deletions(-) diff --git a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp index c49eb56b21..95f846668b 100644 --- a/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/flux_transformer_2d_model.hpp @@ -18,7 +18,7 @@ namespace genai { class OPENVINO_GENAI_EXPORTS FluxTransformer2DModel { public: - struct Config { + struct OPENVINO_GENAI_EXPORTS Config { size_t in_channels = 64; bool guidance_embeds = false; size_t m_default_sample_size = 128; @@ -69,7 +69,7 @@ class OPENVINO_GENAI_EXPORTS FluxTransformer2DModel { template ov::util::EnableIfAllStringAny compile(const std::string& device, - Properties&&... properties) { + Properties&&... properties) { return compile(device, ov::AnyMap{std::forward(properties)...}); } diff --git a/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp b/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp index e4641066ec..7f96af49c2 100644 --- a/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp +++ b/src/cpp/include/openvino/genai/image_generation/sd3_transformer_2d_model.hpp @@ -19,7 +19,7 @@ namespace genai { class OPENVINO_GENAI_EXPORTS SD3Transformer2DModel { public: - struct Config { + struct OPENVINO_GENAI_EXPORTS Config { size_t sample_size = 128; size_t patch_size = 2; size_t in_channels = 16; diff --git a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp index be594f13fc..4fce33856f 100644 --- a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp @@ -82,7 +82,7 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { const CLIPTextModel& clip_text_model, const T5EncoderModel t5_encoder_model, const FluxTransformer2DModel& transformer, - const AutoencoderKL& vae_decoder); + const AutoencoderKL& vae); ImageGenerationConfig get_generation_config() const; void set_generation_config(const ImageGenerationConfig& generation_config); diff --git a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp index 3c6bb94505..6b28b116b0 100644 --- a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp @@ -22,7 +22,6 @@ FluxTransformer2DModel::Config::Config(const std::filesystem::path& config_path) read_json_param(data, "in_channels", in_channels); read_json_param(data, "guidance_embeds", guidance_embeds); - file.close(); } FluxTransformer2DModel::FluxTransformer2DModel(const std::filesystem::path& root_dir) diff --git a/src/python/openvino_genai/__init__.py b/src/python/openvino_genai/__init__.py index 66cf12aad1..a97812261f 100644 --- a/src/python/openvino_genai/__init__.py +++ b/src/python/openvino_genai/__init__.py @@ -63,7 +63,10 @@ from .py_openvino_genai import ( CLIPTextModel, CLIPTextModelWithProjection, + T5EncoderModel, UNet2DConditionModel, + FluxTransformer2DModel, + SD3Transformer2DModel, AutoencoderKL, Text2ImagePipeline, Scheduler, diff --git a/src/python/openvino_genai/__init__.pyi b/src/python/openvino_genai/__init__.pyi index 5a406043b7..e7e4e2619c 100644 --- a/src/python/openvino_genai/__init__.pyi +++ b/src/python/openvino_genai/__init__.pyi @@ -15,6 +15,7 @@ from openvino_genai.py_openvino_genai import ContinuousBatchingPipeline from openvino_genai.py_openvino_genai import CppStdGenerator from openvino_genai.py_openvino_genai import DecodedResults from openvino_genai.py_openvino_genai import EncodedResults +from openvino_genai.py_openvino_genai import FluxTransformer2DModel from openvino_genai.py_openvino_genai import GenerationConfig from openvino_genai.py_openvino_genai import GenerationResult from openvino_genai.py_openvino_genai import Generator @@ -22,10 +23,12 @@ from openvino_genai.py_openvino_genai import ImageGenerationConfig from openvino_genai.py_openvino_genai import LLMPipeline from openvino_genai.py_openvino_genai import PerfMetrics from openvino_genai.py_openvino_genai import RawPerfMetrics +from openvino_genai.py_openvino_genai import SD3Transformer2DModel from openvino_genai.py_openvino_genai import Scheduler from openvino_genai.py_openvino_genai import SchedulerConfig from openvino_genai.py_openvino_genai import StopCriteria from openvino_genai.py_openvino_genai import StreamerBase +from openvino_genai.py_openvino_genai import T5EncoderModel from openvino_genai.py_openvino_genai import Text2ImagePipeline from openvino_genai.py_openvino_genai import TokenizedInputs from openvino_genai.py_openvino_genai import Tokenizer @@ -38,5 +41,5 @@ from openvino_genai.py_openvino_genai import WhisperRawPerfMetrics from openvino_genai.py_openvino_genai import draft_model import os as os from . import py_openvino_genai -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'GenerationConfig', 'GenerationResult', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationResult', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] __version__: str = '2025.0.0.0' diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index b13ee37f24..24bf6fd785 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -5,7 +5,7 @@ from __future__ import annotations import openvino._pyopenvino import os import typing -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] class Adapter: """ Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. @@ -222,7 +222,7 @@ class CLIPTextModel: """ max_position_embeddings: int num_hidden_layers: int - def __init__(self, config_path: str) -> None: + def __init__(self, config_path: os.PathLike) -> None: ... @typing.overload def __init__(self, root_dir: os.PathLike) -> None: @@ -470,6 +470,53 @@ class EncodedResults: @property def tokens(self) -> list[list[int]]: ... +class FluxTransformer2DModel: + """ + FluxTransformer2DModel class. + """ + class Config: + """ + This class is used for storing FluxTransformer2DModel config. + """ + default_sample_size: int + in_channels: int + def __init__(self, config_path: os.PathLike) -> None: + ... + @typing.overload + def __init__(self, root_dir: os.PathLike) -> None: + """ + FluxTransformer2DModel class + root_dir (os.PathLike): Model root directory. + """ + @typing.overload + def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: + """ + UNet2DConditionModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + """ + @typing.overload + def __init__(self, model: FluxTransformer2DModel) -> None: + """ + FluxTransformer2DModel model + FluxTransformer2DModel class + model (FluxTransformer2DModel): FluxTransformer2DModel model + """ + def compile(self, device: str, **kwargs) -> None: + """ + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + """ + def get_config(self) -> FluxTransformer2DModel.Config: + ... + def infer(self, sample: openvino._pyopenvino.Tensor, timestep: openvino._pyopenvino.Tensor) -> openvino._pyopenvino.Tensor: + ... + def reshape(self, batch_size: int, height: int, width: int, tokenizer_model_max_length: int) -> FluxTransformer2DModel: + ... + def set_hidden_states(self, tensor_name: str, encoder_hidden_states: openvino._pyopenvino.Tensor) -> None: + ... class GenerationConfig: """ @@ -1068,6 +1115,55 @@ class RawPerfMetrics: @property def tokenization_durations(self) -> list[float]: ... +class SD3Transformer2DModel: + """ + SD3Transformer2DModel class. + """ + class Config: + """ + This class is used for storing SD3Transformer2DModel config. + """ + in_channels: int + joint_attention_dim: int + patch_size: int + sample_size: int + def __init__(self, config_path: os.PathLike) -> None: + ... + @typing.overload + def __init__(self, root_dir: os.PathLike) -> None: + """ + SD3Transformer2DModel class + root_dir (os.PathLike): Model root directory. + """ + @typing.overload + def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: + """ + SD3Transformer2DModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + """ + @typing.overload + def __init__(self, model: SD3Transformer2DModel) -> None: + """ + SD3Transformer2DModel model + SD3Transformer2DModel class + model (SD3Transformer2DModel): SD3Transformer2DModel model + """ + def compile(self, device: str, **kwargs) -> None: + """ + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + """ + def get_config(self) -> SD3Transformer2DModel.Config: + ... + def infer(self, sample: openvino._pyopenvino.Tensor, timestep: openvino._pyopenvino.Tensor) -> openvino._pyopenvino.Tensor: + ... + def reshape(self, batch_size: int, height: int, width: int, tokenizer_model_max_length: int) -> SD3Transformer2DModel: + ... + def set_hidden_states(self, tensor_name: str, encoder_hidden_states: openvino._pyopenvino.Tensor) -> None: + ... class Scheduler: """ Scheduler for image generation pipelines. @@ -1220,17 +1316,60 @@ class StreamerBase: """ Put is called every time new token is decoded. Returns a bool flag to indicate whether generation should be stopped, if return true generation stops """ +class T5EncoderModel: + """ + T5EncoderModel class. + """ + @typing.overload + def __init__(self, root_dir: os.PathLike) -> None: + """ + T5EncoderModel class + root_dir (os.PathLike): Model root directory. + """ + @typing.overload + def __init__(self, root_dir: os.PathLike, device: str, **kwargs) -> None: + """ + T5EncoderModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + """ + @typing.overload + def __init__(self, model: T5EncoderModel) -> None: + """ + T5EncoderModel model + T5EncoderModel class + model (T5EncoderModel): T5EncoderModel model + """ + def compile(self, device: str, **kwargs) -> None: + """ + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + """ + def get_output_tensor(self, idx: int) -> openvino._pyopenvino.Tensor: + ... + def infer(self, pos_prompt: str, neg_prompt: str, do_classifier_free_guidance: bool, max_sequence_length: int) -> openvino._pyopenvino.Tensor: + ... + def reshape(self, batch_size: int, max_sequence_length: int) -> T5EncoderModel: + ... class Text2ImagePipeline: """ This class is used for generation with text-to-image models. """ @staticmethod + def flux(scheduler: Scheduler, clip_text_model: CLIPTextModel, t5_encoder_model: T5EncoderModel, transformer: FluxTransformer2DModel, vae: AutoencoderKL) -> Text2ImagePipeline: + ... + @staticmethod def latent_consistency_model(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @staticmethod def stable_diffusion(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @staticmethod + def stable_diffusion_3(scheduler: Scheduler, clip_text_model_1: CLIPTextModelWithProjection, clip_text_model_2: CLIPTextModelWithProjection, t5_encoder_model: T5EncoderModel, transformer: SD3Transformer2DModel, vae: AutoencoderKL) -> Text2ImagePipeline: + ... + @staticmethod def stable_diffusion_xl(scheduler: Scheduler, clip_text_model: CLIPTextModel, clip_text_model_with_projection: CLIPTextModelWithProjection, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @typing.overload diff --git a/src/python/py_image_generation_models.cpp b/src/python/py_image_generation_models.cpp index 72a8970cb4..75be28233f 100644 --- a/src/python/py_image_generation_models.cpp +++ b/src/python/py_image_generation_models.cpp @@ -12,7 +12,10 @@ #include "openvino/genai/image_generation/autoencoder_kl.hpp" #include "openvino/genai/image_generation/clip_text_model.hpp" #include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" +#include "openvino/genai/image_generation/t5_encoder_model.hpp" #include "openvino/genai/image_generation/unet2d_condition_model.hpp" +#include "openvino/genai/image_generation/sd3_transformer_2d_model.hpp" +#include "openvino/genai/image_generation/flux_transformer_2d_model.hpp" #include "tokenizers_path.hpp" #include "py_utils.hpp" @@ -22,13 +25,11 @@ namespace pyutils = ov::genai::pybind::utils; void init_clip_text_model(py::module_& m) { auto clip_text_model = py::class_(m, "CLIPTextModel", "CLIPTextModel class.") - .def(py::init([]( - const std::filesystem::path& root_dir - ) { + .def(py::init([](const std::filesystem::path& root_dir) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); return std::make_unique(root_dir); }), - py::arg("root_dir"), "Model root directory", + py::arg("root_dir"), "Model root directory", R"( CLIPTextModel class root_dir (os.PathLike): Model root directory. @@ -41,17 +42,15 @@ void init_clip_text_model(py::module_& m) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); }), - py::arg("root_dir"), "Model root directory", + py::arg("root_dir"), "Model root directory", py::arg("device"), "Device on which inference will be done", R"( CLIPTextModel class root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. - )") - .def(py::init([]( - const ov::genai::CLIPTextModel& model - ) { + )") + .def(py::init([](const ov::genai::CLIPTextModel& model) { return std::make_unique(model); }), py::arg("model"), "CLIPText model" @@ -59,25 +58,23 @@ void init_clip_text_model(py::module_& m) { CLIPTextModel class model (CLIPTextModel): CLIPText model )"); - + py::class_(clip_text_model, "Config", "This class is used for storing CLIPTextModel config.") - .def(py::init([]( - const std::string& config_path - ) { + .def(py::init([](const std::filesystem::path& config_path) { return std::make_unique(config_path); }), py::arg("config_path")) .def_readwrite("max_position_embeddings", &ov::genai::CLIPTextModel::Config::max_position_embeddings) .def_readwrite("num_hidden_layers", &ov::genai::CLIPTextModel::Config::num_hidden_layers); - clip_text_model.def("get_config", &ov::genai::CLIPTextModel::get_config); - clip_text_model.def("reshape", &ov::genai::CLIPTextModel::reshape, py::arg("batch_size")); - clip_text_model.def("set_adapters", &ov::genai::CLIPTextModel::set_adapters, py::arg("adapters")); - clip_text_model.def("infer", &ov::genai::CLIPTextModel::infer, py::arg("pos_prompt"), py::arg("neg_prompt"), py::arg("do_classifier_free_guidance")); - clip_text_model.def("get_output_tensor", &ov::genai::CLIPTextModel::get_output_tensor, py::arg("idx")); - clip_text_model.def( - "compile", - [](ov::genai::CLIPTextModel& self, + clip_text_model.def("get_config", &ov::genai::CLIPTextModel::get_config) + .def("reshape", &ov::genai::CLIPTextModel::reshape, py::arg("batch_size")) + .def("set_adapters", &ov::genai::CLIPTextModel::set_adapters, py::arg("adapters")) + .def("infer", &ov::genai::CLIPTextModel::infer, py::arg("pos_prompt"), py::arg("neg_prompt"), py::arg("do_classifier_free_guidance")) + .def("get_output_tensor", &ov::genai::CLIPTextModel::get_output_tensor, py::arg("idx")) + .def( + "compile", + [](ov::genai::CLIPTextModel& self, const std::string& device, const py::kwargs& kwargs ) { @@ -91,14 +88,132 @@ void init_clip_text_model(py::module_& m) { )"); } -void init_unet2d_condition_model(py::module_& m) { - auto unet2d_condition_model = py::class_(m, "UNet2DConditionModel", "UNet2DConditionModel class.") +void init_clip_text_model_with_projection(py::module_& m) { + auto clip_text_model_with_projection = py::class_(m, "CLIPTextModelWithProjection", "CLIPTextModelWithProjection class.") + .def(py::init([](const std::filesystem::path& root_dir) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(root_dir); + }), + py::arg("root_dir"), "Model root directory", + R"( + CLIPTextModelWithProjection class + root_dir (os.PathLike): Model root directory. + )") + .def(py::init([]( + const std::filesystem::path& root_dir, + const std::string& device, + const py::kwargs& kwargs + ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("root_dir"), "Model root directory", + py::arg("device"), "Device on which inference will be done", + R"( + CLIPTextModelWithProjection class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + )") + .def(py::init([](const ov::genai::CLIPTextModelWithProjection& model) { + return std::make_unique(model); + }), + py::arg("model"), "CLIPTextModelWithProjection model" + R"( + CLIPTextModelWithProjection class + model (CLIPTextModelWithProjection): CLIPTextModelWithProjection model + )"); + + py::class_(clip_text_model_with_projection, "Config", "This class is used for storing CLIPTextModelWithProjection config.") + .def(py::init([](const std::filesystem::path& config_path) { + return std::make_unique(config_path); + }), + py::arg("config_path")) + .def_readwrite("max_position_embeddings", &ov::genai::CLIPTextModelWithProjection::Config::max_position_embeddings) + .def_readwrite("num_hidden_layers", &ov::genai::CLIPTextModelWithProjection::Config::num_hidden_layers); + + clip_text_model_with_projection.def("reshape", &ov::genai::CLIPTextModelWithProjection::reshape, py::arg("batch_size")) + .def("infer", &ov::genai::CLIPTextModelWithProjection::infer, py::arg("pos_prompt"), py::arg("neg_prompt"), py::arg("do_classifier_free_guidance")) + .def("get_config", &ov::genai::CLIPTextModelWithProjection::get_config) + .def("get_output_tensor", &ov::genai::CLIPTextModelWithProjection::get_output_tensor, py::arg("idx")) + .def("set_adapters", &ov::genai::CLIPTextModelWithProjection::set_adapters, py::arg("adapters")) + .def( + "compile", + [](ov::genai::CLIPTextModelWithProjection& self, + const std::string& device, + const py::kwargs& kwargs + ) { + self.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )"); +} + +void init_t5_encoder_model(py::module_& m) { + auto t5_encoder_model = py::class_(m, "T5EncoderModel", "T5EncoderModel class.") + .def(py::init([](const std::filesystem::path& root_dir) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(root_dir); + }), + py::arg("root_dir"), "Model root directory", + R"( + T5EncoderModel class + root_dir (os.PathLike): Model root directory. + )") .def(py::init([]( - const std::filesystem::path& root_dir + const std::filesystem::path& root_dir, + const std::string& device, + const py::kwargs& kwargs ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("root_dir"), "Model root directory", + py::arg("device"), "Device on which inference will be done", + R"( + T5EncoderModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + )") + .def(py::init([](const ov::genai::T5EncoderModel& model) { + return std::make_unique(model); + }), + py::arg("model"), "T5EncoderModel model" + R"( + T5EncoderModel class + model (T5EncoderModel): T5EncoderModel model + )") + .def("reshape", &ov::genai::T5EncoderModel::reshape, py::arg("batch_size"), py::arg("max_sequence_length")) + .def("infer", &ov::genai::T5EncoderModel::infer, py::arg("pos_prompt"), py::arg("neg_prompt"), py::arg("do_classifier_free_guidance"), py::arg("max_sequence_length")) + .def("get_output_tensor", &ov::genai::T5EncoderModel::get_output_tensor, py::arg("idx")) + // .def("set_adapters", &ov::genai::T5EncoderModel::set_adapters, py::arg("adapters")) + .def( + "compile", + [](ov::genai::T5EncoderModel& self, + const std::string& device, + const py::kwargs& kwargs + ) { + self.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )"); +} + +void init_unet2d_condition_model(py::module_& m) { + auto unet2d_condition_model = py::class_(m, "UNet2DConditionModel", "UNet2DConditionModel class.") + .def(py::init([](const std::filesystem::path& root_dir) { return std::make_unique(root_dir); }), - py::arg("root_dir"), "Model root directory", + py::arg("root_dir"), "Model root directory", R"( UNet2DConditionModel class root_dir (os.PathLike): Model root directory. @@ -110,17 +225,15 @@ void init_unet2d_condition_model(py::module_& m) { ) { return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); }), - py::arg("root_dir"), "Model root directory", + py::arg("root_dir"), "Model root directory", py::arg("device"), "Device on which inference will be done", R"( UNet2DConditionModel class root_dir (os.PathLike): Model root directory. device (str): Device on which inference will be done. kwargs: Device properties. - )") - .def(py::init([]( - const ov::genai::UNet2DConditionModel& model - ) { + )") + .def(py::init([](const ov::genai::UNet2DConditionModel& model) { return std::make_unique(model); }), py::arg("model"), "UNet2DConditionModel model" @@ -130,9 +243,7 @@ void init_unet2d_condition_model(py::module_& m) { )"); py::class_(unet2d_condition_model, "Config", "This class is used for storing UNet2DConditionModel config.") - .def(py::init([]( - const std::filesystem::path& config_path - ) { + .def(py::init([](const std::filesystem::path& config_path) { return std::make_unique(config_path); }), py::arg("config_path")) @@ -140,14 +251,14 @@ void init_unet2d_condition_model(py::module_& m) { .def_readwrite("sample_size", &ov::genai::UNet2DConditionModel::Config::sample_size) .def_readwrite("time_cond_proj_dim", &ov::genai::UNet2DConditionModel::Config::time_cond_proj_dim); - unet2d_condition_model.def("get_config", &ov::genai::UNet2DConditionModel::get_config); - unet2d_condition_model.def("reshape", &ov::genai::UNet2DConditionModel::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width"), py::arg("tokenizer_model_max_length")); - unet2d_condition_model.def("set_adapters", &ov::genai::UNet2DConditionModel::set_adapters, py::arg("adapters")); - unet2d_condition_model.def("infer", &ov::genai::UNet2DConditionModel::infer, py::arg("sample"), py::arg("timestep")); - unet2d_condition_model.def("set_hidden_states", &ov::genai::UNet2DConditionModel::set_hidden_states, py::arg("tensor_name"), py::arg("encoder_hidden_states")); - unet2d_condition_model.def("do_classifier_free_guidance", &ov::genai::UNet2DConditionModel::do_classifier_free_guidance, py::arg("guidance_scale")); - unet2d_condition_model.def( - "compile", + unet2d_condition_model.def("get_config", &ov::genai::UNet2DConditionModel::get_config) + .def("reshape", &ov::genai::UNet2DConditionModel::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width"), py::arg("tokenizer_model_max_length")) + .def("set_adapters", &ov::genai::UNet2DConditionModel::set_adapters, py::arg("adapters")) + .def("infer", &ov::genai::UNet2DConditionModel::infer, py::arg("sample"), py::arg("timestep")) + .def("set_hidden_states", &ov::genai::UNet2DConditionModel::set_hidden_states, py::arg("tensor_name"), py::arg("encoder_hidden_states")) + .def("do_classifier_free_guidance", &ov::genai::UNet2DConditionModel::do_classifier_free_guidance, py::arg("guidance_scale")) + .def( + "compile", [](ov::genai::UNet2DConditionModel& self, const std::string& device, const py::kwargs& kwargs @@ -162,14 +273,140 @@ void init_unet2d_condition_model(py::module_& m) { )"); } -void init_autoencoder_kl(py::module_& m) { - auto autoencoder_kl = py::class_(m, "AutoencoderKL", "AutoencoderKL class.") +void init_sd3_transformer_2d_model(py::module_& m) { + auto sd3_transformer_2d_model = py::class_(m, "SD3Transformer2DModel", "SD3Transformer2DModel class.") + .def(py::init([](const std::filesystem::path& root_dir) { + return std::make_unique(root_dir); + }), + py::arg("root_dir"), "Model root directory", + R"( + SD3Transformer2DModel class + root_dir (os.PathLike): Model root directory. + )") .def(py::init([]( - const std::filesystem::path& vae_decoder_path + const std::filesystem::path& root_dir, + const std::string& device, + const py::kwargs& kwargs + ) { + return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("root_dir"), "Model root directory", + py::arg("device"), "Device on which inference will be done", + R"( + SD3Transformer2DModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + )") + .def(py::init([](const ov::genai::SD3Transformer2DModel& model) { + return std::make_unique(model); + }), + py::arg("model"), "SD3Transformer2DModel model" + R"( + SD3Transformer2DModel class + model (SD3Transformer2DModel): SD3Transformer2DModel model + )"); + + py::class_(sd3_transformer_2d_model, "Config", "This class is used for storing SD3Transformer2DModel config.") + .def(py::init([](const std::filesystem::path& config_path) { + return std::make_unique(config_path); + }), + py::arg("config_path")) + .def_readwrite("in_channels", &ov::genai::SD3Transformer2DModel::Config::in_channels) + .def_readwrite("sample_size", &ov::genai::SD3Transformer2DModel::Config::sample_size) + .def_readwrite("patch_size", &ov::genai::SD3Transformer2DModel::Config::patch_size) + .def_readwrite("joint_attention_dim", &ov::genai::SD3Transformer2DModel::Config::joint_attention_dim); + + sd3_transformer_2d_model.def("get_config", &ov::genai::SD3Transformer2DModel::get_config) + .def("reshape", &ov::genai::SD3Transformer2DModel::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width"), py::arg("tokenizer_model_max_length")) + // .def("set_adapters", &ov::genai::SD3Transformer2DModel::set_adapters, py::arg("adapters")) + .def("infer", &ov::genai::SD3Transformer2DModel::infer, py::arg("sample"), py::arg("timestep")) + .def("set_hidden_states", &ov::genai::SD3Transformer2DModel::set_hidden_states, py::arg("tensor_name"), py::arg("encoder_hidden_states")) + .def( + "compile", + [](ov::genai::SD3Transformer2DModel& self, + const std::string& device, + const py::kwargs& kwargs + ) { + self.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )"); +} + +void init_flux_transformer_2d_model(py::module_& m) { + auto flux_transformer_2d_model = py::class_(m, "FluxTransformer2DModel", "FluxTransformer2DModel class.") + .def(py::init([](const std::filesystem::path& root_dir) { + return std::make_unique(root_dir); + }), + py::arg("root_dir"), "Model root directory", + R"( + FluxTransformer2DModel class + root_dir (os.PathLike): Model root directory. + )") + .def(py::init([]( + const std::filesystem::path& root_dir, + const std::string& device, + const py::kwargs& kwargs ) { + return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("root_dir"), "Model root directory", + py::arg("device"), "Device on which inference will be done", + R"( + UNet2DConditionModel class + root_dir (os.PathLike): Model root directory. + device (str): Device on which inference will be done. + kwargs: Device properties. + )") + .def(py::init([](const ov::genai::FluxTransformer2DModel& model) { + return std::make_unique(model); + }), + py::arg("model"), "FluxTransformer2DModel model" + R"( + FluxTransformer2DModel class + model (FluxTransformer2DModel): FluxTransformer2DModel model + )"); + + py::class_(flux_transformer_2d_model, "Config", "This class is used for storing FluxTransformer2DModel config.") + .def(py::init([](const std::filesystem::path& config_path) { + return std::make_unique(config_path); + }), + py::arg("config_path")) + .def_readwrite("in_channels", &ov::genai::FluxTransformer2DModel::Config::in_channels) + .def_readwrite("default_sample_size", &ov::genai::FluxTransformer2DModel::Config::m_default_sample_size); + + flux_transformer_2d_model.def("get_config", &ov::genai::FluxTransformer2DModel::get_config) + .def("reshape", &ov::genai::FluxTransformer2DModel::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width"), py::arg("tokenizer_model_max_length")) + // .def("set_adapters", &ov::genai::FluxTransformer2DModel::set_adapters, py::arg("adapters")) + .def("infer", &ov::genai::FluxTransformer2DModel::infer, py::arg("sample"), py::arg("timestep")) + .def("set_hidden_states", &ov::genai::FluxTransformer2DModel::set_hidden_states, py::arg("tensor_name"), py::arg("encoder_hidden_states")) + .def( + "compile", + [](ov::genai::FluxTransformer2DModel& self, + const std::string& device, + const py::kwargs& kwargs + ) { + self.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )"); +} + +void init_autoencoder_kl(py::module_& m) { + auto autoencoder_kl = py::class_(m, "AutoencoderKL", "AutoencoderKL class.") + .def(py::init([](const std::filesystem::path& vae_decoder_path) { return std::make_unique(vae_decoder_path); }), - py::arg("vae_decoder_path"), "VAE decoder directory", + py::arg("vae_decoder_path"), "VAE decoder directory", R"( AutoencoderKL class initialized only with decoder model. vae_decoder_path (os.PathLike): VAE decoder directory. @@ -194,7 +431,7 @@ void init_autoencoder_kl(py::module_& m) { ) { return std::make_unique(vae_decoder_path, device, pyutils::kwargs_to_any_map(kwargs)); }), - py::arg("vae_decoder_path"), "Root directory", + py::arg("vae_decoder_path"), "Root directory", py::arg("device"), "Device on which inference will be done", R"( AutoencoderKL class initialized only with decoder model. @@ -219,10 +456,8 @@ void init_autoencoder_kl(py::module_& m) { vae_decoder_path (os.PathLike): VAE decoder directory. device (str): Device on which inference will be done. kwargs: Device properties. - )") - .def(py::init([]( - const ov::genai::AutoencoderKL& model - ) { + )") + .def(py::init([](const ov::genai::AutoencoderKL& model) { return std::make_unique(model); }), py::arg("model"), "AutoencoderKL model" @@ -232,11 +467,9 @@ void init_autoencoder_kl(py::module_& m) { )"); py::class_(autoencoder_kl, "Config", "This class is used for storing AutoencoderKL config.") - .def(py::init([]( - const std::filesystem::path& config_path - ) { + .def(py::init([](const std::filesystem::path& config_path) { return std::make_unique(config_path); - }), + }), py::arg("config_path")) .def_readwrite("in_channels", &ov::genai::AutoencoderKL::Config::in_channels) .def_readwrite("latent_channels", &ov::genai::AutoencoderKL::Config::latent_channels) @@ -244,9 +477,9 @@ void init_autoencoder_kl(py::module_& m) { .def_readwrite("scaling_factor", &ov::genai::AutoencoderKL::Config::scaling_factor) .def_readwrite("block_out_channels", &ov::genai::AutoencoderKL::Config::block_out_channels); - autoencoder_kl.def("reshape", &ov::genai::AutoencoderKL::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width")); - autoencoder_kl.def( - "compile", + autoencoder_kl.def("reshape", &ov::genai::AutoencoderKL::reshape, py::arg("batch_size"), py::arg("height"), py::arg("width")) + .def( + "compile", [](ov::genai::AutoencoderKL& self, const std::string& device, const py::kwargs& kwargs @@ -258,80 +491,9 @@ void init_autoencoder_kl(py::module_& m) { Compiles the model. device (str): Device to run the model on (e.g., CPU, GPU). kwargs: Device properties. - )"); - autoencoder_kl.def("decode", &ov::genai::AutoencoderKL::decode, py::arg("latent")); - autoencoder_kl.def("encode", &ov::genai::AutoencoderKL::encode, py::arg("image"), py::arg("generator")); - autoencoder_kl.def("get_config", &ov::genai::AutoencoderKL::get_config); - autoencoder_kl.def("get_vae_scale_factor", &ov::genai::AutoencoderKL::get_vae_scale_factor); -} - -void init_clip_text_model_with_projection(py::module_& m) { - auto clip_text_model_with_projection = py::class_(m, "CLIPTextModelWithProjection", "CLIPTextModelWithProjection class.") - .def(py::init([]( - const std::filesystem::path& root_dir - ) { - ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); - return std::make_unique(root_dir); - }), - py::arg("root_dir"), "Model root directory", - R"( - CLIPTextModelWithProjection class - root_dir (os.PathLike): Model root directory. - )") - .def(py::init([]( - const std::filesystem::path& root_dir, - const std::string& device, - const py::kwargs& kwargs - ) { - ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); - return std::make_unique(root_dir, device, pyutils::kwargs_to_any_map(kwargs)); - }), - py::arg("root_dir"), "Model root directory", - py::arg("device"), "Device on which inference will be done", - R"( - CLIPTextModelWithProjection class - root_dir (os.PathLike): Model root directory. - device (str): Device on which inference will be done. - kwargs: Device properties. - )") - .def(py::init([]( - const ov::genai::CLIPTextModelWithProjection& model - ) { - return std::make_unique(model); - }), - py::arg("model"), "CLIPTextModelWithProjection model" - R"( - CLIPTextModelWithProjection class - model (CLIPTextModelWithProjection): CLIPTextModelWithProjection model - )"); - - py::class_(clip_text_model_with_projection, "Config", "This class is used for storing CLIPTextModelWithProjection config.") - .def(py::init([]( - const std::filesystem::path& config_path - ) { - return std::make_unique(config_path); - }), - py::arg("config_path")) - .def_readwrite("max_position_embeddings", &ov::genai::CLIPTextModelWithProjection::Config::max_position_embeddings) - .def_readwrite("num_hidden_layers", &ov::genai::CLIPTextModelWithProjection::Config::num_hidden_layers); - - clip_text_model_with_projection.def("reshape", &ov::genai::CLIPTextModelWithProjection::reshape, py::arg("batch_size")); - clip_text_model_with_projection.def("infer", &ov::genai::CLIPTextModelWithProjection::infer, py::arg("pos_prompt"), py::arg("neg_prompt"), py::arg("do_classifier_free_guidance")); - clip_text_model_with_projection.def("get_config", &ov::genai::CLIPTextModelWithProjection::get_config); - clip_text_model_with_projection.def("get_output_tensor", &ov::genai::CLIPTextModelWithProjection::get_output_tensor, py::arg("idx")); - clip_text_model_with_projection.def("set_adapters", &ov::genai::CLIPTextModelWithProjection::set_adapters, py::arg("adapters")); - clip_text_model_with_projection.def( - "compile", - [](ov::genai::CLIPTextModelWithProjection& self, - const std::string& device, - const py::kwargs& kwargs - ) { - self.compile(device, pyutils::kwargs_to_any_map(kwargs)); - }, - py::arg("device"), "device on which inference will be done", - R"( - Compiles the model. - device (str): Device to run the model on (e.g., CPU, GPU). - kwargs: Device properties. - )"); + )") + .def("decode", &ov::genai::AutoencoderKL::decode, py::arg("latent")) + .def("encode", &ov::genai::AutoencoderKL::encode, py::arg("image"), py::arg("generator")) + .def("get_config", &ov::genai::AutoencoderKL::get_config) + .def("get_vae_scale_factor", &ov::genai::AutoencoderKL::get_vae_scale_factor); } diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index d0d2f18a92..64ea64feb0 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -72,7 +72,10 @@ auto text2image_generate_docstring = R"( void init_clip_text_model(py::module_& m); void init_clip_text_model_with_projection(py::module_& m); +void init_t5_encoder_model(py::module_& m); void init_unet2d_condition_model(py::module_& m); +void init_sd3_transformer_2d_model(py::module_& m); +void init_flux_transformer_2d_model(py::module_& m); void init_autoencoder_kl(py::module_& m); void init_image_generation_pipelines(py::module_& m) { @@ -92,7 +95,10 @@ void init_image_generation_pipelines(py::module_& m) { // init image generation models init_clip_text_model(m); init_clip_text_model_with_projection(m); + init_t5_encoder_model(m); init_unet2d_condition_model(m); + init_sd3_transformer_2d_model(m); + init_flux_transformer_2d_model(m); init_autoencoder_kl(m); auto image_generation_scheduler = py::class_>(m, "Scheduler", "Scheduler for image generation pipelines."); @@ -167,6 +173,8 @@ void init_image_generation_pipelines(py::module_& m) { .def_static("stable_diffusion", &ov::genai::Text2ImagePipeline::stable_diffusion, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) .def_static("latent_consistency_model", &ov::genai::Text2ImagePipeline::latent_consistency_model, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) .def_static("stable_diffusion_xl", &ov::genai::Text2ImagePipeline::stable_diffusion_xl, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("clip_text_model_with_projection"), py::arg("unet"), py::arg("vae")) + .def_static("stable_diffusion_3", &ov::genai::Text2ImagePipeline::stable_diffusion_3, py::arg("scheduler"), py::arg("clip_text_model_1"), py::arg("clip_text_model_2"), py::arg("t5_encoder_model"), py::arg("transformer"), py::arg("vae")) + .def_static("flux", &ov::genai::Text2ImagePipeline::flux, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("t5_encoder_model"), py::arg("transformer"), py::arg("vae")) .def( "compile", [](ov::genai::Text2ImagePipeline& pipe, From aef15918afc952d77f393829561e76fd2d8b538d Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Wed, 11 Dec 2024 12:36:20 +0400 Subject: [PATCH 058/113] [Image generation] Image2image and inpainting pipelines (#1334) - Added common infra for image to image and inpainting pipelines - Reused it in SD / LCM / SDXL pipelines - Generalized SD pipeline and inherit SDXL pipeline from it. SDXL overrides only SDXL specific blocks which work with second text encoder - Added Python API for Image2Image and Inpainting pipelines - Added Python and C++ samples --- .github/workflows/causal_lm_cpp.yml | 2 +- .github/workflows/lcm_dreamshaper_cpp.yml | 56 +++- .../workflows/stable_diffusion_1_5_cpp.yml | 36 +-- README.md | 139 +++++++-- samples/CMakeLists.txt | 6 +- .../512x512.bmp | 0 samples/cpp/image_generation/CMakeLists.txt | 99 +++++++ .../README.md | 63 +++- .../baseline.bmp | 0 .../heterogeneous_stable_diffusion.cpp | 0 samples/cpp/image_generation/image2image.cpp | 36 +++ samples/cpp/image_generation/imageimage.bmp | 3 + .../imwrite.cpp | 0 .../imwrite.hpp | 0 samples/cpp/image_generation/inpainting.cpp | 35 +++ samples/cpp/image_generation/load_image.cpp | 48 +++ samples/cpp/image_generation/load_image.hpp | 12 + .../{text2image => image_generation}/lora.bmp | 0 .../lora_text2image.cpp} | 0 .../text2image.cpp} | 2 +- samples/cpp/text2image/CMakeLists.txt | 66 ----- .../cpp/visual_language_chat/load_image.cpp | 6 +- samples/python/image_generation/README.md | 141 +++++++++ .../baseline.bmp | 0 .../heterogeneous_stable_diffusion.py | 0 .../python/image_generation/image2image.py | 38 +++ samples/python/image_generation/inpainting.py | 38 +++ .../{text2image => image_generation}/lora.bmp | 0 .../lora_text2image.py} | 0 .../text2image.bmp} | 0 .../text2image.py} | 2 +- samples/python/text2image/README.md | 98 ------ .../genai/image_generation/autoencoder_kl.hpp | 1 - .../image_generation/generation_config.hpp | 151 +++++++++- .../image_generation/image2image_pipeline.hpp | 105 +++++++ .../image_generation/inpainting_pipeline.hpp | 106 +++++++ .../image_generation/text2image_pipeline.hpp | 128 +++++++- .../image_generation/diffusion_pipeline.hpp | 43 ++- .../src/image_generation/flux_pipeline.hpp | 102 +++++-- .../image_generation/image2image_pipeline.cpp | 117 ++++++++ .../src/image_generation/image_processor.cpp | 169 +++++++++++ .../src/image_generation/image_processor.hpp | 50 ++++ .../image_generation/inpainting_pipeline.cpp | 122 ++++++++ .../models/autoencoder_kl.cpp | 27 +- src/cpp/src/image_generation/numpy_utils.cpp | 123 ++------ .../src/image_generation/schedulers/ddim.cpp | 11 +- .../src/image_generation/schedulers/ddim.hpp | 2 +- .../schedulers/euler_discrete.cpp | 9 +- .../schedulers/euler_discrete.hpp | 2 +- .../schedulers/flow_match_euler_discrete.cpp | 2 +- .../schedulers/flow_match_euler_discrete.hpp | 2 +- .../schedulers/ischeduler.hpp | 2 +- .../src/image_generation/schedulers/lcm.cpp | 10 +- .../src/image_generation/schedulers/lcm.hpp | 2 +- .../schedulers/lms_discrete.cpp | 2 +- .../schedulers/lms_discrete.hpp | 2 +- .../stable_diffusion_3_pipeline.hpp | 96 ++++-- .../stable_diffusion_pipeline.hpp | 227 ++++++++++---- .../stable_diffusion_xl_pipeline.hpp | 278 +++--------------- .../image_generation/text2image_pipeline.cpp | 16 +- src/docs/SUPPORTED_MODELS.md | 47 ++- src/python/openvino_genai/__init__.py | 2 + src/python/openvino_genai/__init__.pyi | 4 +- .../openvino_genai/py_openvino_genai.pyi | 151 +++++++++- src/python/py_image_generation_pipelines.cpp | 145 ++++++++- 65 files changed, 2412 insertions(+), 770 deletions(-) rename samples/cpp/{text2image => image_generation}/512x512.bmp (100%) create mode 100644 samples/cpp/image_generation/CMakeLists.txt rename samples/cpp/{text2image => image_generation}/README.md (60%) rename samples/cpp/{text2image => image_generation}/baseline.bmp (100%) rename samples/cpp/{text2image => image_generation}/heterogeneous_stable_diffusion.cpp (100%) create mode 100644 samples/cpp/image_generation/image2image.cpp create mode 100644 samples/cpp/image_generation/imageimage.bmp rename samples/cpp/{text2image => image_generation}/imwrite.cpp (100%) rename samples/cpp/{text2image => image_generation}/imwrite.hpp (100%) create mode 100644 samples/cpp/image_generation/inpainting.cpp create mode 100644 samples/cpp/image_generation/load_image.cpp create mode 100644 samples/cpp/image_generation/load_image.hpp rename samples/cpp/{text2image => image_generation}/lora.bmp (100%) rename samples/cpp/{text2image/lora.cpp => image_generation/lora_text2image.cpp} (100%) rename samples/cpp/{text2image/main.cpp => image_generation/text2image.cpp} (93%) delete mode 100644 samples/cpp/text2image/CMakeLists.txt create mode 100644 samples/python/image_generation/README.md rename samples/python/{text2image => image_generation}/baseline.bmp (100%) rename samples/python/{text2image => image_generation}/heterogeneous_stable_diffusion.py (100%) create mode 100644 samples/python/image_generation/image2image.py create mode 100644 samples/python/image_generation/inpainting.py rename samples/python/{text2image => image_generation}/lora.bmp (100%) rename samples/python/{text2image/lora.py => image_generation/lora_text2image.py} (100%) rename samples/python/{text2image/image.bmp => image_generation/text2image.bmp} (100%) rename samples/python/{text2image/main.py => image_generation/text2image.py} (99%) delete mode 100644 samples/python/text2image/README.md create mode 100644 src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp create mode 100644 src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp create mode 100644 src/cpp/src/image_generation/image2image_pipeline.cpp create mode 100644 src/cpp/src/image_generation/image_processor.cpp create mode 100644 src/cpp/src/image_generation/image_processor.hpp create mode 100644 src/cpp/src/image_generation/inpainting_pipeline.cpp diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 1d1486c385..504e303fb5 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -591,7 +591,7 @@ jobs: PYTHONPATH: "./build" cpp-greedy_causal_lm-redpajama-3b-chat: - runs-on: ubuntu-20.04-4-cores + runs-on: ubuntu-20.04-8-cores defaults: run: shell: bash diff --git a/.github/workflows/lcm_dreamshaper_cpp.yml b/.github/workflows/lcm_dreamshaper_cpp.yml index 63663e633c..b3a36761e1 100644 --- a/.github/workflows/lcm_dreamshaper_cpp.yml +++ b/.github/workflows/lcm_dreamshaper_cpp.yml @@ -47,11 +47,11 @@ jobs: python-version: ${{ env.PYTHON_VERSION }} cache: 'pip' - - name: Build app + - name: Build apps run: | source ${{ env.OV_INSTALL_DIR }}/setupvars.sh cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ${{ env.build_dir }} - cmake --build ${{ env.build_dir }} --config Release --target stable_diffusion heterogeneous_stable_diffusion lora_stable_diffusion py_openvino_genai --parallel + cmake --build ${{ env.build_dir }} --config Release --target text2image image2image inpainting heterogeneous_stable_diffusion lora_text2image py_openvino_genai --parallel - name: Create virtual environment run: python3 -m venv openvino_lcm_cpp @@ -66,20 +66,32 @@ jobs: run: | source openvino_lcm_cpp/bin/activate optimum-cli export openvino --model SimianLuo/LCM_Dreamshaper_v7 --task stable-diffusion --weight-format fp16 models/lcm_dreamshaper_v7/FP16 + wget -O ./image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png + wget -O ./mask_image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png - - name: Run app + - name: Run heterogeneous_stable_diffusion run: | source ${{ env.OV_INSTALL_DIR }}/setupvars.sh - ${{ env.build_dir }}/samples/cpp/text2image/heterogeneous_stable_diffusion ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + ${{ env.build_dir }}/samples/cpp/image_generation/heterogeneous_stable_diffusion ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" - - name: Run Python app + - name: Run heterogeneous_stable_diffusion.py run: | source openvino_lcm_cpp/bin/activate source ./ov/setupvars.sh - python ./samples/python/text2image/heterogeneous_stable_diffusion.py ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + python ./samples/python/image_generation/heterogeneous_stable_diffusion.py ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" env: PYTHONPATH: ${{ env.build_dir }} + - name: Run image2image + run: | + source ./ov/setupvars.sh + ${{ env.build_dir }}/samples/cpp/image_generation/image2image ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png + + - name: Run inpainting + run: | + source ./ov/setupvars.sh + ${{ env.build_dir }}/samples/cpp/image_generation/inpainting ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png ./mask_image.png + lcm_dreamshaper_v7_cpp-windows: runs-on: windows-2019 defaults: @@ -110,11 +122,11 @@ jobs: - name: Create virtual environment run: python -m venv openvino_lcm_cpp - - name: Build app + - name: Build apps run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ${{ env.build_dir }} - cmake --build ${{ env.build_dir }} --config Release --target stable_diffusion heterogeneous_stable_diffusion lora_stable_diffusion py_openvino_genai --parallel + cmake --build ${{ env.build_dir }} --config Release --target text2image image2image inpainting heterogeneous_stable_diffusion lora_text2image py_openvino_genai --parallel - name: Install python dependencies run: | @@ -126,18 +138,38 @@ jobs: run: | . "./openvino_lcm_cpp/Scripts/Activate.ps1" optimum-cli export openvino --model SimianLuo/LCM_Dreamshaper_v7 --task stable-diffusion --weight-format fp16 models/lcm_dreamshaper_v7/FP16 + Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png' -OutFile 'image.png' + Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png' -OutFile 'mask_image.png' - - name: Run app + - name: Run heterogeneous_stable_diffusion run: > . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - & "${{ env.build_dir }}/samples/cpp/text2image/Release/heterogeneous_stable_diffusion.exe ./models/lcm_dreamshaper_v7/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'" + & "${{ env.build_dir }}/samples/cpp/image_generation/Release/heterogeneous_stable_diffusion.exe ./models/lcm_dreamshaper_v7/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'" + + - name: Run heterogeneous_stable_diffusion.py + run: | + . "./openvino_lcm_cpp/Scripts/Activate.ps1" + . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" + $env:Path += "${{ env.build_dir }}\openvino_genai" + python .\samples\python\image_generation\heterogeneous_stable_diffusion.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + env: + PYTHONPATH: ${{ env.build_dir }} + + - name: Run image2image.py + run: | + . "./openvino_lcm_cpp/Scripts/Activate.ps1" + . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" + $env:Path += "${{ env.build_dir }}\openvino_genai" + python .\samples\python\image_generation\image2image.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png + env: + PYTHONPATH: ${{ env.build_dir }} - - name: Run Python app + - name: Run inpainting.py run: | . "./openvino_lcm_cpp/Scripts/Activate.ps1" . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" $env:Path += "${{ env.build_dir }}\openvino_genai" - python .\samples\python\text2image\heterogeneous_stable_diffusion.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + python .\samples\python\image_generation\inpainting.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png .\mask_image.png env: PYTHONPATH: ${{ env.build_dir }} diff --git a/.github/workflows/stable_diffusion_1_5_cpp.yml b/.github/workflows/stable_diffusion_1_5_cpp.yml index 602f2ae2c8..b355cd4f09 100644 --- a/.github/workflows/stable_diffusion_1_5_cpp.yml +++ b/.github/workflows/stable_diffusion_1_5_cpp.yml @@ -51,7 +51,7 @@ jobs: run: | source ${{ env.OV_INSTALL_DIR }}/setupvars.sh cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ${{ env.build_dir }} - cmake --build ${{ env.build_dir }} --config Release --target stable_diffusion lora_stable_diffusion py_openvino_genai --parallel + cmake --build ${{ env.build_dir }} --config Release --target text2image image2image inpainting heterogeneous_stable_diffusion lora_text2image py_openvino_genai --parallel - name: Create virtual environment run: python3 -m venv openvino_sd_cpp @@ -68,29 +68,29 @@ jobs: optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --weight-format fp16 --task stable-diffusion models/dreamlike-art-dreamlike-anime-1.0/FP16 wget -O ./models/soulcard.safetensors https://civitai.com/api/download/models/72591 - - name: Run main app + - name: Run text2image app run: | source ${{ env.OV_INSTALL_DIR }}/setupvars.sh - ${{ env.build_dir }}/samples/cpp/text2image/stable_diffusion ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + ${{ env.build_dir }}/samples/cpp/image_generation/text2image ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" - - name: Run LoRA app + - name: Run lora_text2image app run: | source ${{ env.OV_INSTALL_DIR }}/setupvars.sh - ${{ env.build_dir }}/samples/cpp/text2image/lora_stable_diffusion ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "curly-haired unicorn in the forest, anime, line" ./models/soulcard.safetensors 0.7 + ${{ env.build_dir }}/samples/cpp/image_generation/lora_text2image ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "curly-haired unicorn in the forest, anime, line" ./models/soulcard.safetensors 0.7 - - name: Run Python main app + - name: Run text2image.py app run: | source openvino_sd_cpp/bin/activate source ./ov/setupvars.sh - python ./samples/python/text2image/main.py ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + python ./samples/python/image_generation/text2image.py ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" env: PYTHONPATH: ${{ env.build_dir }} - - name: Run Python LoRA app + - name: Run lora_text2image.py app run: | source openvino_sd_cpp/bin/activate source ./ov/setupvars.sh - python ./samples/python/text2image/lora.py ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "curly-haired unicorn in the forest, anime, line" ./models/soulcard.safetensors 0.7 + python ./samples/python/image_generation/lora_text2image.py ./models/dreamlike-art-dreamlike-anime-1.0/FP16 "curly-haired unicorn in the forest, anime, line" ./models/soulcard.safetensors 0.7 env: PYTHONPATH: ${{ env.build_dir }} @@ -125,7 +125,7 @@ jobs: run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ${{ env.build_dir }} - cmake --build ${{ env.build_dir }} --config Release --target stable_diffusion lora_stable_diffusion py_openvino_genai --parallel + cmake --build ${{ env.build_dir }} --config Release --target text2image image2image inpainting heterogeneous_stable_diffusion lora_text2image py_openvino_genai --parallel - name: Create virtual environment run: python -m venv openvino_sd_cpp @@ -142,35 +142,35 @@ jobs: optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 models/dreamlike-art-dreamlike-anime-1.0/FP16 Invoke-WebRequest -Uri 'https://civitai.com/api/download/models/72591' -OutFile 'models/soulcard.safetensors' - - name: Run main app + - name: Run text2image app run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - "${{ env.build_dir }}/samples/cpp/text2image/Release/stable_diffusion.exe ./models/dreamlike-art-dreamlike-anime-1.0/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'" + "${{ env.build_dir }}/samples/cpp/image_generation/Release/text2image.exe ./models/dreamlike-art-dreamlike-anime-1.0/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'" env: PATH: ${{ env.build_dir }}\openvino_genai - - name: Run LoRA app + - name: Run lora_text2image app run: | . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" - "${{ env.build_dir }}/samples/cpp/text2image/Release/lora_stable_diffusion.exe ./models/dreamlike-art-dreamlike-anime-1.0/FP16 'curly-haired unicorn in the forest, anime, line' ./models/soulcard.safetensors 0.7" + "${{ env.build_dir }}/samples/cpp/image_generation/Release/lora_text2image.exe ./models/dreamlike-art-dreamlike-anime-1.0/FP16 'curly-haired unicorn in the forest, anime, line' ./models/soulcard.safetensors 0.7" env: PATH: ${{ env.build_dir }}\openvino_genai - - name: Run Python main app + - name: Run text2image.py app run: | . "./openvino_sd_cpp/Scripts/Activate.ps1" . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" $env:Path += "${{ env.build_dir }}\openvino_genai" - python .\samples\python\text2image\main.py .\models\dreamlike-art-dreamlike-anime-1.0\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" + python .\samples\python\image_generation\text2image.py .\models\dreamlike-art-dreamlike-anime-1.0\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" env: PYTHONPATH: ${{ env.build_dir }} - - name: Run Python LoRA app + - name: Run lora_text2image.py app run: | . "./openvino_sd_cpp/Scripts/Activate.ps1" . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1" $env:Path += "${{ env.build_dir }}\openvino_genai" - python .\samples\python\text2image\lora.py .\models\dreamlike-art-dreamlike-anime-1.0\FP16 "curly-haired unicorn in the forest, anime, line" .\models\soulcard.safetensors 0.7 + python .\samples\python\image_generation\lora_text2image.py .\models\dreamlike-art-dreamlike-anime-1.0\FP16 "curly-haired unicorn in the forest, anime, line" .\models\soulcard.safetensors 0.7 env: PYTHONPATH: ${{ env.build_dir }} diff --git a/README.md b/README.md index c1217a0215..c00971a4e3 100644 --- a/README.md +++ b/README.md @@ -147,8 +147,8 @@ print(pipe.generate(prompt, image=image_data, max_new_tokens=100)) Code below requires installation of C++ compatible package (see [here](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html#archive-installation) for more details). See [Visual Language Chat](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples/cpp/visual_language_chat) for a demo application. ```cpp +#include "openvino/genai/visual_language/pipeline.hpp" #include "load_image.hpp" -#include #include int main(int argc, char* argv[]) { @@ -179,10 +179,10 @@ For more examples check out our [LLM Inference Guide](https://docs.openvino.ai/2 ```sh #Download and convert to OpenVINO dreamlike-anime-1.0 model -optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 dreamlike_anime_1_0_ov/FP16 +optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --weight-format fp16 dreamlike_anime_1_0_ov/FP16 #You can also use INT8 hybrid quantization to further optimize the model and reduce inference latency -optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format int8 --dataset conceptual_captions dreamlike_anime_1_0_ov/INT8 +optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --weight-format int8 --dataset conceptual_captions dreamlike_anime_1_0_ov/INT8 ``` ### Run generation using Text2Image API in Python @@ -192,23 +192,17 @@ import argparse from PIL import Image import openvino_genai -def main(): - parser = argparse.ArgumentParser() - parser.add_argument('model_dir') - parser.add_argument('prompt') - args = parser.parse_args() - - device = 'CPU' # GPU, NPU can be used as well - pipe = openvino_genai.Text2ImagePipeline(args.model_dir, device) - image_tensor = pipe.generate( - args.prompt, - width=512, - height=512, - num_inference_steps=20 - ) - - image = Image.fromarray(image_tensor.data[0]) - image.save("image.bmp") +device = 'CPU' # GPU can be used as well +pipe = openvino_genai.Text2ImagePipeline("./dreamlike_anime_1_0_ov/INT8", device) +image_tensor = pipe.generate( + "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting", + width=512, + height=512, + num_inference_steps=20 +) + +image = Image.fromarray(image_tensor.data[0]) +image.save("image.bmp") ``` ### Run generation using Text2Image API in C++ @@ -218,10 +212,10 @@ Code below requires installation of C++ compatible package (see [here](https://d ```cpp #include "openvino/genai/image_generation/text2image_pipeline.hpp" #include "imwrite.hpp" -int main(int argc, char* argv[]) { +int main(int argc, char* argv[]) { const std::string models_path = argv[1], prompt = argv[2]; - const std::string device = "CPU"; // GPU, NPU can be used as well + const std::string device = "CPU"; // GPU can be used as well ov::genai::Text2ImagePipeline pipe(models_path, device); ov::Tensor image = pipe.generate(prompt, @@ -232,6 +226,106 @@ int main(int argc, char* argv[]) { imwrite("image.bmp", image, true); } ``` + +### Run generation using Image2Image API in Python + +```python +import argparse +from PIL import Image +import openvino_genai +import openvino as ov + +device = 'CPU' # GPU can be used as well +pipe = openvino_genai.Image2ImagePipeline("./dreamlike_anime_1_0_ov/INT8", device) + +image = Image.open("small_city.jpg") +image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) +image_data = ov.Tensor(image_data) + +image_tensor = pipe.generate( + "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting", + image=image_data, + strength=0.8 +) + +image = Image.fromarray(image_tensor.data[0]) +image.save("image.bmp") +``` + +### Run generation using Image2Image API in C++ + +Code below requires installation of C++ compatible package (see [here](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html#archive-installation) for additional setup details, or this blog for full instruction [How to Build OpenVINO™ GenAI APP in C++](https://medium.com/openvino-toolkit/how-to-build-openvino-genai-app-in-c-32dcbe42fa67) + +```cpp +#include "openvino/genai/image_generation/image2image_pipeline.hpp" +#include "load_image.hpp" +#include "imwrite.hpp" + +int main(int argc, char* argv[]) { + const std::string models_path = argv[1], prompt = argv[2], image_path = argv[3]; + const std::string device = "CPU"; // GPU can be used as well + + ov::Tensor image = utils::load_image(image_path); + + ov::genai::Image2ImagePipeline pipe(models_path, device); + ov::Tensor generated_image = pipe.generate(prompt, image, ov::genai::strength(0.8f)); + + imwrite("image.bmp", generated_image, true); +} +``` + +### Run generation using Inpainting API in Python + +```python +import argparse +from PIL import Image +import openvino_genai +import openvino as ov + +def read_image(path: str) -> openvino.Tensor: + pic = Image.open(path).convert("RGB") + image_data = np.array(pic.getdata()).reshape(1, pic.size[1], pic.size[0], 3).astype(np.uint8) + return openvino.Tensor(image_data) + +device = 'CPU' # GPU can be used as well +pipe = openvino_genai.InpaintingPipeline(args.model_dir, device) + +image = read_image("image.jpg") +mask_image = read_image("mask.jpg") + +image_tensor = pipe.generate( + "Face of a yellow cat, high resolution, sitting on a park bench", + image=image, + mask_image=mask_image +) + +image = Image.fromarray(image_tensor.data[0]) +image.save("image.bmp") +``` + +### Run generation using Inpainting API in C++ + +Code below requires installation of C++ compatible package (see [here](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html#archive-installation) for additional setup details, or this blog for full instruction [How to Build OpenVINO™ GenAI APP in C++](https://medium.com/openvino-toolkit/how-to-build-openvino-genai-app-in-c-32dcbe42fa67) + +```cpp +#include "openvino/genai/image_generation/inpainting_pipeline.hpp" +#include "load_image.hpp" +#include "imwrite.hpp" + +int main(int argc, char* argv[]) { + const std::string models_path = argv[1], prompt = argv[2]; + const std::string device = "CPU"; // GPU can be used as well + + ov::Tensor image = utils::load_image(argv[3]); + ov::Tensor mask_image = utils::load_image(argv[4]); + + ov::genai::InpaintingPipeline pipe(models_path, device); + ov::Tensor generated_image = pipe.generate(prompt, image, mask_image); + + imwrite("image.bmp", generated_image, true); +} +``` + ### Sample notebooks using this API See [here](https://openvinotoolkit.github.io/openvino_notebooks/?search=Text+to+Image+pipeline+and+OpenVINO+with+Generate+API) @@ -259,7 +353,6 @@ NOTE: This sample is a simplified version of the full sample that is available [ import openvino_genai import librosa - def read_wav(filepath): raw_speech, samplerate = librosa.load(filepath, sr=16000) return raw_speech.tolist() diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt index 860ced072b..92f0b3f43a 100644 --- a/samples/CMakeLists.txt +++ b/samples/CMakeLists.txt @@ -10,7 +10,7 @@ add_subdirectory(cpp/lora_greedy_causal_lm) add_subdirectory(cpp/multinomial_causal_lm) add_subdirectory(cpp/prompt_lookup_decoding_lm) add_subdirectory(cpp/speculative_decoding_lm) -add_subdirectory(cpp/text2image) +add_subdirectory(cpp/image_generation) add_subdirectory(cpp/visual_language_chat) add_subdirectory(cpp/whisper_speech_recognition) @@ -26,11 +26,11 @@ install(DIRECTORY cpp/benchmark_genai cpp/chat_sample cpp/greedy_causal_lm + cpp/image_generation cpp/lora_greedy_causal_lm cpp/multinomial_causal_lm # Don't install prompt_lookup_decoding_lm because it doesn't use openvino_genai library and is not verified yet. cpp/speculative_decoding_lm - cpp/text2image cpp/visual_language_chat cpp/whisper_speech_recognition DESTINATION samples/cpp COMPONENT cpp_samples_genai) @@ -40,9 +40,9 @@ install(DIRECTORY python/benchmark_genai python/chat_sample python/greedy_causal_lm + python/image_generation python/multinomial_causal_lm python/speculative_decoding_lm - python/text2image python/visual_language_chat python/whisper_speech_recognition DESTINATION samples/python COMPONENT cpp_samples_genai diff --git a/samples/cpp/text2image/512x512.bmp b/samples/cpp/image_generation/512x512.bmp similarity index 100% rename from samples/cpp/text2image/512x512.bmp rename to samples/cpp/image_generation/512x512.bmp diff --git a/samples/cpp/image_generation/CMakeLists.txt b/samples/cpp/image_generation/CMakeLists.txt new file mode 100644 index 0000000000..004b305088 --- /dev/null +++ b/samples/cpp/image_generation/CMakeLists.txt @@ -0,0 +1,99 @@ +# Copyright (C) 2023-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +find_package(OpenVINOGenAI REQUIRED + PATHS + "${CMAKE_BINARY_DIR}" # Reuse the package from the build. + ${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO. + NO_CMAKE_FIND_ROOT_PATH +) + +file(DOWNLOAD https://raw.githubusercontent.com/nothings/stb/f75e8d1cad7d90d72ef7a4661f1b994ef78b4e31/stb_image.h ${CMAKE_BINARY_DIR}/stb_image.h + EXPECTED_HASH MD5=27932e6fb3a2f26aee2fc33f2cb4e696) + +# create main sample executable + +add_executable(text2image text2image.cpp imwrite.cpp) + +target_include_directories(text2image PRIVATE ${CMAKE_BINARY_DIR} "${CMAKE_CURRENT_SOURCE_DIR}") +target_link_libraries(text2image PRIVATE openvino::genai) + +set_target_properties(text2image PROPERTIES + COMPILE_PDB_NAME text2image + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS text2image + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) + +# create LoRA sample executable + +add_executable(lora_text2image lora_text2image.cpp imwrite.cpp) + +target_include_directories(lora_text2image PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}") +target_link_libraries(lora_text2image PRIVATE openvino::genai) + +set_target_properties(lora_text2image PROPERTIES + COMPILE_PDB_NAME lora_text2image + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS lora_text2image + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) + +# create heterogeneous_stable_diffusion sample executable + +add_executable(heterogeneous_stable_diffusion + heterogeneous_stable_diffusion.cpp + imwrite.cpp) + +target_include_directories(heterogeneous_stable_diffusion PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}") +target_link_libraries(heterogeneous_stable_diffusion PRIVATE openvino::genai) + +set_target_properties(heterogeneous_stable_diffusion PROPERTIES + COMPILE_PDB_NAME heterogeneous_stable_diffusion + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS heterogeneous_stable_diffusion + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) + +# create image2image sample executable + +add_executable(image2image image2image.cpp load_image.cpp imwrite.cpp) + +target_include_directories(image2image PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${CMAKE_BINARY_DIR}") +target_link_libraries(image2image PRIVATE openvino::genai) + +set_target_properties(image2image PROPERTIES + COMPILE_PDB_NAME image2image + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS image2image + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) + +# create LoRA sample executable + +add_executable(inpainting inpainting.cpp load_image.cpp imwrite.cpp) + +target_include_directories(inpainting PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}" "${CMAKE_BINARY_DIR}") +target_link_libraries(inpainting PRIVATE openvino::genai) + +set_target_properties(inpainting PROPERTIES + COMPILE_PDB_NAME inpainting + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) + +install(TARGETS inpainting + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) \ No newline at end of file diff --git a/samples/cpp/text2image/README.md b/samples/cpp/image_generation/README.md similarity index 60% rename from samples/cpp/text2image/README.md rename to samples/cpp/image_generation/README.md index ac736b2383..795bea8999 100644 --- a/samples/cpp/text2image/README.md +++ b/samples/cpp/image_generation/README.md @@ -2,10 +2,12 @@ Examples in this folder showcase inference of text to image models like Stable Diffusion 1.5, 2.1, LCM. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `ov::genai::Text2ImagePipeline` and uses a text prompt as input source. -There are three sample files: - - [`main.cpp`](./main.cpp) demonstrates basic usage of the text to image pipeline - - [`lora.cpp`](./lora.cpp) shows how to apply LoRA adapters to the pipeline +There are several sample files: + - [`text2image.cpp`](./main.cpp) demonstrates basic usage of the text to image pipeline + - [`text2image_lora.cpp`](./lora.cpp) shows how to apply LoRA adapters to the pipeline - [`heterogeneous_stable_diffusion.cpp`](./heterogeneous_stable_diffusion.cpp) shows how to assemble a heterogeneous txt2image pipeline from individual subcomponents (scheduler, text encoder, unet, vae decoder) + - [`image2image.cpp`](./image2image.cpp) demonstrates basic usage of the image to image pipeline + - [`inpainting.cpp`](./inpainting.cpp) demonstrates basic usage of the inpainting pipeline Users can change the sample code and play with the following generation parameters: @@ -13,8 +15,10 @@ Users can change the sample code and play with the following generation paramete - Generate multiple images per prompt - Adjust a number of inference steps - Play with [guidance scale](https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/9) (read [more details](https://arxiv.org/abs/2207.12598)) -- (SD 1.x, 2.x only) Add negative prompt when guidance scale > 1 +- (SD 1.x, 2.x; SD3, SDXL) Add negative prompt when guidance scale > 1 +- (SDXL, SD3, FLUX) Specify other positive prompts like `prompt_2` - Apply multiple different LoRA adapters and mix them with different blending coefficients +- (Image to image and inpainting) Play with `strength` parameter to control how initial image is noised and reduce number of inference steps ## Download and convert the models and tokenizers @@ -27,7 +31,7 @@ pip install --upgrade-strategy eager -r ../../requirements.txt optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 dreamlike_anime_1_0_ov/FP16 ``` -## Run +## Run text to image Follow [Get Started with Samples](https://docs.openvino.ai/2024/learn-openvino/openvino-samples/get-started-demos.html) to run the sample. @@ -39,7 +43,7 @@ Prompt: `cyberpunk cityscape like Tokyo New York with tall buildings at dusk gol ![](./512x512.bmp) -## Run with callback +### Run with callback You can also add a callback to the `main.cpp` file to interrupt the image generation process earlier if you are satisfied with the intermediate result of the image generation or to add logs. @@ -57,7 +61,7 @@ auto callback = [&](size_t step, ov::Tensor& intermediate_res) -> bool { }; ov::Tensor image = pipe.generate(prompt, - ... + /* other generation properties */ ov::genai::callback(callback) ); ``` @@ -91,16 +95,55 @@ With adapter | Without adapter C++ random generation with MT19937 results differ from `numpy.random.randn()` and `diffusers.utils.randn_tensor`. So, it's expected that image generated by Python and C++ versions provide different images, because latent images are initialize differently. Users can implement their own random generator derived from `ov::genai::Generator` and pass it to `Text2ImagePipeline::generate` method. -## Run with multiple devices +## Run text to image with multiple devices The `heterogeneous_stable_diffusion` sample demonstrates how a Text2ImagePipeline object can be created from individual subcomponents - scheduler, text encoder, unet, & vae decoder. This approach gives fine-grained control over the devices used to execute each stage of the stable diffusion pipeline. The usage of this sample is: -`heterogeneous_stable_diffusion '' [ ]` +`./heterogeneous_stable_diffusion '' [ ]` For example: -`heterogeneous_stable_diffusion ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' CPU NPU GPU` +`./heterogeneous_stable_diffusion ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' CPU NPU GPU` The sample will create a stable diffusion pipeline such that the text encoder is executed on the CPU, UNet on the NPU, and VAE decoder on the GPU. + +## Run image to image pipeline + +The `image2mage.cpp` sample demonstrates basic image to image generation pipeline. The difference with text to image pipeline is that final image is denoised from initial image converted to latent space and noised with image noise according to `strength` parameter. `strength` should be in range of `[0., 1.]` where `1.` means initial image is fully noised and it is an equivalent to text to image generation. +Also, `strength` parameter linearly affects a number of inferenece steps, because lower `strength` values means initial latent already has some structure and it requires less steps to denoise it. + +To run the sample, download initial image first: + +`wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png` + +And then run the sample: + +`./image2mage ./dreamlike_anime_1_0_ov/FP16 'cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k' cat.png` + +The resuling image is: + + ![](./imageimage.bmp) + +Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `Image2ImagePipeline`. + +## Run inpainting pipeline + +The `inpainting.cpp` sample demonstrates usage of inpainting pipeline, which can inpaint initial image by a given mask. Inpainting pipeline can work on typical text to image models as well as on specialized models which are oftenly named `space/model-inpainting`, e.g. `stabilityai/stable-diffusion-2-inpainting`. + +Such models can be converted in the same way as regular ones via `optimum-cli`: + +`optimum-cli export openvino --model stabilityai/stable-diffusion-2-inpainting --weight-format fp16 stable-diffusion-2-inpainting` + +Let's also download input data: + +`wget -O image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png` + +`wget -O mask_image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png` + +And run the sample: + +`./inpainting ./stable-diffusion-2-inpainting 'Face of a yellow cat, high resolution, sitting on a park bench' image.png mask_image.png` + +Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `InpaintingPipeline`. diff --git a/samples/cpp/text2image/baseline.bmp b/samples/cpp/image_generation/baseline.bmp similarity index 100% rename from samples/cpp/text2image/baseline.bmp rename to samples/cpp/image_generation/baseline.bmp diff --git a/samples/cpp/text2image/heterogeneous_stable_diffusion.cpp b/samples/cpp/image_generation/heterogeneous_stable_diffusion.cpp similarity index 100% rename from samples/cpp/text2image/heterogeneous_stable_diffusion.cpp rename to samples/cpp/image_generation/heterogeneous_stable_diffusion.cpp diff --git a/samples/cpp/image_generation/image2image.cpp b/samples/cpp/image_generation/image2image.cpp new file mode 100644 index 0000000000..c071b88362 --- /dev/null +++ b/samples/cpp/image_generation/image2image.cpp @@ -0,0 +1,36 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/image_generation/image2image_pipeline.hpp" + +#include "load_image.hpp" +#include "imwrite.hpp" + +int32_t main(int32_t argc, char* argv[]) try { + OPENVINO_ASSERT(argc == 4, "Usage: ", argv[0], " '' "); + + const std::string models_path = argv[1], prompt = argv[2], image_path = argv[3]; + const std::string device = "CPU"; // GPU can be used as well + + ov::Tensor image = utils::load_image(image_path); + + ov::genai::Image2ImagePipeline pipe(models_path, device); + ov::Tensor generated_image = pipe.generate(prompt, image, + // controls how initial image is noised after being converted to latent space. `1` means initial image is fully noised + ov::genai::strength(0.8f)); + + // writes `num_images_per_prompt` images by pattern name + imwrite("image_%d.bmp", generated_image, true); + + return EXIT_SUCCESS; +} catch (const std::exception& error) { + try { + std::cerr << error.what() << '\n'; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} catch (...) { + try { + std::cerr << "Non-exception object thrown\n"; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} diff --git a/samples/cpp/image_generation/imageimage.bmp b/samples/cpp/image_generation/imageimage.bmp new file mode 100644 index 0000000000..0ed5e1799e --- /dev/null +++ b/samples/cpp/image_generation/imageimage.bmp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2ecb4783a8f3a0962659ebf80eeaf0c0e48c44995c1e60001f215e0697ab9397 +size 2162742 diff --git a/samples/cpp/text2image/imwrite.cpp b/samples/cpp/image_generation/imwrite.cpp similarity index 100% rename from samples/cpp/text2image/imwrite.cpp rename to samples/cpp/image_generation/imwrite.cpp diff --git a/samples/cpp/text2image/imwrite.hpp b/samples/cpp/image_generation/imwrite.hpp similarity index 100% rename from samples/cpp/text2image/imwrite.hpp rename to samples/cpp/image_generation/imwrite.hpp diff --git a/samples/cpp/image_generation/inpainting.cpp b/samples/cpp/image_generation/inpainting.cpp new file mode 100644 index 0000000000..4c7a758450 --- /dev/null +++ b/samples/cpp/image_generation/inpainting.cpp @@ -0,0 +1,35 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/image_generation/inpainting_pipeline.hpp" + +#include "load_image.hpp" +#include "imwrite.hpp" + +int32_t main(int32_t argc, char* argv[]) try { + OPENVINO_ASSERT(argc == 5, "Usage: ", argv[0], " '' "); + + const std::string models_path = argv[1], prompt = argv[2], image_path = argv[3], mask_image_path = argv[4]; + const std::string device = "CPU"; // GPU can be used as well + + ov::Tensor image = utils::load_image(image_path); + ov::Tensor mask_image = utils::load_image(mask_image_path); + + ov::genai::InpaintingPipeline pipe(models_path, device); + ov::Tensor generated_image = pipe.generate(prompt, image, mask_image); + + // writes `num_images_per_prompt` images by pattern name + imwrite("image_%d.bmp", generated_image, true); + + return EXIT_SUCCESS; +} catch (const std::exception& error) { + try { + std::cerr << error.what() << '\n'; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} catch (...) { + try { + std::cerr << "Non-exception object thrown\n"; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} diff --git a/samples/cpp/image_generation/load_image.cpp b/samples/cpp/image_generation/load_image.cpp new file mode 100644 index 0000000000..7f14e54b3e --- /dev/null +++ b/samples/cpp/image_generation/load_image.cpp @@ -0,0 +1,48 @@ + +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include + +#define STB_IMAGE_IMPLEMENTATION + +#include "stb_image.h" +#include "load_image.hpp" + +namespace fs = std::filesystem; + +ov::Tensor utils::load_image(const std::filesystem::path& image_path) { + int x = 0, y = 0, channels_in_file = 0; + constexpr int desired_channels = 3; + unsigned char* image = stbi_load( + image_path.string().c_str(), + &x, &y, &channels_in_file, desired_channels); + if (!image) { + std::stringstream error_message; + error_message << "Failed to load the image '" << image_path << "'"; + throw std::runtime_error{error_message.str()}; + } + struct SharedImageAllocator { + unsigned char* image; + int channels, height, width; + void* allocate(size_t bytes, size_t) const { + if (image && channels * height * width == bytes) { + return image; + } + throw std::runtime_error{"Unexpected number of bytes was requested to allocate."}; + } + void deallocate(void*, size_t bytes, size_t) { + if (channels * height * width != bytes) { + throw std::runtime_error{"Unexpected number of bytes was requested to deallocate."}; + } + stbi_image_free(image); + image = nullptr; + } + bool is_equal(const SharedImageAllocator& other) const noexcept {return this == &other;} + }; + return ov::Tensor( + ov::element::u8, + ov::Shape{1, size_t(y), size_t(x), size_t(desired_channels)}, + SharedImageAllocator{image, desired_channels, y, x} + ); +} diff --git a/samples/cpp/image_generation/load_image.hpp b/samples/cpp/image_generation/load_image.hpp new file mode 100644 index 0000000000..f66dd2caf2 --- /dev/null +++ b/samples/cpp/image_generation/load_image.hpp @@ -0,0 +1,12 @@ + +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include + +namespace utils { +ov::Tensor load_image(const std::filesystem::path& image_path); +} diff --git a/samples/cpp/text2image/lora.bmp b/samples/cpp/image_generation/lora.bmp similarity index 100% rename from samples/cpp/text2image/lora.bmp rename to samples/cpp/image_generation/lora.bmp diff --git a/samples/cpp/text2image/lora.cpp b/samples/cpp/image_generation/lora_text2image.cpp similarity index 100% rename from samples/cpp/text2image/lora.cpp rename to samples/cpp/image_generation/lora_text2image.cpp diff --git a/samples/cpp/text2image/main.cpp b/samples/cpp/image_generation/text2image.cpp similarity index 93% rename from samples/cpp/text2image/main.cpp rename to samples/cpp/image_generation/text2image.cpp index 5789e09884..6a97b3a074 100644 --- a/samples/cpp/text2image/main.cpp +++ b/samples/cpp/image_generation/text2image.cpp @@ -9,7 +9,7 @@ int32_t main(int32_t argc, char* argv[]) try { OPENVINO_ASSERT(argc == 3, "Usage: ", argv[0], " ''"); const std::string models_path = argv[1], prompt = argv[2]; - const std::string device = "CPU"; // GPU, NPU can be used as well + const std::string device = "CPU"; // GPU can be used as well ov::genai::Text2ImagePipeline pipe(models_path, device); ov::Tensor image = pipe.generate(prompt, diff --git a/samples/cpp/text2image/CMakeLists.txt b/samples/cpp/text2image/CMakeLists.txt deleted file mode 100644 index 42b994dd71..0000000000 --- a/samples/cpp/text2image/CMakeLists.txt +++ /dev/null @@ -1,66 +0,0 @@ -# Copyright (C) 2023-2024 Intel Corporation -# SPDX-License-Identifier: Apache-2.0 - -find_package(OpenVINOGenAI REQUIRED - PATHS - "${CMAKE_BINARY_DIR}" # Reuse the package from the build. - ${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO. - NO_CMAKE_FIND_ROOT_PATH -) - -# create main sample executable - -add_executable(stable_diffusion - ${CMAKE_CURRENT_SOURCE_DIR}/main.cpp - ${CMAKE_CURRENT_SOURCE_DIR}/imwrite.cpp) - -target_include_directories(stable_diffusion PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}) -target_link_libraries(stable_diffusion PRIVATE openvino::genai) - -set_target_properties(stable_diffusion PROPERTIES - COMPILE_PDB_NAME stable_diffusion - # Ensure out of box LC_RPATH on macOS with SIP - INSTALL_RPATH_USE_LINK_PATH ON) - -install(TARGETS stable_diffusion - RUNTIME DESTINATION samples_bin/ - COMPONENT samples_bin - EXCLUDE_FROM_ALL) - -# create LoRA sample executable - -add_executable(lora_stable_diffusion - ${CMAKE_CURRENT_SOURCE_DIR}/lora.cpp - ${CMAKE_CURRENT_SOURCE_DIR}/imwrite.cpp) - -target_include_directories(lora_stable_diffusion PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}) -target_link_libraries(lora_stable_diffusion PRIVATE openvino::genai) - -set_target_properties(lora_stable_diffusion PROPERTIES - COMPILE_PDB_NAME lora_stable_diffusion - # Ensure out of box LC_RPATH on macOS with SIP - INSTALL_RPATH_USE_LINK_PATH ON) - -install(TARGETS lora_stable_diffusion - RUNTIME DESTINATION samples_bin/ - COMPONENT samples_bin - EXCLUDE_FROM_ALL) - -# create heterogeneous_stable_diffusion sample executable - -add_executable(heterogeneous_stable_diffusion - ${CMAKE_CURRENT_SOURCE_DIR}/heterogeneous_stable_diffusion.cpp - ${CMAKE_CURRENT_SOURCE_DIR}/imwrite.cpp) - -target_include_directories(heterogeneous_stable_diffusion PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}) -target_link_libraries(heterogeneous_stable_diffusion PRIVATE openvino::genai) - -set_target_properties(heterogeneous_stable_diffusion PROPERTIES - COMPILE_PDB_NAME heterogeneous_stable_diffusion - # Ensure out of box LC_RPATH on macOS with SIP - INSTALL_RPATH_USE_LINK_PATH ON) - -install(TARGETS heterogeneous_stable_diffusion - RUNTIME DESTINATION samples_bin/ - COMPONENT samples_bin - EXCLUDE_FROM_ALL) diff --git a/samples/cpp/visual_language_chat/load_image.cpp b/samples/cpp/visual_language_chat/load_image.cpp index 8e2e377239..6dd246d647 100644 --- a/samples/cpp/visual_language_chat/load_image.cpp +++ b/samples/cpp/visual_language_chat/load_image.cpp @@ -2,6 +2,8 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#include + #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include "load_image.hpp" @@ -30,7 +32,9 @@ ov::Tensor utils::load_image(const std::filesystem::path& image_path) { image_path.string().c_str(), &x, &y, &channels_in_file, desired_channels); if (!image) { - throw std::runtime_error{"Failed to load the image."}; + std::stringstream error_message; + error_message << "Failed to load the image '" << image_path << "'"; + throw std::runtime_error{error_message.str()}; } struct SharedImageAllocator { unsigned char* image; diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md new file mode 100644 index 0000000000..4abe45b2b4 --- /dev/null +++ b/samples/python/image_generation/README.md @@ -0,0 +1,141 @@ +# Text to Image Python Generation Pipeline + +Examples in this folder showcase inference of text to image models like Stable Diffusion 1.5, 2.1, LCM. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `openvino_genai.Text2ImagePipeline` and uses a text prompt as input source. + +There are several sample files: + - [`text2image.py`](./text2image.py) demonstrates basic usage of the text to image pipeline + - [`lora_text2image.py`](./lora.py) shows how to apply LoRA adapters to the pipeline + - [`heterogeneous_stable_diffusion.py`](./heterogeneous_stable_diffusion.py) shows how to assemble a heterogeneous text2image pipeline from individual subcomponents (scheduler, text encoder, unet, vae decoder) + - [`image2image.py`](./image2image.py) demonstrates basic usage of the image to image pipeline + - [`inpainting.py`](./inpainting.py) demonstrates basic usage of the inpainting pipeline + +Users can change the sample code and play with the following generation parameters: + +- Change width or height of generated image +- Generate multiple images per prompt +- Adjust a number of inference steps +- Play with [guidance scale](https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/9) (read [more details](https://arxiv.org/abs/2207.12598)) +- (SD 1.x, 2.x; SD3, SDXL) Add negative prompt when guidance scale > 1 +- (SDXL, SD3, FLUX) Specify other positive prompts like `prompt_2` +- Apply multiple different LoRA adapters and mix them with different blending coefficients +- (Image to image and inpainting) Play with `strength` parameter to control how initial image is noised and reduce number of inference steps + +## Download and convert the models and tokenizers + +The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. + +Install [../../export-requirements.txt](../../export-requirements.txt) to convert a model. + +```sh +pip install --upgrade-strategy eager -r ../../export-requirements.txt +optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 dreamlike_anime_1_0_ov/FP16 +``` + +## Run text to image + +Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` and then, run a sample: + +`python text2image.py ./dreamlike_anime_1_0_ov/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"` + +### Examples + +Prompt: `cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting` + + ![](./text2image.bmp) + +### Run with callback + +You can also add a callback to the `text2image.py` file to interrupt the image generation process earlier if you are satisfied with the intermediate result of the image generation or to add logs. + +Please find the template of the callback usage below. + +```python +pipe = openvino_genai.Text2ImagePipeline(model_dir, device) + +def callback(step, intermediate_res): + print("Image generation step: ", step) + image_tensor = pipe.decode(intermediate_res) # get intermediate image tensor + if your_condition: # return True if you want to interrupt image generation + return True + return False + +image = pipe.generate( + ... + callback = callback +) +``` + +## Run with optional LoRA adapters + +LoRA adapters can be connected to the pipeline and modify generated images to have certain style, details or quality. Adapters are supported in Safetensors format and can be downloaded from public sources like [Civitai](https://civitai.com) or [HuggingFace](https://huggingface.co/models) or trained by the user. Adapters compatible with a base model should be used only. A weighted blend of multiple adapters can be applied by specifying multiple adapter files with corresponding alpha parameters in command line. Check `lora_text2image.py` source code to learn how to enable adapters and specify them in each `generate` call. + +Here is an example how to run the sample with a single adapter. First download adapter file from https://civitai.com/models/67927/soulcard page manually and save it as `soulcard.safetensors`. Or download it from command line: + +`wget -O soulcard.safetensors https://civitai.com/api/download/models/72591` + +Then run `lora_text2image.py`: + +`python lora_text2image.py ./dreamlike_anime_1_0_ov/FP16 "curly-haired unicorn in the forest, anime, line" soulcard.safetensors 0.7` + +The sample generates two images with and without adapters applied using the same prompt: + - `lora.bmp` with adapters applied + - `baseline.bmp` without adapters applied + +Check the difference: + +With adapter | Without adapter +:---:|:---: +![](./lora.bmp) | ![](./baseline.bmp) + +## Run text to image with multiple devices + +The `heterogeneous_stable_diffusion.py` sample demonstrates how a Text2ImagePipeline object can be created from individual subcomponents - scheduler, text encoder, unet, & vae decoder. This approach gives fine-grained control over the devices used to execute each stage of the stable diffusion pipeline. + +The usage of this sample is: + +`heterogeneous_stable_diffusion.py [-h] model_dir prompt [text_encoder_device] [unet_device] [vae_decoder_device]` + +For example: + +`python heterogeneous_stable_diffusion.py ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' CPU NPU GPU` + +The sample will create a stable diffusion pipeline such that the text encoder is executed on the CPU, UNet on the NPU, and VAE decoder on the GPU. + +## Run image to image pipeline + +The `image2mage.py` sample demonstrates basic image to image generation pipeline. The difference with text to image pipeline is that final image is denoised from initial image converted to latent space and noised with image noise according to `strength` parameter. `strength` should be in range of `[0., 1.]` where `1.` means initial image is fully noised and it is an equivalent to text to image generation. +Also, `strength` parameter linearly affects a number of inferenece steps, because lower `strength` values means initial latent already has some structure and it requires less steps to denoise it. + +To run the sample, download initial image first: + +`wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png` + +And then run the sample: + +`python image2mage.py ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' small_city.bmp` + +The resuling image is: + + ![](./../../cpp/image_generation/imageimage.bmp) + +Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `Image2ImagePipeline`. + +## Run inpainting pipeline + +The `inpainting.py` sample demonstrates usage of inpainting pipeline, which can inpaint initial image by a given mask. Inpainting pipeline can work on typical text to image models as well as on specialized models which are oftenly named `space/model-inpainting`, e.g. `stabilityai/stable-diffusion-2-inpainting`. + +Such models can be converted in the same way as regular ones via `optimum-cli`: + +`optimum-cli export openvino --model stabilityai/stable-diffusion-2-inpainting --weight-format fp16 stable-diffusion-2-inpainting` + +Let's also download input data: + +`wget -O image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png` + +`wget -O mask_image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png` + +And run the sample: + +`python inpainting.py ./stable-diffusion-2-inpainting 'Face of a yellow cat, high resolution, sitting on a park bench' image.png mask_image.png` + +Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `InpaintingPipeline`. diff --git a/samples/python/text2image/baseline.bmp b/samples/python/image_generation/baseline.bmp similarity index 100% rename from samples/python/text2image/baseline.bmp rename to samples/python/image_generation/baseline.bmp diff --git a/samples/python/text2image/heterogeneous_stable_diffusion.py b/samples/python/image_generation/heterogeneous_stable_diffusion.py similarity index 100% rename from samples/python/text2image/heterogeneous_stable_diffusion.py rename to samples/python/image_generation/heterogeneous_stable_diffusion.py diff --git a/samples/python/image_generation/image2image.py b/samples/python/image_generation/image2image.py new file mode 100644 index 0000000000..bb452036bf --- /dev/null +++ b/samples/python/image_generation/image2image.py @@ -0,0 +1,38 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import argparse +import openvino +import openvino_genai +import numpy as np + +from PIL import Image + +def read_image(path: str) -> openvino.Tensor: + pic = Image.open(path).convert("RGB") + image_data = np.array(pic.getdata()).reshape(1, pic.size[1], pic.size[0], 3).astype(np.uint8) + return openvino.Tensor(image_data) + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('model_dir') + parser.add_argument('prompt') + parser.add_argument('image') + args = parser.parse_args() + + device = 'CPU' # GPU can be used as well + pipe = openvino_genai.Image2ImagePipeline(args.model_dir, device) + + image = read_image(args.image) + + image_tensor = pipe.generate(args.prompt, image, + strength=0.8 # controls how initial image is noised after being converted to latent space. `1` means initial image is fully noised + ) + + image = Image.fromarray(image_tensor.data[0]) + image.save("image.bmp") + + +if '__main__' == __name__: + main() diff --git a/samples/python/image_generation/inpainting.py b/samples/python/image_generation/inpainting.py new file mode 100644 index 0000000000..47ecfd4495 --- /dev/null +++ b/samples/python/image_generation/inpainting.py @@ -0,0 +1,38 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import argparse +import openvino +import openvino_genai +import numpy as np + +from PIL import Image + +def read_image(path: str) -> openvino.Tensor: + pic = Image.open(path).convert("RGB") + image_data = np.array(pic.getdata()).reshape(1, pic.size[1], pic.size[0], 3).astype(np.uint8) + return openvino.Tensor(image_data) + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('model_dir') + parser.add_argument('prompt') + parser.add_argument('image') + parser.add_argument('mask') + args = parser.parse_args() + + device = 'CPU' # GPU can be used as well + pipe = openvino_genai.InpaintingPipeline(args.model_dir, device) + + image = read_image(args.image) + mask_image = read_image(args.mask) + + image_tensor = pipe.generate(args.prompt, image, mask_image) + + image = Image.fromarray(image_tensor.data[0]) + image.save("image.bmp") + + +if '__main__' == __name__: + main() diff --git a/samples/python/text2image/lora.bmp b/samples/python/image_generation/lora.bmp similarity index 100% rename from samples/python/text2image/lora.bmp rename to samples/python/image_generation/lora.bmp diff --git a/samples/python/text2image/lora.py b/samples/python/image_generation/lora_text2image.py similarity index 100% rename from samples/python/text2image/lora.py rename to samples/python/image_generation/lora_text2image.py diff --git a/samples/python/text2image/image.bmp b/samples/python/image_generation/text2image.bmp similarity index 100% rename from samples/python/text2image/image.bmp rename to samples/python/image_generation/text2image.bmp diff --git a/samples/python/text2image/main.py b/samples/python/image_generation/text2image.py similarity index 99% rename from samples/python/text2image/main.py rename to samples/python/image_generation/text2image.py index fa9f339b30..95d8c68e82 100644 --- a/samples/python/text2image/main.py +++ b/samples/python/image_generation/text2image.py @@ -42,4 +42,4 @@ def main(): if '__main__' == __name__: - main() + main() \ No newline at end of file diff --git a/samples/python/text2image/README.md b/samples/python/text2image/README.md deleted file mode 100644 index 2e841673d3..0000000000 --- a/samples/python/text2image/README.md +++ /dev/null @@ -1,98 +0,0 @@ -# Text to Image Python Generation Pipeline - -Examples in this folder showcase inference of text to image models like Stable Diffusion 1.5, 2.1, LCM. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. For example, change the device for inference to GPU. The sample features `openvino_genai.Text2ImagePipeline` and uses a text prompt as input source. - -There are three sample files: - - [`main.py`](./main.py) demonstrates basic usage of the text to image pipeline - - [`lora.py`](./lora.py) shows how to apply LoRA adapters to the pipeline - - [`heterogeneous_stable_diffusion.py`](./heterogeneous_stable_diffusion.py) shows how to assemble a heterogeneous txt2image pipeline from individual subcomponents (scheduler, text encoder, unet, vae decoder) - -Users can change the sample code and play with the following generation parameters: - -- Change width or height of generated image -- Generate multiple images per prompt -- Adjust a number of inference steps -- Play with [guidance scale](https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/9) (read [more details](https://arxiv.org/abs/2207.12598)) -- (SD 1.x, 2.x only) Add negative prompt when guidance scale > 1 -- Apply multiple different LoRA adapters and mix them with different blending coefficients - -## Download and convert the models and tokenizers - -The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. - -Install [../../export-requirements.txt](../../export-requirements.txt) to convert a model. - -```sh -pip install --upgrade-strategy eager -r ../../export-requirements.txt -optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 dreamlike_anime_1_0_ov/FP16 -``` - -## Run - -Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` and then, run a sample: - -`python main.py ./dreamlike_anime_1_0_ov/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"` - -### Examples - -Prompt: `cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting` - - ![](./image.bmp) - -## Run with callback - -You can also add a callback to the `main.py` file to interrupt the image generation process earlier if you are satisfied with the intermediate result of the image generation or to add logs. - -Please find the template of the callback usage below. - -```python -pipe = openvino_genai.Text2ImagePipeline(model_dir, device) - -def callback(step, intermediate_res): - print("Image generation step: ", step) - image_tensor = pipe.decode(intermediate_res) # get intermediate image tensor - if your_condition: # return True if you want to interrupt image generation - return True - return False - -image = pipe.generate( - ... - callback = callback -) -``` - -## Run with optional LoRA adapters - -LoRA adapters can be connected to the pipeline and modify generated images to have certain style, details or quality. Adapters are supported in Safetensors format and can be downloaded from public sources like [Civitai](https://civitai.com) or [HuggingFace](https://huggingface.co/models) or trained by the user. Adapters compatible with a base model should be used only. A weighted blend of multiple adapters can be applied by specifying multiple adapter files with corresponding alpha parameters in command line. Check `lora.cpp` source code to learn how to enable adapters and specify them in each `generate` call. - -Here is an example how to run the sample with a single adapter. First download adapter file from https://civitai.com/models/67927/soulcard page manually and save it as `soulcard.safetensors`. Or download it from command line: - -`wget -O soulcard.safetensors https://civitai.com/api/download/models/72591` - -Then run `lora.py`: - -`python lora.py ./dreamlike_anime_1_0_ov/FP16 "curly-haired unicorn in the forest, anime, line" soulcard.safetensors 0.7` - -The sample generates two images with and without adapters applied using the same prompt: - - `lora.bmp` with adapters applied - - `baseline.bmp` without adapters applied - -Check the difference: - -With adapter | Without adapter -:---:|:---: -![](./lora.bmp) | ![](./baseline.bmp) - -## Run with multiple devices - -The `heterogeneous_stable_diffusion.py` sample demonstrates how a Text2ImagePipeline object can be created from individual subcomponents - scheduler, text encoder, unet, & vae decoder. This approach gives fine-grained control over the devices used to execute each stage of the stable diffusion pipeline. - -The usage of this sample is: - -`heterogeneous_stable_diffusion.py [-h] model_dir prompt [text_encoder_device] [unet_device] [vae_decoder_device]` - -For example: - -`heterogeneous_stable_diffusion.py ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' CPU NPU GPU` - -The sample will create a stable diffusion pipeline such that the text encoder is executed on the CPU, UNet on the NPU, and VAE decoder on the GPU. diff --git a/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp b/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp index 347925727a..d48661d899 100644 --- a/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp +++ b/src/cpp/include/openvino/genai/image_generation/autoencoder_kl.hpp @@ -136,7 +136,6 @@ class OPENVINO_GENAI_EXPORTS AutoencoderKL { size_t get_vae_scale_factor() const; private: - void merge_vae_image_pre_processing() const; void merge_vae_image_post_processing() const; Config m_config; diff --git a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp index e798651580..0b749ecd83 100644 --- a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp +++ b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp @@ -20,58 +20,103 @@ namespace genai { // Random generators // +/** + * Base class to represent random generator used in Image generation pipelines + */ class OPENVINO_GENAI_EXPORTS Generator { public: + /** + * The function to return next random floating point value + * @returns Floating point value within a [0, 1] range + */ virtual float next() = 0; + + /** + * Generates a random tensor of floating point values with a given shape + * By default, it creates a tensor and fills it using 'Generator::next()' method element by element, + * but some random generator strategies have different pocilies how tensors are generated and this method + * provides an ability to change it. + */ virtual ov::Tensor randn_tensor(const ov::Shape& shape); + + /** + * Default dtor defined to ensure working RTTI. + */ virtual ~Generator(); }; +/** + * Implementation of 'Generator' using standard C++ random library types 'std::mt19937' and 'std::normal_distribution' + */ class OPENVINO_GENAI_EXPORTS CppStdGenerator : public Generator { public: - // creates 'std::mt19937' with initial 'seed' to generate numbers within a range [0.0f, 1.0f] + /** + * Initialized C++ STD generator with a given seed + * @param seed A seed value + */ explicit CppStdGenerator(uint32_t seed); virtual float next() override; + private: std::mt19937 gen; std::normal_distribution normal; }; +/** + * Generation config used for Image generation pipelines. + * Note, that not all values are applicable for all pipelines and models - please, refer + * to documentation of properties below to understand a meaning and applicability for specific models. + */ struct OPENVINO_GENAI_EXPORTS ImageGenerationConfig { - // LCM: prompt only w/o negative prompt - // SD XL: prompt2 and negative_prompt2 - // FLUX: prompt2 (prompt if prompt2 is not defined explicitly) - // SD 3: prompt2, prompt3 (with fallback to prompt) and negative_prompt2, negative_prompt3 + /** + * Prompts and negative prompts + */ std::optional prompt_2 = std::nullopt, prompt_3 = std::nullopt; std::optional negative_prompt = std::nullopt, negative_prompt_2 = std::nullopt, negative_prompt_3 = std::nullopt; + /** + * A number of images to generate per 'generate()' call + */ size_t num_images_per_prompt = 1; - // random generator to have deterministic results + /** + * Random generator to initial latents, add noise to initial images in case of image to image / inpainting pipelines + */ std::shared_ptr generator = std::make_shared(42); - // the following values depend on HF diffusers class used to perform generation float guidance_scale = 7.5f; int64_t height = -1; int64_t width = -1; size_t num_inference_steps = 50; - // the following value used by t5_encoder_model (Flux, SD3 pipelines) + /** + * Max sequence lenght for T4 encoder / tokenizer used in SD3 / FLUX models + */ int max_sequence_length = -1; - // used by some image to image pipelines to balance between noise and initial image - // higher 'stregth' value means more noise is added to initial latent image - // for text to image pipeline it must be set to 1.0f + /** + * Strength parameter used in Image to imaage / Inpainting pipelines. + * Must be 1.0 for text to image generation as no initial image is provided in such scenario. + */ float strength = 1.0f; + /** + * Holds LoRA adapters + */ std::optional adapters; - void update_generation_config(const ov::AnyMap& config_map); - - // checks whether is config is valid + /** + * Checks whether image generation config is valid, otherwise throws an exception. + */ void validate() const; + /** + * Updates generation config from a map of properties. + * @param properties A map of properties + */ + void update_generation_config(const ov::AnyMap& properties); + template ov::util::EnableIfAllStringAny update_generation_config(Properties&&... properties) { return update_generation_config(ov::AnyMap{std::forward(properties)...}); @@ -82,27 +127,105 @@ struct OPENVINO_GENAI_EXPORTS ImageGenerationConfig { // Generation config properties // +/** + * Prompt 2 for models which have at least two text encoders. Currently, it's used for SDXL, SD3, FLUX + */ static constexpr ov::Property prompt_2{"prompt_2"}; + +/** + * Prompt 3 for models which have three text encoders. Currently, it's used only for SD3 + */ static constexpr ov::Property prompt_3{"prompt_3"}; +/** + * Negative prompt for models which have negative prompt. Currently, it's used for SD, SDXL, SD3 + */ static constexpr ov::Property negative_prompt{"negative_prompt"}; + +/** + * Negative prompt 2 for models which have at least two text encoders. Currently, it's used for SDXL, SD3 + */ static constexpr ov::Property negative_prompt_2{"negative_prompt_2"}; + +/** + * Negative prompt 3 for models which have three text encoders. Currently, it's used only for SD3 + */ static constexpr ov::Property negative_prompt_3{"negative_prompt_3"}; +/** + * A number of images to generate per generate() call. If you want to generate multiple images + * for the same combination of generation parameters and text prompts, you can use this parameter + * for better performance as internally compuations will be performed with batch for Unet / Transformer models + * and text embeddings tensors will also be computed only once. + */ static constexpr ov::Property num_images_per_prompt{"num_images_per_prompt"}; + +/** + * Guidance scale parameter which controls how model sticks to text embeddings generated + * by text encoders within a pipeline. Higher value of guidance scale moves image generation towards + * text embeddings, but resulting image will be less natural and more augmented. + */ static constexpr ov::Property guidance_scale{"guidance_scale"}; + +/** + * Specifies a height of a resulting image. Typically, image height must be divisible by VAE scale factor + * (which is 8 in most of cases) which represents ratio between latent image / RGB image sizes. + */ static constexpr ov::Property height{"height"}; + +/** + * Specifies a width of a resulting image. Typically, image width must be divisible by VAE scale factor + * (which is 8 in most of cases) which represents ratio between latent image / RGB image sizes. + */ static constexpr ov::Property width{"width"}; + +/** + * Defines a number of inference steps used to denoise initial noised latent to final image. + * Note, that in case of image to image / inpainting pipelines, the resulting number of inference steps + * is scaled with 'strength' parameter. + */ static constexpr ov::Property num_inference_steps{"num_inference_steps"}; +/** + * Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a + * starting point and more noise is added the higher the `strength`. The number of denoising steps depends + * on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising + * process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 + * essentially ignores `image`. + */ static constexpr ov::Property strength{"strength"}; +/** + * Overrides default random generator used within image generation pipelines. + * By default, 'CppStdGenerator' is used, but if you are running Image generation via + * python code, you can additionally install 'torch' and use OpenVINO GenAI's 'TorchGenerator' + * which ensures the generated images will look as in HuggingFace when the same sed value if used. + */ static constexpr ov::Property> generator{"generator"}; +/** + * This parameters limits max sequence length for T5 encoder for SD3 and FLUX models. + * T5 tokenizer output is padded with pad tokens to 'max_sequence_length' within a pipeline. + * So, for better performance, you can specify this parameter to lower value to speed-up + * T5 encoder inference as well as inference of transformer denoising model. + * For optimal performance it can be set to a number of tokens for 'prompt_3' / 'negative_prompt_3' for SD3 + * or `prompt_2` for FLUX. + * Note, that images generated with different values of 'max_sequence_length' are slightly different, but quite close. + */ static constexpr ov::Property max_sequence_length{"max_sequence_length"}; +/** + * User callback for image generation pipelines, which is called within a pipeline with the following arguments: + * - Total number of inference steps. Note, that in case of 'strength' parameter, the number of inference steps is reduced linearly + * - Current inference step + * - Tensor representing current latent. Such latent can be converted to human-readable representation via image generation pipeline 'decode()' method + */ static constexpr ov::Property> callback{"callback"}; +/** + * Function to pass 'ImageGenerationConfig' as property to 'generate()' call. + * @param generation_config An image generation config to convert to property-like format + */ OPENVINO_GENAI_EXPORTS std::pair generation_config(const ImageGenerationConfig& generation_config); diff --git a/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp new file mode 100644 index 0000000000..a859b29c2e --- /dev/null +++ b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp @@ -0,0 +1,105 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include +#include +#include + +#include "openvino/core/any.hpp" +#include "openvino/runtime/tensor.hpp" + +#include "openvino/genai/image_generation/scheduler.hpp" +#include "openvino/genai/image_generation/generation_config.hpp" + +#include "openvino/genai/image_generation/clip_text_model.hpp" +#include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" +#include "openvino/genai/image_generation/unet2d_condition_model.hpp" +#include "openvino/genai/image_generation/autoencoder_kl.hpp" + +namespace ov { +namespace genai { + +// forward declaration +class DiffusionPipeline; + +// +// Image to image pipeline +// + +class OPENVINO_GENAI_EXPORTS Image2ImagePipeline { +public: + explicit Image2ImagePipeline(const std::filesystem::path& models_path); + + Image2ImagePipeline(const std::filesystem::path& models_path, const std::string& device, const ov::AnyMap& properties = {}); + + template ::value, bool>::type = true> + Image2ImagePipeline(const std::filesystem::path& models_path, + const std::string& device, + Properties&&... properties) + : Image2ImagePipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { } + + // creates either LCM or SD pipeline from building blocks + static Image2ImagePipeline stable_diffusion( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + // creates either LCM or SD pipeline from building blocks + static Image2ImagePipeline latent_consistency_model( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + // creates SDXL pipeline from building blocks + static Image2ImagePipeline stable_diffusion_xl( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const CLIPTextModelWithProjection& clip_text_model_with_projection, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + ImageGenerationConfig get_generation_config() const; + void set_generation_config(const ImageGenerationConfig& generation_config); + + // ability to override scheduler + void set_scheduler(std::shared_ptr scheduler); + + // with static shapes performance is better + void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale); + + void compile(const std::string& device, const ov::AnyMap& properties = {}); + + template + ov::util::EnableIfAllStringAny compile( + const std::string& device, + Properties&&... properties) { + return compile(device, ov::AnyMap{std::forward(properties)...}); + } + + // Returns a tensor with the following dimensions [num_images_per_prompt, height, width, 3] + ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, const ov::AnyMap& properties = {}); + + template + ov::util::EnableIfAllStringAny generate( + const std::string& positive_prompt, + ov::Tensor initial_image, + Properties&&... properties) { + return generate(positive_prompt, initial_image, ov::AnyMap{std::forward(properties)...}); + } + + ov::Tensor decode(const ov::Tensor latent); + +private: + std::shared_ptr m_impl; + + explicit Image2ImagePipeline(const std::shared_ptr& impl); +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp new file mode 100644 index 0000000000..c970fa0e23 --- /dev/null +++ b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp @@ -0,0 +1,106 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include +#include +#include + +#include "openvino/core/any.hpp" +#include "openvino/runtime/tensor.hpp" + +#include "openvino/genai/image_generation/scheduler.hpp" +#include "openvino/genai/image_generation/generation_config.hpp" + +#include "openvino/genai/image_generation/clip_text_model.hpp" +#include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" +#include "openvino/genai/image_generation/unet2d_condition_model.hpp" +#include "openvino/genai/image_generation/autoencoder_kl.hpp" + +namespace ov { +namespace genai { + +// forward declaration +class DiffusionPipeline; + +// +// Inpainting pipeline +// + +class OPENVINO_GENAI_EXPORTS InpaintingPipeline { +public: + explicit InpaintingPipeline(const std::filesystem::path& models_path); + + InpaintingPipeline(const std::filesystem::path& models_path, const std::string& device, const ov::AnyMap& properties = {}); + + template ::value, bool>::type = true> + InpaintingPipeline(const std::filesystem::path& models_path, + const std::string& device, + Properties&&... properties) + : InpaintingPipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { } + + // creates either LCM or SD pipeline from building blocks + static InpaintingPipeline stable_diffusion( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + // creates either LCM or SD pipeline from building blocks + static InpaintingPipeline latent_consistency_model( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + // creates SDXL pipeline from building blocks + static InpaintingPipeline stable_diffusion_xl( + const std::shared_ptr& scheduler_type, + const CLIPTextModel& clip_text_model, + const CLIPTextModelWithProjection& clip_text_model_with_projection, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae); + + ImageGenerationConfig get_generation_config() const; + void set_generation_config(const ImageGenerationConfig& generation_config); + + // ability to override scheduler + void set_scheduler(std::shared_ptr scheduler); + + // with static shapes performance is better + void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale); + + void compile(const std::string& device, const ov::AnyMap& properties = {}); + + template + ov::util::EnableIfAllStringAny compile( + const std::string& device, + Properties&&... properties) { + return compile(device, ov::AnyMap{std::forward(properties)...}); + } + + // Returns a tensor with the following dimensions [num_images_per_prompt, height, width, 3] + ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, ov::Tensor mask_image, const ov::AnyMap& properties = {}); + + template + ov::util::EnableIfAllStringAny generate( + const std::string& positive_prompt, + ov::Tensor initial_image, + ov::Tensor mask, + Properties&&... properties) { + return generate(positive_prompt, initial_image, mask, ov::AnyMap{std::forward(properties)...}); + } + + ov::Tensor decode(const ov::Tensor latent); + +private: + std::shared_ptr m_impl; + + explicit InpaintingPipeline(const std::shared_ptr& impl); +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp index 4fce33856f..b66ced748b 100644 --- a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp @@ -28,14 +28,32 @@ namespace genai { // forward declaration class DiffusionPipeline; -// -// Text to image pipeline -// - +/** + * Text to image pipelines which provides unified API to all supported models types. + * Models specific aspects are hidden in image generation config, which includes multiple prompts support or + * other specific parameters like max_sequence_length + */ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { public: + /** + * Initializes text to image generation pipeline from a folder with models. + * Note, such pipeline is not ready to use as models are not compiled internally. + * + * Typical scenario is to initialize models using this constructor and then reshape pipeline + * with 'reshape()' method and then perform compilation using 'compile()' method. + * @param models_path A models path to read models and config files from + */ explicit Text2ImagePipeline(const std::filesystem::path& models_path); + /** + * Initializes text to image pipelines from a folder with models and performs compilation after it + * @param models_path A models path to read models and config files from + * @param device A single device used for all models + * @param properties Properties to pass to 'compile_model' or other pipeline properties like LoRA adapters + * @note If you want to compile each model on a dedicated device or with specific properties, you can create + * models individually and then combine a final pipeline using static methods like 'latent_consistency_model' or + * 'stable_diffusion_3'. See 'samples/cpp/image_generation/heterogeneous_stable_diffusion.cpp' for example + */ Text2ImagePipeline(const std::filesystem::path& models_path, const std::string& device, const ov::AnyMap& properties = {}); template (properties)...}) { } - // creates either LCM or SD pipeline from building blocks + /** + * Creates Stable Diffusion pipeline from individual models + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model A CLIP text encoder model + * @param unet An Unet model + * @param vae VAE auto encoder model + */ static Text2ImagePipeline stable_diffusion( const std::shared_ptr& scheduler, const CLIPTextModel& clip_text_model, const UNet2DConditionModel& unet, const AutoencoderKL& vae); - // creates either LCM or SD pipeline from building blocks + /** + * Creates Latent Consistency Model pipeline from individual models + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model A CLIP text encoder model + * @param unet An Unet denoising model + * @param vae VAE auto encoder model + */ static Text2ImagePipeline latent_consistency_model( const std::shared_ptr& scheduler, const CLIPTextModel& clip_text_model, const UNet2DConditionModel& unet, const AutoencoderKL& vae); - // creates SDXL pipeline from building blocks + /** + * Creates Stable Diffusion XL pipeline from individual models + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model A CLIP text encoder model + * @param clip_text_model_with_projection A CLIP text encoder with projection model + * @param unet An Unet denoising model + * @param vae VAE auto encoder model + */ static Text2ImagePipeline stable_diffusion_xl( const std::shared_ptr& scheduler, const CLIPTextModel& clip_text_model, @@ -67,7 +104,15 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { const UNet2DConditionModel& unet, const AutoencoderKL& vae); - // creates SD3 pipeline from building blocks + /** + * Creates Stable Diffusion 3 pipeline from individual models with T5 text encoder + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model_1 A first CLIP text encoder model + * @param clip_text_model_1 A second CLIP text encoder model + * @param t5_encoder_model A T5 text encoder model. + * @param transformer A Transformer denoising model + * @param vae VAE auto encoder model + */ static Text2ImagePipeline stable_diffusion_3( const std::shared_ptr& scheduler, const CLIPTextModelWithProjection& clip_text_model_1, @@ -76,7 +121,29 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { const SD3Transformer2DModel& transformer, const AutoencoderKL& vae); - // creates Flux pipeline from building blocks + /** + * Creates Stable Diffusion 3 pipeline from individual models without T5 text encoder + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model_1 A first CLIP text encoder model + * @param clip_text_model_1 A second CLIP text encoder model + * @param transformer A Transformer denoising model + * @param vae VAE auto encoder model + */ + static Text2ImagePipeline stable_diffusion_3( + const std::shared_ptr& scheduler, + const CLIPTextModelWithProjection& clip_text_model_1, + const CLIPTextModelWithProjection& clip_text_model_2, + const SD3Transformer2DModel& transformer, + const AutoencoderKL& vae); + + /** + * Creates FLUX pipeline from individual models + * @param scheduler A scheduler used to denoise final image + * @param clip_text_model A CLIP text encoder model + * @param t5_encoder_model A T5 text encoder model + * @param transformer A Transformer denoising model + * @param vae VAE auto encoder model + */ static Text2ImagePipeline flux( const std::shared_ptr& scheduler_type, const CLIPTextModel& clip_text_model, @@ -84,15 +151,42 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { const FluxTransformer2DModel& transformer, const AutoencoderKL& vae); + /** + * Returns default image generation config created internally based on model type. + * @returns Image generation config + */ ImageGenerationConfig get_generation_config() const; + + /** + * Sets image generation config + * @returns An image generation config + */ void set_generation_config(const ImageGenerationConfig& generation_config); - // ability to override scheduler + /** + * Overrides default scheduler used to denoise initial latent + * @param scheduler A scheduler to set to a pipeline + */ void set_scheduler(std::shared_ptr scheduler); - // with static shapes performance is better + /** + * Reshapes pipeline based on a given set of reshape parameters, which affect shapes of models within pipeline + * @note Reshaping can be useful to get maximum performance, but limit image generation to specific output sizes + * @param num_images_per_prompt A number of image to generate per 'generate()' call + * @param height A height of resulting image + * @param width A width of resulting image + * @param guidance_scale A guidance scale. Note, that it's important whether guidance_scale > 1, which affects whether negative prompts + * are used or not. For example, all values > 1 are the same for reshape perspective and may vary in subsequent 'generate()' calls. + * @note If pipeline has been already compiled, it cannot be reshaped and an exception is thrown. + */ void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale); + /** + * Compiles image generation pipeline for a given device + * @param device A device to compile models with + * @param properties A map of properties which affect models compilation + * @note If pipeline was compiled before, an exception is thrown. + */ void compile(const std::string& device, const ov::AnyMap& properties = {}); template @@ -102,7 +196,12 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { return compile(device, ov::AnyMap{std::forward(properties)...}); } - // Returns a tensor with the following dimensions [num_images_per_prompt, height, width, 3] + /** + * Generates image(s) based on prompt and other image generarion parameters + * @param positive_prompt Prompt to generate image(s) from + * @param properties Image generation parameters specified as properties. Values in 'properties' override default value for generation parameters. + * @return A tensor which has dimensions [num_images_per_prompt, height, width, 3] + */ ov::Tensor generate(const std::string& positive_prompt, const ov::AnyMap& properties = {}); template @@ -112,6 +211,11 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { return generate(positive_prompt, ov::AnyMap{std::forward(properties)...}); } + /** + * Performs latent image decoding. It can be useful to use within 'callback' which accepts current latent image + * @param latent A latent image + * @returns An image decoding with VAE auto encoder + */ ov::Tensor decode(const ov::Tensor latent); private: diff --git a/src/cpp/src/image_generation/diffusion_pipeline.hpp b/src/cpp/src/image_generation/diffusion_pipeline.hpp index 42e35101cc..86d8ba9009 100644 --- a/src/cpp/src/image_generation/diffusion_pipeline.hpp +++ b/src/cpp/src/image_generation/diffusion_pipeline.hpp @@ -4,6 +4,7 @@ #pragma once #include +#include #include "image_generation/schedulers/ischeduler.hpp" #include "openvino/genai/image_generation/generation_config.hpp" @@ -51,7 +52,8 @@ namespace genai { enum class PipelineType { TEXT_2_IMAGE = 0, - IMAGE_2_IMAGE = 1 + IMAGE_2_IMAGE = 1, + INPAINTING = 2, }; class DiffusionPipeline { @@ -78,11 +80,13 @@ class DiffusionPipeline { virtual void compile(const std::string& device, const ov::AnyMap& properties) = 0; - virtual ov::Tensor prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const = 0; + virtual std::tuple prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const = 0; virtual void compute_hidden_states(const std::string& positive_prompt, const ImageGenerationConfig& generation_config) = 0; - virtual ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, const ov::AnyMap& properties) = 0; + virtual void set_lora_adapters(std::optional adapters) = 0; + + virtual ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, ov::Tensor mask_image, const ov::AnyMap& properties) = 0; virtual ov::Tensor decode(const ov::Tensor latent) = 0; @@ -95,6 +99,39 @@ class DiffusionPipeline { virtual void check_inputs(const ImageGenerationConfig& generation_config, ov::Tensor initial_image) const = 0; + void blend_latents(ov::Tensor image_latent, ov::Tensor noise, ov::Tensor mask, ov::Tensor latent, size_t inference_step) { + OPENVINO_ASSERT(m_pipeline_type == PipelineType::INPAINTING, "'prepare_mask_latents' can be called for inpainting pipeline only"); + OPENVINO_ASSERT(image_latent.get_shape() == latent.get_shape(), "Shapes for current", latent.get_shape(), "and initial image latents ", image_latent.get_shape(), " must match"); + + ov::Tensor noised_image_latent(image_latent.get_element_type(), {}); + std::vector timesteps = m_scheduler->get_timesteps(); + + if (inference_step < timesteps.size() - 1) { + image_latent.copy_to(noised_image_latent); + + int64_t noise_timestep = timesteps[inference_step + 1]; + m_scheduler->add_noise(noised_image_latent, noise, noise_timestep); + } else { + noised_image_latent = image_latent; + } + + ov::Shape shape = image_latent.get_shape(); + size_t batch_size = shape[0], in_channels = shape[1], channel_size = shape[2] * shape[3]; + OPENVINO_ASSERT(batch_size == 1, "Batch size 1 is supported for now"); + + const float * mask_data = mask.data(); + const float * noised_image_latent_data = noised_image_latent.data(); + float * latent_data = latent.data(); + + // blend initial noised and processed latents + for (size_t i = 0; i < channel_size; ++i) { + float mask_value = mask_data[i]; + for (size_t j = 0; j < in_channels; ++j) { + latent_data[j * channel_size + i] = (1.0f - mask_value) * noised_image_latent_data[j * channel_size + i] + mask_value * latent_data[j * channel_size + i]; + } + } + } + PipelineType m_pipeline_type; std::shared_ptr m_scheduler; ImageGenerationConfig m_generation_config; diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index 8a9d6aba5c..4cdac5bb1a 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -1,6 +1,8 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#pragma once + #include #include @@ -136,7 +138,13 @@ class FluxPipeline : public DiffusionPipeline { const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { - m_vae = std::make_shared(root_dir / "vae_decoder"); + if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) + m_vae = std::make_shared(root_dir / "vae_decoder"); + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder"); + } else { + OPENVINO_ASSERT("Unsupported pipeline type"); + } } else { OPENVINO_THROW("Unsupported '", vae, "' VAE decoder type"); } @@ -145,7 +153,7 @@ class FluxPipeline : public DiffusionPipeline { if (transformer == "FluxTransformer2DModel") { m_transformer = std::make_shared(root_dir / "transformer"); } else { - OPENVINO_THROW("Unsupported '", transformer, "'Transformer type"); + OPENVINO_THROW("Unsupported '", transformer, "' Transformer type"); } // initialize generation config @@ -182,7 +190,13 @@ class FluxPipeline : public DiffusionPipeline { const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { - m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) + m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); + } else { + OPENVINO_ASSERT("Unsupported pipeline type"); + } } else { OPENVINO_THROW("Unsupported '", vae, "' VAE decoder type"); } @@ -191,7 +205,7 @@ class FluxPipeline : public DiffusionPipeline { if (transformer == "FluxTransformer2DModel") { m_transformer = std::make_shared(root_dir / "transformer", device, properties); } else { - OPENVINO_THROW("Unsupported '", transformer, "'Transformer type"); + OPENVINO_THROW("Unsupported '", transformer, "' Transformer type"); } // initialize generation config @@ -240,27 +254,19 @@ class FluxPipeline : public DiffusionPipeline { void compute_hidden_states(const std::string& positive_prompt, const ImageGenerationConfig& generation_config) override { // encode_prompt - std::string prompt_2_str = - generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; + std::string prompt_2_str = generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; - m_clip_text_encoder->infer(positive_prompt, "", false); - ov::Tensor pooled_prompt_embeds_out = m_clip_text_encoder->get_output_tensor(1); + m_clip_text_encoder->infer(positive_prompt, {}, false); + ov::Tensor pooled_prompt_embeds = m_clip_text_encoder->get_output_tensor(1); + ov::Tensor prompt_embeds = m_t5_text_encoder->infer(prompt_2_str, "", false, generation_config.max_sequence_length); - ov::Tensor prompt_embeds_out = m_t5_text_encoder->infer(prompt_2_str, "", false, generation_config.max_sequence_length); - - ov::Tensor pooled_prompt_embeds, prompt_embeds; - if (generation_config.num_images_per_prompt == 1) { - pooled_prompt_embeds = pooled_prompt_embeds_out; - prompt_embeds = prompt_embeds_out; - } else { - pooled_prompt_embeds = numpy_utils::repeat(pooled_prompt_embeds_out, generation_config.num_images_per_prompt); - prompt_embeds = numpy_utils::repeat(prompt_embeds_out, generation_config.num_images_per_prompt); - } + pooled_prompt_embeds = numpy_utils::repeat(pooled_prompt_embeds, generation_config.num_images_per_prompt); + prompt_embeds = numpy_utils::repeat(prompt_embeds, generation_config.num_images_per_prompt); // text_ids = torch.zeros(prompt_embeds.shape[1], 3) ov::Shape text_ids_shape = {prompt_embeds.get_shape()[1], 3}; ov::Tensor text_ids(ov::element::f32, text_ids_shape); - std::fill_n(text_ids.data(), text_ids_shape[0] * text_ids_shape[1], 0.0f); + std::fill_n(text_ids.data(), text_ids.get_size(), 0.0f); const size_t num_channels_latents = m_transformer->get_config().in_channels / 4; const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); @@ -281,8 +287,7 @@ class FluxPipeline : public DiffusionPipeline { m_transformer->set_hidden_states("img_ids", latent_image_ids); } - ov::Tensor prepare_latents(ov::Tensor initial_image, - const ImageGenerationConfig& generation_config) const override { + std::tuple prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); size_t num_channels_latents = m_transformer->get_config().in_channels / 4; @@ -293,15 +298,25 @@ class FluxPipeline : public DiffusionPipeline { num_channels_latents, height, width}; + ov::Tensor latent(ov::element::f32, {}), proccesed_image, image_latent, noise; - ov::Tensor latents_input = generation_config.generator->randn_tensor(latent_shape); - ov::Tensor latents = pack_latents(latents_input, generation_config.num_images_per_prompt, num_channels_latents, height, width); + if (initial_image) { + OPENVINO_THROW("StableDiffusion3 image to image is not implemented"); + } else { + noise = generation_config.generator->randn_tensor(latent_shape); + latent = pack_latents(noise, generation_config.num_images_per_prompt, num_channels_latents, height, width); + } - return latents; + return std::make_tuple(latent, proccesed_image, image_latent, noise); + } + + void set_lora_adapters(std::optional adapters) override { + OPENVINO_THROW("LORA adapters are not implemented for FLUX pipeline yet"); } ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, + ov::Tensor mask_image, const ov::AnyMap& properties) override { m_custom_generation_config = m_generation_config; m_custom_generation_config.update_generation_config(properties); @@ -311,6 +326,11 @@ class FluxPipeline : public DiffusionPipeline { m_custom_generation_config.strength = 1.0f; } + if (!initial_image) { + // in case of typical text to image generation, we need to ignore 'strength' + m_custom_generation_config.strength = 1.0f; + } + const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); const auto& transformer_config = m_transformer->get_config(); @@ -323,7 +343,8 @@ class FluxPipeline : public DiffusionPipeline { compute_hidden_states(positive_prompt, m_custom_generation_config); - ov::Tensor latents = prepare_latents(initial_image, m_custom_generation_config); + ov::Tensor latents, processed_image, image_latent, noise; + std::tie(latents, processed_image, image_latent, noise) = prepare_latents(initial_image, m_custom_generation_config); size_t image_seq_len = latents.get_shape()[1]; float mu = m_scheduler->calculate_shift(image_seq_len); @@ -384,9 +405,16 @@ class FluxPipeline : public DiffusionPipeline { m_generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor; m_generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor; - if (class_name == "FluxPipeline") { - m_generation_config.guidance_scale = 3.5f; - m_generation_config.num_inference_steps = 28; + if (class_name == "FluxPipeline" || class_name == "FluxImg2ImgPipeline" || class_name == "FluxInpaintPipeline" ) { + if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) { + m_generation_config.guidance_scale = 3.5f; + m_generation_config.num_inference_steps = 28; + m_generation_config.strength = 1.0f; + } else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { + m_generation_config.guidance_scale = 3.5f; + m_generation_config.num_inference_steps = 28; + m_generation_config.strength = 1.0f; + } m_generation_config.max_sequence_length = 512; } else { OPENVINO_THROW("Unsupported class_name '", class_name, "'. Please, contact OpenVINO GenAI developers"); @@ -398,7 +426,7 @@ class FluxPipeline : public DiffusionPipeline { // const size_t vae_scale_factor = m_transformer->get_vae_scale_factor(); const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); OPENVINO_ASSERT((height % vae_scale_factor == 0 || height < 0) && (width % vae_scale_factor == 0 || width < 0), - "Both 'width' and 'height' must be divisible by", + "Both 'width' and 'height' must be divisible by ", vae_scale_factor); } @@ -411,6 +439,22 @@ class FluxPipeline : public DiffusionPipeline { OPENVINO_ASSERT(generation_config.negative_prompt_2 == std::nullopt, "Negative prompt 2 is not used by FluxPipeline"); OPENVINO_ASSERT(generation_config.negative_prompt_3 == std::nullopt, "Negative prompt 3 is not used by FluxPipeline"); OPENVINO_ASSERT(generation_config.prompt_3 == std::nullopt, "Prompt 3 is not used by FluxPipeline"); + + if ((m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) && initial_image) { + ov::Shape initial_image_shape = initial_image.get_shape(); + size_t height = initial_image_shape[1], width = initial_image_shape[2]; + + OPENVINO_ASSERT(generation_config.height == height, + "Height for initial (", height, ") and generated (", generation_config.height,") images must be the same"); + OPENVINO_ASSERT(generation_config.width == width, + "Width for initial (", width, ") and generated (", generation_config.width,") images must be the same"); + + OPENVINO_ASSERT(generation_config.strength >= 0.0f && generation_config.strength <= 1.0f, + "'Strength' generation parameter must be withion [0, 1] range"); + } else { + OPENVINO_ASSERT(generation_config.strength == 1.0f, "'Strength' generation parameter must be 1.0f for Text 2 image pipeline"); + OPENVINO_ASSERT(!initial_image, "Internal error: initial_image must be empty for Text 2 image pipeline"); + } } std::shared_ptr m_transformer = nullptr; diff --git a/src/cpp/src/image_generation/image2image_pipeline.cpp b/src/cpp/src/image_generation/image2image_pipeline.cpp new file mode 100644 index 0000000000..527b532b71 --- /dev/null +++ b/src/cpp/src/image_generation/image2image_pipeline.cpp @@ -0,0 +1,117 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include +#include +#include + +#include "openvino/genai/image_generation/image2image_pipeline.hpp" + +#include "image_generation/stable_diffusion_pipeline.hpp" +#include "image_generation/stable_diffusion_xl_pipeline.hpp" + +#include "utils.hpp" + +namespace ov { +namespace genai { + +Image2ImagePipeline::Image2ImagePipeline(const std::filesystem::path& root_dir) { + const std::string class_name = get_class_name(root_dir); + + if (class_name == "StableDiffusionPipeline" || class_name == "LatentConsistencyModelPipeline") { + m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, root_dir); + } else if (class_name == "StableDiffusionXLPipeline") { + m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, root_dir); + } else { + OPENVINO_THROW("Unsupported text to image generation pipeline '", class_name, "'"); + } +} + +Image2ImagePipeline::Image2ImagePipeline(const std::filesystem::path& root_dir, const std::string& device, const ov::AnyMap& properties) { + const std::string class_name = get_class_name(root_dir); + + if (class_name == "StableDiffusionPipeline" || class_name == "LatentConsistencyModelPipeline") { + m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, root_dir, device, properties); + } else if (class_name == "StableDiffusionXLPipeline") { + m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, root_dir, device, properties); + } else { + OPENVINO_THROW("Unsupported text to image generation pipeline '", class_name, "'"); + } +} + +Image2ImagePipeline::Image2ImagePipeline(const std::shared_ptr& impl) + : m_impl(impl) { + assert(m_impl != nullptr); +} + +Image2ImagePipeline Image2ImagePipeline::stable_diffusion( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return Image2ImagePipeline(impl); +} + +Image2ImagePipeline Image2ImagePipeline::latent_consistency_model( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return Image2ImagePipeline(impl); +} + +Image2ImagePipeline Image2ImagePipeline::stable_diffusion_xl( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const CLIPTextModelWithProjection& clip_text_model_with_projection, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, clip_text_model_with_projection, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return Image2ImagePipeline(impl); +} + +ImageGenerationConfig Image2ImagePipeline::get_generation_config() const { + return m_impl->get_generation_config(); +} + +void Image2ImagePipeline::set_generation_config(const ImageGenerationConfig& generation_config) { + m_impl->set_generation_config(generation_config); +} + +void Image2ImagePipeline::set_scheduler(std::shared_ptr scheduler) { + m_impl->set_scheduler(scheduler); +} + +void Image2ImagePipeline::reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale) { + m_impl->reshape(num_images_per_prompt, height, width, guidance_scale); +} + +void Image2ImagePipeline::compile(const std::string& device, const ov::AnyMap& properties) { + m_impl->compile(device, properties); +} + +ov::Tensor Image2ImagePipeline::generate(const std::string& positive_prompt, ov::Tensor initial_image, const ov::AnyMap& properties) { + OPENVINO_ASSERT(initial_image, "Initial image cannot be empty when passed to Image2ImagePipeline::generate"); + return m_impl->generate(positive_prompt, initial_image, {}, properties); +} + +ov::Tensor Image2ImagePipeline::decode(const ov::Tensor latent) { + return m_impl->decode(latent); +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/image_processor.cpp b/src/cpp/src/image_generation/image_processor.cpp new file mode 100644 index 0000000000..8c73ee2da0 --- /dev/null +++ b/src/cpp/src/image_generation/image_processor.cpp @@ -0,0 +1,169 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "image_generation/image_processor.hpp" + +#include + +#include "openvino/core/model.hpp" +#include "openvino/op/parameter.hpp" +#include "openvino/op/result.hpp" +#include "openvino/op/convert.hpp" +#include "openvino/op/greater_eq.hpp" +#include "openvino/op/select.hpp" + +#include "utils.hpp" // for utils::singleton_core + +namespace ov { +namespace genai { + +namespace { + +std::shared_ptr create_empty_model(ov::element::Type type = ov::element::f32) { + auto parameter = std::make_shared(type, ov::PartialShape::dynamic(4)); + auto result = std::make_shared(parameter); + return std::make_shared(ov::ResultVector{result}, ov::ParameterVector{parameter}); +} + +} // namespace + +IImageProcessor::IImageProcessor(const std::string& device) : + m_device(device) { +} + +ov::Tensor IImageProcessor::execute(ov::Tensor image) { + m_request.set_input_tensor(image); + m_request.infer(); + return m_request.get_output_tensor(); +} + +void IImageProcessor::compile(std::shared_ptr model) { + m_request = utils::singleton_core().compile_model(model, m_device).create_infer_request(); +} + +ImageProcessor::ImageProcessor(const std::string& device, bool do_normalize, bool do_binarize) : + IImageProcessor(device) { + auto image_processor_model = create_empty_model(); + merge_image_preprocessing(image_processor_model, do_normalize, do_binarize); + + compile(image_processor_model); +} + +void ImageProcessor::merge_image_preprocessing(std::shared_ptr model, bool do_normalize, bool do_binarize) { + OPENVINO_ASSERT(do_normalize ^ do_binarize, "Both binarize and normalize are not supported"); + + // https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L90-L110 + ov::preprocess::PrePostProcessor ppp(model); + + ppp.input().tensor() + .set_layout("NHWC") + .set_element_type(ov::element::u8) + .set_color_format(ov::preprocess::ColorFormat::BGR); + ppp.input().model() + .set_layout("NCHW"); + + if (do_normalize) { + ppp.input().tensor().set_layout("NHWC"); + ppp.input().model().set_layout("NCHW"); + + ppp.input().tensor() + .set_element_type(ov::element::u8); + + ppp.input().preprocess() + .convert_layout() + .convert_element_type(ov::element::f32) + // this is less accurate that in VaeImageProcessor::normalize + .scale(255.0 / 2.0) + .mean(1.0f); + } else if (do_binarize) { + ppp.input().preprocess() + .convert_element_type(ov::element::f32) + .convert_color(ov::preprocess::ColorFormat::GRAY) + .scale(255.0f) + .custom([](const ov::Output& port) { + auto constant_0_5 = std::make_shared(ov::element::f32, ov::Shape{1}, 0.5f); + auto constant_1_0 = std::make_shared(ov::element::f32, ov::Shape{1}, 1.0f); + auto constant_0_0 = std::make_shared(ov::element::f32, ov::Shape{1}, 0.0f); + auto mask_bool = std::make_shared(port, constant_0_5); + auto mask_float = std::make_shared(mask_bool, constant_1_0, constant_0_0); + return mask_float; + }); + } + + ppp.build(); +} + +ImageResizer::ImageResizer(const std::string& device, ov::element::Type type, ov::Layout layout, ov::op::v11::Interpolate::InterpolateMode interpolation_mode) { + auto image_parameter = std::make_shared(type, ov::PartialShape::dynamic(4)); + image_parameter->get_output_tensor(0).add_names({"image"}); + + auto target_spatial_shape = std::make_shared(element::i64, Shape{2}); + target_spatial_shape->get_output_tensor(0).add_names({"target_spatial_shape"}); + + ov::PartialShape pshape = ov::PartialShape::dynamic(4); + const auto height_idx = static_cast(get_and_check_height_idx(layout, pshape)); + const auto width_idx = static_cast(get_and_check_width_idx(layout, pshape)); + + // In future consider replacing this to set of new OV operations like `getDimByName(node, "H")` + // This is to allow specifying layout on 'evaluation' stage + const auto axes = op::v0::Constant::create(element::i64, Shape{2}, {height_idx, width_idx}); + + op::util::InterpolateBase::InterpolateAttrs attrs(interpolation_mode, + op::util::InterpolateBase::ShapeCalcMode::SIZES, + {0, 0}, + {0, 0}); + + attrs.coordinate_transformation_mode = op::util::InterpolateBase::CoordinateTransformMode::ASYMMETRIC; + attrs.nearest_mode = op::util::InterpolateBase::NearestMode::FLOOR; + if (attrs.mode != op::util::InterpolateBase::InterpolateMode::NEAREST) { + attrs.coordinate_transformation_mode = op::util::InterpolateBase::CoordinateTransformMode::PYTORCH_HALF_PIXEL; + } + + const auto interp = std::make_shared(image_parameter, target_spatial_shape, axes, attrs); + + auto result = std::make_shared(interp); + auto resize_model = std::make_shared(ov::ResultVector{result}, ov::ParameterVector{image_parameter, target_spatial_shape}); + + m_request = utils::singleton_core().compile_model(resize_model, device).create_infer_request(); +} + +ov::Tensor ImageResizer::execute(ov::Tensor image, int64_t dst_height, int64_t dst_width) { + ov::Tensor target_spatial_tensor(ov::element::i64, ov::Shape{2}); + target_spatial_tensor.data()[0] = dst_height; + target_spatial_tensor.data()[1] = dst_width; + + m_request.set_tensor("image", image); + m_request.set_tensor("target_spatial_shape", target_spatial_tensor); + m_request.infer(); + + return m_request.get_output_tensor(); +} + +size_t ImageResizer::get_and_check_width_idx(const Layout& layout, const PartialShape& shape) { + OPENVINO_ASSERT(ov::layout::has_width(layout), "Layout ", layout.to_string(), " doesn't have `width` dimension"); + OPENVINO_ASSERT(shape.rank().is_static(), "Can't get shape width index for shape with dynamic rank"); + auto idx = ov::layout::width_idx(layout); + if (idx < 0) { + idx = shape.rank().get_length() + idx; + } + OPENVINO_ASSERT(idx >= 0 && shape.rank().get_length() > idx, + "Width dimension is out of bounds ", + std::to_string(idx)); + return idx; +} + +size_t ImageResizer::get_and_check_height_idx(const Layout& layout, const PartialShape& shape) { + OPENVINO_ASSERT(ov::layout::has_height(layout), "Layout ", layout.to_string(), " doesn't have `height` dimension"); + OPENVINO_ASSERT(shape.rank().is_static(), "Can't get shape height index for shape with dynamic rank"); + auto idx = ov::layout::height_idx(layout); + if (idx < 0) { + idx = shape.rank().get_length() + idx; + } + OPENVINO_ASSERT(idx >= 0 && shape.rank().get_length() > idx, + "Height dimension is out of bounds ", + std::to_string(idx)); + return idx; +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/image_processor.hpp b/src/cpp/src/image_generation/image_processor.hpp new file mode 100644 index 0000000000..d0ef7532aa --- /dev/null +++ b/src/cpp/src/image_generation/image_processor.hpp @@ -0,0 +1,50 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "openvino/core/layout.hpp" +#include "openvino/runtime/infer_request.hpp" + +#include "openvino/op/interpolate.hpp" + +namespace ov { +namespace genai { + +class IImageProcessor { +public: + explicit IImageProcessor(const std::string& device); + + virtual ~IImageProcessor() = default; + + virtual ov::Tensor execute(ov::Tensor image); + +protected: + void compile(std::shared_ptr model); + + ov::InferRequest m_request; + std::string m_device; +}; + +class ImageProcessor : public IImageProcessor { +public: + explicit ImageProcessor(const std::string& device, bool do_normalize = true, bool do_binarize = false); + + static void merge_image_preprocessing(std::shared_ptr model, bool do_normalize = true, bool do_binarize = false); +}; + +class ImageResizer { +public: + ImageResizer(const std::string& device, ov::element::Type type, ov::Layout layout, ov::op::v11::Interpolate::InterpolateMode interpolation_mode); + + ov::Tensor execute(ov::Tensor image, int64_t dst_height, int64_t dst_width); + +private: + size_t get_and_check_width_idx(const Layout& layout, const PartialShape& shape); + size_t get_and_check_height_idx(const Layout& layout, const PartialShape& shape); + + ov::InferRequest m_request; +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/inpainting_pipeline.cpp b/src/cpp/src/image_generation/inpainting_pipeline.cpp new file mode 100644 index 0000000000..d3612c4964 --- /dev/null +++ b/src/cpp/src/image_generation/inpainting_pipeline.cpp @@ -0,0 +1,122 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include +#include +#include + +#include "openvino/genai/image_generation/inpainting_pipeline.hpp" + +#include "image_generation/stable_diffusion_pipeline.hpp" +#include "image_generation/stable_diffusion_xl_pipeline.hpp" + +#include "utils.hpp" + +namespace ov { +namespace genai { + +InpaintingPipeline::InpaintingPipeline(const std::filesystem::path& root_dir) { + const std::string class_name = get_class_name(root_dir); + + if (class_name == "StableDiffusionPipeline" || + class_name == "LatentConsistencyModelPipeline" || + class_name == "StableDiffusionInpaintPipeline") { + m_impl = std::make_shared(PipelineType::INPAINTING, root_dir); + } else if (class_name == "StableDiffusionXLPipeline" || class_name == "StableDiffusionXLInpaintPipeline") { + m_impl = std::make_shared(PipelineType::INPAINTING, root_dir); + } else { + OPENVINO_THROW("Unsupported text to image generation pipeline '", class_name, "'"); + } +} + +InpaintingPipeline::InpaintingPipeline(const std::filesystem::path& root_dir, const std::string& device, const ov::AnyMap& properties) { + const std::string class_name = get_class_name(root_dir); + + if (class_name == "StableDiffusionPipeline" || + class_name == "LatentConsistencyModelPipeline" || + class_name == "StableDiffusionInpaintPipeline") { + m_impl = std::make_shared(PipelineType::INPAINTING, root_dir, device, properties); + } else if (class_name == "StableDiffusionXLPipeline" || class_name == "StableDiffusionXLInpaintPipeline") { + m_impl = std::make_shared(PipelineType::INPAINTING, root_dir, device, properties); + } else { + OPENVINO_THROW("Unsupported text to image generation pipeline '", class_name, "'"); + } +} + +InpaintingPipeline::InpaintingPipeline(const std::shared_ptr& impl) + : m_impl(impl) { + assert(m_impl != nullptr); +} + +InpaintingPipeline InpaintingPipeline::stable_diffusion( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return InpaintingPipeline(impl); +} + +InpaintingPipeline InpaintingPipeline::latent_consistency_model( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return InpaintingPipeline(impl); +} + +InpaintingPipeline InpaintingPipeline::stable_diffusion_xl( + const std::shared_ptr& scheduler, + const CLIPTextModel& clip_text_model, + const CLIPTextModelWithProjection& clip_text_model_with_projection, + const UNet2DConditionModel& unet, + const AutoencoderKL& vae) { + auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, clip_text_model_with_projection, unet, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return InpaintingPipeline(impl); +} + +ImageGenerationConfig InpaintingPipeline::get_generation_config() const { + return m_impl->get_generation_config(); +} + +void InpaintingPipeline::set_generation_config(const ImageGenerationConfig& generation_config) { + m_impl->set_generation_config(generation_config); +} + +void InpaintingPipeline::set_scheduler(std::shared_ptr scheduler) { + m_impl->set_scheduler(scheduler); +} + +void InpaintingPipeline::reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale) { + m_impl->reshape(num_images_per_prompt, height, width, guidance_scale); +} + +void InpaintingPipeline::compile(const std::string& device, const ov::AnyMap& properties) { + m_impl->compile(device, properties); +} + +ov::Tensor InpaintingPipeline::generate(const std::string& positive_prompt, ov::Tensor initial_image, ov::Tensor mask, const ov::AnyMap& properties) { + OPENVINO_ASSERT(initial_image, "Initial image cannot be empty when passed to InpaintingPipeline::generate"); + OPENVINO_ASSERT(mask, "Mask image cannot be empty when passed to InpaintingPipeline::generate"); + return m_impl->generate(positive_prompt, initial_image, mask, properties); +} + +ov::Tensor InpaintingPipeline::decode(const ov::Tensor latent) { + return m_impl->decode(latent); +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/models/autoencoder_kl.cpp b/src/cpp/src/image_generation/models/autoencoder_kl.cpp index 7c38cd77fa..e0d6a44189 100644 --- a/src/cpp/src/image_generation/models/autoencoder_kl.cpp +++ b/src/cpp/src/image_generation/models/autoencoder_kl.cpp @@ -102,8 +102,6 @@ AutoencoderKL::AutoencoderKL(const std::filesystem::path& vae_encoder_path, : AutoencoderKL(vae_decoder_path) { ov::Core core = utils::singleton_core(); m_encoder_model = core.read_model((vae_encoder_path / "openvino_model.xml").string()); - // apply VaeImageProcessor pre-processing steps by merging them into the VAE encoder - merge_vae_image_pre_processing(); } AutoencoderKL::AutoencoderKL(const std::filesystem::path& vae_decoder_path, @@ -147,8 +145,6 @@ AutoencoderKL::AutoencoderKL(const std::string& vae_encoder_model, : AutoencoderKL(vae_decoder_model, vae_decoder_weights, vae_decoder_config) { ov::Core core = utils::singleton_core(); m_encoder_model = core.read_model(vae_encoder_model, vae_encoder_weights); - // apply VaeImageProcessor pre-processing steps by merging them into the VAE encoder - merge_vae_image_pre_processing(); } AutoencoderKL::AutoencoderKL(const std::string& vae_decoder_model, @@ -191,7 +187,7 @@ AutoencoderKL& AutoencoderKL::reshape(int batch_size, int height, int width) { const size_t vae_scale_factor = get_vae_scale_factor(); OPENVINO_ASSERT((height % vae_scale_factor == 0 || height < 0) && - (width % vae_scale_factor == 0 || width < 0), "Both 'width' and 'height' must be divisible by", + (width % vae_scale_factor == 0 || width < 0), "Both 'width' and 'height' must be divisible by ", vae_scale_factor); if (m_encoder_model) { @@ -275,27 +271,6 @@ size_t AutoencoderKL::get_vae_scale_factor() const { return std::pow(2, m_config.block_out_channels.size() - 1); } -void AutoencoderKL::merge_vae_image_pre_processing() const { - ov::preprocess::PrePostProcessor ppp(m_encoder_model); - - // https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L90-L110 - - ppp.input().tensor().set_layout("NHWC"); - ppp.input().model().set_layout("NCHW"); - - ppp.input().tensor() - .set_element_type(ov::element::u8); - - ppp.input().preprocess() - .convert_layout() - .convert_element_type(ov::element::f32) - // this is less accurate that in VaeImageProcessor::normalize - .scale(255.0 / 2.0) - .mean(1.0f); - - ppp.build(); -} - void AutoencoderKL::merge_vae_image_post_processing() const { ov::preprocess::PrePostProcessor ppp(m_decoder_model); diff --git a/src/cpp/src/image_generation/numpy_utils.cpp b/src/cpp/src/image_generation/numpy_utils.cpp index 83052dbbf5..d8929d0267 100644 --- a/src/cpp/src/image_generation/numpy_utils.cpp +++ b/src/cpp/src/image_generation/numpy_utils.cpp @@ -74,88 +74,10 @@ std::vector interp(const std::vector& x, const std::vector< return interp_res; } -namespace { - -void concat_3d_axis_2(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { - OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); - OPENVINO_ASSERT(shape_1[0] == shape_2[0] && shape_1[1] == shape_2[1], "Tensors for concatenation must have the same dimensions"); - - for (size_t i = 0; i < shape_1[0]; ++i) { - for (size_t j = 0; j < shape_1[1]; ++j) { - size_t offset_1 = (i * shape_1[1] + j) * shape_1[2]; - size_t offset_2 = (i * shape_2[1] + j) * shape_2[2]; - - size_t step = (i * shape_1[1] + j) * (shape_1[2] + shape_2[2]); - - std::memcpy(res + step, data_1 + offset_1, shape_1[2] * sizeof(float)); - std::memcpy(res + step + shape_1[2], data_2 + offset_2, shape_2[2] * sizeof(float)); - } - } -} - -void concat_2d_axis_1(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { - OPENVINO_ASSERT(shape_1.size() == 2 && shape_2.size() == 2, "Shape dimensions must be 2"); - OPENVINO_ASSERT(shape_1[0] == shape_2[0], "Tensors for concatenation must have the same dimensions"); - - for (size_t i = 0; i < shape_1[0]; ++i) { - size_t offset_1 = i * shape_1[1]; - size_t offset_2 = i * shape_2[1]; - - size_t step = i * (shape_1[1] + shape_2[1]); - - std::memcpy(res + step, data_1 + offset_1, shape_1[1] * sizeof(float)); - std::memcpy(res + step + shape_1[1], - data_2 + offset_2, - shape_2[1] * sizeof(float)); - } -} - -void concat_3d_axis_1(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { - OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); - OPENVINO_ASSERT(shape_1[0] == shape_2[0] && shape_1[2] == shape_2[2], "Tensors for concatenation must have the same dimensions"); - - for (size_t i = 0; i < shape_1[0]; ++i) { - size_t shift_1 = i * shape_1[1] * shape_1[2]; - size_t shift_2 = i * shape_2[1] * shape_2[2]; - - size_t step = shift_1 + shift_2; - - std::memcpy(res + step, data_1 + shift_1, shape_1[1] * shape_1[2] * sizeof(float)); - std::memcpy(res + step + shape_1[1] * shape_1[2], data_2 + shift_2, shape_2[1] * shape_2[2] * sizeof(float)); - } -} - -void concat_3d_axis_0(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { - OPENVINO_ASSERT(shape_1.size() == 3 && shape_2.size() == 3, "Shape dimensions must be 3"); - OPENVINO_ASSERT(shape_1[1] == shape_2[1] && shape_1[2] == shape_2[2], "Tensors for concatenation must have the same dimensions"); - - size_t size_1 = shape_1[0] * shape_1[1] * shape_1[2]; - size_t size_2 = shape_2[0] * shape_2[1] * shape_2[2]; - - std::memcpy(res, data_1, size_1 * sizeof(float)); - std::memcpy(res + size_1, data_2, size_2 * sizeof(float)); -} - -void concat_2d_axis_0(const float* data_1, const float* data_2, float* res, const ov::Shape shape_1, const ov::Shape shape_2) { - OPENVINO_ASSERT(shape_1.size() == 2 && shape_2.size() == 2, "Shape dimensions must be 2"); - OPENVINO_ASSERT(shape_1[1] == shape_2[1], "Tensors for concatenation must have the same dimensions"); - - size_t size_1 = shape_1[0] * shape_1[1]; - size_t size_2 = shape_2[0] * shape_2[1]; - - std::memcpy(res, data_1, size_1 * sizeof(float)); - std::memcpy(res + size_1, data_2, size_2 * sizeof(float)); -} - -} // namespace - ov::Tensor concat(ov::Tensor tensor_1, ov::Tensor tensor_2, int axis) { ov::Shape shape_1 = tensor_1.get_shape(), shape_2 = tensor_2.get_shape(); size_t rank = shape_1.size(); - const size_t MAX_RANK = 3; - OPENVINO_ASSERT(rank <= MAX_RANK, "Maximum support rank of concatenated tensors is ", MAX_RANK, ", given rank is ", rank); - OPENVINO_ASSERT(rank == shape_2.size(), "Shapes for concatenated tensors must have the same rank"); OPENVINO_ASSERT(tensor_1.get_element_type() == ov::element::f32 && tensor_2.get_element_type() == ov::element::f32, "Concat supports only tensor of fp32 data type"); @@ -170,18 +92,31 @@ ov::Tensor concat(ov::Tensor tensor_1, ov::Tensor tensor_2, int axis) { dst_shape[d] = d == axis ? shape_1[d] + shape_2[d] : shape_1[d]; } - typedef void (*concat_func_type) (const float*, const float*, float*, const ov::Shape, const ov::Shape); - concat_func_type concat_funcs [MAX_RANK][MAX_RANK] = { - { nullptr, nullptr, nullptr }, - { concat_2d_axis_0, concat_2d_axis_1, nullptr }, - { concat_3d_axis_0, concat_3d_axis_1, concat_3d_axis_2 } - }; + size_t num_iterations = 1; + for (size_t d = 0; d < axis; ++d) { + num_iterations *= shape_1[d]; + } - concat_func_type concat_func = concat_funcs[rank - 1][axis]; - OPENVINO_ASSERT(concat_func != nullptr, "Unsupported combination of input tensors rank ", rank, " and axis ", axis); + size_t chunk_1 = 1, chunk_2 = 1; + for (size_t d = axis; d < shape_1.size(); ++d) { + chunk_1 *= shape_1[d]; + chunk_2 *= shape_2[d]; + } ov::Tensor dst_tensor(tensor_1.get_element_type(), dst_shape); - concat_func(tensor_1.data(), tensor_2.data(), dst_tensor.data(), shape_1, shape_2); + float * res = dst_tensor.data(); + + const float * data_1 = tensor_1.data(); + const float * data_2 = tensor_2.data(); + + for (size_t i = 0; i < num_iterations; ++i) { + std::memcpy(res , data_1, chunk_1 * sizeof(float)); + std::memcpy(res + chunk_1, data_2, chunk_2 * sizeof(float)); + + res += chunk_1 + chunk_2; + data_1 += chunk_1; + data_2 += chunk_2; + } return dst_tensor; } @@ -200,12 +135,16 @@ void batch_copy(ov::Tensor src, ov::Tensor dst, size_t src_batch, size_t dst_bat ov::Tensor(src, src_start, src_end).copy_to(ov::Tensor(dst, dst_start, dst_end)); } -ov::Tensor repeat(const ov::Tensor input, const size_t num_images_per_prompt) { - ov::Shape repeated_shape = input.get_shape(); - repeated_shape[0] *= num_images_per_prompt; +ov::Tensor repeat(const ov::Tensor input, const size_t n_times) { + if (n_times == 1) + return input; + + ov::Shape input_shape = input.get_shape(), repeated_shape = input_shape; + repeated_shape[0] *= n_times; + ov::Tensor tensor_repeated(input.get_element_type(), repeated_shape); - for (size_t n = 0; n < num_images_per_prompt; ++n) { - batch_copy(input, tensor_repeated, 0, n); + for (size_t n = 0; n < n_times; ++n) { + batch_copy(input, tensor_repeated, 0, n, input_shape[0]); } return tensor_repeated; } diff --git a/src/cpp/src/image_generation/schedulers/ddim.cpp b/src/cpp/src/image_generation/schedulers/ddim.cpp index 4b9b914d05..768ba56837 100644 --- a/src/cpp/src/image_generation/schedulers/ddim.cpp +++ b/src/cpp/src/image_generation/schedulers/ddim.cpp @@ -205,21 +205,18 @@ void DDIMScheduler::scale_model_input(ov::Tensor sample, size_t inference_step) return; } -void DDIMScheduler::add_noise(ov::Tensor init_latent, std::shared_ptr generator) const { - int64_t latent_timestep = m_timesteps.front(); - +void DDIMScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { float sqrt_alpha_prod = std::sqrt(m_alphas_cumprod[latent_timestep]); float sqrt_one_minus_alpha_prod = std::sqrt(1.0 - m_alphas_cumprod[latent_timestep]); - ov::Tensor rand_tensor = generator->randn_tensor(init_latent.get_shape()); - float * init_latent_data = init_latent.data(); - const float * rand_tensor_data = rand_tensor.data(); + const float * noise_data = noise.data(); for (size_t i = 0; i < init_latent.get_size(); ++i) { - init_latent_data[i] = sqrt_alpha_prod * init_latent_data[i] + sqrt_one_minus_alpha_prod * rand_tensor_data[i]; + init_latent_data[i] = sqrt_alpha_prod * init_latent_data[i] + sqrt_one_minus_alpha_prod * noise_data[i]; } } + } // namespace genai } // namespace ov diff --git a/src/cpp/src/image_generation/schedulers/ddim.hpp b/src/cpp/src/image_generation/schedulers/ddim.hpp index f561ded149..7e042cf03e 100644 --- a/src/cpp/src/image_generation/schedulers/ddim.hpp +++ b/src/cpp/src/image_generation/schedulers/ddim.hpp @@ -45,7 +45,7 @@ class DDIMScheduler : public IScheduler { std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; - void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const override; + virtual void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t timestep) const override; private: Config m_config; diff --git a/src/cpp/src/image_generation/schedulers/euler_discrete.cpp b/src/cpp/src/image_generation/schedulers/euler_discrete.cpp index 74c587432b..fe5c185437 100644 --- a/src/cpp/src/image_generation/schedulers/euler_discrete.cpp +++ b/src/cpp/src/image_generation/schedulers/euler_discrete.cpp @@ -301,17 +301,14 @@ size_t EulerDiscreteScheduler::_index_for_timestep(int64_t timestep) const { OPENVINO_THROW("Failed to find index for timestep ", timestep); } -void EulerDiscreteScheduler::add_noise(ov::Tensor init_latent, std::shared_ptr generator) const { - const int64_t latent_timestep = m_timesteps.front(); +void EulerDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { const float sigma = m_sigmas[_index_for_timestep(latent_timestep)]; - ov::Tensor rand_tensor = generator->randn_tensor(init_latent.get_shape()); - float * init_latent_data = init_latent.data(); - const float * rand_tensor_data = rand_tensor.data(); + const float * noise_data = noise.data(); for (size_t i = 0; i < init_latent.get_size(); ++i) { - init_latent_data[i] = init_latent_data[i] + sigma * rand_tensor_data[i]; + init_latent_data[i] = init_latent_data[i] + sigma * noise_data[i]; } } diff --git a/src/cpp/src/image_generation/schedulers/euler_discrete.hpp b/src/cpp/src/image_generation/schedulers/euler_discrete.hpp index 59e20c1be0..43620e7de4 100644 --- a/src/cpp/src/image_generation/schedulers/euler_discrete.hpp +++ b/src/cpp/src/image_generation/schedulers/euler_discrete.hpp @@ -47,7 +47,7 @@ class EulerDiscreteScheduler : public IScheduler { std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; - void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const override; + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; private: Config m_config; diff --git a/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.cpp b/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.cpp index 54ea36f7d1..21d464d7f9 100644 --- a/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.cpp +++ b/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.cpp @@ -141,7 +141,7 @@ void FlowMatchEulerDiscreteScheduler::init_step_index() { m_step_index = (m_begin_index == -1) ? 0 : m_begin_index; } -void FlowMatchEulerDiscreteScheduler::add_noise(ov::Tensor init_latent, std::shared_ptr generator) const { +void FlowMatchEulerDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { // use https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py#L117 OPENVINO_THROW("Not implemented"); } diff --git a/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.hpp b/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.hpp index 1386551a60..6410790b92 100644 --- a/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.hpp +++ b/src/cpp/src/image_generation/schedulers/flow_match_euler_discrete.hpp @@ -40,7 +40,7 @@ class FlowMatchEulerDiscreteScheduler : public IScheduler { std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; - void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const override; + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; float calculate_shift(size_t image_seq_len) override; diff --git a/src/cpp/src/image_generation/schedulers/ischeduler.hpp b/src/cpp/src/image_generation/schedulers/ischeduler.hpp index 18c6572e5d..a6f61b5343 100644 --- a/src/cpp/src/image_generation/schedulers/ischeduler.hpp +++ b/src/cpp/src/image_generation/schedulers/ischeduler.hpp @@ -26,7 +26,7 @@ class IScheduler : public Scheduler { virtual std::map step( ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) = 0; - virtual void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const = 0; + virtual void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const = 0; virtual float calculate_shift(size_t image_seq_len) { OPENVINO_THROW("Scheduler doesn't support `calculate_shift` method"); diff --git a/src/cpp/src/image_generation/schedulers/lcm.cpp b/src/cpp/src/image_generation/schedulers/lcm.cpp index cc1f9a774f..89aed5b5f8 100644 --- a/src/cpp/src/image_generation/schedulers/lcm.cpp +++ b/src/cpp/src/image_generation/schedulers/lcm.cpp @@ -243,19 +243,15 @@ std::vector LCMScheduler::threshold_sample(const std::vector& flat return thresholded_sample; } -void LCMScheduler::add_noise(ov::Tensor init_latent, std::shared_ptr generator) const { - int64_t latent_timestep = m_timesteps.front(); - +void LCMScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { float sqrt_alpha_prod = std::sqrt(m_alphas_cumprod[latent_timestep]); float sqrt_one_minus_alpha_prod = std::sqrt(1.0f - m_alphas_cumprod[latent_timestep]); - ov::Tensor rand_tensor = generator->randn_tensor(init_latent.get_shape()); - float * init_latent_data = init_latent.data(); - const float * rand_tensor_data = rand_tensor.data(); + const float * noise_data = noise.data(); for (size_t i = 0; i < init_latent.get_size(); ++i) { - init_latent_data[i] = sqrt_alpha_prod * init_latent_data[i] + sqrt_one_minus_alpha_prod * rand_tensor_data[i]; + init_latent_data[i] = sqrt_alpha_prod * init_latent_data[i] + sqrt_one_minus_alpha_prod * noise_data[i]; } } diff --git a/src/cpp/src/image_generation/schedulers/lcm.hpp b/src/cpp/src/image_generation/schedulers/lcm.hpp index 0304cd301a..b9e1a55270 100644 --- a/src/cpp/src/image_generation/schedulers/lcm.hpp +++ b/src/cpp/src/image_generation/schedulers/lcm.hpp @@ -52,7 +52,7 @@ class LCMScheduler : public IScheduler { std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; - void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const override; + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; private: Config m_config; diff --git a/src/cpp/src/image_generation/schedulers/lms_discrete.cpp b/src/cpp/src/image_generation/schedulers/lms_discrete.cpp index 125ebf326d..d8c3c23745 100644 --- a/src/cpp/src/image_generation/schedulers/lms_discrete.cpp +++ b/src/cpp/src/image_generation/schedulers/lms_discrete.cpp @@ -254,7 +254,7 @@ std::map LMSDiscreteScheduler::step(ov::Tensor noise_pr return result; } -void LMSDiscreteScheduler::add_noise(ov::Tensor init_latent, std::shared_ptr generator) const { +void LMSDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { // use https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_ddim.py#L474 OPENVINO_THROW("Not implemented"); } diff --git a/src/cpp/src/image_generation/schedulers/lms_discrete.hpp b/src/cpp/src/image_generation/schedulers/lms_discrete.hpp index 7a6b9d314f..53a3eb8c39 100644 --- a/src/cpp/src/image_generation/schedulers/lms_discrete.hpp +++ b/src/cpp/src/image_generation/schedulers/lms_discrete.hpp @@ -41,7 +41,7 @@ class LMSDiscreteScheduler : public IScheduler { std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; - void add_noise(ov::Tensor init_latent, std::shared_ptr generator) const override; + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; private: Config m_config; diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp index 5a5057062c..c4280b3064 100644 --- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp @@ -1,6 +1,8 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#pragma once + #include #include @@ -10,6 +12,7 @@ #include "openvino/genai/image_generation/autoencoder_kl.hpp" #include "openvino/genai/image_generation/clip_text_model.hpp" #include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" +#include "openvino/genai/image_generation/t5_encoder_model.hpp" #include "openvino/genai/image_generation/sd3_transformer_2d_model.hpp" #include "utils.hpp" @@ -80,25 +83,28 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } - const std::string text_encoder_3 = data["text_encoder_3"][1].get(); - if (text_encoder_3 == "T5EncoderModel") { - m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3"); - } else { - m_t5_text_encoder = nullptr; + const auto text_encoder_3_json = data["text_encoder_3"][1]; + if (!text_encoder_3_json.is_null()) { + const std::string text_encoder_3 = text_encoder_3_json.get(); + if (text_encoder_3 == "T5EncoderModel") { + m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3"); + } else { + OPENVINO_THROW("Unsupported '", text_encoder_3, "' text encoder type"); + } } const std::string transformer = data["transformer"][1].get(); if (transformer == "SD3Transformer2DModel") { m_transformer = std::make_shared(root_dir / "transformer"); } else { - OPENVINO_THROW("Unsupported '", transformer, "'Transformer type"); + OPENVINO_THROW("Unsupported '", transformer, "' Transformer type"); } const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) m_vae = std::make_shared(root_dir / "vae_decoder"); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder"); } else { OPENVINO_ASSERT("Unsupported pipeline type"); @@ -141,23 +147,28 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } - const std::string text_encoder_3 = data["text_encoder_3"][1].get(); - if (text_encoder_3 == "T5EncoderModel") { - m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3", device, properties); + const auto text_encoder_3_json = data["text_encoder_3"][1]; + if (!text_encoder_3_json.is_null()) { + const std::string text_encoder_3 = text_encoder_3_json.get(); + if (text_encoder_3 == "T5EncoderModel") { + m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3", device, properties); + } else { + OPENVINO_THROW("Unsupported '", text_encoder_3, "' text encoder type"); + } } const std::string transformer = data["transformer"][1].get(); if (transformer == "SD3Transformer2DModel") { m_transformer = std::make_shared(root_dir / "transformer", device, properties); } else { - OPENVINO_THROW("Unsupported '", transformer, "'Transformer type"); + OPENVINO_THROW("Unsupported '", transformer, "' Transformer type"); } const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); @@ -187,6 +198,19 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { initialize_generation_config("StableDiffusion3Pipeline"); } + StableDiffusion3Pipeline(PipelineType pipeline_type, + const CLIPTextModelWithProjection& clip_text_model_1, + const CLIPTextModelWithProjection& clip_text_model_2, + const SD3Transformer2DModel& transformer, + const AutoencoderKL& vae) + : DiffusionPipeline(pipeline_type), + m_clip_text_encoder_1(std::make_shared(clip_text_model_1)), + m_clip_text_encoder_2(std::make_shared(clip_text_model_2)), + m_vae(std::make_shared(vae)), + m_transformer(std::make_shared(transformer)) { + initialize_generation_config("StableDiffusion3Pipeline"); + } + void reshape(const int num_images_per_prompt, const int height, const int width, @@ -197,7 +221,9 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { do_classifier_free_guidance(guidance_scale) ? 2 : 1; // Transformer accepts 2x batch in case of CFG m_clip_text_encoder_1->reshape(batch_size_multiplier); m_clip_text_encoder_2->reshape(batch_size_multiplier); - m_t5_text_encoder->reshape(batch_size_multiplier, m_generation_config.max_sequence_length); + if (m_t5_text_encoder) { + m_t5_text_encoder->reshape(batch_size_multiplier, m_generation_config.max_sequence_length); + } m_transformer->reshape(num_images_per_prompt * batch_size_multiplier, height, width, @@ -210,7 +236,9 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { m_clip_text_encoder_1->compile(device, properties); m_clip_text_encoder_2->compile(device, properties); - m_t5_text_encoder->compile(device, properties); + if (m_t5_text_encoder) { + m_t5_text_encoder->compile(device, properties); + } m_transformer->compile(device, properties); m_vae->compile(device, properties); } @@ -245,17 +273,17 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { ov::Tensor text_encoder_2_hidden_state = m_clip_text_encoder_2->get_output_tensor(idx_hidden_state_2); ov::Tensor text_encoder_3_output; - if (m_t5_text_encoder == nullptr) { + if (m_t5_text_encoder) { + text_encoder_3_output = m_t5_text_encoder->infer(prompt_3_str, + negative_prompt_3_str, + do_classifier_free_guidance(generation_config.guidance_scale), + generation_config.max_sequence_length); + } else { ov::Shape t5_prompt_embed_shape = {generation_config.num_images_per_prompt, m_clip_text_encoder_1->get_config().max_position_embeddings, transformer_config.joint_attention_dim}; text_encoder_3_output = ov::Tensor(ov::element::f32, t5_prompt_embed_shape); std::fill_n(text_encoder_3_output.data(), text_encoder_3_output.get_size(), 0.0f); - } else { - text_encoder_3_output = m_t5_text_encoder->infer(prompt_3_str, - negative_prompt_3_str, - do_classifier_free_guidance(generation_config.guidance_scale), - m_generation_config.max_sequence_length); } ov::Tensor pooled_prompt_embed_out, prompt_embed_out, pooled_prompt_2_embed_out, prompt_2_embed_out, t5_prompt_embed_out; @@ -298,7 +326,6 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { // padding for clip_prompt_embeds ov::Shape pad_embeds_shape = {clip_prompt_embeds_shape[0], clip_prompt_embeds_shape[1], t5_prompt_embed_shape[2]}; ov::Tensor pad_embeds(ov::element::f32, pad_embeds_shape); - padding_right(clip_prompt_embeds, pad_embeds); // prompt_embeds = torch.cat([pad_embeds, t5_prompt_embed], dim=-2) @@ -356,31 +383,38 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { m_transformer->set_hidden_states("pooled_projections", pooled_prompt_embeds_inp); } - ov::Tensor prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { + std::tuple prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); ov::Shape latent_shape{generation_config.num_images_per_prompt, m_transformer->get_config().in_channels, generation_config.height / vae_scale_factor, generation_config.width / vae_scale_factor}; - ov::Tensor latent(ov::element::f32, {}); + ov::Tensor latent(ov::element::f32, {}), proccesed_image, image_latent, noise; if (initial_image) { OPENVINO_THROW("StableDiffusion3 image to image is not implemented"); } else { - latent = generation_config.generator->randn_tensor(latent_shape); + noise = generation_config.generator->randn_tensor(latent_shape); + latent.set_shape(latent_shape); // latents are multiplied by 'init_noise_sigma' + const float * noise_data = noise.data(); float * latent_data = latent.data(); for (size_t i = 0; i < latent.get_size(); ++i) - latent_data[i] *= m_scheduler->get_init_noise_sigma(); + latent_data[i] = noise_data[i] * m_scheduler->get_init_noise_sigma(); } - return latent; + return std::make_tuple(latent, proccesed_image, image_latent, noise); + } + + void set_lora_adapters(std::optional adapters) override { + OPENVINO_THROW("LORA adapters are not implemented for Stable Diffusion 3 yet"); } ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, + ov::Tensor mask_image, const ov::AnyMap& properties) override { ImageGenerationConfig generation_config = m_generation_config; generation_config.update_generation_config(properties); @@ -416,7 +450,8 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { compute_hidden_states(positive_prompt, generation_config); // 5. Prepare latent variables - ov::Tensor latent = prepare_latents(initial_image, generation_config); + ov::Tensor latent, processed_image, image_latent, noise; + std::tie(latent, processed_image, image_latent, noise) = prepare_latents(initial_image, generation_config); ov::Shape latent_shape_cfg = latent.get_shape(); latent_shape_cfg[0] *= batch_size_multiplier; @@ -497,10 +532,11 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { m_generation_config.height = transformer_config.sample_size * vae_scale_factor; m_generation_config.width = transformer_config.sample_size * vae_scale_factor; - if (class_name == "StableDiffusion3Pipeline") { + if (class_name == "StableDiffusion3Pipeline" || class_name == "StableDiffusion3Img2ImgPipeline" || class_name == "StableDiffusion3InpaintPipeline") { m_generation_config.guidance_scale = 7.0f; m_generation_config.num_inference_steps = 28; m_generation_config.max_sequence_length = 256; + m_generation_config.strength = m_pipeline_type == PipelineType::TEXT_2_IMAGE ? 1.0f : 0.6f; } else { OPENVINO_THROW("Unsupported class_name '", class_name, "'. Please, contact OpenVINO GenAI developers"); } @@ -515,7 +551,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_ASSERT((height % (vae_scale_factor * patch_size) == 0 || height < 0) && (width % (vae_scale_factor * patch_size) == 0 || width < 0), - "Both 'width' and 'height' must be divisible by", + "Both 'width' and 'height' must be divisible by ", vae_scale_factor); } @@ -532,7 +568,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { OPENVINO_ASSERT(is_classifier_free_guidance || generation_config.negative_prompt_3 == std::nullopt, "Negative prompt 3 is not used when guidance scale < 1.0"); - if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE && initial_image) { + if ((m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) && initial_image) { ov::Shape initial_image_shape = initial_image.get_shape(); size_t height = initial_image_shape[1], width = initial_image_shape[2]; diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp index b7153f282a..9dbdbac088 100644 --- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp @@ -1,28 +1,53 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 +#pragma once + #include #include #include #include "image_generation/diffusion_pipeline.hpp" #include "image_generation/numpy_utils.hpp" +#include "image_generation/image_processor.hpp" #include "openvino/genai/image_generation/autoencoder_kl.hpp" #include "openvino/genai/image_generation/clip_text_model.hpp" #include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" #include "openvino/genai/image_generation/unet2d_condition_model.hpp" +#include "openvino/runtime/core.hpp" + #include "json_utils.hpp" #include "lora_helper.hpp" +#include "debug_utils.hpp" +#include "numpy_utils.hpp" namespace ov { namespace genai { class StableDiffusionPipeline : public DiffusionPipeline { public: - StableDiffusionPipeline(PipelineType pipeline_type, const std::filesystem::path& root_dir) : + explicit StableDiffusionPipeline(PipelineType pipeline_type) : DiffusionPipeline(pipeline_type) { + // TODO: support GPU as well + const std::string device = "CPU"; + + if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { + const bool do_normalize = true, do_binarize = false; + m_image_processor = std::make_shared(device, do_normalize, do_binarize); + m_image_resizer = std::make_shared(device, ov::element::u8, "NHWC", ov::op::v11::Interpolate::InterpolateMode::BICUBIC_PILLOW); + } + + if (m_pipeline_type == PipelineType::INPAINTING) { + const bool do_normalize = false, do_binarize = true; + m_mask_processor = std::make_shared(device, do_normalize, do_binarize); + m_mask_resizer = std::make_shared(device, ov::element::f32, "NCHW", ov::op::v11::Interpolate::InterpolateMode::NEAREST); + } + } + + StableDiffusionPipeline(PipelineType pipeline_type, const std::filesystem::path& root_dir) : + StableDiffusionPipeline(pipeline_type) { const std::filesystem::path model_index_path = root_dir / "model_index.json"; std::ifstream file(model_index_path); OPENVINO_ASSERT(file.is_open(), "Failed to open ", model_index_path); @@ -50,7 +75,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) m_vae = std::make_shared(root_dir / "vae_decoder"); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder"); } else { OPENVINO_ASSERT("Unsupported pipeline type"); @@ -64,7 +89,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { } StableDiffusionPipeline(PipelineType pipeline_type, const std::filesystem::path& root_dir, const std::string& device, const ov::AnyMap& properties) : - DiffusionPipeline(pipeline_type) { + StableDiffusionPipeline(pipeline_type) { const std::filesystem::path model_index_path = root_dir / "model_index.json"; std::ifstream file(model_index_path); OPENVINO_ASSERT(file.is_open(), "Failed to open ", model_index_path); @@ -92,7 +117,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); @@ -112,10 +137,11 @@ class StableDiffusionPipeline : public DiffusionPipeline { const CLIPTextModel& clip_text_model, const UNet2DConditionModel& unet, const AutoencoderKL& vae) - : DiffusionPipeline(pipeline_type), - m_clip_text_encoder(std::make_shared(clip_text_model)), - m_unet(std::make_shared(unet)), - m_vae(std::make_shared(vae)) { + : StableDiffusionPipeline(pipeline_type) { + m_clip_text_encoder = std::make_shared(clip_text_model); + m_unet = std::make_shared(unet); + m_vae = std::make_shared(vae); + const bool is_lcm = m_unet->get_config().time_cond_proj_dim > 0; const char * const pipeline_name = is_lcm ? "LatentConsistencyModelPipeline" : "StableDiffusionPipeline"; initialize_generation_config(pipeline_name); @@ -172,38 +198,103 @@ class StableDiffusionPipeline : public DiffusionPipeline { } } - ov::Tensor prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { - const auto& unet_config = m_unet->get_config(); + std::tuple prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { + std::vector timesteps = m_scheduler->get_timesteps(); + OPENVINO_ASSERT(!timesteps.empty(), "Timesteps are not computed yet"); + int64_t latent_timestep = timesteps.front(); + const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); + const bool is_inpainting = m_pipeline_type == PipelineType::INPAINTING, + is_strength_max = is_inpainting && generation_config.strength == 1.0f, + is_inpainting_model = is_inpainting && m_unet->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1), + return_image_latent = is_inpainting && !is_inpainting_model; - ov::Shape latent_shape{generation_config.num_images_per_prompt, unet_config.in_channels, + ov::Shape latent_shape{generation_config.num_images_per_prompt, m_vae->get_config().latent_channels, generation_config.height / vae_scale_factor, generation_config.width / vae_scale_factor}; - ov::Tensor latent; + ov::Tensor latent(ov::element::f32, {}), proccesed_image, image_latent, noise; if (initial_image) { - latent = m_vae->encode(initial_image, generation_config.generator); - if (generation_config.num_images_per_prompt > 1) { - ov::Tensor batched_latent(ov::element::f32, latent_shape); - for (size_t n = 0; n < generation_config.num_images_per_prompt; ++n) { - numpy_utils::batch_copy(latent, batched_latent, 0, n); + proccesed_image = m_image_resizer->execute(initial_image, generation_config.height, generation_config.width); + proccesed_image = m_image_processor->execute(proccesed_image); + + // prepate image latent for cases: + // - image to image + // - inpainting with strength < 1.0 + // - inpainting with non-specialized model + if (!is_strength_max || return_image_latent) { + image_latent = m_vae->encode(proccesed_image, generation_config.generator); + + // in case of image to image or inpaining with strength < 1.0, we need to initialize initial latent with image_latent + if (!is_strength_max) { + image_latent.copy_to(latent); + latent = numpy_utils::repeat(latent, generation_config.num_images_per_prompt); } - latent = batched_latent; } - m_scheduler->add_noise(latent, generation_config.generator); + } + + noise = generation_config.generator->randn_tensor(latent_shape); + + if (!latent.get_shape().empty()) { + m_scheduler->add_noise(latent, noise, latent_timestep); } else { - latent = generation_config.generator->randn_tensor(latent_shape); + latent.set_shape(latent_shape); - // latents are multiplied by 'init_noise_sigma' + // if pure noise then scale the initial latents by the Scheduler's init sigma + const float * noise_data = noise.data(); float * latent_data = latent.data(); for (size_t i = 0; i < latent.get_size(); ++i) - latent_data[i] *= m_scheduler->get_init_noise_sigma(); + latent_data[i] = noise_data[i] * m_scheduler->get_init_noise_sigma(); + } + + return std::make_tuple(latent, proccesed_image, image_latent, noise); + } + + std::tuple prepare_mask_latents(ov::Tensor mask_image, ov::Tensor processed_image, const ImageGenerationConfig& generation_config) { + OPENVINO_ASSERT(m_pipeline_type == PipelineType::INPAINTING, "'prepare_mask_latents' can be called for inpainting pipeline only"); + + const size_t batch_size_multiplier = m_unet->do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1; // Unet accepts 2x batch in case of CFG + const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); + const bool is_inpainting_model = m_unet->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1); + ov::Shape target_shape = processed_image.get_shape(); + + ov::Tensor mask_condition = m_image_resizer->execute(mask_image, target_shape[2], target_shape[3]); + mask_condition = m_mask_processor->execute(mask_condition); + + // resize mask to shape of latent space + ov::Tensor mask = m_mask_resizer->execute(mask_condition, target_shape[2] / vae_scale_factor, target_shape[3] / vae_scale_factor); + mask = numpy_utils::repeat(mask, generation_config.num_images_per_prompt * batch_size_multiplier); + + ov::Tensor masked_image_latent; + + if (is_inpainting_model) { + // create masked image + ov::Tensor masked_image(ov::element::f32, processed_image.get_shape()); + const float * mask_condition_data = mask_condition.data(); + const float * processed_image_data = processed_image.data(); + float * masked_image_data = masked_image.data(); + + for (size_t i = 0, plane_size = mask_condition.get_shape()[2] * mask_condition.get_shape()[3]; i < mask_condition.get_size(); ++i) { + masked_image_data[i + 0 * plane_size] = mask_condition_data[i] < 0.5f ? processed_image_data[i + 0 * plane_size] : 0.0f; + masked_image_data[i + 1 * plane_size] = mask_condition_data[i] < 0.5f ? processed_image_data[i + 1 * plane_size] : 0.0f; + masked_image_data[i + 2 * plane_size] = mask_condition_data[i] < 0.5f ? processed_image_data[i + 2 * plane_size] : 0.0f; + } + + // encode masked image to latent scape + masked_image_latent = m_vae->encode(masked_image, generation_config.generator); + masked_image_latent = numpy_utils::repeat(masked_image_latent, generation_config.num_images_per_prompt * batch_size_multiplier); } - return latent; + return std::make_tuple(mask, masked_image_latent); + } + + void set_lora_adapters(std::optional adapters) override { + m_clip_text_encoder->set_adapters(adapters); + m_unet->set_adapters(adapters); } ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, + ov::Tensor mask_image, const ov::AnyMap& properties) override { using namespace numpy_utils; ImageGenerationConfig generation_config = m_generation_config; @@ -214,21 +305,29 @@ class StableDiffusionPipeline : public DiffusionPipeline { generation_config.strength = 1.0f; } + // use callback if defined + std::function callback; + auto callback_iter = properties.find(ov::genai::callback.name()); + bool do_callback = callback_iter != properties.end(); + if (do_callback) { + callback = callback_iter->second.as>(); + } + // Stable Diffusion pipeline // see https://huggingface.co/docs/diffusers/using-diffusers/write_own_pipeline#deconstruct-the-stable-diffusion-pipeline const auto& unet_config = m_unet->get_config(); const size_t batch_size_multiplier = m_unet->do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1; // Unet accepts 2x batch in case of CFG const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); + const bool is_inpainting_model = unet_config.in_channels == (m_vae->get_config().latent_channels * 2 + 1); if (generation_config.height < 0) - generation_config.height = unet_config.sample_size * vae_scale_factor; + compute_dim(generation_config.height, initial_image, 1 /* assume NHWC */); if (generation_config.width < 0) - generation_config.width = unet_config.sample_size * vae_scale_factor; + compute_dim(generation_config.width, initial_image, 2 /* assume NHWC */); check_inputs(generation_config, initial_image); - m_clip_text_encoder->set_adapters(generation_config.adapters); - m_unet->set_adapters(generation_config.adapters); + set_lora_adapters(generation_config.adapters); if (generation_config.generator == nullptr) { uint32_t seed = time(NULL); @@ -241,23 +340,22 @@ class StableDiffusionPipeline : public DiffusionPipeline { // compute text encoders and set hidden states compute_hidden_states(positive_prompt, generation_config); - // preparate initial latents - ov::Tensor latent = prepare_latents(initial_image, generation_config); + // preparate initial / image latents + ov::Tensor latent, processed_image, image_latent, noise; + std::tie(latent, processed_image, image_latent, noise) = prepare_latents(initial_image, generation_config); + + // prepare mask latents + ov::Tensor mask, masked_image_latent; + if (m_pipeline_type == PipelineType::INPAINTING) { + std::tie(mask, masked_image_latent) = prepare_mask_latents(mask_image, processed_image, generation_config); + } // prepare latents passed to models taking into account guidance scale (batch size multipler) ov::Shape latent_shape_cfg = latent.get_shape(); latent_shape_cfg[0] *= batch_size_multiplier; - ov::Tensor latent_cfg(ov::element::f32, latent_shape_cfg); - // use callback if defined - std::function callback; - auto callback_iter = properties.find(ov::genai::callback.name()); - bool do_callback = callback_iter != properties.end(); - if (do_callback) { - callback = callback_iter->second.as>(); - } + ov::Tensor latent_cfg(ov::element::f32, latent_shape_cfg), denoised, noisy_residual_tensor(ov::element::f32, {}), latent_model_input; - ov::Tensor denoised, noisy_residual_tensor(ov::element::f32, {}); for (size_t inference_step = 0; inference_step < timesteps.size(); inference_step++) { numpy_utils::batch_copy(latent, latent_cfg, 0, 0, generation_config.num_images_per_prompt); // concat the same latent twice along a batch dimension in case of CFG @@ -267,12 +365,13 @@ class StableDiffusionPipeline : public DiffusionPipeline { m_scheduler->scale_model_input(latent_cfg, inference_step); + ov::Tensor latent_model_input = is_inpainting_model ? numpy_utils::concat(numpy_utils::concat(latent_cfg, mask, 1), masked_image_latent, 1) : latent_cfg; ov::Tensor timestep(ov::element::i64, {1}, ×teps[inference_step]); - ov::Tensor noise_pred_tensor = m_unet->infer(latent_cfg, timestep); + ov::Tensor noise_pred_tensor = m_unet->infer(latent_model_input, timestep); ov::Shape noise_pred_shape = noise_pred_tensor.get_shape(); noise_pred_shape[0] /= batch_size_multiplier; - + if (batch_size_multiplier > 1) { noisy_residual_tensor.set_shape(noise_pred_shape); @@ -292,6 +391,11 @@ class StableDiffusionPipeline : public DiffusionPipeline { auto scheduler_step_result = m_scheduler->step(noisy_residual_tensor, latent, inference_step, generation_config.generator); latent = scheduler_step_result["latent"]; + // in case of non-specialized inpainting model, we need manually mask current denoised latent and initial image latent + if (m_pipeline_type == PipelineType::INPAINTING && !is_inpainting_model) { + blend_latents(image_latent, noise, mask, latent, inference_step); + } + // check whether scheduler returns "denoised" image, which should be passed to VAE decoder const auto it = scheduler_step_result.find("denoised"); denoised = it != scheduler_step_result.end() ? it->second : latent; @@ -310,21 +414,41 @@ class StableDiffusionPipeline : public DiffusionPipeline { return m_vae->decode(latent); } -private: +protected: + void compute_dim(int64_t & generation_config_value, ov::Tensor initial_image, int dim_idx) { + const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); + const auto& unet_config = m_unet->get_config(); + + // in case of image to image generation_config_value is just ignored and computed based on initial image + if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + OPENVINO_ASSERT(initial_image, "Initial image is empty for image to image pipeline"); + ov::Shape shape = initial_image.get_shape(); + int64_t dim_val = shape[dim_idx]; + + generation_config_value = dim_val - (dim_val % vae_scale_factor); + } + + if (generation_config_value < 0) + generation_config_value = unet_config.sample_size * vae_scale_factor; + } + void initialize_generation_config(const std::string& class_name) override { assert(m_unet != nullptr); assert(m_vae != nullptr); const auto& unet_config = m_unet->get_config(); const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); - m_generation_config.height = unet_config.sample_size * vae_scale_factor; - m_generation_config.width = unet_config.sample_size * vae_scale_factor; + // in case of image to image, the shape is computed based on initial image + if (m_pipeline_type != PipelineType::IMAGE_2_IMAGE) { + m_generation_config.height = unet_config.sample_size * vae_scale_factor; + m_generation_config.width = unet_config.sample_size * vae_scale_factor; + } - if (class_name == "StableDiffusionPipeline") { + if (class_name == "StableDiffusionPipeline" || class_name == "StableDiffusionInpaintPipeline" || class_name == "StableDiffusionInpaintPipeline") { m_generation_config.guidance_scale = 7.5f; m_generation_config.num_inference_steps = 50; m_generation_config.strength = m_pipeline_type == PipelineType::IMAGE_2_IMAGE ? 0.8f : 1.0f; - } else if (class_name == "LatentConsistencyModelPipeline") { + } else if (class_name == "LatentConsistencyModelPipeline" || class_name == "LatentConsistencyModelImg2ImgPipeline") { m_generation_config.guidance_scale = 8.5f; m_generation_config.num_inference_steps = 4; m_generation_config.strength = m_pipeline_type == PipelineType::IMAGE_2_IMAGE ? 0.8f : 1.0f; @@ -337,7 +461,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { assert(m_vae != nullptr); const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); OPENVINO_ASSERT((height % vae_scale_factor == 0 || height < 0) && - (width % vae_scale_factor == 0 || width < 0), "Both 'width' and 'height' must be divisible by", + (width % vae_scale_factor == 0 || width < 0), "Both 'width' and 'height' must be divisible by ", vae_scale_factor); } @@ -358,14 +482,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { OPENVINO_ASSERT(generation_config.negative_prompt_2 == std::nullopt, "Negative prompt 2 is not used by ", pipeline_name); OPENVINO_ASSERT(generation_config.negative_prompt_3 == std::nullopt, "Negative prompt 3 is not used by ", pipeline_name); - if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE && initial_image) { - ov::Shape initial_image_shape = initial_image.get_shape(); - size_t height = initial_image_shape[1], width = initial_image_shape[2]; - - OPENVINO_ASSERT(generation_config.height == height, - "Height for initial (", height, ") and generated (", generation_config.height,") images must be the same"); - OPENVINO_ASSERT(generation_config.width == width, - "Width for initial (", width, ") and generated (", generation_config.width,") images must be the same"); + if ((m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) && initial_image) { OPENVINO_ASSERT(generation_config.strength >= 0.0f && generation_config.strength <= 1.0f, "'Strength' generation parameter must be withion [0, 1] range"); } else { @@ -380,6 +497,8 @@ class StableDiffusionPipeline : public DiffusionPipeline { std::shared_ptr m_clip_text_encoder = nullptr; std::shared_ptr m_unet = nullptr; std::shared_ptr m_vae = nullptr; + std::shared_ptr m_image_processor = nullptr, m_mask_processor = nullptr; + std::shared_ptr m_image_resizer = nullptr, m_mask_resizer = nullptr; }; } // namespace genai diff --git a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp index a7eb84bd3d..698b4b28da 100644 --- a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp @@ -1,78 +1,40 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 -#include -#include -#include +#pragma once -#include "image_generation/diffusion_pipeline.hpp" - -#include "openvino/genai/image_generation/autoencoder_kl.hpp" -#include "openvino/genai/image_generation/clip_text_model.hpp" +#include "image_generation/stable_diffusion_pipeline.hpp" #include "openvino/genai/image_generation/clip_text_model_with_projection.hpp" -#include "openvino/genai/image_generation/unet2d_condition_model.hpp" - -#include "json_utils.hpp" namespace ov { namespace genai { -class StableDiffusionXLPipeline : public DiffusionPipeline { +class StableDiffusionXLPipeline : public StableDiffusionPipeline { public: StableDiffusionXLPipeline(PipelineType pipeline_type, const std::filesystem::path& root_dir) : - DiffusionPipeline(pipeline_type) { + StableDiffusionPipeline(pipeline_type, root_dir) { const std::filesystem::path model_index_path = root_dir / "model_index.json"; std::ifstream file(model_index_path); OPENVINO_ASSERT(file.is_open(), "Failed to open ", model_index_path); nlohmann::json data = nlohmann::json::parse(file); - using utils::read_json_param; - - set_scheduler(Scheduler::from_config(root_dir / "scheduler/scheduler_config.json")); - - const std::string text_encoder = data["text_encoder"][1].get(); - if (text_encoder == "CLIPTextModel") { - m_clip_text_encoder = std::make_shared(root_dir / "text_encoder"); - } else { - OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); - } const std::string text_encoder_2 = data["text_encoder_2"][1].get(); if (text_encoder_2 == "CLIPTextModelWithProjection") { m_clip_text_encoder_with_projection = std::make_shared(root_dir / "text_encoder_2"); } else { - OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); - } - - const std::string unet = data["unet"][1].get(); - if (unet == "UNet2DConditionModel") { - m_unet = std::make_shared(root_dir / "unet"); - } else { - OPENVINO_THROW("Unsupported '", unet, "' UNet type"); - } - - const std::string vae = data["vae"][1].get(); - if (vae == "AutoencoderKL") { - if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) - m_vae = std::make_shared(root_dir / "vae_decoder"); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { - m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder"); - } else { - OPENVINO_ASSERT("Unsupported pipeline type"); - } - } else { - OPENVINO_THROW("Unsupported '", vae, "' VAE decoder type"); + OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } // initialize generation config initialize_generation_config(data["_class_name"].get()); // initialize force_zeros_for_empty_prompt, which is SDXL specific - read_json_param(data, "force_zeros_for_empty_prompt", m_force_zeros_for_empty_prompt); + utils::read_json_param(data, "force_zeros_for_empty_prompt", m_force_zeros_for_empty_prompt); } StableDiffusionXLPipeline(PipelineType pipeline_type, const std::filesystem::path& root_dir, const std::string& device, const ov::AnyMap& properties) : - DiffusionPipeline(pipeline_type) { + StableDiffusionPipeline(pipeline_type) { const std::filesystem::path model_index_path = root_dir / "model_index.json"; std::ifstream file(model_index_path); OPENVINO_ASSERT(file.is_open(), "Failed to open ", model_index_path); @@ -101,7 +63,7 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { properties_for_text_encoder(properties, "lora_te2") ); } else { - OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); + OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } const std::string unet = data["unet"][1].get(); @@ -121,9 +83,9 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) - m_vae = std::make_shared(root_dir / "vae_decoder", device, updated_roperties); - else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { - m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, updated_roperties); + m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); } @@ -146,11 +108,9 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { const CLIPTextModelWithProjection& clip_text_model_with_projection, const UNet2DConditionModel& unet, const AutoencoderKL& vae) - : DiffusionPipeline(pipeline_type), - m_clip_text_encoder(std::make_shared(clip_text_model)), - m_clip_text_encoder_with_projection(std::make_shared(clip_text_model_with_projection)), - m_unet(std::make_shared(unet)), - m_vae(std::make_shared(vae)) { + : StableDiffusionPipeline(pipeline_type, clip_text_model, unet, vae) { + m_clip_text_encoder_with_projection = std::make_shared(clip_text_model_with_projection); + // initialize generation config initialize_generation_config("StableDiffusionXLPipeline"); // here we implicitly imply that force_zeros_for_empty_prompt is set to True as by default in diffusers m_force_zeros_for_empty_prompt = true; @@ -194,14 +154,9 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { std::copy(time_ids.begin(), time_ids.end(), add_time_ids_data + time_ids.size()); } - std::string prompt_2_str = - generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; - std::string negative_prompt_1_str = generation_config.negative_prompt != std::nullopt - ? *generation_config.negative_prompt - : std::string{}; - std::string negative_prompt_2_str = generation_config.negative_prompt_2 != std::nullopt - ? *generation_config.negative_prompt_2 - : negative_prompt_1_str; + std::string prompt_2_str = generation_config.prompt_2 != std::nullopt ? *generation_config.prompt_2 : positive_prompt; + std::string negative_prompt_1_str = generation_config.negative_prompt != std::nullopt ? *generation_config.negative_prompt : std::string{}; + std::string negative_prompt_2_str = generation_config.negative_prompt_2 != std::nullopt ? *generation_config.negative_prompt_2 : negative_prompt_1_str; // see https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L423-L427 bool force_zeros_for_empty_prompt = generation_config.negative_prompt == std::nullopt && m_force_zeros_for_empty_prompt; @@ -220,26 +175,7 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { ov::Tensor encoder_hidden_states_1 = m_clip_text_encoder->get_output_tensor(idx_hidden_state_1); ov::Tensor encoder_hidden_states_2 = m_clip_text_encoder_with_projection->get_output_tensor(idx_hidden_state_2); - ov::Shape ehs_1_shape = encoder_hidden_states_1.get_shape(); - ov::Shape ehs_2_shape = encoder_hidden_states_2.get_shape(); - - OPENVINO_ASSERT(ehs_1_shape[0] == ehs_2_shape[0] && ehs_1_shape[1] == ehs_2_shape[1], - "Tensors for concatenation must have the same dimensions"); - - // concatenate hidden_states from two encoders - ov::Shape encoder_hidden_states_shape = {ehs_1_shape[0], ehs_1_shape[1], ehs_1_shape[2] + ehs_2_shape[2]}; - encoder_hidden_states.set_shape(encoder_hidden_states_shape); - - const float* ehs_1_data = encoder_hidden_states_1.data(); - const float* ehs_2_data = encoder_hidden_states_2.data(); - float* encoder_hidden_states_data = encoder_hidden_states.data(); - - for (size_t i = 0; i < ehs_1_shape[0] * ehs_1_shape[1]; ++i, - encoder_hidden_states_data += encoder_hidden_states_shape[2], - ehs_1_data += ehs_1_shape[2], ehs_2_data += ehs_2_shape[2]) { - std::memcpy(encoder_hidden_states_data , ehs_1_data, ehs_1_shape[2] * sizeof(float)); - std::memcpy(encoder_hidden_states_data + ehs_1_shape[2], ehs_2_data, ehs_2_shape[2] * sizeof(float)); - } + encoder_hidden_states = numpy_utils::concat(encoder_hidden_states_1, encoder_hidden_states_2, -1); } else { ov::Tensor add_text_embeds_positive = m_clip_text_encoder_with_projection->infer(positive_prompt, negative_prompt_1_str, false); m_clip_text_encoder->infer(prompt_2_str, negative_prompt_2_str, false); @@ -342,142 +278,10 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { } } - ov::Tensor prepare_latents(ov::Tensor initial_image, const ImageGenerationConfig& generation_config) const override { - const auto& unet_config = m_unet->get_config(); - const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); - - ov::Shape latent_shape{generation_config.num_images_per_prompt, unet_config.in_channels, - generation_config.height / vae_scale_factor, generation_config.width / vae_scale_factor}; - ov::Tensor latent; - - if (initial_image) { - latent = m_vae->encode(initial_image, generation_config.generator); - if (generation_config.num_images_per_prompt > 1) { - ov::Tensor batched_latent(ov::element::f32, latent_shape); - for (size_t n = 0; n < generation_config.num_images_per_prompt; ++n) { - numpy_utils::batch_copy(latent, batched_latent, 0, n); - } - latent = batched_latent; - } - m_scheduler->add_noise(latent, generation_config.generator); - } else { - latent = generation_config.generator->randn_tensor(latent_shape); - - // latents are multiplied by 'init_noise_sigma' - float * latent_data = latent.data(); - for (size_t i = 0; i < latent.get_size(); ++i) - latent_data[i] *= m_scheduler->get_init_noise_sigma(); - } - - return latent; - } - - ov::Tensor generate(const std::string& positive_prompt, - ov::Tensor initial_image, - const ov::AnyMap& properties) override { - ImageGenerationConfig generation_config = m_generation_config; - generation_config.update_generation_config(properties); - - if (!initial_image) { - // in case of typical text to image generation, we need to ignore 'strength' - generation_config.strength = 1.0f; - } - - // Stable Diffusion pipeline - // see https://huggingface.co/docs/diffusers/using-diffusers/write_own_pipeline#deconstruct-the-stable-diffusion-pipeline - - const auto& unet_config = m_unet->get_config(); - const size_t batch_size_multiplier = m_unet->do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1; // Unet accepts 2x batch in case of CFG - const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); - - if (generation_config.height < 0) - generation_config.height = unet_config.sample_size * vae_scale_factor; - if (generation_config.width < 0) - generation_config.width = unet_config.sample_size * vae_scale_factor; - check_inputs(generation_config, initial_image); - - m_clip_text_encoder->set_adapters(generation_config.adapters); - m_clip_text_encoder_with_projection->set_adapters(generation_config.adapters); - m_unet->set_adapters(generation_config.adapters); - - if (generation_config.generator == nullptr) { - uint32_t seed = time(NULL); - generation_config.generator = std::make_shared(seed); - } - - m_scheduler->set_timesteps(generation_config.num_inference_steps, generation_config.strength); - std::vector timesteps = m_scheduler->get_timesteps(); - - // compute text encoders and set hidden states - compute_hidden_states(positive_prompt, generation_config); - - // preparate initial latents - ov::Tensor latent = prepare_latents(initial_image, generation_config); - - // prepare latents passed to models taking into account guidance scale (batch size multipler) - ov::Shape latent_shape_cfg = latent.get_shape(); - latent_shape_cfg[0] *= batch_size_multiplier; - ov::Tensor latent_cfg(ov::element::f32, latent_shape_cfg); - - // use callback if defined - std::function callback; - auto callback_iter = properties.find(ov::genai::callback.name()); - bool do_callback = callback_iter != properties.end(); - if (do_callback) { - callback = callback_iter->second.as>(); - } - - ov::Tensor denoised, noisy_residual_tensor(ov::element::f32, {}); - for (size_t inference_step = 0; inference_step < timesteps.size(); inference_step++) { - numpy_utils::batch_copy(latent, latent_cfg, 0, 0, generation_config.num_images_per_prompt); - // concat the same latent twice along a batch dimension in case of CFG - if (batch_size_multiplier > 1) { - numpy_utils::batch_copy(latent, latent_cfg, 0, generation_config.num_images_per_prompt, generation_config.num_images_per_prompt); - } - - m_scheduler->scale_model_input(latent_cfg, inference_step); - - ov::Tensor timestep(ov::element::i64, {1}, ×teps[inference_step]); - ov::Tensor noise_pred_tensor = m_unet->infer(latent_cfg, timestep); - - ov::Shape noise_pred_shape = noise_pred_tensor.get_shape(); - noise_pred_shape[0] /= batch_size_multiplier; - - if (batch_size_multiplier > 1) { - noisy_residual_tensor.set_shape(noise_pred_shape); - - // perform guidance - float* noisy_residual = noisy_residual_tensor.data(); - const float* noise_pred_uncond = noise_pred_tensor.data(); - const float* noise_pred_text = noise_pred_uncond + noisy_residual_tensor.get_size(); - - for (size_t i = 0; i < noisy_residual_tensor.get_size(); ++i) { - noisy_residual[i] = noise_pred_uncond[i] + - generation_config.guidance_scale * (noise_pred_text[i] - noise_pred_uncond[i]); - } - } else { - noisy_residual_tensor = noise_pred_tensor; - } - - auto scheduler_step_result = m_scheduler->step(noisy_residual_tensor, latent, inference_step, generation_config.generator); - latent = scheduler_step_result["latent"]; - - // check whether scheduler returns "denoised" image, which should be passed to VAE decoder - const auto it = scheduler_step_result.find("denoised"); - denoised = it != scheduler_step_result.end() ? it->second : latent; - - if (do_callback) { - if (callback(inference_step, denoised)) { - return ov::Tensor(ov::element::u8, {}); - } - } - } - - return decode(denoised); - } - - ov::Tensor decode(const ov::Tensor latent) override { - return m_vae->decode(latent); + void set_lora_adapters(std::optional adapters) override { + m_clip_text_encoder->set_adapters(adapters); + m_clip_text_encoder_with_projection->set_adapters(adapters); + m_unet->set_adapters(adapters); } private: @@ -490,23 +294,25 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { m_generation_config.height = unet_config.sample_size * vae_scale_factor; m_generation_config.width = unet_config.sample_size * vae_scale_factor; - if (class_name == "StableDiffusionXLPipeline") { - m_generation_config.guidance_scale = 5.0f; - m_generation_config.num_inference_steps = 50; - m_generation_config.strength = m_pipeline_type == PipelineType::IMAGE_2_IMAGE ? 0.3f : 1.0f; + if (class_name == "StableDiffusionXLPipeline" || class_name == "StableDiffusionXLImg2ImgPipeline" || class_name == "StableDiffusionXLInpaintPipeline") { + if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) { + m_generation_config.guidance_scale = 5.0f; + m_generation_config.num_inference_steps = 50; + m_generation_config.strength = 1.0f; + } else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) { + m_generation_config.guidance_scale = 5.0f; + m_generation_config.num_inference_steps = 50; + m_generation_config.strength = 0.3f; + } else if (m_pipeline_type == PipelineType::INPAINTING) { + m_generation_config.guidance_scale = 7.5f; + m_generation_config.num_inference_steps = 50; + m_generation_config.strength == 0.9999f; + } } else { OPENVINO_THROW("Unsupported class_name '", class_name, "'. Please, contact OpenVINO GenAI developers"); } } - void check_image_size(const int height, const int width) const override { - assert(m_vae != nullptr); - const size_t vae_scale_factor = m_vae->get_vae_scale_factor(); - OPENVINO_ASSERT((height % vae_scale_factor == 0 || height < 0) && - (width % vae_scale_factor == 0 || width < 0), "Both 'width' and 'height' must be divisible by", - vae_scale_factor); - } - void check_inputs(const ImageGenerationConfig& generation_config, ov::Tensor initial_image) const override { check_image_size(generation_config.width, generation_config.height); @@ -518,14 +324,7 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { OPENVINO_ASSERT(is_classifier_free_guidance || generation_config.negative_prompt_2 == std::nullopt, "Negative prompt 2 is not used when guidance scale <= 1.0"); OPENVINO_ASSERT(generation_config.negative_prompt_3 == std::nullopt, "Negative prompt 3 is not used by ", pipeline_name); - if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE && initial_image) { - ov::Shape initial_image_shape = initial_image.get_shape(); - size_t height = initial_image_shape[1], width = initial_image_shape[2]; - - OPENVINO_ASSERT(generation_config.height == height, - "Height for initial (", height, ") and generated (", generation_config.height,") images must be the same"); - OPENVINO_ASSERT(generation_config.width == width, - "Width for initial (", width, ") and generated (", generation_config.width,") images must be the same"); + if ((m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) && initial_image) { OPENVINO_ASSERT(generation_config.strength >= 0.0f && generation_config.strength <= 1.0f, "'Strength' generation parameter must be withion [0, 1] range"); } else { @@ -547,10 +346,7 @@ class StableDiffusionXLPipeline : public DiffusionPipeline { friend class Image2ImagePipeline; bool m_force_zeros_for_empty_prompt = true; - std::shared_ptr m_clip_text_encoder = nullptr; std::shared_ptr m_clip_text_encoder_with_projection = nullptr; - std::shared_ptr m_unet = nullptr; - std::shared_ptr m_vae = nullptr; }; } // namespace genai diff --git a/src/cpp/src/image_generation/text2image_pipeline.cpp b/src/cpp/src/image_generation/text2image_pipeline.cpp index 66dda88454..6ceb076f85 100644 --- a/src/cpp/src/image_generation/text2image_pipeline.cpp +++ b/src/cpp/src/image_generation/text2image_pipeline.cpp @@ -111,6 +111,20 @@ Text2ImagePipeline Text2ImagePipeline::stable_diffusion_3( return Text2ImagePipeline(impl); } +Text2ImagePipeline Text2ImagePipeline::stable_diffusion_3( + const std::shared_ptr& scheduler, + const CLIPTextModelWithProjection& clip_text_model_1, + const CLIPTextModelWithProjection& clip_text_model_2, + const SD3Transformer2DModel& transformer, + const AutoencoderKL& vae){ + auto impl = std::make_shared(PipelineType::TEXT_2_IMAGE, clip_text_model_1, clip_text_model_2, transformer, vae); + + assert(scheduler != nullptr); + impl->set_scheduler(scheduler); + + return Text2ImagePipeline(impl); +} + Text2ImagePipeline Text2ImagePipeline::flux( const std::shared_ptr& scheduler, const CLIPTextModel& clip_text_model, @@ -144,7 +158,7 @@ void Text2ImagePipeline::compile(const std::string& device, const ov::AnyMap& pr } ov::Tensor Text2ImagePipeline::generate(const std::string& positive_prompt, const ov::AnyMap& properties) { - return m_impl->generate(positive_prompt, {}, properties); + return m_impl->generate(positive_prompt, {}, {}, properties); } ov::Tensor Text2ImagePipeline::decode(const ov::Tensor latent) { diff --git a/src/docs/SUPPORTED_MODELS.md b/src/docs/SUPPORTED_MODELS.md index c041e349ed..fe13e5848f 100644 --- a/src/docs/SUPPORTED_MODELS.md +++ b/src/docs/SUPPORTED_MODELS.md @@ -157,16 +157,20 @@ The pipeline can work with other similar topologies produced by `optimum-intel` > [!NOTE] > Models should belong to the same family and have the same tokenizers. -## Text 2 image models +## Image generation models + + + + + + + + + + + +
ArchitectureText 2 imageImage 2 image Example HuggingFace Models
Latent Consistency ModelSupportedSupported
Stable DiffusionSupportedSupported
Stable Diffusion XLSupportedSupported
Stable Diffusion 3SupportedNot supported
FluxSupportedNot supported
+## Inpainting models + +In addition to image generation models, `InpaintingPipeline` supports specialized inpainting models + + + + + + + + + + + + + + + + + +
ArchitectureExample HuggingFace Models
Stable Diffusion + +
Stable Diffusion XL + +
+ ## Visual language models diff --git a/src/python/openvino_genai/__init__.py b/src/python/openvino_genai/__init__.py index a97812261f..ca7c2c0b32 100644 --- a/src/python/openvino_genai/__init__.py +++ b/src/python/openvino_genai/__init__.py @@ -69,6 +69,8 @@ SD3Transformer2DModel, AutoencoderKL, Text2ImagePipeline, + Image2ImagePipeline, + InpaintingPipeline, Scheduler, ImageGenerationConfig, Generator, diff --git a/src/python/openvino_genai/__init__.pyi b/src/python/openvino_genai/__init__.pyi index e7e4e2619c..4d74e17588 100644 --- a/src/python/openvino_genai/__init__.pyi +++ b/src/python/openvino_genai/__init__.pyi @@ -19,7 +19,9 @@ from openvino_genai.py_openvino_genai import FluxTransformer2DModel from openvino_genai.py_openvino_genai import GenerationConfig from openvino_genai.py_openvino_genai import GenerationResult from openvino_genai.py_openvino_genai import Generator +from openvino_genai.py_openvino_genai import Image2ImagePipeline from openvino_genai.py_openvino_genai import ImageGenerationConfig +from openvino_genai.py_openvino_genai import InpaintingPipeline from openvino_genai.py_openvino_genai import LLMPipeline from openvino_genai.py_openvino_genai import PerfMetrics from openvino_genai.py_openvino_genai import RawPerfMetrics @@ -41,5 +43,5 @@ from openvino_genai.py_openvino_genai import WhisperRawPerfMetrics from openvino_genai.py_openvino_genai import draft_model import os as os from . import py_openvino_genai -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationResult', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationResult', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] __version__: str = '2025.0.0.0' diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 24bf6fd785..8ab0407ea7 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -5,7 +5,7 @@ from __future__ import annotations import openvino._pyopenvino import os import typing -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'ImageGenerationConfig', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] class Adapter: """ Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. @@ -745,6 +745,78 @@ class Generator: """ def __init__(self) -> None: ... +class Image2ImagePipeline: + """ + This class is used for generation with image-to-image models. + """ + @staticmethod + def latent_consistency_model(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Image2ImagePipeline: + ... + @staticmethod + def stable_diffusion(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Image2ImagePipeline: + ... + @staticmethod + def stable_diffusion_xl(scheduler: Scheduler, clip_text_model: CLIPTextModel, clip_text_model_with_projection: CLIPTextModelWithProjection, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Image2ImagePipeline: + ... + @typing.overload + def __init__(self, models_path: os.PathLike) -> None: + """ + Image2ImagePipeline class constructor. + models_path (os.PathLike): Path to the folder with exported model files. + """ + @typing.overload + def __init__(self, models_path: os.PathLike, device: str, **kwargs) -> None: + """ + Image2ImagePipeline class constructor. + models_path (os.PathLike): Path with exported model files. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Image2ImagePipeline properties + """ + def compile(self, device: str, **kwargs) -> None: + """ + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + """ + def decode(self, latent: openvino._pyopenvino.Tensor) -> openvino._pyopenvino.Tensor: + ... + def generate(self, prompt: str, image: openvino._pyopenvino.Tensor, **kwargs) -> openvino._pyopenvino.Tensor: + """ + Generates images for text-to-image models. + + :param prompt: input prompt + :type prompt: str + + :param kwargs: arbitrary keyword arguments with keys corresponding to generate params. + + Expected parameters list: + prompt_2: str - second prompt, + prompt_3: str - third prompt, + negative_prompt: str - negative prompt, + negative_prompt_2: str - second negative prompt, + negative_prompt_3: str - third negative prompt, + num_images_per_prompt: int - number of images, that should be generated per prompt, + guidance_scale: float - guidance scale, + generation_config: GenerationConfig, + height: int - height of resulting images, + width: int - width of resulting images, + num_inference_steps: int - number of inference steps, + generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + adapters: LoRA adapters, + strength: strength for image to image generation. 1.0f means initial image is fully noised, + max_sequence_length: int - length of t5_encoder_model input + + :return: ov.Tensor with resulting images + :rtype: ov.Tensor + """ + def get_generation_config(self) -> ImageGenerationConfig: + ... + def reshape(self, num_images_per_prompt: int, height: int, width: int, guidance_scale: float) -> None: + ... + def set_generation_config(self, generation_config: ImageGenerationConfig) -> None: + ... + def set_scheduler(self, scheduler: Scheduler) -> None: + ... class ImageGenerationConfig: """ This class is used for storing generation config for image generation pipeline. @@ -769,6 +841,78 @@ class ImageGenerationConfig: ... def validate(self) -> None: ... +class InpaintingPipeline: + """ + This class is used for generation with inpainting models. + """ + @staticmethod + def latent_consistency_model(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> InpaintingPipeline: + ... + @staticmethod + def stable_diffusion(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> InpaintingPipeline: + ... + @staticmethod + def stable_diffusion_xl(scheduler: Scheduler, clip_text_model: CLIPTextModel, clip_text_model_with_projection: CLIPTextModelWithProjection, unet: UNet2DConditionModel, vae: AutoencoderKL) -> InpaintingPipeline: + ... + @typing.overload + def __init__(self, models_path: os.PathLike) -> None: + """ + InpaintingPipeline class constructor. + models_path (os.PathLike): Path to the folder with exported model files. + """ + @typing.overload + def __init__(self, models_path: os.PathLike, device: str, **kwargs) -> None: + """ + InpaintingPipeline class constructor. + models_path (os.PathLike): Path with exported model files. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: InpaintingPipeline properties + """ + def compile(self, device: str, **kwargs) -> None: + """ + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + """ + def decode(self, latent: openvino._pyopenvino.Tensor) -> openvino._pyopenvino.Tensor: + ... + def generate(self, prompt: str, image: openvino._pyopenvino.Tensor, mask_image: openvino._pyopenvino.Tensor, **kwargs) -> openvino._pyopenvino.Tensor: + """ + Generates images for text-to-image models. + + :param prompt: input prompt + :type prompt: str + + :param kwargs: arbitrary keyword arguments with keys corresponding to generate params. + + Expected parameters list: + prompt_2: str - second prompt, + prompt_3: str - third prompt, + negative_prompt: str - negative prompt, + negative_prompt_2: str - second negative prompt, + negative_prompt_3: str - third negative prompt, + num_images_per_prompt: int - number of images, that should be generated per prompt, + guidance_scale: float - guidance scale, + generation_config: GenerationConfig, + height: int - height of resulting images, + width: int - width of resulting images, + num_inference_steps: int - number of inference steps, + generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + adapters: LoRA adapters, + strength: strength for image to image generation. 1.0f means initial image is fully noised, + max_sequence_length: int - length of t5_encoder_model input + + :return: ov.Tensor with resulting images + :rtype: ov.Tensor + """ + def get_generation_config(self) -> ImageGenerationConfig: + ... + def reshape(self, num_images_per_prompt: int, height: int, width: int, guidance_scale: float) -> None: + ... + def set_generation_config(self, generation_config: ImageGenerationConfig) -> None: + ... + def set_scheduler(self, scheduler: Scheduler) -> None: + ... class LLMPipeline: """ This class is used for generation with LLMs @@ -1367,9 +1511,14 @@ class Text2ImagePipeline: def stable_diffusion(scheduler: Scheduler, clip_text_model: CLIPTextModel, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @staticmethod + @typing.overload def stable_diffusion_3(scheduler: Scheduler, clip_text_model_1: CLIPTextModelWithProjection, clip_text_model_2: CLIPTextModelWithProjection, t5_encoder_model: T5EncoderModel, transformer: SD3Transformer2DModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @staticmethod + @typing.overload + def stable_diffusion_3(scheduler: Scheduler, clip_text_model_1: CLIPTextModelWithProjection, clip_text_model_2: CLIPTextModelWithProjection, transformer: SD3Transformer2DModel, vae: AutoencoderKL) -> Text2ImagePipeline: + ... + @staticmethod def stable_diffusion_xl(scheduler: Scheduler, clip_text_model: CLIPTextModel, clip_text_model_with_projection: CLIPTextModelWithProjection, unet: UNet2DConditionModel, vae: AutoencoderKL) -> Text2ImagePipeline: ... @typing.overload diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index 64ea64feb0..7739b88ff9 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -10,6 +10,8 @@ #include #include "openvino/genai/image_generation/text2image_pipeline.hpp" +#include "openvino/genai/image_generation/image2image_pipeline.hpp" +#include "openvino/genai/image_generation/inpainting_pipeline.hpp" #include "tokenizers_path.hpp" #include "py_utils.hpp" @@ -173,7 +175,12 @@ void init_image_generation_pipelines(py::module_& m) { .def_static("stable_diffusion", &ov::genai::Text2ImagePipeline::stable_diffusion, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) .def_static("latent_consistency_model", &ov::genai::Text2ImagePipeline::latent_consistency_model, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) .def_static("stable_diffusion_xl", &ov::genai::Text2ImagePipeline::stable_diffusion_xl, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("clip_text_model_with_projection"), py::arg("unet"), py::arg("vae")) - .def_static("stable_diffusion_3", &ov::genai::Text2ImagePipeline::stable_diffusion_3, py::arg("scheduler"), py::arg("clip_text_model_1"), py::arg("clip_text_model_2"), py::arg("t5_encoder_model"), py::arg("transformer"), py::arg("vae")) + .def_static("stable_diffusion_3", py::overload_cast&, const ov::genai::CLIPTextModelWithProjection&, const ov::genai::CLIPTextModelWithProjection&, const ov::genai::T5EncoderModel&, + const ov::genai::SD3Transformer2DModel&, const ov::genai::AutoencoderKL&>(&ov::genai::Text2ImagePipeline::stable_diffusion_3), + py::arg("scheduler"), py::arg("clip_text_model_1"), py::arg("clip_text_model_2"), py::arg("t5_encoder_model"), py::arg("transformer"), py::arg("vae")) + .def_static("stable_diffusion_3", py::overload_cast&, const ov::genai::CLIPTextModelWithProjection&, const ov::genai::CLIPTextModelWithProjection&, + const ov::genai::SD3Transformer2DModel&, const ov::genai::AutoencoderKL&>(&ov::genai::Text2ImagePipeline::stable_diffusion_3), + py::arg("scheduler"), py::arg("clip_text_model_1"), py::arg("clip_text_model_2"), py::arg("transformer"), py::arg("vae")) .def_static("flux", &ov::genai::Text2ImagePipeline::flux, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("t5_encoder_model"), py::arg("transformer"), py::arg("vae")) .def( "compile", @@ -200,5 +207,139 @@ void init_image_generation_pipelines(py::module_& m) { }, py::arg("prompt"), "Input string", (text2image_generate_docstring + std::string(" \n ")).c_str()) - .def("decode", &ov::genai::Text2ImagePipeline::decode, py::arg("latent"));; + .def("decode", &ov::genai::Text2ImagePipeline::decode, py::arg("latent")); + + + auto image2image_pipeline = py::class_(m, "Image2ImagePipeline", "This class is used for generation with image-to-image models.") + .def(py::init([]( + const std::filesystem::path& models_path + ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(models_path); + }), + py::arg("models_path"), "folder with exported model files.", + R"( + Image2ImagePipeline class constructor. + models_path (os.PathLike): Path to the folder with exported model files. + )") + + .def(py::init([]( + const std::filesystem::path& models_path, + const std::string& device, + const py::kwargs& kwargs + ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(models_path, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("models_path"), "folder with exported model files.", + py::arg("device"), "device on which inference will be done", + R"( + Image2ImagePipeline class constructor. + models_path (os.PathLike): Path with exported model files. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Image2ImagePipeline properties + )") + .def("get_generation_config", &ov::genai::Image2ImagePipeline::get_generation_config) + .def("set_generation_config", &ov::genai::Image2ImagePipeline::set_generation_config, py::arg("generation_config")) + .def("set_scheduler", &ov::genai::Image2ImagePipeline::set_scheduler, py::arg("scheduler")) + .def("reshape", &ov::genai::Image2ImagePipeline::reshape, py::arg("num_images_per_prompt"), py::arg("height"), py::arg("width"), py::arg("guidance_scale")) + .def_static("stable_diffusion", &ov::genai::Image2ImagePipeline::stable_diffusion, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) + .def_static("latent_consistency_model", &ov::genai::Image2ImagePipeline::latent_consistency_model, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) + .def_static("stable_diffusion_xl", &ov::genai::Image2ImagePipeline::stable_diffusion_xl, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("clip_text_model_with_projection"), py::arg("unet"), py::arg("vae")) + .def( + "compile", + [](ov::genai::Image2ImagePipeline& pipe, + const std::string& device, + const py::kwargs& kwargs + ) { + pipe.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )") + .def( + "generate", + [](ov::genai::Image2ImagePipeline& pipe, + const std::string& prompt, + const ov::Tensor& image, + const py::kwargs& kwargs + ) -> py::typing::Union { + ov::AnyMap params = pyutils::kwargs_to_any_map(kwargs); + return py::cast(pipe.generate(prompt, image, params)); + }, + py::arg("prompt"), "Input string", + py::arg("image"), "Initial image", + (text2image_generate_docstring + std::string(" \n ")).c_str()) + .def("decode", &ov::genai::Image2ImagePipeline::decode, py::arg("latent")); + + + auto inpainting_pipeline = py::class_(m, "InpaintingPipeline", "This class is used for generation with inpainting models.") + .def(py::init([]( + const std::filesystem::path& models_path + ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(models_path); + }), + py::arg("models_path"), "folder with exported model files.", + R"( + InpaintingPipeline class constructor. + models_path (os.PathLike): Path to the folder with exported model files. + )") + + .def(py::init([]( + const std::filesystem::path& models_path, + const std::string& device, + const py::kwargs& kwargs + ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); + return std::make_unique(models_path, device, pyutils::kwargs_to_any_map(kwargs)); + }), + py::arg("models_path"), "folder with exported model files.", + py::arg("device"), "device on which inference will be done", + R"( + InpaintingPipeline class constructor. + models_path (os.PathLike): Path with exported model files. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: InpaintingPipeline properties + )") + .def("get_generation_config", &ov::genai::InpaintingPipeline::get_generation_config) + .def("set_generation_config", &ov::genai::InpaintingPipeline::set_generation_config, py::arg("generation_config")) + .def("set_scheduler", &ov::genai::InpaintingPipeline::set_scheduler, py::arg("scheduler")) + .def("reshape", &ov::genai::InpaintingPipeline::reshape, py::arg("num_images_per_prompt"), py::arg("height"), py::arg("width"), py::arg("guidance_scale")) + .def_static("stable_diffusion", &ov::genai::InpaintingPipeline::stable_diffusion, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) + .def_static("latent_consistency_model", &ov::genai::InpaintingPipeline::latent_consistency_model, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("unet"), py::arg("vae")) + .def_static("stable_diffusion_xl", &ov::genai::InpaintingPipeline::stable_diffusion_xl, py::arg("scheduler"), py::arg("clip_text_model"), py::arg("clip_text_model_with_projection"), py::arg("unet"), py::arg("vae")) + .def( + "compile", + [](ov::genai::InpaintingPipeline& pipe, + const std::string& device, + const py::kwargs& kwargs + ) { + pipe.compile(device, pyutils::kwargs_to_any_map(kwargs)); + }, + py::arg("device"), "device on which inference will be done", + R"( + Compiles the model. + device (str): Device to run the model on (e.g., CPU, GPU). + kwargs: Device properties. + )") + .def( + "generate", + [](ov::genai::InpaintingPipeline& pipe, + const std::string& prompt, + const ov::Tensor& image, + const ov::Tensor& mask_image, + const py::kwargs& kwargs + ) -> py::typing::Union { + ov::AnyMap params = pyutils::kwargs_to_any_map(kwargs); + return py::cast(pipe.generate(prompt, image, mask_image, params)); + }, + py::arg("prompt"), "Input string", + py::arg("image"), "Initial image", + py::arg("mask_image"), "Mask image", + (text2image_generate_docstring + std::string(" \n ")).c_str()) + .def("decode", &ov::genai::InpaintingPipeline::decode, py::arg("latent")); } From 1e0ac83b2d419f8cc975106b8a6e30ec389a0e0a Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Wed, 11 Dec 2024 12:38:27 +0300 Subject: [PATCH 059/113] Enhanced verbose output of text generation models (#1351) --- tools/who_what_benchmark/tests/test_cli_text.py | 2 +- tools/who_what_benchmark/whowhatbench/wwb.py | 16 ++++++++-------- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/tools/who_what_benchmark/tests/test_cli_text.py b/tools/who_what_benchmark/tests/test_cli_text.py index 0baf60a5a4..79335d46eb 100644 --- a/tools/who_what_benchmark/tests/test_cli_text.py +++ b/tools/who_what_benchmark/tests/test_cli_text.py @@ -156,7 +156,7 @@ def test_text_verbose(): ] ) assert result.returncode == 0 - assert "## Diff " in result.stderr + assert "## Diff:" in result.stderr def test_text_language_autodetect(): diff --git a/tools/who_what_benchmark/whowhatbench/wwb.py b/tools/who_what_benchmark/whowhatbench/wwb.py index e7feebc1b2..026a6cc69b 100644 --- a/tools/who_what_benchmark/whowhatbench/wwb.py +++ b/tools/who_what_benchmark/whowhatbench/wwb.py @@ -552,7 +552,6 @@ def print_text_results(evaluator): ref_text = "" actual_text = "" diff = "" - print("optimized_model: ", e["optimized_model"]) for l1, l2 in zip( e["source_model"].splitlines(), e["optimized_model"].splitlines() ): @@ -563,12 +562,13 @@ def print_text_results(evaluator): diff += diff_strings(l1, l2) + "\n" logger.info( - "--------------------------------------------------------------------------------------" + "=======================================================================================================" ) - logger.info("## Reference text %d:\n%s", i + 1, ref_text) - logger.info("## Actual text %d:\n%s", i + 1, actual_text) - logger.info("## Diff %d: ", i + 1) - logger.info(diff) + logger.info("## Prompt %d:\n%s\n", i + 1, e["prompt"]) + logger.info("## Metric value:%.4f\n", e[metric_of_interest]) + logger.info("## Reference text:\n%s\n", ref_text) + logger.info("## Actual text:\n%s\n", actual_text) + logger.info("## Diff:\n%s\n", diff) def print_image_results(evaluator): @@ -578,7 +578,7 @@ def print_image_results(evaluator): top_k=5, metric=metric_of_interest) for i, e in enumerate(worst_examples): logger.info( - "--------------------------------------------------------------------------------------" + "=======================================================================================================" ) logger.info(f"Top-{i+1} example:") logger.info(e) @@ -638,7 +638,7 @@ def main(): df.to_csv(os.path.join(args.output, "metrics.csv")) evaluator.dump_predictions(os.path.join(args.output, "target.csv")) - if args.verbose and args.target_model is not None: + if args.verbose and (args.target_model or args.target_data): if args.model_type == "text" or args.model_type == "visual-text": print_text_results(evaluator) elif "text-to-image" in args.model_type: From 5aa13b146d45f5fa541772db45a373a5a16db9b7 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 11 Dec 2024 11:17:23 +0100 Subject: [PATCH 060/113] Bump onnx from 1.16.1 to 1.17.0 in /tests/python_tests (#1324) Bumps [onnx](https://github.com/onnx/onnx) from 1.16.1 to 1.17.0.
Release notes

Sourced from onnx's releases.

v1.17.0

ONNX v1.17.0 is now available with exciting new features! We would like to thank everyone who contributed to this release! Please visit onnx.ai to learn more about ONNX and associated projects.

Key Updates

ai.onnx Opset 22

Python Changes

  • Support for numpy >= 2.0

Bug fixes and infrastructure improvements

  • Fix Check URLs errors 5972
  • Use CMAKE_PREFIX_PATH in finding libprotobuf 5975
  • Bump main VERSION_NUMBER to 1.17.0 5968
  • Fix source and pip tar.gz builds on s390x systems 5984
  • Fix unique_name 5992
  • Fix SegFault bug in shape inference 5990
  • Fix onnx.compose when connecting subgraphs 5991
  • Fix conversion from split 11 to split 18 6020
  • Update error messages for NegativeLogLikelihoodLoss inference function 6021
  • Generalize input/output number check in shape inference 6005
  • Replace rank inference with shape inference for Einsum op 6010
  • build from source instruction with latest cmake change 6038
  • Handle OneHot's depth value during shape inference 5963
  • Not to install cmake in pyproject.toml on Windows 6045
  • fix a skipped shape infer code 6049
  • Include the ".onnxtext" extension in supported serialization format 6051
  • Allow ReferenceEvaluator to return intermediate results 6066
  • Fix 1 typo in numpy_helper.py 6041
  • Remove benchmarking code 6076
  • Prevent crash on import after GCC 8 builds 6048
  • Check graph outputs are defined 6083
  • Enable additional ruff rules 6032
  • Add missing shape inference check for DequantizeLinear 6080
  • Add bfloat16 to all relevant ops 6099
  • fix(ci): install python dependencies with --only-binary :all: in manylinux 6120
  • fix: install google-re2 with --only-binary option 6129
  • Specify axis parameter for DequantizeLinear when input rank is 1 6095
  • Pin onnxruntime to 1.17.3 for release CIs 6143
  • Fix INT4 TensorProto byte size is 5x larger than expected with negative values 6161
  • Mitigate tarball directory traversal risks 6164
  • Fix reference implementation for ScatterND with 4D tensors 6174
  • Addition of group > 1 in test and in backend for ConvTranspose 6175
  • Support for bfloat16 for binary, unary operators in reference implementation 6166
  • Refactor windows workflow to work on standard windows 6190
  • Fix a few crashes while running shape inference 6195
  • Update onnx to work with numpy>=2.0 6196
  • Use sets to improve performance of dfs search 6213

... (truncated)

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=onnx&package-manager=pip&previous-version=1.16.1&new-version=1.17.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- tests/python_tests/requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/python_tests/requirements.txt b/tests/python_tests/requirements.txt index f0dbef2700..3dac3f8b00 100644 --- a/tests/python_tests/requirements.txt +++ b/tests/python_tests/requirements.txt @@ -1,7 +1,7 @@ --extra-index-url https://download.pytorch.org/whl/cpu optimum-intel @ git+https://github.com/huggingface/optimum-intel.git numpy<2.0.0; sys_platform == 'darwin' -onnx==1.16.1 +onnx==1.17.0 pytest # requirements for specific models From 15176a8494591d51e104f13e1661d5607fb57a7c Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Wed, 11 Dec 2024 12:41:32 +0100 Subject: [PATCH 061/113] SD3 GPU fix (#1362) --- .../stable_diffusion_3_pipeline.hpp | 17 ++++++++++++----- .../stable_diffusion_xl_pipeline.hpp | 10 +++++----- 2 files changed, 17 insertions(+), 10 deletions(-) diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp index c4280b3064..4e9a70ec2d 100644 --- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp @@ -131,10 +131,17 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { set_scheduler(Scheduler::from_config(root_dir / "scheduler/scheduler_config.json")); + // Temporary fix for GPU + ov::AnyMap updated_properties = properties; + if (device.find("GPU") != std::string::npos && + updated_properties.find("INFERENCE_PRECISION_HINT") == updated_properties.end()) { + updated_properties["INFERENCE_PRECISION_HINT"] = ov::element::f32; + } + const std::string text_encoder = data["text_encoder"][1].get(); if (text_encoder == "CLIPTextModelWithProjection") { m_clip_text_encoder_1 = - std::make_shared(root_dir / "text_encoder", device, properties); + std::make_shared(root_dir / "text_encoder", device, updated_properties); } else { OPENVINO_THROW("Unsupported '", text_encoder, "' text encoder type"); } @@ -142,7 +149,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { const std::string text_encoder_2 = data["text_encoder_2"][1].get(); if (text_encoder_2 == "CLIPTextModelWithProjection") { m_clip_text_encoder_2 = - std::make_shared(root_dir / "text_encoder_2", device, properties); + std::make_shared(root_dir / "text_encoder_2", device, updated_properties); } else { OPENVINO_THROW("Unsupported '", text_encoder_2, "' text encoder type"); } @@ -151,7 +158,7 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { if (!text_encoder_3_json.is_null()) { const std::string text_encoder_3 = text_encoder_3_json.get(); if (text_encoder_3 == "T5EncoderModel") { - m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3", device, properties); + m_t5_text_encoder = std::make_shared(root_dir / "text_encoder_3", device, updated_properties); } else { OPENVINO_THROW("Unsupported '", text_encoder_3, "' text encoder type"); } @@ -167,9 +174,9 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) - m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_decoder", device, updated_properties); else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { - m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, updated_properties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); } diff --git a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp index 698b4b28da..6913d901df 100644 --- a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp @@ -74,18 +74,18 @@ class StableDiffusionXLPipeline : public StableDiffusionPipeline { } // Temporary fix for GPU - ov::AnyMap updated_roperties = properties; + ov::AnyMap updated_properties = properties; if (device.find("GPU") != std::string::npos && - updated_roperties.find("INFERENCE_PRECISION_HINT") == updated_roperties.end()) { - updated_roperties["INFERENCE_PRECISION_HINT"] = ov::element::f32; + updated_properties.find("INFERENCE_PRECISION_HINT") == updated_properties.end()) { + updated_properties["INFERENCE_PRECISION_HINT"] = ov::element::f32; } const std::string vae = data["vae"][1].get(); if (vae == "AutoencoderKL") { if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) - m_vae = std::make_shared(root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_decoder", device, updated_properties); else if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { - m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, properties); + m_vae = std::make_shared(root_dir / "vae_encoder", root_dir / "vae_decoder", device, updated_properties); } else { OPENVINO_ASSERT("Unsupported pipeline type"); } From 8a74d24a0fbceb29f0c4c52eb1e144c758a8ceb9 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Wed, 11 Dec 2024 14:57:07 +0100 Subject: [PATCH 062/113] Port from 24.6 release to master (#1356) - ~https://github.com/openvinotoolkit/openvino.genai/pull/1302~ (didn't port this PR because of the issue CVS-159227) - https://github.com/openvinotoolkit/openvino.genai/pull/1262 - https://github.com/openvinotoolkit/openvino.genai/pull/1336 - https://github.com/openvinotoolkit/openvino.genai/pull/1331 --------- Co-authored-by: Andrei Kochin Co-authored-by: Vladimir Zlobin Co-authored-by: Ilya Lavrenov --- .github/workflows/causal_lm_cpp.yml | 28 +-- samples/CMakeLists.txt | 6 +- .../CMakeLists.txt | 13 ++ .../README.md | 12 ++ .../encrypted_model_causal_lm.cpp | 59 ++++++ .../greedy_causal_lm.cpp | 0 .../visual_language_chat.cpp | 2 +- .../README.md | 0 .../greedy_causal_lm.py | 0 .../lora.py | 0 .../genai/continuous_batching_pipeline.hpp | 26 +++ .../include/openvino/genai/llm_pipeline.hpp | 17 ++ src/cpp/include/openvino/genai/tokenizer.hpp | 70 +++++++- src/cpp/src/continuous_batching_impl.cpp | 13 +- src/cpp/src/continuous_batching_impl.hpp | 14 +- src/cpp/src/continuous_batching_pipeline.cpp | 50 +++++- src/cpp/src/llm_pipeline.cpp | 168 ++++++++++++++---- src/cpp/src/llm_pipeline_static.cpp | 52 ++++-- src/cpp/src/llm_pipeline_static.hpp | 18 +- .../speculative_decoding_impl.cpp | 33 ++-- .../speculative_decoding_impl.hpp | 25 +-- src/cpp/src/tokenizer.cpp | 166 ++++++++++++----- src/cpp/src/utils.cpp | 40 +++++ src/cpp/src/utils.hpp | 7 + src/python/py_llm_pipeline.cpp | 1 + tests/python_tests/ov_genai_test_utils.py | 32 ++++ tests/python_tests/test_chat_generate_api.py | 1 + tests/python_tests/test_generate_api.py | 8 +- 28 files changed, 691 insertions(+), 170 deletions(-) rename samples/cpp/{greedy_causal_lm => text_generation}/CMakeLists.txt (58%) rename samples/cpp/{greedy_causal_lm => text_generation}/README.md (79%) create mode 100644 samples/cpp/text_generation/encrypted_model_causal_lm.cpp rename samples/cpp/{greedy_causal_lm => text_generation}/greedy_causal_lm.cpp (100%) rename samples/python/{greedy_causal_lm => text_generation}/README.md (100%) rename samples/python/{greedy_causal_lm => text_generation}/greedy_causal_lm.py (100%) rename samples/python/{greedy_causal_lm => text_generation}/lora.py (100%) diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 504e303fb5..107777bf74 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -63,13 +63,13 @@ jobs: PYTHONPATH: "./build" - run: > . ./ov/setupvars.sh - && timeout 25s ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./open_llama_3b_v2/ "return 0" - | diff <(timeout 25s samples/python/greedy_causal_lm/greedy_causal_lm.py ./open_llama_3b_v2/ "return 0") - + && timeout 25s ./build/samples/cpp/text_generation/greedy_causal_lm ./open_llama_3b_v2/ "return 0" + | diff <(timeout 25s samples/python/text_generation/greedy_causal_lm.py ./open_llama_3b_v2/ "return 0") - env: PYTHONPATH: "./build" - run: > . ./ov/setupvars.sh - && samples/python/greedy_causal_lm/lora.py ./TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/ adapter_model.safetensors "How to create a table with two columns, one of them has type float, another one has type int?" + && samples/python/text_generation/lora.py ./TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/ adapter_model.safetensors "How to create a table with two columns, one of them has type float, another one has type int?" env: PYTHONPATH: "./build" @@ -249,7 +249,7 @@ jobs: - run: > set PATH=.\build\openvino_genai\;%PATH% && call .\ov\setupvars.bat - && .\build\samples\cpp\greedy_causal_lm\Release\greedy_causal_lm.exe .\TinyLlama-1.1B-Chat-v1.0\ 69 > .\cpp.txt + && .\build\samples\cpp\text_generation\Release\greedy_causal_lm.exe .\TinyLlama-1.1B-Chat-v1.0\ 69 > .\cpp.txt - run: | echo import transformers > ref.py echo predictions = open('cpp.txt', 'r').read() >> ref.py @@ -266,13 +266,13 @@ jobs: set PATH=.\build\openvino_genai\;%PATH% && set "PYTHONPATH=./build/" && call .\ov\setupvars.bat - && python samples\python\greedy_causal_lm\greedy_causal_lm.py .\TinyLlama-1.1B-Chat-v1.0\ 69 > .\py.txt + && python samples\python\text_generation\greedy_causal_lm.py .\TinyLlama-1.1B-Chat-v1.0\ 69 > .\py.txt - run: fc .\cpp.txt .\py.txt - run: > set PATH=.\build\openvino_genai\;%PATH% && set "PYTHONPATH=./build/" && call .\ov\setupvars.bat - && python samples\python\greedy_causal_lm\lora.py .\TinyLlama\TinyLlama-1.1B-intermediate-step-1431k-3T\ adapter_model.safetensors "How to create a table with two columns, one of them has type float, another one has type int?" + && python samples\python\text_generation\lora.py .\TinyLlama\TinyLlama-1.1B-intermediate-step-1431k-3T\ adapter_model.safetensors "How to create a table with two columns, one of them has type float, another one has type int?" cpp-greedy_causal_lm-Qwen-7B-Chat: runs-on: ubuntu-20.04-16-cores @@ -304,7 +304,7 @@ jobs: optimum-cli export openvino --trust-remote-code --weight-format fp16 --model Qwen/Qwen-7B-Chat Qwen-7B-Chat - run: > . ./ov/setupvars.sh - && timeout 2m ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./Qwen-7B-Chat/ 69 | diff <(timeout 2m samples/python/greedy_causal_lm/greedy_causal_lm.py ./Qwen-7B-Chat/ 69) - + && timeout 2m ./build/samples/cpp/text_generation/greedy_causal_lm ./Qwen-7B-Chat/ 69 | diff <(timeout 2m samples/python/text_generation/greedy_causal_lm.py ./Qwen-7B-Chat/ 69) - env: PYTHONPATH: "./build" @@ -446,7 +446,7 @@ jobs: run: | source ./ov/setupvars.sh ./build/samples/cpp/speculative_decoding_lm/speculative_decoding_lm ./dolly-v2-7b/ ./dolly-v2-3b/ "Alan Turing was a" > predictions_speculative.txt - ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./dolly-v2-7b/ "Alan Turing was a" > predictions_greedy.txt + ./build/samples/cpp/text_generation/greedy_causal_lm ./dolly-v2-7b/ "Alan Turing was a" > predictions_greedy.txt python ./samples/python/speculative_decoding_lm/speculative_decoding_lm.py ./dolly-v2-7b/ ./dolly-v2-3b/ "Alan Turing was a" > predictions_py.txt python -c " with open('predictions_greedy.txt', 'r') as f: @@ -504,7 +504,7 @@ jobs: A:' > ./prompt.txt ./build/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_prompt_lookup.txt - ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_greedy.txt + ./build/samples/cpp/text_generation/greedy_causal_lm ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_greedy.txt python -c " with open('predictions_greedy.txt', 'r') as f: predicted_greedy = f.readline() @@ -525,7 +525,7 @@ jobs: A:' > ./prompt.txt ./build/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm ./Qwen-7B-Chat/ "$( predictions_prompt_lookup.txt - ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./Qwen-7B-Chat/ "$( predictions_greedy.txt + ./build/samples/cpp/text_generation/greedy_causal_lm ./Qwen-7B-Chat/ "$( predictions_greedy.txt python -c " with open('predictions_greedy.txt', 'r') as f: predicted_greedy = f.readline() @@ -566,7 +566,7 @@ jobs: - name: Run Generation run: | source ./ov/setupvars.sh - timeout 50s ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./phi-1_5/ "Alan Turing was a" > ./pred_greedy.txt + timeout 50s ./build/samples/cpp/text_generation/greedy_causal_lm ./phi-1_5/ "Alan Turing was a" > ./pred_greedy.txt - name: Compare run: | python -c " @@ -585,7 +585,7 @@ jobs: echo Phi-1_5 passed - run: > . ./ov/setupvars.sh - && timeout 50s samples/python/greedy_causal_lm/greedy_causal_lm.py ./phi-1_5/ "Alan Turing was a" + && timeout 50s samples/python/text_generation/greedy_causal_lm.py ./phi-1_5/ "Alan Turing was a" | diff ./pred_greedy.txt - env: PYTHONPATH: "./build" @@ -621,7 +621,7 @@ jobs: - name: Run Generation run: | source ./ov/setupvars.sh - timeout 50s ./build/samples/cpp/greedy_causal_lm/greedy_causal_lm ./redpajama-3b-chat/ "Alan Turing was a" > ./pred_greedy.txt + timeout 50s ./build/samples/cpp/text_generation/greedy_causal_lm ./redpajama-3b-chat/ "Alan Turing was a" > ./pred_greedy.txt - name: Compare run: | python -c " @@ -640,7 +640,7 @@ jobs: echo "Alan Turing was a" passed - run: > . ./ov/setupvars.sh - && timeout 50s samples/python/greedy_causal_lm/greedy_causal_lm.py ./redpajama-3b-chat/ "Alan Turing was a" + && timeout 50s samples/python/text_generation/greedy_causal_lm.py ./redpajama-3b-chat/ "Alan Turing was a" | diff ./pred_greedy.txt - env: PYTHONPATH: "./build" diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt index 92f0b3f43a..02539df6e7 100644 --- a/samples/CMakeLists.txt +++ b/samples/CMakeLists.txt @@ -5,7 +5,7 @@ add_subdirectory(cpp/beam_search_causal_lm) add_subdirectory(cpp/benchmark_genai) add_subdirectory(cpp/chat_sample) -add_subdirectory(cpp/greedy_causal_lm) +add_subdirectory(cpp/text_generation) add_subdirectory(cpp/lora_greedy_causal_lm) add_subdirectory(cpp/multinomial_causal_lm) add_subdirectory(cpp/prompt_lookup_decoding_lm) @@ -25,7 +25,7 @@ install(DIRECTORY cpp/beam_search_causal_lm cpp/benchmark_genai cpp/chat_sample - cpp/greedy_causal_lm + cpp/text_generation cpp/image_generation cpp/lora_greedy_causal_lm cpp/multinomial_causal_lm @@ -39,7 +39,7 @@ install(DIRECTORY python/beam_search_causal_lm python/benchmark_genai python/chat_sample - python/greedy_causal_lm + python/text_generation python/image_generation python/multinomial_causal_lm python/speculative_decoding_lm diff --git a/samples/cpp/greedy_causal_lm/CMakeLists.txt b/samples/cpp/text_generation/CMakeLists.txt similarity index 58% rename from samples/cpp/greedy_causal_lm/CMakeLists.txt rename to samples/cpp/text_generation/CMakeLists.txt index ff5151676f..377682974e 100644 --- a/samples/cpp/greedy_causal_lm/CMakeLists.txt +++ b/samples/cpp/text_generation/CMakeLists.txt @@ -20,3 +20,16 @@ install(TARGETS greedy_causal_lm RUNTIME DESTINATION samples_bin/ COMPONENT samples_bin EXCLUDE_FROM_ALL) + +add_executable(encrypted_model_causal_lm encrypted_model_causal_lm.cpp) +target_link_libraries(encrypted_model_causal_lm PRIVATE openvino::genai) +set_target_properties(encrypted_model_causal_lm PROPERTIES + COMPILE_PDB_NAME encrypted_model_causal_lm + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) +target_compile_features(encrypted_model_causal_lm PRIVATE cxx_std_11) + +install(TARGETS encrypted_model_causal_lm + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) diff --git a/samples/cpp/greedy_causal_lm/README.md b/samples/cpp/text_generation/README.md similarity index 79% rename from samples/cpp/greedy_causal_lm/README.md rename to samples/cpp/text_generation/README.md index 2f3a7751bf..6928d03927 100644 --- a/samples/cpp/greedy_causal_lm/README.md +++ b/samples/cpp/text_generation/README.md @@ -24,6 +24,18 @@ Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models. +## Using encrypted models + +LLMPipeline and Tokenizer objects can be initialized directly from the memory buffer, e.g. when user stores only encrypted files and decrypts them on-the-fly. +The following code snippet demonstrates how to load the model from the memory buffer: + +```cpp +auto [model_str, weights_tensor] = decrypt_model(models_path + "/openvino_model.xml", models_path + "/openvino_model.bin"); +ov::genai::Tokenizer tokenizer(models_path); +ov::genai::LLMPipeline pipe(model_str, weights_tensor, tokenizer, device); +``` +For the sake of brevity the code above does not include Tokenizer decryption. For more details look to encrypted_model_causal_lm sample. + ### Troubleshooting #### Unicode characters encoding error on Windows diff --git a/samples/cpp/text_generation/encrypted_model_causal_lm.cpp b/samples/cpp/text_generation/encrypted_model_causal_lm.cpp new file mode 100644 index 0000000000..3ea94d605f --- /dev/null +++ b/samples/cpp/text_generation/encrypted_model_causal_lm.cpp @@ -0,0 +1,59 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/llm_pipeline.hpp" +#include + +std::pair decrypt_model(const std::string& model_path, const std::string& weights_path) { + std::ifstream model_file(model_path); + std::ifstream weights_file(weights_path, std::ios::binary); + if (!model_file.is_open() || !weights_file.is_open()) { + throw std::runtime_error("Cannot open model or weights file"); + } + + // User can add file decryption of model_file and weights_file in memory here. + + std::string model_str((std::istreambuf_iterator(model_file)), std::istreambuf_iterator()); + std::vector weights_buffer((std::istreambuf_iterator(weights_file)), std::istreambuf_iterator()); + auto weights_tensor = ov::Tensor(ov::element::u8, {weights_buffer.size()}, weights_buffer.data()); + return {model_str, weights_tensor}; +} + +ov::genai::Tokenizer decrypt_tokenizer(const std::string& models_path) { + std::string tok_model_path = models_path + "/openvino_tokenizer.xml"; + std::string tok_weights_path = models_path + "/openvino_tokenizer.bin"; + auto [tok_model_str, tok_weights_tensor] = decrypt_model(tok_model_path, tok_weights_path); + + std::string detok_model_path = models_path + "/openvino_detokenizer.xml"; + std::string detok_weights_path = models_path + "/openvino_detokenizer.bin"; + auto [detok_model_str, detok_weights_tensor] = decrypt_model(tok_model_path, tok_weights_path); + + return ov::genai::Tokenizer(tok_model_str, tok_weights_tensor, detok_model_str, detok_weights_tensor); +} + +int main(int argc, char* argv[]) try { + if (3 > argc) + throw std::runtime_error(std::string{"Usage: "} + argv[0] + " \"\""); + + std::string device = "CPU"; // GPU, NPU can be used as well + std::string models_path = argv[1]; + std::string prompt = argv[2]; + + auto [model_str, model_weights] = decrypt_model(models_path + "/openvino_model.xml", models_path + "/openvino_model.bin"); + ov::genai::Tokenizer tokenizer = decrypt_tokenizer(models_path); + + ov::genai::LLMPipeline pipe(model_str, model_weights, tokenizer, device); + + std::string result = pipe.generate(prompt, ov::genai::max_new_tokens(100)); + std::cout << result << std::endl; +} catch (const std::exception& error) { + try { + std::cerr << error.what() << '\n'; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} catch (...) { + try { + std::cerr << "Non-exception object thrown\n"; + } catch (const std::ios_base::failure&) {} + return EXIT_FAILURE; +} diff --git a/samples/cpp/greedy_causal_lm/greedy_causal_lm.cpp b/samples/cpp/text_generation/greedy_causal_lm.cpp similarity index 100% rename from samples/cpp/greedy_causal_lm/greedy_causal_lm.cpp rename to samples/cpp/text_generation/greedy_causal_lm.cpp diff --git a/samples/cpp/visual_language_chat/visual_language_chat.cpp b/samples/cpp/visual_language_chat/visual_language_chat.cpp index 3a655374e9..e426965e66 100644 --- a/samples/cpp/visual_language_chat/visual_language_chat.cpp +++ b/samples/cpp/visual_language_chat/visual_language_chat.cpp @@ -18,7 +18,7 @@ int main(int argc, char* argv[]) try { std::string device = "CPU"; // GPU can be used as well ov::AnyMap enable_compile_cache; - if ("GPU" == device) { + if (device == "GPU") { // Cache compiled models on disk for GPU to save time on the // next run. It's not beneficial for CPU. enable_compile_cache.insert({ov::cache_dir("vlm_cache")}); diff --git a/samples/python/greedy_causal_lm/README.md b/samples/python/text_generation/README.md similarity index 100% rename from samples/python/greedy_causal_lm/README.md rename to samples/python/text_generation/README.md diff --git a/samples/python/greedy_causal_lm/greedy_causal_lm.py b/samples/python/text_generation/greedy_causal_lm.py similarity index 100% rename from samples/python/greedy_causal_lm/greedy_causal_lm.py rename to samples/python/text_generation/greedy_causal_lm.py diff --git a/samples/python/greedy_causal_lm/lora.py b/samples/python/text_generation/lora.py similarity index 100% rename from samples/python/greedy_causal_lm/lora.py rename to samples/python/text_generation/lora.py diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index 2bf5dd773b..4a0637f2d9 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -88,6 +88,32 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { const ov::AnyMap& properties = {} ); + /** + * @brief Constructs a ContinuousBatchingPipeline from already existing model and tokenizer. + * + * This constructor allows for the creation of a ContinuousBatchingPipeline using an existing model + * represented as a string and a weights tensor, along with a manually initialized tokenizer. + * This is useful when the model and tokenizer are already loaded or created in memory and do not + * need to be loaded from files. + * + * @param model_str A string representation of the model. + * @param weights_tensor A tensor containing the weights of the model. + * @param tokenizer A manually initialized ov::genai::Tokenizer. + * @param scheduler_config Configuration for the scheduler. + * @param device The device to run the pipeline on (e.g., CPU, GPU). + * @param properties Optional properties for the pipeline. + * @param generation_config Optional generation configuration for the pipeline. + */ + ContinuousBatchingPipeline( + const std::string& model_str, + const ov::Tensor& weights_tensor, + const ov::genai::Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& properties = {}, + const ov::genai::GenerationConfig& generation_config = {} + ); + ov::genai::Tokenizer get_tokenizer(); ov::genai::GenerationConfig get_config() const; diff --git a/src/cpp/include/openvino/genai/llm_pipeline.hpp b/src/cpp/include/openvino/genai/llm_pipeline.hpp index 3d62535120..44427d45b1 100644 --- a/src/cpp/include/openvino/genai/llm_pipeline.hpp +++ b/src/cpp/include/openvino/genai/llm_pipeline.hpp @@ -112,6 +112,15 @@ class OPENVINO_GENAI_EXPORTS LLMPipeline { const ov::AnyMap& properties = {} ); + LLMPipeline( + const std::string& model_str, + const ov::Tensor& weights_tensor, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties = {}, + const ov::genai::GenerationConfig& generation_config = {} + ); + OPENVINO_DEPRECATED("Please, specify device explicitly when create LLMPipeline. This overload will be removed in 2025.0.0 release") explicit LLMPipeline(const std::filesystem::path& path) : LLMPipeline(path, "CPU") { } @@ -274,6 +283,14 @@ class OPENVINO_GENAI_EXPORTS LLMPipeline { OPENVINO_GENAI_EXPORTS std::pair streamer(StreamerVariant func); OPENVINO_GENAI_EXPORTS std::pair generation_config(const GenerationConfig& config); +OPENVINO_GENAI_EXPORTS std::pair draft_model( + std::string& model_str, + ov::Tensor& weights_tensor, + const ov::genai::Tokenizer& tokenizer, + const std::string& device = {}, + const ov::AnyMap& properties = {}, + const ov::genai::GenerationConfig& generation_config = {}); + OPENVINO_GENAI_EXPORTS std::pair draft_model( const std::filesystem::path& models_path, const std::string& device = {}, diff --git a/src/cpp/include/openvino/genai/tokenizer.hpp b/src/cpp/include/openvino/genai/tokenizer.hpp index 36f63d2b5e..38fc0aaf8c 100644 --- a/src/cpp/include/openvino/genai/tokenizer.hpp +++ b/src/cpp/include/openvino/genai/tokenizer.hpp @@ -28,12 +28,72 @@ struct TokenizedInputs { class OPENVINO_GENAI_EXPORTS Tokenizer { public: /** - * @brief ov::genai::Tokenizer constructor. - * @param tokenizer_path openvino_tokenizer.xml and openvino_detokenizer.xml should be located in the tokenizer_path - * @param properties Properties passed to ov::Core::compile_model - */ - Tokenizer(const std::filesystem::path& tokenizer_path, const ov::AnyMap& properties = {}); + * @brief ov::genai::Tokenizer constructor. + * @param tokenizer_path openvino_tokenizer.xml and openvino_detokenizer.xml should be located in the tokenizer_path + * @param properties Properties passed to ov::Core::compile_model + */ + explicit Tokenizer(const std::filesystem::path& tokenizer_path, const ov::AnyMap& properties = {}); + + /** + * @brief ov::genai::Tokenizer constructor to initialize directly from model and weights + * + * This constructor is used when tokenizer and detokenizer are separate models already loaded into memory. + * When this constructor is used bos, eos, pad token ids are expected to be in IR. + * If an IR is older (< 2024.3) then this tokens are default initialized to be ignored. + * @param tokenizer_model_str tokenizer model string + * @param tokenizer_weights_tensor ov::Tensor with tokenizer weights + * @param detokenizer_model_str detokenizer model string + * @param detokenizer_weights_tensor ov::Tensor with detokenizer weights + * @param properties Properties passed to ov::Core::compile_model + */ + Tokenizer( + const std::string& tokenizer_model_str, + ov::Tensor& tokenizer_weights_tensor, + std::string& detokenizer_model_str, + ov::Tensor& detokenizer_weights_tensor, + const ov::AnyMap& properties = {} + ); + + /** + * @brief ov::genai::Tokenizer constructor to initialize directly from model and weights. + * + * This constructor is used when tokenizer (or detokenizer) already loaded into memory. Whether it's + * tokenizer or detokenizer is defined from model input signature. When this constructor is used bos, eos, pad token ids + * are expected to be in IR. If an IR is older (< 2024.3) then this tokens are default initialized to be ignored. + * @param model_str model string + * @param weights_tensor ov::Tensor with model weights + * @param properties Properties passed to ov::Core::compile_model + */ + Tokenizer(const std::string& model_str, ov::Tensor& weights_tensor, const ov::AnyMap& properties = {}); + /** + * @brief ov::genai::Tokenizer constructor with variable number of properties + * @param tokenizer_model_str tokenizer model string + * @param tokenizer_weights_tensor ov::Tensor with tokenizer weights + * @param detokenizer_model_str detokenizer model string + * @param detokenizer_weights_tensor ov::Tensor with detokenizer weights + * @param properties optional properties + */ + template ::value, bool>::type = true> + Tokenizer( + const std::string& tokenizer_model_str, + ov::Tensor& tokenizer_weights_tensor, + std::string& detokenizer_model_str, + ov::Tensor& detokenizer_weights_tensor, + Properties&&... properties + ) : Tokenizer(tokenizer_model_str, tokenizer_weights_tensor, detokenizer_model_str, detokenizer_weights_tensor, ov::AnyMap{std::forward(properties)...}) { } + + /** + * @brief ov::genai::Tokenizer constructor with variable number of properties + * @param model_str model string + * @param weights_tensor ov::Tensor with model weights + * @param properties optional properties + */ + template ::value, bool>::type = true> + Tokenizer(const std::string& model_str, ov::Tensor& weights_tensor, + Properties&&... properties) + : Tokenizer(model_str, weights_tensor, ov::AnyMap{std::forward(properties)...}) { } + /** * @brief ov::genai::Tokenizer constructor with variable number of properties * @param tokenizer_path openvino_tokenizer.xml and openvino_detokenizer.xml should be located in the tokenizer_path diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index 901c5c64be..d27e8934dc 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -11,22 +11,21 @@ template struct overloaded : Ts... {using Ts::operator()...;}; template overloaded(Ts...) -> overloaded; ContinuousBatchingPipeline::ContinuousBatchingImpl::ContinuousBatchingImpl( - const std::filesystem::path& models_path, + const std::shared_ptr& model, const Tokenizer& tokenizer, const SchedulerConfig& scheduler_config, const std::string& device, - const ov::AnyMap& properties) { + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config + ) { m_tokenizer = tokenizer; - m_generation_config = utils::from_config_json_if_exists(models_path); - + m_generation_config = generation_config; + ov::Core core; auto [core_properties, compile_properties] = utils::split_core_compile_config(properties); core.set_property(core_properties); - // The model can be compiled for GPU as well - std::shared_ptr model = core.read_model((models_path / "openvino_model.xml").string()); - DeviceConfig device_config(core, scheduler_config, device, compile_properties); bool is_need_per_layer_cache_control = scheduler_config.use_cache_eviction; diff --git a/src/cpp/src/continuous_batching_impl.hpp b/src/cpp/src/continuous_batching_impl.hpp index 8276edb36b..780bff6a31 100644 --- a/src/cpp/src/continuous_batching_impl.hpp +++ b/src/cpp/src/continuous_batching_impl.hpp @@ -53,22 +53,12 @@ class ContinuousBatchingPipeline::ContinuousBatchingImpl : public ContinuousBatc void _fill_prompt_log_probs(std::vector& sequence_groups, ov::Tensor& logits); public: - ContinuousBatchingImpl(const std::filesystem::path& models_path, + ContinuousBatchingImpl(const std::shared_ptr& model, const Tokenizer& tokenizer, - const SchedulerConfig& scheduler_config, - const std::string& device, - const ov::AnyMap& properties); - - ContinuousBatchingImpl(const std::filesystem::path& models_path, const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& properties, - const ov::AnyMap& tokenizer_properties) - : ContinuousBatchingImpl{ models_path, - Tokenizer(models_path, tokenizer_properties), - scheduler_config, - device, - properties } {} + const ov::genai::GenerationConfig& generation_config); GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 6dcbf342eb..2faad4354e 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -20,7 +20,7 @@ using namespace ov::genai; inline ov::genai::ModelDesc extract_draft_model_from_config(ov::AnyMap& config) { - ov::genai::ModelDesc draft_model(""); + ov::genai::ModelDesc draft_model; if (config.find(utils::DRAFT_MODEL_ARG_NAME) != config.end()) { draft_model = config.at(utils::DRAFT_MODEL_ARG_NAME).as(); config.erase(utils::DRAFT_MODEL_ARG_NAME); @@ -28,17 +28,24 @@ extract_draft_model_from_config(ov::AnyMap& config) { return draft_model; } + ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::filesystem::path& models_path, const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& properties, const ov::AnyMap& tokenizer_properties) { auto properties_without_draft_model = properties; - auto draft_model = extract_draft_model_from_config(properties_without_draft_model); - if (draft_model.models_path.empty()) { - m_impl = std::make_shared(models_path, scheduler_config, device, properties, tokenizer_properties); + auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + + std::filesystem::path openvino_model_name = "openvino_model.xml"; + auto model = utils::singleton_core().read_model((models_path / openvino_model_name).string()); + auto tokenizer = ov::genai::Tokenizer(models_path, tokenizer_properties); + auto generation_config = utils::from_config_json_if_exists(models_path); + if (draft_model_desr.model == nullptr) { + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); } else { - m_impl = std::make_shared(models_path, scheduler_config, device, properties_without_draft_model, draft_model, tokenizer_properties); + auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); + m_impl = std::make_shared(main_model_descr, draft_model_desr); } } @@ -49,11 +56,36 @@ ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::string& device, const ov::AnyMap& properties) { auto properties_without_draft_model = properties; - auto draft_model = extract_draft_model_from_config(properties_without_draft_model); - if (draft_model.models_path.empty()) { - m_impl = std::make_shared(models_path, tokenizer, scheduler_config, device, properties); + auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + std::filesystem::path openvino_model_name = "openvino_model.xml"; + auto model = utils::singleton_core().read_model((models_path / openvino_model_name).string()); + auto generation_config = utils::from_config_json_if_exists(models_path); + + if (draft_model_desr.model == nullptr) { + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); + } else { + auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); + m_impl = std::make_shared(main_model_descr, draft_model_desr); + } +} + +ContinuousBatchingPipeline::ContinuousBatchingPipeline( + const std::string& model_str, + const ov::Tensor& weights_tensor, + const Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config) { + auto properties_without_draft_model = properties; + auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + auto model = utils::singleton_core().read_model(model_str, weights_tensor); + + if (draft_model_desr.model == nullptr) { + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); } else { - m_impl = std::make_shared(models_path, scheduler_config, device, properties_without_draft_model, draft_model); + auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); + m_impl = std::make_shared(main_model_descr, draft_model_desr); } } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 5d82a96010..84f76730eb 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -59,23 +59,31 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { const ov::genai::Tokenizer& tokenizer, const std::string& device, const ov::AnyMap& plugin_config - ) : LLMPipelineImplBase(tokenizer, utils::from_config_json_if_exists(models_path)) - { + ) : StatefulLLMPipeline{ + ov::genai::utils::read_model_with_config(models_path, plugin_config), + tokenizer, + device, + plugin_config, + utils::from_config_json_if_exists(models_path) + } {} + + StatefulLLMPipeline( + const std::shared_ptr& model, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& config, + const ov::genai::GenerationConfig& generation_config + ) : LLMPipelineImplBase(tokenizer, generation_config) { ov::Core core; + auto [core_plugin_config, plugin_config] = ov::genai::utils::split_core_compile_config(config); + utils::slice_matmul_statefull_model(model); + if (auto filtered_plugin_config = extract_adapters_from_properties(plugin_config, &m_generation_config.adapters)) { - auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_compile_config(*filtered_plugin_config); - core.set_property(core_plugin_config); - auto model = core.read_model(models_path / "openvino_model.xml"); m_generation_config.adapters->set_tensor_name_prefix("base_model.model.model."); m_adapter_controller = AdapterController(model, *m_generation_config.adapters, device); // TODO: Make the prefix name configurable - utils::slice_matmul_statefull_model(model); - m_model_runner = core.compile_model(model, device, compile_plugin_config).create_infer_request(); + m_model_runner = core.compile_model(model, device, *filtered_plugin_config).create_infer_request(); } else { - auto [core_plugin_config, compile_plugin_config] = ov::genai::utils::split_core_compile_config(plugin_config); - core.set_property(core_plugin_config); - auto model = core.read_model(models_path / "openvino_model.xml"); - utils::slice_matmul_statefull_model(model); - m_model_runner = core.compile_model(model, device, compile_plugin_config).create_infer_request(); + m_model_runner = core.compile_model(model, device, plugin_config).create_infer_request(); } // If eos_token_id was not provided, take value @@ -87,7 +95,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { const std::filesystem::path& models_path, const std::string& device, const ov::AnyMap& plugin_config - ) : StatefulLLMPipeline{models_path, Tokenizer(models_path.string()), device, plugin_config} {} + ) : StatefulLLMPipeline{models_path, Tokenizer(models_path), device, plugin_config} {} DecodedResults generate( StringInputs inputs, @@ -382,14 +390,26 @@ std::pair draft_model( const std::filesystem::path& models_path, const std::string& device, const ov::AnyMap& properties) { - ov::AnyMap plugin_config = properties; - auto it = plugin_config.find(ov::genai::scheduler_config.name()); - SchedulerConfig scheduler_config; - if (it != plugin_config.end()) { - scheduler_config = it->second.as(); - plugin_config.erase(it); - } - return { utils::DRAFT_MODEL_ARG_NAME, Any::make(models_path, device, plugin_config, scheduler_config) }; + auto [plugin_config, scheduler_config] = utils::split_scheduler_config(properties); + + std::filesystem::path openvino_model_name = "openvino_model.xml"; + auto model = utils::singleton_core().read_model((models_path / openvino_model_name).string()); + auto generation_config = utils::from_config_json_if_exists(models_path); + auto tokenizer = ov::genai::Tokenizer(models_path); + return { utils::DRAFT_MODEL_ARG_NAME, Any::make(model, tokenizer, device, plugin_config, scheduler_config, generation_config) }; +} + +std::pair draft_model( + std::string& model_str, + ov::Tensor& weights_tensor, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config) { + auto [plugin_config, scheduler_config] = utils::split_scheduler_config(properties); + + auto model = utils::singleton_core().read_model(model_str, weights_tensor); + return { utils::DRAFT_MODEL_ARG_NAME, Any::make(model, tokenizer, device, plugin_config, scheduler_config, generation_config) }; } } // namespace genai @@ -431,6 +451,23 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { m_generation_config = m_impl.get_config(); } + ContinuousBatchingAdapter( + const std::string& model_str, + const ov::Tensor& weights_tensor, + const Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& plugin_config, + const ov::genai::GenerationConfig& generation_config + ): LLMPipelineImplBase{tokenizer}, m_impl{ + model_str, + weights_tensor, + tokenizer, + scheduler_config, + device, + plugin_config, + generation_config} {} + ContinuousBatchingAdapter( const std::filesystem::path& models_path, const SchedulerConfig& scheduler_config, @@ -543,6 +580,29 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { m_impl.finish_chat(); }; }; + +/* +* NPU reads some properties from the config file, but when LLMPipeline is initialized +* from the model_str and weights_tensor, there are not files. +* In the later case ModelDesc is stored in properties. +* This function pops ModelDescr from the the properties and returns a pair of updated properties and ModelDescr. +*/ +std::pair split_model_descr(const ov::AnyMap& properties) { + ov::AnyMap main_properties = properties; + ov::genai::ModelConfigDesc model_descr; + + auto pop_property = [](ov::AnyMap& orig_propertis, const std::string& key, auto& value) { + if (orig_propertis.find(key) != orig_propertis.end()) { + value = orig_propertis.at(key).as>(); + orig_propertis.erase(key); + } + }; + pop_property(main_properties, "name_or_path", model_descr.name_or_path); + pop_property(main_properties, "type", model_descr.type); + pop_property(main_properties, "num_key_value_heads", model_descr.num_key_value_heads); + + return {main_properties, model_descr}; +} } ov::genai::LLMPipeline::LLMPipeline( @@ -564,11 +624,9 @@ ov::genai::LLMPipeline::LLMPipeline( ){ auto start_time = std::chrono::steady_clock::now(); if (properties.find(ov::genai::scheduler_config.name()) != properties.end()) { - auto config_without_scheduler_config = properties; - config_without_scheduler_config.erase(ov::genai::scheduler_config.name()); - auto& scheduler_config = properties.at(ov::genai::scheduler_config.name()).as(); - m_pimpl = std::make_unique(models_path, tokenizer, scheduler_config, device, config_without_scheduler_config); - } else if ("NPU" == device) { + auto [plugin_config, scheduler_config] = utils::split_scheduler_config(properties); + m_pimpl = std::make_unique(models_path, tokenizer, scheduler_config, device, plugin_config); + } else if (device == "NPU") { m_pimpl = std::make_unique(models_path, tokenizer, device, properties); } else { m_pimpl = std::make_unique(models_path, tokenizer, device, properties); @@ -583,12 +641,11 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::AnyMap& config ){ auto start_time = std::chrono::steady_clock::now(); + if (config.find(ov::genai::scheduler_config.name()) != config.end()) { - auto config_without_scheduler_config = config; - config_without_scheduler_config.erase(ov::genai::scheduler_config.name()); - auto& scheduler_config = config.at(ov::genai::scheduler_config.name()).as(); - m_pimpl = std::make_unique(models_path, scheduler_config, device, config_without_scheduler_config); - } else if ("NPU" == device) { + auto [plugin_config, scheduler_config] = utils::split_scheduler_config(config); + m_pimpl = std::make_unique(models_path, scheduler_config, device, plugin_config); + } else if (device == "NPU") { m_pimpl = std::make_unique(models_path, device, config); } else { m_pimpl = std::make_unique(models_path, device, config); @@ -597,6 +654,55 @@ ov::genai::LLMPipeline::LLMPipeline( m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); } +ov::genai::LLMPipeline::LLMPipeline( + const std::string& model_str, + const ov::Tensor& weights_tensor, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& config, + const ov::genai::GenerationConfig& generation_config +){ + auto [core_properties, plugin_config] = ov::genai::utils::split_core_compile_config(config); + + auto start_time = std::chrono::steady_clock::now(); + if (plugin_config.find(ov::genai::scheduler_config.name()) != plugin_config.end()) { + auto [plugin_config_, scheduler_config] = utils::split_scheduler_config(plugin_config); + m_pimpl = std::make_unique(model_str, weights_tensor, + tokenizer, scheduler_config, device, plugin_config_, generation_config); + } else if (device == "NPU") { + // TODO: CVS-158771 Currently, it's a workaround. Probably there is a better solution. + // NPU reads some properties from the config file, but when LLMPipeline is initialized + // from the model_str and weights_tensor, there is no files. + // Therefore, we need to pass these properties manually. + // This is necessary only for NPU, for other plugins can be ommited. + // Example of usage: + // ov::AnyMap model_descr_properties = {{"name_or_path", "meta-llama/Llama-2-7b-chat-hf"}, + // {"type", "llama"}, + // {"num_key_value_heads", 32}}; + // ov::genai::LLMPipeline pipe(model_str,..., model_descr_properties); + // This will convert from AnyMap to ModelDesc. + auto [properties, model_descr] = split_model_descr(plugin_config); + + m_pimpl = std::make_unique( + utils::singleton_core().read_model(model_str, weights_tensor), + model_descr, + tokenizer, + device, + properties, + generation_config + ); + } else { + m_pimpl = std::make_unique( + utils::singleton_core().read_model(model_str, weights_tensor), + tokenizer, + device, + plugin_config, + generation_config); + } + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); +} + ov::genai::GenerationConfig ov::genai::LLMPipeline::get_generation_config() const { return m_pimpl->m_generation_config; } diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 4bb84dfc05..cb83209b4b 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -314,7 +314,7 @@ std::optional pop_option(ov::AnyMap& config, const std::string& option_ } template -std::optional get_option(ov::AnyMap& config, const std::string& option_name) { +std::optional get_option(const ov::AnyMap& config, const std::string& option_name) { if (auto it = config.find(option_name); it != config.end()) { return std::make_optional(it->second.as()); } @@ -396,18 +396,12 @@ KVAxesPosition get_kv_axes(const std::string& model_type) { return axes; } -struct ModelDesc { - std::string type; - std::string name_or_path; - int num_key_value_heads; -}; - -ModelDesc get_modeldesc_from_json(const std::filesystem::path& filepath) { +ov::genai::ModelConfigDesc get_modeldesc_from_json(const std::filesystem::path& filepath) { std::ifstream file(filepath); OPENVINO_ASSERT(file.is_open(), "Could not open file: " + filepath.string()); nlohmann::json config_data = nlohmann::json::parse(file); - ModelDesc desc; + ov::genai::ModelConfigDesc desc; desc.type = config_data["model_type"].get(); // NB: In case _name_or_path field isn't presented in config.json if (config_data.contains("_name_or_path")) { @@ -664,7 +658,9 @@ StaticLLMPipeline::StaticLLMPipeline( */ const auto use_blobs = pop_or_default(properties, "USE_BLOBS", false); if (!use_blobs) { - setupAndCompileModels(models_path, device, properties); + ModelConfigDesc model_desc = get_modeldesc_from_json(models_path / "config.json"); + auto model = genai::utils::singleton_core().read_model((models_path / "openvino_model.xml").string()); + setupAndCompileModels(model, device, model_desc, properties); } else { setupAndImportModels(models_path, device, properties); } @@ -684,9 +680,39 @@ StaticLLMPipeline::StaticLLMPipeline( ) : StaticLLMPipeline(models_path, Tokenizer(models_path), device, properties) { } +StaticLLMPipeline::StaticLLMPipeline( + const std::shared_ptr& model, + const ModelConfigDesc& model_desc, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config +) : LLMPipelineImplBase(tokenizer, generation_config) { + + bool use_blobs = false; + auto anyopt = get_option(properties, "USE_BLOBS"); + if (anyopt.has_value()) { + use_blobs = *anyopt; + } + // Using model_str and weights_tesnor with blobs is meaningless. + OPENVINO_ASSERT(!use_blobs, "blobs cannot be used with model string and weights tensor"); + + auto properties_ = properties; + setupAndCompileModels(model, device, model_desc, properties_); + + // Initialize tensors + prepare_for_new_conversation(); + + // If eos_token_id was not provided, take value + if (m_generation_config.eos_token_id == -1) { + m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id()); + } +} + void StaticLLMPipeline::setupAndCompileModels( - const std::filesystem::path& models_path, + const std::shared_ptr& model, const std::string& device, + const ModelConfigDesc& model_desc, ov::AnyMap& properties) { /* Initialization assumes multiple steps if user passes "USE_BLOBS=NO": 1) Read the template model - this will be kvcache model @@ -705,7 +731,7 @@ void StaticLLMPipeline::setupAndCompileModels( // NB: Get information about NPU if available auto npudesc = extract_npu_descriptor(core); // (1) Read the template model - this will be kvcache model - auto kvcache_model = core.read_model((models_path / "openvino_model.xml").string()); + auto kvcache_model = model; // (2) Expose KV-cache input and output layers from kvcache model ov::pass::StatefulToStateless().run_on_model(kvcache_model); // (3) Align u4 ZP constants @@ -716,7 +742,7 @@ void StaticLLMPipeline::setupAndCompileModels( // (5) Reshape both models to static shape const uint32_t kMaxPromptLen = align_to(pop_int_and_cast(properties, "MAX_PROMPT_LEN").value_or(1024u), 64u); const uint32_t kMinResponseLen = align_to(pop_int_and_cast(properties, "MIN_RESPONSE_LEN").value_or(128u), 64u); - ModelDesc model_desc = get_modeldesc_from_json(models_path / "config.json"); + KVAxesPosition axes = get_kv_axes(model_desc.type); m_kvcache_desc = KVCacheDesc { kMaxPromptLen, kMaxPromptLen + kMinResponseLen, 0u, axes.seq_len, false}; reshape_to_static(prefill_model, m_kvcache_desc.max_prompt_size, m_kvcache_desc.max_prompt_size, axes); diff --git a/src/cpp/src/llm_pipeline_static.hpp b/src/cpp/src/llm_pipeline_static.hpp index d8e59d867a..7acc28c684 100644 --- a/src/cpp/src/llm_pipeline_static.hpp +++ b/src/cpp/src/llm_pipeline_static.hpp @@ -10,6 +10,12 @@ namespace ov { namespace genai { +struct ModelConfigDesc { + std::string type; + std::string name_or_path; + int num_key_value_heads; +}; + class StaticLLMPipeline final : public LLMPipelineImplBase { public: StaticLLMPipeline( @@ -19,6 +25,15 @@ class StaticLLMPipeline final : public LLMPipelineImplBase { const ov::AnyMap& config ); + StaticLLMPipeline( + const std::shared_ptr& model, + const ModelConfigDesc& model_desc, + const ov::genai::Tokenizer& tokenizer, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config = {} + ); + StaticLLMPipeline( const std::filesystem::path& path, const std::string& device, @@ -26,8 +41,9 @@ class StaticLLMPipeline final : public LLMPipelineImplBase { ); void setupAndCompileModels( - const std::filesystem::path& path, + const std::shared_ptr& model, const std::string& device, + const ModelConfigDesc& model_desc, ov::AnyMap& pipeline_config); void setupAndImportModels( diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index ecce79ac4e..2be67320a9 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -23,27 +23,22 @@ bool are_tokenizers_equal(Tokenizer& lhs, Tokenizer& rhs) { lhs.get_bos_token_id() == rhs.get_bos_token_id() && lhs.get_pad_token_id() == rhs.get_pad_token_id(); } -ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl( - const std::filesystem::path& main_models_path, - const SchedulerConfig& main_scheduler_config, - const std::string& main_device, - const ov::AnyMap& main_properties, - const ov::genai::ModelDesc draft_model_desc, - const ov::AnyMap& tokenizer_properties) { +ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl(const ov::genai::ModelDesc& main_model_desc, + const ov::genai::ModelDesc& draft_model_desc) { ov::Core core; - auto [core_properties, compile_properties] = utils::split_core_compile_config(main_properties); + auto [core_properties, compile_properties] = utils::split_core_compile_config(main_model_desc.properties); core.set_property(core_properties); - std::filesystem::path openvino_model_name = "openvino_model.xml", - draft_models_path = draft_model_desc.models_path; + auto main_model = main_model_desc.model; + auto draft_model = draft_model_desc.model; - std::shared_ptr main_model = core.read_model((main_models_path / openvino_model_name).string()), - draft_model = core.read_model((draft_models_path / openvino_model_name).string()); + auto main_scheduler_config = main_model_desc.scheduler_config; + auto main_device = main_model_desc.device; - utils::apply_paged_attention_transformations(main_model, main_scheduler_config.use_cache_eviction); - utils::apply_paged_attention_transformations(draft_model, main_scheduler_config.use_cache_eviction); + utils::apply_paged_attention_transformations(main_model, main_model_desc.scheduler_config.use_cache_eviction); + utils::apply_paged_attention_transformations(draft_model, main_model_desc.scheduler_config.use_cache_eviction); - std::string draft_device = draft_model_desc.device.empty() ? main_device : draft_model_desc.device; + std::string draft_device = draft_model_desc.device.empty() ? main_model_desc.device : draft_model_desc.device; bool is_scheduler_undefined = draft_model_desc.scheduler_config == SchedulerConfig(); @@ -76,8 +71,8 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl( // main and draft model can have different tokenizers // to do: support retokenization: 154103 - Tokenizer main_model_tokenizer(main_models_path, tokenizer_properties), - draft_model_tokenizer(draft_models_path, tokenizer_properties); + Tokenizer main_model_tokenizer = main_model_desc.tokenizer; + Tokenizer draft_model_tokenizer = draft_model_desc.tokenizer; // todo: remove this condition after support of CVS-154103 OPENVINO_ASSERT(are_tokenizers_equal(main_model_tokenizer, draft_model_tokenizer), "Tokenizers for draft and main models are different!"); @@ -86,10 +81,10 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl( // to create `main_pipeline` with enabled validation_mode and `draft_pipeline` with disabled validation mode m_main_pipeline = std::make_shared(core, - main_model, main_model_tokenizer, utils::from_config_json_if_exists(main_models_path), + main_model, main_model_tokenizer, main_model_desc.generation_config, main_device_config, main_scheduler_config, main_device, compile_properties, true); m_draft_pipeline = std::make_shared(core, - draft_model, draft_model_tokenizer, utils::from_config_json_if_exists(draft_models_path), + draft_model, draft_model_tokenizer, draft_model_desc.generation_config, draft_device_config, draft_scheduler_config, draft_device, draft_properties, false); } diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.hpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.hpp index f854713b5e..3df02ac394 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.hpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.hpp @@ -11,19 +11,27 @@ namespace ov::genai { struct ModelDesc { - std::filesystem::path models_path; std::string device; ov::genai::SchedulerConfig scheduler_config; ov::AnyMap properties; + ov::genai::GenerationConfig generation_config; + std::shared_ptr model = nullptr; + ov::genai::Tokenizer tokenizer; - ModelDesc(const std::filesystem::path& models_path, + ModelDesc(const std::shared_ptr& model, + const ov::genai::Tokenizer& tokenizer, const std::string& device = {}, const ov::AnyMap& properties = {}, - const ov::genai::SchedulerConfig& scheduler_config = {}) : - models_path(models_path), + const ov::genai::SchedulerConfig& scheduler_config = {}, + const ov::genai::GenerationConfig& generation_config = {}) : + model(model), + tokenizer(tokenizer), device(device), properties(properties), - scheduler_config(scheduler_config) {} + scheduler_config(scheduler_config), + generation_config(generation_config) {} + + ModelDesc() = default; }; class ContinuousBatchingPipeline::SpeculativeDecodingImpl : public ContinuousBatchingPipeline::ImplInterface { @@ -35,12 +43,7 @@ class ContinuousBatchingPipeline::SpeculativeDecodingImpl : public ContinuousBat std::map m_draft_generations; public: - SpeculativeDecodingImpl(const std::filesystem::path& main_models_path, - const SchedulerConfig& scheduler_config, - const std::string& device, - const ov::AnyMap& properties, - const ov::genai::ModelDesc draft_model_desc, - const ov::AnyMap& tokenizer_properties = {}); + SpeculativeDecodingImpl(const ov::genai::ModelDesc& main_model_desc, const ov::genai::ModelDesc& draft_model_desc); GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index 41f9a6abd4..cff25f07f8 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -67,6 +67,19 @@ constexpr char bos_token_key_name[] = "bos_token"; constexpr char eos_token_key_name[] = "eos_token"; constexpr char pad_token_key_name[] = "pad_token"; +ov::Core core_with_extension() { + ov::Core core; + const char* ov_tokenizer_path = getenv(ScopedVar::ENVIRONMENT_VARIABLE_NAME); + OPENVINO_ASSERT(ov_tokenizer_path, "openvino_tokenizers path is not set"); + core.add_extension(ov_tokenizer_path); + return core; +} + +ov::Core get_core_singleton() { + static ov::Core core = core_with_extension(); + return core; +} + } // namespace namespace ov { @@ -76,7 +89,7 @@ class Tokenizer::TokenizerImpl { public: ov::CompiledModel m_tokenizer; ov::CompiledModel m_detokenizer; - + std::unique_ptr> m_ireq_queue_tokenizer; std::unique_ptr> m_ireq_queue_detokenizer; // To change the adding special tokens mode we use a statefull subgraph, @@ -135,65 +148,105 @@ class Tokenizer::TokenizerImpl { TokenizerImpl() = default; - TokenizerImpl(std::filesystem::path tokenizer_path, const ov::AnyMap& properties) - : m_chat_template{chat_template_from_tokenizer_json_if_exists(tokenizer_path)} { - ov::Core core; - - OPENVINO_ASSERT(tokenizer_path.extension() != ".xml", "'tokenizer_path' parameter should be a path to a dir not a xml file"); + TokenizerImpl(const std::filesystem::path& models_papth, const ov::AnyMap& properties) { + setupTokenizer(models_papth, properties); + } - const char* ov_tokenizer_path = getenv(ScopedVar::ENVIRONMENT_VARIABLE_NAME); - OPENVINO_ASSERT(ov_tokenizer_path, "openvino_tokenizers path is not set"); - core.add_extension(ov_tokenizer_path); + TokenizerImpl(const std::pair, std::shared_ptr>& models, const ov::AnyMap& properties) { + setupTokenizer(models, properties); + } - read_config(tokenizer_path); - read_special_tokens_map(tokenizer_path); + void setupTokenizer(const std::filesystem::path& models_path, const ov::AnyMap& properties) { + ScopedVar env_manager(tokenizers_relative_to_genai().string()); + auto core = get_core_singleton(); - // Try to read tokenizer_config if some token ids or token str are not defined. - read_tokenizer_config_if_necessary(tokenizer_path); + OPENVINO_ASSERT(models_path.extension() != ".xml", "'models_papth' parameter should be a path to a dir not a xml file"); - auto device = "CPU"; // currently openvino_tokenizer supports only CPU - auto ov_tokenizer = core.read_model(tokenizer_path / "openvino_tokenizer.xml"); + std::shared_ptr ov_tokenizer = nullptr; std::shared_ptr ov_detokenizer = nullptr; - if (std::filesystem::exists(tokenizer_path / "openvino_detokenizer.xml")) { - ov_detokenizer = core.read_model(tokenizer_path / "openvino_detokenizer.xml"); + + if (std::filesystem::exists(models_path / "openvino_tokenizer.xml")) { + ov_tokenizer = core.read_model(models_path / "openvino_tokenizer.xml"); } - m_older_than_24_5 = ov_tokenizer->get_rt_info().count("openvino_tokenizers_version") != 1; - ov::pass::Manager manager_tok; - manager_tok.register_pass(); - manager_tok.run_passes(ov_tokenizer); + if (std::filesystem::exists(models_path / "openvino_detokenizer.xml")) { + ov_detokenizer = core.read_model(models_path / "openvino_detokenizer.xml"); + } + + setupTokenizer(std::make_pair(ov_tokenizer, ov_detokenizer), properties); + + // If special tokens were not found from IR, try to read them from config. + // This will be triggered only for IRs older than 2024.3. + if (m_pad_token_id == -1 || m_bos_token_id == -1 || m_eos_token_id == -1 || + m_pad_token.empty() || m_bos_token.empty() || m_eos_token.empty()) { + read_config(models_path); + read_special_tokens_map(models_path); + // Try to read tokenizer_config if some token ids or token str are not defined. + read_tokenizer_config_if_necessary(models_path); + } - m_tokenizer = core.compile_model(ov_tokenizer, device, properties); + // If chat_template was not found in IR, try to read them from config. + if (m_chat_template.empty()) { + m_chat_template = chat_template_from_tokenizer_json_if_exists(models_path); + } + } + + + void setupTokenizer(const std::pair, std::shared_ptr>& models, const ov::AnyMap& properties) { + auto [ov_tokenizer, ov_detokenizer] = models; + + m_older_than_24_5 = ov_tokenizer->get_rt_info().count("openvino_tokenizers_version") != 1; + auto core = get_core_singleton(); + std::string device = "CPU"; // only CPU is supported for now + if (ov_tokenizer) { + ov::pass::Manager manager; + manager.register_pass(); + manager.run_passes(ov_tokenizer); + m_tokenizer = core.compile_model(ov_tokenizer, device, properties); + + m_ireq_queue_tokenizer = std::make_unique>( + m_tokenizer.get_property(ov::optimal_number_of_infer_requests), + [this]() -> ov::InferRequest { + return std::move(this->m_tokenizer.create_infer_request()); + }); + } + if (ov_detokenizer) { ov::pass::Manager manager_detok; manager_detok.register_pass(); manager_detok.run_passes(ov_detokenizer); m_detokenizer = core.compile_model(ov_detokenizer, device, properties); - } - const size_t INFER_REQUEST_QUEUE_SIZE = m_tokenizer.get_property(ov::optimal_number_of_infer_requests); - m_ireq_queue_tokenizer = std::make_unique>( - INFER_REQUEST_QUEUE_SIZE, - [this]() -> ov::InferRequest { - return std::move(this->m_tokenizer.create_infer_request()); - }); - if (m_detokenizer) { m_ireq_queue_detokenizer = std::make_unique>( - INFER_REQUEST_QUEUE_SIZE, + m_detokenizer.get_property(ov::optimal_number_of_infer_requests), [this]() -> ov::InferRequest { return std::move(this->m_detokenizer.create_infer_request()); }); } - - // Get special token ids by inference if they are not defined. - infer_special_tokens_if_necessary(); + // Initialize tokenizer's cache to save time later. - // infer_special_tokens_if_necessary() already could do that - // but it didn't run decode() for sure. - // TODO CVS-150630: Empty strings sporadically can fail, therefore use nonempty string for warmup. - auto tokenized_input = encode("non empty string").input_ids; + if (m_tokenizer) { + // TODO CVS-150630: Empty strings sporadically can fail, therefore use nonempty string for warmup. + encode("non empty string").input_ids; if (m_detokenizer) - decode(tokenized_input); + decode({1, 33, 199, 42, 42}); + } + + utils::read_rt_info(ov_tokenizer, "chat_template", m_chat_template); + utils::read_rt_info(ov_tokenizer, "pad_token_id", m_pad_token_id); + utils::read_rt_info(ov_tokenizer, "bos_token_id", m_bos_token_id); + utils::read_rt_info(ov_tokenizer, "eos_token_id", m_eos_token_id); + + m_chat_template = patch_chat_template(m_chat_template); + if (m_detokenizer) { + // Unset/-1 token causes exception in SentencePiece detokenization. + if (m_pad_token_id != -1) + m_pad_token = decode(std::vector{m_pad_token_id}); + if (m_bos_token_id != -1) + m_bos_token = decode(std::vector{m_bos_token_id}); + if (m_eos_token_id != -1) + m_eos_token = decode(std::vector{m_eos_token_id}); + } } // load special tokens ids from config.json @@ -453,7 +506,7 @@ class Tokenizer::TokenizerImpl { std::string res; ov::genai::utils::read_json_param(nlohmann::json::parse(file), "chat_template", res); - + return patch_chat_template(res); } @@ -518,10 +571,40 @@ class Tokenizer::TokenizerImpl { }; Tokenizer::Tokenizer(const std::filesystem::path& tokenizer_path, const ov::AnyMap& properties) { - ScopedVar env_manager(tokenizers_relative_to_genai().string()); m_pimpl = std::make_shared(tokenizer_path, properties); } +Tokenizer::Tokenizer( + const std::string& tokenizer_model_str, + ov::Tensor& tokenizer_weights_tensor, + std::string& detokenizer_model_str, + ov::Tensor& detokenizer_weights_tensor, + const ov::AnyMap& properties +) { + ScopedVar env_manager(tokenizers_relative_to_genai().string()); + auto core = get_core_singleton(); + + auto ov_tokenizer = core.read_model(tokenizer_model_str, tokenizer_weights_tensor); + auto ov_detokenizer = core.read_model(detokenizer_model_str, detokenizer_weights_tensor); + m_pimpl = std::make_shared(std::make_pair(ov_tokenizer, ov_detokenizer), properties); +} + +Tokenizer::Tokenizer(const std::string& model_str, ov::Tensor& weights_tensor, const ov::AnyMap& properties) { + ScopedVar env_manager(tokenizers_relative_to_genai().string()); + auto core = get_core_singleton(); + auto model = core.read_model(model_str, weights_tensor); + + auto parameters = model->get_parameters(); + OPENVINO_ASSERT(!parameters.empty()); + if (parameters.front()->get_element_type() == ov::element::string) { + // It's a tokenizer + m_pimpl = std::make_shared(std::make_pair(model, nullptr), properties); + } else { + // It's a detokenizer + m_pimpl = std::make_shared(std::make_pair(nullptr, model), properties); + } +} + TokenizedInputs Tokenizer::encode(const std::string prompt, const ov::AnyMap& tokenization_params) { check_arguments(tokenization_params, {ov::genai::add_special_tokens.name()}); return m_pimpl->encode(std::move(prompt), tokenization_params); @@ -557,6 +640,7 @@ std::vector Tokenizer::decode(std::vector> lin return m_pimpl->decode(lines, detokenization_params); } + int64_t Tokenizer::get_bos_token_id() const { return m_pimpl->m_bos_token_id; } diff --git a/src/cpp/src/utils.cpp b/src/cpp/src/utils.cpp index f1718a8a5d..337b0ab47e 100644 --- a/src/cpp/src/utils.cpp +++ b/src/cpp/src/utils.cpp @@ -219,6 +219,29 @@ std::pair split_core_compile_config(const ov::AnyMap& pr return {core_properties, compile_properties}; }; +/** + * scheduler_config is a separate config for continuous batching pipeline. + * This routine splits scheduler_config from plugin_config. + */ +std::pair split_scheduler_config(const ov::AnyMap& properties) { + ov::AnyMap plugin_config = properties; + auto it = plugin_config.find(ov::genai::scheduler_config.name()); + SchedulerConfig scheduler_config; + if (it != plugin_config.end()) { + scheduler_config = it->second.as(); + plugin_config.erase(it); + } + return {plugin_config, scheduler_config}; +}; + +std::shared_ptr read_model_with_config(const std::filesystem::path& models_path, const ov::AnyMap& properties) { + auto [core_properties, compile_properties] = split_core_compile_config(properties); + ov::Core core; + core.set_property(core_properties); + std::filesystem::path openvino_model_name = "openvino_model.xml"; + return core.read_model((models_path / openvino_model_name).string()); +} + ov::genai::TokenizedInputs subtract_chat_tokenized_inputs(const ov::genai::TokenizedInputs& minuend, const ov::genai::TokenizedInputs& subtrahend) { auto minuend_size = minuend.input_ids.get_size(); auto subtrahend_size = subtrahend.input_ids.get_size(); @@ -261,6 +284,23 @@ void slice_matmul_statefull_model(std::shared_ptr model) { } } +template +void read_rt_info(std::shared_ptr& model, const char* name, T& value) { + if (!model) + return; + if (model->get_rt_info().count(name) == 0) + return; + auto str_value = model->get_rt_info().at(name).as(); + if constexpr (std::is_same::value) { + value = std::stoll(str_value); + } else if constexpr (std::is_same::value) { + value = str_value; + } +} + +template void read_rt_info(std::shared_ptr&, const char*, int64_t&); +template void read_rt_info(std::shared_ptr&, const char*, std::string&); + ov::Core singleton_core() { static ov::Core core; return core; diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index fb58022d5f..792987d383 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -78,7 +78,11 @@ ProcessorConfig from_any_map( const ProcessorConfig& initial ); + std::pair split_core_compile_config(const ov::AnyMap& properties); +std::pair split_scheduler_config(const ov::AnyMap& properties); + +std::shared_ptr read_model_with_config(const std::filesystem::path& models_path, const ov::AnyMap& properties); ov::genai::TokenizedInputs subtract_chat_tokenized_inputs(const ov::genai::TokenizedInputs& minuend, const ov::genai::TokenizedInputs& subtrahend); @@ -86,6 +90,9 @@ void slice_matmul_statefull_model(std::shared_ptr model); ov::Core singleton_core(); +template +void read_rt_info(std::shared_ptr& model, const char* name, T& value); + } // namespace utils } // namespace genai } // namespace ov diff --git a/src/python/py_llm_pipeline.cpp b/src/python/py_llm_pipeline.cpp index 7255022238..b53cc56f10 100644 --- a/src/python/py_llm_pipeline.cpp +++ b/src/python/py_llm_pipeline.cpp @@ -201,6 +201,7 @@ void init_llm_pipeline(py::module_& m) { const std::string& device, const py::kwargs& kwargs ) { + ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); return draft_model(models_path, device, pyutils::kwargs_to_any_map(kwargs)).second; }), py::arg("models_path"), "folder with openvino_model.xml and openvino_tokenizer[detokenizer].xml files", diff --git a/tests/python_tests/ov_genai_test_utils.py b/tests/python_tests/ov_genai_test_utils.py index 5730def0c6..b633497d32 100644 --- a/tests/python_tests/ov_genai_test_utils.py +++ b/tests/python_tests/ov_genai_test_utils.py @@ -223,6 +223,38 @@ def model_tmp_path(tmpdir_factory): shutil.copy(src_file, temp_path / src_file.name) yield model_id, Path(temp_path) +@pytest.fixture(scope="module") +def model_tokenizers_path_tmp_path(tmpdir_factory): + model_id, path, _, _, _ = read_model(get_models_list()[0]) + temp_path = tmpdir_factory.mktemp(model_id.replace('/', '_')) + + # If tokens were not found in IR, it fallback to reading from config. + # There was no easy way to add tokens to IR in tests, so we remove them + # and set tokens in configs and to check if they are read and validated correctly. + import openvino as ov + + # copy openvino converted model and tokenizers + for pattern in ['*.xml', '*.bin']: + for src_file in path.glob(pattern): + core = ov.Core() + + # Update files if they are openvino_tokenizer.xml or openvino_detokenizer.xml + if src_file.name in ['openvino_tokenizer.xml', 'openvino_detokenizer.xml']: + if src_file.exists(): + # Load the XML content + ov_model = core.read_model(src_file) + # Add empty rt_info so that tokens will be read from config instead of IR + ov_model.set_rt_info("pad_token_id", "") + ov_model.set_rt_info("eos_token_id", "") + ov_model.set_rt_info("chat_template", "") + ov.save_model(ov_model, str(temp_path / src_file.name)) + + if src_file in ['openvino_tokenizer.bin', 'openvino_detokenizer.bin']: + continue + if src_file.is_file(): + shutil.copy(src_file, temp_path / src_file.name) + yield model_id, Path(temp_path) + def load_tok(configs: List[Tuple], temp_path): # load Tokenizer where all configs are cleared. diff --git a/tests/python_tests/test_chat_generate_api.py b/tests/python_tests/test_chat_generate_api.py index 68c25e5391..9260e671d6 100644 --- a/tests/python_tests/test_chat_generate_api.py +++ b/tests/python_tests/test_chat_generate_api.py @@ -158,6 +158,7 @@ def test_apply_chat_template(model_tmp_path, chat_config: Tuple[str, Dict]): **tokenizer_config) tok = load_tok([(tokenizer_config, "tokenizer_config.json")], model_tmp_path[1]) + tok.set_chat_template(tokenizer_config['chat_template']) full_history_str = tok.apply_chat_template(conversation, add_generation_prompt=False) if full_history_str != full_history_str_hf: print(f'hf reference: {full_history_str_hf}') diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index d17f3c0232..d15747be63 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -509,7 +509,8 @@ def test_load_special_tokens_str_2(model_tmp_path): @pytest.mark.precommit @pytest.mark.nightly -def test_load_special_tokens_3_(model_tmp_path): +@pytest.mark.skip(reason="CVS-158682 - RTInfo is not modified in tests for unknown reasons") +def test_load_special_tokens_3_(model_tokenizers_path_tmp_path): # special_tokens_map is not available # but tokenize_config.json exists # will load both string and integer representations @@ -524,7 +525,7 @@ def test_load_special_tokens_3_(model_tmp_path): "eos_token": "", } - tok = load_tok([(tok_config_json, "tokenizer_config.json")], model_tmp_path[1]) + tok = load_tok([(tok_config_json, "tokenizer_config.json")], model_tokenizers_path_tmp_path[1]) assert tok.get_pad_token() == tok_config_json['pad_token'] assert tok.get_bos_token() == tok_config_json['bos_token'] assert tok.get_eos_token() == tok_config_json['eos_token'] @@ -605,7 +606,8 @@ def test_load_special_tokens_4(model_tmp_path): invalid_configs = [ dict(num_beam_groups=3, num_beams=15, do_sample=True), - dict(do_sample=True), # no eos_token_id no max_new_tokens, no max_len + # TODO: CVS-158682 eos_token_id is still read from tiny-random-phi3 and we cannot modify RTInfo in tests + # dict(do_sample=True), # no eos_token_id no max_new_tokens, no max_len dict(eos_token_id=42, ignore_eos=True), # no max_new_tokens, no max_len with ignore_eos dict(repetition_penalty=-1.0, eos_token_id=42, max_new_tokens=20), # invalid penalty dict(temperature=-1.0, do_sample=True, eos_token_id=42, max_new_tokens=20), # invalid temp From b8a84b8ea2c8cffb87f56a8d66b885b1695cfbdd Mon Sep 17 00:00:00 2001 From: zhaohongbo Date: Wed, 11 Dec 2024 22:14:50 +0800 Subject: [PATCH 063/113] Demo for chunk streaming (#1320) Add python chat example for chunk streaming --- .../python/multinomial_causal_lm/README.md | 2 ++ .../multinomial_causal_lm.py | 25 ++++++++++++++++--- 2 files changed, 24 insertions(+), 3 deletions(-) diff --git a/samples/python/multinomial_causal_lm/README.md b/samples/python/multinomial_causal_lm/README.md index 69a3cd4008..c1afc08a8d 100644 --- a/samples/python/multinomial_causal_lm/README.md +++ b/samples/python/multinomial_causal_lm/README.md @@ -32,6 +32,8 @@ This Python example demonstrates custom detokenization with bufferization. The s To address this, the detokenizer needs a larger context. We accumulate tokens in a tokens_cache buffer and decode multiple tokens together, adding the text to the streaming queue only when a complete decoded chunk is ready. We run a separate thread to print all new elements arriving in this queue from the generation pipeline. Each generated chunk of text is put into a synchronized queue, ensuring that all put and get operations are thread-safe and blocked until they can proceed. +At the same time, in order to optimize the performance in streaming mode, we provide the Chuck Streaming. Chunk streaming has significant benefits to very small LLM for streaming generate token rate improvement. It does sampling once after several token generation. We can use the tokens_len parameter to control the number of tokens in the token_cache before sampling. + ### Troubleshooting #### Unicode characters encoding error on Windows diff --git a/samples/python/multinomial_causal_lm/multinomial_causal_lm.py b/samples/python/multinomial_causal_lm/multinomial_causal_lm.py index da51176d06..953388ed6a 100755 --- a/samples/python/multinomial_causal_lm/multinomial_causal_lm.py +++ b/samples/python/multinomial_causal_lm/multinomial_causal_lm.py @@ -120,6 +120,19 @@ def end(self): self.put_word(None) +class ChunkStreamer(IterableStreamer): + + def __init__(self, tokenizer, tokens_len): + super().__init__(tokenizer) + self.tokens_len = tokens_len + + def put(self, token_id: int) -> bool: + if (len(self.tokens_cache) + 1) % self.tokens_len != 0: + self.tokens_cache.append(token_id) + return False + return super().put(token_id) + + def main(): parser = argparse.ArgumentParser() parser.add_argument('model_dir') @@ -127,16 +140,21 @@ def main(): args = parser.parse_args() device = 'CPU' # GPU can be used as well + tokens_len = 10 # chunk size pipe = openvino_genai.LLMPipeline(args.model_dir, device) - - text_print_streamer = IterableStreamer(pipe.get_tokenizer()) + + text_print_streamer = ChunkStreamer( + pipe.get_tokenizer(), + tokens_len + ) + def token_printer(): # Getting next elements from iterable will be blocked until a new token is available. for word in text_print_streamer: print(word, end='', flush=True) printer_thread = threading.Thread(target=token_printer, daemon=True) printer_thread.start() - + config = openvino_genai.GenerationConfig() config.max_new_tokens = 100 config.do_sample = True @@ -148,5 +166,6 @@ def token_printer(): pipe.generate(args.prompt, config, text_print_streamer) printer_thread.join() + if '__main__' == __name__: main() From 1abbb1c60c732994e287833792bb525e9e1c53ef Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Wed, 11 Dec 2024 17:41:29 +0100 Subject: [PATCH 064/113] update tokenizers (#1365) --- thirdparty/openvino_tokenizers | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 904046825b..78946fa8c3 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 904046825b6378bae74f16f302b40599aa88d5b3 +Subproject commit 78946fa8c385fdc26d978019ecbcb1a55b39eb18 From 67f2d26f929a8a36b6a429aebed6f8ccf9f37b5d Mon Sep 17 00:00:00 2001 From: Mikhail Ryzhov Date: Wed, 11 Dec 2024 21:49:23 +0100 Subject: [PATCH 065/113] [GHA] Linux pipeline refactoring (#1257) - use self-hosted runners - openvino provider action - upload/download artifacts - debug/release builds --------- Co-authored-by: Ilya Lavrenov --- .github/actions/install_wheel/.eslintignore | 4 + .github/actions/install_wheel/.node-version | 1 + .github/actions/install_wheel/.prettierignore | 3 + .../actions/install_wheel/.prettierrc.json | 16 + .github/actions/install_wheel/action.yml | 22 + .github/actions/install_wheel/dist/index.js | 35818 ++++++++++++++++ .../install_wheel/linters/.eslintrc.yml | 50 + .../install_wheel/linters/.markdown-lint.yml | 18 + .../install_wheel/linters/.yaml-lint.yml | 10 + .../install_wheel/src/install_packages.js | 64 + .github/workflows/linux.yml | 691 +- 11 files changed, 36311 insertions(+), 386 deletions(-) create mode 100644 .github/actions/install_wheel/.eslintignore create mode 100644 .github/actions/install_wheel/.node-version create mode 100644 .github/actions/install_wheel/.prettierignore create mode 100644 .github/actions/install_wheel/.prettierrc.json create mode 100644 .github/actions/install_wheel/action.yml create mode 100644 .github/actions/install_wheel/dist/index.js create mode 100644 .github/actions/install_wheel/linters/.eslintrc.yml create mode 100644 .github/actions/install_wheel/linters/.markdown-lint.yml create mode 100644 .github/actions/install_wheel/linters/.yaml-lint.yml create mode 100644 .github/actions/install_wheel/src/install_packages.js diff --git a/.github/actions/install_wheel/.eslintignore b/.github/actions/install_wheel/.eslintignore new file mode 100644 index 0000000000..9ff5c1c6e2 --- /dev/null +++ b/.github/actions/install_wheel/.eslintignore @@ -0,0 +1,4 @@ +lib/ +dist/ +node_modules/ +coverage/ diff --git a/.github/actions/install_wheel/.node-version b/.github/actions/install_wheel/.node-version new file mode 100644 index 0000000000..1cc433a12a --- /dev/null +++ b/.github/actions/install_wheel/.node-version @@ -0,0 +1 @@ +20.6.0 diff --git a/.github/actions/install_wheel/.prettierignore b/.github/actions/install_wheel/.prettierignore new file mode 100644 index 0000000000..2d0c064480 --- /dev/null +++ b/.github/actions/install_wheel/.prettierignore @@ -0,0 +1,3 @@ +dist/ +node_modules/ +coverage/ diff --git a/.github/actions/install_wheel/.prettierrc.json b/.github/actions/install_wheel/.prettierrc.json new file mode 100644 index 0000000000..d06881801c --- /dev/null +++ b/.github/actions/install_wheel/.prettierrc.json @@ -0,0 +1,16 @@ +{ + "printWidth": 80, + "tabWidth": 2, + "useTabs": false, + "semi": true, + "singleQuote": true, + "quoteProps": "as-needed", + "jsxSingleQuote": false, + "trailingComma": "none", + "bracketSpacing": true, + "bracketSameLine": true, + "arrowParens": "avoid", + "proseWrap": "always", + "htmlWhitespaceSensitivity": "css", + "endOfLine": "lf" +} diff --git a/.github/actions/install_wheel/action.yml b/.github/actions/install_wheel/action.yml new file mode 100644 index 0000000000..c29bfcee62 --- /dev/null +++ b/.github/actions/install_wheel/action.yml @@ -0,0 +1,22 @@ +name: 'Install Python Packages with Local Wheels and Extras' +description: + 'Installs specified Python packages with support for local wheels and optional + extras.' +author: 'OpenVINO Developers' +inputs: + packages: + description: + "Semicolon-separated list of packages to install, e.g., + 'openvino;openvino_tokenizers[extra1,extra2]'" + required: true + requirements_files: + description: + "Semicolon-separated list of requirements.txt to install, e.g., + 'requirements.txt;requirements-dev.txt'" + required: false + local_wheel_dir: + description: 'Path to the directory containing local wheel files' + required: true +runs: + using: 'node20' + main: 'dist/index.js' diff --git a/.github/actions/install_wheel/dist/index.js b/.github/actions/install_wheel/dist/index.js new file mode 100644 index 0000000000..03772a5084 --- /dev/null +++ b/.github/actions/install_wheel/dist/index.js @@ -0,0 +1,35818 @@ +/******/ (() => { // webpackBootstrap +/******/ var __webpack_modules__ = ({ + +/***/ 4914: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.issue = exports.issueCommand = void 0; +const os = __importStar(__nccwpck_require__(857)); +const utils_1 = __nccwpck_require__(302); +/** + * Commands + * + * Command Format: + * ::name key=value,key=value::message + * + * Examples: + * ::warning::This is the message + * ::set-env name=MY_VAR::some value + */ +function issueCommand(command, properties, message) { + const cmd = new Command(command, properties, message); + process.stdout.write(cmd.toString() + os.EOL); +} +exports.issueCommand = issueCommand; +function issue(name, message = '') { + issueCommand(name, {}, message); +} +exports.issue = issue; +const CMD_STRING = '::'; +class Command { + constructor(command, properties, message) { + if (!command) { + command = 'missing.command'; + } + this.command = command; + this.properties = properties; + this.message = message; + } + toString() { + let cmdStr = CMD_STRING + this.command; + if (this.properties && Object.keys(this.properties).length > 0) { + cmdStr += ' '; + let first = true; + for (const key in this.properties) { + if (this.properties.hasOwnProperty(key)) { + const val = this.properties[key]; + if (val) { + if (first) { + first = false; + } + else { + cmdStr += ','; + } + cmdStr += `${key}=${escapeProperty(val)}`; + } + } + } + } + cmdStr += `${CMD_STRING}${escapeData(this.message)}`; + return cmdStr; + } +} +function escapeData(s) { + return (0, utils_1.toCommandValue)(s) + .replace(/%/g, '%25') + .replace(/\r/g, '%0D') + .replace(/\n/g, '%0A'); +} +function escapeProperty(s) { + return (0, utils_1.toCommandValue)(s) + .replace(/%/g, '%25') + .replace(/\r/g, '%0D') + .replace(/\n/g, '%0A') + .replace(/:/g, '%3A') + .replace(/,/g, '%2C'); +} +//# sourceMappingURL=command.js.map + +/***/ }), + +/***/ 7484: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.platform = exports.toPlatformPath = exports.toWin32Path = exports.toPosixPath = exports.markdownSummary = exports.summary = exports.getIDToken = exports.getState = exports.saveState = exports.group = exports.endGroup = exports.startGroup = exports.info = exports.notice = exports.warning = exports.error = exports.debug = exports.isDebug = exports.setFailed = exports.setCommandEcho = exports.setOutput = exports.getBooleanInput = exports.getMultilineInput = exports.getInput = exports.addPath = exports.setSecret = exports.exportVariable = exports.ExitCode = void 0; +const command_1 = __nccwpck_require__(4914); +const file_command_1 = __nccwpck_require__(4753); +const utils_1 = __nccwpck_require__(302); +const os = __importStar(__nccwpck_require__(857)); +const path = __importStar(__nccwpck_require__(6928)); +const oidc_utils_1 = __nccwpck_require__(5306); +/** + * The code to exit an action + */ +var ExitCode; +(function (ExitCode) { + /** + * A code indicating that the action was successful + */ + ExitCode[ExitCode["Success"] = 0] = "Success"; + /** + * A code indicating that the action was a failure + */ + ExitCode[ExitCode["Failure"] = 1] = "Failure"; +})(ExitCode || (exports.ExitCode = ExitCode = {})); +//----------------------------------------------------------------------- +// Variables +//----------------------------------------------------------------------- +/** + * Sets env variable for this action and future actions in the job + * @param name the name of the variable to set + * @param val the value of the variable. Non-string values will be converted to a string via JSON.stringify + */ +// eslint-disable-next-line @typescript-eslint/no-explicit-any +function exportVariable(name, val) { + const convertedVal = (0, utils_1.toCommandValue)(val); + process.env[name] = convertedVal; + const filePath = process.env['GITHUB_ENV'] || ''; + if (filePath) { + return (0, file_command_1.issueFileCommand)('ENV', (0, file_command_1.prepareKeyValueMessage)(name, val)); + } + (0, command_1.issueCommand)('set-env', { name }, convertedVal); +} +exports.exportVariable = exportVariable; +/** + * Registers a secret which will get masked from logs + * @param secret value of the secret + */ +function setSecret(secret) { + (0, command_1.issueCommand)('add-mask', {}, secret); +} +exports.setSecret = setSecret; +/** + * Prepends inputPath to the PATH (for this action and future actions) + * @param inputPath + */ +function addPath(inputPath) { + const filePath = process.env['GITHUB_PATH'] || ''; + if (filePath) { + (0, file_command_1.issueFileCommand)('PATH', inputPath); + } + else { + (0, command_1.issueCommand)('add-path', {}, inputPath); + } + process.env['PATH'] = `${inputPath}${path.delimiter}${process.env['PATH']}`; +} +exports.addPath = addPath; +/** + * Gets the value of an input. + * Unless trimWhitespace is set to false in InputOptions, the value is also trimmed. + * Returns an empty string if the value is not defined. + * + * @param name name of the input to get + * @param options optional. See InputOptions. + * @returns string + */ +function getInput(name, options) { + const val = process.env[`INPUT_${name.replace(/ /g, '_').toUpperCase()}`] || ''; + if (options && options.required && !val) { + throw new Error(`Input required and not supplied: ${name}`); + } + if (options && options.trimWhitespace === false) { + return val; + } + return val.trim(); +} +exports.getInput = getInput; +/** + * Gets the values of an multiline input. Each value is also trimmed. + * + * @param name name of the input to get + * @param options optional. See InputOptions. + * @returns string[] + * + */ +function getMultilineInput(name, options) { + const inputs = getInput(name, options) + .split('\n') + .filter(x => x !== ''); + if (options && options.trimWhitespace === false) { + return inputs; + } + return inputs.map(input => input.trim()); +} +exports.getMultilineInput = getMultilineInput; +/** + * Gets the input value of the boolean type in the YAML 1.2 "core schema" specification. + * Support boolean input list: `true | True | TRUE | false | False | FALSE` . + * The return value is also in boolean type. + * ref: https://yaml.org/spec/1.2/spec.html#id2804923 + * + * @param name name of the input to get + * @param options optional. See InputOptions. + * @returns boolean + */ +function getBooleanInput(name, options) { + const trueValue = ['true', 'True', 'TRUE']; + const falseValue = ['false', 'False', 'FALSE']; + const val = getInput(name, options); + if (trueValue.includes(val)) + return true; + if (falseValue.includes(val)) + return false; + throw new TypeError(`Input does not meet YAML 1.2 "Core Schema" specification: ${name}\n` + + `Support boolean input list: \`true | True | TRUE | false | False | FALSE\``); +} +exports.getBooleanInput = getBooleanInput; +/** + * Sets the value of an output. + * + * @param name name of the output to set + * @param value value to store. Non-string values will be converted to a string via JSON.stringify + */ +// eslint-disable-next-line @typescript-eslint/no-explicit-any +function setOutput(name, value) { + const filePath = process.env['GITHUB_OUTPUT'] || ''; + if (filePath) { + return (0, file_command_1.issueFileCommand)('OUTPUT', (0, file_command_1.prepareKeyValueMessage)(name, value)); + } + process.stdout.write(os.EOL); + (0, command_1.issueCommand)('set-output', { name }, (0, utils_1.toCommandValue)(value)); +} +exports.setOutput = setOutput; +/** + * Enables or disables the echoing of commands into stdout for the rest of the step. + * Echoing is disabled by default if ACTIONS_STEP_DEBUG is not set. + * + */ +function setCommandEcho(enabled) { + (0, command_1.issue)('echo', enabled ? 'on' : 'off'); +} +exports.setCommandEcho = setCommandEcho; +//----------------------------------------------------------------------- +// Results +//----------------------------------------------------------------------- +/** + * Sets the action status to failed. + * When the action exits it will be with an exit code of 1 + * @param message add error issue message + */ +function setFailed(message) { + process.exitCode = ExitCode.Failure; + error(message); +} +exports.setFailed = setFailed; +//----------------------------------------------------------------------- +// Logging Commands +//----------------------------------------------------------------------- +/** + * Gets whether Actions Step Debug is on or not + */ +function isDebug() { + return process.env['RUNNER_DEBUG'] === '1'; +} +exports.isDebug = isDebug; +/** + * Writes debug message to user log + * @param message debug message + */ +function debug(message) { + (0, command_1.issueCommand)('debug', {}, message); +} +exports.debug = debug; +/** + * Adds an error issue + * @param message error issue message. Errors will be converted to string via toString() + * @param properties optional properties to add to the annotation. + */ +function error(message, properties = {}) { + (0, command_1.issueCommand)('error', (0, utils_1.toCommandProperties)(properties), message instanceof Error ? message.toString() : message); +} +exports.error = error; +/** + * Adds a warning issue + * @param message warning issue message. Errors will be converted to string via toString() + * @param properties optional properties to add to the annotation. + */ +function warning(message, properties = {}) { + (0, command_1.issueCommand)('warning', (0, utils_1.toCommandProperties)(properties), message instanceof Error ? message.toString() : message); +} +exports.warning = warning; +/** + * Adds a notice issue + * @param message notice issue message. Errors will be converted to string via toString() + * @param properties optional properties to add to the annotation. + */ +function notice(message, properties = {}) { + (0, command_1.issueCommand)('notice', (0, utils_1.toCommandProperties)(properties), message instanceof Error ? message.toString() : message); +} +exports.notice = notice; +/** + * Writes info to log with console.log. + * @param message info message + */ +function info(message) { + process.stdout.write(message + os.EOL); +} +exports.info = info; +/** + * Begin an output group. + * + * Output until the next `groupEnd` will be foldable in this group + * + * @param name The name of the output group + */ +function startGroup(name) { + (0, command_1.issue)('group', name); +} +exports.startGroup = startGroup; +/** + * End an output group. + */ +function endGroup() { + (0, command_1.issue)('endgroup'); +} +exports.endGroup = endGroup; +/** + * Wrap an asynchronous function call in a group. + * + * Returns the same type as the function itself. + * + * @param name The name of the group + * @param fn The function to wrap in the group + */ +function group(name, fn) { + return __awaiter(this, void 0, void 0, function* () { + startGroup(name); + let result; + try { + result = yield fn(); + } + finally { + endGroup(); + } + return result; + }); +} +exports.group = group; +//----------------------------------------------------------------------- +// Wrapper action state +//----------------------------------------------------------------------- +/** + * Saves state for current action, the state can only be retrieved by this action's post job execution. + * + * @param name name of the state to store + * @param value value to store. Non-string values will be converted to a string via JSON.stringify + */ +// eslint-disable-next-line @typescript-eslint/no-explicit-any +function saveState(name, value) { + const filePath = process.env['GITHUB_STATE'] || ''; + if (filePath) { + return (0, file_command_1.issueFileCommand)('STATE', (0, file_command_1.prepareKeyValueMessage)(name, value)); + } + (0, command_1.issueCommand)('save-state', { name }, (0, utils_1.toCommandValue)(value)); +} +exports.saveState = saveState; +/** + * Gets the value of an state set by this action's main execution. + * + * @param name name of the state to get + * @returns string + */ +function getState(name) { + return process.env[`STATE_${name}`] || ''; +} +exports.getState = getState; +function getIDToken(aud) { + return __awaiter(this, void 0, void 0, function* () { + return yield oidc_utils_1.OidcClient.getIDToken(aud); + }); +} +exports.getIDToken = getIDToken; +/** + * Summary exports + */ +var summary_1 = __nccwpck_require__(1847); +Object.defineProperty(exports, "summary", ({ enumerable: true, get: function () { return summary_1.summary; } })); +/** + * @deprecated use core.summary + */ +var summary_2 = __nccwpck_require__(1847); +Object.defineProperty(exports, "markdownSummary", ({ enumerable: true, get: function () { return summary_2.markdownSummary; } })); +/** + * Path exports + */ +var path_utils_1 = __nccwpck_require__(1976); +Object.defineProperty(exports, "toPosixPath", ({ enumerable: true, get: function () { return path_utils_1.toPosixPath; } })); +Object.defineProperty(exports, "toWin32Path", ({ enumerable: true, get: function () { return path_utils_1.toWin32Path; } })); +Object.defineProperty(exports, "toPlatformPath", ({ enumerable: true, get: function () { return path_utils_1.toPlatformPath; } })); +/** + * Platform utilities exports + */ +exports.platform = __importStar(__nccwpck_require__(8968)); +//# sourceMappingURL=core.js.map + +/***/ }), + +/***/ 4753: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +// For internal use, subject to change. +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.prepareKeyValueMessage = exports.issueFileCommand = void 0; +// We use any as a valid input type +/* eslint-disable @typescript-eslint/no-explicit-any */ +const crypto = __importStar(__nccwpck_require__(6982)); +const fs = __importStar(__nccwpck_require__(9896)); +const os = __importStar(__nccwpck_require__(857)); +const utils_1 = __nccwpck_require__(302); +function issueFileCommand(command, message) { + const filePath = process.env[`GITHUB_${command}`]; + if (!filePath) { + throw new Error(`Unable to find environment variable for file command ${command}`); + } + if (!fs.existsSync(filePath)) { + throw new Error(`Missing file at path: ${filePath}`); + } + fs.appendFileSync(filePath, `${(0, utils_1.toCommandValue)(message)}${os.EOL}`, { + encoding: 'utf8' + }); +} +exports.issueFileCommand = issueFileCommand; +function prepareKeyValueMessage(key, value) { + const delimiter = `ghadelimiter_${crypto.randomUUID()}`; + const convertedValue = (0, utils_1.toCommandValue)(value); + // These should realistically never happen, but just in case someone finds a + // way to exploit uuid generation let's not allow keys or values that contain + // the delimiter. + if (key.includes(delimiter)) { + throw new Error(`Unexpected input: name should not contain the delimiter "${delimiter}"`); + } + if (convertedValue.includes(delimiter)) { + throw new Error(`Unexpected input: value should not contain the delimiter "${delimiter}"`); + } + return `${key}<<${delimiter}${os.EOL}${convertedValue}${os.EOL}${delimiter}`; +} +exports.prepareKeyValueMessage = prepareKeyValueMessage; +//# sourceMappingURL=file-command.js.map + +/***/ }), + +/***/ 5306: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.OidcClient = void 0; +const http_client_1 = __nccwpck_require__(4844); +const auth_1 = __nccwpck_require__(4552); +const core_1 = __nccwpck_require__(7484); +class OidcClient { + static createHttpClient(allowRetry = true, maxRetry = 10) { + const requestOptions = { + allowRetries: allowRetry, + maxRetries: maxRetry + }; + return new http_client_1.HttpClient('actions/oidc-client', [new auth_1.BearerCredentialHandler(OidcClient.getRequestToken())], requestOptions); + } + static getRequestToken() { + const token = process.env['ACTIONS_ID_TOKEN_REQUEST_TOKEN']; + if (!token) { + throw new Error('Unable to get ACTIONS_ID_TOKEN_REQUEST_TOKEN env variable'); + } + return token; + } + static getIDTokenUrl() { + const runtimeUrl = process.env['ACTIONS_ID_TOKEN_REQUEST_URL']; + if (!runtimeUrl) { + throw new Error('Unable to get ACTIONS_ID_TOKEN_REQUEST_URL env variable'); + } + return runtimeUrl; + } + static getCall(id_token_url) { + var _a; + return __awaiter(this, void 0, void 0, function* () { + const httpclient = OidcClient.createHttpClient(); + const res = yield httpclient + .getJson(id_token_url) + .catch(error => { + throw new Error(`Failed to get ID Token. \n + Error Code : ${error.statusCode}\n + Error Message: ${error.message}`); + }); + const id_token = (_a = res.result) === null || _a === void 0 ? void 0 : _a.value; + if (!id_token) { + throw new Error('Response json body do not have ID Token field'); + } + return id_token; + }); + } + static getIDToken(audience) { + return __awaiter(this, void 0, void 0, function* () { + try { + // New ID Token is requested from action service + let id_token_url = OidcClient.getIDTokenUrl(); + if (audience) { + const encodedAudience = encodeURIComponent(audience); + id_token_url = `${id_token_url}&audience=${encodedAudience}`; + } + (0, core_1.debug)(`ID token url is ${id_token_url}`); + const id_token = yield OidcClient.getCall(id_token_url); + (0, core_1.setSecret)(id_token); + return id_token; + } + catch (error) { + throw new Error(`Error message: ${error.message}`); + } + }); + } +} +exports.OidcClient = OidcClient; +//# sourceMappingURL=oidc-utils.js.map + +/***/ }), + +/***/ 1976: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.toPlatformPath = exports.toWin32Path = exports.toPosixPath = void 0; +const path = __importStar(__nccwpck_require__(6928)); +/** + * toPosixPath converts the given path to the posix form. On Windows, \\ will be + * replaced with /. + * + * @param pth. Path to transform. + * @return string Posix path. + */ +function toPosixPath(pth) { + return pth.replace(/[\\]/g, '/'); +} +exports.toPosixPath = toPosixPath; +/** + * toWin32Path converts the given path to the win32 form. On Linux, / will be + * replaced with \\. + * + * @param pth. Path to transform. + * @return string Win32 path. + */ +function toWin32Path(pth) { + return pth.replace(/[/]/g, '\\'); +} +exports.toWin32Path = toWin32Path; +/** + * toPlatformPath converts the given path to a platform-specific path. It does + * this by replacing instances of / and \ with the platform-specific path + * separator. + * + * @param pth The path to platformize. + * @return string The platform-specific path. + */ +function toPlatformPath(pth) { + return pth.replace(/[/\\]/g, path.sep); +} +exports.toPlatformPath = toPlatformPath; +//# sourceMappingURL=path-utils.js.map + +/***/ }), + +/***/ 8968: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +var __importDefault = (this && this.__importDefault) || function (mod) { + return (mod && mod.__esModule) ? mod : { "default": mod }; +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.getDetails = exports.isLinux = exports.isMacOS = exports.isWindows = exports.arch = exports.platform = void 0; +const os_1 = __importDefault(__nccwpck_require__(857)); +const exec = __importStar(__nccwpck_require__(5236)); +const getWindowsInfo = () => __awaiter(void 0, void 0, void 0, function* () { + const { stdout: version } = yield exec.getExecOutput('powershell -command "(Get-CimInstance -ClassName Win32_OperatingSystem).Version"', undefined, { + silent: true + }); + const { stdout: name } = yield exec.getExecOutput('powershell -command "(Get-CimInstance -ClassName Win32_OperatingSystem).Caption"', undefined, { + silent: true + }); + return { + name: name.trim(), + version: version.trim() + }; +}); +const getMacOsInfo = () => __awaiter(void 0, void 0, void 0, function* () { + var _a, _b, _c, _d; + const { stdout } = yield exec.getExecOutput('sw_vers', undefined, { + silent: true + }); + const version = (_b = (_a = stdout.match(/ProductVersion:\s*(.+)/)) === null || _a === void 0 ? void 0 : _a[1]) !== null && _b !== void 0 ? _b : ''; + const name = (_d = (_c = stdout.match(/ProductName:\s*(.+)/)) === null || _c === void 0 ? void 0 : _c[1]) !== null && _d !== void 0 ? _d : ''; + return { + name, + version + }; +}); +const getLinuxInfo = () => __awaiter(void 0, void 0, void 0, function* () { + const { stdout } = yield exec.getExecOutput('lsb_release', ['-i', '-r', '-s'], { + silent: true + }); + const [name, version] = stdout.trim().split('\n'); + return { + name, + version + }; +}); +exports.platform = os_1.default.platform(); +exports.arch = os_1.default.arch(); +exports.isWindows = exports.platform === 'win32'; +exports.isMacOS = exports.platform === 'darwin'; +exports.isLinux = exports.platform === 'linux'; +function getDetails() { + return __awaiter(this, void 0, void 0, function* () { + return Object.assign(Object.assign({}, (yield (exports.isWindows + ? getWindowsInfo() + : exports.isMacOS + ? getMacOsInfo() + : getLinuxInfo()))), { platform: exports.platform, + arch: exports.arch, + isWindows: exports.isWindows, + isMacOS: exports.isMacOS, + isLinux: exports.isLinux }); + }); +} +exports.getDetails = getDetails; +//# sourceMappingURL=platform.js.map + +/***/ }), + +/***/ 1847: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.summary = exports.markdownSummary = exports.SUMMARY_DOCS_URL = exports.SUMMARY_ENV_VAR = void 0; +const os_1 = __nccwpck_require__(857); +const fs_1 = __nccwpck_require__(9896); +const { access, appendFile, writeFile } = fs_1.promises; +exports.SUMMARY_ENV_VAR = 'GITHUB_STEP_SUMMARY'; +exports.SUMMARY_DOCS_URL = 'https://docs.github.com/actions/using-workflows/workflow-commands-for-github-actions#adding-a-job-summary'; +class Summary { + constructor() { + this._buffer = ''; + } + /** + * Finds the summary file path from the environment, rejects if env var is not found or file does not exist + * Also checks r/w permissions. + * + * @returns step summary file path + */ + filePath() { + return __awaiter(this, void 0, void 0, function* () { + if (this._filePath) { + return this._filePath; + } + const pathFromEnv = process.env[exports.SUMMARY_ENV_VAR]; + if (!pathFromEnv) { + throw new Error(`Unable to find environment variable for $${exports.SUMMARY_ENV_VAR}. Check if your runtime environment supports job summaries.`); + } + try { + yield access(pathFromEnv, fs_1.constants.R_OK | fs_1.constants.W_OK); + } + catch (_a) { + throw new Error(`Unable to access summary file: '${pathFromEnv}'. Check if the file has correct read/write permissions.`); + } + this._filePath = pathFromEnv; + return this._filePath; + }); + } + /** + * Wraps content in an HTML tag, adding any HTML attributes + * + * @param {string} tag HTML tag to wrap + * @param {string | null} content content within the tag + * @param {[attribute: string]: string} attrs key-value list of HTML attributes to add + * + * @returns {string} content wrapped in HTML element + */ + wrap(tag, content, attrs = {}) { + const htmlAttrs = Object.entries(attrs) + .map(([key, value]) => ` ${key}="${value}"`) + .join(''); + if (!content) { + return `<${tag}${htmlAttrs}>`; + } + return `<${tag}${htmlAttrs}>${content}`; + } + /** + * Writes text in the buffer to the summary buffer file and empties buffer. Will append by default. + * + * @param {SummaryWriteOptions} [options] (optional) options for write operation + * + * @returns {Promise} summary instance + */ + write(options) { + return __awaiter(this, void 0, void 0, function* () { + const overwrite = !!(options === null || options === void 0 ? void 0 : options.overwrite); + const filePath = yield this.filePath(); + const writeFunc = overwrite ? writeFile : appendFile; + yield writeFunc(filePath, this._buffer, { encoding: 'utf8' }); + return this.emptyBuffer(); + }); + } + /** + * Clears the summary buffer and wipes the summary file + * + * @returns {Summary} summary instance + */ + clear() { + return __awaiter(this, void 0, void 0, function* () { + return this.emptyBuffer().write({ overwrite: true }); + }); + } + /** + * Returns the current summary buffer as a string + * + * @returns {string} string of summary buffer + */ + stringify() { + return this._buffer; + } + /** + * If the summary buffer is empty + * + * @returns {boolen} true if the buffer is empty + */ + isEmptyBuffer() { + return this._buffer.length === 0; + } + /** + * Resets the summary buffer without writing to summary file + * + * @returns {Summary} summary instance + */ + emptyBuffer() { + this._buffer = ''; + return this; + } + /** + * Adds raw text to the summary buffer + * + * @param {string} text content to add + * @param {boolean} [addEOL=false] (optional) append an EOL to the raw text (default: false) + * + * @returns {Summary} summary instance + */ + addRaw(text, addEOL = false) { + this._buffer += text; + return addEOL ? this.addEOL() : this; + } + /** + * Adds the operating system-specific end-of-line marker to the buffer + * + * @returns {Summary} summary instance + */ + addEOL() { + return this.addRaw(os_1.EOL); + } + /** + * Adds an HTML codeblock to the summary buffer + * + * @param {string} code content to render within fenced code block + * @param {string} lang (optional) language to syntax highlight code + * + * @returns {Summary} summary instance + */ + addCodeBlock(code, lang) { + const attrs = Object.assign({}, (lang && { lang })); + const element = this.wrap('pre', this.wrap('code', code), attrs); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML list to the summary buffer + * + * @param {string[]} items list of items to render + * @param {boolean} [ordered=false] (optional) if the rendered list should be ordered or not (default: false) + * + * @returns {Summary} summary instance + */ + addList(items, ordered = false) { + const tag = ordered ? 'ol' : 'ul'; + const listItems = items.map(item => this.wrap('li', item)).join(''); + const element = this.wrap(tag, listItems); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML table to the summary buffer + * + * @param {SummaryTableCell[]} rows table rows + * + * @returns {Summary} summary instance + */ + addTable(rows) { + const tableBody = rows + .map(row => { + const cells = row + .map(cell => { + if (typeof cell === 'string') { + return this.wrap('td', cell); + } + const { header, data, colspan, rowspan } = cell; + const tag = header ? 'th' : 'td'; + const attrs = Object.assign(Object.assign({}, (colspan && { colspan })), (rowspan && { rowspan })); + return this.wrap(tag, data, attrs); + }) + .join(''); + return this.wrap('tr', cells); + }) + .join(''); + const element = this.wrap('table', tableBody); + return this.addRaw(element).addEOL(); + } + /** + * Adds a collapsable HTML details element to the summary buffer + * + * @param {string} label text for the closed state + * @param {string} content collapsable content + * + * @returns {Summary} summary instance + */ + addDetails(label, content) { + const element = this.wrap('details', this.wrap('summary', label) + content); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML image tag to the summary buffer + * + * @param {string} src path to the image you to embed + * @param {string} alt text description of the image + * @param {SummaryImageOptions} options (optional) addition image attributes + * + * @returns {Summary} summary instance + */ + addImage(src, alt, options) { + const { width, height } = options || {}; + const attrs = Object.assign(Object.assign({}, (width && { width })), (height && { height })); + const element = this.wrap('img', null, Object.assign({ src, alt }, attrs)); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML section heading element + * + * @param {string} text heading text + * @param {number | string} [level=1] (optional) the heading level, default: 1 + * + * @returns {Summary} summary instance + */ + addHeading(text, level) { + const tag = `h${level}`; + const allowedTag = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6'].includes(tag) + ? tag + : 'h1'; + const element = this.wrap(allowedTag, text); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML thematic break (
) to the summary buffer + * + * @returns {Summary} summary instance + */ + addSeparator() { + const element = this.wrap('hr', null); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML line break (
) to the summary buffer + * + * @returns {Summary} summary instance + */ + addBreak() { + const element = this.wrap('br', null); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML blockquote to the summary buffer + * + * @param {string} text quote text + * @param {string} cite (optional) citation url + * + * @returns {Summary} summary instance + */ + addQuote(text, cite) { + const attrs = Object.assign({}, (cite && { cite })); + const element = this.wrap('blockquote', text, attrs); + return this.addRaw(element).addEOL(); + } + /** + * Adds an HTML anchor tag to the summary buffer + * + * @param {string} text link text/content + * @param {string} href hyperlink + * + * @returns {Summary} summary instance + */ + addLink(text, href) { + const element = this.wrap('a', text, { href }); + return this.addRaw(element).addEOL(); + } +} +const _summary = new Summary(); +/** + * @deprecated use `core.summary` + */ +exports.markdownSummary = _summary; +exports.summary = _summary; +//# sourceMappingURL=summary.js.map + +/***/ }), + +/***/ 302: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +// We use any as a valid input type +/* eslint-disable @typescript-eslint/no-explicit-any */ +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.toCommandProperties = exports.toCommandValue = void 0; +/** + * Sanitizes an input into a string so it can be passed into issueCommand safely + * @param input input to sanitize into a string + */ +function toCommandValue(input) { + if (input === null || input === undefined) { + return ''; + } + else if (typeof input === 'string' || input instanceof String) { + return input; + } + return JSON.stringify(input); +} +exports.toCommandValue = toCommandValue; +/** + * + * @param annotationProperties + * @returns The command properties to send with the actual annotation command + * See IssueCommandProperties: https://github.com/actions/runner/blob/main/src/Runner.Worker/ActionCommandManager.cs#L646 + */ +function toCommandProperties(annotationProperties) { + if (!Object.keys(annotationProperties).length) { + return {}; + } + return { + title: annotationProperties.title, + file: annotationProperties.file, + line: annotationProperties.startLine, + endLine: annotationProperties.endLine, + col: annotationProperties.startColumn, + endColumn: annotationProperties.endColumn + }; +} +exports.toCommandProperties = toCommandProperties; +//# sourceMappingURL=utils.js.map + +/***/ }), + +/***/ 5236: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } }); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.getExecOutput = exports.exec = void 0; +const string_decoder_1 = __nccwpck_require__(3193); +const tr = __importStar(__nccwpck_require__(6665)); +/** + * Exec a command. + * Output will be streamed to the live console. + * Returns promise with return code + * + * @param commandLine command to execute (can include additional args). Must be correctly escaped. + * @param args optional arguments for tool. Escaping is handled by the lib. + * @param options optional exec options. See ExecOptions + * @returns Promise exit code + */ +function exec(commandLine, args, options) { + return __awaiter(this, void 0, void 0, function* () { + const commandArgs = tr.argStringToArray(commandLine); + if (commandArgs.length === 0) { + throw new Error(`Parameter 'commandLine' cannot be null or empty.`); + } + // Path to tool to execute should be first arg + const toolPath = commandArgs[0]; + args = commandArgs.slice(1).concat(args || []); + const runner = new tr.ToolRunner(toolPath, args, options); + return runner.exec(); + }); +} +exports.exec = exec; +/** + * Exec a command and get the output. + * Output will be streamed to the live console. + * Returns promise with the exit code and collected stdout and stderr + * + * @param commandLine command to execute (can include additional args). Must be correctly escaped. + * @param args optional arguments for tool. Escaping is handled by the lib. + * @param options optional exec options. See ExecOptions + * @returns Promise exit code, stdout, and stderr + */ +function getExecOutput(commandLine, args, options) { + var _a, _b; + return __awaiter(this, void 0, void 0, function* () { + let stdout = ''; + let stderr = ''; + //Using string decoder covers the case where a mult-byte character is split + const stdoutDecoder = new string_decoder_1.StringDecoder('utf8'); + const stderrDecoder = new string_decoder_1.StringDecoder('utf8'); + const originalStdoutListener = (_a = options === null || options === void 0 ? void 0 : options.listeners) === null || _a === void 0 ? void 0 : _a.stdout; + const originalStdErrListener = (_b = options === null || options === void 0 ? void 0 : options.listeners) === null || _b === void 0 ? void 0 : _b.stderr; + const stdErrListener = (data) => { + stderr += stderrDecoder.write(data); + if (originalStdErrListener) { + originalStdErrListener(data); + } + }; + const stdOutListener = (data) => { + stdout += stdoutDecoder.write(data); + if (originalStdoutListener) { + originalStdoutListener(data); + } + }; + const listeners = Object.assign(Object.assign({}, options === null || options === void 0 ? void 0 : options.listeners), { stdout: stdOutListener, stderr: stdErrListener }); + const exitCode = yield exec(commandLine, args, Object.assign(Object.assign({}, options), { listeners })); + //flush any remaining characters + stdout += stdoutDecoder.end(); + stderr += stderrDecoder.end(); + return { + exitCode, + stdout, + stderr + }; + }); +} +exports.getExecOutput = getExecOutput; +//# sourceMappingURL=exec.js.map + +/***/ }), + +/***/ 6665: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } }); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.argStringToArray = exports.ToolRunner = void 0; +const os = __importStar(__nccwpck_require__(857)); +const events = __importStar(__nccwpck_require__(4434)); +const child = __importStar(__nccwpck_require__(5317)); +const path = __importStar(__nccwpck_require__(6928)); +const io = __importStar(__nccwpck_require__(4994)); +const ioUtil = __importStar(__nccwpck_require__(5207)); +const timers_1 = __nccwpck_require__(3557); +/* eslint-disable @typescript-eslint/unbound-method */ +const IS_WINDOWS = process.platform === 'win32'; +/* + * Class for running command line tools. Handles quoting and arg parsing in a platform agnostic way. + */ +class ToolRunner extends events.EventEmitter { + constructor(toolPath, args, options) { + super(); + if (!toolPath) { + throw new Error("Parameter 'toolPath' cannot be null or empty."); + } + this.toolPath = toolPath; + this.args = args || []; + this.options = options || {}; + } + _debug(message) { + if (this.options.listeners && this.options.listeners.debug) { + this.options.listeners.debug(message); + } + } + _getCommandString(options, noPrefix) { + const toolPath = this._getSpawnFileName(); + const args = this._getSpawnArgs(options); + let cmd = noPrefix ? '' : '[command]'; // omit prefix when piped to a second tool + if (IS_WINDOWS) { + // Windows + cmd file + if (this._isCmdFile()) { + cmd += toolPath; + for (const a of args) { + cmd += ` ${a}`; + } + } + // Windows + verbatim + else if (options.windowsVerbatimArguments) { + cmd += `"${toolPath}"`; + for (const a of args) { + cmd += ` ${a}`; + } + } + // Windows (regular) + else { + cmd += this._windowsQuoteCmdArg(toolPath); + for (const a of args) { + cmd += ` ${this._windowsQuoteCmdArg(a)}`; + } + } + } + else { + // OSX/Linux - this can likely be improved with some form of quoting. + // creating processes on Unix is fundamentally different than Windows. + // on Unix, execvp() takes an arg array. + cmd += toolPath; + for (const a of args) { + cmd += ` ${a}`; + } + } + return cmd; + } + _processLineBuffer(data, strBuffer, onLine) { + try { + let s = strBuffer + data.toString(); + let n = s.indexOf(os.EOL); + while (n > -1) { + const line = s.substring(0, n); + onLine(line); + // the rest of the string ... + s = s.substring(n + os.EOL.length); + n = s.indexOf(os.EOL); + } + return s; + } + catch (err) { + // streaming lines to console is best effort. Don't fail a build. + this._debug(`error processing line. Failed with error ${err}`); + return ''; + } + } + _getSpawnFileName() { + if (IS_WINDOWS) { + if (this._isCmdFile()) { + return process.env['COMSPEC'] || 'cmd.exe'; + } + } + return this.toolPath; + } + _getSpawnArgs(options) { + if (IS_WINDOWS) { + if (this._isCmdFile()) { + let argline = `/D /S /C "${this._windowsQuoteCmdArg(this.toolPath)}`; + for (const a of this.args) { + argline += ' '; + argline += options.windowsVerbatimArguments + ? a + : this._windowsQuoteCmdArg(a); + } + argline += '"'; + return [argline]; + } + } + return this.args; + } + _endsWith(str, end) { + return str.endsWith(end); + } + _isCmdFile() { + const upperToolPath = this.toolPath.toUpperCase(); + return (this._endsWith(upperToolPath, '.CMD') || + this._endsWith(upperToolPath, '.BAT')); + } + _windowsQuoteCmdArg(arg) { + // for .exe, apply the normal quoting rules that libuv applies + if (!this._isCmdFile()) { + return this._uvQuoteCmdArg(arg); + } + // otherwise apply quoting rules specific to the cmd.exe command line parser. + // the libuv rules are generic and are not designed specifically for cmd.exe + // command line parser. + // + // for a detailed description of the cmd.exe command line parser, refer to + // http://stackoverflow.com/questions/4094699/how-does-the-windows-command-interpreter-cmd-exe-parse-scripts/7970912#7970912 + // need quotes for empty arg + if (!arg) { + return '""'; + } + // determine whether the arg needs to be quoted + const cmdSpecialChars = [ + ' ', + '\t', + '&', + '(', + ')', + '[', + ']', + '{', + '}', + '^', + '=', + ';', + '!', + "'", + '+', + ',', + '`', + '~', + '|', + '<', + '>', + '"' + ]; + let needsQuotes = false; + for (const char of arg) { + if (cmdSpecialChars.some(x => x === char)) { + needsQuotes = true; + break; + } + } + // short-circuit if quotes not needed + if (!needsQuotes) { + return arg; + } + // the following quoting rules are very similar to the rules that by libuv applies. + // + // 1) wrap the string in quotes + // + // 2) double-up quotes - i.e. " => "" + // + // this is different from the libuv quoting rules. libuv replaces " with \", which unfortunately + // doesn't work well with a cmd.exe command line. + // + // note, replacing " with "" also works well if the arg is passed to a downstream .NET console app. + // for example, the command line: + // foo.exe "myarg:""my val""" + // is parsed by a .NET console app into an arg array: + // [ "myarg:\"my val\"" ] + // which is the same end result when applying libuv quoting rules. although the actual + // command line from libuv quoting rules would look like: + // foo.exe "myarg:\"my val\"" + // + // 3) double-up slashes that precede a quote, + // e.g. hello \world => "hello \world" + // hello\"world => "hello\\""world" + // hello\\"world => "hello\\\\""world" + // hello world\ => "hello world\\" + // + // technically this is not required for a cmd.exe command line, or the batch argument parser. + // the reasons for including this as a .cmd quoting rule are: + // + // a) this is optimized for the scenario where the argument is passed from the .cmd file to an + // external program. many programs (e.g. .NET console apps) rely on the slash-doubling rule. + // + // b) it's what we've been doing previously (by deferring to node default behavior) and we + // haven't heard any complaints about that aspect. + // + // note, a weakness of the quoting rules chosen here, is that % is not escaped. in fact, % cannot be + // escaped when used on the command line directly - even though within a .cmd file % can be escaped + // by using %%. + // + // the saving grace is, on the command line, %var% is left as-is if var is not defined. this contrasts + // the line parsing rules within a .cmd file, where if var is not defined it is replaced with nothing. + // + // one option that was explored was replacing % with ^% - i.e. %var% => ^%var^%. this hack would + // often work, since it is unlikely that var^ would exist, and the ^ character is removed when the + // variable is used. the problem, however, is that ^ is not removed when %* is used to pass the args + // to an external program. + // + // an unexplored potential solution for the % escaping problem, is to create a wrapper .cmd file. + // % can be escaped within a .cmd file. + let reverse = '"'; + let quoteHit = true; + for (let i = arg.length; i > 0; i--) { + // walk the string in reverse + reverse += arg[i - 1]; + if (quoteHit && arg[i - 1] === '\\') { + reverse += '\\'; // double the slash + } + else if (arg[i - 1] === '"') { + quoteHit = true; + reverse += '"'; // double the quote + } + else { + quoteHit = false; + } + } + reverse += '"'; + return reverse + .split('') + .reverse() + .join(''); + } + _uvQuoteCmdArg(arg) { + // Tool runner wraps child_process.spawn() and needs to apply the same quoting as + // Node in certain cases where the undocumented spawn option windowsVerbatimArguments + // is used. + // + // Since this function is a port of quote_cmd_arg from Node 4.x (technically, lib UV, + // see https://github.com/nodejs/node/blob/v4.x/deps/uv/src/win/process.c for details), + // pasting copyright notice from Node within this function: + // + // Copyright Joyent, Inc. and other Node contributors. All rights reserved. + // + // Permission is hereby granted, free of charge, to any person obtaining a copy + // of this software and associated documentation files (the "Software"), to + // deal in the Software without restriction, including without limitation the + // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + // sell copies of the Software, and to permit persons to whom the Software is + // furnished to do so, subject to the following conditions: + // + // The above copyright notice and this permission notice shall be included in + // all copies or substantial portions of the Software. + // + // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + // IN THE SOFTWARE. + if (!arg) { + // Need double quotation for empty argument + return '""'; + } + if (!arg.includes(' ') && !arg.includes('\t') && !arg.includes('"')) { + // No quotation needed + return arg; + } + if (!arg.includes('"') && !arg.includes('\\')) { + // No embedded double quotes or backslashes, so I can just wrap + // quote marks around the whole thing. + return `"${arg}"`; + } + // Expected input/output: + // input : hello"world + // output: "hello\"world" + // input : hello""world + // output: "hello\"\"world" + // input : hello\world + // output: hello\world + // input : hello\\world + // output: hello\\world + // input : hello\"world + // output: "hello\\\"world" + // input : hello\\"world + // output: "hello\\\\\"world" + // input : hello world\ + // output: "hello world\\" - note the comment in libuv actually reads "hello world\" + // but it appears the comment is wrong, it should be "hello world\\" + let reverse = '"'; + let quoteHit = true; + for (let i = arg.length; i > 0; i--) { + // walk the string in reverse + reverse += arg[i - 1]; + if (quoteHit && arg[i - 1] === '\\') { + reverse += '\\'; + } + else if (arg[i - 1] === '"') { + quoteHit = true; + reverse += '\\'; + } + else { + quoteHit = false; + } + } + reverse += '"'; + return reverse + .split('') + .reverse() + .join(''); + } + _cloneExecOptions(options) { + options = options || {}; + const result = { + cwd: options.cwd || process.cwd(), + env: options.env || process.env, + silent: options.silent || false, + windowsVerbatimArguments: options.windowsVerbatimArguments || false, + failOnStdErr: options.failOnStdErr || false, + ignoreReturnCode: options.ignoreReturnCode || false, + delay: options.delay || 10000 + }; + result.outStream = options.outStream || process.stdout; + result.errStream = options.errStream || process.stderr; + return result; + } + _getSpawnOptions(options, toolPath) { + options = options || {}; + const result = {}; + result.cwd = options.cwd; + result.env = options.env; + result['windowsVerbatimArguments'] = + options.windowsVerbatimArguments || this._isCmdFile(); + if (options.windowsVerbatimArguments) { + result.argv0 = `"${toolPath}"`; + } + return result; + } + /** + * Exec a tool. + * Output will be streamed to the live console. + * Returns promise with return code + * + * @param tool path to tool to exec + * @param options optional exec options. See ExecOptions + * @returns number + */ + exec() { + return __awaiter(this, void 0, void 0, function* () { + // root the tool path if it is unrooted and contains relative pathing + if (!ioUtil.isRooted(this.toolPath) && + (this.toolPath.includes('/') || + (IS_WINDOWS && this.toolPath.includes('\\')))) { + // prefer options.cwd if it is specified, however options.cwd may also need to be rooted + this.toolPath = path.resolve(process.cwd(), this.options.cwd || process.cwd(), this.toolPath); + } + // if the tool is only a file name, then resolve it from the PATH + // otherwise verify it exists (add extension on Windows if necessary) + this.toolPath = yield io.which(this.toolPath, true); + return new Promise((resolve, reject) => __awaiter(this, void 0, void 0, function* () { + this._debug(`exec tool: ${this.toolPath}`); + this._debug('arguments:'); + for (const arg of this.args) { + this._debug(` ${arg}`); + } + const optionsNonNull = this._cloneExecOptions(this.options); + if (!optionsNonNull.silent && optionsNonNull.outStream) { + optionsNonNull.outStream.write(this._getCommandString(optionsNonNull) + os.EOL); + } + const state = new ExecState(optionsNonNull, this.toolPath); + state.on('debug', (message) => { + this._debug(message); + }); + if (this.options.cwd && !(yield ioUtil.exists(this.options.cwd))) { + return reject(new Error(`The cwd: ${this.options.cwd} does not exist!`)); + } + const fileName = this._getSpawnFileName(); + const cp = child.spawn(fileName, this._getSpawnArgs(optionsNonNull), this._getSpawnOptions(this.options, fileName)); + let stdbuffer = ''; + if (cp.stdout) { + cp.stdout.on('data', (data) => { + if (this.options.listeners && this.options.listeners.stdout) { + this.options.listeners.stdout(data); + } + if (!optionsNonNull.silent && optionsNonNull.outStream) { + optionsNonNull.outStream.write(data); + } + stdbuffer = this._processLineBuffer(data, stdbuffer, (line) => { + if (this.options.listeners && this.options.listeners.stdline) { + this.options.listeners.stdline(line); + } + }); + }); + } + let errbuffer = ''; + if (cp.stderr) { + cp.stderr.on('data', (data) => { + state.processStderr = true; + if (this.options.listeners && this.options.listeners.stderr) { + this.options.listeners.stderr(data); + } + if (!optionsNonNull.silent && + optionsNonNull.errStream && + optionsNonNull.outStream) { + const s = optionsNonNull.failOnStdErr + ? optionsNonNull.errStream + : optionsNonNull.outStream; + s.write(data); + } + errbuffer = this._processLineBuffer(data, errbuffer, (line) => { + if (this.options.listeners && this.options.listeners.errline) { + this.options.listeners.errline(line); + } + }); + }); + } + cp.on('error', (err) => { + state.processError = err.message; + state.processExited = true; + state.processClosed = true; + state.CheckComplete(); + }); + cp.on('exit', (code) => { + state.processExitCode = code; + state.processExited = true; + this._debug(`Exit code ${code} received from tool '${this.toolPath}'`); + state.CheckComplete(); + }); + cp.on('close', (code) => { + state.processExitCode = code; + state.processExited = true; + state.processClosed = true; + this._debug(`STDIO streams have closed for tool '${this.toolPath}'`); + state.CheckComplete(); + }); + state.on('done', (error, exitCode) => { + if (stdbuffer.length > 0) { + this.emit('stdline', stdbuffer); + } + if (errbuffer.length > 0) { + this.emit('errline', errbuffer); + } + cp.removeAllListeners(); + if (error) { + reject(error); + } + else { + resolve(exitCode); + } + }); + if (this.options.input) { + if (!cp.stdin) { + throw new Error('child process missing stdin'); + } + cp.stdin.end(this.options.input); + } + })); + }); + } +} +exports.ToolRunner = ToolRunner; +/** + * Convert an arg string to an array of args. Handles escaping + * + * @param argString string of arguments + * @returns string[] array of arguments + */ +function argStringToArray(argString) { + const args = []; + let inQuotes = false; + let escaped = false; + let arg = ''; + function append(c) { + // we only escape double quotes. + if (escaped && c !== '"') { + arg += '\\'; + } + arg += c; + escaped = false; + } + for (let i = 0; i < argString.length; i++) { + const c = argString.charAt(i); + if (c === '"') { + if (!escaped) { + inQuotes = !inQuotes; + } + else { + append(c); + } + continue; + } + if (c === '\\' && escaped) { + append(c); + continue; + } + if (c === '\\' && inQuotes) { + escaped = true; + continue; + } + if (c === ' ' && !inQuotes) { + if (arg.length > 0) { + args.push(arg); + arg = ''; + } + continue; + } + append(c); + } + if (arg.length > 0) { + args.push(arg.trim()); + } + return args; +} +exports.argStringToArray = argStringToArray; +class ExecState extends events.EventEmitter { + constructor(options, toolPath) { + super(); + this.processClosed = false; // tracks whether the process has exited and stdio is closed + this.processError = ''; + this.processExitCode = 0; + this.processExited = false; // tracks whether the process has exited + this.processStderr = false; // tracks whether stderr was written to + this.delay = 10000; // 10 seconds + this.done = false; + this.timeout = null; + if (!toolPath) { + throw new Error('toolPath must not be empty'); + } + this.options = options; + this.toolPath = toolPath; + if (options.delay) { + this.delay = options.delay; + } + } + CheckComplete() { + if (this.done) { + return; + } + if (this.processClosed) { + this._setResult(); + } + else if (this.processExited) { + this.timeout = timers_1.setTimeout(ExecState.HandleTimeout, this.delay, this); + } + } + _debug(message) { + this.emit('debug', message); + } + _setResult() { + // determine whether there is an error + let error; + if (this.processExited) { + if (this.processError) { + error = new Error(`There was an error when attempting to execute the process '${this.toolPath}'. This may indicate the process failed to start. Error: ${this.processError}`); + } + else if (this.processExitCode !== 0 && !this.options.ignoreReturnCode) { + error = new Error(`The process '${this.toolPath}' failed with exit code ${this.processExitCode}`); + } + else if (this.processStderr && this.options.failOnStdErr) { + error = new Error(`The process '${this.toolPath}' failed because one or more lines were written to the STDERR stream`); + } + } + // clear the timeout + if (this.timeout) { + clearTimeout(this.timeout); + this.timeout = null; + } + this.done = true; + this.emit('done', error, this.processExitCode); + } + static HandleTimeout(state) { + if (state.done) { + return; + } + if (!state.processClosed && state.processExited) { + const message = `The STDIO streams did not close within ${state.delay / + 1000} seconds of the exit event from process '${state.toolPath}'. This may indicate a child process inherited the STDIO streams and has not yet exited.`; + state._debug(message); + } + state._setResult(); + } +} +//# sourceMappingURL=toolrunner.js.map + +/***/ }), + +/***/ 4552: +/***/ (function(__unused_webpack_module, exports) { + +"use strict"; + +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.PersonalAccessTokenCredentialHandler = exports.BearerCredentialHandler = exports.BasicCredentialHandler = void 0; +class BasicCredentialHandler { + constructor(username, password) { + this.username = username; + this.password = password; + } + prepareRequest(options) { + if (!options.headers) { + throw Error('The request has no headers'); + } + options.headers['Authorization'] = `Basic ${Buffer.from(`${this.username}:${this.password}`).toString('base64')}`; + } + // This handler cannot handle 401 + canHandleAuthentication() { + return false; + } + handleAuthentication() { + return __awaiter(this, void 0, void 0, function* () { + throw new Error('not implemented'); + }); + } +} +exports.BasicCredentialHandler = BasicCredentialHandler; +class BearerCredentialHandler { + constructor(token) { + this.token = token; + } + // currently implements pre-authorization + // TODO: support preAuth = false where it hooks on 401 + prepareRequest(options) { + if (!options.headers) { + throw Error('The request has no headers'); + } + options.headers['Authorization'] = `Bearer ${this.token}`; + } + // This handler cannot handle 401 + canHandleAuthentication() { + return false; + } + handleAuthentication() { + return __awaiter(this, void 0, void 0, function* () { + throw new Error('not implemented'); + }); + } +} +exports.BearerCredentialHandler = BearerCredentialHandler; +class PersonalAccessTokenCredentialHandler { + constructor(token) { + this.token = token; + } + // currently implements pre-authorization + // TODO: support preAuth = false where it hooks on 401 + prepareRequest(options) { + if (!options.headers) { + throw Error('The request has no headers'); + } + options.headers['Authorization'] = `Basic ${Buffer.from(`PAT:${this.token}`).toString('base64')}`; + } + // This handler cannot handle 401 + canHandleAuthentication() { + return false; + } + handleAuthentication() { + return __awaiter(this, void 0, void 0, function* () { + throw new Error('not implemented'); + }); + } +} +exports.PersonalAccessTokenCredentialHandler = PersonalAccessTokenCredentialHandler; +//# sourceMappingURL=auth.js.map + +/***/ }), + +/***/ 4844: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +/* eslint-disable @typescript-eslint/no-explicit-any */ +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + var desc = Object.getOwnPropertyDescriptor(m, k); + if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { + desc = { enumerable: true, get: function() { return m[k]; } }; + } + Object.defineProperty(o, k2, desc); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.HttpClient = exports.isHttps = exports.HttpClientResponse = exports.HttpClientError = exports.getProxyUrl = exports.MediaTypes = exports.Headers = exports.HttpCodes = void 0; +const http = __importStar(__nccwpck_require__(8611)); +const https = __importStar(__nccwpck_require__(5692)); +const pm = __importStar(__nccwpck_require__(4988)); +const tunnel = __importStar(__nccwpck_require__(770)); +const undici_1 = __nccwpck_require__(6752); +var HttpCodes; +(function (HttpCodes) { + HttpCodes[HttpCodes["OK"] = 200] = "OK"; + HttpCodes[HttpCodes["MultipleChoices"] = 300] = "MultipleChoices"; + HttpCodes[HttpCodes["MovedPermanently"] = 301] = "MovedPermanently"; + HttpCodes[HttpCodes["ResourceMoved"] = 302] = "ResourceMoved"; + HttpCodes[HttpCodes["SeeOther"] = 303] = "SeeOther"; + HttpCodes[HttpCodes["NotModified"] = 304] = "NotModified"; + HttpCodes[HttpCodes["UseProxy"] = 305] = "UseProxy"; + HttpCodes[HttpCodes["SwitchProxy"] = 306] = "SwitchProxy"; + HttpCodes[HttpCodes["TemporaryRedirect"] = 307] = "TemporaryRedirect"; + HttpCodes[HttpCodes["PermanentRedirect"] = 308] = "PermanentRedirect"; + HttpCodes[HttpCodes["BadRequest"] = 400] = "BadRequest"; + HttpCodes[HttpCodes["Unauthorized"] = 401] = "Unauthorized"; + HttpCodes[HttpCodes["PaymentRequired"] = 402] = "PaymentRequired"; + HttpCodes[HttpCodes["Forbidden"] = 403] = "Forbidden"; + HttpCodes[HttpCodes["NotFound"] = 404] = "NotFound"; + HttpCodes[HttpCodes["MethodNotAllowed"] = 405] = "MethodNotAllowed"; + HttpCodes[HttpCodes["NotAcceptable"] = 406] = "NotAcceptable"; + HttpCodes[HttpCodes["ProxyAuthenticationRequired"] = 407] = "ProxyAuthenticationRequired"; + HttpCodes[HttpCodes["RequestTimeout"] = 408] = "RequestTimeout"; + HttpCodes[HttpCodes["Conflict"] = 409] = "Conflict"; + HttpCodes[HttpCodes["Gone"] = 410] = "Gone"; + HttpCodes[HttpCodes["TooManyRequests"] = 429] = "TooManyRequests"; + HttpCodes[HttpCodes["InternalServerError"] = 500] = "InternalServerError"; + HttpCodes[HttpCodes["NotImplemented"] = 501] = "NotImplemented"; + HttpCodes[HttpCodes["BadGateway"] = 502] = "BadGateway"; + HttpCodes[HttpCodes["ServiceUnavailable"] = 503] = "ServiceUnavailable"; + HttpCodes[HttpCodes["GatewayTimeout"] = 504] = "GatewayTimeout"; +})(HttpCodes || (exports.HttpCodes = HttpCodes = {})); +var Headers; +(function (Headers) { + Headers["Accept"] = "accept"; + Headers["ContentType"] = "content-type"; +})(Headers || (exports.Headers = Headers = {})); +var MediaTypes; +(function (MediaTypes) { + MediaTypes["ApplicationJson"] = "application/json"; +})(MediaTypes || (exports.MediaTypes = MediaTypes = {})); +/** + * Returns the proxy URL, depending upon the supplied url and proxy environment variables. + * @param serverUrl The server URL where the request will be sent. For example, https://api.github.com + */ +function getProxyUrl(serverUrl) { + const proxyUrl = pm.getProxyUrl(new URL(serverUrl)); + return proxyUrl ? proxyUrl.href : ''; +} +exports.getProxyUrl = getProxyUrl; +const HttpRedirectCodes = [ + HttpCodes.MovedPermanently, + HttpCodes.ResourceMoved, + HttpCodes.SeeOther, + HttpCodes.TemporaryRedirect, + HttpCodes.PermanentRedirect +]; +const HttpResponseRetryCodes = [ + HttpCodes.BadGateway, + HttpCodes.ServiceUnavailable, + HttpCodes.GatewayTimeout +]; +const RetryableHttpVerbs = ['OPTIONS', 'GET', 'DELETE', 'HEAD']; +const ExponentialBackoffCeiling = 10; +const ExponentialBackoffTimeSlice = 5; +class HttpClientError extends Error { + constructor(message, statusCode) { + super(message); + this.name = 'HttpClientError'; + this.statusCode = statusCode; + Object.setPrototypeOf(this, HttpClientError.prototype); + } +} +exports.HttpClientError = HttpClientError; +class HttpClientResponse { + constructor(message) { + this.message = message; + } + readBody() { + return __awaiter(this, void 0, void 0, function* () { + return new Promise((resolve) => __awaiter(this, void 0, void 0, function* () { + let output = Buffer.alloc(0); + this.message.on('data', (chunk) => { + output = Buffer.concat([output, chunk]); + }); + this.message.on('end', () => { + resolve(output.toString()); + }); + })); + }); + } + readBodyBuffer() { + return __awaiter(this, void 0, void 0, function* () { + return new Promise((resolve) => __awaiter(this, void 0, void 0, function* () { + const chunks = []; + this.message.on('data', (chunk) => { + chunks.push(chunk); + }); + this.message.on('end', () => { + resolve(Buffer.concat(chunks)); + }); + })); + }); + } +} +exports.HttpClientResponse = HttpClientResponse; +function isHttps(requestUrl) { + const parsedUrl = new URL(requestUrl); + return parsedUrl.protocol === 'https:'; +} +exports.isHttps = isHttps; +class HttpClient { + constructor(userAgent, handlers, requestOptions) { + this._ignoreSslError = false; + this._allowRedirects = true; + this._allowRedirectDowngrade = false; + this._maxRedirects = 50; + this._allowRetries = false; + this._maxRetries = 1; + this._keepAlive = false; + this._disposed = false; + this.userAgent = userAgent; + this.handlers = handlers || []; + this.requestOptions = requestOptions; + if (requestOptions) { + if (requestOptions.ignoreSslError != null) { + this._ignoreSslError = requestOptions.ignoreSslError; + } + this._socketTimeout = requestOptions.socketTimeout; + if (requestOptions.allowRedirects != null) { + this._allowRedirects = requestOptions.allowRedirects; + } + if (requestOptions.allowRedirectDowngrade != null) { + this._allowRedirectDowngrade = requestOptions.allowRedirectDowngrade; + } + if (requestOptions.maxRedirects != null) { + this._maxRedirects = Math.max(requestOptions.maxRedirects, 0); + } + if (requestOptions.keepAlive != null) { + this._keepAlive = requestOptions.keepAlive; + } + if (requestOptions.allowRetries != null) { + this._allowRetries = requestOptions.allowRetries; + } + if (requestOptions.maxRetries != null) { + this._maxRetries = requestOptions.maxRetries; + } + } + } + options(requestUrl, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('OPTIONS', requestUrl, null, additionalHeaders || {}); + }); + } + get(requestUrl, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('GET', requestUrl, null, additionalHeaders || {}); + }); + } + del(requestUrl, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('DELETE', requestUrl, null, additionalHeaders || {}); + }); + } + post(requestUrl, data, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('POST', requestUrl, data, additionalHeaders || {}); + }); + } + patch(requestUrl, data, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('PATCH', requestUrl, data, additionalHeaders || {}); + }); + } + put(requestUrl, data, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('PUT', requestUrl, data, additionalHeaders || {}); + }); + } + head(requestUrl, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request('HEAD', requestUrl, null, additionalHeaders || {}); + }); + } + sendStream(verb, requestUrl, stream, additionalHeaders) { + return __awaiter(this, void 0, void 0, function* () { + return this.request(verb, requestUrl, stream, additionalHeaders); + }); + } + /** + * Gets a typed object from an endpoint + * Be aware that not found returns a null. Other errors (4xx, 5xx) reject the promise + */ + getJson(requestUrl, additionalHeaders = {}) { + return __awaiter(this, void 0, void 0, function* () { + additionalHeaders[Headers.Accept] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.Accept, MediaTypes.ApplicationJson); + const res = yield this.get(requestUrl, additionalHeaders); + return this._processResponse(res, this.requestOptions); + }); + } + postJson(requestUrl, obj, additionalHeaders = {}) { + return __awaiter(this, void 0, void 0, function* () { + const data = JSON.stringify(obj, null, 2); + additionalHeaders[Headers.Accept] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.Accept, MediaTypes.ApplicationJson); + additionalHeaders[Headers.ContentType] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.ContentType, MediaTypes.ApplicationJson); + const res = yield this.post(requestUrl, data, additionalHeaders); + return this._processResponse(res, this.requestOptions); + }); + } + putJson(requestUrl, obj, additionalHeaders = {}) { + return __awaiter(this, void 0, void 0, function* () { + const data = JSON.stringify(obj, null, 2); + additionalHeaders[Headers.Accept] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.Accept, MediaTypes.ApplicationJson); + additionalHeaders[Headers.ContentType] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.ContentType, MediaTypes.ApplicationJson); + const res = yield this.put(requestUrl, data, additionalHeaders); + return this._processResponse(res, this.requestOptions); + }); + } + patchJson(requestUrl, obj, additionalHeaders = {}) { + return __awaiter(this, void 0, void 0, function* () { + const data = JSON.stringify(obj, null, 2); + additionalHeaders[Headers.Accept] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.Accept, MediaTypes.ApplicationJson); + additionalHeaders[Headers.ContentType] = this._getExistingOrDefaultHeader(additionalHeaders, Headers.ContentType, MediaTypes.ApplicationJson); + const res = yield this.patch(requestUrl, data, additionalHeaders); + return this._processResponse(res, this.requestOptions); + }); + } + /** + * Makes a raw http request. + * All other methods such as get, post, patch, and request ultimately call this. + * Prefer get, del, post and patch + */ + request(verb, requestUrl, data, headers) { + return __awaiter(this, void 0, void 0, function* () { + if (this._disposed) { + throw new Error('Client has already been disposed.'); + } + const parsedUrl = new URL(requestUrl); + let info = this._prepareRequest(verb, parsedUrl, headers); + // Only perform retries on reads since writes may not be idempotent. + const maxTries = this._allowRetries && RetryableHttpVerbs.includes(verb) + ? this._maxRetries + 1 + : 1; + let numTries = 0; + let response; + do { + response = yield this.requestRaw(info, data); + // Check if it's an authentication challenge + if (response && + response.message && + response.message.statusCode === HttpCodes.Unauthorized) { + let authenticationHandler; + for (const handler of this.handlers) { + if (handler.canHandleAuthentication(response)) { + authenticationHandler = handler; + break; + } + } + if (authenticationHandler) { + return authenticationHandler.handleAuthentication(this, info, data); + } + else { + // We have received an unauthorized response but have no handlers to handle it. + // Let the response return to the caller. + return response; + } + } + let redirectsRemaining = this._maxRedirects; + while (response.message.statusCode && + HttpRedirectCodes.includes(response.message.statusCode) && + this._allowRedirects && + redirectsRemaining > 0) { + const redirectUrl = response.message.headers['location']; + if (!redirectUrl) { + // if there's no location to redirect to, we won't + break; + } + const parsedRedirectUrl = new URL(redirectUrl); + if (parsedUrl.protocol === 'https:' && + parsedUrl.protocol !== parsedRedirectUrl.protocol && + !this._allowRedirectDowngrade) { + throw new Error('Redirect from HTTPS to HTTP protocol. This downgrade is not allowed for security reasons. If you want to allow this behavior, set the allowRedirectDowngrade option to true.'); + } + // we need to finish reading the response before reassigning response + // which will leak the open socket. + yield response.readBody(); + // strip authorization header if redirected to a different hostname + if (parsedRedirectUrl.hostname !== parsedUrl.hostname) { + for (const header in headers) { + // header names are case insensitive + if (header.toLowerCase() === 'authorization') { + delete headers[header]; + } + } + } + // let's make the request with the new redirectUrl + info = this._prepareRequest(verb, parsedRedirectUrl, headers); + response = yield this.requestRaw(info, data); + redirectsRemaining--; + } + if (!response.message.statusCode || + !HttpResponseRetryCodes.includes(response.message.statusCode)) { + // If not a retry code, return immediately instead of retrying + return response; + } + numTries += 1; + if (numTries < maxTries) { + yield response.readBody(); + yield this._performExponentialBackoff(numTries); + } + } while (numTries < maxTries); + return response; + }); + } + /** + * Needs to be called if keepAlive is set to true in request options. + */ + dispose() { + if (this._agent) { + this._agent.destroy(); + } + this._disposed = true; + } + /** + * Raw request. + * @param info + * @param data + */ + requestRaw(info, data) { + return __awaiter(this, void 0, void 0, function* () { + return new Promise((resolve, reject) => { + function callbackForResult(err, res) { + if (err) { + reject(err); + } + else if (!res) { + // If `err` is not passed, then `res` must be passed. + reject(new Error('Unknown error')); + } + else { + resolve(res); + } + } + this.requestRawWithCallback(info, data, callbackForResult); + }); + }); + } + /** + * Raw request with callback. + * @param info + * @param data + * @param onResult + */ + requestRawWithCallback(info, data, onResult) { + if (typeof data === 'string') { + if (!info.options.headers) { + info.options.headers = {}; + } + info.options.headers['Content-Length'] = Buffer.byteLength(data, 'utf8'); + } + let callbackCalled = false; + function handleResult(err, res) { + if (!callbackCalled) { + callbackCalled = true; + onResult(err, res); + } + } + const req = info.httpModule.request(info.options, (msg) => { + const res = new HttpClientResponse(msg); + handleResult(undefined, res); + }); + let socket; + req.on('socket', sock => { + socket = sock; + }); + // If we ever get disconnected, we want the socket to timeout eventually + req.setTimeout(this._socketTimeout || 3 * 60000, () => { + if (socket) { + socket.end(); + } + handleResult(new Error(`Request timeout: ${info.options.path}`)); + }); + req.on('error', function (err) { + // err has statusCode property + // res should have headers + handleResult(err); + }); + if (data && typeof data === 'string') { + req.write(data, 'utf8'); + } + if (data && typeof data !== 'string') { + data.on('close', function () { + req.end(); + }); + data.pipe(req); + } + else { + req.end(); + } + } + /** + * Gets an http agent. This function is useful when you need an http agent that handles + * routing through a proxy server - depending upon the url and proxy environment variables. + * @param serverUrl The server URL where the request will be sent. For example, https://api.github.com + */ + getAgent(serverUrl) { + const parsedUrl = new URL(serverUrl); + return this._getAgent(parsedUrl); + } + getAgentDispatcher(serverUrl) { + const parsedUrl = new URL(serverUrl); + const proxyUrl = pm.getProxyUrl(parsedUrl); + const useProxy = proxyUrl && proxyUrl.hostname; + if (!useProxy) { + return; + } + return this._getProxyAgentDispatcher(parsedUrl, proxyUrl); + } + _prepareRequest(method, requestUrl, headers) { + const info = {}; + info.parsedUrl = requestUrl; + const usingSsl = info.parsedUrl.protocol === 'https:'; + info.httpModule = usingSsl ? https : http; + const defaultPort = usingSsl ? 443 : 80; + info.options = {}; + info.options.host = info.parsedUrl.hostname; + info.options.port = info.parsedUrl.port + ? parseInt(info.parsedUrl.port) + : defaultPort; + info.options.path = + (info.parsedUrl.pathname || '') + (info.parsedUrl.search || ''); + info.options.method = method; + info.options.headers = this._mergeHeaders(headers); + if (this.userAgent != null) { + info.options.headers['user-agent'] = this.userAgent; + } + info.options.agent = this._getAgent(info.parsedUrl); + // gives handlers an opportunity to participate + if (this.handlers) { + for (const handler of this.handlers) { + handler.prepareRequest(info.options); + } + } + return info; + } + _mergeHeaders(headers) { + if (this.requestOptions && this.requestOptions.headers) { + return Object.assign({}, lowercaseKeys(this.requestOptions.headers), lowercaseKeys(headers || {})); + } + return lowercaseKeys(headers || {}); + } + _getExistingOrDefaultHeader(additionalHeaders, header, _default) { + let clientHeader; + if (this.requestOptions && this.requestOptions.headers) { + clientHeader = lowercaseKeys(this.requestOptions.headers)[header]; + } + return additionalHeaders[header] || clientHeader || _default; + } + _getAgent(parsedUrl) { + let agent; + const proxyUrl = pm.getProxyUrl(parsedUrl); + const useProxy = proxyUrl && proxyUrl.hostname; + if (this._keepAlive && useProxy) { + agent = this._proxyAgent; + } + if (!useProxy) { + agent = this._agent; + } + // if agent is already assigned use that agent. + if (agent) { + return agent; + } + const usingSsl = parsedUrl.protocol === 'https:'; + let maxSockets = 100; + if (this.requestOptions) { + maxSockets = this.requestOptions.maxSockets || http.globalAgent.maxSockets; + } + // This is `useProxy` again, but we need to check `proxyURl` directly for TypeScripts's flow analysis. + if (proxyUrl && proxyUrl.hostname) { + const agentOptions = { + maxSockets, + keepAlive: this._keepAlive, + proxy: Object.assign(Object.assign({}, ((proxyUrl.username || proxyUrl.password) && { + proxyAuth: `${proxyUrl.username}:${proxyUrl.password}` + })), { host: proxyUrl.hostname, port: proxyUrl.port }) + }; + let tunnelAgent; + const overHttps = proxyUrl.protocol === 'https:'; + if (usingSsl) { + tunnelAgent = overHttps ? tunnel.httpsOverHttps : tunnel.httpsOverHttp; + } + else { + tunnelAgent = overHttps ? tunnel.httpOverHttps : tunnel.httpOverHttp; + } + agent = tunnelAgent(agentOptions); + this._proxyAgent = agent; + } + // if tunneling agent isn't assigned create a new agent + if (!agent) { + const options = { keepAlive: this._keepAlive, maxSockets }; + agent = usingSsl ? new https.Agent(options) : new http.Agent(options); + this._agent = agent; + } + if (usingSsl && this._ignoreSslError) { + // we don't want to set NODE_TLS_REJECT_UNAUTHORIZED=0 since that will affect request for entire process + // http.RequestOptions doesn't expose a way to modify RequestOptions.agent.options + // we have to cast it to any and change it directly + agent.options = Object.assign(agent.options || {}, { + rejectUnauthorized: false + }); + } + return agent; + } + _getProxyAgentDispatcher(parsedUrl, proxyUrl) { + let proxyAgent; + if (this._keepAlive) { + proxyAgent = this._proxyAgentDispatcher; + } + // if agent is already assigned use that agent. + if (proxyAgent) { + return proxyAgent; + } + const usingSsl = parsedUrl.protocol === 'https:'; + proxyAgent = new undici_1.ProxyAgent(Object.assign({ uri: proxyUrl.href, pipelining: !this._keepAlive ? 0 : 1 }, ((proxyUrl.username || proxyUrl.password) && { + token: `Basic ${Buffer.from(`${proxyUrl.username}:${proxyUrl.password}`).toString('base64')}` + }))); + this._proxyAgentDispatcher = proxyAgent; + if (usingSsl && this._ignoreSslError) { + // we don't want to set NODE_TLS_REJECT_UNAUTHORIZED=0 since that will affect request for entire process + // http.RequestOptions doesn't expose a way to modify RequestOptions.agent.options + // we have to cast it to any and change it directly + proxyAgent.options = Object.assign(proxyAgent.options.requestTls || {}, { + rejectUnauthorized: false + }); + } + return proxyAgent; + } + _performExponentialBackoff(retryNumber) { + return __awaiter(this, void 0, void 0, function* () { + retryNumber = Math.min(ExponentialBackoffCeiling, retryNumber); + const ms = ExponentialBackoffTimeSlice * Math.pow(2, retryNumber); + return new Promise(resolve => setTimeout(() => resolve(), ms)); + }); + } + _processResponse(res, options) { + return __awaiter(this, void 0, void 0, function* () { + return new Promise((resolve, reject) => __awaiter(this, void 0, void 0, function* () { + const statusCode = res.message.statusCode || 0; + const response = { + statusCode, + result: null, + headers: {} + }; + // not found leads to null obj returned + if (statusCode === HttpCodes.NotFound) { + resolve(response); + } + // get the result from the body + function dateTimeDeserializer(key, value) { + if (typeof value === 'string') { + const a = new Date(value); + if (!isNaN(a.valueOf())) { + return a; + } + } + return value; + } + let obj; + let contents; + try { + contents = yield res.readBody(); + if (contents && contents.length > 0) { + if (options && options.deserializeDates) { + obj = JSON.parse(contents, dateTimeDeserializer); + } + else { + obj = JSON.parse(contents); + } + response.result = obj; + } + response.headers = res.message.headers; + } + catch (err) { + // Invalid resource (contents not json); leaving result obj null + } + // note that 3xx redirects are handled by the http layer. + if (statusCode > 299) { + let msg; + // if exception/error in body, attempt to get better error + if (obj && obj.message) { + msg = obj.message; + } + else if (contents && contents.length > 0) { + // it may be the case that the exception is in the body message as string + msg = contents; + } + else { + msg = `Failed request: (${statusCode})`; + } + const err = new HttpClientError(msg, statusCode); + err.result = response.result; + reject(err); + } + else { + resolve(response); + } + })); + }); + } +} +exports.HttpClient = HttpClient; +const lowercaseKeys = (obj) => Object.keys(obj).reduce((c, k) => ((c[k.toLowerCase()] = obj[k]), c), {}); +//# sourceMappingURL=index.js.map + +/***/ }), + +/***/ 4988: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.checkBypass = exports.getProxyUrl = void 0; +function getProxyUrl(reqUrl) { + const usingSsl = reqUrl.protocol === 'https:'; + if (checkBypass(reqUrl)) { + return undefined; + } + const proxyVar = (() => { + if (usingSsl) { + return process.env['https_proxy'] || process.env['HTTPS_PROXY']; + } + else { + return process.env['http_proxy'] || process.env['HTTP_PROXY']; + } + })(); + if (proxyVar) { + try { + return new DecodedURL(proxyVar); + } + catch (_a) { + if (!proxyVar.startsWith('http://') && !proxyVar.startsWith('https://')) + return new DecodedURL(`http://${proxyVar}`); + } + } + else { + return undefined; + } +} +exports.getProxyUrl = getProxyUrl; +function checkBypass(reqUrl) { + if (!reqUrl.hostname) { + return false; + } + const reqHost = reqUrl.hostname; + if (isLoopbackAddress(reqHost)) { + return true; + } + const noProxy = process.env['no_proxy'] || process.env['NO_PROXY'] || ''; + if (!noProxy) { + return false; + } + // Determine the request port + let reqPort; + if (reqUrl.port) { + reqPort = Number(reqUrl.port); + } + else if (reqUrl.protocol === 'http:') { + reqPort = 80; + } + else if (reqUrl.protocol === 'https:') { + reqPort = 443; + } + // Format the request hostname and hostname with port + const upperReqHosts = [reqUrl.hostname.toUpperCase()]; + if (typeof reqPort === 'number') { + upperReqHosts.push(`${upperReqHosts[0]}:${reqPort}`); + } + // Compare request host against noproxy + for (const upperNoProxyItem of noProxy + .split(',') + .map(x => x.trim().toUpperCase()) + .filter(x => x)) { + if (upperNoProxyItem === '*' || + upperReqHosts.some(x => x === upperNoProxyItem || + x.endsWith(`.${upperNoProxyItem}`) || + (upperNoProxyItem.startsWith('.') && + x.endsWith(`${upperNoProxyItem}`)))) { + return true; + } + } + return false; +} +exports.checkBypass = checkBypass; +function isLoopbackAddress(host) { + const hostLower = host.toLowerCase(); + return (hostLower === 'localhost' || + hostLower.startsWith('127.') || + hostLower.startsWith('[::1]') || + hostLower.startsWith('[0:0:0:0:0:0:0:1]')); +} +class DecodedURL extends URL { + constructor(url, base) { + super(url, base); + this._decodedUsername = decodeURIComponent(super.username); + this._decodedPassword = decodeURIComponent(super.password); + } + get username() { + return this._decodedUsername; + } + get password() { + return this._decodedPassword; + } +} +//# sourceMappingURL=proxy.js.map + +/***/ }), + +/***/ 5207: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } }); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +var _a; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.getCmdPath = exports.tryGetExecutablePath = exports.isRooted = exports.isDirectory = exports.exists = exports.READONLY = exports.UV_FS_O_EXLOCK = exports.IS_WINDOWS = exports.unlink = exports.symlink = exports.stat = exports.rmdir = exports.rm = exports.rename = exports.readlink = exports.readdir = exports.open = exports.mkdir = exports.lstat = exports.copyFile = exports.chmod = void 0; +const fs = __importStar(__nccwpck_require__(9896)); +const path = __importStar(__nccwpck_require__(6928)); +_a = fs.promises +// export const {open} = 'fs' +, exports.chmod = _a.chmod, exports.copyFile = _a.copyFile, exports.lstat = _a.lstat, exports.mkdir = _a.mkdir, exports.open = _a.open, exports.readdir = _a.readdir, exports.readlink = _a.readlink, exports.rename = _a.rename, exports.rm = _a.rm, exports.rmdir = _a.rmdir, exports.stat = _a.stat, exports.symlink = _a.symlink, exports.unlink = _a.unlink; +// export const {open} = 'fs' +exports.IS_WINDOWS = process.platform === 'win32'; +// See https://github.com/nodejs/node/blob/d0153aee367422d0858105abec186da4dff0a0c5/deps/uv/include/uv/win.h#L691 +exports.UV_FS_O_EXLOCK = 0x10000000; +exports.READONLY = fs.constants.O_RDONLY; +function exists(fsPath) { + return __awaiter(this, void 0, void 0, function* () { + try { + yield exports.stat(fsPath); + } + catch (err) { + if (err.code === 'ENOENT') { + return false; + } + throw err; + } + return true; + }); +} +exports.exists = exists; +function isDirectory(fsPath, useStat = false) { + return __awaiter(this, void 0, void 0, function* () { + const stats = useStat ? yield exports.stat(fsPath) : yield exports.lstat(fsPath); + return stats.isDirectory(); + }); +} +exports.isDirectory = isDirectory; +/** + * On OSX/Linux, true if path starts with '/'. On Windows, true for paths like: + * \, \hello, \\hello\share, C:, and C:\hello (and corresponding alternate separator cases). + */ +function isRooted(p) { + p = normalizeSeparators(p); + if (!p) { + throw new Error('isRooted() parameter "p" cannot be empty'); + } + if (exports.IS_WINDOWS) { + return (p.startsWith('\\') || /^[A-Z]:/i.test(p) // e.g. \ or \hello or \\hello + ); // e.g. C: or C:\hello + } + return p.startsWith('/'); +} +exports.isRooted = isRooted; +/** + * Best effort attempt to determine whether a file exists and is executable. + * @param filePath file path to check + * @param extensions additional file extensions to try + * @return if file exists and is executable, returns the file path. otherwise empty string. + */ +function tryGetExecutablePath(filePath, extensions) { + return __awaiter(this, void 0, void 0, function* () { + let stats = undefined; + try { + // test file exists + stats = yield exports.stat(filePath); + } + catch (err) { + if (err.code !== 'ENOENT') { + // eslint-disable-next-line no-console + console.log(`Unexpected error attempting to determine if executable file exists '${filePath}': ${err}`); + } + } + if (stats && stats.isFile()) { + if (exports.IS_WINDOWS) { + // on Windows, test for valid extension + const upperExt = path.extname(filePath).toUpperCase(); + if (extensions.some(validExt => validExt.toUpperCase() === upperExt)) { + return filePath; + } + } + else { + if (isUnixExecutable(stats)) { + return filePath; + } + } + } + // try each extension + const originalFilePath = filePath; + for (const extension of extensions) { + filePath = originalFilePath + extension; + stats = undefined; + try { + stats = yield exports.stat(filePath); + } + catch (err) { + if (err.code !== 'ENOENT') { + // eslint-disable-next-line no-console + console.log(`Unexpected error attempting to determine if executable file exists '${filePath}': ${err}`); + } + } + if (stats && stats.isFile()) { + if (exports.IS_WINDOWS) { + // preserve the case of the actual file (since an extension was appended) + try { + const directory = path.dirname(filePath); + const upperName = path.basename(filePath).toUpperCase(); + for (const actualName of yield exports.readdir(directory)) { + if (upperName === actualName.toUpperCase()) { + filePath = path.join(directory, actualName); + break; + } + } + } + catch (err) { + // eslint-disable-next-line no-console + console.log(`Unexpected error attempting to determine the actual case of the file '${filePath}': ${err}`); + } + return filePath; + } + else { + if (isUnixExecutable(stats)) { + return filePath; + } + } + } + } + return ''; + }); +} +exports.tryGetExecutablePath = tryGetExecutablePath; +function normalizeSeparators(p) { + p = p || ''; + if (exports.IS_WINDOWS) { + // convert slashes on Windows + p = p.replace(/\//g, '\\'); + // remove redundant slashes + return p.replace(/\\\\+/g, '\\'); + } + // remove redundant slashes + return p.replace(/\/\/+/g, '/'); +} +// on Mac/Linux, test the execute bit +// R W X R W X R W X +// 256 128 64 32 16 8 4 2 1 +function isUnixExecutable(stats) { + return ((stats.mode & 1) > 0 || + ((stats.mode & 8) > 0 && stats.gid === process.getgid()) || + ((stats.mode & 64) > 0 && stats.uid === process.getuid())); +} +// Get the path of cmd.exe in windows +function getCmdPath() { + var _a; + return (_a = process.env['COMSPEC']) !== null && _a !== void 0 ? _a : `cmd.exe`; +} +exports.getCmdPath = getCmdPath; +//# sourceMappingURL=io-util.js.map + +/***/ }), + +/***/ 4994: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } }); +}) : (function(o, m, k, k2) { + if (k2 === undefined) k2 = k; + o[k2] = m[k]; +})); +var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { + Object.defineProperty(o, "default", { enumerable: true, value: v }); +}) : function(o, v) { + o["default"] = v; +}); +var __importStar = (this && this.__importStar) || function (mod) { + if (mod && mod.__esModule) return mod; + var result = {}; + if (mod != null) for (var k in mod) if (k !== "default" && Object.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k); + __setModuleDefault(result, mod); + return result; +}; +var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { + function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } + return new (P || (P = Promise))(function (resolve, reject) { + function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } + function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } + function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } + step((generator = generator.apply(thisArg, _arguments || [])).next()); + }); +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.findInPath = exports.which = exports.mkdirP = exports.rmRF = exports.mv = exports.cp = void 0; +const assert_1 = __nccwpck_require__(2613); +const path = __importStar(__nccwpck_require__(6928)); +const ioUtil = __importStar(__nccwpck_require__(5207)); +/** + * Copies a file or folder. + * Based off of shelljs - https://github.com/shelljs/shelljs/blob/9237f66c52e5daa40458f94f9565e18e8132f5a6/src/cp.js + * + * @param source source path + * @param dest destination path + * @param options optional. See CopyOptions. + */ +function cp(source, dest, options = {}) { + return __awaiter(this, void 0, void 0, function* () { + const { force, recursive, copySourceDirectory } = readCopyOptions(options); + const destStat = (yield ioUtil.exists(dest)) ? yield ioUtil.stat(dest) : null; + // Dest is an existing file, but not forcing + if (destStat && destStat.isFile() && !force) { + return; + } + // If dest is an existing directory, should copy inside. + const newDest = destStat && destStat.isDirectory() && copySourceDirectory + ? path.join(dest, path.basename(source)) + : dest; + if (!(yield ioUtil.exists(source))) { + throw new Error(`no such file or directory: ${source}`); + } + const sourceStat = yield ioUtil.stat(source); + if (sourceStat.isDirectory()) { + if (!recursive) { + throw new Error(`Failed to copy. ${source} is a directory, but tried to copy without recursive flag.`); + } + else { + yield cpDirRecursive(source, newDest, 0, force); + } + } + else { + if (path.relative(source, newDest) === '') { + // a file cannot be copied to itself + throw new Error(`'${newDest}' and '${source}' are the same file`); + } + yield copyFile(source, newDest, force); + } + }); +} +exports.cp = cp; +/** + * Moves a path. + * + * @param source source path + * @param dest destination path + * @param options optional. See MoveOptions. + */ +function mv(source, dest, options = {}) { + return __awaiter(this, void 0, void 0, function* () { + if (yield ioUtil.exists(dest)) { + let destExists = true; + if (yield ioUtil.isDirectory(dest)) { + // If dest is directory copy src into dest + dest = path.join(dest, path.basename(source)); + destExists = yield ioUtil.exists(dest); + } + if (destExists) { + if (options.force == null || options.force) { + yield rmRF(dest); + } + else { + throw new Error('Destination already exists'); + } + } + } + yield mkdirP(path.dirname(dest)); + yield ioUtil.rename(source, dest); + }); +} +exports.mv = mv; +/** + * Remove a path recursively with force + * + * @param inputPath path to remove + */ +function rmRF(inputPath) { + return __awaiter(this, void 0, void 0, function* () { + if (ioUtil.IS_WINDOWS) { + // Check for invalid characters + // https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file + if (/[*"<>|]/.test(inputPath)) { + throw new Error('File path must not contain `*`, `"`, `<`, `>` or `|` on Windows'); + } + } + try { + // note if path does not exist, error is silent + yield ioUtil.rm(inputPath, { + force: true, + maxRetries: 3, + recursive: true, + retryDelay: 300 + }); + } + catch (err) { + throw new Error(`File was unable to be removed ${err}`); + } + }); +} +exports.rmRF = rmRF; +/** + * Make a directory. Creates the full path with folders in between + * Will throw if it fails + * + * @param fsPath path to create + * @returns Promise + */ +function mkdirP(fsPath) { + return __awaiter(this, void 0, void 0, function* () { + assert_1.ok(fsPath, 'a path argument must be provided'); + yield ioUtil.mkdir(fsPath, { recursive: true }); + }); +} +exports.mkdirP = mkdirP; +/** + * Returns path of a tool had the tool actually been invoked. Resolves via paths. + * If you check and the tool does not exist, it will throw. + * + * @param tool name of the tool + * @param check whether to check if tool exists + * @returns Promise path to tool + */ +function which(tool, check) { + return __awaiter(this, void 0, void 0, function* () { + if (!tool) { + throw new Error("parameter 'tool' is required"); + } + // recursive when check=true + if (check) { + const result = yield which(tool, false); + if (!result) { + if (ioUtil.IS_WINDOWS) { + throw new Error(`Unable to locate executable file: ${tool}. Please verify either the file path exists or the file can be found within a directory specified by the PATH environment variable. Also verify the file has a valid extension for an executable file.`); + } + else { + throw new Error(`Unable to locate executable file: ${tool}. Please verify either the file path exists or the file can be found within a directory specified by the PATH environment variable. Also check the file mode to verify the file is executable.`); + } + } + return result; + } + const matches = yield findInPath(tool); + if (matches && matches.length > 0) { + return matches[0]; + } + return ''; + }); +} +exports.which = which; +/** + * Returns a list of all occurrences of the given tool on the system path. + * + * @returns Promise the paths of the tool + */ +function findInPath(tool) { + return __awaiter(this, void 0, void 0, function* () { + if (!tool) { + throw new Error("parameter 'tool' is required"); + } + // build the list of extensions to try + const extensions = []; + if (ioUtil.IS_WINDOWS && process.env['PATHEXT']) { + for (const extension of process.env['PATHEXT'].split(path.delimiter)) { + if (extension) { + extensions.push(extension); + } + } + } + // if it's rooted, return it if exists. otherwise return empty. + if (ioUtil.isRooted(tool)) { + const filePath = yield ioUtil.tryGetExecutablePath(tool, extensions); + if (filePath) { + return [filePath]; + } + return []; + } + // if any path separators, return empty + if (tool.includes(path.sep)) { + return []; + } + // build the list of directories + // + // Note, technically "where" checks the current directory on Windows. From a toolkit perspective, + // it feels like we should not do this. Checking the current directory seems like more of a use + // case of a shell, and the which() function exposed by the toolkit should strive for consistency + // across platforms. + const directories = []; + if (process.env.PATH) { + for (const p of process.env.PATH.split(path.delimiter)) { + if (p) { + directories.push(p); + } + } + } + // find all matches + const matches = []; + for (const directory of directories) { + const filePath = yield ioUtil.tryGetExecutablePath(path.join(directory, tool), extensions); + if (filePath) { + matches.push(filePath); + } + } + return matches; + }); +} +exports.findInPath = findInPath; +function readCopyOptions(options) { + const force = options.force == null ? true : options.force; + const recursive = Boolean(options.recursive); + const copySourceDirectory = options.copySourceDirectory == null + ? true + : Boolean(options.copySourceDirectory); + return { force, recursive, copySourceDirectory }; +} +function cpDirRecursive(sourceDir, destDir, currentDepth, force) { + return __awaiter(this, void 0, void 0, function* () { + // Ensure there is not a run away recursive copy + if (currentDepth >= 255) + return; + currentDepth++; + yield mkdirP(destDir); + const files = yield ioUtil.readdir(sourceDir); + for (const fileName of files) { + const srcFile = `${sourceDir}/${fileName}`; + const destFile = `${destDir}/${fileName}`; + const srcFileStat = yield ioUtil.lstat(srcFile); + if (srcFileStat.isDirectory()) { + // Recurse + yield cpDirRecursive(srcFile, destFile, currentDepth, force); + } + else { + yield copyFile(srcFile, destFile, force); + } + } + // Change the mode for the newly created directory + yield ioUtil.chmod(destDir, (yield ioUtil.stat(sourceDir)).mode); + }); +} +// Buffered file copy +function copyFile(srcFile, destFile, force) { + return __awaiter(this, void 0, void 0, function* () { + if ((yield ioUtil.lstat(srcFile)).isSymbolicLink()) { + // unlink/re-link it + try { + yield ioUtil.lstat(destFile); + yield ioUtil.unlink(destFile); + } + catch (e) { + // Try to override file permission + if (e.code === 'EPERM') { + yield ioUtil.chmod(destFile, '0666'); + yield ioUtil.unlink(destFile); + } + // other errors = it doesn't exist, no work to do + } + // Copy over symlink + const symlinkFull = yield ioUtil.readlink(srcFile); + yield ioUtil.symlink(symlinkFull, destFile, ioUtil.IS_WINDOWS ? 'junction' : null); + } + else if (!(yield ioUtil.exists(destFile)) || force) { + yield ioUtil.copyFile(srcFile, destFile); + } + }); +} +//# sourceMappingURL=io.js.map + +/***/ }), + +/***/ 9380: +/***/ ((module) => { + +"use strict"; + +module.exports = balanced; +function balanced(a, b, str) { + if (a instanceof RegExp) a = maybeMatch(a, str); + if (b instanceof RegExp) b = maybeMatch(b, str); + + var r = range(a, b, str); + + return r && { + start: r[0], + end: r[1], + pre: str.slice(0, r[0]), + body: str.slice(r[0] + a.length, r[1]), + post: str.slice(r[1] + b.length) + }; +} + +function maybeMatch(reg, str) { + var m = str.match(reg); + return m ? m[0] : null; +} + +balanced.range = range; +function range(a, b, str) { + var begs, beg, left, right, result; + var ai = str.indexOf(a); + var bi = str.indexOf(b, ai + 1); + var i = ai; + + if (ai >= 0 && bi > 0) { + if(a===b) { + return [ai, bi]; + } + begs = []; + left = str.length; + + while (i >= 0 && !result) { + if (i == ai) { + begs.push(i); + ai = str.indexOf(a, i + 1); + } else if (begs.length == 1) { + result = [ begs.pop(), bi ]; + } else { + beg = begs.pop(); + if (beg < left) { + left = beg; + right = bi; + } + + bi = str.indexOf(b, i + 1); + } + + i = ai < bi && ai >= 0 ? ai : bi; + } + + if (begs.length) { + result = [ left, right ]; + } + } + + return result; +} + + +/***/ }), + +/***/ 4691: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +var balanced = __nccwpck_require__(9380); + +module.exports = expandTop; + +var escSlash = '\0SLASH'+Math.random()+'\0'; +var escOpen = '\0OPEN'+Math.random()+'\0'; +var escClose = '\0CLOSE'+Math.random()+'\0'; +var escComma = '\0COMMA'+Math.random()+'\0'; +var escPeriod = '\0PERIOD'+Math.random()+'\0'; + +function numeric(str) { + return parseInt(str, 10) == str + ? parseInt(str, 10) + : str.charCodeAt(0); +} + +function escapeBraces(str) { + return str.split('\\\\').join(escSlash) + .split('\\{').join(escOpen) + .split('\\}').join(escClose) + .split('\\,').join(escComma) + .split('\\.').join(escPeriod); +} + +function unescapeBraces(str) { + return str.split(escSlash).join('\\') + .split(escOpen).join('{') + .split(escClose).join('}') + .split(escComma).join(',') + .split(escPeriod).join('.'); +} + + +// Basically just str.split(","), but handling cases +// where we have nested braced sections, which should be +// treated as individual members, like {a,{b,c},d} +function parseCommaParts(str) { + if (!str) + return ['']; + + var parts = []; + var m = balanced('{', '}', str); + + if (!m) + return str.split(','); + + var pre = m.pre; + var body = m.body; + var post = m.post; + var p = pre.split(','); + + p[p.length-1] += '{' + body + '}'; + var postParts = parseCommaParts(post); + if (post.length) { + p[p.length-1] += postParts.shift(); + p.push.apply(p, postParts); + } + + parts.push.apply(parts, p); + + return parts; +} + +function expandTop(str) { + if (!str) + return []; + + // I don't know why Bash 4.3 does this, but it does. + // Anything starting with {} will have the first two bytes preserved + // but *only* at the top level, so {},a}b will not expand to anything, + // but a{},b}c will be expanded to [a}c,abc]. + // One could argue that this is a bug in Bash, but since the goal of + // this module is to match Bash's rules, we escape a leading {} + if (str.substr(0, 2) === '{}') { + str = '\\{\\}' + str.substr(2); + } + + return expand(escapeBraces(str), true).map(unescapeBraces); +} + +function embrace(str) { + return '{' + str + '}'; +} +function isPadded(el) { + return /^-?0\d/.test(el); +} + +function lte(i, y) { + return i <= y; +} +function gte(i, y) { + return i >= y; +} + +function expand(str, isTop) { + var expansions = []; + + var m = balanced('{', '}', str); + if (!m) return [str]; + + // no need to expand pre, since it is guaranteed to be free of brace-sets + var pre = m.pre; + var post = m.post.length + ? expand(m.post, false) + : ['']; + + if (/\$$/.test(m.pre)) { + for (var k = 0; k < post.length; k++) { + var expansion = pre+ '{' + m.body + '}' + post[k]; + expansions.push(expansion); + } + } else { + var isNumericSequence = /^-?\d+\.\.-?\d+(?:\.\.-?\d+)?$/.test(m.body); + var isAlphaSequence = /^[a-zA-Z]\.\.[a-zA-Z](?:\.\.-?\d+)?$/.test(m.body); + var isSequence = isNumericSequence || isAlphaSequence; + var isOptions = m.body.indexOf(',') >= 0; + if (!isSequence && !isOptions) { + // {a},b} + if (m.post.match(/,.*\}/)) { + str = m.pre + '{' + m.body + escClose + m.post; + return expand(str); + } + return [str]; + } + + var n; + if (isSequence) { + n = m.body.split(/\.\./); + } else { + n = parseCommaParts(m.body); + if (n.length === 1) { + // x{{a,b}}y ==> x{a}y x{b}y + n = expand(n[0], false).map(embrace); + if (n.length === 1) { + return post.map(function(p) { + return m.pre + n[0] + p; + }); + } + } + } + + // at this point, n is the parts, and we know it's not a comma set + // with a single entry. + var N; + + if (isSequence) { + var x = numeric(n[0]); + var y = numeric(n[1]); + var width = Math.max(n[0].length, n[1].length) + var incr = n.length == 3 + ? Math.abs(numeric(n[2])) + : 1; + var test = lte; + var reverse = y < x; + if (reverse) { + incr *= -1; + test = gte; + } + var pad = n.some(isPadded); + + N = []; + + for (var i = x; test(i, y); i += incr) { + var c; + if (isAlphaSequence) { + c = String.fromCharCode(i); + if (c === '\\') + c = ''; + } else { + c = String(i); + if (pad) { + var need = width - c.length; + if (need > 0) { + var z = new Array(need + 1).join('0'); + if (i < 0) + c = '-' + z + c.slice(1); + else + c = z + c; + } + } + } + N.push(c); + } + } else { + N = []; + + for (var j = 0; j < n.length; j++) { + N.push.apply(N, expand(n[j], false)); + } + } + + for (var j = 0; j < N.length; j++) { + for (var k = 0; k < post.length; k++) { + var expansion = pre + N[j] + post[k]; + if (!isTop || isSequence || expansion) + expansions.push(expansion); + } + } + } + + return expansions; +} + + + +/***/ }), + +/***/ 770: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +module.exports = __nccwpck_require__(218); + + +/***/ }), + +/***/ 218: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + + +var net = __nccwpck_require__(9278); +var tls = __nccwpck_require__(4756); +var http = __nccwpck_require__(8611); +var https = __nccwpck_require__(5692); +var events = __nccwpck_require__(4434); +var assert = __nccwpck_require__(2613); +var util = __nccwpck_require__(9023); + + +exports.httpOverHttp = httpOverHttp; +exports.httpsOverHttp = httpsOverHttp; +exports.httpOverHttps = httpOverHttps; +exports.httpsOverHttps = httpsOverHttps; + + +function httpOverHttp(options) { + var agent = new TunnelingAgent(options); + agent.request = http.request; + return agent; +} + +function httpsOverHttp(options) { + var agent = new TunnelingAgent(options); + agent.request = http.request; + agent.createSocket = createSecureSocket; + agent.defaultPort = 443; + return agent; +} + +function httpOverHttps(options) { + var agent = new TunnelingAgent(options); + agent.request = https.request; + return agent; +} + +function httpsOverHttps(options) { + var agent = new TunnelingAgent(options); + agent.request = https.request; + agent.createSocket = createSecureSocket; + agent.defaultPort = 443; + return agent; +} + + +function TunnelingAgent(options) { + var self = this; + self.options = options || {}; + self.proxyOptions = self.options.proxy || {}; + self.maxSockets = self.options.maxSockets || http.Agent.defaultMaxSockets; + self.requests = []; + self.sockets = []; + + self.on('free', function onFree(socket, host, port, localAddress) { + var options = toOptions(host, port, localAddress); + for (var i = 0, len = self.requests.length; i < len; ++i) { + var pending = self.requests[i]; + if (pending.host === options.host && pending.port === options.port) { + // Detect the request to connect same origin server, + // reuse the connection. + self.requests.splice(i, 1); + pending.request.onSocket(socket); + return; + } + } + socket.destroy(); + self.removeSocket(socket); + }); +} +util.inherits(TunnelingAgent, events.EventEmitter); + +TunnelingAgent.prototype.addRequest = function addRequest(req, host, port, localAddress) { + var self = this; + var options = mergeOptions({request: req}, self.options, toOptions(host, port, localAddress)); + + if (self.sockets.length >= this.maxSockets) { + // We are over limit so we'll add it to the queue. + self.requests.push(options); + return; + } + + // If we are under maxSockets create a new one. + self.createSocket(options, function(socket) { + socket.on('free', onFree); + socket.on('close', onCloseOrRemove); + socket.on('agentRemove', onCloseOrRemove); + req.onSocket(socket); + + function onFree() { + self.emit('free', socket, options); + } + + function onCloseOrRemove(err) { + self.removeSocket(socket); + socket.removeListener('free', onFree); + socket.removeListener('close', onCloseOrRemove); + socket.removeListener('agentRemove', onCloseOrRemove); + } + }); +}; + +TunnelingAgent.prototype.createSocket = function createSocket(options, cb) { + var self = this; + var placeholder = {}; + self.sockets.push(placeholder); + + var connectOptions = mergeOptions({}, self.proxyOptions, { + method: 'CONNECT', + path: options.host + ':' + options.port, + agent: false, + headers: { + host: options.host + ':' + options.port + } + }); + if (options.localAddress) { + connectOptions.localAddress = options.localAddress; + } + if (connectOptions.proxyAuth) { + connectOptions.headers = connectOptions.headers || {}; + connectOptions.headers['Proxy-Authorization'] = 'Basic ' + + new Buffer(connectOptions.proxyAuth).toString('base64'); + } + + debug('making CONNECT request'); + var connectReq = self.request(connectOptions); + connectReq.useChunkedEncodingByDefault = false; // for v0.6 + connectReq.once('response', onResponse); // for v0.6 + connectReq.once('upgrade', onUpgrade); // for v0.6 + connectReq.once('connect', onConnect); // for v0.7 or later + connectReq.once('error', onError); + connectReq.end(); + + function onResponse(res) { + // Very hacky. This is necessary to avoid http-parser leaks. + res.upgrade = true; + } + + function onUpgrade(res, socket, head) { + // Hacky. + process.nextTick(function() { + onConnect(res, socket, head); + }); + } + + function onConnect(res, socket, head) { + connectReq.removeAllListeners(); + socket.removeAllListeners(); + + if (res.statusCode !== 200) { + debug('tunneling socket could not be established, statusCode=%d', + res.statusCode); + socket.destroy(); + var error = new Error('tunneling socket could not be established, ' + + 'statusCode=' + res.statusCode); + error.code = 'ECONNRESET'; + options.request.emit('error', error); + self.removeSocket(placeholder); + return; + } + if (head.length > 0) { + debug('got illegal response body from proxy'); + socket.destroy(); + var error = new Error('got illegal response body from proxy'); + error.code = 'ECONNRESET'; + options.request.emit('error', error); + self.removeSocket(placeholder); + return; + } + debug('tunneling connection has established'); + self.sockets[self.sockets.indexOf(placeholder)] = socket; + return cb(socket); + } + + function onError(cause) { + connectReq.removeAllListeners(); + + debug('tunneling socket could not be established, cause=%s\n', + cause.message, cause.stack); + var error = new Error('tunneling socket could not be established, ' + + 'cause=' + cause.message); + error.code = 'ECONNRESET'; + options.request.emit('error', error); + self.removeSocket(placeholder); + } +}; + +TunnelingAgent.prototype.removeSocket = function removeSocket(socket) { + var pos = this.sockets.indexOf(socket) + if (pos === -1) { + return; + } + this.sockets.splice(pos, 1); + + var pending = this.requests.shift(); + if (pending) { + // If we have pending requests and a socket gets closed a new one + // needs to be created to take over in the pool for the one that closed. + this.createSocket(pending, function(socket) { + pending.request.onSocket(socket); + }); + } +}; + +function createSecureSocket(options, cb) { + var self = this; + TunnelingAgent.prototype.createSocket.call(self, options, function(socket) { + var hostHeader = options.request.getHeader('host'); + var tlsOptions = mergeOptions({}, self.options, { + socket: socket, + servername: hostHeader ? hostHeader.replace(/:.*$/, '') : options.host + }); + + // 0 is dummy port for v0.6 + var secureSocket = tls.connect(0, tlsOptions); + self.sockets[self.sockets.indexOf(socket)] = secureSocket; + cb(secureSocket); + }); +} + + +function toOptions(host, port, localAddress) { + if (typeof host === 'string') { // since v0.10 + return { + host: host, + port: port, + localAddress: localAddress + }; + } + return host; // for v0.11 or later +} + +function mergeOptions(target) { + for (var i = 1, len = arguments.length; i < len; ++i) { + var overrides = arguments[i]; + if (typeof overrides === 'object') { + var keys = Object.keys(overrides); + for (var j = 0, keyLen = keys.length; j < keyLen; ++j) { + var k = keys[j]; + if (overrides[k] !== undefined) { + target[k] = overrides[k]; + } + } + } + } + return target; +} + + +var debug; +if (process.env.NODE_DEBUG && /\btunnel\b/.test(process.env.NODE_DEBUG)) { + debug = function() { + var args = Array.prototype.slice.call(arguments); + if (typeof args[0] === 'string') { + args[0] = 'TUNNEL: ' + args[0]; + } else { + args.unshift('TUNNEL:'); + } + console.error.apply(console, args); + } +} else { + debug = function() {}; +} +exports.debug = debug; // for test + + +/***/ }), + +/***/ 6752: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const Client = __nccwpck_require__(6197) +const Dispatcher = __nccwpck_require__(992) +const errors = __nccwpck_require__(8707) +const Pool = __nccwpck_require__(5076) +const BalancedPool = __nccwpck_require__(1093) +const Agent = __nccwpck_require__(9965) +const util = __nccwpck_require__(3440) +const { InvalidArgumentError } = errors +const api = __nccwpck_require__(6615) +const buildConnector = __nccwpck_require__(9136) +const MockClient = __nccwpck_require__(7365) +const MockAgent = __nccwpck_require__(7501) +const MockPool = __nccwpck_require__(4004) +const mockErrors = __nccwpck_require__(2429) +const ProxyAgent = __nccwpck_require__(2720) +const RetryHandler = __nccwpck_require__(3573) +const { getGlobalDispatcher, setGlobalDispatcher } = __nccwpck_require__(2581) +const DecoratorHandler = __nccwpck_require__(8840) +const RedirectHandler = __nccwpck_require__(8299) +const createRedirectInterceptor = __nccwpck_require__(4415) + +let hasCrypto +try { + __nccwpck_require__(6982) + hasCrypto = true +} catch { + hasCrypto = false +} + +Object.assign(Dispatcher.prototype, api) + +module.exports.Dispatcher = Dispatcher +module.exports.Client = Client +module.exports.Pool = Pool +module.exports.BalancedPool = BalancedPool +module.exports.Agent = Agent +module.exports.ProxyAgent = ProxyAgent +module.exports.RetryHandler = RetryHandler + +module.exports.DecoratorHandler = DecoratorHandler +module.exports.RedirectHandler = RedirectHandler +module.exports.createRedirectInterceptor = createRedirectInterceptor + +module.exports.buildConnector = buildConnector +module.exports.errors = errors + +function makeDispatcher (fn) { + return (url, opts, handler) => { + if (typeof opts === 'function') { + handler = opts + opts = null + } + + if (!url || (typeof url !== 'string' && typeof url !== 'object' && !(url instanceof URL))) { + throw new InvalidArgumentError('invalid url') + } + + if (opts != null && typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + if (opts && opts.path != null) { + if (typeof opts.path !== 'string') { + throw new InvalidArgumentError('invalid opts.path') + } + + let path = opts.path + if (!opts.path.startsWith('/')) { + path = `/${path}` + } + + url = new URL(util.parseOrigin(url).origin + path) + } else { + if (!opts) { + opts = typeof url === 'object' ? url : {} + } + + url = util.parseURL(url) + } + + const { agent, dispatcher = getGlobalDispatcher() } = opts + + if (agent) { + throw new InvalidArgumentError('unsupported opts.agent. Did you mean opts.client?') + } + + return fn.call(dispatcher, { + ...opts, + origin: url.origin, + path: url.search ? `${url.pathname}${url.search}` : url.pathname, + method: opts.method || (opts.body ? 'PUT' : 'GET') + }, handler) + } +} + +module.exports.setGlobalDispatcher = setGlobalDispatcher +module.exports.getGlobalDispatcher = getGlobalDispatcher + +if (util.nodeMajor > 16 || (util.nodeMajor === 16 && util.nodeMinor >= 8)) { + let fetchImpl = null + module.exports.fetch = async function fetch (resource) { + if (!fetchImpl) { + fetchImpl = (__nccwpck_require__(2315).fetch) + } + + try { + return await fetchImpl(...arguments) + } catch (err) { + if (typeof err === 'object') { + Error.captureStackTrace(err, this) + } + + throw err + } + } + module.exports.Headers = __nccwpck_require__(6349).Headers + module.exports.Response = __nccwpck_require__(8676).Response + module.exports.Request = __nccwpck_require__(5194).Request + module.exports.FormData = __nccwpck_require__(3073).FormData + module.exports.File = __nccwpck_require__(3041).File + module.exports.FileReader = __nccwpck_require__(2160).FileReader + + const { setGlobalOrigin, getGlobalOrigin } = __nccwpck_require__(5628) + + module.exports.setGlobalOrigin = setGlobalOrigin + module.exports.getGlobalOrigin = getGlobalOrigin + + const { CacheStorage } = __nccwpck_require__(4738) + const { kConstruct } = __nccwpck_require__(296) + + // Cache & CacheStorage are tightly coupled with fetch. Even if it may run + // in an older version of Node, it doesn't have any use without fetch. + module.exports.caches = new CacheStorage(kConstruct) +} + +if (util.nodeMajor >= 16) { + const { deleteCookie, getCookies, getSetCookies, setCookie } = __nccwpck_require__(3168) + + module.exports.deleteCookie = deleteCookie + module.exports.getCookies = getCookies + module.exports.getSetCookies = getSetCookies + module.exports.setCookie = setCookie + + const { parseMIMEType, serializeAMimeType } = __nccwpck_require__(4322) + + module.exports.parseMIMEType = parseMIMEType + module.exports.serializeAMimeType = serializeAMimeType +} + +if (util.nodeMajor >= 18 && hasCrypto) { + const { WebSocket } = __nccwpck_require__(5171) + + module.exports.WebSocket = WebSocket +} + +module.exports.request = makeDispatcher(api.request) +module.exports.stream = makeDispatcher(api.stream) +module.exports.pipeline = makeDispatcher(api.pipeline) +module.exports.connect = makeDispatcher(api.connect) +module.exports.upgrade = makeDispatcher(api.upgrade) + +module.exports.MockClient = MockClient +module.exports.MockPool = MockPool +module.exports.MockAgent = MockAgent +module.exports.mockErrors = mockErrors + + +/***/ }), + +/***/ 9965: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { InvalidArgumentError } = __nccwpck_require__(8707) +const { kClients, kRunning, kClose, kDestroy, kDispatch, kInterceptors } = __nccwpck_require__(6443) +const DispatcherBase = __nccwpck_require__(1) +const Pool = __nccwpck_require__(5076) +const Client = __nccwpck_require__(6197) +const util = __nccwpck_require__(3440) +const createRedirectInterceptor = __nccwpck_require__(4415) +const { WeakRef, FinalizationRegistry } = __nccwpck_require__(3194)() + +const kOnConnect = Symbol('onConnect') +const kOnDisconnect = Symbol('onDisconnect') +const kOnConnectionError = Symbol('onConnectionError') +const kMaxRedirections = Symbol('maxRedirections') +const kOnDrain = Symbol('onDrain') +const kFactory = Symbol('factory') +const kFinalizer = Symbol('finalizer') +const kOptions = Symbol('options') + +function defaultFactory (origin, opts) { + return opts && opts.connections === 1 + ? new Client(origin, opts) + : new Pool(origin, opts) +} + +class Agent extends DispatcherBase { + constructor ({ factory = defaultFactory, maxRedirections = 0, connect, ...options } = {}) { + super() + + if (typeof factory !== 'function') { + throw new InvalidArgumentError('factory must be a function.') + } + + if (connect != null && typeof connect !== 'function' && typeof connect !== 'object') { + throw new InvalidArgumentError('connect must be a function or an object') + } + + if (!Number.isInteger(maxRedirections) || maxRedirections < 0) { + throw new InvalidArgumentError('maxRedirections must be a positive number') + } + + if (connect && typeof connect !== 'function') { + connect = { ...connect } + } + + this[kInterceptors] = options.interceptors && options.interceptors.Agent && Array.isArray(options.interceptors.Agent) + ? options.interceptors.Agent + : [createRedirectInterceptor({ maxRedirections })] + + this[kOptions] = { ...util.deepClone(options), connect } + this[kOptions].interceptors = options.interceptors + ? { ...options.interceptors } + : undefined + this[kMaxRedirections] = maxRedirections + this[kFactory] = factory + this[kClients] = new Map() + this[kFinalizer] = new FinalizationRegistry(/* istanbul ignore next: gc is undeterministic */ key => { + const ref = this[kClients].get(key) + if (ref !== undefined && ref.deref() === undefined) { + this[kClients].delete(key) + } + }) + + const agent = this + + this[kOnDrain] = (origin, targets) => { + agent.emit('drain', origin, [agent, ...targets]) + } + + this[kOnConnect] = (origin, targets) => { + agent.emit('connect', origin, [agent, ...targets]) + } + + this[kOnDisconnect] = (origin, targets, err) => { + agent.emit('disconnect', origin, [agent, ...targets], err) + } + + this[kOnConnectionError] = (origin, targets, err) => { + agent.emit('connectionError', origin, [agent, ...targets], err) + } + } + + get [kRunning] () { + let ret = 0 + for (const ref of this[kClients].values()) { + const client = ref.deref() + /* istanbul ignore next: gc is undeterministic */ + if (client) { + ret += client[kRunning] + } + } + return ret + } + + [kDispatch] (opts, handler) { + let key + if (opts.origin && (typeof opts.origin === 'string' || opts.origin instanceof URL)) { + key = String(opts.origin) + } else { + throw new InvalidArgumentError('opts.origin must be a non-empty string or URL.') + } + + const ref = this[kClients].get(key) + + let dispatcher = ref ? ref.deref() : null + if (!dispatcher) { + dispatcher = this[kFactory](opts.origin, this[kOptions]) + .on('drain', this[kOnDrain]) + .on('connect', this[kOnConnect]) + .on('disconnect', this[kOnDisconnect]) + .on('connectionError', this[kOnConnectionError]) + + this[kClients].set(key, new WeakRef(dispatcher)) + this[kFinalizer].register(dispatcher, key) + } + + return dispatcher.dispatch(opts, handler) + } + + async [kClose] () { + const closePromises = [] + for (const ref of this[kClients].values()) { + const client = ref.deref() + /* istanbul ignore else: gc is undeterministic */ + if (client) { + closePromises.push(client.close()) + } + } + + await Promise.all(closePromises) + } + + async [kDestroy] (err) { + const destroyPromises = [] + for (const ref of this[kClients].values()) { + const client = ref.deref() + /* istanbul ignore else: gc is undeterministic */ + if (client) { + destroyPromises.push(client.destroy(err)) + } + } + + await Promise.all(destroyPromises) + } +} + +module.exports = Agent + + +/***/ }), + +/***/ 158: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +const { addAbortListener } = __nccwpck_require__(3440) +const { RequestAbortedError } = __nccwpck_require__(8707) + +const kListener = Symbol('kListener') +const kSignal = Symbol('kSignal') + +function abort (self) { + if (self.abort) { + self.abort() + } else { + self.onError(new RequestAbortedError()) + } +} + +function addSignal (self, signal) { + self[kSignal] = null + self[kListener] = null + + if (!signal) { + return + } + + if (signal.aborted) { + abort(self) + return + } + + self[kSignal] = signal + self[kListener] = () => { + abort(self) + } + + addAbortListener(self[kSignal], self[kListener]) +} + +function removeSignal (self) { + if (!self[kSignal]) { + return + } + + if ('removeEventListener' in self[kSignal]) { + self[kSignal].removeEventListener('abort', self[kListener]) + } else { + self[kSignal].removeListener('abort', self[kListener]) + } + + self[kSignal] = null + self[kListener] = null +} + +module.exports = { + addSignal, + removeSignal +} + + +/***/ }), + +/***/ 4660: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { AsyncResource } = __nccwpck_require__(290) +const { InvalidArgumentError, RequestAbortedError, SocketError } = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { addSignal, removeSignal } = __nccwpck_require__(158) + +class ConnectHandler extends AsyncResource { + constructor (opts, callback) { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + const { signal, opaque, responseHeaders } = opts + + if (signal && typeof signal.on !== 'function' && typeof signal.addEventListener !== 'function') { + throw new InvalidArgumentError('signal must be an EventEmitter or EventTarget') + } + + super('UNDICI_CONNECT') + + this.opaque = opaque || null + this.responseHeaders = responseHeaders || null + this.callback = callback + this.abort = null + + addSignal(this, signal) + } + + onConnect (abort, context) { + if (!this.callback) { + throw new RequestAbortedError() + } + + this.abort = abort + this.context = context + } + + onHeaders () { + throw new SocketError('bad connect', null) + } + + onUpgrade (statusCode, rawHeaders, socket) { + const { callback, opaque, context } = this + + removeSignal(this) + + this.callback = null + + let headers = rawHeaders + // Indicates is an HTTP2Session + if (headers != null) { + headers = this.responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + } + + this.runInAsyncScope(callback, null, null, { + statusCode, + headers, + socket, + opaque, + context + }) + } + + onError (err) { + const { callback, opaque } = this + + removeSignal(this) + + if (callback) { + this.callback = null + queueMicrotask(() => { + this.runInAsyncScope(callback, null, err, { opaque }) + }) + } + } +} + +function connect (opts, callback) { + if (callback === undefined) { + return new Promise((resolve, reject) => { + connect.call(this, opts, (err, data) => { + return err ? reject(err) : resolve(data) + }) + }) + } + + try { + const connectHandler = new ConnectHandler(opts, callback) + this.dispatch({ ...opts, method: 'CONNECT' }, connectHandler) + } catch (err) { + if (typeof callback !== 'function') { + throw err + } + const opaque = opts && opts.opaque + queueMicrotask(() => callback(err, { opaque })) + } +} + +module.exports = connect + + +/***/ }), + +/***/ 6862: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + Readable, + Duplex, + PassThrough +} = __nccwpck_require__(2203) +const { + InvalidArgumentError, + InvalidReturnValueError, + RequestAbortedError +} = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { AsyncResource } = __nccwpck_require__(290) +const { addSignal, removeSignal } = __nccwpck_require__(158) +const assert = __nccwpck_require__(2613) + +const kResume = Symbol('resume') + +class PipelineRequest extends Readable { + constructor () { + super({ autoDestroy: true }) + + this[kResume] = null + } + + _read () { + const { [kResume]: resume } = this + + if (resume) { + this[kResume] = null + resume() + } + } + + _destroy (err, callback) { + this._read() + + callback(err) + } +} + +class PipelineResponse extends Readable { + constructor (resume) { + super({ autoDestroy: true }) + this[kResume] = resume + } + + _read () { + this[kResume]() + } + + _destroy (err, callback) { + if (!err && !this._readableState.endEmitted) { + err = new RequestAbortedError() + } + + callback(err) + } +} + +class PipelineHandler extends AsyncResource { + constructor (opts, handler) { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + if (typeof handler !== 'function') { + throw new InvalidArgumentError('invalid handler') + } + + const { signal, method, opaque, onInfo, responseHeaders } = opts + + if (signal && typeof signal.on !== 'function' && typeof signal.addEventListener !== 'function') { + throw new InvalidArgumentError('signal must be an EventEmitter or EventTarget') + } + + if (method === 'CONNECT') { + throw new InvalidArgumentError('invalid method') + } + + if (onInfo && typeof onInfo !== 'function') { + throw new InvalidArgumentError('invalid onInfo callback') + } + + super('UNDICI_PIPELINE') + + this.opaque = opaque || null + this.responseHeaders = responseHeaders || null + this.handler = handler + this.abort = null + this.context = null + this.onInfo = onInfo || null + + this.req = new PipelineRequest().on('error', util.nop) + + this.ret = new Duplex({ + readableObjectMode: opts.objectMode, + autoDestroy: true, + read: () => { + const { body } = this + + if (body && body.resume) { + body.resume() + } + }, + write: (chunk, encoding, callback) => { + const { req } = this + + if (req.push(chunk, encoding) || req._readableState.destroyed) { + callback() + } else { + req[kResume] = callback + } + }, + destroy: (err, callback) => { + const { body, req, res, ret, abort } = this + + if (!err && !ret._readableState.endEmitted) { + err = new RequestAbortedError() + } + + if (abort && err) { + abort() + } + + util.destroy(body, err) + util.destroy(req, err) + util.destroy(res, err) + + removeSignal(this) + + callback(err) + } + }).on('prefinish', () => { + const { req } = this + + // Node < 15 does not call _final in same tick. + req.push(null) + }) + + this.res = null + + addSignal(this, signal) + } + + onConnect (abort, context) { + const { ret, res } = this + + assert(!res, 'pipeline cannot be retried') + + if (ret.destroyed) { + throw new RequestAbortedError() + } + + this.abort = abort + this.context = context + } + + onHeaders (statusCode, rawHeaders, resume) { + const { opaque, handler, context } = this + + if (statusCode < 200) { + if (this.onInfo) { + const headers = this.responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + this.onInfo({ statusCode, headers }) + } + return + } + + this.res = new PipelineResponse(resume) + + let body + try { + this.handler = null + const headers = this.responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + body = this.runInAsyncScope(handler, null, { + statusCode, + headers, + opaque, + body: this.res, + context + }) + } catch (err) { + this.res.on('error', util.nop) + throw err + } + + if (!body || typeof body.on !== 'function') { + throw new InvalidReturnValueError('expected Readable') + } + + body + .on('data', (chunk) => { + const { ret, body } = this + + if (!ret.push(chunk) && body.pause) { + body.pause() + } + }) + .on('error', (err) => { + const { ret } = this + + util.destroy(ret, err) + }) + .on('end', () => { + const { ret } = this + + ret.push(null) + }) + .on('close', () => { + const { ret } = this + + if (!ret._readableState.ended) { + util.destroy(ret, new RequestAbortedError()) + } + }) + + this.body = body + } + + onData (chunk) { + const { res } = this + return res.push(chunk) + } + + onComplete (trailers) { + const { res } = this + res.push(null) + } + + onError (err) { + const { ret } = this + this.handler = null + util.destroy(ret, err) + } +} + +function pipeline (opts, handler) { + try { + const pipelineHandler = new PipelineHandler(opts, handler) + this.dispatch({ ...opts, body: pipelineHandler.req }, pipelineHandler) + return pipelineHandler.ret + } catch (err) { + return new PassThrough().destroy(err) + } +} + +module.exports = pipeline + + +/***/ }), + +/***/ 4043: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const Readable = __nccwpck_require__(9927) +const { + InvalidArgumentError, + RequestAbortedError +} = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { getResolveErrorBodyCallback } = __nccwpck_require__(7655) +const { AsyncResource } = __nccwpck_require__(290) +const { addSignal, removeSignal } = __nccwpck_require__(158) + +class RequestHandler extends AsyncResource { + constructor (opts, callback) { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + const { signal, method, opaque, body, onInfo, responseHeaders, throwOnError, highWaterMark } = opts + + try { + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + if (highWaterMark && (typeof highWaterMark !== 'number' || highWaterMark < 0)) { + throw new InvalidArgumentError('invalid highWaterMark') + } + + if (signal && typeof signal.on !== 'function' && typeof signal.addEventListener !== 'function') { + throw new InvalidArgumentError('signal must be an EventEmitter or EventTarget') + } + + if (method === 'CONNECT') { + throw new InvalidArgumentError('invalid method') + } + + if (onInfo && typeof onInfo !== 'function') { + throw new InvalidArgumentError('invalid onInfo callback') + } + + super('UNDICI_REQUEST') + } catch (err) { + if (util.isStream(body)) { + util.destroy(body.on('error', util.nop), err) + } + throw err + } + + this.responseHeaders = responseHeaders || null + this.opaque = opaque || null + this.callback = callback + this.res = null + this.abort = null + this.body = body + this.trailers = {} + this.context = null + this.onInfo = onInfo || null + this.throwOnError = throwOnError + this.highWaterMark = highWaterMark + + if (util.isStream(body)) { + body.on('error', (err) => { + this.onError(err) + }) + } + + addSignal(this, signal) + } + + onConnect (abort, context) { + if (!this.callback) { + throw new RequestAbortedError() + } + + this.abort = abort + this.context = context + } + + onHeaders (statusCode, rawHeaders, resume, statusMessage) { + const { callback, opaque, abort, context, responseHeaders, highWaterMark } = this + + const headers = responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + + if (statusCode < 200) { + if (this.onInfo) { + this.onInfo({ statusCode, headers }) + } + return + } + + const parsedHeaders = responseHeaders === 'raw' ? util.parseHeaders(rawHeaders) : headers + const contentType = parsedHeaders['content-type'] + const body = new Readable({ resume, abort, contentType, highWaterMark }) + + this.callback = null + this.res = body + if (callback !== null) { + if (this.throwOnError && statusCode >= 400) { + this.runInAsyncScope(getResolveErrorBodyCallback, null, + { callback, body, contentType, statusCode, statusMessage, headers } + ) + } else { + this.runInAsyncScope(callback, null, null, { + statusCode, + headers, + trailers: this.trailers, + opaque, + body, + context + }) + } + } + } + + onData (chunk) { + const { res } = this + return res.push(chunk) + } + + onComplete (trailers) { + const { res } = this + + removeSignal(this) + + util.parseHeaders(trailers, this.trailers) + + res.push(null) + } + + onError (err) { + const { res, callback, body, opaque } = this + + removeSignal(this) + + if (callback) { + // TODO: Does this need queueMicrotask? + this.callback = null + queueMicrotask(() => { + this.runInAsyncScope(callback, null, err, { opaque }) + }) + } + + if (res) { + this.res = null + // Ensure all queued handlers are invoked before destroying res. + queueMicrotask(() => { + util.destroy(res, err) + }) + } + + if (body) { + this.body = null + util.destroy(body, err) + } + } +} + +function request (opts, callback) { + if (callback === undefined) { + return new Promise((resolve, reject) => { + request.call(this, opts, (err, data) => { + return err ? reject(err) : resolve(data) + }) + }) + } + + try { + this.dispatch(opts, new RequestHandler(opts, callback)) + } catch (err) { + if (typeof callback !== 'function') { + throw err + } + const opaque = opts && opts.opaque + queueMicrotask(() => callback(err, { opaque })) + } +} + +module.exports = request +module.exports.RequestHandler = RequestHandler + + +/***/ }), + +/***/ 3560: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { finished, PassThrough } = __nccwpck_require__(2203) +const { + InvalidArgumentError, + InvalidReturnValueError, + RequestAbortedError +} = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { getResolveErrorBodyCallback } = __nccwpck_require__(7655) +const { AsyncResource } = __nccwpck_require__(290) +const { addSignal, removeSignal } = __nccwpck_require__(158) + +class StreamHandler extends AsyncResource { + constructor (opts, factory, callback) { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + const { signal, method, opaque, body, onInfo, responseHeaders, throwOnError } = opts + + try { + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + if (typeof factory !== 'function') { + throw new InvalidArgumentError('invalid factory') + } + + if (signal && typeof signal.on !== 'function' && typeof signal.addEventListener !== 'function') { + throw new InvalidArgumentError('signal must be an EventEmitter or EventTarget') + } + + if (method === 'CONNECT') { + throw new InvalidArgumentError('invalid method') + } + + if (onInfo && typeof onInfo !== 'function') { + throw new InvalidArgumentError('invalid onInfo callback') + } + + super('UNDICI_STREAM') + } catch (err) { + if (util.isStream(body)) { + util.destroy(body.on('error', util.nop), err) + } + throw err + } + + this.responseHeaders = responseHeaders || null + this.opaque = opaque || null + this.factory = factory + this.callback = callback + this.res = null + this.abort = null + this.context = null + this.trailers = null + this.body = body + this.onInfo = onInfo || null + this.throwOnError = throwOnError || false + + if (util.isStream(body)) { + body.on('error', (err) => { + this.onError(err) + }) + } + + addSignal(this, signal) + } + + onConnect (abort, context) { + if (!this.callback) { + throw new RequestAbortedError() + } + + this.abort = abort + this.context = context + } + + onHeaders (statusCode, rawHeaders, resume, statusMessage) { + const { factory, opaque, context, callback, responseHeaders } = this + + const headers = responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + + if (statusCode < 200) { + if (this.onInfo) { + this.onInfo({ statusCode, headers }) + } + return + } + + this.factory = null + + let res + + if (this.throwOnError && statusCode >= 400) { + const parsedHeaders = responseHeaders === 'raw' ? util.parseHeaders(rawHeaders) : headers + const contentType = parsedHeaders['content-type'] + res = new PassThrough() + + this.callback = null + this.runInAsyncScope(getResolveErrorBodyCallback, null, + { callback, body: res, contentType, statusCode, statusMessage, headers } + ) + } else { + if (factory === null) { + return + } + + res = this.runInAsyncScope(factory, null, { + statusCode, + headers, + opaque, + context + }) + + if ( + !res || + typeof res.write !== 'function' || + typeof res.end !== 'function' || + typeof res.on !== 'function' + ) { + throw new InvalidReturnValueError('expected Writable') + } + + // TODO: Avoid finished. It registers an unnecessary amount of listeners. + finished(res, { readable: false }, (err) => { + const { callback, res, opaque, trailers, abort } = this + + this.res = null + if (err || !res.readable) { + util.destroy(res, err) + } + + this.callback = null + this.runInAsyncScope(callback, null, err || null, { opaque, trailers }) + + if (err) { + abort() + } + }) + } + + res.on('drain', resume) + + this.res = res + + const needDrain = res.writableNeedDrain !== undefined + ? res.writableNeedDrain + : res._writableState && res._writableState.needDrain + + return needDrain !== true + } + + onData (chunk) { + const { res } = this + + return res ? res.write(chunk) : true + } + + onComplete (trailers) { + const { res } = this + + removeSignal(this) + + if (!res) { + return + } + + this.trailers = util.parseHeaders(trailers) + + res.end() + } + + onError (err) { + const { res, callback, opaque, body } = this + + removeSignal(this) + + this.factory = null + + if (res) { + this.res = null + util.destroy(res, err) + } else if (callback) { + this.callback = null + queueMicrotask(() => { + this.runInAsyncScope(callback, null, err, { opaque }) + }) + } + + if (body) { + this.body = null + util.destroy(body, err) + } + } +} + +function stream (opts, factory, callback) { + if (callback === undefined) { + return new Promise((resolve, reject) => { + stream.call(this, opts, factory, (err, data) => { + return err ? reject(err) : resolve(data) + }) + }) + } + + try { + this.dispatch(opts, new StreamHandler(opts, factory, callback)) + } catch (err) { + if (typeof callback !== 'function') { + throw err + } + const opaque = opts && opts.opaque + queueMicrotask(() => callback(err, { opaque })) + } +} + +module.exports = stream + + +/***/ }), + +/***/ 1882: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { InvalidArgumentError, RequestAbortedError, SocketError } = __nccwpck_require__(8707) +const { AsyncResource } = __nccwpck_require__(290) +const util = __nccwpck_require__(3440) +const { addSignal, removeSignal } = __nccwpck_require__(158) +const assert = __nccwpck_require__(2613) + +class UpgradeHandler extends AsyncResource { + constructor (opts, callback) { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('invalid opts') + } + + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + const { signal, opaque, responseHeaders } = opts + + if (signal && typeof signal.on !== 'function' && typeof signal.addEventListener !== 'function') { + throw new InvalidArgumentError('signal must be an EventEmitter or EventTarget') + } + + super('UNDICI_UPGRADE') + + this.responseHeaders = responseHeaders || null + this.opaque = opaque || null + this.callback = callback + this.abort = null + this.context = null + + addSignal(this, signal) + } + + onConnect (abort, context) { + if (!this.callback) { + throw new RequestAbortedError() + } + + this.abort = abort + this.context = null + } + + onHeaders () { + throw new SocketError('bad upgrade', null) + } + + onUpgrade (statusCode, rawHeaders, socket) { + const { callback, opaque, context } = this + + assert.strictEqual(statusCode, 101) + + removeSignal(this) + + this.callback = null + const headers = this.responseHeaders === 'raw' ? util.parseRawHeaders(rawHeaders) : util.parseHeaders(rawHeaders) + this.runInAsyncScope(callback, null, null, { + headers, + socket, + opaque, + context + }) + } + + onError (err) { + const { callback, opaque } = this + + removeSignal(this) + + if (callback) { + this.callback = null + queueMicrotask(() => { + this.runInAsyncScope(callback, null, err, { opaque }) + }) + } + } +} + +function upgrade (opts, callback) { + if (callback === undefined) { + return new Promise((resolve, reject) => { + upgrade.call(this, opts, (err, data) => { + return err ? reject(err) : resolve(data) + }) + }) + } + + try { + const upgradeHandler = new UpgradeHandler(opts, callback) + this.dispatch({ + ...opts, + method: opts.method || 'GET', + upgrade: opts.protocol || 'Websocket' + }, upgradeHandler) + } catch (err) { + if (typeof callback !== 'function') { + throw err + } + const opaque = opts && opts.opaque + queueMicrotask(() => callback(err, { opaque })) + } +} + +module.exports = upgrade + + +/***/ }), + +/***/ 6615: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +module.exports.request = __nccwpck_require__(4043) +module.exports.stream = __nccwpck_require__(3560) +module.exports.pipeline = __nccwpck_require__(6862) +module.exports.upgrade = __nccwpck_require__(1882) +module.exports.connect = __nccwpck_require__(4660) + + +/***/ }), + +/***/ 9927: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +// Ported from https://github.com/nodejs/undici/pull/907 + + + +const assert = __nccwpck_require__(2613) +const { Readable } = __nccwpck_require__(2203) +const { RequestAbortedError, NotSupportedError, InvalidArgumentError } = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { ReadableStreamFrom, toUSVString } = __nccwpck_require__(3440) + +let Blob + +const kConsume = Symbol('kConsume') +const kReading = Symbol('kReading') +const kBody = Symbol('kBody') +const kAbort = Symbol('abort') +const kContentType = Symbol('kContentType') + +const noop = () => {} + +module.exports = class BodyReadable extends Readable { + constructor ({ + resume, + abort, + contentType = '', + highWaterMark = 64 * 1024 // Same as nodejs fs streams. + }) { + super({ + autoDestroy: true, + read: resume, + highWaterMark + }) + + this._readableState.dataEmitted = false + + this[kAbort] = abort + this[kConsume] = null + this[kBody] = null + this[kContentType] = contentType + + // Is stream being consumed through Readable API? + // This is an optimization so that we avoid checking + // for 'data' and 'readable' listeners in the hot path + // inside push(). + this[kReading] = false + } + + destroy (err) { + if (this.destroyed) { + // Node < 16 + return this + } + + if (!err && !this._readableState.endEmitted) { + err = new RequestAbortedError() + } + + if (err) { + this[kAbort]() + } + + return super.destroy(err) + } + + emit (ev, ...args) { + if (ev === 'data') { + // Node < 16.7 + this._readableState.dataEmitted = true + } else if (ev === 'error') { + // Node < 16 + this._readableState.errorEmitted = true + } + return super.emit(ev, ...args) + } + + on (ev, ...args) { + if (ev === 'data' || ev === 'readable') { + this[kReading] = true + } + return super.on(ev, ...args) + } + + addListener (ev, ...args) { + return this.on(ev, ...args) + } + + off (ev, ...args) { + const ret = super.off(ev, ...args) + if (ev === 'data' || ev === 'readable') { + this[kReading] = ( + this.listenerCount('data') > 0 || + this.listenerCount('readable') > 0 + ) + } + return ret + } + + removeListener (ev, ...args) { + return this.off(ev, ...args) + } + + push (chunk) { + if (this[kConsume] && chunk !== null && this.readableLength === 0) { + consumePush(this[kConsume], chunk) + return this[kReading] ? super.push(chunk) : true + } + return super.push(chunk) + } + + // https://fetch.spec.whatwg.org/#dom-body-text + async text () { + return consume(this, 'text') + } + + // https://fetch.spec.whatwg.org/#dom-body-json + async json () { + return consume(this, 'json') + } + + // https://fetch.spec.whatwg.org/#dom-body-blob + async blob () { + return consume(this, 'blob') + } + + // https://fetch.spec.whatwg.org/#dom-body-arraybuffer + async arrayBuffer () { + return consume(this, 'arrayBuffer') + } + + // https://fetch.spec.whatwg.org/#dom-body-formdata + async formData () { + // TODO: Implement. + throw new NotSupportedError() + } + + // https://fetch.spec.whatwg.org/#dom-body-bodyused + get bodyUsed () { + return util.isDisturbed(this) + } + + // https://fetch.spec.whatwg.org/#dom-body-body + get body () { + if (!this[kBody]) { + this[kBody] = ReadableStreamFrom(this) + if (this[kConsume]) { + // TODO: Is this the best way to force a lock? + this[kBody].getReader() // Ensure stream is locked. + assert(this[kBody].locked) + } + } + return this[kBody] + } + + dump (opts) { + let limit = opts && Number.isFinite(opts.limit) ? opts.limit : 262144 + const signal = opts && opts.signal + + if (signal) { + try { + if (typeof signal !== 'object' || !('aborted' in signal)) { + throw new InvalidArgumentError('signal must be an AbortSignal') + } + util.throwIfAborted(signal) + } catch (err) { + return Promise.reject(err) + } + } + + if (this.closed) { + return Promise.resolve(null) + } + + return new Promise((resolve, reject) => { + const signalListenerCleanup = signal + ? util.addAbortListener(signal, () => { + this.destroy() + }) + : noop + + this + .on('close', function () { + signalListenerCleanup() + if (signal && signal.aborted) { + reject(signal.reason || Object.assign(new Error('The operation was aborted'), { name: 'AbortError' })) + } else { + resolve(null) + } + }) + .on('error', noop) + .on('data', function (chunk) { + limit -= chunk.length + if (limit <= 0) { + this.destroy() + } + }) + .resume() + }) + } +} + +// https://streams.spec.whatwg.org/#readablestream-locked +function isLocked (self) { + // Consume is an implicit lock. + return (self[kBody] && self[kBody].locked === true) || self[kConsume] +} + +// https://fetch.spec.whatwg.org/#body-unusable +function isUnusable (self) { + return util.isDisturbed(self) || isLocked(self) +} + +async function consume (stream, type) { + if (isUnusable(stream)) { + throw new TypeError('unusable') + } + + assert(!stream[kConsume]) + + return new Promise((resolve, reject) => { + stream[kConsume] = { + type, + stream, + resolve, + reject, + length: 0, + body: [] + } + + stream + .on('error', function (err) { + consumeFinish(this[kConsume], err) + }) + .on('close', function () { + if (this[kConsume].body !== null) { + consumeFinish(this[kConsume], new RequestAbortedError()) + } + }) + + process.nextTick(consumeStart, stream[kConsume]) + }) +} + +function consumeStart (consume) { + if (consume.body === null) { + return + } + + const { _readableState: state } = consume.stream + + for (const chunk of state.buffer) { + consumePush(consume, chunk) + } + + if (state.endEmitted) { + consumeEnd(this[kConsume]) + } else { + consume.stream.on('end', function () { + consumeEnd(this[kConsume]) + }) + } + + consume.stream.resume() + + while (consume.stream.read() != null) { + // Loop + } +} + +function consumeEnd (consume) { + const { type, body, resolve, stream, length } = consume + + try { + if (type === 'text') { + resolve(toUSVString(Buffer.concat(body))) + } else if (type === 'json') { + resolve(JSON.parse(Buffer.concat(body))) + } else if (type === 'arrayBuffer') { + const dst = new Uint8Array(length) + + let pos = 0 + for (const buf of body) { + dst.set(buf, pos) + pos += buf.byteLength + } + + resolve(dst.buffer) + } else if (type === 'blob') { + if (!Blob) { + Blob = (__nccwpck_require__(181).Blob) + } + resolve(new Blob(body, { type: stream[kContentType] })) + } + + consumeFinish(consume) + } catch (err) { + stream.destroy(err) + } +} + +function consumePush (consume, chunk) { + consume.length += chunk.length + consume.body.push(chunk) +} + +function consumeFinish (consume, err) { + if (consume.body === null) { + return + } + + if (err) { + consume.reject(err) + } else { + consume.resolve() + } + + consume.type = null + consume.stream = null + consume.resolve = null + consume.reject = null + consume.length = 0 + consume.body = null +} + + +/***/ }), + +/***/ 7655: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +const assert = __nccwpck_require__(2613) +const { + ResponseStatusCodeError +} = __nccwpck_require__(8707) +const { toUSVString } = __nccwpck_require__(3440) + +async function getResolveErrorBodyCallback ({ callback, body, contentType, statusCode, statusMessage, headers }) { + assert(body) + + let chunks = [] + let limit = 0 + + for await (const chunk of body) { + chunks.push(chunk) + limit += chunk.length + if (limit > 128 * 1024) { + chunks = null + break + } + } + + if (statusCode === 204 || !contentType || !chunks) { + process.nextTick(callback, new ResponseStatusCodeError(`Response status code ${statusCode}${statusMessage ? `: ${statusMessage}` : ''}`, statusCode, headers)) + return + } + + try { + if (contentType.startsWith('application/json')) { + const payload = JSON.parse(toUSVString(Buffer.concat(chunks))) + process.nextTick(callback, new ResponseStatusCodeError(`Response status code ${statusCode}${statusMessage ? `: ${statusMessage}` : ''}`, statusCode, headers, payload)) + return + } + + if (contentType.startsWith('text/')) { + const payload = toUSVString(Buffer.concat(chunks)) + process.nextTick(callback, new ResponseStatusCodeError(`Response status code ${statusCode}${statusMessage ? `: ${statusMessage}` : ''}`, statusCode, headers, payload)) + return + } + } catch (err) { + // Process in a fallback if error + } + + process.nextTick(callback, new ResponseStatusCodeError(`Response status code ${statusCode}${statusMessage ? `: ${statusMessage}` : ''}`, statusCode, headers)) +} + +module.exports = { getResolveErrorBodyCallback } + + +/***/ }), + +/***/ 1093: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + BalancedPoolMissingUpstreamError, + InvalidArgumentError +} = __nccwpck_require__(8707) +const { + PoolBase, + kClients, + kNeedDrain, + kAddClient, + kRemoveClient, + kGetDispatcher +} = __nccwpck_require__(8640) +const Pool = __nccwpck_require__(5076) +const { kUrl, kInterceptors } = __nccwpck_require__(6443) +const { parseOrigin } = __nccwpck_require__(3440) +const kFactory = Symbol('factory') + +const kOptions = Symbol('options') +const kGreatestCommonDivisor = Symbol('kGreatestCommonDivisor') +const kCurrentWeight = Symbol('kCurrentWeight') +const kIndex = Symbol('kIndex') +const kWeight = Symbol('kWeight') +const kMaxWeightPerServer = Symbol('kMaxWeightPerServer') +const kErrorPenalty = Symbol('kErrorPenalty') + +function getGreatestCommonDivisor (a, b) { + if (b === 0) return a + return getGreatestCommonDivisor(b, a % b) +} + +function defaultFactory (origin, opts) { + return new Pool(origin, opts) +} + +class BalancedPool extends PoolBase { + constructor (upstreams = [], { factory = defaultFactory, ...opts } = {}) { + super() + + this[kOptions] = opts + this[kIndex] = -1 + this[kCurrentWeight] = 0 + + this[kMaxWeightPerServer] = this[kOptions].maxWeightPerServer || 100 + this[kErrorPenalty] = this[kOptions].errorPenalty || 15 + + if (!Array.isArray(upstreams)) { + upstreams = [upstreams] + } + + if (typeof factory !== 'function') { + throw new InvalidArgumentError('factory must be a function.') + } + + this[kInterceptors] = opts.interceptors && opts.interceptors.BalancedPool && Array.isArray(opts.interceptors.BalancedPool) + ? opts.interceptors.BalancedPool + : [] + this[kFactory] = factory + + for (const upstream of upstreams) { + this.addUpstream(upstream) + } + this._updateBalancedPoolStats() + } + + addUpstream (upstream) { + const upstreamOrigin = parseOrigin(upstream).origin + + if (this[kClients].find((pool) => ( + pool[kUrl].origin === upstreamOrigin && + pool.closed !== true && + pool.destroyed !== true + ))) { + return this + } + const pool = this[kFactory](upstreamOrigin, Object.assign({}, this[kOptions])) + + this[kAddClient](pool) + pool.on('connect', () => { + pool[kWeight] = Math.min(this[kMaxWeightPerServer], pool[kWeight] + this[kErrorPenalty]) + }) + + pool.on('connectionError', () => { + pool[kWeight] = Math.max(1, pool[kWeight] - this[kErrorPenalty]) + this._updateBalancedPoolStats() + }) + + pool.on('disconnect', (...args) => { + const err = args[2] + if (err && err.code === 'UND_ERR_SOCKET') { + // decrease the weight of the pool. + pool[kWeight] = Math.max(1, pool[kWeight] - this[kErrorPenalty]) + this._updateBalancedPoolStats() + } + }) + + for (const client of this[kClients]) { + client[kWeight] = this[kMaxWeightPerServer] + } + + this._updateBalancedPoolStats() + + return this + } + + _updateBalancedPoolStats () { + this[kGreatestCommonDivisor] = this[kClients].map(p => p[kWeight]).reduce(getGreatestCommonDivisor, 0) + } + + removeUpstream (upstream) { + const upstreamOrigin = parseOrigin(upstream).origin + + const pool = this[kClients].find((pool) => ( + pool[kUrl].origin === upstreamOrigin && + pool.closed !== true && + pool.destroyed !== true + )) + + if (pool) { + this[kRemoveClient](pool) + } + + return this + } + + get upstreams () { + return this[kClients] + .filter(dispatcher => dispatcher.closed !== true && dispatcher.destroyed !== true) + .map((p) => p[kUrl].origin) + } + + [kGetDispatcher] () { + // We validate that pools is greater than 0, + // otherwise we would have to wait until an upstream + // is added, which might never happen. + if (this[kClients].length === 0) { + throw new BalancedPoolMissingUpstreamError() + } + + const dispatcher = this[kClients].find(dispatcher => ( + !dispatcher[kNeedDrain] && + dispatcher.closed !== true && + dispatcher.destroyed !== true + )) + + if (!dispatcher) { + return + } + + const allClientsBusy = this[kClients].map(pool => pool[kNeedDrain]).reduce((a, b) => a && b, true) + + if (allClientsBusy) { + return + } + + let counter = 0 + + let maxWeightIndex = this[kClients].findIndex(pool => !pool[kNeedDrain]) + + while (counter++ < this[kClients].length) { + this[kIndex] = (this[kIndex] + 1) % this[kClients].length + const pool = this[kClients][this[kIndex]] + + // find pool index with the largest weight + if (pool[kWeight] > this[kClients][maxWeightIndex][kWeight] && !pool[kNeedDrain]) { + maxWeightIndex = this[kIndex] + } + + // decrease the current weight every `this[kClients].length`. + if (this[kIndex] === 0) { + // Set the current weight to the next lower weight. + this[kCurrentWeight] = this[kCurrentWeight] - this[kGreatestCommonDivisor] + + if (this[kCurrentWeight] <= 0) { + this[kCurrentWeight] = this[kMaxWeightPerServer] + } + } + if (pool[kWeight] >= this[kCurrentWeight] && (!pool[kNeedDrain])) { + return pool + } + } + + this[kCurrentWeight] = this[kClients][maxWeightIndex][kWeight] + this[kIndex] = maxWeightIndex + return this[kClients][maxWeightIndex] + } +} + +module.exports = BalancedPool + + +/***/ }), + +/***/ 479: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { kConstruct } = __nccwpck_require__(296) +const { urlEquals, fieldValues: getFieldValues } = __nccwpck_require__(3993) +const { kEnumerableProperty, isDisturbed } = __nccwpck_require__(3440) +const { kHeadersList } = __nccwpck_require__(6443) +const { webidl } = __nccwpck_require__(4222) +const { Response, cloneResponse } = __nccwpck_require__(8676) +const { Request } = __nccwpck_require__(5194) +const { kState, kHeaders, kGuard, kRealm } = __nccwpck_require__(9710) +const { fetching } = __nccwpck_require__(2315) +const { urlIsHttpHttpsScheme, createDeferredPromise, readAllBytes } = __nccwpck_require__(5523) +const assert = __nccwpck_require__(2613) +const { getGlobalDispatcher } = __nccwpck_require__(2581) + +/** + * @see https://w3c.github.io/ServiceWorker/#dfn-cache-batch-operation + * @typedef {Object} CacheBatchOperation + * @property {'delete' | 'put'} type + * @property {any} request + * @property {any} response + * @property {import('../../types/cache').CacheQueryOptions} options + */ + +/** + * @see https://w3c.github.io/ServiceWorker/#dfn-request-response-list + * @typedef {[any, any][]} requestResponseList + */ + +class Cache { + /** + * @see https://w3c.github.io/ServiceWorker/#dfn-relevant-request-response-list + * @type {requestResponseList} + */ + #relevantRequestResponseList + + constructor () { + if (arguments[0] !== kConstruct) { + webidl.illegalConstructor() + } + + this.#relevantRequestResponseList = arguments[1] + } + + async match (request, options = {}) { + webidl.brandCheck(this, Cache) + webidl.argumentLengthCheck(arguments, 1, { header: 'Cache.match' }) + + request = webidl.converters.RequestInfo(request) + options = webidl.converters.CacheQueryOptions(options) + + const p = await this.matchAll(request, options) + + if (p.length === 0) { + return + } + + return p[0] + } + + async matchAll (request = undefined, options = {}) { + webidl.brandCheck(this, Cache) + + if (request !== undefined) request = webidl.converters.RequestInfo(request) + options = webidl.converters.CacheQueryOptions(options) + + // 1. + let r = null + + // 2. + if (request !== undefined) { + if (request instanceof Request) { + // 2.1.1 + r = request[kState] + + // 2.1.2 + if (r.method !== 'GET' && !options.ignoreMethod) { + return [] + } + } else if (typeof request === 'string') { + // 2.2.1 + r = new Request(request)[kState] + } + } + + // 5. + // 5.1 + const responses = [] + + // 5.2 + if (request === undefined) { + // 5.2.1 + for (const requestResponse of this.#relevantRequestResponseList) { + responses.push(requestResponse[1]) + } + } else { // 5.3 + // 5.3.1 + const requestResponses = this.#queryCache(r, options) + + // 5.3.2 + for (const requestResponse of requestResponses) { + responses.push(requestResponse[1]) + } + } + + // 5.4 + // We don't implement CORs so we don't need to loop over the responses, yay! + + // 5.5.1 + const responseList = [] + + // 5.5.2 + for (const response of responses) { + // 5.5.2.1 + const responseObject = new Response(response.body?.source ?? null) + const body = responseObject[kState].body + responseObject[kState] = response + responseObject[kState].body = body + responseObject[kHeaders][kHeadersList] = response.headersList + responseObject[kHeaders][kGuard] = 'immutable' + + responseList.push(responseObject) + } + + // 6. + return Object.freeze(responseList) + } + + async add (request) { + webidl.brandCheck(this, Cache) + webidl.argumentLengthCheck(arguments, 1, { header: 'Cache.add' }) + + request = webidl.converters.RequestInfo(request) + + // 1. + const requests = [request] + + // 2. + const responseArrayPromise = this.addAll(requests) + + // 3. + return await responseArrayPromise + } + + async addAll (requests) { + webidl.brandCheck(this, Cache) + webidl.argumentLengthCheck(arguments, 1, { header: 'Cache.addAll' }) + + requests = webidl.converters['sequence'](requests) + + // 1. + const responsePromises = [] + + // 2. + const requestList = [] + + // 3. + for (const request of requests) { + if (typeof request === 'string') { + continue + } + + // 3.1 + const r = request[kState] + + // 3.2 + if (!urlIsHttpHttpsScheme(r.url) || r.method !== 'GET') { + throw webidl.errors.exception({ + header: 'Cache.addAll', + message: 'Expected http/s scheme when method is not GET.' + }) + } + } + + // 4. + /** @type {ReturnType[]} */ + const fetchControllers = [] + + // 5. + for (const request of requests) { + // 5.1 + const r = new Request(request)[kState] + + // 5.2 + if (!urlIsHttpHttpsScheme(r.url)) { + throw webidl.errors.exception({ + header: 'Cache.addAll', + message: 'Expected http/s scheme.' + }) + } + + // 5.4 + r.initiator = 'fetch' + r.destination = 'subresource' + + // 5.5 + requestList.push(r) + + // 5.6 + const responsePromise = createDeferredPromise() + + // 5.7 + fetchControllers.push(fetching({ + request: r, + dispatcher: getGlobalDispatcher(), + processResponse (response) { + // 1. + if (response.type === 'error' || response.status === 206 || response.status < 200 || response.status > 299) { + responsePromise.reject(webidl.errors.exception({ + header: 'Cache.addAll', + message: 'Received an invalid status code or the request failed.' + })) + } else if (response.headersList.contains('vary')) { // 2. + // 2.1 + const fieldValues = getFieldValues(response.headersList.get('vary')) + + // 2.2 + for (const fieldValue of fieldValues) { + // 2.2.1 + if (fieldValue === '*') { + responsePromise.reject(webidl.errors.exception({ + header: 'Cache.addAll', + message: 'invalid vary field value' + })) + + for (const controller of fetchControllers) { + controller.abort() + } + + return + } + } + } + }, + processResponseEndOfBody (response) { + // 1. + if (response.aborted) { + responsePromise.reject(new DOMException('aborted', 'AbortError')) + return + } + + // 2. + responsePromise.resolve(response) + } + })) + + // 5.8 + responsePromises.push(responsePromise.promise) + } + + // 6. + const p = Promise.all(responsePromises) + + // 7. + const responses = await p + + // 7.1 + const operations = [] + + // 7.2 + let index = 0 + + // 7.3 + for (const response of responses) { + // 7.3.1 + /** @type {CacheBatchOperation} */ + const operation = { + type: 'put', // 7.3.2 + request: requestList[index], // 7.3.3 + response // 7.3.4 + } + + operations.push(operation) // 7.3.5 + + index++ // 7.3.6 + } + + // 7.5 + const cacheJobPromise = createDeferredPromise() + + // 7.6.1 + let errorData = null + + // 7.6.2 + try { + this.#batchCacheOperations(operations) + } catch (e) { + errorData = e + } + + // 7.6.3 + queueMicrotask(() => { + // 7.6.3.1 + if (errorData === null) { + cacheJobPromise.resolve(undefined) + } else { + // 7.6.3.2 + cacheJobPromise.reject(errorData) + } + }) + + // 7.7 + return cacheJobPromise.promise + } + + async put (request, response) { + webidl.brandCheck(this, Cache) + webidl.argumentLengthCheck(arguments, 2, { header: 'Cache.put' }) + + request = webidl.converters.RequestInfo(request) + response = webidl.converters.Response(response) + + // 1. + let innerRequest = null + + // 2. + if (request instanceof Request) { + innerRequest = request[kState] + } else { // 3. + innerRequest = new Request(request)[kState] + } + + // 4. + if (!urlIsHttpHttpsScheme(innerRequest.url) || innerRequest.method !== 'GET') { + throw webidl.errors.exception({ + header: 'Cache.put', + message: 'Expected an http/s scheme when method is not GET' + }) + } + + // 5. + const innerResponse = response[kState] + + // 6. + if (innerResponse.status === 206) { + throw webidl.errors.exception({ + header: 'Cache.put', + message: 'Got 206 status' + }) + } + + // 7. + if (innerResponse.headersList.contains('vary')) { + // 7.1. + const fieldValues = getFieldValues(innerResponse.headersList.get('vary')) + + // 7.2. + for (const fieldValue of fieldValues) { + // 7.2.1 + if (fieldValue === '*') { + throw webidl.errors.exception({ + header: 'Cache.put', + message: 'Got * vary field value' + }) + } + } + } + + // 8. + if (innerResponse.body && (isDisturbed(innerResponse.body.stream) || innerResponse.body.stream.locked)) { + throw webidl.errors.exception({ + header: 'Cache.put', + message: 'Response body is locked or disturbed' + }) + } + + // 9. + const clonedResponse = cloneResponse(innerResponse) + + // 10. + const bodyReadPromise = createDeferredPromise() + + // 11. + if (innerResponse.body != null) { + // 11.1 + const stream = innerResponse.body.stream + + // 11.2 + const reader = stream.getReader() + + // 11.3 + readAllBytes(reader).then(bodyReadPromise.resolve, bodyReadPromise.reject) + } else { + bodyReadPromise.resolve(undefined) + } + + // 12. + /** @type {CacheBatchOperation[]} */ + const operations = [] + + // 13. + /** @type {CacheBatchOperation} */ + const operation = { + type: 'put', // 14. + request: innerRequest, // 15. + response: clonedResponse // 16. + } + + // 17. + operations.push(operation) + + // 19. + const bytes = await bodyReadPromise.promise + + if (clonedResponse.body != null) { + clonedResponse.body.source = bytes + } + + // 19.1 + const cacheJobPromise = createDeferredPromise() + + // 19.2.1 + let errorData = null + + // 19.2.2 + try { + this.#batchCacheOperations(operations) + } catch (e) { + errorData = e + } + + // 19.2.3 + queueMicrotask(() => { + // 19.2.3.1 + if (errorData === null) { + cacheJobPromise.resolve() + } else { // 19.2.3.2 + cacheJobPromise.reject(errorData) + } + }) + + return cacheJobPromise.promise + } + + async delete (request, options = {}) { + webidl.brandCheck(this, Cache) + webidl.argumentLengthCheck(arguments, 1, { header: 'Cache.delete' }) + + request = webidl.converters.RequestInfo(request) + options = webidl.converters.CacheQueryOptions(options) + + /** + * @type {Request} + */ + let r = null + + if (request instanceof Request) { + r = request[kState] + + if (r.method !== 'GET' && !options.ignoreMethod) { + return false + } + } else { + assert(typeof request === 'string') + + r = new Request(request)[kState] + } + + /** @type {CacheBatchOperation[]} */ + const operations = [] + + /** @type {CacheBatchOperation} */ + const operation = { + type: 'delete', + request: r, + options + } + + operations.push(operation) + + const cacheJobPromise = createDeferredPromise() + + let errorData = null + let requestResponses + + try { + requestResponses = this.#batchCacheOperations(operations) + } catch (e) { + errorData = e + } + + queueMicrotask(() => { + if (errorData === null) { + cacheJobPromise.resolve(!!requestResponses?.length) + } else { + cacheJobPromise.reject(errorData) + } + }) + + return cacheJobPromise.promise + } + + /** + * @see https://w3c.github.io/ServiceWorker/#dom-cache-keys + * @param {any} request + * @param {import('../../types/cache').CacheQueryOptions} options + * @returns {readonly Request[]} + */ + async keys (request = undefined, options = {}) { + webidl.brandCheck(this, Cache) + + if (request !== undefined) request = webidl.converters.RequestInfo(request) + options = webidl.converters.CacheQueryOptions(options) + + // 1. + let r = null + + // 2. + if (request !== undefined) { + // 2.1 + if (request instanceof Request) { + // 2.1.1 + r = request[kState] + + // 2.1.2 + if (r.method !== 'GET' && !options.ignoreMethod) { + return [] + } + } else if (typeof request === 'string') { // 2.2 + r = new Request(request)[kState] + } + } + + // 4. + const promise = createDeferredPromise() + + // 5. + // 5.1 + const requests = [] + + // 5.2 + if (request === undefined) { + // 5.2.1 + for (const requestResponse of this.#relevantRequestResponseList) { + // 5.2.1.1 + requests.push(requestResponse[0]) + } + } else { // 5.3 + // 5.3.1 + const requestResponses = this.#queryCache(r, options) + + // 5.3.2 + for (const requestResponse of requestResponses) { + // 5.3.2.1 + requests.push(requestResponse[0]) + } + } + + // 5.4 + queueMicrotask(() => { + // 5.4.1 + const requestList = [] + + // 5.4.2 + for (const request of requests) { + const requestObject = new Request('https://a') + requestObject[kState] = request + requestObject[kHeaders][kHeadersList] = request.headersList + requestObject[kHeaders][kGuard] = 'immutable' + requestObject[kRealm] = request.client + + // 5.4.2.1 + requestList.push(requestObject) + } + + // 5.4.3 + promise.resolve(Object.freeze(requestList)) + }) + + return promise.promise + } + + /** + * @see https://w3c.github.io/ServiceWorker/#batch-cache-operations-algorithm + * @param {CacheBatchOperation[]} operations + * @returns {requestResponseList} + */ + #batchCacheOperations (operations) { + // 1. + const cache = this.#relevantRequestResponseList + + // 2. + const backupCache = [...cache] + + // 3. + const addedItems = [] + + // 4.1 + const resultList = [] + + try { + // 4.2 + for (const operation of operations) { + // 4.2.1 + if (operation.type !== 'delete' && operation.type !== 'put') { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'operation type does not match "delete" or "put"' + }) + } + + // 4.2.2 + if (operation.type === 'delete' && operation.response != null) { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'delete operation should not have an associated response' + }) + } + + // 4.2.3 + if (this.#queryCache(operation.request, operation.options, addedItems).length) { + throw new DOMException('???', 'InvalidStateError') + } + + // 4.2.4 + let requestResponses + + // 4.2.5 + if (operation.type === 'delete') { + // 4.2.5.1 + requestResponses = this.#queryCache(operation.request, operation.options) + + // TODO: the spec is wrong, this is needed to pass WPTs + if (requestResponses.length === 0) { + return [] + } + + // 4.2.5.2 + for (const requestResponse of requestResponses) { + const idx = cache.indexOf(requestResponse) + assert(idx !== -1) + + // 4.2.5.2.1 + cache.splice(idx, 1) + } + } else if (operation.type === 'put') { // 4.2.6 + // 4.2.6.1 + if (operation.response == null) { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'put operation should have an associated response' + }) + } + + // 4.2.6.2 + const r = operation.request + + // 4.2.6.3 + if (!urlIsHttpHttpsScheme(r.url)) { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'expected http or https scheme' + }) + } + + // 4.2.6.4 + if (r.method !== 'GET') { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'not get method' + }) + } + + // 4.2.6.5 + if (operation.options != null) { + throw webidl.errors.exception({ + header: 'Cache.#batchCacheOperations', + message: 'options must not be defined' + }) + } + + // 4.2.6.6 + requestResponses = this.#queryCache(operation.request) + + // 4.2.6.7 + for (const requestResponse of requestResponses) { + const idx = cache.indexOf(requestResponse) + assert(idx !== -1) + + // 4.2.6.7.1 + cache.splice(idx, 1) + } + + // 4.2.6.8 + cache.push([operation.request, operation.response]) + + // 4.2.6.10 + addedItems.push([operation.request, operation.response]) + } + + // 4.2.7 + resultList.push([operation.request, operation.response]) + } + + // 4.3 + return resultList + } catch (e) { // 5. + // 5.1 + this.#relevantRequestResponseList.length = 0 + + // 5.2 + this.#relevantRequestResponseList = backupCache + + // 5.3 + throw e + } + } + + /** + * @see https://w3c.github.io/ServiceWorker/#query-cache + * @param {any} requestQuery + * @param {import('../../types/cache').CacheQueryOptions} options + * @param {requestResponseList} targetStorage + * @returns {requestResponseList} + */ + #queryCache (requestQuery, options, targetStorage) { + /** @type {requestResponseList} */ + const resultList = [] + + const storage = targetStorage ?? this.#relevantRequestResponseList + + for (const requestResponse of storage) { + const [cachedRequest, cachedResponse] = requestResponse + if (this.#requestMatchesCachedItem(requestQuery, cachedRequest, cachedResponse, options)) { + resultList.push(requestResponse) + } + } + + return resultList + } + + /** + * @see https://w3c.github.io/ServiceWorker/#request-matches-cached-item-algorithm + * @param {any} requestQuery + * @param {any} request + * @param {any | null} response + * @param {import('../../types/cache').CacheQueryOptions | undefined} options + * @returns {boolean} + */ + #requestMatchesCachedItem (requestQuery, request, response = null, options) { + // if (options?.ignoreMethod === false && request.method === 'GET') { + // return false + // } + + const queryURL = new URL(requestQuery.url) + + const cachedURL = new URL(request.url) + + if (options?.ignoreSearch) { + cachedURL.search = '' + + queryURL.search = '' + } + + if (!urlEquals(queryURL, cachedURL, true)) { + return false + } + + if ( + response == null || + options?.ignoreVary || + !response.headersList.contains('vary') + ) { + return true + } + + const fieldValues = getFieldValues(response.headersList.get('vary')) + + for (const fieldValue of fieldValues) { + if (fieldValue === '*') { + return false + } + + const requestValue = request.headersList.get(fieldValue) + const queryValue = requestQuery.headersList.get(fieldValue) + + // If one has the header and the other doesn't, or one has + // a different value than the other, return false + if (requestValue !== queryValue) { + return false + } + } + + return true + } +} + +Object.defineProperties(Cache.prototype, { + [Symbol.toStringTag]: { + value: 'Cache', + configurable: true + }, + match: kEnumerableProperty, + matchAll: kEnumerableProperty, + add: kEnumerableProperty, + addAll: kEnumerableProperty, + put: kEnumerableProperty, + delete: kEnumerableProperty, + keys: kEnumerableProperty +}) + +const cacheQueryOptionConverters = [ + { + key: 'ignoreSearch', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'ignoreMethod', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'ignoreVary', + converter: webidl.converters.boolean, + defaultValue: false + } +] + +webidl.converters.CacheQueryOptions = webidl.dictionaryConverter(cacheQueryOptionConverters) + +webidl.converters.MultiCacheQueryOptions = webidl.dictionaryConverter([ + ...cacheQueryOptionConverters, + { + key: 'cacheName', + converter: webidl.converters.DOMString + } +]) + +webidl.converters.Response = webidl.interfaceConverter(Response) + +webidl.converters['sequence'] = webidl.sequenceConverter( + webidl.converters.RequestInfo +) + +module.exports = { + Cache +} + + +/***/ }), + +/***/ 4738: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { kConstruct } = __nccwpck_require__(296) +const { Cache } = __nccwpck_require__(479) +const { webidl } = __nccwpck_require__(4222) +const { kEnumerableProperty } = __nccwpck_require__(3440) + +class CacheStorage { + /** + * @see https://w3c.github.io/ServiceWorker/#dfn-relevant-name-to-cache-map + * @type {Map} + */ + async has (cacheName) { + webidl.brandCheck(this, CacheStorage) + webidl.argumentLengthCheck(arguments, 1, { header: 'CacheStorage.has' }) + + cacheName = webidl.converters.DOMString(cacheName) + + // 2.1.1 + // 2.2 + return this.#caches.has(cacheName) + } + + /** + * @see https://w3c.github.io/ServiceWorker/#dom-cachestorage-open + * @param {string} cacheName + * @returns {Promise} + */ + async open (cacheName) { + webidl.brandCheck(this, CacheStorage) + webidl.argumentLengthCheck(arguments, 1, { header: 'CacheStorage.open' }) + + cacheName = webidl.converters.DOMString(cacheName) + + // 2.1 + if (this.#caches.has(cacheName)) { + // await caches.open('v1') !== await caches.open('v1') + + // 2.1.1 + const cache = this.#caches.get(cacheName) + + // 2.1.1.1 + return new Cache(kConstruct, cache) + } + + // 2.2 + const cache = [] + + // 2.3 + this.#caches.set(cacheName, cache) + + // 2.4 + return new Cache(kConstruct, cache) + } + + /** + * @see https://w3c.github.io/ServiceWorker/#cache-storage-delete + * @param {string} cacheName + * @returns {Promise} + */ + async delete (cacheName) { + webidl.brandCheck(this, CacheStorage) + webidl.argumentLengthCheck(arguments, 1, { header: 'CacheStorage.delete' }) + + cacheName = webidl.converters.DOMString(cacheName) + + return this.#caches.delete(cacheName) + } + + /** + * @see https://w3c.github.io/ServiceWorker/#cache-storage-keys + * @returns {string[]} + */ + async keys () { + webidl.brandCheck(this, CacheStorage) + + // 2.1 + const keys = this.#caches.keys() + + // 2.2 + return [...keys] + } +} + +Object.defineProperties(CacheStorage.prototype, { + [Symbol.toStringTag]: { + value: 'CacheStorage', + configurable: true + }, + match: kEnumerableProperty, + has: kEnumerableProperty, + open: kEnumerableProperty, + delete: kEnumerableProperty, + keys: kEnumerableProperty +}) + +module.exports = { + CacheStorage +} + + +/***/ }), + +/***/ 296: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +module.exports = { + kConstruct: (__nccwpck_require__(6443).kConstruct) +} + + +/***/ }), + +/***/ 3993: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const assert = __nccwpck_require__(2613) +const { URLSerializer } = __nccwpck_require__(4322) +const { isValidHeaderName } = __nccwpck_require__(5523) + +/** + * @see https://url.spec.whatwg.org/#concept-url-equals + * @param {URL} A + * @param {URL} B + * @param {boolean | undefined} excludeFragment + * @returns {boolean} + */ +function urlEquals (A, B, excludeFragment = false) { + const serializedA = URLSerializer(A, excludeFragment) + + const serializedB = URLSerializer(B, excludeFragment) + + return serializedA === serializedB +} + +/** + * @see https://github.com/chromium/chromium/blob/694d20d134cb553d8d89e5500b9148012b1ba299/content/browser/cache_storage/cache_storage_cache.cc#L260-L262 + * @param {string} header + */ +function fieldValues (header) { + assert(header !== null) + + const values = [] + + for (let value of header.split(',')) { + value = value.trim() + + if (!value.length) { + continue + } else if (!isValidHeaderName(value)) { + continue + } + + values.push(value) + } + + return values +} + +module.exports = { + urlEquals, + fieldValues +} + + +/***/ }), + +/***/ 6197: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +// @ts-check + + + +/* global WebAssembly */ + +const assert = __nccwpck_require__(2613) +const net = __nccwpck_require__(9278) +const http = __nccwpck_require__(8611) +const { pipeline } = __nccwpck_require__(2203) +const util = __nccwpck_require__(3440) +const timers = __nccwpck_require__(8804) +const Request = __nccwpck_require__(4655) +const DispatcherBase = __nccwpck_require__(1) +const { + RequestContentLengthMismatchError, + ResponseContentLengthMismatchError, + InvalidArgumentError, + RequestAbortedError, + HeadersTimeoutError, + HeadersOverflowError, + SocketError, + InformationalError, + BodyTimeoutError, + HTTPParserError, + ResponseExceededMaxSizeError, + ClientDestroyedError +} = __nccwpck_require__(8707) +const buildConnector = __nccwpck_require__(9136) +const { + kUrl, + kReset, + kServerName, + kClient, + kBusy, + kParser, + kConnect, + kBlocking, + kResuming, + kRunning, + kPending, + kSize, + kWriting, + kQueue, + kConnected, + kConnecting, + kNeedDrain, + kNoRef, + kKeepAliveDefaultTimeout, + kHostHeader, + kPendingIdx, + kRunningIdx, + kError, + kPipelining, + kSocket, + kKeepAliveTimeoutValue, + kMaxHeadersSize, + kKeepAliveMaxTimeout, + kKeepAliveTimeoutThreshold, + kHeadersTimeout, + kBodyTimeout, + kStrictContentLength, + kConnector, + kMaxRedirections, + kMaxRequests, + kCounter, + kClose, + kDestroy, + kDispatch, + kInterceptors, + kLocalAddress, + kMaxResponseSize, + kHTTPConnVersion, + // HTTP2 + kHost, + kHTTP2Session, + kHTTP2SessionState, + kHTTP2BuildRequest, + kHTTP2CopyHeaders, + kHTTP1BuildRequest +} = __nccwpck_require__(6443) + +/** @type {import('http2')} */ +let http2 +try { + http2 = __nccwpck_require__(5675) +} catch { + // @ts-ignore + http2 = { constants: {} } +} + +const { + constants: { + HTTP2_HEADER_AUTHORITY, + HTTP2_HEADER_METHOD, + HTTP2_HEADER_PATH, + HTTP2_HEADER_SCHEME, + HTTP2_HEADER_CONTENT_LENGTH, + HTTP2_HEADER_EXPECT, + HTTP2_HEADER_STATUS + } +} = http2 + +// Experimental +let h2ExperimentalWarned = false + +const FastBuffer = Buffer[Symbol.species] + +const kClosedResolve = Symbol('kClosedResolve') + +const channels = {} + +try { + const diagnosticsChannel = __nccwpck_require__(1637) + channels.sendHeaders = diagnosticsChannel.channel('undici:client:sendHeaders') + channels.beforeConnect = diagnosticsChannel.channel('undici:client:beforeConnect') + channels.connectError = diagnosticsChannel.channel('undici:client:connectError') + channels.connected = diagnosticsChannel.channel('undici:client:connected') +} catch { + channels.sendHeaders = { hasSubscribers: false } + channels.beforeConnect = { hasSubscribers: false } + channels.connectError = { hasSubscribers: false } + channels.connected = { hasSubscribers: false } +} + +/** + * @type {import('../types/client').default} + */ +class Client extends DispatcherBase { + /** + * + * @param {string|URL} url + * @param {import('../types/client').Client.Options} options + */ + constructor (url, { + interceptors, + maxHeaderSize, + headersTimeout, + socketTimeout, + requestTimeout, + connectTimeout, + bodyTimeout, + idleTimeout, + keepAlive, + keepAliveTimeout, + maxKeepAliveTimeout, + keepAliveMaxTimeout, + keepAliveTimeoutThreshold, + socketPath, + pipelining, + tls, + strictContentLength, + maxCachedSessions, + maxRedirections, + connect, + maxRequestsPerClient, + localAddress, + maxResponseSize, + autoSelectFamily, + autoSelectFamilyAttemptTimeout, + // h2 + allowH2, + maxConcurrentStreams + } = {}) { + super() + + if (keepAlive !== undefined) { + throw new InvalidArgumentError('unsupported keepAlive, use pipelining=0 instead') + } + + if (socketTimeout !== undefined) { + throw new InvalidArgumentError('unsupported socketTimeout, use headersTimeout & bodyTimeout instead') + } + + if (requestTimeout !== undefined) { + throw new InvalidArgumentError('unsupported requestTimeout, use headersTimeout & bodyTimeout instead') + } + + if (idleTimeout !== undefined) { + throw new InvalidArgumentError('unsupported idleTimeout, use keepAliveTimeout instead') + } + + if (maxKeepAliveTimeout !== undefined) { + throw new InvalidArgumentError('unsupported maxKeepAliveTimeout, use keepAliveMaxTimeout instead') + } + + if (maxHeaderSize != null && !Number.isFinite(maxHeaderSize)) { + throw new InvalidArgumentError('invalid maxHeaderSize') + } + + if (socketPath != null && typeof socketPath !== 'string') { + throw new InvalidArgumentError('invalid socketPath') + } + + if (connectTimeout != null && (!Number.isFinite(connectTimeout) || connectTimeout < 0)) { + throw new InvalidArgumentError('invalid connectTimeout') + } + + if (keepAliveTimeout != null && (!Number.isFinite(keepAliveTimeout) || keepAliveTimeout <= 0)) { + throw new InvalidArgumentError('invalid keepAliveTimeout') + } + + if (keepAliveMaxTimeout != null && (!Number.isFinite(keepAliveMaxTimeout) || keepAliveMaxTimeout <= 0)) { + throw new InvalidArgumentError('invalid keepAliveMaxTimeout') + } + + if (keepAliveTimeoutThreshold != null && !Number.isFinite(keepAliveTimeoutThreshold)) { + throw new InvalidArgumentError('invalid keepAliveTimeoutThreshold') + } + + if (headersTimeout != null && (!Number.isInteger(headersTimeout) || headersTimeout < 0)) { + throw new InvalidArgumentError('headersTimeout must be a positive integer or zero') + } + + if (bodyTimeout != null && (!Number.isInteger(bodyTimeout) || bodyTimeout < 0)) { + throw new InvalidArgumentError('bodyTimeout must be a positive integer or zero') + } + + if (connect != null && typeof connect !== 'function' && typeof connect !== 'object') { + throw new InvalidArgumentError('connect must be a function or an object') + } + + if (maxRedirections != null && (!Number.isInteger(maxRedirections) || maxRedirections < 0)) { + throw new InvalidArgumentError('maxRedirections must be a positive number') + } + + if (maxRequestsPerClient != null && (!Number.isInteger(maxRequestsPerClient) || maxRequestsPerClient < 0)) { + throw new InvalidArgumentError('maxRequestsPerClient must be a positive number') + } + + if (localAddress != null && (typeof localAddress !== 'string' || net.isIP(localAddress) === 0)) { + throw new InvalidArgumentError('localAddress must be valid string IP address') + } + + if (maxResponseSize != null && (!Number.isInteger(maxResponseSize) || maxResponseSize < -1)) { + throw new InvalidArgumentError('maxResponseSize must be a positive number') + } + + if ( + autoSelectFamilyAttemptTimeout != null && + (!Number.isInteger(autoSelectFamilyAttemptTimeout) || autoSelectFamilyAttemptTimeout < -1) + ) { + throw new InvalidArgumentError('autoSelectFamilyAttemptTimeout must be a positive number') + } + + // h2 + if (allowH2 != null && typeof allowH2 !== 'boolean') { + throw new InvalidArgumentError('allowH2 must be a valid boolean value') + } + + if (maxConcurrentStreams != null && (typeof maxConcurrentStreams !== 'number' || maxConcurrentStreams < 1)) { + throw new InvalidArgumentError('maxConcurrentStreams must be a possitive integer, greater than 0') + } + + if (typeof connect !== 'function') { + connect = buildConnector({ + ...tls, + maxCachedSessions, + allowH2, + socketPath, + timeout: connectTimeout, + ...(util.nodeHasAutoSelectFamily && autoSelectFamily ? { autoSelectFamily, autoSelectFamilyAttemptTimeout } : undefined), + ...connect + }) + } + + this[kInterceptors] = interceptors && interceptors.Client && Array.isArray(interceptors.Client) + ? interceptors.Client + : [createRedirectInterceptor({ maxRedirections })] + this[kUrl] = util.parseOrigin(url) + this[kConnector] = connect + this[kSocket] = null + this[kPipelining] = pipelining != null ? pipelining : 1 + this[kMaxHeadersSize] = maxHeaderSize || http.maxHeaderSize + this[kKeepAliveDefaultTimeout] = keepAliveTimeout == null ? 4e3 : keepAliveTimeout + this[kKeepAliveMaxTimeout] = keepAliveMaxTimeout == null ? 600e3 : keepAliveMaxTimeout + this[kKeepAliveTimeoutThreshold] = keepAliveTimeoutThreshold == null ? 1e3 : keepAliveTimeoutThreshold + this[kKeepAliveTimeoutValue] = this[kKeepAliveDefaultTimeout] + this[kServerName] = null + this[kLocalAddress] = localAddress != null ? localAddress : null + this[kResuming] = 0 // 0, idle, 1, scheduled, 2 resuming + this[kNeedDrain] = 0 // 0, idle, 1, scheduled, 2 resuming + this[kHostHeader] = `host: ${this[kUrl].hostname}${this[kUrl].port ? `:${this[kUrl].port}` : ''}\r\n` + this[kBodyTimeout] = bodyTimeout != null ? bodyTimeout : 300e3 + this[kHeadersTimeout] = headersTimeout != null ? headersTimeout : 300e3 + this[kStrictContentLength] = strictContentLength == null ? true : strictContentLength + this[kMaxRedirections] = maxRedirections + this[kMaxRequests] = maxRequestsPerClient + this[kClosedResolve] = null + this[kMaxResponseSize] = maxResponseSize > -1 ? maxResponseSize : -1 + this[kHTTPConnVersion] = 'h1' + + // HTTP/2 + this[kHTTP2Session] = null + this[kHTTP2SessionState] = !allowH2 + ? null + : { + // streams: null, // Fixed queue of streams - For future support of `push` + openStreams: 0, // Keep track of them to decide wether or not unref the session + maxConcurrentStreams: maxConcurrentStreams != null ? maxConcurrentStreams : 100 // Max peerConcurrentStreams for a Node h2 server + } + this[kHost] = `${this[kUrl].hostname}${this[kUrl].port ? `:${this[kUrl].port}` : ''}` + + // kQueue is built up of 3 sections separated by + // the kRunningIdx and kPendingIdx indices. + // | complete | running | pending | + // ^ kRunningIdx ^ kPendingIdx ^ kQueue.length + // kRunningIdx points to the first running element. + // kPendingIdx points to the first pending element. + // This implements a fast queue with an amortized + // time of O(1). + + this[kQueue] = [] + this[kRunningIdx] = 0 + this[kPendingIdx] = 0 + } + + get pipelining () { + return this[kPipelining] + } + + set pipelining (value) { + this[kPipelining] = value + resume(this, true) + } + + get [kPending] () { + return this[kQueue].length - this[kPendingIdx] + } + + get [kRunning] () { + return this[kPendingIdx] - this[kRunningIdx] + } + + get [kSize] () { + return this[kQueue].length - this[kRunningIdx] + } + + get [kConnected] () { + return !!this[kSocket] && !this[kConnecting] && !this[kSocket].destroyed + } + + get [kBusy] () { + const socket = this[kSocket] + return ( + (socket && (socket[kReset] || socket[kWriting] || socket[kBlocking])) || + (this[kSize] >= (this[kPipelining] || 1)) || + this[kPending] > 0 + ) + } + + /* istanbul ignore: only used for test */ + [kConnect] (cb) { + connect(this) + this.once('connect', cb) + } + + [kDispatch] (opts, handler) { + const origin = opts.origin || this[kUrl].origin + + const request = this[kHTTPConnVersion] === 'h2' + ? Request[kHTTP2BuildRequest](origin, opts, handler) + : Request[kHTTP1BuildRequest](origin, opts, handler) + + this[kQueue].push(request) + if (this[kResuming]) { + // Do nothing. + } else if (util.bodyLength(request.body) == null && util.isIterable(request.body)) { + // Wait a tick in case stream/iterator is ended in the same tick. + this[kResuming] = 1 + process.nextTick(resume, this) + } else { + resume(this, true) + } + + if (this[kResuming] && this[kNeedDrain] !== 2 && this[kBusy]) { + this[kNeedDrain] = 2 + } + + return this[kNeedDrain] < 2 + } + + async [kClose] () { + // TODO: for H2 we need to gracefully flush the remaining enqueued + // request and close each stream. + return new Promise((resolve) => { + if (!this[kSize]) { + resolve(null) + } else { + this[kClosedResolve] = resolve + } + }) + } + + async [kDestroy] (err) { + return new Promise((resolve) => { + const requests = this[kQueue].splice(this[kPendingIdx]) + for (let i = 0; i < requests.length; i++) { + const request = requests[i] + errorRequest(this, request, err) + } + + const callback = () => { + if (this[kClosedResolve]) { + // TODO (fix): Should we error here with ClientDestroyedError? + this[kClosedResolve]() + this[kClosedResolve] = null + } + resolve() + } + + if (this[kHTTP2Session] != null) { + util.destroy(this[kHTTP2Session], err) + this[kHTTP2Session] = null + this[kHTTP2SessionState] = null + } + + if (!this[kSocket]) { + queueMicrotask(callback) + } else { + util.destroy(this[kSocket].on('close', callback), err) + } + + resume(this) + }) + } +} + +function onHttp2SessionError (err) { + assert(err.code !== 'ERR_TLS_CERT_ALTNAME_INVALID') + + this[kSocket][kError] = err + + onError(this[kClient], err) +} + +function onHttp2FrameError (type, code, id) { + const err = new InformationalError(`HTTP/2: "frameError" received - type ${type}, code ${code}`) + + if (id === 0) { + this[kSocket][kError] = err + onError(this[kClient], err) + } +} + +function onHttp2SessionEnd () { + util.destroy(this, new SocketError('other side closed')) + util.destroy(this[kSocket], new SocketError('other side closed')) +} + +function onHTTP2GoAway (code) { + const client = this[kClient] + const err = new InformationalError(`HTTP/2: "GOAWAY" frame received with code ${code}`) + client[kSocket] = null + client[kHTTP2Session] = null + + if (client.destroyed) { + assert(this[kPending] === 0) + + // Fail entire queue. + const requests = client[kQueue].splice(client[kRunningIdx]) + for (let i = 0; i < requests.length; i++) { + const request = requests[i] + errorRequest(this, request, err) + } + } else if (client[kRunning] > 0) { + // Fail head of pipeline. + const request = client[kQueue][client[kRunningIdx]] + client[kQueue][client[kRunningIdx]++] = null + + errorRequest(client, request, err) + } + + client[kPendingIdx] = client[kRunningIdx] + + assert(client[kRunning] === 0) + + client.emit('disconnect', + client[kUrl], + [client], + err + ) + + resume(client) +} + +const constants = __nccwpck_require__(2824) +const createRedirectInterceptor = __nccwpck_require__(4415) +const EMPTY_BUF = Buffer.alloc(0) + +async function lazyllhttp () { + const llhttpWasmData = process.env.JEST_WORKER_ID ? __nccwpck_require__(3870) : undefined + + let mod + try { + mod = await WebAssembly.compile(Buffer.from(__nccwpck_require__(3434), 'base64')) + } catch (e) { + /* istanbul ignore next */ + + // We could check if the error was caused by the simd option not + // being enabled, but the occurring of this other error + // * https://github.com/emscripten-core/emscripten/issues/11495 + // got me to remove that check to avoid breaking Node 12. + mod = await WebAssembly.compile(Buffer.from(llhttpWasmData || __nccwpck_require__(3870), 'base64')) + } + + return await WebAssembly.instantiate(mod, { + env: { + /* eslint-disable camelcase */ + + wasm_on_url: (p, at, len) => { + /* istanbul ignore next */ + return 0 + }, + wasm_on_status: (p, at, len) => { + assert.strictEqual(currentParser.ptr, p) + const start = at - currentBufferPtr + currentBufferRef.byteOffset + return currentParser.onStatus(new FastBuffer(currentBufferRef.buffer, start, len)) || 0 + }, + wasm_on_message_begin: (p) => { + assert.strictEqual(currentParser.ptr, p) + return currentParser.onMessageBegin() || 0 + }, + wasm_on_header_field: (p, at, len) => { + assert.strictEqual(currentParser.ptr, p) + const start = at - currentBufferPtr + currentBufferRef.byteOffset + return currentParser.onHeaderField(new FastBuffer(currentBufferRef.buffer, start, len)) || 0 + }, + wasm_on_header_value: (p, at, len) => { + assert.strictEqual(currentParser.ptr, p) + const start = at - currentBufferPtr + currentBufferRef.byteOffset + return currentParser.onHeaderValue(new FastBuffer(currentBufferRef.buffer, start, len)) || 0 + }, + wasm_on_headers_complete: (p, statusCode, upgrade, shouldKeepAlive) => { + assert.strictEqual(currentParser.ptr, p) + return currentParser.onHeadersComplete(statusCode, Boolean(upgrade), Boolean(shouldKeepAlive)) || 0 + }, + wasm_on_body: (p, at, len) => { + assert.strictEqual(currentParser.ptr, p) + const start = at - currentBufferPtr + currentBufferRef.byteOffset + return currentParser.onBody(new FastBuffer(currentBufferRef.buffer, start, len)) || 0 + }, + wasm_on_message_complete: (p) => { + assert.strictEqual(currentParser.ptr, p) + return currentParser.onMessageComplete() || 0 + } + + /* eslint-enable camelcase */ + } + }) +} + +let llhttpInstance = null +let llhttpPromise = lazyllhttp() +llhttpPromise.catch() + +let currentParser = null +let currentBufferRef = null +let currentBufferSize = 0 +let currentBufferPtr = null + +const TIMEOUT_HEADERS = 1 +const TIMEOUT_BODY = 2 +const TIMEOUT_IDLE = 3 + +class Parser { + constructor (client, socket, { exports }) { + assert(Number.isFinite(client[kMaxHeadersSize]) && client[kMaxHeadersSize] > 0) + + this.llhttp = exports + this.ptr = this.llhttp.llhttp_alloc(constants.TYPE.RESPONSE) + this.client = client + this.socket = socket + this.timeout = null + this.timeoutValue = null + this.timeoutType = null + this.statusCode = null + this.statusText = '' + this.upgrade = false + this.headers = [] + this.headersSize = 0 + this.headersMaxSize = client[kMaxHeadersSize] + this.shouldKeepAlive = false + this.paused = false + this.resume = this.resume.bind(this) + + this.bytesRead = 0 + + this.keepAlive = '' + this.contentLength = '' + this.connection = '' + this.maxResponseSize = client[kMaxResponseSize] + } + + setTimeout (value, type) { + this.timeoutType = type + if (value !== this.timeoutValue) { + timers.clearTimeout(this.timeout) + if (value) { + this.timeout = timers.setTimeout(onParserTimeout, value, this) + // istanbul ignore else: only for jest + if (this.timeout.unref) { + this.timeout.unref() + } + } else { + this.timeout = null + } + this.timeoutValue = value + } else if (this.timeout) { + // istanbul ignore else: only for jest + if (this.timeout.refresh) { + this.timeout.refresh() + } + } + } + + resume () { + if (this.socket.destroyed || !this.paused) { + return + } + + assert(this.ptr != null) + assert(currentParser == null) + + this.llhttp.llhttp_resume(this.ptr) + + assert(this.timeoutType === TIMEOUT_BODY) + if (this.timeout) { + // istanbul ignore else: only for jest + if (this.timeout.refresh) { + this.timeout.refresh() + } + } + + this.paused = false + this.execute(this.socket.read() || EMPTY_BUF) // Flush parser. + this.readMore() + } + + readMore () { + while (!this.paused && this.ptr) { + const chunk = this.socket.read() + if (chunk === null) { + break + } + this.execute(chunk) + } + } + + execute (data) { + assert(this.ptr != null) + assert(currentParser == null) + assert(!this.paused) + + const { socket, llhttp } = this + + if (data.length > currentBufferSize) { + if (currentBufferPtr) { + llhttp.free(currentBufferPtr) + } + currentBufferSize = Math.ceil(data.length / 4096) * 4096 + currentBufferPtr = llhttp.malloc(currentBufferSize) + } + + new Uint8Array(llhttp.memory.buffer, currentBufferPtr, currentBufferSize).set(data) + + // Call `execute` on the wasm parser. + // We pass the `llhttp_parser` pointer address, the pointer address of buffer view data, + // and finally the length of bytes to parse. + // The return value is an error code or `constants.ERROR.OK`. + try { + let ret + + try { + currentBufferRef = data + currentParser = this + ret = llhttp.llhttp_execute(this.ptr, currentBufferPtr, data.length) + /* eslint-disable-next-line no-useless-catch */ + } catch (err) { + /* istanbul ignore next: difficult to make a test case for */ + throw err + } finally { + currentParser = null + currentBufferRef = null + } + + const offset = llhttp.llhttp_get_error_pos(this.ptr) - currentBufferPtr + + if (ret === constants.ERROR.PAUSED_UPGRADE) { + this.onUpgrade(data.slice(offset)) + } else if (ret === constants.ERROR.PAUSED) { + this.paused = true + socket.unshift(data.slice(offset)) + } else if (ret !== constants.ERROR.OK) { + const ptr = llhttp.llhttp_get_error_reason(this.ptr) + let message = '' + /* istanbul ignore else: difficult to make a test case for */ + if (ptr) { + const len = new Uint8Array(llhttp.memory.buffer, ptr).indexOf(0) + message = + 'Response does not match the HTTP/1.1 protocol (' + + Buffer.from(llhttp.memory.buffer, ptr, len).toString() + + ')' + } + throw new HTTPParserError(message, constants.ERROR[ret], data.slice(offset)) + } + } catch (err) { + util.destroy(socket, err) + } + } + + destroy () { + assert(this.ptr != null) + assert(currentParser == null) + + this.llhttp.llhttp_free(this.ptr) + this.ptr = null + + timers.clearTimeout(this.timeout) + this.timeout = null + this.timeoutValue = null + this.timeoutType = null + + this.paused = false + } + + onStatus (buf) { + this.statusText = buf.toString() + } + + onMessageBegin () { + const { socket, client } = this + + /* istanbul ignore next: difficult to make a test case for */ + if (socket.destroyed) { + return -1 + } + + const request = client[kQueue][client[kRunningIdx]] + if (!request) { + return -1 + } + } + + onHeaderField (buf) { + const len = this.headers.length + + if ((len & 1) === 0) { + this.headers.push(buf) + } else { + this.headers[len - 1] = Buffer.concat([this.headers[len - 1], buf]) + } + + this.trackHeader(buf.length) + } + + onHeaderValue (buf) { + let len = this.headers.length + + if ((len & 1) === 1) { + this.headers.push(buf) + len += 1 + } else { + this.headers[len - 1] = Buffer.concat([this.headers[len - 1], buf]) + } + + const key = this.headers[len - 2] + if (key.length === 10 && key.toString().toLowerCase() === 'keep-alive') { + this.keepAlive += buf.toString() + } else if (key.length === 10 && key.toString().toLowerCase() === 'connection') { + this.connection += buf.toString() + } else if (key.length === 14 && key.toString().toLowerCase() === 'content-length') { + this.contentLength += buf.toString() + } + + this.trackHeader(buf.length) + } + + trackHeader (len) { + this.headersSize += len + if (this.headersSize >= this.headersMaxSize) { + util.destroy(this.socket, new HeadersOverflowError()) + } + } + + onUpgrade (head) { + const { upgrade, client, socket, headers, statusCode } = this + + assert(upgrade) + + const request = client[kQueue][client[kRunningIdx]] + assert(request) + + assert(!socket.destroyed) + assert(socket === client[kSocket]) + assert(!this.paused) + assert(request.upgrade || request.method === 'CONNECT') + + this.statusCode = null + this.statusText = '' + this.shouldKeepAlive = null + + assert(this.headers.length % 2 === 0) + this.headers = [] + this.headersSize = 0 + + socket.unshift(head) + + socket[kParser].destroy() + socket[kParser] = null + + socket[kClient] = null + socket[kError] = null + socket + .removeListener('error', onSocketError) + .removeListener('readable', onSocketReadable) + .removeListener('end', onSocketEnd) + .removeListener('close', onSocketClose) + + client[kSocket] = null + client[kQueue][client[kRunningIdx]++] = null + client.emit('disconnect', client[kUrl], [client], new InformationalError('upgrade')) + + try { + request.onUpgrade(statusCode, headers, socket) + } catch (err) { + util.destroy(socket, err) + } + + resume(client) + } + + onHeadersComplete (statusCode, upgrade, shouldKeepAlive) { + const { client, socket, headers, statusText } = this + + /* istanbul ignore next: difficult to make a test case for */ + if (socket.destroyed) { + return -1 + } + + const request = client[kQueue][client[kRunningIdx]] + + /* istanbul ignore next: difficult to make a test case for */ + if (!request) { + return -1 + } + + assert(!this.upgrade) + assert(this.statusCode < 200) + + if (statusCode === 100) { + util.destroy(socket, new SocketError('bad response', util.getSocketInfo(socket))) + return -1 + } + + /* this can only happen if server is misbehaving */ + if (upgrade && !request.upgrade) { + util.destroy(socket, new SocketError('bad upgrade', util.getSocketInfo(socket))) + return -1 + } + + assert.strictEqual(this.timeoutType, TIMEOUT_HEADERS) + + this.statusCode = statusCode + this.shouldKeepAlive = ( + shouldKeepAlive || + // Override llhttp value which does not allow keepAlive for HEAD. + (request.method === 'HEAD' && !socket[kReset] && this.connection.toLowerCase() === 'keep-alive') + ) + + if (this.statusCode >= 200) { + const bodyTimeout = request.bodyTimeout != null + ? request.bodyTimeout + : client[kBodyTimeout] + this.setTimeout(bodyTimeout, TIMEOUT_BODY) + } else if (this.timeout) { + // istanbul ignore else: only for jest + if (this.timeout.refresh) { + this.timeout.refresh() + } + } + + if (request.method === 'CONNECT') { + assert(client[kRunning] === 1) + this.upgrade = true + return 2 + } + + if (upgrade) { + assert(client[kRunning] === 1) + this.upgrade = true + return 2 + } + + assert(this.headers.length % 2 === 0) + this.headers = [] + this.headersSize = 0 + + if (this.shouldKeepAlive && client[kPipelining]) { + const keepAliveTimeout = this.keepAlive ? util.parseKeepAliveTimeout(this.keepAlive) : null + + if (keepAliveTimeout != null) { + const timeout = Math.min( + keepAliveTimeout - client[kKeepAliveTimeoutThreshold], + client[kKeepAliveMaxTimeout] + ) + if (timeout <= 0) { + socket[kReset] = true + } else { + client[kKeepAliveTimeoutValue] = timeout + } + } else { + client[kKeepAliveTimeoutValue] = client[kKeepAliveDefaultTimeout] + } + } else { + // Stop more requests from being dispatched. + socket[kReset] = true + } + + const pause = request.onHeaders(statusCode, headers, this.resume, statusText) === false + + if (request.aborted) { + return -1 + } + + if (request.method === 'HEAD') { + return 1 + } + + if (statusCode < 200) { + return 1 + } + + if (socket[kBlocking]) { + socket[kBlocking] = false + resume(client) + } + + return pause ? constants.ERROR.PAUSED : 0 + } + + onBody (buf) { + const { client, socket, statusCode, maxResponseSize } = this + + if (socket.destroyed) { + return -1 + } + + const request = client[kQueue][client[kRunningIdx]] + assert(request) + + assert.strictEqual(this.timeoutType, TIMEOUT_BODY) + if (this.timeout) { + // istanbul ignore else: only for jest + if (this.timeout.refresh) { + this.timeout.refresh() + } + } + + assert(statusCode >= 200) + + if (maxResponseSize > -1 && this.bytesRead + buf.length > maxResponseSize) { + util.destroy(socket, new ResponseExceededMaxSizeError()) + return -1 + } + + this.bytesRead += buf.length + + if (request.onData(buf) === false) { + return constants.ERROR.PAUSED + } + } + + onMessageComplete () { + const { client, socket, statusCode, upgrade, headers, contentLength, bytesRead, shouldKeepAlive } = this + + if (socket.destroyed && (!statusCode || shouldKeepAlive)) { + return -1 + } + + if (upgrade) { + return + } + + const request = client[kQueue][client[kRunningIdx]] + assert(request) + + assert(statusCode >= 100) + + this.statusCode = null + this.statusText = '' + this.bytesRead = 0 + this.contentLength = '' + this.keepAlive = '' + this.connection = '' + + assert(this.headers.length % 2 === 0) + this.headers = [] + this.headersSize = 0 + + if (statusCode < 200) { + return + } + + /* istanbul ignore next: should be handled by llhttp? */ + if (request.method !== 'HEAD' && contentLength && bytesRead !== parseInt(contentLength, 10)) { + util.destroy(socket, new ResponseContentLengthMismatchError()) + return -1 + } + + request.onComplete(headers) + + client[kQueue][client[kRunningIdx]++] = null + + if (socket[kWriting]) { + assert.strictEqual(client[kRunning], 0) + // Response completed before request. + util.destroy(socket, new InformationalError('reset')) + return constants.ERROR.PAUSED + } else if (!shouldKeepAlive) { + util.destroy(socket, new InformationalError('reset')) + return constants.ERROR.PAUSED + } else if (socket[kReset] && client[kRunning] === 0) { + // Destroy socket once all requests have completed. + // The request at the tail of the pipeline is the one + // that requested reset and no further requests should + // have been queued since then. + util.destroy(socket, new InformationalError('reset')) + return constants.ERROR.PAUSED + } else if (client[kPipelining] === 1) { + // We must wait a full event loop cycle to reuse this socket to make sure + // that non-spec compliant servers are not closing the connection even if they + // said they won't. + setImmediate(resume, client) + } else { + resume(client) + } + } +} + +function onParserTimeout (parser) { + const { socket, timeoutType, client } = parser + + /* istanbul ignore else */ + if (timeoutType === TIMEOUT_HEADERS) { + if (!socket[kWriting] || socket.writableNeedDrain || client[kRunning] > 1) { + assert(!parser.paused, 'cannot be paused while waiting for headers') + util.destroy(socket, new HeadersTimeoutError()) + } + } else if (timeoutType === TIMEOUT_BODY) { + if (!parser.paused) { + util.destroy(socket, new BodyTimeoutError()) + } + } else if (timeoutType === TIMEOUT_IDLE) { + assert(client[kRunning] === 0 && client[kKeepAliveTimeoutValue]) + util.destroy(socket, new InformationalError('socket idle timeout')) + } +} + +function onSocketReadable () { + const { [kParser]: parser } = this + if (parser) { + parser.readMore() + } +} + +function onSocketError (err) { + const { [kClient]: client, [kParser]: parser } = this + + assert(err.code !== 'ERR_TLS_CERT_ALTNAME_INVALID') + + if (client[kHTTPConnVersion] !== 'h2') { + // On Mac OS, we get an ECONNRESET even if there is a full body to be forwarded + // to the user. + if (err.code === 'ECONNRESET' && parser.statusCode && !parser.shouldKeepAlive) { + // We treat all incoming data so for as a valid response. + parser.onMessageComplete() + return + } + } + + this[kError] = err + + onError(this[kClient], err) +} + +function onError (client, err) { + if ( + client[kRunning] === 0 && + err.code !== 'UND_ERR_INFO' && + err.code !== 'UND_ERR_SOCKET' + ) { + // Error is not caused by running request and not a recoverable + // socket error. + + assert(client[kPendingIdx] === client[kRunningIdx]) + + const requests = client[kQueue].splice(client[kRunningIdx]) + for (let i = 0; i < requests.length; i++) { + const request = requests[i] + errorRequest(client, request, err) + } + assert(client[kSize] === 0) + } +} + +function onSocketEnd () { + const { [kParser]: parser, [kClient]: client } = this + + if (client[kHTTPConnVersion] !== 'h2') { + if (parser.statusCode && !parser.shouldKeepAlive) { + // We treat all incoming data so far as a valid response. + parser.onMessageComplete() + return + } + } + + util.destroy(this, new SocketError('other side closed', util.getSocketInfo(this))) +} + +function onSocketClose () { + const { [kClient]: client, [kParser]: parser } = this + + if (client[kHTTPConnVersion] === 'h1' && parser) { + if (!this[kError] && parser.statusCode && !parser.shouldKeepAlive) { + // We treat all incoming data so far as a valid response. + parser.onMessageComplete() + } + + this[kParser].destroy() + this[kParser] = null + } + + const err = this[kError] || new SocketError('closed', util.getSocketInfo(this)) + + client[kSocket] = null + + if (client.destroyed) { + assert(client[kPending] === 0) + + // Fail entire queue. + const requests = client[kQueue].splice(client[kRunningIdx]) + for (let i = 0; i < requests.length; i++) { + const request = requests[i] + errorRequest(client, request, err) + } + } else if (client[kRunning] > 0 && err.code !== 'UND_ERR_INFO') { + // Fail head of pipeline. + const request = client[kQueue][client[kRunningIdx]] + client[kQueue][client[kRunningIdx]++] = null + + errorRequest(client, request, err) + } + + client[kPendingIdx] = client[kRunningIdx] + + assert(client[kRunning] === 0) + + client.emit('disconnect', client[kUrl], [client], err) + + resume(client) +} + +async function connect (client) { + assert(!client[kConnecting]) + assert(!client[kSocket]) + + let { host, hostname, protocol, port } = client[kUrl] + + // Resolve ipv6 + if (hostname[0] === '[') { + const idx = hostname.indexOf(']') + + assert(idx !== -1) + const ip = hostname.substring(1, idx) + + assert(net.isIP(ip)) + hostname = ip + } + + client[kConnecting] = true + + if (channels.beforeConnect.hasSubscribers) { + channels.beforeConnect.publish({ + connectParams: { + host, + hostname, + protocol, + port, + servername: client[kServerName], + localAddress: client[kLocalAddress] + }, + connector: client[kConnector] + }) + } + + try { + const socket = await new Promise((resolve, reject) => { + client[kConnector]({ + host, + hostname, + protocol, + port, + servername: client[kServerName], + localAddress: client[kLocalAddress] + }, (err, socket) => { + if (err) { + reject(err) + } else { + resolve(socket) + } + }) + }) + + if (client.destroyed) { + util.destroy(socket.on('error', () => {}), new ClientDestroyedError()) + return + } + + client[kConnecting] = false + + assert(socket) + + const isH2 = socket.alpnProtocol === 'h2' + if (isH2) { + if (!h2ExperimentalWarned) { + h2ExperimentalWarned = true + process.emitWarning('H2 support is experimental, expect them to change at any time.', { + code: 'UNDICI-H2' + }) + } + + const session = http2.connect(client[kUrl], { + createConnection: () => socket, + peerMaxConcurrentStreams: client[kHTTP2SessionState].maxConcurrentStreams + }) + + client[kHTTPConnVersion] = 'h2' + session[kClient] = client + session[kSocket] = socket + session.on('error', onHttp2SessionError) + session.on('frameError', onHttp2FrameError) + session.on('end', onHttp2SessionEnd) + session.on('goaway', onHTTP2GoAway) + session.on('close', onSocketClose) + session.unref() + + client[kHTTP2Session] = session + socket[kHTTP2Session] = session + } else { + if (!llhttpInstance) { + llhttpInstance = await llhttpPromise + llhttpPromise = null + } + + socket[kNoRef] = false + socket[kWriting] = false + socket[kReset] = false + socket[kBlocking] = false + socket[kParser] = new Parser(client, socket, llhttpInstance) + } + + socket[kCounter] = 0 + socket[kMaxRequests] = client[kMaxRequests] + socket[kClient] = client + socket[kError] = null + + socket + .on('error', onSocketError) + .on('readable', onSocketReadable) + .on('end', onSocketEnd) + .on('close', onSocketClose) + + client[kSocket] = socket + + if (channels.connected.hasSubscribers) { + channels.connected.publish({ + connectParams: { + host, + hostname, + protocol, + port, + servername: client[kServerName], + localAddress: client[kLocalAddress] + }, + connector: client[kConnector], + socket + }) + } + client.emit('connect', client[kUrl], [client]) + } catch (err) { + if (client.destroyed) { + return + } + + client[kConnecting] = false + + if (channels.connectError.hasSubscribers) { + channels.connectError.publish({ + connectParams: { + host, + hostname, + protocol, + port, + servername: client[kServerName], + localAddress: client[kLocalAddress] + }, + connector: client[kConnector], + error: err + }) + } + + if (err.code === 'ERR_TLS_CERT_ALTNAME_INVALID') { + assert(client[kRunning] === 0) + while (client[kPending] > 0 && client[kQueue][client[kPendingIdx]].servername === client[kServerName]) { + const request = client[kQueue][client[kPendingIdx]++] + errorRequest(client, request, err) + } + } else { + onError(client, err) + } + + client.emit('connectionError', client[kUrl], [client], err) + } + + resume(client) +} + +function emitDrain (client) { + client[kNeedDrain] = 0 + client.emit('drain', client[kUrl], [client]) +} + +function resume (client, sync) { + if (client[kResuming] === 2) { + return + } + + client[kResuming] = 2 + + _resume(client, sync) + client[kResuming] = 0 + + if (client[kRunningIdx] > 256) { + client[kQueue].splice(0, client[kRunningIdx]) + client[kPendingIdx] -= client[kRunningIdx] + client[kRunningIdx] = 0 + } +} + +function _resume (client, sync) { + while (true) { + if (client.destroyed) { + assert(client[kPending] === 0) + return + } + + if (client[kClosedResolve] && !client[kSize]) { + client[kClosedResolve]() + client[kClosedResolve] = null + return + } + + const socket = client[kSocket] + + if (socket && !socket.destroyed && socket.alpnProtocol !== 'h2') { + if (client[kSize] === 0) { + if (!socket[kNoRef] && socket.unref) { + socket.unref() + socket[kNoRef] = true + } + } else if (socket[kNoRef] && socket.ref) { + socket.ref() + socket[kNoRef] = false + } + + if (client[kSize] === 0) { + if (socket[kParser].timeoutType !== TIMEOUT_IDLE) { + socket[kParser].setTimeout(client[kKeepAliveTimeoutValue], TIMEOUT_IDLE) + } + } else if (client[kRunning] > 0 && socket[kParser].statusCode < 200) { + if (socket[kParser].timeoutType !== TIMEOUT_HEADERS) { + const request = client[kQueue][client[kRunningIdx]] + const headersTimeout = request.headersTimeout != null + ? request.headersTimeout + : client[kHeadersTimeout] + socket[kParser].setTimeout(headersTimeout, TIMEOUT_HEADERS) + } + } + } + + if (client[kBusy]) { + client[kNeedDrain] = 2 + } else if (client[kNeedDrain] === 2) { + if (sync) { + client[kNeedDrain] = 1 + process.nextTick(emitDrain, client) + } else { + emitDrain(client) + } + continue + } + + if (client[kPending] === 0) { + return + } + + if (client[kRunning] >= (client[kPipelining] || 1)) { + return + } + + const request = client[kQueue][client[kPendingIdx]] + + if (client[kUrl].protocol === 'https:' && client[kServerName] !== request.servername) { + if (client[kRunning] > 0) { + return + } + + client[kServerName] = request.servername + + if (socket && socket.servername !== request.servername) { + util.destroy(socket, new InformationalError('servername changed')) + return + } + } + + if (client[kConnecting]) { + return + } + + if (!socket && !client[kHTTP2Session]) { + connect(client) + return + } + + if (socket.destroyed || socket[kWriting] || socket[kReset] || socket[kBlocking]) { + return + } + + if (client[kRunning] > 0 && !request.idempotent) { + // Non-idempotent request cannot be retried. + // Ensure that no other requests are inflight and + // could cause failure. + return + } + + if (client[kRunning] > 0 && (request.upgrade || request.method === 'CONNECT')) { + // Don't dispatch an upgrade until all preceding requests have completed. + // A misbehaving server might upgrade the connection before all pipelined + // request has completed. + return + } + + if (client[kRunning] > 0 && util.bodyLength(request.body) !== 0 && + (util.isStream(request.body) || util.isAsyncIterable(request.body))) { + // Request with stream or iterator body can error while other requests + // are inflight and indirectly error those as well. + // Ensure this doesn't happen by waiting for inflight + // to complete before dispatching. + + // Request with stream or iterator body cannot be retried. + // Ensure that no other requests are inflight and + // could cause failure. + return + } + + if (!request.aborted && write(client, request)) { + client[kPendingIdx]++ + } else { + client[kQueue].splice(client[kPendingIdx], 1) + } + } +} + +// https://www.rfc-editor.org/rfc/rfc7230#section-3.3.2 +function shouldSendContentLength (method) { + return method !== 'GET' && method !== 'HEAD' && method !== 'OPTIONS' && method !== 'TRACE' && method !== 'CONNECT' +} + +function write (client, request) { + if (client[kHTTPConnVersion] === 'h2') { + writeH2(client, client[kHTTP2Session], request) + return + } + + const { body, method, path, host, upgrade, headers, blocking, reset } = request + + // https://tools.ietf.org/html/rfc7231#section-4.3.1 + // https://tools.ietf.org/html/rfc7231#section-4.3.2 + // https://tools.ietf.org/html/rfc7231#section-4.3.5 + + // Sending a payload body on a request that does not + // expect it can cause undefined behavior on some + // servers and corrupt connection state. Do not + // re-use the connection for further requests. + + const expectsPayload = ( + method === 'PUT' || + method === 'POST' || + method === 'PATCH' + ) + + if (body && typeof body.read === 'function') { + // Try to read EOF in order to get length. + body.read(0) + } + + const bodyLength = util.bodyLength(body) + + let contentLength = bodyLength + + if (contentLength === null) { + contentLength = request.contentLength + } + + if (contentLength === 0 && !expectsPayload) { + // https://tools.ietf.org/html/rfc7230#section-3.3.2 + // A user agent SHOULD NOT send a Content-Length header field when + // the request message does not contain a payload body and the method + // semantics do not anticipate such a body. + + contentLength = null + } + + // https://github.com/nodejs/undici/issues/2046 + // A user agent may send a Content-Length header with 0 value, this should be allowed. + if (shouldSendContentLength(method) && contentLength > 0 && request.contentLength !== null && request.contentLength !== contentLength) { + if (client[kStrictContentLength]) { + errorRequest(client, request, new RequestContentLengthMismatchError()) + return false + } + + process.emitWarning(new RequestContentLengthMismatchError()) + } + + const socket = client[kSocket] + + try { + request.onConnect((err) => { + if (request.aborted || request.completed) { + return + } + + errorRequest(client, request, err || new RequestAbortedError()) + + util.destroy(socket, new InformationalError('aborted')) + }) + } catch (err) { + errorRequest(client, request, err) + } + + if (request.aborted) { + return false + } + + if (method === 'HEAD') { + // https://github.com/mcollina/undici/issues/258 + // Close after a HEAD request to interop with misbehaving servers + // that may send a body in the response. + + socket[kReset] = true + } + + if (upgrade || method === 'CONNECT') { + // On CONNECT or upgrade, block pipeline from dispatching further + // requests on this connection. + + socket[kReset] = true + } + + if (reset != null) { + socket[kReset] = reset + } + + if (client[kMaxRequests] && socket[kCounter]++ >= client[kMaxRequests]) { + socket[kReset] = true + } + + if (blocking) { + socket[kBlocking] = true + } + + let header = `${method} ${path} HTTP/1.1\r\n` + + if (typeof host === 'string') { + header += `host: ${host}\r\n` + } else { + header += client[kHostHeader] + } + + if (upgrade) { + header += `connection: upgrade\r\nupgrade: ${upgrade}\r\n` + } else if (client[kPipelining] && !socket[kReset]) { + header += 'connection: keep-alive\r\n' + } else { + header += 'connection: close\r\n' + } + + if (headers) { + header += headers + } + + if (channels.sendHeaders.hasSubscribers) { + channels.sendHeaders.publish({ request, headers: header, socket }) + } + + /* istanbul ignore else: assertion */ + if (!body || bodyLength === 0) { + if (contentLength === 0) { + socket.write(`${header}content-length: 0\r\n\r\n`, 'latin1') + } else { + assert(contentLength === null, 'no body must not have content length') + socket.write(`${header}\r\n`, 'latin1') + } + request.onRequestSent() + } else if (util.isBuffer(body)) { + assert(contentLength === body.byteLength, 'buffer body must have content length') + + socket.cork() + socket.write(`${header}content-length: ${contentLength}\r\n\r\n`, 'latin1') + socket.write(body) + socket.uncork() + request.onBodySent(body) + request.onRequestSent() + if (!expectsPayload) { + socket[kReset] = true + } + } else if (util.isBlobLike(body)) { + if (typeof body.stream === 'function') { + writeIterable({ body: body.stream(), client, request, socket, contentLength, header, expectsPayload }) + } else { + writeBlob({ body, client, request, socket, contentLength, header, expectsPayload }) + } + } else if (util.isStream(body)) { + writeStream({ body, client, request, socket, contentLength, header, expectsPayload }) + } else if (util.isIterable(body)) { + writeIterable({ body, client, request, socket, contentLength, header, expectsPayload }) + } else { + assert(false) + } + + return true +} + +function writeH2 (client, session, request) { + const { body, method, path, host, upgrade, expectContinue, signal, headers: reqHeaders } = request + + let headers + if (typeof reqHeaders === 'string') headers = Request[kHTTP2CopyHeaders](reqHeaders.trim()) + else headers = reqHeaders + + if (upgrade) { + errorRequest(client, request, new Error('Upgrade not supported for H2')) + return false + } + + try { + // TODO(HTTP/2): Should we call onConnect immediately or on stream ready event? + request.onConnect((err) => { + if (request.aborted || request.completed) { + return + } + + errorRequest(client, request, err || new RequestAbortedError()) + }) + } catch (err) { + errorRequest(client, request, err) + } + + if (request.aborted) { + return false + } + + /** @type {import('node:http2').ClientHttp2Stream} */ + let stream + const h2State = client[kHTTP2SessionState] + + headers[HTTP2_HEADER_AUTHORITY] = host || client[kHost] + headers[HTTP2_HEADER_METHOD] = method + + if (method === 'CONNECT') { + session.ref() + // we are already connected, streams are pending, first request + // will create a new stream. We trigger a request to create the stream and wait until + // `ready` event is triggered + // We disabled endStream to allow the user to write to the stream + stream = session.request(headers, { endStream: false, signal }) + + if (stream.id && !stream.pending) { + request.onUpgrade(null, null, stream) + ++h2State.openStreams + } else { + stream.once('ready', () => { + request.onUpgrade(null, null, stream) + ++h2State.openStreams + }) + } + + stream.once('close', () => { + h2State.openStreams -= 1 + // TODO(HTTP/2): unref only if current streams count is 0 + if (h2State.openStreams === 0) session.unref() + }) + + return true + } + + // https://tools.ietf.org/html/rfc7540#section-8.3 + // :path and :scheme headers must be omited when sending CONNECT + + headers[HTTP2_HEADER_PATH] = path + headers[HTTP2_HEADER_SCHEME] = 'https' + + // https://tools.ietf.org/html/rfc7231#section-4.3.1 + // https://tools.ietf.org/html/rfc7231#section-4.3.2 + // https://tools.ietf.org/html/rfc7231#section-4.3.5 + + // Sending a payload body on a request that does not + // expect it can cause undefined behavior on some + // servers and corrupt connection state. Do not + // re-use the connection for further requests. + + const expectsPayload = ( + method === 'PUT' || + method === 'POST' || + method === 'PATCH' + ) + + if (body && typeof body.read === 'function') { + // Try to read EOF in order to get length. + body.read(0) + } + + let contentLength = util.bodyLength(body) + + if (contentLength == null) { + contentLength = request.contentLength + } + + if (contentLength === 0 || !expectsPayload) { + // https://tools.ietf.org/html/rfc7230#section-3.3.2 + // A user agent SHOULD NOT send a Content-Length header field when + // the request message does not contain a payload body and the method + // semantics do not anticipate such a body. + + contentLength = null + } + + // https://github.com/nodejs/undici/issues/2046 + // A user agent may send a Content-Length header with 0 value, this should be allowed. + if (shouldSendContentLength(method) && contentLength > 0 && request.contentLength != null && request.contentLength !== contentLength) { + if (client[kStrictContentLength]) { + errorRequest(client, request, new RequestContentLengthMismatchError()) + return false + } + + process.emitWarning(new RequestContentLengthMismatchError()) + } + + if (contentLength != null) { + assert(body, 'no body must not have content length') + headers[HTTP2_HEADER_CONTENT_LENGTH] = `${contentLength}` + } + + session.ref() + + const shouldEndStream = method === 'GET' || method === 'HEAD' + if (expectContinue) { + headers[HTTP2_HEADER_EXPECT] = '100-continue' + stream = session.request(headers, { endStream: shouldEndStream, signal }) + + stream.once('continue', writeBodyH2) + } else { + stream = session.request(headers, { + endStream: shouldEndStream, + signal + }) + writeBodyH2() + } + + // Increment counter as we have new several streams open + ++h2State.openStreams + + stream.once('response', headers => { + const { [HTTP2_HEADER_STATUS]: statusCode, ...realHeaders } = headers + + if (request.onHeaders(Number(statusCode), realHeaders, stream.resume.bind(stream), '') === false) { + stream.pause() + } + }) + + stream.once('end', () => { + request.onComplete([]) + }) + + stream.on('data', (chunk) => { + if (request.onData(chunk) === false) { + stream.pause() + } + }) + + stream.once('close', () => { + h2State.openStreams -= 1 + // TODO(HTTP/2): unref only if current streams count is 0 + if (h2State.openStreams === 0) { + session.unref() + } + }) + + stream.once('error', function (err) { + if (client[kHTTP2Session] && !client[kHTTP2Session].destroyed && !this.closed && !this.destroyed) { + h2State.streams -= 1 + util.destroy(stream, err) + } + }) + + stream.once('frameError', (type, code) => { + const err = new InformationalError(`HTTP/2: "frameError" received - type ${type}, code ${code}`) + errorRequest(client, request, err) + + if (client[kHTTP2Session] && !client[kHTTP2Session].destroyed && !this.closed && !this.destroyed) { + h2State.streams -= 1 + util.destroy(stream, err) + } + }) + + // stream.on('aborted', () => { + // // TODO(HTTP/2): Support aborted + // }) + + // stream.on('timeout', () => { + // // TODO(HTTP/2): Support timeout + // }) + + // stream.on('push', headers => { + // // TODO(HTTP/2): Suppor push + // }) + + // stream.on('trailers', headers => { + // // TODO(HTTP/2): Support trailers + // }) + + return true + + function writeBodyH2 () { + /* istanbul ignore else: assertion */ + if (!body) { + request.onRequestSent() + } else if (util.isBuffer(body)) { + assert(contentLength === body.byteLength, 'buffer body must have content length') + stream.cork() + stream.write(body) + stream.uncork() + stream.end() + request.onBodySent(body) + request.onRequestSent() + } else if (util.isBlobLike(body)) { + if (typeof body.stream === 'function') { + writeIterable({ + client, + request, + contentLength, + h2stream: stream, + expectsPayload, + body: body.stream(), + socket: client[kSocket], + header: '' + }) + } else { + writeBlob({ + body, + client, + request, + contentLength, + expectsPayload, + h2stream: stream, + header: '', + socket: client[kSocket] + }) + } + } else if (util.isStream(body)) { + writeStream({ + body, + client, + request, + contentLength, + expectsPayload, + socket: client[kSocket], + h2stream: stream, + header: '' + }) + } else if (util.isIterable(body)) { + writeIterable({ + body, + client, + request, + contentLength, + expectsPayload, + header: '', + h2stream: stream, + socket: client[kSocket] + }) + } else { + assert(false) + } + } +} + +function writeStream ({ h2stream, body, client, request, socket, contentLength, header, expectsPayload }) { + assert(contentLength !== 0 || client[kRunning] === 0, 'stream body cannot be pipelined') + + if (client[kHTTPConnVersion] === 'h2') { + // For HTTP/2, is enough to pipe the stream + const pipe = pipeline( + body, + h2stream, + (err) => { + if (err) { + util.destroy(body, err) + util.destroy(h2stream, err) + } else { + request.onRequestSent() + } + } + ) + + pipe.on('data', onPipeData) + pipe.once('end', () => { + pipe.removeListener('data', onPipeData) + util.destroy(pipe) + }) + + function onPipeData (chunk) { + request.onBodySent(chunk) + } + + return + } + + let finished = false + + const writer = new AsyncWriter({ socket, request, contentLength, client, expectsPayload, header }) + + const onData = function (chunk) { + if (finished) { + return + } + + try { + if (!writer.write(chunk) && this.pause) { + this.pause() + } + } catch (err) { + util.destroy(this, err) + } + } + const onDrain = function () { + if (finished) { + return + } + + if (body.resume) { + body.resume() + } + } + const onAbort = function () { + if (finished) { + return + } + const err = new RequestAbortedError() + queueMicrotask(() => onFinished(err)) + } + const onFinished = function (err) { + if (finished) { + return + } + + finished = true + + assert(socket.destroyed || (socket[kWriting] && client[kRunning] <= 1)) + + socket + .off('drain', onDrain) + .off('error', onFinished) + + body + .removeListener('data', onData) + .removeListener('end', onFinished) + .removeListener('error', onFinished) + .removeListener('close', onAbort) + + if (!err) { + try { + writer.end() + } catch (er) { + err = er + } + } + + writer.destroy(err) + + if (err && (err.code !== 'UND_ERR_INFO' || err.message !== 'reset')) { + util.destroy(body, err) + } else { + util.destroy(body) + } + } + + body + .on('data', onData) + .on('end', onFinished) + .on('error', onFinished) + .on('close', onAbort) + + if (body.resume) { + body.resume() + } + + socket + .on('drain', onDrain) + .on('error', onFinished) +} + +async function writeBlob ({ h2stream, body, client, request, socket, contentLength, header, expectsPayload }) { + assert(contentLength === body.size, 'blob body must have content length') + + const isH2 = client[kHTTPConnVersion] === 'h2' + try { + if (contentLength != null && contentLength !== body.size) { + throw new RequestContentLengthMismatchError() + } + + const buffer = Buffer.from(await body.arrayBuffer()) + + if (isH2) { + h2stream.cork() + h2stream.write(buffer) + h2stream.uncork() + } else { + socket.cork() + socket.write(`${header}content-length: ${contentLength}\r\n\r\n`, 'latin1') + socket.write(buffer) + socket.uncork() + } + + request.onBodySent(buffer) + request.onRequestSent() + + if (!expectsPayload) { + socket[kReset] = true + } + + resume(client) + } catch (err) { + util.destroy(isH2 ? h2stream : socket, err) + } +} + +async function writeIterable ({ h2stream, body, client, request, socket, contentLength, header, expectsPayload }) { + assert(contentLength !== 0 || client[kRunning] === 0, 'iterator body cannot be pipelined') + + let callback = null + function onDrain () { + if (callback) { + const cb = callback + callback = null + cb() + } + } + + const waitForDrain = () => new Promise((resolve, reject) => { + assert(callback === null) + + if (socket[kError]) { + reject(socket[kError]) + } else { + callback = resolve + } + }) + + if (client[kHTTPConnVersion] === 'h2') { + h2stream + .on('close', onDrain) + .on('drain', onDrain) + + try { + // It's up to the user to somehow abort the async iterable. + for await (const chunk of body) { + if (socket[kError]) { + throw socket[kError] + } + + const res = h2stream.write(chunk) + request.onBodySent(chunk) + if (!res) { + await waitForDrain() + } + } + } catch (err) { + h2stream.destroy(err) + } finally { + request.onRequestSent() + h2stream.end() + h2stream + .off('close', onDrain) + .off('drain', onDrain) + } + + return + } + + socket + .on('close', onDrain) + .on('drain', onDrain) + + const writer = new AsyncWriter({ socket, request, contentLength, client, expectsPayload, header }) + try { + // It's up to the user to somehow abort the async iterable. + for await (const chunk of body) { + if (socket[kError]) { + throw socket[kError] + } + + if (!writer.write(chunk)) { + await waitForDrain() + } + } + + writer.end() + } catch (err) { + writer.destroy(err) + } finally { + socket + .off('close', onDrain) + .off('drain', onDrain) + } +} + +class AsyncWriter { + constructor ({ socket, request, contentLength, client, expectsPayload, header }) { + this.socket = socket + this.request = request + this.contentLength = contentLength + this.client = client + this.bytesWritten = 0 + this.expectsPayload = expectsPayload + this.header = header + + socket[kWriting] = true + } + + write (chunk) { + const { socket, request, contentLength, client, bytesWritten, expectsPayload, header } = this + + if (socket[kError]) { + throw socket[kError] + } + + if (socket.destroyed) { + return false + } + + const len = Buffer.byteLength(chunk) + if (!len) { + return true + } + + // We should defer writing chunks. + if (contentLength !== null && bytesWritten + len > contentLength) { + if (client[kStrictContentLength]) { + throw new RequestContentLengthMismatchError() + } + + process.emitWarning(new RequestContentLengthMismatchError()) + } + + socket.cork() + + if (bytesWritten === 0) { + if (!expectsPayload) { + socket[kReset] = true + } + + if (contentLength === null) { + socket.write(`${header}transfer-encoding: chunked\r\n`, 'latin1') + } else { + socket.write(`${header}content-length: ${contentLength}\r\n\r\n`, 'latin1') + } + } + + if (contentLength === null) { + socket.write(`\r\n${len.toString(16)}\r\n`, 'latin1') + } + + this.bytesWritten += len + + const ret = socket.write(chunk) + + socket.uncork() + + request.onBodySent(chunk) + + if (!ret) { + if (socket[kParser].timeout && socket[kParser].timeoutType === TIMEOUT_HEADERS) { + // istanbul ignore else: only for jest + if (socket[kParser].timeout.refresh) { + socket[kParser].timeout.refresh() + } + } + } + + return ret + } + + end () { + const { socket, contentLength, client, bytesWritten, expectsPayload, header, request } = this + request.onRequestSent() + + socket[kWriting] = false + + if (socket[kError]) { + throw socket[kError] + } + + if (socket.destroyed) { + return + } + + if (bytesWritten === 0) { + if (expectsPayload) { + // https://tools.ietf.org/html/rfc7230#section-3.3.2 + // A user agent SHOULD send a Content-Length in a request message when + // no Transfer-Encoding is sent and the request method defines a meaning + // for an enclosed payload body. + + socket.write(`${header}content-length: 0\r\n\r\n`, 'latin1') + } else { + socket.write(`${header}\r\n`, 'latin1') + } + } else if (contentLength === null) { + socket.write('\r\n0\r\n\r\n', 'latin1') + } + + if (contentLength !== null && bytesWritten !== contentLength) { + if (client[kStrictContentLength]) { + throw new RequestContentLengthMismatchError() + } else { + process.emitWarning(new RequestContentLengthMismatchError()) + } + } + + if (socket[kParser].timeout && socket[kParser].timeoutType === TIMEOUT_HEADERS) { + // istanbul ignore else: only for jest + if (socket[kParser].timeout.refresh) { + socket[kParser].timeout.refresh() + } + } + + resume(client) + } + + destroy (err) { + const { socket, client } = this + + socket[kWriting] = false + + if (err) { + assert(client[kRunning] <= 1, 'pipeline should only contain this request') + util.destroy(socket, err) + } + } +} + +function errorRequest (client, request, err) { + try { + request.onError(err) + assert(request.aborted) + } catch (err) { + client.emit('error', err) + } +} + +module.exports = Client + + +/***/ }), + +/***/ 3194: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +/* istanbul ignore file: only for Node 12 */ + +const { kConnected, kSize } = __nccwpck_require__(6443) + +class CompatWeakRef { + constructor (value) { + this.value = value + } + + deref () { + return this.value[kConnected] === 0 && this.value[kSize] === 0 + ? undefined + : this.value + } +} + +class CompatFinalizer { + constructor (finalizer) { + this.finalizer = finalizer + } + + register (dispatcher, key) { + if (dispatcher.on) { + dispatcher.on('disconnect', () => { + if (dispatcher[kConnected] === 0 && dispatcher[kSize] === 0) { + this.finalizer(key) + } + }) + } + } +} + +module.exports = function () { + // FIXME: remove workaround when the Node bug is fixed + // https://github.com/nodejs/node/issues/49344#issuecomment-1741776308 + if (process.env.NODE_V8_COVERAGE) { + return { + WeakRef: CompatWeakRef, + FinalizationRegistry: CompatFinalizer + } + } + return { + WeakRef: global.WeakRef || CompatWeakRef, + FinalizationRegistry: global.FinalizationRegistry || CompatFinalizer + } +} + + +/***/ }), + +/***/ 9237: +/***/ ((module) => { + +"use strict"; + + +// https://wicg.github.io/cookie-store/#cookie-maximum-attribute-value-size +const maxAttributeValueSize = 1024 + +// https://wicg.github.io/cookie-store/#cookie-maximum-name-value-pair-size +const maxNameValuePairSize = 4096 + +module.exports = { + maxAttributeValueSize, + maxNameValuePairSize +} + + +/***/ }), + +/***/ 3168: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { parseSetCookie } = __nccwpck_require__(8915) +const { stringify, getHeadersList } = __nccwpck_require__(3834) +const { webidl } = __nccwpck_require__(4222) +const { Headers } = __nccwpck_require__(6349) + +/** + * @typedef {Object} Cookie + * @property {string} name + * @property {string} value + * @property {Date|number|undefined} expires + * @property {number|undefined} maxAge + * @property {string|undefined} domain + * @property {string|undefined} path + * @property {boolean|undefined} secure + * @property {boolean|undefined} httpOnly + * @property {'Strict'|'Lax'|'None'} sameSite + * @property {string[]} unparsed + */ + +/** + * @param {Headers} headers + * @returns {Record} + */ +function getCookies (headers) { + webidl.argumentLengthCheck(arguments, 1, { header: 'getCookies' }) + + webidl.brandCheck(headers, Headers, { strict: false }) + + const cookie = headers.get('cookie') + const out = {} + + if (!cookie) { + return out + } + + for (const piece of cookie.split(';')) { + const [name, ...value] = piece.split('=') + + out[name.trim()] = value.join('=') + } + + return out +} + +/** + * @param {Headers} headers + * @param {string} name + * @param {{ path?: string, domain?: string }|undefined} attributes + * @returns {void} + */ +function deleteCookie (headers, name, attributes) { + webidl.argumentLengthCheck(arguments, 2, { header: 'deleteCookie' }) + + webidl.brandCheck(headers, Headers, { strict: false }) + + name = webidl.converters.DOMString(name) + attributes = webidl.converters.DeleteCookieAttributes(attributes) + + // Matches behavior of + // https://github.com/denoland/deno_std/blob/63827b16330b82489a04614027c33b7904e08be5/http/cookie.ts#L278 + setCookie(headers, { + name, + value: '', + expires: new Date(0), + ...attributes + }) +} + +/** + * @param {Headers} headers + * @returns {Cookie[]} + */ +function getSetCookies (headers) { + webidl.argumentLengthCheck(arguments, 1, { header: 'getSetCookies' }) + + webidl.brandCheck(headers, Headers, { strict: false }) + + const cookies = getHeadersList(headers).cookies + + if (!cookies) { + return [] + } + + // In older versions of undici, cookies is a list of name:value. + return cookies.map((pair) => parseSetCookie(Array.isArray(pair) ? pair[1] : pair)) +} + +/** + * @param {Headers} headers + * @param {Cookie} cookie + * @returns {void} + */ +function setCookie (headers, cookie) { + webidl.argumentLengthCheck(arguments, 2, { header: 'setCookie' }) + + webidl.brandCheck(headers, Headers, { strict: false }) + + cookie = webidl.converters.Cookie(cookie) + + const str = stringify(cookie) + + if (str) { + headers.append('Set-Cookie', stringify(cookie)) + } +} + +webidl.converters.DeleteCookieAttributes = webidl.dictionaryConverter([ + { + converter: webidl.nullableConverter(webidl.converters.DOMString), + key: 'path', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters.DOMString), + key: 'domain', + defaultValue: null + } +]) + +webidl.converters.Cookie = webidl.dictionaryConverter([ + { + converter: webidl.converters.DOMString, + key: 'name' + }, + { + converter: webidl.converters.DOMString, + key: 'value' + }, + { + converter: webidl.nullableConverter((value) => { + if (typeof value === 'number') { + return webidl.converters['unsigned long long'](value) + } + + return new Date(value) + }), + key: 'expires', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters['long long']), + key: 'maxAge', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters.DOMString), + key: 'domain', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters.DOMString), + key: 'path', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters.boolean), + key: 'secure', + defaultValue: null + }, + { + converter: webidl.nullableConverter(webidl.converters.boolean), + key: 'httpOnly', + defaultValue: null + }, + { + converter: webidl.converters.USVString, + key: 'sameSite', + allowedValues: ['Strict', 'Lax', 'None'] + }, + { + converter: webidl.sequenceConverter(webidl.converters.DOMString), + key: 'unparsed', + defaultValue: [] + } +]) + +module.exports = { + getCookies, + deleteCookie, + getSetCookies, + setCookie +} + + +/***/ }), + +/***/ 8915: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { maxNameValuePairSize, maxAttributeValueSize } = __nccwpck_require__(9237) +const { isCTLExcludingHtab } = __nccwpck_require__(3834) +const { collectASequenceOfCodePointsFast } = __nccwpck_require__(4322) +const assert = __nccwpck_require__(2613) + +/** + * @description Parses the field-value attributes of a set-cookie header string. + * @see https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4 + * @param {string} header + * @returns if the header is invalid, null will be returned + */ +function parseSetCookie (header) { + // 1. If the set-cookie-string contains a %x00-08 / %x0A-1F / %x7F + // character (CTL characters excluding HTAB): Abort these steps and + // ignore the set-cookie-string entirely. + if (isCTLExcludingHtab(header)) { + return null + } + + let nameValuePair = '' + let unparsedAttributes = '' + let name = '' + let value = '' + + // 2. If the set-cookie-string contains a %x3B (";") character: + if (header.includes(';')) { + // 1. The name-value-pair string consists of the characters up to, + // but not including, the first %x3B (";"), and the unparsed- + // attributes consist of the remainder of the set-cookie-string + // (including the %x3B (";") in question). + const position = { position: 0 } + + nameValuePair = collectASequenceOfCodePointsFast(';', header, position) + unparsedAttributes = header.slice(position.position) + } else { + // Otherwise: + + // 1. The name-value-pair string consists of all the characters + // contained in the set-cookie-string, and the unparsed- + // attributes is the empty string. + nameValuePair = header + } + + // 3. If the name-value-pair string lacks a %x3D ("=") character, then + // the name string is empty, and the value string is the value of + // name-value-pair. + if (!nameValuePair.includes('=')) { + value = nameValuePair + } else { + // Otherwise, the name string consists of the characters up to, but + // not including, the first %x3D ("=") character, and the (possibly + // empty) value string consists of the characters after the first + // %x3D ("=") character. + const position = { position: 0 } + name = collectASequenceOfCodePointsFast( + '=', + nameValuePair, + position + ) + value = nameValuePair.slice(position.position + 1) + } + + // 4. Remove any leading or trailing WSP characters from the name + // string and the value string. + name = name.trim() + value = value.trim() + + // 5. If the sum of the lengths of the name string and the value string + // is more than 4096 octets, abort these steps and ignore the set- + // cookie-string entirely. + if (name.length + value.length > maxNameValuePairSize) { + return null + } + + // 6. The cookie-name is the name string, and the cookie-value is the + // value string. + return { + name, value, ...parseUnparsedAttributes(unparsedAttributes) + } +} + +/** + * Parses the remaining attributes of a set-cookie header + * @see https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4 + * @param {string} unparsedAttributes + * @param {[Object.]={}} cookieAttributeList + */ +function parseUnparsedAttributes (unparsedAttributes, cookieAttributeList = {}) { + // 1. If the unparsed-attributes string is empty, skip the rest of + // these steps. + if (unparsedAttributes.length === 0) { + return cookieAttributeList + } + + // 2. Discard the first character of the unparsed-attributes (which + // will be a %x3B (";") character). + assert(unparsedAttributes[0] === ';') + unparsedAttributes = unparsedAttributes.slice(1) + + let cookieAv = '' + + // 3. If the remaining unparsed-attributes contains a %x3B (";") + // character: + if (unparsedAttributes.includes(';')) { + // 1. Consume the characters of the unparsed-attributes up to, but + // not including, the first %x3B (";") character. + cookieAv = collectASequenceOfCodePointsFast( + ';', + unparsedAttributes, + { position: 0 } + ) + unparsedAttributes = unparsedAttributes.slice(cookieAv.length) + } else { + // Otherwise: + + // 1. Consume the remainder of the unparsed-attributes. + cookieAv = unparsedAttributes + unparsedAttributes = '' + } + + // Let the cookie-av string be the characters consumed in this step. + + let attributeName = '' + let attributeValue = '' + + // 4. If the cookie-av string contains a %x3D ("=") character: + if (cookieAv.includes('=')) { + // 1. The (possibly empty) attribute-name string consists of the + // characters up to, but not including, the first %x3D ("=") + // character, and the (possibly empty) attribute-value string + // consists of the characters after the first %x3D ("=") + // character. + const position = { position: 0 } + + attributeName = collectASequenceOfCodePointsFast( + '=', + cookieAv, + position + ) + attributeValue = cookieAv.slice(position.position + 1) + } else { + // Otherwise: + + // 1. The attribute-name string consists of the entire cookie-av + // string, and the attribute-value string is empty. + attributeName = cookieAv + } + + // 5. Remove any leading or trailing WSP characters from the attribute- + // name string and the attribute-value string. + attributeName = attributeName.trim() + attributeValue = attributeValue.trim() + + // 6. If the attribute-value is longer than 1024 octets, ignore the + // cookie-av string and return to Step 1 of this algorithm. + if (attributeValue.length > maxAttributeValueSize) { + return parseUnparsedAttributes(unparsedAttributes, cookieAttributeList) + } + + // 7. Process the attribute-name and attribute-value according to the + // requirements in the following subsections. (Notice that + // attributes with unrecognized attribute-names are ignored.) + const attributeNameLowercase = attributeName.toLowerCase() + + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.1 + // If the attribute-name case-insensitively matches the string + // "Expires", the user agent MUST process the cookie-av as follows. + if (attributeNameLowercase === 'expires') { + // 1. Let the expiry-time be the result of parsing the attribute-value + // as cookie-date (see Section 5.1.1). + const expiryTime = new Date(attributeValue) + + // 2. If the attribute-value failed to parse as a cookie date, ignore + // the cookie-av. + + cookieAttributeList.expires = expiryTime + } else if (attributeNameLowercase === 'max-age') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.2 + // If the attribute-name case-insensitively matches the string "Max- + // Age", the user agent MUST process the cookie-av as follows. + + // 1. If the first character of the attribute-value is not a DIGIT or a + // "-" character, ignore the cookie-av. + const charCode = attributeValue.charCodeAt(0) + + if ((charCode < 48 || charCode > 57) && attributeValue[0] !== '-') { + return parseUnparsedAttributes(unparsedAttributes, cookieAttributeList) + } + + // 2. If the remainder of attribute-value contains a non-DIGIT + // character, ignore the cookie-av. + if (!/^\d+$/.test(attributeValue)) { + return parseUnparsedAttributes(unparsedAttributes, cookieAttributeList) + } + + // 3. Let delta-seconds be the attribute-value converted to an integer. + const deltaSeconds = Number(attributeValue) + + // 4. Let cookie-age-limit be the maximum age of the cookie (which + // SHOULD be 400 days or less, see Section 4.1.2.2). + + // 5. Set delta-seconds to the smaller of its present value and cookie- + // age-limit. + // deltaSeconds = Math.min(deltaSeconds * 1000, maxExpiresMs) + + // 6. If delta-seconds is less than or equal to zero (0), let expiry- + // time be the earliest representable date and time. Otherwise, let + // the expiry-time be the current date and time plus delta-seconds + // seconds. + // const expiryTime = deltaSeconds <= 0 ? Date.now() : Date.now() + deltaSeconds + + // 7. Append an attribute to the cookie-attribute-list with an + // attribute-name of Max-Age and an attribute-value of expiry-time. + cookieAttributeList.maxAge = deltaSeconds + } else if (attributeNameLowercase === 'domain') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.3 + // If the attribute-name case-insensitively matches the string "Domain", + // the user agent MUST process the cookie-av as follows. + + // 1. Let cookie-domain be the attribute-value. + let cookieDomain = attributeValue + + // 2. If cookie-domain starts with %x2E ("."), let cookie-domain be + // cookie-domain without its leading %x2E ("."). + if (cookieDomain[0] === '.') { + cookieDomain = cookieDomain.slice(1) + } + + // 3. Convert the cookie-domain to lower case. + cookieDomain = cookieDomain.toLowerCase() + + // 4. Append an attribute to the cookie-attribute-list with an + // attribute-name of Domain and an attribute-value of cookie-domain. + cookieAttributeList.domain = cookieDomain + } else if (attributeNameLowercase === 'path') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.4 + // If the attribute-name case-insensitively matches the string "Path", + // the user agent MUST process the cookie-av as follows. + + // 1. If the attribute-value is empty or if the first character of the + // attribute-value is not %x2F ("/"): + let cookiePath = '' + if (attributeValue.length === 0 || attributeValue[0] !== '/') { + // 1. Let cookie-path be the default-path. + cookiePath = '/' + } else { + // Otherwise: + + // 1. Let cookie-path be the attribute-value. + cookiePath = attributeValue + } + + // 2. Append an attribute to the cookie-attribute-list with an + // attribute-name of Path and an attribute-value of cookie-path. + cookieAttributeList.path = cookiePath + } else if (attributeNameLowercase === 'secure') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.5 + // If the attribute-name case-insensitively matches the string "Secure", + // the user agent MUST append an attribute to the cookie-attribute-list + // with an attribute-name of Secure and an empty attribute-value. + + cookieAttributeList.secure = true + } else if (attributeNameLowercase === 'httponly') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.6 + // If the attribute-name case-insensitively matches the string + // "HttpOnly", the user agent MUST append an attribute to the cookie- + // attribute-list with an attribute-name of HttpOnly and an empty + // attribute-value. + + cookieAttributeList.httpOnly = true + } else if (attributeNameLowercase === 'samesite') { + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis#section-5.4.7 + // If the attribute-name case-insensitively matches the string + // "SameSite", the user agent MUST process the cookie-av as follows: + + // 1. Let enforcement be "Default". + let enforcement = 'Default' + + const attributeValueLowercase = attributeValue.toLowerCase() + // 2. If cookie-av's attribute-value is a case-insensitive match for + // "None", set enforcement to "None". + if (attributeValueLowercase.includes('none')) { + enforcement = 'None' + } + + // 3. If cookie-av's attribute-value is a case-insensitive match for + // "Strict", set enforcement to "Strict". + if (attributeValueLowercase.includes('strict')) { + enforcement = 'Strict' + } + + // 4. If cookie-av's attribute-value is a case-insensitive match for + // "Lax", set enforcement to "Lax". + if (attributeValueLowercase.includes('lax')) { + enforcement = 'Lax' + } + + // 5. Append an attribute to the cookie-attribute-list with an + // attribute-name of "SameSite" and an attribute-value of + // enforcement. + cookieAttributeList.sameSite = enforcement + } else { + cookieAttributeList.unparsed ??= [] + + cookieAttributeList.unparsed.push(`${attributeName}=${attributeValue}`) + } + + // 8. Return to Step 1 of this algorithm. + return parseUnparsedAttributes(unparsedAttributes, cookieAttributeList) +} + +module.exports = { + parseSetCookie, + parseUnparsedAttributes +} + + +/***/ }), + +/***/ 3834: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const assert = __nccwpck_require__(2613) +const { kHeadersList } = __nccwpck_require__(6443) + +function isCTLExcludingHtab (value) { + if (value.length === 0) { + return false + } + + for (const char of value) { + const code = char.charCodeAt(0) + + if ( + (code >= 0x00 || code <= 0x08) || + (code >= 0x0A || code <= 0x1F) || + code === 0x7F + ) { + return false + } + } +} + +/** + CHAR = + token = 1* + separators = "(" | ")" | "<" | ">" | "@" + | "," | ";" | ":" | "\" | <"> + | "/" | "[" | "]" | "?" | "=" + | "{" | "}" | SP | HT + * @param {string} name + */ +function validateCookieName (name) { + for (const char of name) { + const code = char.charCodeAt(0) + + if ( + (code <= 0x20 || code > 0x7F) || + char === '(' || + char === ')' || + char === '>' || + char === '<' || + char === '@' || + char === ',' || + char === ';' || + char === ':' || + char === '\\' || + char === '"' || + char === '/' || + char === '[' || + char === ']' || + char === '?' || + char === '=' || + char === '{' || + char === '}' + ) { + throw new Error('Invalid cookie name') + } + } +} + +/** + cookie-value = *cookie-octet / ( DQUOTE *cookie-octet DQUOTE ) + cookie-octet = %x21 / %x23-2B / %x2D-3A / %x3C-5B / %x5D-7E + ; US-ASCII characters excluding CTLs, + ; whitespace DQUOTE, comma, semicolon, + ; and backslash + * @param {string} value + */ +function validateCookieValue (value) { + for (const char of value) { + const code = char.charCodeAt(0) + + if ( + code < 0x21 || // exclude CTLs (0-31) + code === 0x22 || + code === 0x2C || + code === 0x3B || + code === 0x5C || + code > 0x7E // non-ascii + ) { + throw new Error('Invalid header value') + } + } +} + +/** + * path-value = + * @param {string} path + */ +function validateCookiePath (path) { + for (const char of path) { + const code = char.charCodeAt(0) + + if (code < 0x21 || char === ';') { + throw new Error('Invalid cookie path') + } + } +} + +/** + * I have no idea why these values aren't allowed to be honest, + * but Deno tests these. - Khafra + * @param {string} domain + */ +function validateCookieDomain (domain) { + if ( + domain.startsWith('-') || + domain.endsWith('.') || + domain.endsWith('-') + ) { + throw new Error('Invalid cookie domain') + } +} + +/** + * @see https://www.rfc-editor.org/rfc/rfc7231#section-7.1.1.1 + * @param {number|Date} date + IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT + ; fixed length/zone/capitalization subset of the format + ; see Section 3.3 of [RFC5322] + + day-name = %x4D.6F.6E ; "Mon", case-sensitive + / %x54.75.65 ; "Tue", case-sensitive + / %x57.65.64 ; "Wed", case-sensitive + / %x54.68.75 ; "Thu", case-sensitive + / %x46.72.69 ; "Fri", case-sensitive + / %x53.61.74 ; "Sat", case-sensitive + / %x53.75.6E ; "Sun", case-sensitive + date1 = day SP month SP year + ; e.g., 02 Jun 1982 + + day = 2DIGIT + month = %x4A.61.6E ; "Jan", case-sensitive + / %x46.65.62 ; "Feb", case-sensitive + / %x4D.61.72 ; "Mar", case-sensitive + / %x41.70.72 ; "Apr", case-sensitive + / %x4D.61.79 ; "May", case-sensitive + / %x4A.75.6E ; "Jun", case-sensitive + / %x4A.75.6C ; "Jul", case-sensitive + / %x41.75.67 ; "Aug", case-sensitive + / %x53.65.70 ; "Sep", case-sensitive + / %x4F.63.74 ; "Oct", case-sensitive + / %x4E.6F.76 ; "Nov", case-sensitive + / %x44.65.63 ; "Dec", case-sensitive + year = 4DIGIT + + GMT = %x47.4D.54 ; "GMT", case-sensitive + + time-of-day = hour ":" minute ":" second + ; 00:00:00 - 23:59:60 (leap second) + + hour = 2DIGIT + minute = 2DIGIT + second = 2DIGIT + */ +function toIMFDate (date) { + if (typeof date === 'number') { + date = new Date(date) + } + + const days = [ + 'Sun', 'Mon', 'Tue', 'Wed', + 'Thu', 'Fri', 'Sat' + ] + + const months = [ + 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', + 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' + ] + + const dayName = days[date.getUTCDay()] + const day = date.getUTCDate().toString().padStart(2, '0') + const month = months[date.getUTCMonth()] + const year = date.getUTCFullYear() + const hour = date.getUTCHours().toString().padStart(2, '0') + const minute = date.getUTCMinutes().toString().padStart(2, '0') + const second = date.getUTCSeconds().toString().padStart(2, '0') + + return `${dayName}, ${day} ${month} ${year} ${hour}:${minute}:${second} GMT` +} + +/** + max-age-av = "Max-Age=" non-zero-digit *DIGIT + ; In practice, both expires-av and max-age-av + ; are limited to dates representable by the + ; user agent. + * @param {number} maxAge + */ +function validateCookieMaxAge (maxAge) { + if (maxAge < 0) { + throw new Error('Invalid cookie max-age') + } +} + +/** + * @see https://www.rfc-editor.org/rfc/rfc6265#section-4.1.1 + * @param {import('./index').Cookie} cookie + */ +function stringify (cookie) { + if (cookie.name.length === 0) { + return null + } + + validateCookieName(cookie.name) + validateCookieValue(cookie.value) + + const out = [`${cookie.name}=${cookie.value}`] + + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cookie-prefixes-00#section-3.1 + // https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cookie-prefixes-00#section-3.2 + if (cookie.name.startsWith('__Secure-')) { + cookie.secure = true + } + + if (cookie.name.startsWith('__Host-')) { + cookie.secure = true + cookie.domain = null + cookie.path = '/' + } + + if (cookie.secure) { + out.push('Secure') + } + + if (cookie.httpOnly) { + out.push('HttpOnly') + } + + if (typeof cookie.maxAge === 'number') { + validateCookieMaxAge(cookie.maxAge) + out.push(`Max-Age=${cookie.maxAge}`) + } + + if (cookie.domain) { + validateCookieDomain(cookie.domain) + out.push(`Domain=${cookie.domain}`) + } + + if (cookie.path) { + validateCookiePath(cookie.path) + out.push(`Path=${cookie.path}`) + } + + if (cookie.expires && cookie.expires.toString() !== 'Invalid Date') { + out.push(`Expires=${toIMFDate(cookie.expires)}`) + } + + if (cookie.sameSite) { + out.push(`SameSite=${cookie.sameSite}`) + } + + for (const part of cookie.unparsed) { + if (!part.includes('=')) { + throw new Error('Invalid unparsed') + } + + const [key, ...value] = part.split('=') + + out.push(`${key.trim()}=${value.join('=')}`) + } + + return out.join('; ') +} + +let kHeadersListNode + +function getHeadersList (headers) { + if (headers[kHeadersList]) { + return headers[kHeadersList] + } + + if (!kHeadersListNode) { + kHeadersListNode = Object.getOwnPropertySymbols(headers).find( + (symbol) => symbol.description === 'headers list' + ) + + assert(kHeadersListNode, 'Headers cannot be parsed') + } + + const headersList = headers[kHeadersListNode] + assert(headersList) + + return headersList +} + +module.exports = { + isCTLExcludingHtab, + stringify, + getHeadersList +} + + +/***/ }), + +/***/ 9136: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const net = __nccwpck_require__(9278) +const assert = __nccwpck_require__(2613) +const util = __nccwpck_require__(3440) +const { InvalidArgumentError, ConnectTimeoutError } = __nccwpck_require__(8707) + +let tls // include tls conditionally since it is not always available + +// TODO: session re-use does not wait for the first +// connection to resolve the session and might therefore +// resolve the same servername multiple times even when +// re-use is enabled. + +let SessionCache +// FIXME: remove workaround when the Node bug is fixed +// https://github.com/nodejs/node/issues/49344#issuecomment-1741776308 +if (global.FinalizationRegistry && !process.env.NODE_V8_COVERAGE) { + SessionCache = class WeakSessionCache { + constructor (maxCachedSessions) { + this._maxCachedSessions = maxCachedSessions + this._sessionCache = new Map() + this._sessionRegistry = new global.FinalizationRegistry((key) => { + if (this._sessionCache.size < this._maxCachedSessions) { + return + } + + const ref = this._sessionCache.get(key) + if (ref !== undefined && ref.deref() === undefined) { + this._sessionCache.delete(key) + } + }) + } + + get (sessionKey) { + const ref = this._sessionCache.get(sessionKey) + return ref ? ref.deref() : null + } + + set (sessionKey, session) { + if (this._maxCachedSessions === 0) { + return + } + + this._sessionCache.set(sessionKey, new WeakRef(session)) + this._sessionRegistry.register(session, sessionKey) + } + } +} else { + SessionCache = class SimpleSessionCache { + constructor (maxCachedSessions) { + this._maxCachedSessions = maxCachedSessions + this._sessionCache = new Map() + } + + get (sessionKey) { + return this._sessionCache.get(sessionKey) + } + + set (sessionKey, session) { + if (this._maxCachedSessions === 0) { + return + } + + if (this._sessionCache.size >= this._maxCachedSessions) { + // remove the oldest session + const { value: oldestKey } = this._sessionCache.keys().next() + this._sessionCache.delete(oldestKey) + } + + this._sessionCache.set(sessionKey, session) + } + } +} + +function buildConnector ({ allowH2, maxCachedSessions, socketPath, timeout, ...opts }) { + if (maxCachedSessions != null && (!Number.isInteger(maxCachedSessions) || maxCachedSessions < 0)) { + throw new InvalidArgumentError('maxCachedSessions must be a positive integer or zero') + } + + const options = { path: socketPath, ...opts } + const sessionCache = new SessionCache(maxCachedSessions == null ? 100 : maxCachedSessions) + timeout = timeout == null ? 10e3 : timeout + allowH2 = allowH2 != null ? allowH2 : false + return function connect ({ hostname, host, protocol, port, servername, localAddress, httpSocket }, callback) { + let socket + if (protocol === 'https:') { + if (!tls) { + tls = __nccwpck_require__(4756) + } + servername = servername || options.servername || util.getServerName(host) || null + + const sessionKey = servername || hostname + const session = sessionCache.get(sessionKey) || null + + assert(sessionKey) + + socket = tls.connect({ + highWaterMark: 16384, // TLS in node can't have bigger HWM anyway... + ...options, + servername, + session, + localAddress, + // TODO(HTTP/2): Add support for h2c + ALPNProtocols: allowH2 ? ['http/1.1', 'h2'] : ['http/1.1'], + socket: httpSocket, // upgrade socket connection + port: port || 443, + host: hostname + }) + + socket + .on('session', function (session) { + // TODO (fix): Can a session become invalid once established? Don't think so? + sessionCache.set(sessionKey, session) + }) + } else { + assert(!httpSocket, 'httpSocket can only be sent on TLS update') + socket = net.connect({ + highWaterMark: 64 * 1024, // Same as nodejs fs streams. + ...options, + localAddress, + port: port || 80, + host: hostname + }) + } + + // Set TCP keep alive options on the socket here instead of in connect() for the case of assigning the socket + if (options.keepAlive == null || options.keepAlive) { + const keepAliveInitialDelay = options.keepAliveInitialDelay === undefined ? 60e3 : options.keepAliveInitialDelay + socket.setKeepAlive(true, keepAliveInitialDelay) + } + + const cancelTimeout = setupTimeout(() => onConnectTimeout(socket), timeout) + + socket + .setNoDelay(true) + .once(protocol === 'https:' ? 'secureConnect' : 'connect', function () { + cancelTimeout() + + if (callback) { + const cb = callback + callback = null + cb(null, this) + } + }) + .on('error', function (err) { + cancelTimeout() + + if (callback) { + const cb = callback + callback = null + cb(err) + } + }) + + return socket + } +} + +function setupTimeout (onConnectTimeout, timeout) { + if (!timeout) { + return () => {} + } + + let s1 = null + let s2 = null + const timeoutId = setTimeout(() => { + // setImmediate is added to make sure that we priotorise socket error events over timeouts + s1 = setImmediate(() => { + if (process.platform === 'win32') { + // Windows needs an extra setImmediate probably due to implementation differences in the socket logic + s2 = setImmediate(() => onConnectTimeout()) + } else { + onConnectTimeout() + } + }) + }, timeout) + return () => { + clearTimeout(timeoutId) + clearImmediate(s1) + clearImmediate(s2) + } +} + +function onConnectTimeout (socket) { + util.destroy(socket, new ConnectTimeoutError()) +} + +module.exports = buildConnector + + +/***/ }), + +/***/ 735: +/***/ ((module) => { + +"use strict"; + + +/** @type {Record} */ +const headerNameLowerCasedRecord = {} + +// https://developer.mozilla.org/docs/Web/HTTP/Headers +const wellknownHeaderNames = [ + 'Accept', + 'Accept-Encoding', + 'Accept-Language', + 'Accept-Ranges', + 'Access-Control-Allow-Credentials', + 'Access-Control-Allow-Headers', + 'Access-Control-Allow-Methods', + 'Access-Control-Allow-Origin', + 'Access-Control-Expose-Headers', + 'Access-Control-Max-Age', + 'Access-Control-Request-Headers', + 'Access-Control-Request-Method', + 'Age', + 'Allow', + 'Alt-Svc', + 'Alt-Used', + 'Authorization', + 'Cache-Control', + 'Clear-Site-Data', + 'Connection', + 'Content-Disposition', + 'Content-Encoding', + 'Content-Language', + 'Content-Length', + 'Content-Location', + 'Content-Range', + 'Content-Security-Policy', + 'Content-Security-Policy-Report-Only', + 'Content-Type', + 'Cookie', + 'Cross-Origin-Embedder-Policy', + 'Cross-Origin-Opener-Policy', + 'Cross-Origin-Resource-Policy', + 'Date', + 'Device-Memory', + 'Downlink', + 'ECT', + 'ETag', + 'Expect', + 'Expect-CT', + 'Expires', + 'Forwarded', + 'From', + 'Host', + 'If-Match', + 'If-Modified-Since', + 'If-None-Match', + 'If-Range', + 'If-Unmodified-Since', + 'Keep-Alive', + 'Last-Modified', + 'Link', + 'Location', + 'Max-Forwards', + 'Origin', + 'Permissions-Policy', + 'Pragma', + 'Proxy-Authenticate', + 'Proxy-Authorization', + 'RTT', + 'Range', + 'Referer', + 'Referrer-Policy', + 'Refresh', + 'Retry-After', + 'Sec-WebSocket-Accept', + 'Sec-WebSocket-Extensions', + 'Sec-WebSocket-Key', + 'Sec-WebSocket-Protocol', + 'Sec-WebSocket-Version', + 'Server', + 'Server-Timing', + 'Service-Worker-Allowed', + 'Service-Worker-Navigation-Preload', + 'Set-Cookie', + 'SourceMap', + 'Strict-Transport-Security', + 'Supports-Loading-Mode', + 'TE', + 'Timing-Allow-Origin', + 'Trailer', + 'Transfer-Encoding', + 'Upgrade', + 'Upgrade-Insecure-Requests', + 'User-Agent', + 'Vary', + 'Via', + 'WWW-Authenticate', + 'X-Content-Type-Options', + 'X-DNS-Prefetch-Control', + 'X-Frame-Options', + 'X-Permitted-Cross-Domain-Policies', + 'X-Powered-By', + 'X-Requested-With', + 'X-XSS-Protection' +] + +for (let i = 0; i < wellknownHeaderNames.length; ++i) { + const key = wellknownHeaderNames[i] + const lowerCasedKey = key.toLowerCase() + headerNameLowerCasedRecord[key] = headerNameLowerCasedRecord[lowerCasedKey] = + lowerCasedKey +} + +// Note: object prototypes should not be able to be referenced. e.g. `Object#hasOwnProperty`. +Object.setPrototypeOf(headerNameLowerCasedRecord, null) + +module.exports = { + wellknownHeaderNames, + headerNameLowerCasedRecord +} + + +/***/ }), + +/***/ 8707: +/***/ ((module) => { + +"use strict"; + + +class UndiciError extends Error { + constructor (message) { + super(message) + this.name = 'UndiciError' + this.code = 'UND_ERR' + } +} + +class ConnectTimeoutError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, ConnectTimeoutError) + this.name = 'ConnectTimeoutError' + this.message = message || 'Connect Timeout Error' + this.code = 'UND_ERR_CONNECT_TIMEOUT' + } +} + +class HeadersTimeoutError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, HeadersTimeoutError) + this.name = 'HeadersTimeoutError' + this.message = message || 'Headers Timeout Error' + this.code = 'UND_ERR_HEADERS_TIMEOUT' + } +} + +class HeadersOverflowError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, HeadersOverflowError) + this.name = 'HeadersOverflowError' + this.message = message || 'Headers Overflow Error' + this.code = 'UND_ERR_HEADERS_OVERFLOW' + } +} + +class BodyTimeoutError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, BodyTimeoutError) + this.name = 'BodyTimeoutError' + this.message = message || 'Body Timeout Error' + this.code = 'UND_ERR_BODY_TIMEOUT' + } +} + +class ResponseStatusCodeError extends UndiciError { + constructor (message, statusCode, headers, body) { + super(message) + Error.captureStackTrace(this, ResponseStatusCodeError) + this.name = 'ResponseStatusCodeError' + this.message = message || 'Response Status Code Error' + this.code = 'UND_ERR_RESPONSE_STATUS_CODE' + this.body = body + this.status = statusCode + this.statusCode = statusCode + this.headers = headers + } +} + +class InvalidArgumentError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, InvalidArgumentError) + this.name = 'InvalidArgumentError' + this.message = message || 'Invalid Argument Error' + this.code = 'UND_ERR_INVALID_ARG' + } +} + +class InvalidReturnValueError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, InvalidReturnValueError) + this.name = 'InvalidReturnValueError' + this.message = message || 'Invalid Return Value Error' + this.code = 'UND_ERR_INVALID_RETURN_VALUE' + } +} + +class RequestAbortedError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, RequestAbortedError) + this.name = 'AbortError' + this.message = message || 'Request aborted' + this.code = 'UND_ERR_ABORTED' + } +} + +class InformationalError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, InformationalError) + this.name = 'InformationalError' + this.message = message || 'Request information' + this.code = 'UND_ERR_INFO' + } +} + +class RequestContentLengthMismatchError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, RequestContentLengthMismatchError) + this.name = 'RequestContentLengthMismatchError' + this.message = message || 'Request body length does not match content-length header' + this.code = 'UND_ERR_REQ_CONTENT_LENGTH_MISMATCH' + } +} + +class ResponseContentLengthMismatchError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, ResponseContentLengthMismatchError) + this.name = 'ResponseContentLengthMismatchError' + this.message = message || 'Response body length does not match content-length header' + this.code = 'UND_ERR_RES_CONTENT_LENGTH_MISMATCH' + } +} + +class ClientDestroyedError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, ClientDestroyedError) + this.name = 'ClientDestroyedError' + this.message = message || 'The client is destroyed' + this.code = 'UND_ERR_DESTROYED' + } +} + +class ClientClosedError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, ClientClosedError) + this.name = 'ClientClosedError' + this.message = message || 'The client is closed' + this.code = 'UND_ERR_CLOSED' + } +} + +class SocketError extends UndiciError { + constructor (message, socket) { + super(message) + Error.captureStackTrace(this, SocketError) + this.name = 'SocketError' + this.message = message || 'Socket error' + this.code = 'UND_ERR_SOCKET' + this.socket = socket + } +} + +class NotSupportedError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, NotSupportedError) + this.name = 'NotSupportedError' + this.message = message || 'Not supported error' + this.code = 'UND_ERR_NOT_SUPPORTED' + } +} + +class BalancedPoolMissingUpstreamError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, NotSupportedError) + this.name = 'MissingUpstreamError' + this.message = message || 'No upstream has been added to the BalancedPool' + this.code = 'UND_ERR_BPL_MISSING_UPSTREAM' + } +} + +class HTTPParserError extends Error { + constructor (message, code, data) { + super(message) + Error.captureStackTrace(this, HTTPParserError) + this.name = 'HTTPParserError' + this.code = code ? `HPE_${code}` : undefined + this.data = data ? data.toString() : undefined + } +} + +class ResponseExceededMaxSizeError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, ResponseExceededMaxSizeError) + this.name = 'ResponseExceededMaxSizeError' + this.message = message || 'Response content exceeded max size' + this.code = 'UND_ERR_RES_EXCEEDED_MAX_SIZE' + } +} + +class RequestRetryError extends UndiciError { + constructor (message, code, { headers, data }) { + super(message) + Error.captureStackTrace(this, RequestRetryError) + this.name = 'RequestRetryError' + this.message = message || 'Request retry error' + this.code = 'UND_ERR_REQ_RETRY' + this.statusCode = code + this.data = data + this.headers = headers + } +} + +module.exports = { + HTTPParserError, + UndiciError, + HeadersTimeoutError, + HeadersOverflowError, + BodyTimeoutError, + RequestContentLengthMismatchError, + ConnectTimeoutError, + ResponseStatusCodeError, + InvalidArgumentError, + InvalidReturnValueError, + RequestAbortedError, + ClientDestroyedError, + ClientClosedError, + InformationalError, + SocketError, + NotSupportedError, + ResponseContentLengthMismatchError, + BalancedPoolMissingUpstreamError, + ResponseExceededMaxSizeError, + RequestRetryError +} + + +/***/ }), + +/***/ 4655: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + InvalidArgumentError, + NotSupportedError +} = __nccwpck_require__(8707) +const assert = __nccwpck_require__(2613) +const { kHTTP2BuildRequest, kHTTP2CopyHeaders, kHTTP1BuildRequest } = __nccwpck_require__(6443) +const util = __nccwpck_require__(3440) + +// tokenRegExp and headerCharRegex have been lifted from +// https://github.com/nodejs/node/blob/main/lib/_http_common.js + +/** + * Verifies that the given val is a valid HTTP token + * per the rules defined in RFC 7230 + * See https://tools.ietf.org/html/rfc7230#section-3.2.6 + */ +const tokenRegExp = /^[\^_`a-zA-Z\-0-9!#$%&'*+.|~]+$/ + +/** + * Matches if val contains an invalid field-vchar + * field-value = *( field-content / obs-fold ) + * field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] + * field-vchar = VCHAR / obs-text + */ +const headerCharRegex = /[^\t\x20-\x7e\x80-\xff]/ + +// Verifies that a given path is valid does not contain control chars \x00 to \x20 +const invalidPathRegex = /[^\u0021-\u00ff]/ + +const kHandler = Symbol('handler') + +const channels = {} + +let extractBody + +try { + const diagnosticsChannel = __nccwpck_require__(1637) + channels.create = diagnosticsChannel.channel('undici:request:create') + channels.bodySent = diagnosticsChannel.channel('undici:request:bodySent') + channels.headers = diagnosticsChannel.channel('undici:request:headers') + channels.trailers = diagnosticsChannel.channel('undici:request:trailers') + channels.error = diagnosticsChannel.channel('undici:request:error') +} catch { + channels.create = { hasSubscribers: false } + channels.bodySent = { hasSubscribers: false } + channels.headers = { hasSubscribers: false } + channels.trailers = { hasSubscribers: false } + channels.error = { hasSubscribers: false } +} + +class Request { + constructor (origin, { + path, + method, + body, + headers, + query, + idempotent, + blocking, + upgrade, + headersTimeout, + bodyTimeout, + reset, + throwOnError, + expectContinue + }, handler) { + if (typeof path !== 'string') { + throw new InvalidArgumentError('path must be a string') + } else if ( + path[0] !== '/' && + !(path.startsWith('http://') || path.startsWith('https://')) && + method !== 'CONNECT' + ) { + throw new InvalidArgumentError('path must be an absolute URL or start with a slash') + } else if (invalidPathRegex.exec(path) !== null) { + throw new InvalidArgumentError('invalid request path') + } + + if (typeof method !== 'string') { + throw new InvalidArgumentError('method must be a string') + } else if (tokenRegExp.exec(method) === null) { + throw new InvalidArgumentError('invalid request method') + } + + if (upgrade && typeof upgrade !== 'string') { + throw new InvalidArgumentError('upgrade must be a string') + } + + if (headersTimeout != null && (!Number.isFinite(headersTimeout) || headersTimeout < 0)) { + throw new InvalidArgumentError('invalid headersTimeout') + } + + if (bodyTimeout != null && (!Number.isFinite(bodyTimeout) || bodyTimeout < 0)) { + throw new InvalidArgumentError('invalid bodyTimeout') + } + + if (reset != null && typeof reset !== 'boolean') { + throw new InvalidArgumentError('invalid reset') + } + + if (expectContinue != null && typeof expectContinue !== 'boolean') { + throw new InvalidArgumentError('invalid expectContinue') + } + + this.headersTimeout = headersTimeout + + this.bodyTimeout = bodyTimeout + + this.throwOnError = throwOnError === true + + this.method = method + + this.abort = null + + if (body == null) { + this.body = null + } else if (util.isStream(body)) { + this.body = body + + const rState = this.body._readableState + if (!rState || !rState.autoDestroy) { + this.endHandler = function autoDestroy () { + util.destroy(this) + } + this.body.on('end', this.endHandler) + } + + this.errorHandler = err => { + if (this.abort) { + this.abort(err) + } else { + this.error = err + } + } + this.body.on('error', this.errorHandler) + } else if (util.isBuffer(body)) { + this.body = body.byteLength ? body : null + } else if (ArrayBuffer.isView(body)) { + this.body = body.buffer.byteLength ? Buffer.from(body.buffer, body.byteOffset, body.byteLength) : null + } else if (body instanceof ArrayBuffer) { + this.body = body.byteLength ? Buffer.from(body) : null + } else if (typeof body === 'string') { + this.body = body.length ? Buffer.from(body) : null + } else if (util.isFormDataLike(body) || util.isIterable(body) || util.isBlobLike(body)) { + this.body = body + } else { + throw new InvalidArgumentError('body must be a string, a Buffer, a Readable stream, an iterable, or an async iterable') + } + + this.completed = false + + this.aborted = false + + this.upgrade = upgrade || null + + this.path = query ? util.buildURL(path, query) : path + + this.origin = origin + + this.idempotent = idempotent == null + ? method === 'HEAD' || method === 'GET' + : idempotent + + this.blocking = blocking == null ? false : blocking + + this.reset = reset == null ? null : reset + + this.host = null + + this.contentLength = null + + this.contentType = null + + this.headers = '' + + // Only for H2 + this.expectContinue = expectContinue != null ? expectContinue : false + + if (Array.isArray(headers)) { + if (headers.length % 2 !== 0) { + throw new InvalidArgumentError('headers array must be even') + } + for (let i = 0; i < headers.length; i += 2) { + processHeader(this, headers[i], headers[i + 1]) + } + } else if (headers && typeof headers === 'object') { + const keys = Object.keys(headers) + for (let i = 0; i < keys.length; i++) { + const key = keys[i] + processHeader(this, key, headers[key]) + } + } else if (headers != null) { + throw new InvalidArgumentError('headers must be an object or an array') + } + + if (util.isFormDataLike(this.body)) { + if (util.nodeMajor < 16 || (util.nodeMajor === 16 && util.nodeMinor < 8)) { + throw new InvalidArgumentError('Form-Data bodies are only supported in node v16.8 and newer.') + } + + if (!extractBody) { + extractBody = (__nccwpck_require__(8923).extractBody) + } + + const [bodyStream, contentType] = extractBody(body) + if (this.contentType == null) { + this.contentType = contentType + this.headers += `content-type: ${contentType}\r\n` + } + this.body = bodyStream.stream + this.contentLength = bodyStream.length + } else if (util.isBlobLike(body) && this.contentType == null && body.type) { + this.contentType = body.type + this.headers += `content-type: ${body.type}\r\n` + } + + util.validateHandler(handler, method, upgrade) + + this.servername = util.getServerName(this.host) + + this[kHandler] = handler + + if (channels.create.hasSubscribers) { + channels.create.publish({ request: this }) + } + } + + onBodySent (chunk) { + if (this[kHandler].onBodySent) { + try { + return this[kHandler].onBodySent(chunk) + } catch (err) { + this.abort(err) + } + } + } + + onRequestSent () { + if (channels.bodySent.hasSubscribers) { + channels.bodySent.publish({ request: this }) + } + + if (this[kHandler].onRequestSent) { + try { + return this[kHandler].onRequestSent() + } catch (err) { + this.abort(err) + } + } + } + + onConnect (abort) { + assert(!this.aborted) + assert(!this.completed) + + if (this.error) { + abort(this.error) + } else { + this.abort = abort + return this[kHandler].onConnect(abort) + } + } + + onHeaders (statusCode, headers, resume, statusText) { + assert(!this.aborted) + assert(!this.completed) + + if (channels.headers.hasSubscribers) { + channels.headers.publish({ request: this, response: { statusCode, headers, statusText } }) + } + + try { + return this[kHandler].onHeaders(statusCode, headers, resume, statusText) + } catch (err) { + this.abort(err) + } + } + + onData (chunk) { + assert(!this.aborted) + assert(!this.completed) + + try { + return this[kHandler].onData(chunk) + } catch (err) { + this.abort(err) + return false + } + } + + onUpgrade (statusCode, headers, socket) { + assert(!this.aborted) + assert(!this.completed) + + return this[kHandler].onUpgrade(statusCode, headers, socket) + } + + onComplete (trailers) { + this.onFinally() + + assert(!this.aborted) + + this.completed = true + if (channels.trailers.hasSubscribers) { + channels.trailers.publish({ request: this, trailers }) + } + + try { + return this[kHandler].onComplete(trailers) + } catch (err) { + // TODO (fix): This might be a bad idea? + this.onError(err) + } + } + + onError (error) { + this.onFinally() + + if (channels.error.hasSubscribers) { + channels.error.publish({ request: this, error }) + } + + if (this.aborted) { + return + } + this.aborted = true + + return this[kHandler].onError(error) + } + + onFinally () { + if (this.errorHandler) { + this.body.off('error', this.errorHandler) + this.errorHandler = null + } + + if (this.endHandler) { + this.body.off('end', this.endHandler) + this.endHandler = null + } + } + + // TODO: adjust to support H2 + addHeader (key, value) { + processHeader(this, key, value) + return this + } + + static [kHTTP1BuildRequest] (origin, opts, handler) { + // TODO: Migrate header parsing here, to make Requests + // HTTP agnostic + return new Request(origin, opts, handler) + } + + static [kHTTP2BuildRequest] (origin, opts, handler) { + const headers = opts.headers + opts = { ...opts, headers: null } + + const request = new Request(origin, opts, handler) + + request.headers = {} + + if (Array.isArray(headers)) { + if (headers.length % 2 !== 0) { + throw new InvalidArgumentError('headers array must be even') + } + for (let i = 0; i < headers.length; i += 2) { + processHeader(request, headers[i], headers[i + 1], true) + } + } else if (headers && typeof headers === 'object') { + const keys = Object.keys(headers) + for (let i = 0; i < keys.length; i++) { + const key = keys[i] + processHeader(request, key, headers[key], true) + } + } else if (headers != null) { + throw new InvalidArgumentError('headers must be an object or an array') + } + + return request + } + + static [kHTTP2CopyHeaders] (raw) { + const rawHeaders = raw.split('\r\n') + const headers = {} + + for (const header of rawHeaders) { + const [key, value] = header.split(': ') + + if (value == null || value.length === 0) continue + + if (headers[key]) headers[key] += `,${value}` + else headers[key] = value + } + + return headers + } +} + +function processHeaderValue (key, val, skipAppend) { + if (val && typeof val === 'object') { + throw new InvalidArgumentError(`invalid ${key} header`) + } + + val = val != null ? `${val}` : '' + + if (headerCharRegex.exec(val) !== null) { + throw new InvalidArgumentError(`invalid ${key} header`) + } + + return skipAppend ? val : `${key}: ${val}\r\n` +} + +function processHeader (request, key, val, skipAppend = false) { + if (val && (typeof val === 'object' && !Array.isArray(val))) { + throw new InvalidArgumentError(`invalid ${key} header`) + } else if (val === undefined) { + return + } + + if ( + request.host === null && + key.length === 4 && + key.toLowerCase() === 'host' + ) { + if (headerCharRegex.exec(val) !== null) { + throw new InvalidArgumentError(`invalid ${key} header`) + } + // Consumed by Client + request.host = val + } else if ( + request.contentLength === null && + key.length === 14 && + key.toLowerCase() === 'content-length' + ) { + request.contentLength = parseInt(val, 10) + if (!Number.isFinite(request.contentLength)) { + throw new InvalidArgumentError('invalid content-length header') + } + } else if ( + request.contentType === null && + key.length === 12 && + key.toLowerCase() === 'content-type' + ) { + request.contentType = val + if (skipAppend) request.headers[key] = processHeaderValue(key, val, skipAppend) + else request.headers += processHeaderValue(key, val) + } else if ( + key.length === 17 && + key.toLowerCase() === 'transfer-encoding' + ) { + throw new InvalidArgumentError('invalid transfer-encoding header') + } else if ( + key.length === 10 && + key.toLowerCase() === 'connection' + ) { + const value = typeof val === 'string' ? val.toLowerCase() : null + if (value !== 'close' && value !== 'keep-alive') { + throw new InvalidArgumentError('invalid connection header') + } else if (value === 'close') { + request.reset = true + } + } else if ( + key.length === 10 && + key.toLowerCase() === 'keep-alive' + ) { + throw new InvalidArgumentError('invalid keep-alive header') + } else if ( + key.length === 7 && + key.toLowerCase() === 'upgrade' + ) { + throw new InvalidArgumentError('invalid upgrade header') + } else if ( + key.length === 6 && + key.toLowerCase() === 'expect' + ) { + throw new NotSupportedError('expect header not supported') + } else if (tokenRegExp.exec(key) === null) { + throw new InvalidArgumentError('invalid header key') + } else { + if (Array.isArray(val)) { + for (let i = 0; i < val.length; i++) { + if (skipAppend) { + if (request.headers[key]) request.headers[key] += `,${processHeaderValue(key, val[i], skipAppend)}` + else request.headers[key] = processHeaderValue(key, val[i], skipAppend) + } else { + request.headers += processHeaderValue(key, val[i]) + } + } + } else { + if (skipAppend) request.headers[key] = processHeaderValue(key, val, skipAppend) + else request.headers += processHeaderValue(key, val) + } + } +} + +module.exports = Request + + +/***/ }), + +/***/ 6443: +/***/ ((module) => { + +module.exports = { + kClose: Symbol('close'), + kDestroy: Symbol('destroy'), + kDispatch: Symbol('dispatch'), + kUrl: Symbol('url'), + kWriting: Symbol('writing'), + kResuming: Symbol('resuming'), + kQueue: Symbol('queue'), + kConnect: Symbol('connect'), + kConnecting: Symbol('connecting'), + kHeadersList: Symbol('headers list'), + kKeepAliveDefaultTimeout: Symbol('default keep alive timeout'), + kKeepAliveMaxTimeout: Symbol('max keep alive timeout'), + kKeepAliveTimeoutThreshold: Symbol('keep alive timeout threshold'), + kKeepAliveTimeoutValue: Symbol('keep alive timeout'), + kKeepAlive: Symbol('keep alive'), + kHeadersTimeout: Symbol('headers timeout'), + kBodyTimeout: Symbol('body timeout'), + kServerName: Symbol('server name'), + kLocalAddress: Symbol('local address'), + kHost: Symbol('host'), + kNoRef: Symbol('no ref'), + kBodyUsed: Symbol('used'), + kRunning: Symbol('running'), + kBlocking: Symbol('blocking'), + kPending: Symbol('pending'), + kSize: Symbol('size'), + kBusy: Symbol('busy'), + kQueued: Symbol('queued'), + kFree: Symbol('free'), + kConnected: Symbol('connected'), + kClosed: Symbol('closed'), + kNeedDrain: Symbol('need drain'), + kReset: Symbol('reset'), + kDestroyed: Symbol.for('nodejs.stream.destroyed'), + kMaxHeadersSize: Symbol('max headers size'), + kRunningIdx: Symbol('running index'), + kPendingIdx: Symbol('pending index'), + kError: Symbol('error'), + kClients: Symbol('clients'), + kClient: Symbol('client'), + kParser: Symbol('parser'), + kOnDestroyed: Symbol('destroy callbacks'), + kPipelining: Symbol('pipelining'), + kSocket: Symbol('socket'), + kHostHeader: Symbol('host header'), + kConnector: Symbol('connector'), + kStrictContentLength: Symbol('strict content length'), + kMaxRedirections: Symbol('maxRedirections'), + kMaxRequests: Symbol('maxRequestsPerClient'), + kProxy: Symbol('proxy agent options'), + kCounter: Symbol('socket request counter'), + kInterceptors: Symbol('dispatch interceptors'), + kMaxResponseSize: Symbol('max response size'), + kHTTP2Session: Symbol('http2Session'), + kHTTP2SessionState: Symbol('http2Session state'), + kHTTP2BuildRequest: Symbol('http2 build request'), + kHTTP1BuildRequest: Symbol('http1 build request'), + kHTTP2CopyHeaders: Symbol('http2 copy headers'), + kHTTPConnVersion: Symbol('http connection version'), + kRetryHandlerDefaultRetry: Symbol('retry agent default retry'), + kConstruct: Symbol('constructable') +} + + +/***/ }), + +/***/ 3440: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const assert = __nccwpck_require__(2613) +const { kDestroyed, kBodyUsed } = __nccwpck_require__(6443) +const { IncomingMessage } = __nccwpck_require__(8611) +const stream = __nccwpck_require__(2203) +const net = __nccwpck_require__(9278) +const { InvalidArgumentError } = __nccwpck_require__(8707) +const { Blob } = __nccwpck_require__(181) +const nodeUtil = __nccwpck_require__(9023) +const { stringify } = __nccwpck_require__(3480) +const { headerNameLowerCasedRecord } = __nccwpck_require__(735) + +const [nodeMajor, nodeMinor] = process.versions.node.split('.').map(v => Number(v)) + +function nop () {} + +function isStream (obj) { + return obj && typeof obj === 'object' && typeof obj.pipe === 'function' && typeof obj.on === 'function' +} + +// based on https://github.com/node-fetch/fetch-blob/blob/8ab587d34080de94140b54f07168451e7d0b655e/index.js#L229-L241 (MIT License) +function isBlobLike (object) { + return (Blob && object instanceof Blob) || ( + object && + typeof object === 'object' && + (typeof object.stream === 'function' || + typeof object.arrayBuffer === 'function') && + /^(Blob|File)$/.test(object[Symbol.toStringTag]) + ) +} + +function buildURL (url, queryParams) { + if (url.includes('?') || url.includes('#')) { + throw new Error('Query params cannot be passed when url already contains "?" or "#".') + } + + const stringified = stringify(queryParams) + + if (stringified) { + url += '?' + stringified + } + + return url +} + +function parseURL (url) { + if (typeof url === 'string') { + url = new URL(url) + + if (!/^https?:/.test(url.origin || url.protocol)) { + throw new InvalidArgumentError('Invalid URL protocol: the URL must start with `http:` or `https:`.') + } + + return url + } + + if (!url || typeof url !== 'object') { + throw new InvalidArgumentError('Invalid URL: The URL argument must be a non-null object.') + } + + if (!/^https?:/.test(url.origin || url.protocol)) { + throw new InvalidArgumentError('Invalid URL protocol: the URL must start with `http:` or `https:`.') + } + + if (!(url instanceof URL)) { + if (url.port != null && url.port !== '' && !Number.isFinite(parseInt(url.port))) { + throw new InvalidArgumentError('Invalid URL: port must be a valid integer or a string representation of an integer.') + } + + if (url.path != null && typeof url.path !== 'string') { + throw new InvalidArgumentError('Invalid URL path: the path must be a string or null/undefined.') + } + + if (url.pathname != null && typeof url.pathname !== 'string') { + throw new InvalidArgumentError('Invalid URL pathname: the pathname must be a string or null/undefined.') + } + + if (url.hostname != null && typeof url.hostname !== 'string') { + throw new InvalidArgumentError('Invalid URL hostname: the hostname must be a string or null/undefined.') + } + + if (url.origin != null && typeof url.origin !== 'string') { + throw new InvalidArgumentError('Invalid URL origin: the origin must be a string or null/undefined.') + } + + const port = url.port != null + ? url.port + : (url.protocol === 'https:' ? 443 : 80) + let origin = url.origin != null + ? url.origin + : `${url.protocol}//${url.hostname}:${port}` + let path = url.path != null + ? url.path + : `${url.pathname || ''}${url.search || ''}` + + if (origin.endsWith('/')) { + origin = origin.substring(0, origin.length - 1) + } + + if (path && !path.startsWith('/')) { + path = `/${path}` + } + // new URL(path, origin) is unsafe when `path` contains an absolute URL + // From https://developer.mozilla.org/en-US/docs/Web/API/URL/URL: + // If first parameter is a relative URL, second param is required, and will be used as the base URL. + // If first parameter is an absolute URL, a given second param will be ignored. + url = new URL(origin + path) + } + + return url +} + +function parseOrigin (url) { + url = parseURL(url) + + if (url.pathname !== '/' || url.search || url.hash) { + throw new InvalidArgumentError('invalid url') + } + + return url +} + +function getHostname (host) { + if (host[0] === '[') { + const idx = host.indexOf(']') + + assert(idx !== -1) + return host.substring(1, idx) + } + + const idx = host.indexOf(':') + if (idx === -1) return host + + return host.substring(0, idx) +} + +// IP addresses are not valid server names per RFC6066 +// > Currently, the only server names supported are DNS hostnames +function getServerName (host) { + if (!host) { + return null + } + + assert.strictEqual(typeof host, 'string') + + const servername = getHostname(host) + if (net.isIP(servername)) { + return '' + } + + return servername +} + +function deepClone (obj) { + return JSON.parse(JSON.stringify(obj)) +} + +function isAsyncIterable (obj) { + return !!(obj != null && typeof obj[Symbol.asyncIterator] === 'function') +} + +function isIterable (obj) { + return !!(obj != null && (typeof obj[Symbol.iterator] === 'function' || typeof obj[Symbol.asyncIterator] === 'function')) +} + +function bodyLength (body) { + if (body == null) { + return 0 + } else if (isStream(body)) { + const state = body._readableState + return state && state.objectMode === false && state.ended === true && Number.isFinite(state.length) + ? state.length + : null + } else if (isBlobLike(body)) { + return body.size != null ? body.size : null + } else if (isBuffer(body)) { + return body.byteLength + } + + return null +} + +function isDestroyed (stream) { + return !stream || !!(stream.destroyed || stream[kDestroyed]) +} + +function isReadableAborted (stream) { + const state = stream && stream._readableState + return isDestroyed(stream) && state && !state.endEmitted +} + +function destroy (stream, err) { + if (stream == null || !isStream(stream) || isDestroyed(stream)) { + return + } + + if (typeof stream.destroy === 'function') { + if (Object.getPrototypeOf(stream).constructor === IncomingMessage) { + // See: https://github.com/nodejs/node/pull/38505/files + stream.socket = null + } + + stream.destroy(err) + } else if (err) { + process.nextTick((stream, err) => { + stream.emit('error', err) + }, stream, err) + } + + if (stream.destroyed !== true) { + stream[kDestroyed] = true + } +} + +const KEEPALIVE_TIMEOUT_EXPR = /timeout=(\d+)/ +function parseKeepAliveTimeout (val) { + const m = val.toString().match(KEEPALIVE_TIMEOUT_EXPR) + return m ? parseInt(m[1], 10) * 1000 : null +} + +/** + * Retrieves a header name and returns its lowercase value. + * @param {string | Buffer} value Header name + * @returns {string} + */ +function headerNameToString (value) { + return headerNameLowerCasedRecord[value] || value.toLowerCase() +} + +function parseHeaders (headers, obj = {}) { + // For H2 support + if (!Array.isArray(headers)) return headers + + for (let i = 0; i < headers.length; i += 2) { + const key = headers[i].toString().toLowerCase() + let val = obj[key] + + if (!val) { + if (Array.isArray(headers[i + 1])) { + obj[key] = headers[i + 1].map(x => x.toString('utf8')) + } else { + obj[key] = headers[i + 1].toString('utf8') + } + } else { + if (!Array.isArray(val)) { + val = [val] + obj[key] = val + } + val.push(headers[i + 1].toString('utf8')) + } + } + + // See https://github.com/nodejs/node/pull/46528 + if ('content-length' in obj && 'content-disposition' in obj) { + obj['content-disposition'] = Buffer.from(obj['content-disposition']).toString('latin1') + } + + return obj +} + +function parseRawHeaders (headers) { + const ret = [] + let hasContentLength = false + let contentDispositionIdx = -1 + + for (let n = 0; n < headers.length; n += 2) { + const key = headers[n + 0].toString() + const val = headers[n + 1].toString('utf8') + + if (key.length === 14 && (key === 'content-length' || key.toLowerCase() === 'content-length')) { + ret.push(key, val) + hasContentLength = true + } else if (key.length === 19 && (key === 'content-disposition' || key.toLowerCase() === 'content-disposition')) { + contentDispositionIdx = ret.push(key, val) - 1 + } else { + ret.push(key, val) + } + } + + // See https://github.com/nodejs/node/pull/46528 + if (hasContentLength && contentDispositionIdx !== -1) { + ret[contentDispositionIdx] = Buffer.from(ret[contentDispositionIdx]).toString('latin1') + } + + return ret +} + +function isBuffer (buffer) { + // See, https://github.com/mcollina/undici/pull/319 + return buffer instanceof Uint8Array || Buffer.isBuffer(buffer) +} + +function validateHandler (handler, method, upgrade) { + if (!handler || typeof handler !== 'object') { + throw new InvalidArgumentError('handler must be an object') + } + + if (typeof handler.onConnect !== 'function') { + throw new InvalidArgumentError('invalid onConnect method') + } + + if (typeof handler.onError !== 'function') { + throw new InvalidArgumentError('invalid onError method') + } + + if (typeof handler.onBodySent !== 'function' && handler.onBodySent !== undefined) { + throw new InvalidArgumentError('invalid onBodySent method') + } + + if (upgrade || method === 'CONNECT') { + if (typeof handler.onUpgrade !== 'function') { + throw new InvalidArgumentError('invalid onUpgrade method') + } + } else { + if (typeof handler.onHeaders !== 'function') { + throw new InvalidArgumentError('invalid onHeaders method') + } + + if (typeof handler.onData !== 'function') { + throw new InvalidArgumentError('invalid onData method') + } + + if (typeof handler.onComplete !== 'function') { + throw new InvalidArgumentError('invalid onComplete method') + } + } +} + +// A body is disturbed if it has been read from and it cannot +// be re-used without losing state or data. +function isDisturbed (body) { + return !!(body && ( + stream.isDisturbed + ? stream.isDisturbed(body) || body[kBodyUsed] // TODO (fix): Why is body[kBodyUsed] needed? + : body[kBodyUsed] || + body.readableDidRead || + (body._readableState && body._readableState.dataEmitted) || + isReadableAborted(body) + )) +} + +function isErrored (body) { + return !!(body && ( + stream.isErrored + ? stream.isErrored(body) + : /state: 'errored'/.test(nodeUtil.inspect(body) + ))) +} + +function isReadable (body) { + return !!(body && ( + stream.isReadable + ? stream.isReadable(body) + : /state: 'readable'/.test(nodeUtil.inspect(body) + ))) +} + +function getSocketInfo (socket) { + return { + localAddress: socket.localAddress, + localPort: socket.localPort, + remoteAddress: socket.remoteAddress, + remotePort: socket.remotePort, + remoteFamily: socket.remoteFamily, + timeout: socket.timeout, + bytesWritten: socket.bytesWritten, + bytesRead: socket.bytesRead + } +} + +async function * convertIterableToBuffer (iterable) { + for await (const chunk of iterable) { + yield Buffer.isBuffer(chunk) ? chunk : Buffer.from(chunk) + } +} + +let ReadableStream +function ReadableStreamFrom (iterable) { + if (!ReadableStream) { + ReadableStream = (__nccwpck_require__(3774).ReadableStream) + } + + if (ReadableStream.from) { + return ReadableStream.from(convertIterableToBuffer(iterable)) + } + + let iterator + return new ReadableStream( + { + async start () { + iterator = iterable[Symbol.asyncIterator]() + }, + async pull (controller) { + const { done, value } = await iterator.next() + if (done) { + queueMicrotask(() => { + controller.close() + }) + } else { + const buf = Buffer.isBuffer(value) ? value : Buffer.from(value) + controller.enqueue(new Uint8Array(buf)) + } + return controller.desiredSize > 0 + }, + async cancel (reason) { + await iterator.return() + } + }, + 0 + ) +} + +// The chunk should be a FormData instance and contains +// all the required methods. +function isFormDataLike (object) { + return ( + object && + typeof object === 'object' && + typeof object.append === 'function' && + typeof object.delete === 'function' && + typeof object.get === 'function' && + typeof object.getAll === 'function' && + typeof object.has === 'function' && + typeof object.set === 'function' && + object[Symbol.toStringTag] === 'FormData' + ) +} + +function throwIfAborted (signal) { + if (!signal) { return } + if (typeof signal.throwIfAborted === 'function') { + signal.throwIfAborted() + } else { + if (signal.aborted) { + // DOMException not available < v17.0.0 + const err = new Error('The operation was aborted') + err.name = 'AbortError' + throw err + } + } +} + +function addAbortListener (signal, listener) { + if ('addEventListener' in signal) { + signal.addEventListener('abort', listener, { once: true }) + return () => signal.removeEventListener('abort', listener) + } + signal.addListener('abort', listener) + return () => signal.removeListener('abort', listener) +} + +const hasToWellFormed = !!String.prototype.toWellFormed + +/** + * @param {string} val + */ +function toUSVString (val) { + if (hasToWellFormed) { + return `${val}`.toWellFormed() + } else if (nodeUtil.toUSVString) { + return nodeUtil.toUSVString(val) + } + + return `${val}` +} + +// Parsed accordingly to RFC 9110 +// https://www.rfc-editor.org/rfc/rfc9110#field.content-range +function parseRangeHeader (range) { + if (range == null || range === '') return { start: 0, end: null, size: null } + + const m = range ? range.match(/^bytes (\d+)-(\d+)\/(\d+)?$/) : null + return m + ? { + start: parseInt(m[1]), + end: m[2] ? parseInt(m[2]) : null, + size: m[3] ? parseInt(m[3]) : null + } + : null +} + +const kEnumerableProperty = Object.create(null) +kEnumerableProperty.enumerable = true + +module.exports = { + kEnumerableProperty, + nop, + isDisturbed, + isErrored, + isReadable, + toUSVString, + isReadableAborted, + isBlobLike, + parseOrigin, + parseURL, + getServerName, + isStream, + isIterable, + isAsyncIterable, + isDestroyed, + headerNameToString, + parseRawHeaders, + parseHeaders, + parseKeepAliveTimeout, + destroy, + bodyLength, + deepClone, + ReadableStreamFrom, + isBuffer, + validateHandler, + getSocketInfo, + isFormDataLike, + buildURL, + throwIfAborted, + addAbortListener, + parseRangeHeader, + nodeMajor, + nodeMinor, + nodeHasAutoSelectFamily: nodeMajor > 18 || (nodeMajor === 18 && nodeMinor >= 13), + safeHTTPMethods: ['GET', 'HEAD', 'OPTIONS', 'TRACE'] +} + + +/***/ }), + +/***/ 1: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const Dispatcher = __nccwpck_require__(992) +const { + ClientDestroyedError, + ClientClosedError, + InvalidArgumentError +} = __nccwpck_require__(8707) +const { kDestroy, kClose, kDispatch, kInterceptors } = __nccwpck_require__(6443) + +const kDestroyed = Symbol('destroyed') +const kClosed = Symbol('closed') +const kOnDestroyed = Symbol('onDestroyed') +const kOnClosed = Symbol('onClosed') +const kInterceptedDispatch = Symbol('Intercepted Dispatch') + +class DispatcherBase extends Dispatcher { + constructor () { + super() + + this[kDestroyed] = false + this[kOnDestroyed] = null + this[kClosed] = false + this[kOnClosed] = [] + } + + get destroyed () { + return this[kDestroyed] + } + + get closed () { + return this[kClosed] + } + + get interceptors () { + return this[kInterceptors] + } + + set interceptors (newInterceptors) { + if (newInterceptors) { + for (let i = newInterceptors.length - 1; i >= 0; i--) { + const interceptor = this[kInterceptors][i] + if (typeof interceptor !== 'function') { + throw new InvalidArgumentError('interceptor must be an function') + } + } + } + + this[kInterceptors] = newInterceptors + } + + close (callback) { + if (callback === undefined) { + return new Promise((resolve, reject) => { + this.close((err, data) => { + return err ? reject(err) : resolve(data) + }) + }) + } + + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + if (this[kDestroyed]) { + queueMicrotask(() => callback(new ClientDestroyedError(), null)) + return + } + + if (this[kClosed]) { + if (this[kOnClosed]) { + this[kOnClosed].push(callback) + } else { + queueMicrotask(() => callback(null, null)) + } + return + } + + this[kClosed] = true + this[kOnClosed].push(callback) + + const onClosed = () => { + const callbacks = this[kOnClosed] + this[kOnClosed] = null + for (let i = 0; i < callbacks.length; i++) { + callbacks[i](null, null) + } + } + + // Should not error. + this[kClose]() + .then(() => this.destroy()) + .then(() => { + queueMicrotask(onClosed) + }) + } + + destroy (err, callback) { + if (typeof err === 'function') { + callback = err + err = null + } + + if (callback === undefined) { + return new Promise((resolve, reject) => { + this.destroy(err, (err, data) => { + return err ? /* istanbul ignore next: should never error */ reject(err) : resolve(data) + }) + }) + } + + if (typeof callback !== 'function') { + throw new InvalidArgumentError('invalid callback') + } + + if (this[kDestroyed]) { + if (this[kOnDestroyed]) { + this[kOnDestroyed].push(callback) + } else { + queueMicrotask(() => callback(null, null)) + } + return + } + + if (!err) { + err = new ClientDestroyedError() + } + + this[kDestroyed] = true + this[kOnDestroyed] = this[kOnDestroyed] || [] + this[kOnDestroyed].push(callback) + + const onDestroyed = () => { + const callbacks = this[kOnDestroyed] + this[kOnDestroyed] = null + for (let i = 0; i < callbacks.length; i++) { + callbacks[i](null, null) + } + } + + // Should not error. + this[kDestroy](err).then(() => { + queueMicrotask(onDestroyed) + }) + } + + [kInterceptedDispatch] (opts, handler) { + if (!this[kInterceptors] || this[kInterceptors].length === 0) { + this[kInterceptedDispatch] = this[kDispatch] + return this[kDispatch](opts, handler) + } + + let dispatch = this[kDispatch].bind(this) + for (let i = this[kInterceptors].length - 1; i >= 0; i--) { + dispatch = this[kInterceptors][i](dispatch) + } + this[kInterceptedDispatch] = dispatch + return dispatch(opts, handler) + } + + dispatch (opts, handler) { + if (!handler || typeof handler !== 'object') { + throw new InvalidArgumentError('handler must be an object') + } + + try { + if (!opts || typeof opts !== 'object') { + throw new InvalidArgumentError('opts must be an object.') + } + + if (this[kDestroyed] || this[kOnDestroyed]) { + throw new ClientDestroyedError() + } + + if (this[kClosed]) { + throw new ClientClosedError() + } + + return this[kInterceptedDispatch](opts, handler) + } catch (err) { + if (typeof handler.onError !== 'function') { + throw new InvalidArgumentError('invalid onError method') + } + + handler.onError(err) + + return false + } + } +} + +module.exports = DispatcherBase + + +/***/ }), + +/***/ 992: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const EventEmitter = __nccwpck_require__(4434) + +class Dispatcher extends EventEmitter { + dispatch () { + throw new Error('not implemented') + } + + close () { + throw new Error('not implemented') + } + + destroy () { + throw new Error('not implemented') + } +} + +module.exports = Dispatcher + + +/***/ }), + +/***/ 8923: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const Busboy = __nccwpck_require__(9581) +const util = __nccwpck_require__(3440) +const { + ReadableStreamFrom, + isBlobLike, + isReadableStreamLike, + readableStreamClose, + createDeferredPromise, + fullyReadBody +} = __nccwpck_require__(5523) +const { FormData } = __nccwpck_require__(3073) +const { kState } = __nccwpck_require__(9710) +const { webidl } = __nccwpck_require__(4222) +const { DOMException, structuredClone } = __nccwpck_require__(7326) +const { Blob, File: NativeFile } = __nccwpck_require__(181) +const { kBodyUsed } = __nccwpck_require__(6443) +const assert = __nccwpck_require__(2613) +const { isErrored } = __nccwpck_require__(3440) +const { isUint8Array, isArrayBuffer } = __nccwpck_require__(8253) +const { File: UndiciFile } = __nccwpck_require__(3041) +const { parseMIMEType, serializeAMimeType } = __nccwpck_require__(4322) + +let ReadableStream = globalThis.ReadableStream + +/** @type {globalThis['File']} */ +const File = NativeFile ?? UndiciFile +const textEncoder = new TextEncoder() +const textDecoder = new TextDecoder() + +// https://fetch.spec.whatwg.org/#concept-bodyinit-extract +function extractBody (object, keepalive = false) { + if (!ReadableStream) { + ReadableStream = (__nccwpck_require__(3774).ReadableStream) + } + + // 1. Let stream be null. + let stream = null + + // 2. If object is a ReadableStream object, then set stream to object. + if (object instanceof ReadableStream) { + stream = object + } else if (isBlobLike(object)) { + // 3. Otherwise, if object is a Blob object, set stream to the + // result of running object’s get stream. + stream = object.stream() + } else { + // 4. Otherwise, set stream to a new ReadableStream object, and set + // up stream. + stream = new ReadableStream({ + async pull (controller) { + controller.enqueue( + typeof source === 'string' ? textEncoder.encode(source) : source + ) + queueMicrotask(() => readableStreamClose(controller)) + }, + start () {}, + type: undefined + }) + } + + // 5. Assert: stream is a ReadableStream object. + assert(isReadableStreamLike(stream)) + + // 6. Let action be null. + let action = null + + // 7. Let source be null. + let source = null + + // 8. Let length be null. + let length = null + + // 9. Let type be null. + let type = null + + // 10. Switch on object: + if (typeof object === 'string') { + // Set source to the UTF-8 encoding of object. + // Note: setting source to a Uint8Array here breaks some mocking assumptions. + source = object + + // Set type to `text/plain;charset=UTF-8`. + type = 'text/plain;charset=UTF-8' + } else if (object instanceof URLSearchParams) { + // URLSearchParams + + // spec says to run application/x-www-form-urlencoded on body.list + // this is implemented in Node.js as apart of an URLSearchParams instance toString method + // See: https://github.com/nodejs/node/blob/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/lib/internal/url.js#L490 + // and https://github.com/nodejs/node/blob/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/lib/internal/url.js#L1100 + + // Set source to the result of running the application/x-www-form-urlencoded serializer with object’s list. + source = object.toString() + + // Set type to `application/x-www-form-urlencoded;charset=UTF-8`. + type = 'application/x-www-form-urlencoded;charset=UTF-8' + } else if (isArrayBuffer(object)) { + // BufferSource/ArrayBuffer + + // Set source to a copy of the bytes held by object. + source = new Uint8Array(object.slice()) + } else if (ArrayBuffer.isView(object)) { + // BufferSource/ArrayBufferView + + // Set source to a copy of the bytes held by object. + source = new Uint8Array(object.buffer.slice(object.byteOffset, object.byteOffset + object.byteLength)) + } else if (util.isFormDataLike(object)) { + const boundary = `----formdata-undici-0${`${Math.floor(Math.random() * 1e11)}`.padStart(11, '0')}` + const prefix = `--${boundary}\r\nContent-Disposition: form-data` + + /*! formdata-polyfill. MIT License. Jimmy Wärting */ + const escape = (str) => + str.replace(/\n/g, '%0A').replace(/\r/g, '%0D').replace(/"/g, '%22') + const normalizeLinefeeds = (value) => value.replace(/\r?\n|\r/g, '\r\n') + + // Set action to this step: run the multipart/form-data + // encoding algorithm, with object’s entry list and UTF-8. + // - This ensures that the body is immutable and can't be changed afterwords + // - That the content-length is calculated in advance. + // - And that all parts are pre-encoded and ready to be sent. + + const blobParts = [] + const rn = new Uint8Array([13, 10]) // '\r\n' + length = 0 + let hasUnknownSizeValue = false + + for (const [name, value] of object) { + if (typeof value === 'string') { + const chunk = textEncoder.encode(prefix + + `; name="${escape(normalizeLinefeeds(name))}"` + + `\r\n\r\n${normalizeLinefeeds(value)}\r\n`) + blobParts.push(chunk) + length += chunk.byteLength + } else { + const chunk = textEncoder.encode(`${prefix}; name="${escape(normalizeLinefeeds(name))}"` + + (value.name ? `; filename="${escape(value.name)}"` : '') + '\r\n' + + `Content-Type: ${ + value.type || 'application/octet-stream' + }\r\n\r\n`) + blobParts.push(chunk, value, rn) + if (typeof value.size === 'number') { + length += chunk.byteLength + value.size + rn.byteLength + } else { + hasUnknownSizeValue = true + } + } + } + + const chunk = textEncoder.encode(`--${boundary}--`) + blobParts.push(chunk) + length += chunk.byteLength + if (hasUnknownSizeValue) { + length = null + } + + // Set source to object. + source = object + + action = async function * () { + for (const part of blobParts) { + if (part.stream) { + yield * part.stream() + } else { + yield part + } + } + } + + // Set type to `multipart/form-data; boundary=`, + // followed by the multipart/form-data boundary string generated + // by the multipart/form-data encoding algorithm. + type = 'multipart/form-data; boundary=' + boundary + } else if (isBlobLike(object)) { + // Blob + + // Set source to object. + source = object + + // Set length to object’s size. + length = object.size + + // If object’s type attribute is not the empty byte sequence, set + // type to its value. + if (object.type) { + type = object.type + } + } else if (typeof object[Symbol.asyncIterator] === 'function') { + // If keepalive is true, then throw a TypeError. + if (keepalive) { + throw new TypeError('keepalive') + } + + // If object is disturbed or locked, then throw a TypeError. + if (util.isDisturbed(object) || object.locked) { + throw new TypeError( + 'Response body object should not be disturbed or locked' + ) + } + + stream = + object instanceof ReadableStream ? object : ReadableStreamFrom(object) + } + + // 11. If source is a byte sequence, then set action to a + // step that returns source and length to source’s length. + if (typeof source === 'string' || util.isBuffer(source)) { + length = Buffer.byteLength(source) + } + + // 12. If action is non-null, then run these steps in in parallel: + if (action != null) { + // Run action. + let iterator + stream = new ReadableStream({ + async start () { + iterator = action(object)[Symbol.asyncIterator]() + }, + async pull (controller) { + const { value, done } = await iterator.next() + if (done) { + // When running action is done, close stream. + queueMicrotask(() => { + controller.close() + }) + } else { + // Whenever one or more bytes are available and stream is not errored, + // enqueue a Uint8Array wrapping an ArrayBuffer containing the available + // bytes into stream. + if (!isErrored(stream)) { + controller.enqueue(new Uint8Array(value)) + } + } + return controller.desiredSize > 0 + }, + async cancel (reason) { + await iterator.return() + }, + type: undefined + }) + } + + // 13. Let body be a body whose stream is stream, source is source, + // and length is length. + const body = { stream, source, length } + + // 14. Return (body, type). + return [body, type] +} + +// https://fetch.spec.whatwg.org/#bodyinit-safely-extract +function safelyExtractBody (object, keepalive = false) { + if (!ReadableStream) { + // istanbul ignore next + ReadableStream = (__nccwpck_require__(3774).ReadableStream) + } + + // To safely extract a body and a `Content-Type` value from + // a byte sequence or BodyInit object object, run these steps: + + // 1. If object is a ReadableStream object, then: + if (object instanceof ReadableStream) { + // Assert: object is neither disturbed nor locked. + // istanbul ignore next + assert(!util.isDisturbed(object), 'The body has already been consumed.') + // istanbul ignore next + assert(!object.locked, 'The stream is locked.') + } + + // 2. Return the results of extracting object. + return extractBody(object, keepalive) +} + +function cloneBody (body) { + // To clone a body body, run these steps: + + // https://fetch.spec.whatwg.org/#concept-body-clone + + // 1. Let « out1, out2 » be the result of teeing body’s stream. + const [out1, out2] = body.stream.tee() + const out2Clone = structuredClone(out2, { transfer: [out2] }) + // This, for whatever reasons, unrefs out2Clone which allows + // the process to exit by itself. + const [, finalClone] = out2Clone.tee() + + // 2. Set body’s stream to out1. + body.stream = out1 + + // 3. Return a body whose stream is out2 and other members are copied from body. + return { + stream: finalClone, + length: body.length, + source: body.source + } +} + +async function * consumeBody (body) { + if (body) { + if (isUint8Array(body)) { + yield body + } else { + const stream = body.stream + + if (util.isDisturbed(stream)) { + throw new TypeError('The body has already been consumed.') + } + + if (stream.locked) { + throw new TypeError('The stream is locked.') + } + + // Compat. + stream[kBodyUsed] = true + + yield * stream + } + } +} + +function throwIfAborted (state) { + if (state.aborted) { + throw new DOMException('The operation was aborted.', 'AbortError') + } +} + +function bodyMixinMethods (instance) { + const methods = { + blob () { + // The blob() method steps are to return the result of + // running consume body with this and the following step + // given a byte sequence bytes: return a Blob whose + // contents are bytes and whose type attribute is this’s + // MIME type. + return specConsumeBody(this, (bytes) => { + let mimeType = bodyMimeType(this) + + if (mimeType === 'failure') { + mimeType = '' + } else if (mimeType) { + mimeType = serializeAMimeType(mimeType) + } + + // Return a Blob whose contents are bytes and type attribute + // is mimeType. + return new Blob([bytes], { type: mimeType }) + }, instance) + }, + + arrayBuffer () { + // The arrayBuffer() method steps are to return the result + // of running consume body with this and the following step + // given a byte sequence bytes: return a new ArrayBuffer + // whose contents are bytes. + return specConsumeBody(this, (bytes) => { + return new Uint8Array(bytes).buffer + }, instance) + }, + + text () { + // The text() method steps are to return the result of running + // consume body with this and UTF-8 decode. + return specConsumeBody(this, utf8DecodeBytes, instance) + }, + + json () { + // The json() method steps are to return the result of running + // consume body with this and parse JSON from bytes. + return specConsumeBody(this, parseJSONFromBytes, instance) + }, + + async formData () { + webidl.brandCheck(this, instance) + + throwIfAborted(this[kState]) + + const contentType = this.headers.get('Content-Type') + + // If mimeType’s essence is "multipart/form-data", then: + if (/multipart\/form-data/.test(contentType)) { + const headers = {} + for (const [key, value] of this.headers) headers[key.toLowerCase()] = value + + const responseFormData = new FormData() + + let busboy + + try { + busboy = new Busboy({ + headers, + preservePath: true + }) + } catch (err) { + throw new DOMException(`${err}`, 'AbortError') + } + + busboy.on('field', (name, value) => { + responseFormData.append(name, value) + }) + busboy.on('file', (name, value, filename, encoding, mimeType) => { + const chunks = [] + + if (encoding === 'base64' || encoding.toLowerCase() === 'base64') { + let base64chunk = '' + + value.on('data', (chunk) => { + base64chunk += chunk.toString().replace(/[\r\n]/gm, '') + + const end = base64chunk.length - base64chunk.length % 4 + chunks.push(Buffer.from(base64chunk.slice(0, end), 'base64')) + + base64chunk = base64chunk.slice(end) + }) + value.on('end', () => { + chunks.push(Buffer.from(base64chunk, 'base64')) + responseFormData.append(name, new File(chunks, filename, { type: mimeType })) + }) + } else { + value.on('data', (chunk) => { + chunks.push(chunk) + }) + value.on('end', () => { + responseFormData.append(name, new File(chunks, filename, { type: mimeType })) + }) + } + }) + + const busboyResolve = new Promise((resolve, reject) => { + busboy.on('finish', resolve) + busboy.on('error', (err) => reject(new TypeError(err))) + }) + + if (this.body !== null) for await (const chunk of consumeBody(this[kState].body)) busboy.write(chunk) + busboy.end() + await busboyResolve + + return responseFormData + } else if (/application\/x-www-form-urlencoded/.test(contentType)) { + // Otherwise, if mimeType’s essence is "application/x-www-form-urlencoded", then: + + // 1. Let entries be the result of parsing bytes. + let entries + try { + let text = '' + // application/x-www-form-urlencoded parser will keep the BOM. + // https://url.spec.whatwg.org/#concept-urlencoded-parser + // Note that streaming decoder is stateful and cannot be reused + const streamingDecoder = new TextDecoder('utf-8', { ignoreBOM: true }) + + for await (const chunk of consumeBody(this[kState].body)) { + if (!isUint8Array(chunk)) { + throw new TypeError('Expected Uint8Array chunk') + } + text += streamingDecoder.decode(chunk, { stream: true }) + } + text += streamingDecoder.decode() + entries = new URLSearchParams(text) + } catch (err) { + // istanbul ignore next: Unclear when new URLSearchParams can fail on a string. + // 2. If entries is failure, then throw a TypeError. + throw Object.assign(new TypeError(), { cause: err }) + } + + // 3. Return a new FormData object whose entries are entries. + const formData = new FormData() + for (const [name, value] of entries) { + formData.append(name, value) + } + return formData + } else { + // Wait a tick before checking if the request has been aborted. + // Otherwise, a TypeError can be thrown when an AbortError should. + await Promise.resolve() + + throwIfAborted(this[kState]) + + // Otherwise, throw a TypeError. + throw webidl.errors.exception({ + header: `${instance.name}.formData`, + message: 'Could not parse content as FormData.' + }) + } + } + } + + return methods +} + +function mixinBody (prototype) { + Object.assign(prototype.prototype, bodyMixinMethods(prototype)) +} + +/** + * @see https://fetch.spec.whatwg.org/#concept-body-consume-body + * @param {Response|Request} object + * @param {(value: unknown) => unknown} convertBytesToJSValue + * @param {Response|Request} instance + */ +async function specConsumeBody (object, convertBytesToJSValue, instance) { + webidl.brandCheck(object, instance) + + throwIfAborted(object[kState]) + + // 1. If object is unusable, then return a promise rejected + // with a TypeError. + if (bodyUnusable(object[kState].body)) { + throw new TypeError('Body is unusable') + } + + // 2. Let promise be a new promise. + const promise = createDeferredPromise() + + // 3. Let errorSteps given error be to reject promise with error. + const errorSteps = (error) => promise.reject(error) + + // 4. Let successSteps given a byte sequence data be to resolve + // promise with the result of running convertBytesToJSValue + // with data. If that threw an exception, then run errorSteps + // with that exception. + const successSteps = (data) => { + try { + promise.resolve(convertBytesToJSValue(data)) + } catch (e) { + errorSteps(e) + } + } + + // 5. If object’s body is null, then run successSteps with an + // empty byte sequence. + if (object[kState].body == null) { + successSteps(new Uint8Array()) + return promise.promise + } + + // 6. Otherwise, fully read object’s body given successSteps, + // errorSteps, and object’s relevant global object. + await fullyReadBody(object[kState].body, successSteps, errorSteps) + + // 7. Return promise. + return promise.promise +} + +// https://fetch.spec.whatwg.org/#body-unusable +function bodyUnusable (body) { + // An object including the Body interface mixin is + // said to be unusable if its body is non-null and + // its body’s stream is disturbed or locked. + return body != null && (body.stream.locked || util.isDisturbed(body.stream)) +} + +/** + * @see https://encoding.spec.whatwg.org/#utf-8-decode + * @param {Buffer} buffer + */ +function utf8DecodeBytes (buffer) { + if (buffer.length === 0) { + return '' + } + + // 1. Let buffer be the result of peeking three bytes from + // ioQueue, converted to a byte sequence. + + // 2. If buffer is 0xEF 0xBB 0xBF, then read three + // bytes from ioQueue. (Do nothing with those bytes.) + if (buffer[0] === 0xEF && buffer[1] === 0xBB && buffer[2] === 0xBF) { + buffer = buffer.subarray(3) + } + + // 3. Process a queue with an instance of UTF-8’s + // decoder, ioQueue, output, and "replacement". + const output = textDecoder.decode(buffer) + + // 4. Return output. + return output +} + +/** + * @see https://infra.spec.whatwg.org/#parse-json-bytes-to-a-javascript-value + * @param {Uint8Array} bytes + */ +function parseJSONFromBytes (bytes) { + return JSON.parse(utf8DecodeBytes(bytes)) +} + +/** + * @see https://fetch.spec.whatwg.org/#concept-body-mime-type + * @param {import('./response').Response|import('./request').Request} object + */ +function bodyMimeType (object) { + const { headersList } = object[kState] + const contentType = headersList.get('content-type') + + if (contentType === null) { + return 'failure' + } + + return parseMIMEType(contentType) +} + +module.exports = { + extractBody, + safelyExtractBody, + cloneBody, + mixinBody +} + + +/***/ }), + +/***/ 7326: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { MessageChannel, receiveMessageOnPort } = __nccwpck_require__(8167) + +const corsSafeListedMethods = ['GET', 'HEAD', 'POST'] +const corsSafeListedMethodsSet = new Set(corsSafeListedMethods) + +const nullBodyStatus = [101, 204, 205, 304] + +const redirectStatus = [301, 302, 303, 307, 308] +const redirectStatusSet = new Set(redirectStatus) + +// https://fetch.spec.whatwg.org/#block-bad-port +const badPorts = [ + '1', '7', '9', '11', '13', '15', '17', '19', '20', '21', '22', '23', '25', '37', '42', '43', '53', '69', '77', '79', + '87', '95', '101', '102', '103', '104', '109', '110', '111', '113', '115', '117', '119', '123', '135', '137', + '139', '143', '161', '179', '389', '427', '465', '512', '513', '514', '515', '526', '530', '531', '532', + '540', '548', '554', '556', '563', '587', '601', '636', '989', '990', '993', '995', '1719', '1720', '1723', + '2049', '3659', '4045', '5060', '5061', '6000', '6566', '6665', '6666', '6667', '6668', '6669', '6697', + '10080' +] + +const badPortsSet = new Set(badPorts) + +// https://w3c.github.io/webappsec-referrer-policy/#referrer-policies +const referrerPolicy = [ + '', + 'no-referrer', + 'no-referrer-when-downgrade', + 'same-origin', + 'origin', + 'strict-origin', + 'origin-when-cross-origin', + 'strict-origin-when-cross-origin', + 'unsafe-url' +] +const referrerPolicySet = new Set(referrerPolicy) + +const requestRedirect = ['follow', 'manual', 'error'] + +const safeMethods = ['GET', 'HEAD', 'OPTIONS', 'TRACE'] +const safeMethodsSet = new Set(safeMethods) + +const requestMode = ['navigate', 'same-origin', 'no-cors', 'cors'] + +const requestCredentials = ['omit', 'same-origin', 'include'] + +const requestCache = [ + 'default', + 'no-store', + 'reload', + 'no-cache', + 'force-cache', + 'only-if-cached' +] + +// https://fetch.spec.whatwg.org/#request-body-header-name +const requestBodyHeader = [ + 'content-encoding', + 'content-language', + 'content-location', + 'content-type', + // See https://github.com/nodejs/undici/issues/2021 + // 'Content-Length' is a forbidden header name, which is typically + // removed in the Headers implementation. However, undici doesn't + // filter out headers, so we add it here. + 'content-length' +] + +// https://fetch.spec.whatwg.org/#enumdef-requestduplex +const requestDuplex = [ + 'half' +] + +// http://fetch.spec.whatwg.org/#forbidden-method +const forbiddenMethods = ['CONNECT', 'TRACE', 'TRACK'] +const forbiddenMethodsSet = new Set(forbiddenMethods) + +const subresource = [ + 'audio', + 'audioworklet', + 'font', + 'image', + 'manifest', + 'paintworklet', + 'script', + 'style', + 'track', + 'video', + 'xslt', + '' +] +const subresourceSet = new Set(subresource) + +/** @type {globalThis['DOMException']} */ +const DOMException = globalThis.DOMException ?? (() => { + // DOMException was only made a global in Node v17.0.0, + // but fetch supports >= v16.8. + try { + atob('~') + } catch (err) { + return Object.getPrototypeOf(err).constructor + } +})() + +let channel + +/** @type {globalThis['structuredClone']} */ +const structuredClone = + globalThis.structuredClone ?? + // https://github.com/nodejs/node/blob/b27ae24dcc4251bad726d9d84baf678d1f707fed/lib/internal/structured_clone.js + // structuredClone was added in v17.0.0, but fetch supports v16.8 + function structuredClone (value, options = undefined) { + if (arguments.length === 0) { + throw new TypeError('missing argument') + } + + if (!channel) { + channel = new MessageChannel() + } + channel.port1.unref() + channel.port2.unref() + channel.port1.postMessage(value, options?.transfer) + return receiveMessageOnPort(channel.port2).message + } + +module.exports = { + DOMException, + structuredClone, + subresource, + forbiddenMethods, + requestBodyHeader, + referrerPolicy, + requestRedirect, + requestMode, + requestCredentials, + requestCache, + redirectStatus, + corsSafeListedMethods, + nullBodyStatus, + safeMethods, + badPorts, + requestDuplex, + subresourceSet, + badPortsSet, + redirectStatusSet, + corsSafeListedMethodsSet, + safeMethodsSet, + forbiddenMethodsSet, + referrerPolicySet +} + + +/***/ }), + +/***/ 4322: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +const assert = __nccwpck_require__(2613) +const { atob } = __nccwpck_require__(181) +const { isomorphicDecode } = __nccwpck_require__(5523) + +const encoder = new TextEncoder() + +/** + * @see https://mimesniff.spec.whatwg.org/#http-token-code-point + */ +const HTTP_TOKEN_CODEPOINTS = /^[!#$%&'*+-.^_|~A-Za-z0-9]+$/ +const HTTP_WHITESPACE_REGEX = /(\u000A|\u000D|\u0009|\u0020)/ // eslint-disable-line +/** + * @see https://mimesniff.spec.whatwg.org/#http-quoted-string-token-code-point + */ +const HTTP_QUOTED_STRING_TOKENS = /[\u0009|\u0020-\u007E|\u0080-\u00FF]/ // eslint-disable-line + +// https://fetch.spec.whatwg.org/#data-url-processor +/** @param {URL} dataURL */ +function dataURLProcessor (dataURL) { + // 1. Assert: dataURL’s scheme is "data". + assert(dataURL.protocol === 'data:') + + // 2. Let input be the result of running the URL + // serializer on dataURL with exclude fragment + // set to true. + let input = URLSerializer(dataURL, true) + + // 3. Remove the leading "data:" string from input. + input = input.slice(5) + + // 4. Let position point at the start of input. + const position = { position: 0 } + + // 5. Let mimeType be the result of collecting a + // sequence of code points that are not equal + // to U+002C (,), given position. + let mimeType = collectASequenceOfCodePointsFast( + ',', + input, + position + ) + + // 6. Strip leading and trailing ASCII whitespace + // from mimeType. + // Undici implementation note: we need to store the + // length because if the mimetype has spaces removed, + // the wrong amount will be sliced from the input in + // step #9 + const mimeTypeLength = mimeType.length + mimeType = removeASCIIWhitespace(mimeType, true, true) + + // 7. If position is past the end of input, then + // return failure + if (position.position >= input.length) { + return 'failure' + } + + // 8. Advance position by 1. + position.position++ + + // 9. Let encodedBody be the remainder of input. + const encodedBody = input.slice(mimeTypeLength + 1) + + // 10. Let body be the percent-decoding of encodedBody. + let body = stringPercentDecode(encodedBody) + + // 11. If mimeType ends with U+003B (;), followed by + // zero or more U+0020 SPACE, followed by an ASCII + // case-insensitive match for "base64", then: + if (/;(\u0020){0,}base64$/i.test(mimeType)) { + // 1. Let stringBody be the isomorphic decode of body. + const stringBody = isomorphicDecode(body) + + // 2. Set body to the forgiving-base64 decode of + // stringBody. + body = forgivingBase64(stringBody) + + // 3. If body is failure, then return failure. + if (body === 'failure') { + return 'failure' + } + + // 4. Remove the last 6 code points from mimeType. + mimeType = mimeType.slice(0, -6) + + // 5. Remove trailing U+0020 SPACE code points from mimeType, + // if any. + mimeType = mimeType.replace(/(\u0020)+$/, '') + + // 6. Remove the last U+003B (;) code point from mimeType. + mimeType = mimeType.slice(0, -1) + } + + // 12. If mimeType starts with U+003B (;), then prepend + // "text/plain" to mimeType. + if (mimeType.startsWith(';')) { + mimeType = 'text/plain' + mimeType + } + + // 13. Let mimeTypeRecord be the result of parsing + // mimeType. + let mimeTypeRecord = parseMIMEType(mimeType) + + // 14. If mimeTypeRecord is failure, then set + // mimeTypeRecord to text/plain;charset=US-ASCII. + if (mimeTypeRecord === 'failure') { + mimeTypeRecord = parseMIMEType('text/plain;charset=US-ASCII') + } + + // 15. Return a new data: URL struct whose MIME + // type is mimeTypeRecord and body is body. + // https://fetch.spec.whatwg.org/#data-url-struct + return { mimeType: mimeTypeRecord, body } +} + +// https://url.spec.whatwg.org/#concept-url-serializer +/** + * @param {URL} url + * @param {boolean} excludeFragment + */ +function URLSerializer (url, excludeFragment = false) { + if (!excludeFragment) { + return url.href + } + + const href = url.href + const hashLength = url.hash.length + + return hashLength === 0 ? href : href.substring(0, href.length - hashLength) +} + +// https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points +/** + * @param {(char: string) => boolean} condition + * @param {string} input + * @param {{ position: number }} position + */ +function collectASequenceOfCodePoints (condition, input, position) { + // 1. Let result be the empty string. + let result = '' + + // 2. While position doesn’t point past the end of input and the + // code point at position within input meets the condition condition: + while (position.position < input.length && condition(input[position.position])) { + // 1. Append that code point to the end of result. + result += input[position.position] + + // 2. Advance position by 1. + position.position++ + } + + // 3. Return result. + return result +} + +/** + * A faster collectASequenceOfCodePoints that only works when comparing a single character. + * @param {string} char + * @param {string} input + * @param {{ position: number }} position + */ +function collectASequenceOfCodePointsFast (char, input, position) { + const idx = input.indexOf(char, position.position) + const start = position.position + + if (idx === -1) { + position.position = input.length + return input.slice(start) + } + + position.position = idx + return input.slice(start, position.position) +} + +// https://url.spec.whatwg.org/#string-percent-decode +/** @param {string} input */ +function stringPercentDecode (input) { + // 1. Let bytes be the UTF-8 encoding of input. + const bytes = encoder.encode(input) + + // 2. Return the percent-decoding of bytes. + return percentDecode(bytes) +} + +// https://url.spec.whatwg.org/#percent-decode +/** @param {Uint8Array} input */ +function percentDecode (input) { + // 1. Let output be an empty byte sequence. + /** @type {number[]} */ + const output = [] + + // 2. For each byte byte in input: + for (let i = 0; i < input.length; i++) { + const byte = input[i] + + // 1. If byte is not 0x25 (%), then append byte to output. + if (byte !== 0x25) { + output.push(byte) + + // 2. Otherwise, if byte is 0x25 (%) and the next two bytes + // after byte in input are not in the ranges + // 0x30 (0) to 0x39 (9), 0x41 (A) to 0x46 (F), + // and 0x61 (a) to 0x66 (f), all inclusive, append byte + // to output. + } else if ( + byte === 0x25 && + !/^[0-9A-Fa-f]{2}$/i.test(String.fromCharCode(input[i + 1], input[i + 2])) + ) { + output.push(0x25) + + // 3. Otherwise: + } else { + // 1. Let bytePoint be the two bytes after byte in input, + // decoded, and then interpreted as hexadecimal number. + const nextTwoBytes = String.fromCharCode(input[i + 1], input[i + 2]) + const bytePoint = Number.parseInt(nextTwoBytes, 16) + + // 2. Append a byte whose value is bytePoint to output. + output.push(bytePoint) + + // 3. Skip the next two bytes in input. + i += 2 + } + } + + // 3. Return output. + return Uint8Array.from(output) +} + +// https://mimesniff.spec.whatwg.org/#parse-a-mime-type +/** @param {string} input */ +function parseMIMEType (input) { + // 1. Remove any leading and trailing HTTP whitespace + // from input. + input = removeHTTPWhitespace(input, true, true) + + // 2. Let position be a position variable for input, + // initially pointing at the start of input. + const position = { position: 0 } + + // 3. Let type be the result of collecting a sequence + // of code points that are not U+002F (/) from + // input, given position. + const type = collectASequenceOfCodePointsFast( + '/', + input, + position + ) + + // 4. If type is the empty string or does not solely + // contain HTTP token code points, then return failure. + // https://mimesniff.spec.whatwg.org/#http-token-code-point + if (type.length === 0 || !HTTP_TOKEN_CODEPOINTS.test(type)) { + return 'failure' + } + + // 5. If position is past the end of input, then return + // failure + if (position.position > input.length) { + return 'failure' + } + + // 6. Advance position by 1. (This skips past U+002F (/).) + position.position++ + + // 7. Let subtype be the result of collecting a sequence of + // code points that are not U+003B (;) from input, given + // position. + let subtype = collectASequenceOfCodePointsFast( + ';', + input, + position + ) + + // 8. Remove any trailing HTTP whitespace from subtype. + subtype = removeHTTPWhitespace(subtype, false, true) + + // 9. If subtype is the empty string or does not solely + // contain HTTP token code points, then return failure. + if (subtype.length === 0 || !HTTP_TOKEN_CODEPOINTS.test(subtype)) { + return 'failure' + } + + const typeLowercase = type.toLowerCase() + const subtypeLowercase = subtype.toLowerCase() + + // 10. Let mimeType be a new MIME type record whose type + // is type, in ASCII lowercase, and subtype is subtype, + // in ASCII lowercase. + // https://mimesniff.spec.whatwg.org/#mime-type + const mimeType = { + type: typeLowercase, + subtype: subtypeLowercase, + /** @type {Map} */ + parameters: new Map(), + // https://mimesniff.spec.whatwg.org/#mime-type-essence + essence: `${typeLowercase}/${subtypeLowercase}` + } + + // 11. While position is not past the end of input: + while (position.position < input.length) { + // 1. Advance position by 1. (This skips past U+003B (;).) + position.position++ + + // 2. Collect a sequence of code points that are HTTP + // whitespace from input given position. + collectASequenceOfCodePoints( + // https://fetch.spec.whatwg.org/#http-whitespace + char => HTTP_WHITESPACE_REGEX.test(char), + input, + position + ) + + // 3. Let parameterName be the result of collecting a + // sequence of code points that are not U+003B (;) + // or U+003D (=) from input, given position. + let parameterName = collectASequenceOfCodePoints( + (char) => char !== ';' && char !== '=', + input, + position + ) + + // 4. Set parameterName to parameterName, in ASCII + // lowercase. + parameterName = parameterName.toLowerCase() + + // 5. If position is not past the end of input, then: + if (position.position < input.length) { + // 1. If the code point at position within input is + // U+003B (;), then continue. + if (input[position.position] === ';') { + continue + } + + // 2. Advance position by 1. (This skips past U+003D (=).) + position.position++ + } + + // 6. If position is past the end of input, then break. + if (position.position > input.length) { + break + } + + // 7. Let parameterValue be null. + let parameterValue = null + + // 8. If the code point at position within input is + // U+0022 ("), then: + if (input[position.position] === '"') { + // 1. Set parameterValue to the result of collecting + // an HTTP quoted string from input, given position + // and the extract-value flag. + parameterValue = collectAnHTTPQuotedString(input, position, true) + + // 2. Collect a sequence of code points that are not + // U+003B (;) from input, given position. + collectASequenceOfCodePointsFast( + ';', + input, + position + ) + + // 9. Otherwise: + } else { + // 1. Set parameterValue to the result of collecting + // a sequence of code points that are not U+003B (;) + // from input, given position. + parameterValue = collectASequenceOfCodePointsFast( + ';', + input, + position + ) + + // 2. Remove any trailing HTTP whitespace from parameterValue. + parameterValue = removeHTTPWhitespace(parameterValue, false, true) + + // 3. If parameterValue is the empty string, then continue. + if (parameterValue.length === 0) { + continue + } + } + + // 10. If all of the following are true + // - parameterName is not the empty string + // - parameterName solely contains HTTP token code points + // - parameterValue solely contains HTTP quoted-string token code points + // - mimeType’s parameters[parameterName] does not exist + // then set mimeType’s parameters[parameterName] to parameterValue. + if ( + parameterName.length !== 0 && + HTTP_TOKEN_CODEPOINTS.test(parameterName) && + (parameterValue.length === 0 || HTTP_QUOTED_STRING_TOKENS.test(parameterValue)) && + !mimeType.parameters.has(parameterName) + ) { + mimeType.parameters.set(parameterName, parameterValue) + } + } + + // 12. Return mimeType. + return mimeType +} + +// https://infra.spec.whatwg.org/#forgiving-base64-decode +/** @param {string} data */ +function forgivingBase64 (data) { + // 1. Remove all ASCII whitespace from data. + data = data.replace(/[\u0009\u000A\u000C\u000D\u0020]/g, '') // eslint-disable-line + + // 2. If data’s code point length divides by 4 leaving + // no remainder, then: + if (data.length % 4 === 0) { + // 1. If data ends with one or two U+003D (=) code points, + // then remove them from data. + data = data.replace(/=?=$/, '') + } + + // 3. If data’s code point length divides by 4 leaving + // a remainder of 1, then return failure. + if (data.length % 4 === 1) { + return 'failure' + } + + // 4. If data contains a code point that is not one of + // U+002B (+) + // U+002F (/) + // ASCII alphanumeric + // then return failure. + if (/[^+/0-9A-Za-z]/.test(data)) { + return 'failure' + } + + const binary = atob(data) + const bytes = new Uint8Array(binary.length) + + for (let byte = 0; byte < binary.length; byte++) { + bytes[byte] = binary.charCodeAt(byte) + } + + return bytes +} + +// https://fetch.spec.whatwg.org/#collect-an-http-quoted-string +// tests: https://fetch.spec.whatwg.org/#example-http-quoted-string +/** + * @param {string} input + * @param {{ position: number }} position + * @param {boolean?} extractValue + */ +function collectAnHTTPQuotedString (input, position, extractValue) { + // 1. Let positionStart be position. + const positionStart = position.position + + // 2. Let value be the empty string. + let value = '' + + // 3. Assert: the code point at position within input + // is U+0022 ("). + assert(input[position.position] === '"') + + // 4. Advance position by 1. + position.position++ + + // 5. While true: + while (true) { + // 1. Append the result of collecting a sequence of code points + // that are not U+0022 (") or U+005C (\) from input, given + // position, to value. + value += collectASequenceOfCodePoints( + (char) => char !== '"' && char !== '\\', + input, + position + ) + + // 2. If position is past the end of input, then break. + if (position.position >= input.length) { + break + } + + // 3. Let quoteOrBackslash be the code point at position within + // input. + const quoteOrBackslash = input[position.position] + + // 4. Advance position by 1. + position.position++ + + // 5. If quoteOrBackslash is U+005C (\), then: + if (quoteOrBackslash === '\\') { + // 1. If position is past the end of input, then append + // U+005C (\) to value and break. + if (position.position >= input.length) { + value += '\\' + break + } + + // 2. Append the code point at position within input to value. + value += input[position.position] + + // 3. Advance position by 1. + position.position++ + + // 6. Otherwise: + } else { + // 1. Assert: quoteOrBackslash is U+0022 ("). + assert(quoteOrBackslash === '"') + + // 2. Break. + break + } + } + + // 6. If the extract-value flag is set, then return value. + if (extractValue) { + return value + } + + // 7. Return the code points from positionStart to position, + // inclusive, within input. + return input.slice(positionStart, position.position) +} + +/** + * @see https://mimesniff.spec.whatwg.org/#serialize-a-mime-type + */ +function serializeAMimeType (mimeType) { + assert(mimeType !== 'failure') + const { parameters, essence } = mimeType + + // 1. Let serialization be the concatenation of mimeType’s + // type, U+002F (/), and mimeType’s subtype. + let serialization = essence + + // 2. For each name → value of mimeType’s parameters: + for (let [name, value] of parameters.entries()) { + // 1. Append U+003B (;) to serialization. + serialization += ';' + + // 2. Append name to serialization. + serialization += name + + // 3. Append U+003D (=) to serialization. + serialization += '=' + + // 4. If value does not solely contain HTTP token code + // points or value is the empty string, then: + if (!HTTP_TOKEN_CODEPOINTS.test(value)) { + // 1. Precede each occurence of U+0022 (") or + // U+005C (\) in value with U+005C (\). + value = value.replace(/(\\|")/g, '\\$1') + + // 2. Prepend U+0022 (") to value. + value = '"' + value + + // 3. Append U+0022 (") to value. + value += '"' + } + + // 5. Append value to serialization. + serialization += value + } + + // 3. Return serialization. + return serialization +} + +/** + * @see https://fetch.spec.whatwg.org/#http-whitespace + * @param {string} char + */ +function isHTTPWhiteSpace (char) { + return char === '\r' || char === '\n' || char === '\t' || char === ' ' +} + +/** + * @see https://fetch.spec.whatwg.org/#http-whitespace + * @param {string} str + */ +function removeHTTPWhitespace (str, leading = true, trailing = true) { + let lead = 0 + let trail = str.length - 1 + + if (leading) { + for (; lead < str.length && isHTTPWhiteSpace(str[lead]); lead++); + } + + if (trailing) { + for (; trail > 0 && isHTTPWhiteSpace(str[trail]); trail--); + } + + return str.slice(lead, trail + 1) +} + +/** + * @see https://infra.spec.whatwg.org/#ascii-whitespace + * @param {string} char + */ +function isASCIIWhitespace (char) { + return char === '\r' || char === '\n' || char === '\t' || char === '\f' || char === ' ' +} + +/** + * @see https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace + */ +function removeASCIIWhitespace (str, leading = true, trailing = true) { + let lead = 0 + let trail = str.length - 1 + + if (leading) { + for (; lead < str.length && isASCIIWhitespace(str[lead]); lead++); + } + + if (trailing) { + for (; trail > 0 && isASCIIWhitespace(str[trail]); trail--); + } + + return str.slice(lead, trail + 1) +} + +module.exports = { + dataURLProcessor, + URLSerializer, + collectASequenceOfCodePoints, + collectASequenceOfCodePointsFast, + stringPercentDecode, + parseMIMEType, + collectAnHTTPQuotedString, + serializeAMimeType +} + + +/***/ }), + +/***/ 3041: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { Blob, File: NativeFile } = __nccwpck_require__(181) +const { types } = __nccwpck_require__(9023) +const { kState } = __nccwpck_require__(9710) +const { isBlobLike } = __nccwpck_require__(5523) +const { webidl } = __nccwpck_require__(4222) +const { parseMIMEType, serializeAMimeType } = __nccwpck_require__(4322) +const { kEnumerableProperty } = __nccwpck_require__(3440) +const encoder = new TextEncoder() + +class File extends Blob { + constructor (fileBits, fileName, options = {}) { + // The File constructor is invoked with two or three parameters, depending + // on whether the optional dictionary parameter is used. When the File() + // constructor is invoked, user agents must run the following steps: + webidl.argumentLengthCheck(arguments, 2, { header: 'File constructor' }) + + fileBits = webidl.converters['sequence'](fileBits) + fileName = webidl.converters.USVString(fileName) + options = webidl.converters.FilePropertyBag(options) + + // 1. Let bytes be the result of processing blob parts given fileBits and + // options. + // Note: Blob handles this for us + + // 2. Let n be the fileName argument to the constructor. + const n = fileName + + // 3. Process FilePropertyBag dictionary argument by running the following + // substeps: + + // 1. If the type member is provided and is not the empty string, let t + // be set to the type dictionary member. If t contains any characters + // outside the range U+0020 to U+007E, then set t to the empty string + // and return from these substeps. + // 2. Convert every character in t to ASCII lowercase. + let t = options.type + let d + + // eslint-disable-next-line no-labels + substep: { + if (t) { + t = parseMIMEType(t) + + if (t === 'failure') { + t = '' + // eslint-disable-next-line no-labels + break substep + } + + t = serializeAMimeType(t).toLowerCase() + } + + // 3. If the lastModified member is provided, let d be set to the + // lastModified dictionary member. If it is not provided, set d to the + // current date and time represented as the number of milliseconds since + // the Unix Epoch (which is the equivalent of Date.now() [ECMA-262]). + d = options.lastModified + } + + // 4. Return a new File object F such that: + // F refers to the bytes byte sequence. + // F.size is set to the number of total bytes in bytes. + // F.name is set to n. + // F.type is set to t. + // F.lastModified is set to d. + + super(processBlobParts(fileBits, options), { type: t }) + this[kState] = { + name: n, + lastModified: d, + type: t + } + } + + get name () { + webidl.brandCheck(this, File) + + return this[kState].name + } + + get lastModified () { + webidl.brandCheck(this, File) + + return this[kState].lastModified + } + + get type () { + webidl.brandCheck(this, File) + + return this[kState].type + } +} + +class FileLike { + constructor (blobLike, fileName, options = {}) { + // TODO: argument idl type check + + // The File constructor is invoked with two or three parameters, depending + // on whether the optional dictionary parameter is used. When the File() + // constructor is invoked, user agents must run the following steps: + + // 1. Let bytes be the result of processing blob parts given fileBits and + // options. + + // 2. Let n be the fileName argument to the constructor. + const n = fileName + + // 3. Process FilePropertyBag dictionary argument by running the following + // substeps: + + // 1. If the type member is provided and is not the empty string, let t + // be set to the type dictionary member. If t contains any characters + // outside the range U+0020 to U+007E, then set t to the empty string + // and return from these substeps. + // TODO + const t = options.type + + // 2. Convert every character in t to ASCII lowercase. + // TODO + + // 3. If the lastModified member is provided, let d be set to the + // lastModified dictionary member. If it is not provided, set d to the + // current date and time represented as the number of milliseconds since + // the Unix Epoch (which is the equivalent of Date.now() [ECMA-262]). + const d = options.lastModified ?? Date.now() + + // 4. Return a new File object F such that: + // F refers to the bytes byte sequence. + // F.size is set to the number of total bytes in bytes. + // F.name is set to n. + // F.type is set to t. + // F.lastModified is set to d. + + this[kState] = { + blobLike, + name: n, + type: t, + lastModified: d + } + } + + stream (...args) { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.stream(...args) + } + + arrayBuffer (...args) { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.arrayBuffer(...args) + } + + slice (...args) { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.slice(...args) + } + + text (...args) { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.text(...args) + } + + get size () { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.size + } + + get type () { + webidl.brandCheck(this, FileLike) + + return this[kState].blobLike.type + } + + get name () { + webidl.brandCheck(this, FileLike) + + return this[kState].name + } + + get lastModified () { + webidl.brandCheck(this, FileLike) + + return this[kState].lastModified + } + + get [Symbol.toStringTag] () { + return 'File' + } +} + +Object.defineProperties(File.prototype, { + [Symbol.toStringTag]: { + value: 'File', + configurable: true + }, + name: kEnumerableProperty, + lastModified: kEnumerableProperty +}) + +webidl.converters.Blob = webidl.interfaceConverter(Blob) + +webidl.converters.BlobPart = function (V, opts) { + if (webidl.util.Type(V) === 'Object') { + if (isBlobLike(V)) { + return webidl.converters.Blob(V, { strict: false }) + } + + if ( + ArrayBuffer.isView(V) || + types.isAnyArrayBuffer(V) + ) { + return webidl.converters.BufferSource(V, opts) + } + } + + return webidl.converters.USVString(V, opts) +} + +webidl.converters['sequence'] = webidl.sequenceConverter( + webidl.converters.BlobPart +) + +// https://www.w3.org/TR/FileAPI/#dfn-FilePropertyBag +webidl.converters.FilePropertyBag = webidl.dictionaryConverter([ + { + key: 'lastModified', + converter: webidl.converters['long long'], + get defaultValue () { + return Date.now() + } + }, + { + key: 'type', + converter: webidl.converters.DOMString, + defaultValue: '' + }, + { + key: 'endings', + converter: (value) => { + value = webidl.converters.DOMString(value) + value = value.toLowerCase() + + if (value !== 'native') { + value = 'transparent' + } + + return value + }, + defaultValue: 'transparent' + } +]) + +/** + * @see https://www.w3.org/TR/FileAPI/#process-blob-parts + * @param {(NodeJS.TypedArray|Blob|string)[]} parts + * @param {{ type: string, endings: string }} options + */ +function processBlobParts (parts, options) { + // 1. Let bytes be an empty sequence of bytes. + /** @type {NodeJS.TypedArray[]} */ + const bytes = [] + + // 2. For each element in parts: + for (const element of parts) { + // 1. If element is a USVString, run the following substeps: + if (typeof element === 'string') { + // 1. Let s be element. + let s = element + + // 2. If the endings member of options is "native", set s + // to the result of converting line endings to native + // of element. + if (options.endings === 'native') { + s = convertLineEndingsNative(s) + } + + // 3. Append the result of UTF-8 encoding s to bytes. + bytes.push(encoder.encode(s)) + } else if ( + types.isAnyArrayBuffer(element) || + types.isTypedArray(element) + ) { + // 2. If element is a BufferSource, get a copy of the + // bytes held by the buffer source, and append those + // bytes to bytes. + if (!element.buffer) { // ArrayBuffer + bytes.push(new Uint8Array(element)) + } else { + bytes.push( + new Uint8Array(element.buffer, element.byteOffset, element.byteLength) + ) + } + } else if (isBlobLike(element)) { + // 3. If element is a Blob, append the bytes it represents + // to bytes. + bytes.push(element) + } + } + + // 3. Return bytes. + return bytes +} + +/** + * @see https://www.w3.org/TR/FileAPI/#convert-line-endings-to-native + * @param {string} s + */ +function convertLineEndingsNative (s) { + // 1. Let native line ending be be the code point U+000A LF. + let nativeLineEnding = '\n' + + // 2. If the underlying platform’s conventions are to + // represent newlines as a carriage return and line feed + // sequence, set native line ending to the code point + // U+000D CR followed by the code point U+000A LF. + if (process.platform === 'win32') { + nativeLineEnding = '\r\n' + } + + return s.replace(/\r?\n/g, nativeLineEnding) +} + +// If this function is moved to ./util.js, some tools (such as +// rollup) will warn about circular dependencies. See: +// https://github.com/nodejs/undici/issues/1629 +function isFileLike (object) { + return ( + (NativeFile && object instanceof NativeFile) || + object instanceof File || ( + object && + (typeof object.stream === 'function' || + typeof object.arrayBuffer === 'function') && + object[Symbol.toStringTag] === 'File' + ) + ) +} + +module.exports = { File, FileLike, isFileLike } + + +/***/ }), + +/***/ 3073: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { isBlobLike, toUSVString, makeIterator } = __nccwpck_require__(5523) +const { kState } = __nccwpck_require__(9710) +const { File: UndiciFile, FileLike, isFileLike } = __nccwpck_require__(3041) +const { webidl } = __nccwpck_require__(4222) +const { Blob, File: NativeFile } = __nccwpck_require__(181) + +/** @type {globalThis['File']} */ +const File = NativeFile ?? UndiciFile + +// https://xhr.spec.whatwg.org/#formdata +class FormData { + constructor (form) { + if (form !== undefined) { + throw webidl.errors.conversionFailed({ + prefix: 'FormData constructor', + argument: 'Argument 1', + types: ['undefined'] + }) + } + + this[kState] = [] + } + + append (name, value, filename = undefined) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 2, { header: 'FormData.append' }) + + if (arguments.length === 3 && !isBlobLike(value)) { + throw new TypeError( + "Failed to execute 'append' on 'FormData': parameter 2 is not of type 'Blob'" + ) + } + + // 1. Let value be value if given; otherwise blobValue. + + name = webidl.converters.USVString(name) + value = isBlobLike(value) + ? webidl.converters.Blob(value, { strict: false }) + : webidl.converters.USVString(value) + filename = arguments.length === 3 + ? webidl.converters.USVString(filename) + : undefined + + // 2. Let entry be the result of creating an entry with + // name, value, and filename if given. + const entry = makeEntry(name, value, filename) + + // 3. Append entry to this’s entry list. + this[kState].push(entry) + } + + delete (name) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FormData.delete' }) + + name = webidl.converters.USVString(name) + + // The delete(name) method steps are to remove all entries whose name + // is name from this’s entry list. + this[kState] = this[kState].filter(entry => entry.name !== name) + } + + get (name) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FormData.get' }) + + name = webidl.converters.USVString(name) + + // 1. If there is no entry whose name is name in this’s entry list, + // then return null. + const idx = this[kState].findIndex((entry) => entry.name === name) + if (idx === -1) { + return null + } + + // 2. Return the value of the first entry whose name is name from + // this’s entry list. + return this[kState][idx].value + } + + getAll (name) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FormData.getAll' }) + + name = webidl.converters.USVString(name) + + // 1. If there is no entry whose name is name in this’s entry list, + // then return the empty list. + // 2. Return the values of all entries whose name is name, in order, + // from this’s entry list. + return this[kState] + .filter((entry) => entry.name === name) + .map((entry) => entry.value) + } + + has (name) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FormData.has' }) + + name = webidl.converters.USVString(name) + + // The has(name) method steps are to return true if there is an entry + // whose name is name in this’s entry list; otherwise false. + return this[kState].findIndex((entry) => entry.name === name) !== -1 + } + + set (name, value, filename = undefined) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 2, { header: 'FormData.set' }) + + if (arguments.length === 3 && !isBlobLike(value)) { + throw new TypeError( + "Failed to execute 'set' on 'FormData': parameter 2 is not of type 'Blob'" + ) + } + + // The set(name, value) and set(name, blobValue, filename) method steps + // are: + + // 1. Let value be value if given; otherwise blobValue. + + name = webidl.converters.USVString(name) + value = isBlobLike(value) + ? webidl.converters.Blob(value, { strict: false }) + : webidl.converters.USVString(value) + filename = arguments.length === 3 + ? toUSVString(filename) + : undefined + + // 2. Let entry be the result of creating an entry with name, value, and + // filename if given. + const entry = makeEntry(name, value, filename) + + // 3. If there are entries in this’s entry list whose name is name, then + // replace the first such entry with entry and remove the others. + const idx = this[kState].findIndex((entry) => entry.name === name) + if (idx !== -1) { + this[kState] = [ + ...this[kState].slice(0, idx), + entry, + ...this[kState].slice(idx + 1).filter((entry) => entry.name !== name) + ] + } else { + // 4. Otherwise, append entry to this’s entry list. + this[kState].push(entry) + } + } + + entries () { + webidl.brandCheck(this, FormData) + + return makeIterator( + () => this[kState].map(pair => [pair.name, pair.value]), + 'FormData', + 'key+value' + ) + } + + keys () { + webidl.brandCheck(this, FormData) + + return makeIterator( + () => this[kState].map(pair => [pair.name, pair.value]), + 'FormData', + 'key' + ) + } + + values () { + webidl.brandCheck(this, FormData) + + return makeIterator( + () => this[kState].map(pair => [pair.name, pair.value]), + 'FormData', + 'value' + ) + } + + /** + * @param {(value: string, key: string, self: FormData) => void} callbackFn + * @param {unknown} thisArg + */ + forEach (callbackFn, thisArg = globalThis) { + webidl.brandCheck(this, FormData) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FormData.forEach' }) + + if (typeof callbackFn !== 'function') { + throw new TypeError( + "Failed to execute 'forEach' on 'FormData': parameter 1 is not of type 'Function'." + ) + } + + for (const [key, value] of this) { + callbackFn.apply(thisArg, [value, key, this]) + } + } +} + +FormData.prototype[Symbol.iterator] = FormData.prototype.entries + +Object.defineProperties(FormData.prototype, { + [Symbol.toStringTag]: { + value: 'FormData', + configurable: true + } +}) + +/** + * @see https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#create-an-entry + * @param {string} name + * @param {string|Blob} value + * @param {?string} filename + * @returns + */ +function makeEntry (name, value, filename) { + // 1. Set name to the result of converting name into a scalar value string. + // "To convert a string into a scalar value string, replace any surrogates + // with U+FFFD." + // see: https://nodejs.org/dist/latest-v18.x/docs/api/buffer.html#buftostringencoding-start-end + name = Buffer.from(name).toString('utf8') + + // 2. If value is a string, then set value to the result of converting + // value into a scalar value string. + if (typeof value === 'string') { + value = Buffer.from(value).toString('utf8') + } else { + // 3. Otherwise: + + // 1. If value is not a File object, then set value to a new File object, + // representing the same bytes, whose name attribute value is "blob" + if (!isFileLike(value)) { + value = value instanceof Blob + ? new File([value], 'blob', { type: value.type }) + : new FileLike(value, 'blob', { type: value.type }) + } + + // 2. If filename is given, then set value to a new File object, + // representing the same bytes, whose name attribute is filename. + if (filename !== undefined) { + /** @type {FilePropertyBag} */ + const options = { + type: value.type, + lastModified: value.lastModified + } + + value = (NativeFile && value instanceof NativeFile) || value instanceof UndiciFile + ? new File([value], filename, options) + : new FileLike(value, filename, options) + } + } + + // 4. Return an entry whose name is name and whose value is value. + return { name, value } +} + +module.exports = { FormData } + + +/***/ }), + +/***/ 5628: +/***/ ((module) => { + +"use strict"; + + +// In case of breaking changes, increase the version +// number to avoid conflicts. +const globalOrigin = Symbol.for('undici.globalOrigin.1') + +function getGlobalOrigin () { + return globalThis[globalOrigin] +} + +function setGlobalOrigin (newOrigin) { + if (newOrigin === undefined) { + Object.defineProperty(globalThis, globalOrigin, { + value: undefined, + writable: true, + enumerable: false, + configurable: false + }) + + return + } + + const parsedURL = new URL(newOrigin) + + if (parsedURL.protocol !== 'http:' && parsedURL.protocol !== 'https:') { + throw new TypeError(`Only http & https urls are allowed, received ${parsedURL.protocol}`) + } + + Object.defineProperty(globalThis, globalOrigin, { + value: parsedURL, + writable: true, + enumerable: false, + configurable: false + }) +} + +module.exports = { + getGlobalOrigin, + setGlobalOrigin +} + + +/***/ }), + +/***/ 6349: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +// https://github.com/Ethan-Arrowood/undici-fetch + + + +const { kHeadersList, kConstruct } = __nccwpck_require__(6443) +const { kGuard } = __nccwpck_require__(9710) +const { kEnumerableProperty } = __nccwpck_require__(3440) +const { + makeIterator, + isValidHeaderName, + isValidHeaderValue +} = __nccwpck_require__(5523) +const { webidl } = __nccwpck_require__(4222) +const assert = __nccwpck_require__(2613) + +const kHeadersMap = Symbol('headers map') +const kHeadersSortedMap = Symbol('headers map sorted') + +/** + * @param {number} code + */ +function isHTTPWhiteSpaceCharCode (code) { + return code === 0x00a || code === 0x00d || code === 0x009 || code === 0x020 +} + +/** + * @see https://fetch.spec.whatwg.org/#concept-header-value-normalize + * @param {string} potentialValue + */ +function headerValueNormalize (potentialValue) { + // To normalize a byte sequence potentialValue, remove + // any leading and trailing HTTP whitespace bytes from + // potentialValue. + let i = 0; let j = potentialValue.length + + while (j > i && isHTTPWhiteSpaceCharCode(potentialValue.charCodeAt(j - 1))) --j + while (j > i && isHTTPWhiteSpaceCharCode(potentialValue.charCodeAt(i))) ++i + + return i === 0 && j === potentialValue.length ? potentialValue : potentialValue.substring(i, j) +} + +function fill (headers, object) { + // To fill a Headers object headers with a given object object, run these steps: + + // 1. If object is a sequence, then for each header in object: + // Note: webidl conversion to array has already been done. + if (Array.isArray(object)) { + for (let i = 0; i < object.length; ++i) { + const header = object[i] + // 1. If header does not contain exactly two items, then throw a TypeError. + if (header.length !== 2) { + throw webidl.errors.exception({ + header: 'Headers constructor', + message: `expected name/value pair to be length 2, found ${header.length}.` + }) + } + + // 2. Append (header’s first item, header’s second item) to headers. + appendHeader(headers, header[0], header[1]) + } + } else if (typeof object === 'object' && object !== null) { + // Note: null should throw + + // 2. Otherwise, object is a record, then for each key → value in object, + // append (key, value) to headers + const keys = Object.keys(object) + for (let i = 0; i < keys.length; ++i) { + appendHeader(headers, keys[i], object[keys[i]]) + } + } else { + throw webidl.errors.conversionFailed({ + prefix: 'Headers constructor', + argument: 'Argument 1', + types: ['sequence>', 'record'] + }) + } +} + +/** + * @see https://fetch.spec.whatwg.org/#concept-headers-append + */ +function appendHeader (headers, name, value) { + // 1. Normalize value. + value = headerValueNormalize(value) + + // 2. If name is not a header name or value is not a + // header value, then throw a TypeError. + if (!isValidHeaderName(name)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.append', + value: name, + type: 'header name' + }) + } else if (!isValidHeaderValue(value)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.append', + value, + type: 'header value' + }) + } + + // 3. If headers’s guard is "immutable", then throw a TypeError. + // 4. Otherwise, if headers’s guard is "request" and name is a + // forbidden header name, return. + // Note: undici does not implement forbidden header names + if (headers[kGuard] === 'immutable') { + throw new TypeError('immutable') + } else if (headers[kGuard] === 'request-no-cors') { + // 5. Otherwise, if headers’s guard is "request-no-cors": + // TODO + } + + // 6. Otherwise, if headers’s guard is "response" and name is a + // forbidden response-header name, return. + + // 7. Append (name, value) to headers’s header list. + return headers[kHeadersList].append(name, value) + + // 8. If headers’s guard is "request-no-cors", then remove + // privileged no-CORS request headers from headers +} + +class HeadersList { + /** @type {[string, string][]|null} */ + cookies = null + + constructor (init) { + if (init instanceof HeadersList) { + this[kHeadersMap] = new Map(init[kHeadersMap]) + this[kHeadersSortedMap] = init[kHeadersSortedMap] + this.cookies = init.cookies === null ? null : [...init.cookies] + } else { + this[kHeadersMap] = new Map(init) + this[kHeadersSortedMap] = null + } + } + + // https://fetch.spec.whatwg.org/#header-list-contains + contains (name) { + // A header list list contains a header name name if list + // contains a header whose name is a byte-case-insensitive + // match for name. + name = name.toLowerCase() + + return this[kHeadersMap].has(name) + } + + clear () { + this[kHeadersMap].clear() + this[kHeadersSortedMap] = null + this.cookies = null + } + + // https://fetch.spec.whatwg.org/#concept-header-list-append + append (name, value) { + this[kHeadersSortedMap] = null + + // 1. If list contains name, then set name to the first such + // header’s name. + const lowercaseName = name.toLowerCase() + const exists = this[kHeadersMap].get(lowercaseName) + + // 2. Append (name, value) to list. + if (exists) { + const delimiter = lowercaseName === 'cookie' ? '; ' : ', ' + this[kHeadersMap].set(lowercaseName, { + name: exists.name, + value: `${exists.value}${delimiter}${value}` + }) + } else { + this[kHeadersMap].set(lowercaseName, { name, value }) + } + + if (lowercaseName === 'set-cookie') { + this.cookies ??= [] + this.cookies.push(value) + } + } + + // https://fetch.spec.whatwg.org/#concept-header-list-set + set (name, value) { + this[kHeadersSortedMap] = null + const lowercaseName = name.toLowerCase() + + if (lowercaseName === 'set-cookie') { + this.cookies = [value] + } + + // 1. If list contains name, then set the value of + // the first such header to value and remove the + // others. + // 2. Otherwise, append header (name, value) to list. + this[kHeadersMap].set(lowercaseName, { name, value }) + } + + // https://fetch.spec.whatwg.org/#concept-header-list-delete + delete (name) { + this[kHeadersSortedMap] = null + + name = name.toLowerCase() + + if (name === 'set-cookie') { + this.cookies = null + } + + this[kHeadersMap].delete(name) + } + + // https://fetch.spec.whatwg.org/#concept-header-list-get + get (name) { + const value = this[kHeadersMap].get(name.toLowerCase()) + + // 1. If list does not contain name, then return null. + // 2. Return the values of all headers in list whose name + // is a byte-case-insensitive match for name, + // separated from each other by 0x2C 0x20, in order. + return value === undefined ? null : value.value + } + + * [Symbol.iterator] () { + // use the lowercased name + for (const [name, { value }] of this[kHeadersMap]) { + yield [name, value] + } + } + + get entries () { + const headers = {} + + if (this[kHeadersMap].size) { + for (const { name, value } of this[kHeadersMap].values()) { + headers[name] = value + } + } + + return headers + } +} + +// https://fetch.spec.whatwg.org/#headers-class +class Headers { + constructor (init = undefined) { + if (init === kConstruct) { + return + } + this[kHeadersList] = new HeadersList() + + // The new Headers(init) constructor steps are: + + // 1. Set this’s guard to "none". + this[kGuard] = 'none' + + // 2. If init is given, then fill this with init. + if (init !== undefined) { + init = webidl.converters.HeadersInit(init) + fill(this, init) + } + } + + // https://fetch.spec.whatwg.org/#dom-headers-append + append (name, value) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 2, { header: 'Headers.append' }) + + name = webidl.converters.ByteString(name) + value = webidl.converters.ByteString(value) + + return appendHeader(this, name, value) + } + + // https://fetch.spec.whatwg.org/#dom-headers-delete + delete (name) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 1, { header: 'Headers.delete' }) + + name = webidl.converters.ByteString(name) + + // 1. If name is not a header name, then throw a TypeError. + if (!isValidHeaderName(name)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.delete', + value: name, + type: 'header name' + }) + } + + // 2. If this’s guard is "immutable", then throw a TypeError. + // 3. Otherwise, if this’s guard is "request" and name is a + // forbidden header name, return. + // 4. Otherwise, if this’s guard is "request-no-cors", name + // is not a no-CORS-safelisted request-header name, and + // name is not a privileged no-CORS request-header name, + // return. + // 5. Otherwise, if this’s guard is "response" and name is + // a forbidden response-header name, return. + // Note: undici does not implement forbidden header names + if (this[kGuard] === 'immutable') { + throw new TypeError('immutable') + } else if (this[kGuard] === 'request-no-cors') { + // TODO + } + + // 6. If this’s header list does not contain name, then + // return. + if (!this[kHeadersList].contains(name)) { + return + } + + // 7. Delete name from this’s header list. + // 8. If this’s guard is "request-no-cors", then remove + // privileged no-CORS request headers from this. + this[kHeadersList].delete(name) + } + + // https://fetch.spec.whatwg.org/#dom-headers-get + get (name) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 1, { header: 'Headers.get' }) + + name = webidl.converters.ByteString(name) + + // 1. If name is not a header name, then throw a TypeError. + if (!isValidHeaderName(name)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.get', + value: name, + type: 'header name' + }) + } + + // 2. Return the result of getting name from this’s header + // list. + return this[kHeadersList].get(name) + } + + // https://fetch.spec.whatwg.org/#dom-headers-has + has (name) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 1, { header: 'Headers.has' }) + + name = webidl.converters.ByteString(name) + + // 1. If name is not a header name, then throw a TypeError. + if (!isValidHeaderName(name)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.has', + value: name, + type: 'header name' + }) + } + + // 2. Return true if this’s header list contains name; + // otherwise false. + return this[kHeadersList].contains(name) + } + + // https://fetch.spec.whatwg.org/#dom-headers-set + set (name, value) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 2, { header: 'Headers.set' }) + + name = webidl.converters.ByteString(name) + value = webidl.converters.ByteString(value) + + // 1. Normalize value. + value = headerValueNormalize(value) + + // 2. If name is not a header name or value is not a + // header value, then throw a TypeError. + if (!isValidHeaderName(name)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.set', + value: name, + type: 'header name' + }) + } else if (!isValidHeaderValue(value)) { + throw webidl.errors.invalidArgument({ + prefix: 'Headers.set', + value, + type: 'header value' + }) + } + + // 3. If this’s guard is "immutable", then throw a TypeError. + // 4. Otherwise, if this’s guard is "request" and name is a + // forbidden header name, return. + // 5. Otherwise, if this’s guard is "request-no-cors" and + // name/value is not a no-CORS-safelisted request-header, + // return. + // 6. Otherwise, if this’s guard is "response" and name is a + // forbidden response-header name, return. + // Note: undici does not implement forbidden header names + if (this[kGuard] === 'immutable') { + throw new TypeError('immutable') + } else if (this[kGuard] === 'request-no-cors') { + // TODO + } + + // 7. Set (name, value) in this’s header list. + // 8. If this’s guard is "request-no-cors", then remove + // privileged no-CORS request headers from this + this[kHeadersList].set(name, value) + } + + // https://fetch.spec.whatwg.org/#dom-headers-getsetcookie + getSetCookie () { + webidl.brandCheck(this, Headers) + + // 1. If this’s header list does not contain `Set-Cookie`, then return « ». + // 2. Return the values of all headers in this’s header list whose name is + // a byte-case-insensitive match for `Set-Cookie`, in order. + + const list = this[kHeadersList].cookies + + if (list) { + return [...list] + } + + return [] + } + + // https://fetch.spec.whatwg.org/#concept-header-list-sort-and-combine + get [kHeadersSortedMap] () { + if (this[kHeadersList][kHeadersSortedMap]) { + return this[kHeadersList][kHeadersSortedMap] + } + + // 1. Let headers be an empty list of headers with the key being the name + // and value the value. + const headers = [] + + // 2. Let names be the result of convert header names to a sorted-lowercase + // set with all the names of the headers in list. + const names = [...this[kHeadersList]].sort((a, b) => a[0] < b[0] ? -1 : 1) + const cookies = this[kHeadersList].cookies + + // 3. For each name of names: + for (let i = 0; i < names.length; ++i) { + const [name, value] = names[i] + // 1. If name is `set-cookie`, then: + if (name === 'set-cookie') { + // 1. Let values be a list of all values of headers in list whose name + // is a byte-case-insensitive match for name, in order. + + // 2. For each value of values: + // 1. Append (name, value) to headers. + for (let j = 0; j < cookies.length; ++j) { + headers.push([name, cookies[j]]) + } + } else { + // 2. Otherwise: + + // 1. Let value be the result of getting name from list. + + // 2. Assert: value is non-null. + assert(value !== null) + + // 3. Append (name, value) to headers. + headers.push([name, value]) + } + } + + this[kHeadersList][kHeadersSortedMap] = headers + + // 4. Return headers. + return headers + } + + keys () { + webidl.brandCheck(this, Headers) + + if (this[kGuard] === 'immutable') { + const value = this[kHeadersSortedMap] + return makeIterator(() => value, 'Headers', + 'key') + } + + return makeIterator( + () => [...this[kHeadersSortedMap].values()], + 'Headers', + 'key' + ) + } + + values () { + webidl.brandCheck(this, Headers) + + if (this[kGuard] === 'immutable') { + const value = this[kHeadersSortedMap] + return makeIterator(() => value, 'Headers', + 'value') + } + + return makeIterator( + () => [...this[kHeadersSortedMap].values()], + 'Headers', + 'value' + ) + } + + entries () { + webidl.brandCheck(this, Headers) + + if (this[kGuard] === 'immutable') { + const value = this[kHeadersSortedMap] + return makeIterator(() => value, 'Headers', + 'key+value') + } + + return makeIterator( + () => [...this[kHeadersSortedMap].values()], + 'Headers', + 'key+value' + ) + } + + /** + * @param {(value: string, key: string, self: Headers) => void} callbackFn + * @param {unknown} thisArg + */ + forEach (callbackFn, thisArg = globalThis) { + webidl.brandCheck(this, Headers) + + webidl.argumentLengthCheck(arguments, 1, { header: 'Headers.forEach' }) + + if (typeof callbackFn !== 'function') { + throw new TypeError( + "Failed to execute 'forEach' on 'Headers': parameter 1 is not of type 'Function'." + ) + } + + for (const [key, value] of this) { + callbackFn.apply(thisArg, [value, key, this]) + } + } + + [Symbol.for('nodejs.util.inspect.custom')] () { + webidl.brandCheck(this, Headers) + + return this[kHeadersList] + } +} + +Headers.prototype[Symbol.iterator] = Headers.prototype.entries + +Object.defineProperties(Headers.prototype, { + append: kEnumerableProperty, + delete: kEnumerableProperty, + get: kEnumerableProperty, + has: kEnumerableProperty, + set: kEnumerableProperty, + getSetCookie: kEnumerableProperty, + keys: kEnumerableProperty, + values: kEnumerableProperty, + entries: kEnumerableProperty, + forEach: kEnumerableProperty, + [Symbol.iterator]: { enumerable: false }, + [Symbol.toStringTag]: { + value: 'Headers', + configurable: true + } +}) + +webidl.converters.HeadersInit = function (V) { + if (webidl.util.Type(V) === 'Object') { + if (V[Symbol.iterator]) { + return webidl.converters['sequence>'](V) + } + + return webidl.converters['record'](V) + } + + throw webidl.errors.conversionFailed({ + prefix: 'Headers constructor', + argument: 'Argument 1', + types: ['sequence>', 'record'] + }) +} + +module.exports = { + fill, + Headers, + HeadersList +} + + +/***/ }), + +/***/ 2315: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +// https://github.com/Ethan-Arrowood/undici-fetch + + + +const { + Response, + makeNetworkError, + makeAppropriateNetworkError, + filterResponse, + makeResponse +} = __nccwpck_require__(8676) +const { Headers } = __nccwpck_require__(6349) +const { Request, makeRequest } = __nccwpck_require__(5194) +const zlib = __nccwpck_require__(3106) +const { + bytesMatch, + makePolicyContainer, + clonePolicyContainer, + requestBadPort, + TAOCheck, + appendRequestOriginHeader, + responseLocationURL, + requestCurrentURL, + setRequestReferrerPolicyOnRedirect, + tryUpgradeRequestToAPotentiallyTrustworthyURL, + createOpaqueTimingInfo, + appendFetchMetadata, + corsCheck, + crossOriginResourcePolicyCheck, + determineRequestsReferrer, + coarsenedSharedCurrentTime, + createDeferredPromise, + isBlobLike, + sameOrigin, + isCancelled, + isAborted, + isErrorLike, + fullyReadBody, + readableStreamClose, + isomorphicEncode, + urlIsLocal, + urlIsHttpHttpsScheme, + urlHasHttpsScheme +} = __nccwpck_require__(5523) +const { kState, kHeaders, kGuard, kRealm } = __nccwpck_require__(9710) +const assert = __nccwpck_require__(2613) +const { safelyExtractBody } = __nccwpck_require__(8923) +const { + redirectStatusSet, + nullBodyStatus, + safeMethodsSet, + requestBodyHeader, + subresourceSet, + DOMException +} = __nccwpck_require__(7326) +const { kHeadersList } = __nccwpck_require__(6443) +const EE = __nccwpck_require__(4434) +const { Readable, pipeline } = __nccwpck_require__(2203) +const { addAbortListener, isErrored, isReadable, nodeMajor, nodeMinor } = __nccwpck_require__(3440) +const { dataURLProcessor, serializeAMimeType } = __nccwpck_require__(4322) +const { TransformStream } = __nccwpck_require__(3774) +const { getGlobalDispatcher } = __nccwpck_require__(2581) +const { webidl } = __nccwpck_require__(4222) +const { STATUS_CODES } = __nccwpck_require__(8611) +const GET_OR_HEAD = ['GET', 'HEAD'] + +/** @type {import('buffer').resolveObjectURL} */ +let resolveObjectURL +let ReadableStream = globalThis.ReadableStream + +class Fetch extends EE { + constructor (dispatcher) { + super() + + this.dispatcher = dispatcher + this.connection = null + this.dump = false + this.state = 'ongoing' + // 2 terminated listeners get added per request, + // but only 1 gets removed. If there are 20 redirects, + // 21 listeners will be added. + // See https://github.com/nodejs/undici/issues/1711 + // TODO (fix): Find and fix root cause for leaked listener. + this.setMaxListeners(21) + } + + terminate (reason) { + if (this.state !== 'ongoing') { + return + } + + this.state = 'terminated' + this.connection?.destroy(reason) + this.emit('terminated', reason) + } + + // https://fetch.spec.whatwg.org/#fetch-controller-abort + abort (error) { + if (this.state !== 'ongoing') { + return + } + + // 1. Set controller’s state to "aborted". + this.state = 'aborted' + + // 2. Let fallbackError be an "AbortError" DOMException. + // 3. Set error to fallbackError if it is not given. + if (!error) { + error = new DOMException('The operation was aborted.', 'AbortError') + } + + // 4. Let serializedError be StructuredSerialize(error). + // If that threw an exception, catch it, and let + // serializedError be StructuredSerialize(fallbackError). + + // 5. Set controller’s serialized abort reason to serializedError. + this.serializedAbortReason = error + + this.connection?.destroy(error) + this.emit('terminated', error) + } +} + +// https://fetch.spec.whatwg.org/#fetch-method +function fetch (input, init = {}) { + webidl.argumentLengthCheck(arguments, 1, { header: 'globalThis.fetch' }) + + // 1. Let p be a new promise. + const p = createDeferredPromise() + + // 2. Let requestObject be the result of invoking the initial value of + // Request as constructor with input and init as arguments. If this throws + // an exception, reject p with it and return p. + let requestObject + + try { + requestObject = new Request(input, init) + } catch (e) { + p.reject(e) + return p.promise + } + + // 3. Let request be requestObject’s request. + const request = requestObject[kState] + + // 4. If requestObject’s signal’s aborted flag is set, then: + if (requestObject.signal.aborted) { + // 1. Abort the fetch() call with p, request, null, and + // requestObject’s signal’s abort reason. + abortFetch(p, request, null, requestObject.signal.reason) + + // 2. Return p. + return p.promise + } + + // 5. Let globalObject be request’s client’s global object. + const globalObject = request.client.globalObject + + // 6. If globalObject is a ServiceWorkerGlobalScope object, then set + // request’s service-workers mode to "none". + if (globalObject?.constructor?.name === 'ServiceWorkerGlobalScope') { + request.serviceWorkers = 'none' + } + + // 7. Let responseObject be null. + let responseObject = null + + // 8. Let relevantRealm be this’s relevant Realm. + const relevantRealm = null + + // 9. Let locallyAborted be false. + let locallyAborted = false + + // 10. Let controller be null. + let controller = null + + // 11. Add the following abort steps to requestObject’s signal: + addAbortListener( + requestObject.signal, + () => { + // 1. Set locallyAborted to true. + locallyAborted = true + + // 2. Assert: controller is non-null. + assert(controller != null) + + // 3. Abort controller with requestObject’s signal’s abort reason. + controller.abort(requestObject.signal.reason) + + // 4. Abort the fetch() call with p, request, responseObject, + // and requestObject’s signal’s abort reason. + abortFetch(p, request, responseObject, requestObject.signal.reason) + } + ) + + // 12. Let handleFetchDone given response response be to finalize and + // report timing with response, globalObject, and "fetch". + const handleFetchDone = (response) => + finalizeAndReportTiming(response, 'fetch') + + // 13. Set controller to the result of calling fetch given request, + // with processResponseEndOfBody set to handleFetchDone, and processResponse + // given response being these substeps: + + const processResponse = (response) => { + // 1. If locallyAborted is true, terminate these substeps. + if (locallyAborted) { + return Promise.resolve() + } + + // 2. If response’s aborted flag is set, then: + if (response.aborted) { + // 1. Let deserializedError be the result of deserialize a serialized + // abort reason given controller’s serialized abort reason and + // relevantRealm. + + // 2. Abort the fetch() call with p, request, responseObject, and + // deserializedError. + + abortFetch(p, request, responseObject, controller.serializedAbortReason) + return Promise.resolve() + } + + // 3. If response is a network error, then reject p with a TypeError + // and terminate these substeps. + if (response.type === 'error') { + p.reject( + Object.assign(new TypeError('fetch failed'), { cause: response.error }) + ) + return Promise.resolve() + } + + // 4. Set responseObject to the result of creating a Response object, + // given response, "immutable", and relevantRealm. + responseObject = new Response() + responseObject[kState] = response + responseObject[kRealm] = relevantRealm + responseObject[kHeaders][kHeadersList] = response.headersList + responseObject[kHeaders][kGuard] = 'immutable' + responseObject[kHeaders][kRealm] = relevantRealm + + // 5. Resolve p with responseObject. + p.resolve(responseObject) + } + + controller = fetching({ + request, + processResponseEndOfBody: handleFetchDone, + processResponse, + dispatcher: init.dispatcher ?? getGlobalDispatcher() // undici + }) + + // 14. Return p. + return p.promise +} + +// https://fetch.spec.whatwg.org/#finalize-and-report-timing +function finalizeAndReportTiming (response, initiatorType = 'other') { + // 1. If response is an aborted network error, then return. + if (response.type === 'error' && response.aborted) { + return + } + + // 2. If response’s URL list is null or empty, then return. + if (!response.urlList?.length) { + return + } + + // 3. Let originalURL be response’s URL list[0]. + const originalURL = response.urlList[0] + + // 4. Let timingInfo be response’s timing info. + let timingInfo = response.timingInfo + + // 5. Let cacheState be response’s cache state. + let cacheState = response.cacheState + + // 6. If originalURL’s scheme is not an HTTP(S) scheme, then return. + if (!urlIsHttpHttpsScheme(originalURL)) { + return + } + + // 7. If timingInfo is null, then return. + if (timingInfo === null) { + return + } + + // 8. If response’s timing allow passed flag is not set, then: + if (!response.timingAllowPassed) { + // 1. Set timingInfo to a the result of creating an opaque timing info for timingInfo. + timingInfo = createOpaqueTimingInfo({ + startTime: timingInfo.startTime + }) + + // 2. Set cacheState to the empty string. + cacheState = '' + } + + // 9. Set timingInfo’s end time to the coarsened shared current time + // given global’s relevant settings object’s cross-origin isolated + // capability. + // TODO: given global’s relevant settings object’s cross-origin isolated + // capability? + timingInfo.endTime = coarsenedSharedCurrentTime() + + // 10. Set response’s timing info to timingInfo. + response.timingInfo = timingInfo + + // 11. Mark resource timing for timingInfo, originalURL, initiatorType, + // global, and cacheState. + markResourceTiming( + timingInfo, + originalURL, + initiatorType, + globalThis, + cacheState + ) +} + +// https://w3c.github.io/resource-timing/#dfn-mark-resource-timing +function markResourceTiming (timingInfo, originalURL, initiatorType, globalThis, cacheState) { + if (nodeMajor > 18 || (nodeMajor === 18 && nodeMinor >= 2)) { + performance.markResourceTiming(timingInfo, originalURL.href, initiatorType, globalThis, cacheState) + } +} + +// https://fetch.spec.whatwg.org/#abort-fetch +function abortFetch (p, request, responseObject, error) { + // Note: AbortSignal.reason was added in node v17.2.0 + // which would give us an undefined error to reject with. + // Remove this once node v16 is no longer supported. + if (!error) { + error = new DOMException('The operation was aborted.', 'AbortError') + } + + // 1. Reject promise with error. + p.reject(error) + + // 2. If request’s body is not null and is readable, then cancel request’s + // body with error. + if (request.body != null && isReadable(request.body?.stream)) { + request.body.stream.cancel(error).catch((err) => { + if (err.code === 'ERR_INVALID_STATE') { + // Node bug? + return + } + throw err + }) + } + + // 3. If responseObject is null, then return. + if (responseObject == null) { + return + } + + // 4. Let response be responseObject’s response. + const response = responseObject[kState] + + // 5. If response’s body is not null and is readable, then error response’s + // body with error. + if (response.body != null && isReadable(response.body?.stream)) { + response.body.stream.cancel(error).catch((err) => { + if (err.code === 'ERR_INVALID_STATE') { + // Node bug? + return + } + throw err + }) + } +} + +// https://fetch.spec.whatwg.org/#fetching +function fetching ({ + request, + processRequestBodyChunkLength, + processRequestEndOfBody, + processResponse, + processResponseEndOfBody, + processResponseConsumeBody, + useParallelQueue = false, + dispatcher // undici +}) { + // 1. Let taskDestination be null. + let taskDestination = null + + // 2. Let crossOriginIsolatedCapability be false. + let crossOriginIsolatedCapability = false + + // 3. If request’s client is non-null, then: + if (request.client != null) { + // 1. Set taskDestination to request’s client’s global object. + taskDestination = request.client.globalObject + + // 2. Set crossOriginIsolatedCapability to request’s client’s cross-origin + // isolated capability. + crossOriginIsolatedCapability = + request.client.crossOriginIsolatedCapability + } + + // 4. If useParallelQueue is true, then set taskDestination to the result of + // starting a new parallel queue. + // TODO + + // 5. Let timingInfo be a new fetch timing info whose start time and + // post-redirect start time are the coarsened shared current time given + // crossOriginIsolatedCapability. + const currenTime = coarsenedSharedCurrentTime(crossOriginIsolatedCapability) + const timingInfo = createOpaqueTimingInfo({ + startTime: currenTime + }) + + // 6. Let fetchParams be a new fetch params whose + // request is request, + // timing info is timingInfo, + // process request body chunk length is processRequestBodyChunkLength, + // process request end-of-body is processRequestEndOfBody, + // process response is processResponse, + // process response consume body is processResponseConsumeBody, + // process response end-of-body is processResponseEndOfBody, + // task destination is taskDestination, + // and cross-origin isolated capability is crossOriginIsolatedCapability. + const fetchParams = { + controller: new Fetch(dispatcher), + request, + timingInfo, + processRequestBodyChunkLength, + processRequestEndOfBody, + processResponse, + processResponseConsumeBody, + processResponseEndOfBody, + taskDestination, + crossOriginIsolatedCapability + } + + // 7. If request’s body is a byte sequence, then set request’s body to + // request’s body as a body. + // NOTE: Since fetching is only called from fetch, body should already be + // extracted. + assert(!request.body || request.body.stream) + + // 8. If request’s window is "client", then set request’s window to request’s + // client, if request’s client’s global object is a Window object; otherwise + // "no-window". + if (request.window === 'client') { + // TODO: What if request.client is null? + request.window = + request.client?.globalObject?.constructor?.name === 'Window' + ? request.client + : 'no-window' + } + + // 9. If request’s origin is "client", then set request’s origin to request’s + // client’s origin. + if (request.origin === 'client') { + // TODO: What if request.client is null? + request.origin = request.client?.origin + } + + // 10. If all of the following conditions are true: + // TODO + + // 11. If request’s policy container is "client", then: + if (request.policyContainer === 'client') { + // 1. If request’s client is non-null, then set request’s policy + // container to a clone of request’s client’s policy container. [HTML] + if (request.client != null) { + request.policyContainer = clonePolicyContainer( + request.client.policyContainer + ) + } else { + // 2. Otherwise, set request’s policy container to a new policy + // container. + request.policyContainer = makePolicyContainer() + } + } + + // 12. If request’s header list does not contain `Accept`, then: + if (!request.headersList.contains('accept')) { + // 1. Let value be `*/*`. + const value = '*/*' + + // 2. A user agent should set value to the first matching statement, if + // any, switching on request’s destination: + // "document" + // "frame" + // "iframe" + // `text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8` + // "image" + // `image/png,image/svg+xml,image/*;q=0.8,*/*;q=0.5` + // "style" + // `text/css,*/*;q=0.1` + // TODO + + // 3. Append `Accept`/value to request’s header list. + request.headersList.append('accept', value) + } + + // 13. If request’s header list does not contain `Accept-Language`, then + // user agents should append `Accept-Language`/an appropriate value to + // request’s header list. + if (!request.headersList.contains('accept-language')) { + request.headersList.append('accept-language', '*') + } + + // 14. If request’s priority is null, then use request’s initiator and + // destination appropriately in setting request’s priority to a + // user-agent-defined object. + if (request.priority === null) { + // TODO + } + + // 15. If request is a subresource request, then: + if (subresourceSet.has(request.destination)) { + // TODO + } + + // 16. Run main fetch given fetchParams. + mainFetch(fetchParams) + .catch(err => { + fetchParams.controller.terminate(err) + }) + + // 17. Return fetchParam's controller + return fetchParams.controller +} + +// https://fetch.spec.whatwg.org/#concept-main-fetch +async function mainFetch (fetchParams, recursive = false) { + // 1. Let request be fetchParams’s request. + const request = fetchParams.request + + // 2. Let response be null. + let response = null + + // 3. If request’s local-URLs-only flag is set and request’s current URL is + // not local, then set response to a network error. + if (request.localURLsOnly && !urlIsLocal(requestCurrentURL(request))) { + response = makeNetworkError('local URLs only') + } + + // 4. Run report Content Security Policy violations for request. + // TODO + + // 5. Upgrade request to a potentially trustworthy URL, if appropriate. + tryUpgradeRequestToAPotentiallyTrustworthyURL(request) + + // 6. If should request be blocked due to a bad port, should fetching request + // be blocked as mixed content, or should request be blocked by Content + // Security Policy returns blocked, then set response to a network error. + if (requestBadPort(request) === 'blocked') { + response = makeNetworkError('bad port') + } + // TODO: should fetching request be blocked as mixed content? + // TODO: should request be blocked by Content Security Policy? + + // 7. If request’s referrer policy is the empty string, then set request’s + // referrer policy to request’s policy container’s referrer policy. + if (request.referrerPolicy === '') { + request.referrerPolicy = request.policyContainer.referrerPolicy + } + + // 8. If request’s referrer is not "no-referrer", then set request’s + // referrer to the result of invoking determine request’s referrer. + if (request.referrer !== 'no-referrer') { + request.referrer = determineRequestsReferrer(request) + } + + // 9. Set request’s current URL’s scheme to "https" if all of the following + // conditions are true: + // - request’s current URL’s scheme is "http" + // - request’s current URL’s host is a domain + // - Matching request’s current URL’s host per Known HSTS Host Domain Name + // Matching results in either a superdomain match with an asserted + // includeSubDomains directive or a congruent match (with or without an + // asserted includeSubDomains directive). [HSTS] + // TODO + + // 10. If recursive is false, then run the remaining steps in parallel. + // TODO + + // 11. If response is null, then set response to the result of running + // the steps corresponding to the first matching statement: + if (response === null) { + response = await (async () => { + const currentURL = requestCurrentURL(request) + + if ( + // - request’s current URL’s origin is same origin with request’s origin, + // and request’s response tainting is "basic" + (sameOrigin(currentURL, request.url) && request.responseTainting === 'basic') || + // request’s current URL’s scheme is "data" + (currentURL.protocol === 'data:') || + // - request’s mode is "navigate" or "websocket" + (request.mode === 'navigate' || request.mode === 'websocket') + ) { + // 1. Set request’s response tainting to "basic". + request.responseTainting = 'basic' + + // 2. Return the result of running scheme fetch given fetchParams. + return await schemeFetch(fetchParams) + } + + // request’s mode is "same-origin" + if (request.mode === 'same-origin') { + // 1. Return a network error. + return makeNetworkError('request mode cannot be "same-origin"') + } + + // request’s mode is "no-cors" + if (request.mode === 'no-cors') { + // 1. If request’s redirect mode is not "follow", then return a network + // error. + if (request.redirect !== 'follow') { + return makeNetworkError( + 'redirect mode cannot be "follow" for "no-cors" request' + ) + } + + // 2. Set request’s response tainting to "opaque". + request.responseTainting = 'opaque' + + // 3. Return the result of running scheme fetch given fetchParams. + return await schemeFetch(fetchParams) + } + + // request’s current URL’s scheme is not an HTTP(S) scheme + if (!urlIsHttpHttpsScheme(requestCurrentURL(request))) { + // Return a network error. + return makeNetworkError('URL scheme must be a HTTP(S) scheme') + } + + // - request’s use-CORS-preflight flag is set + // - request’s unsafe-request flag is set and either request’s method is + // not a CORS-safelisted method or CORS-unsafe request-header names with + // request’s header list is not empty + // 1. Set request’s response tainting to "cors". + // 2. Let corsWithPreflightResponse be the result of running HTTP fetch + // given fetchParams and true. + // 3. If corsWithPreflightResponse is a network error, then clear cache + // entries using request. + // 4. Return corsWithPreflightResponse. + // TODO + + // Otherwise + // 1. Set request’s response tainting to "cors". + request.responseTainting = 'cors' + + // 2. Return the result of running HTTP fetch given fetchParams. + return await httpFetch(fetchParams) + })() + } + + // 12. If recursive is true, then return response. + if (recursive) { + return response + } + + // 13. If response is not a network error and response is not a filtered + // response, then: + if (response.status !== 0 && !response.internalResponse) { + // If request’s response tainting is "cors", then: + if (request.responseTainting === 'cors') { + // 1. Let headerNames be the result of extracting header list values + // given `Access-Control-Expose-Headers` and response’s header list. + // TODO + // 2. If request’s credentials mode is not "include" and headerNames + // contains `*`, then set response’s CORS-exposed header-name list to + // all unique header names in response’s header list. + // TODO + // 3. Otherwise, if headerNames is not null or failure, then set + // response’s CORS-exposed header-name list to headerNames. + // TODO + } + + // Set response to the following filtered response with response as its + // internal response, depending on request’s response tainting: + if (request.responseTainting === 'basic') { + response = filterResponse(response, 'basic') + } else if (request.responseTainting === 'cors') { + response = filterResponse(response, 'cors') + } else if (request.responseTainting === 'opaque') { + response = filterResponse(response, 'opaque') + } else { + assert(false) + } + } + + // 14. Let internalResponse be response, if response is a network error, + // and response’s internal response otherwise. + let internalResponse = + response.status === 0 ? response : response.internalResponse + + // 15. If internalResponse’s URL list is empty, then set it to a clone of + // request’s URL list. + if (internalResponse.urlList.length === 0) { + internalResponse.urlList.push(...request.urlList) + } + + // 16. If request’s timing allow failed flag is unset, then set + // internalResponse’s timing allow passed flag. + if (!request.timingAllowFailed) { + response.timingAllowPassed = true + } + + // 17. If response is not a network error and any of the following returns + // blocked + // - should internalResponse to request be blocked as mixed content + // - should internalResponse to request be blocked by Content Security Policy + // - should internalResponse to request be blocked due to its MIME type + // - should internalResponse to request be blocked due to nosniff + // TODO + + // 18. If response’s type is "opaque", internalResponse’s status is 206, + // internalResponse’s range-requested flag is set, and request’s header + // list does not contain `Range`, then set response and internalResponse + // to a network error. + if ( + response.type === 'opaque' && + internalResponse.status === 206 && + internalResponse.rangeRequested && + !request.headers.contains('range') + ) { + response = internalResponse = makeNetworkError() + } + + // 19. If response is not a network error and either request’s method is + // `HEAD` or `CONNECT`, or internalResponse’s status is a null body status, + // set internalResponse’s body to null and disregard any enqueuing toward + // it (if any). + if ( + response.status !== 0 && + (request.method === 'HEAD' || + request.method === 'CONNECT' || + nullBodyStatus.includes(internalResponse.status)) + ) { + internalResponse.body = null + fetchParams.controller.dump = true + } + + // 20. If request’s integrity metadata is not the empty string, then: + if (request.integrity) { + // 1. Let processBodyError be this step: run fetch finale given fetchParams + // and a network error. + const processBodyError = (reason) => + fetchFinale(fetchParams, makeNetworkError(reason)) + + // 2. If request’s response tainting is "opaque", or response’s body is null, + // then run processBodyError and abort these steps. + if (request.responseTainting === 'opaque' || response.body == null) { + processBodyError(response.error) + return + } + + // 3. Let processBody given bytes be these steps: + const processBody = (bytes) => { + // 1. If bytes do not match request’s integrity metadata, + // then run processBodyError and abort these steps. [SRI] + if (!bytesMatch(bytes, request.integrity)) { + processBodyError('integrity mismatch') + return + } + + // 2. Set response’s body to bytes as a body. + response.body = safelyExtractBody(bytes)[0] + + // 3. Run fetch finale given fetchParams and response. + fetchFinale(fetchParams, response) + } + + // 4. Fully read response’s body given processBody and processBodyError. + await fullyReadBody(response.body, processBody, processBodyError) + } else { + // 21. Otherwise, run fetch finale given fetchParams and response. + fetchFinale(fetchParams, response) + } +} + +// https://fetch.spec.whatwg.org/#concept-scheme-fetch +// given a fetch params fetchParams +function schemeFetch (fetchParams) { + // Note: since the connection is destroyed on redirect, which sets fetchParams to a + // cancelled state, we do not want this condition to trigger *unless* there have been + // no redirects. See https://github.com/nodejs/undici/issues/1776 + // 1. If fetchParams is canceled, then return the appropriate network error for fetchParams. + if (isCancelled(fetchParams) && fetchParams.request.redirectCount === 0) { + return Promise.resolve(makeAppropriateNetworkError(fetchParams)) + } + + // 2. Let request be fetchParams’s request. + const { request } = fetchParams + + const { protocol: scheme } = requestCurrentURL(request) + + // 3. Switch on request’s current URL’s scheme and run the associated steps: + switch (scheme) { + case 'about:': { + // If request’s current URL’s path is the string "blank", then return a new response + // whose status message is `OK`, header list is « (`Content-Type`, `text/html;charset=utf-8`) », + // and body is the empty byte sequence as a body. + + // Otherwise, return a network error. + return Promise.resolve(makeNetworkError('about scheme is not supported')) + } + case 'blob:': { + if (!resolveObjectURL) { + resolveObjectURL = (__nccwpck_require__(181).resolveObjectURL) + } + + // 1. Let blobURLEntry be request’s current URL’s blob URL entry. + const blobURLEntry = requestCurrentURL(request) + + // https://github.com/web-platform-tests/wpt/blob/7b0ebaccc62b566a1965396e5be7bb2bc06f841f/FileAPI/url/resources/fetch-tests.js#L52-L56 + // Buffer.resolveObjectURL does not ignore URL queries. + if (blobURLEntry.search.length !== 0) { + return Promise.resolve(makeNetworkError('NetworkError when attempting to fetch resource.')) + } + + const blobURLEntryObject = resolveObjectURL(blobURLEntry.toString()) + + // 2. If request’s method is not `GET`, blobURLEntry is null, or blobURLEntry’s + // object is not a Blob object, then return a network error. + if (request.method !== 'GET' || !isBlobLike(blobURLEntryObject)) { + return Promise.resolve(makeNetworkError('invalid method')) + } + + // 3. Let bodyWithType be the result of safely extracting blobURLEntry’s object. + const bodyWithType = safelyExtractBody(blobURLEntryObject) + + // 4. Let body be bodyWithType’s body. + const body = bodyWithType[0] + + // 5. Let length be body’s length, serialized and isomorphic encoded. + const length = isomorphicEncode(`${body.length}`) + + // 6. Let type be bodyWithType’s type if it is non-null; otherwise the empty byte sequence. + const type = bodyWithType[1] ?? '' + + // 7. Return a new response whose status message is `OK`, header list is + // « (`Content-Length`, length), (`Content-Type`, type) », and body is body. + const response = makeResponse({ + statusText: 'OK', + headersList: [ + ['content-length', { name: 'Content-Length', value: length }], + ['content-type', { name: 'Content-Type', value: type }] + ] + }) + + response.body = body + + return Promise.resolve(response) + } + case 'data:': { + // 1. Let dataURLStruct be the result of running the + // data: URL processor on request’s current URL. + const currentURL = requestCurrentURL(request) + const dataURLStruct = dataURLProcessor(currentURL) + + // 2. If dataURLStruct is failure, then return a + // network error. + if (dataURLStruct === 'failure') { + return Promise.resolve(makeNetworkError('failed to fetch the data URL')) + } + + // 3. Let mimeType be dataURLStruct’s MIME type, serialized. + const mimeType = serializeAMimeType(dataURLStruct.mimeType) + + // 4. Return a response whose status message is `OK`, + // header list is « (`Content-Type`, mimeType) », + // and body is dataURLStruct’s body as a body. + return Promise.resolve(makeResponse({ + statusText: 'OK', + headersList: [ + ['content-type', { name: 'Content-Type', value: mimeType }] + ], + body: safelyExtractBody(dataURLStruct.body)[0] + })) + } + case 'file:': { + // For now, unfortunate as it is, file URLs are left as an exercise for the reader. + // When in doubt, return a network error. + return Promise.resolve(makeNetworkError('not implemented... yet...')) + } + case 'http:': + case 'https:': { + // Return the result of running HTTP fetch given fetchParams. + + return httpFetch(fetchParams) + .catch((err) => makeNetworkError(err)) + } + default: { + return Promise.resolve(makeNetworkError('unknown scheme')) + } + } +} + +// https://fetch.spec.whatwg.org/#finalize-response +function finalizeResponse (fetchParams, response) { + // 1. Set fetchParams’s request’s done flag. + fetchParams.request.done = true + + // 2, If fetchParams’s process response done is not null, then queue a fetch + // task to run fetchParams’s process response done given response, with + // fetchParams’s task destination. + if (fetchParams.processResponseDone != null) { + queueMicrotask(() => fetchParams.processResponseDone(response)) + } +} + +// https://fetch.spec.whatwg.org/#fetch-finale +function fetchFinale (fetchParams, response) { + // 1. If response is a network error, then: + if (response.type === 'error') { + // 1. Set response’s URL list to « fetchParams’s request’s URL list[0] ». + response.urlList = [fetchParams.request.urlList[0]] + + // 2. Set response’s timing info to the result of creating an opaque timing + // info for fetchParams’s timing info. + response.timingInfo = createOpaqueTimingInfo({ + startTime: fetchParams.timingInfo.startTime + }) + } + + // 2. Let processResponseEndOfBody be the following steps: + const processResponseEndOfBody = () => { + // 1. Set fetchParams’s request’s done flag. + fetchParams.request.done = true + + // If fetchParams’s process response end-of-body is not null, + // then queue a fetch task to run fetchParams’s process response + // end-of-body given response with fetchParams’s task destination. + if (fetchParams.processResponseEndOfBody != null) { + queueMicrotask(() => fetchParams.processResponseEndOfBody(response)) + } + } + + // 3. If fetchParams’s process response is non-null, then queue a fetch task + // to run fetchParams’s process response given response, with fetchParams’s + // task destination. + if (fetchParams.processResponse != null) { + queueMicrotask(() => fetchParams.processResponse(response)) + } + + // 4. If response’s body is null, then run processResponseEndOfBody. + if (response.body == null) { + processResponseEndOfBody() + } else { + // 5. Otherwise: + + // 1. Let transformStream be a new a TransformStream. + + // 2. Let identityTransformAlgorithm be an algorithm which, given chunk, + // enqueues chunk in transformStream. + const identityTransformAlgorithm = (chunk, controller) => { + controller.enqueue(chunk) + } + + // 3. Set up transformStream with transformAlgorithm set to identityTransformAlgorithm + // and flushAlgorithm set to processResponseEndOfBody. + const transformStream = new TransformStream({ + start () {}, + transform: identityTransformAlgorithm, + flush: processResponseEndOfBody + }, { + size () { + return 1 + } + }, { + size () { + return 1 + } + }) + + // 4. Set response’s body to the result of piping response’s body through transformStream. + response.body = { stream: response.body.stream.pipeThrough(transformStream) } + } + + // 6. If fetchParams’s process response consume body is non-null, then: + if (fetchParams.processResponseConsumeBody != null) { + // 1. Let processBody given nullOrBytes be this step: run fetchParams’s + // process response consume body given response and nullOrBytes. + const processBody = (nullOrBytes) => fetchParams.processResponseConsumeBody(response, nullOrBytes) + + // 2. Let processBodyError be this step: run fetchParams’s process + // response consume body given response and failure. + const processBodyError = (failure) => fetchParams.processResponseConsumeBody(response, failure) + + // 3. If response’s body is null, then queue a fetch task to run processBody + // given null, with fetchParams’s task destination. + if (response.body == null) { + queueMicrotask(() => processBody(null)) + } else { + // 4. Otherwise, fully read response’s body given processBody, processBodyError, + // and fetchParams’s task destination. + return fullyReadBody(response.body, processBody, processBodyError) + } + return Promise.resolve() + } +} + +// https://fetch.spec.whatwg.org/#http-fetch +async function httpFetch (fetchParams) { + // 1. Let request be fetchParams’s request. + const request = fetchParams.request + + // 2. Let response be null. + let response = null + + // 3. Let actualResponse be null. + let actualResponse = null + + // 4. Let timingInfo be fetchParams’s timing info. + const timingInfo = fetchParams.timingInfo + + // 5. If request’s service-workers mode is "all", then: + if (request.serviceWorkers === 'all') { + // TODO + } + + // 6. If response is null, then: + if (response === null) { + // 1. If makeCORSPreflight is true and one of these conditions is true: + // TODO + + // 2. If request’s redirect mode is "follow", then set request’s + // service-workers mode to "none". + if (request.redirect === 'follow') { + request.serviceWorkers = 'none' + } + + // 3. Set response and actualResponse to the result of running + // HTTP-network-or-cache fetch given fetchParams. + actualResponse = response = await httpNetworkOrCacheFetch(fetchParams) + + // 4. If request’s response tainting is "cors" and a CORS check + // for request and response returns failure, then return a network error. + if ( + request.responseTainting === 'cors' && + corsCheck(request, response) === 'failure' + ) { + return makeNetworkError('cors failure') + } + + // 5. If the TAO check for request and response returns failure, then set + // request’s timing allow failed flag. + if (TAOCheck(request, response) === 'failure') { + request.timingAllowFailed = true + } + } + + // 7. If either request’s response tainting or response’s type + // is "opaque", and the cross-origin resource policy check with + // request’s origin, request’s client, request’s destination, + // and actualResponse returns blocked, then return a network error. + if ( + (request.responseTainting === 'opaque' || response.type === 'opaque') && + crossOriginResourcePolicyCheck( + request.origin, + request.client, + request.destination, + actualResponse + ) === 'blocked' + ) { + return makeNetworkError('blocked') + } + + // 8. If actualResponse’s status is a redirect status, then: + if (redirectStatusSet.has(actualResponse.status)) { + // 1. If actualResponse’s status is not 303, request’s body is not null, + // and the connection uses HTTP/2, then user agents may, and are even + // encouraged to, transmit an RST_STREAM frame. + // See, https://github.com/whatwg/fetch/issues/1288 + if (request.redirect !== 'manual') { + fetchParams.controller.connection.destroy() + } + + // 2. Switch on request’s redirect mode: + if (request.redirect === 'error') { + // Set response to a network error. + response = makeNetworkError('unexpected redirect') + } else if (request.redirect === 'manual') { + // Set response to an opaque-redirect filtered response whose internal + // response is actualResponse. + // NOTE(spec): On the web this would return an `opaqueredirect` response, + // but that doesn't make sense server side. + // See https://github.com/nodejs/undici/issues/1193. + response = actualResponse + } else if (request.redirect === 'follow') { + // Set response to the result of running HTTP-redirect fetch given + // fetchParams and response. + response = await httpRedirectFetch(fetchParams, response) + } else { + assert(false) + } + } + + // 9. Set response’s timing info to timingInfo. + response.timingInfo = timingInfo + + // 10. Return response. + return response +} + +// https://fetch.spec.whatwg.org/#http-redirect-fetch +function httpRedirectFetch (fetchParams, response) { + // 1. Let request be fetchParams’s request. + const request = fetchParams.request + + // 2. Let actualResponse be response, if response is not a filtered response, + // and response’s internal response otherwise. + const actualResponse = response.internalResponse + ? response.internalResponse + : response + + // 3. Let locationURL be actualResponse’s location URL given request’s current + // URL’s fragment. + let locationURL + + try { + locationURL = responseLocationURL( + actualResponse, + requestCurrentURL(request).hash + ) + + // 4. If locationURL is null, then return response. + if (locationURL == null) { + return response + } + } catch (err) { + // 5. If locationURL is failure, then return a network error. + return Promise.resolve(makeNetworkError(err)) + } + + // 6. If locationURL’s scheme is not an HTTP(S) scheme, then return a network + // error. + if (!urlIsHttpHttpsScheme(locationURL)) { + return Promise.resolve(makeNetworkError('URL scheme must be a HTTP(S) scheme')) + } + + // 7. If request’s redirect count is 20, then return a network error. + if (request.redirectCount === 20) { + return Promise.resolve(makeNetworkError('redirect count exceeded')) + } + + // 8. Increase request’s redirect count by 1. + request.redirectCount += 1 + + // 9. If request’s mode is "cors", locationURL includes credentials, and + // request’s origin is not same origin with locationURL’s origin, then return + // a network error. + if ( + request.mode === 'cors' && + (locationURL.username || locationURL.password) && + !sameOrigin(request, locationURL) + ) { + return Promise.resolve(makeNetworkError('cross origin not allowed for request mode "cors"')) + } + + // 10. If request’s response tainting is "cors" and locationURL includes + // credentials, then return a network error. + if ( + request.responseTainting === 'cors' && + (locationURL.username || locationURL.password) + ) { + return Promise.resolve(makeNetworkError( + 'URL cannot contain credentials for request mode "cors"' + )) + } + + // 11. If actualResponse’s status is not 303, request’s body is non-null, + // and request’s body’s source is null, then return a network error. + if ( + actualResponse.status !== 303 && + request.body != null && + request.body.source == null + ) { + return Promise.resolve(makeNetworkError()) + } + + // 12. If one of the following is true + // - actualResponse’s status is 301 or 302 and request’s method is `POST` + // - actualResponse’s status is 303 and request’s method is not `GET` or `HEAD` + if ( + ([301, 302].includes(actualResponse.status) && request.method === 'POST') || + (actualResponse.status === 303 && + !GET_OR_HEAD.includes(request.method)) + ) { + // then: + // 1. Set request’s method to `GET` and request’s body to null. + request.method = 'GET' + request.body = null + + // 2. For each headerName of request-body-header name, delete headerName from + // request’s header list. + for (const headerName of requestBodyHeader) { + request.headersList.delete(headerName) + } + } + + // 13. If request’s current URL’s origin is not same origin with locationURL’s + // origin, then for each headerName of CORS non-wildcard request-header name, + // delete headerName from request’s header list. + if (!sameOrigin(requestCurrentURL(request), locationURL)) { + // https://fetch.spec.whatwg.org/#cors-non-wildcard-request-header-name + request.headersList.delete('authorization') + + // https://fetch.spec.whatwg.org/#authentication-entries + request.headersList.delete('proxy-authorization', true) + + // "Cookie" and "Host" are forbidden request-headers, which undici doesn't implement. + request.headersList.delete('cookie') + request.headersList.delete('host') + } + + // 14. If request’s body is non-null, then set request’s body to the first return + // value of safely extracting request’s body’s source. + if (request.body != null) { + assert(request.body.source != null) + request.body = safelyExtractBody(request.body.source)[0] + } + + // 15. Let timingInfo be fetchParams’s timing info. + const timingInfo = fetchParams.timingInfo + + // 16. Set timingInfo’s redirect end time and post-redirect start time to the + // coarsened shared current time given fetchParams’s cross-origin isolated + // capability. + timingInfo.redirectEndTime = timingInfo.postRedirectStartTime = + coarsenedSharedCurrentTime(fetchParams.crossOriginIsolatedCapability) + + // 17. If timingInfo’s redirect start time is 0, then set timingInfo’s + // redirect start time to timingInfo’s start time. + if (timingInfo.redirectStartTime === 0) { + timingInfo.redirectStartTime = timingInfo.startTime + } + + // 18. Append locationURL to request’s URL list. + request.urlList.push(locationURL) + + // 19. Invoke set request’s referrer policy on redirect on request and + // actualResponse. + setRequestReferrerPolicyOnRedirect(request, actualResponse) + + // 20. Return the result of running main fetch given fetchParams and true. + return mainFetch(fetchParams, true) +} + +// https://fetch.spec.whatwg.org/#http-network-or-cache-fetch +async function httpNetworkOrCacheFetch ( + fetchParams, + isAuthenticationFetch = false, + isNewConnectionFetch = false +) { + // 1. Let request be fetchParams’s request. + const request = fetchParams.request + + // 2. Let httpFetchParams be null. + let httpFetchParams = null + + // 3. Let httpRequest be null. + let httpRequest = null + + // 4. Let response be null. + let response = null + + // 5. Let storedResponse be null. + // TODO: cache + + // 6. Let httpCache be null. + const httpCache = null + + // 7. Let the revalidatingFlag be unset. + const revalidatingFlag = false + + // 8. Run these steps, but abort when the ongoing fetch is terminated: + + // 1. If request’s window is "no-window" and request’s redirect mode is + // "error", then set httpFetchParams to fetchParams and httpRequest to + // request. + if (request.window === 'no-window' && request.redirect === 'error') { + httpFetchParams = fetchParams + httpRequest = request + } else { + // Otherwise: + + // 1. Set httpRequest to a clone of request. + httpRequest = makeRequest(request) + + // 2. Set httpFetchParams to a copy of fetchParams. + httpFetchParams = { ...fetchParams } + + // 3. Set httpFetchParams’s request to httpRequest. + httpFetchParams.request = httpRequest + } + + // 3. Let includeCredentials be true if one of + const includeCredentials = + request.credentials === 'include' || + (request.credentials === 'same-origin' && + request.responseTainting === 'basic') + + // 4. Let contentLength be httpRequest’s body’s length, if httpRequest’s + // body is non-null; otherwise null. + const contentLength = httpRequest.body ? httpRequest.body.length : null + + // 5. Let contentLengthHeaderValue be null. + let contentLengthHeaderValue = null + + // 6. If httpRequest’s body is null and httpRequest’s method is `POST` or + // `PUT`, then set contentLengthHeaderValue to `0`. + if ( + httpRequest.body == null && + ['POST', 'PUT'].includes(httpRequest.method) + ) { + contentLengthHeaderValue = '0' + } + + // 7. If contentLength is non-null, then set contentLengthHeaderValue to + // contentLength, serialized and isomorphic encoded. + if (contentLength != null) { + contentLengthHeaderValue = isomorphicEncode(`${contentLength}`) + } + + // 8. If contentLengthHeaderValue is non-null, then append + // `Content-Length`/contentLengthHeaderValue to httpRequest’s header + // list. + if (contentLengthHeaderValue != null) { + httpRequest.headersList.append('content-length', contentLengthHeaderValue) + } + + // 9. If contentLengthHeaderValue is non-null, then append (`Content-Length`, + // contentLengthHeaderValue) to httpRequest’s header list. + + // 10. If contentLength is non-null and httpRequest’s keepalive is true, + // then: + if (contentLength != null && httpRequest.keepalive) { + // NOTE: keepalive is a noop outside of browser context. + } + + // 11. If httpRequest’s referrer is a URL, then append + // `Referer`/httpRequest’s referrer, serialized and isomorphic encoded, + // to httpRequest’s header list. + if (httpRequest.referrer instanceof URL) { + httpRequest.headersList.append('referer', isomorphicEncode(httpRequest.referrer.href)) + } + + // 12. Append a request `Origin` header for httpRequest. + appendRequestOriginHeader(httpRequest) + + // 13. Append the Fetch metadata headers for httpRequest. [FETCH-METADATA] + appendFetchMetadata(httpRequest) + + // 14. If httpRequest’s header list does not contain `User-Agent`, then + // user agents should append `User-Agent`/default `User-Agent` value to + // httpRequest’s header list. + if (!httpRequest.headersList.contains('user-agent')) { + httpRequest.headersList.append('user-agent', typeof esbuildDetection === 'undefined' ? 'undici' : 'node') + } + + // 15. If httpRequest’s cache mode is "default" and httpRequest’s header + // list contains `If-Modified-Since`, `If-None-Match`, + // `If-Unmodified-Since`, `If-Match`, or `If-Range`, then set + // httpRequest’s cache mode to "no-store". + if ( + httpRequest.cache === 'default' && + (httpRequest.headersList.contains('if-modified-since') || + httpRequest.headersList.contains('if-none-match') || + httpRequest.headersList.contains('if-unmodified-since') || + httpRequest.headersList.contains('if-match') || + httpRequest.headersList.contains('if-range')) + ) { + httpRequest.cache = 'no-store' + } + + // 16. If httpRequest’s cache mode is "no-cache", httpRequest’s prevent + // no-cache cache-control header modification flag is unset, and + // httpRequest’s header list does not contain `Cache-Control`, then append + // `Cache-Control`/`max-age=0` to httpRequest’s header list. + if ( + httpRequest.cache === 'no-cache' && + !httpRequest.preventNoCacheCacheControlHeaderModification && + !httpRequest.headersList.contains('cache-control') + ) { + httpRequest.headersList.append('cache-control', 'max-age=0') + } + + // 17. If httpRequest’s cache mode is "no-store" or "reload", then: + if (httpRequest.cache === 'no-store' || httpRequest.cache === 'reload') { + // 1. If httpRequest’s header list does not contain `Pragma`, then append + // `Pragma`/`no-cache` to httpRequest’s header list. + if (!httpRequest.headersList.contains('pragma')) { + httpRequest.headersList.append('pragma', 'no-cache') + } + + // 2. If httpRequest’s header list does not contain `Cache-Control`, + // then append `Cache-Control`/`no-cache` to httpRequest’s header list. + if (!httpRequest.headersList.contains('cache-control')) { + httpRequest.headersList.append('cache-control', 'no-cache') + } + } + + // 18. If httpRequest’s header list contains `Range`, then append + // `Accept-Encoding`/`identity` to httpRequest’s header list. + if (httpRequest.headersList.contains('range')) { + httpRequest.headersList.append('accept-encoding', 'identity') + } + + // 19. Modify httpRequest’s header list per HTTP. Do not append a given + // header if httpRequest’s header list contains that header’s name. + // TODO: https://github.com/whatwg/fetch/issues/1285#issuecomment-896560129 + if (!httpRequest.headersList.contains('accept-encoding')) { + if (urlHasHttpsScheme(requestCurrentURL(httpRequest))) { + httpRequest.headersList.append('accept-encoding', 'br, gzip, deflate') + } else { + httpRequest.headersList.append('accept-encoding', 'gzip, deflate') + } + } + + httpRequest.headersList.delete('host') + + // 20. If includeCredentials is true, then: + if (includeCredentials) { + // 1. If the user agent is not configured to block cookies for httpRequest + // (see section 7 of [COOKIES]), then: + // TODO: credentials + // 2. If httpRequest’s header list does not contain `Authorization`, then: + // TODO: credentials + } + + // 21. If there’s a proxy-authentication entry, use it as appropriate. + // TODO: proxy-authentication + + // 22. Set httpCache to the result of determining the HTTP cache + // partition, given httpRequest. + // TODO: cache + + // 23. If httpCache is null, then set httpRequest’s cache mode to + // "no-store". + if (httpCache == null) { + httpRequest.cache = 'no-store' + } + + // 24. If httpRequest’s cache mode is neither "no-store" nor "reload", + // then: + if (httpRequest.mode !== 'no-store' && httpRequest.mode !== 'reload') { + // TODO: cache + } + + // 9. If aborted, then return the appropriate network error for fetchParams. + // TODO + + // 10. If response is null, then: + if (response == null) { + // 1. If httpRequest’s cache mode is "only-if-cached", then return a + // network error. + if (httpRequest.mode === 'only-if-cached') { + return makeNetworkError('only if cached') + } + + // 2. Let forwardResponse be the result of running HTTP-network fetch + // given httpFetchParams, includeCredentials, and isNewConnectionFetch. + const forwardResponse = await httpNetworkFetch( + httpFetchParams, + includeCredentials, + isNewConnectionFetch + ) + + // 3. If httpRequest’s method is unsafe and forwardResponse’s status is + // in the range 200 to 399, inclusive, invalidate appropriate stored + // responses in httpCache, as per the "Invalidation" chapter of HTTP + // Caching, and set storedResponse to null. [HTTP-CACHING] + if ( + !safeMethodsSet.has(httpRequest.method) && + forwardResponse.status >= 200 && + forwardResponse.status <= 399 + ) { + // TODO: cache + } + + // 4. If the revalidatingFlag is set and forwardResponse’s status is 304, + // then: + if (revalidatingFlag && forwardResponse.status === 304) { + // TODO: cache + } + + // 5. If response is null, then: + if (response == null) { + // 1. Set response to forwardResponse. + response = forwardResponse + + // 2. Store httpRequest and forwardResponse in httpCache, as per the + // "Storing Responses in Caches" chapter of HTTP Caching. [HTTP-CACHING] + // TODO: cache + } + } + + // 11. Set response’s URL list to a clone of httpRequest’s URL list. + response.urlList = [...httpRequest.urlList] + + // 12. If httpRequest’s header list contains `Range`, then set response’s + // range-requested flag. + if (httpRequest.headersList.contains('range')) { + response.rangeRequested = true + } + + // 13. Set response’s request-includes-credentials to includeCredentials. + response.requestIncludesCredentials = includeCredentials + + // 14. If response’s status is 401, httpRequest’s response tainting is not + // "cors", includeCredentials is true, and request’s window is an environment + // settings object, then: + // TODO + + // 15. If response’s status is 407, then: + if (response.status === 407) { + // 1. If request’s window is "no-window", then return a network error. + if (request.window === 'no-window') { + return makeNetworkError() + } + + // 2. ??? + + // 3. If fetchParams is canceled, then return the appropriate network error for fetchParams. + if (isCancelled(fetchParams)) { + return makeAppropriateNetworkError(fetchParams) + } + + // 4. Prompt the end user as appropriate in request’s window and store + // the result as a proxy-authentication entry. [HTTP-AUTH] + // TODO: Invoke some kind of callback? + + // 5. Set response to the result of running HTTP-network-or-cache fetch given + // fetchParams. + // TODO + return makeNetworkError('proxy authentication required') + } + + // 16. If all of the following are true + if ( + // response’s status is 421 + response.status === 421 && + // isNewConnectionFetch is false + !isNewConnectionFetch && + // request’s body is null, or request’s body is non-null and request’s body’s source is non-null + (request.body == null || request.body.source != null) + ) { + // then: + + // 1. If fetchParams is canceled, then return the appropriate network error for fetchParams. + if (isCancelled(fetchParams)) { + return makeAppropriateNetworkError(fetchParams) + } + + // 2. Set response to the result of running HTTP-network-or-cache + // fetch given fetchParams, isAuthenticationFetch, and true. + + // TODO (spec): The spec doesn't specify this but we need to cancel + // the active response before we can start a new one. + // https://github.com/whatwg/fetch/issues/1293 + fetchParams.controller.connection.destroy() + + response = await httpNetworkOrCacheFetch( + fetchParams, + isAuthenticationFetch, + true + ) + } + + // 17. If isAuthenticationFetch is true, then create an authentication entry + if (isAuthenticationFetch) { + // TODO + } + + // 18. Return response. + return response +} + +// https://fetch.spec.whatwg.org/#http-network-fetch +async function httpNetworkFetch ( + fetchParams, + includeCredentials = false, + forceNewConnection = false +) { + assert(!fetchParams.controller.connection || fetchParams.controller.connection.destroyed) + + fetchParams.controller.connection = { + abort: null, + destroyed: false, + destroy (err) { + if (!this.destroyed) { + this.destroyed = true + this.abort?.(err ?? new DOMException('The operation was aborted.', 'AbortError')) + } + } + } + + // 1. Let request be fetchParams’s request. + const request = fetchParams.request + + // 2. Let response be null. + let response = null + + // 3. Let timingInfo be fetchParams’s timing info. + const timingInfo = fetchParams.timingInfo + + // 4. Let httpCache be the result of determining the HTTP cache partition, + // given request. + // TODO: cache + const httpCache = null + + // 5. If httpCache is null, then set request’s cache mode to "no-store". + if (httpCache == null) { + request.cache = 'no-store' + } + + // 6. Let networkPartitionKey be the result of determining the network + // partition key given request. + // TODO + + // 7. Let newConnection be "yes" if forceNewConnection is true; otherwise + // "no". + const newConnection = forceNewConnection ? 'yes' : 'no' // eslint-disable-line no-unused-vars + + // 8. Switch on request’s mode: + if (request.mode === 'websocket') { + // Let connection be the result of obtaining a WebSocket connection, + // given request’s current URL. + // TODO + } else { + // Let connection be the result of obtaining a connection, given + // networkPartitionKey, request’s current URL’s origin, + // includeCredentials, and forceNewConnection. + // TODO + } + + // 9. Run these steps, but abort when the ongoing fetch is terminated: + + // 1. If connection is failure, then return a network error. + + // 2. Set timingInfo’s final connection timing info to the result of + // calling clamp and coarsen connection timing info with connection’s + // timing info, timingInfo’s post-redirect start time, and fetchParams’s + // cross-origin isolated capability. + + // 3. If connection is not an HTTP/2 connection, request’s body is non-null, + // and request’s body’s source is null, then append (`Transfer-Encoding`, + // `chunked`) to request’s header list. + + // 4. Set timingInfo’s final network-request start time to the coarsened + // shared current time given fetchParams’s cross-origin isolated + // capability. + + // 5. Set response to the result of making an HTTP request over connection + // using request with the following caveats: + + // - Follow the relevant requirements from HTTP. [HTTP] [HTTP-SEMANTICS] + // [HTTP-COND] [HTTP-CACHING] [HTTP-AUTH] + + // - If request’s body is non-null, and request’s body’s source is null, + // then the user agent may have a buffer of up to 64 kibibytes and store + // a part of request’s body in that buffer. If the user agent reads from + // request’s body beyond that buffer’s size and the user agent needs to + // resend request, then instead return a network error. + + // - Set timingInfo’s final network-response start time to the coarsened + // shared current time given fetchParams’s cross-origin isolated capability, + // immediately after the user agent’s HTTP parser receives the first byte + // of the response (e.g., frame header bytes for HTTP/2 or response status + // line for HTTP/1.x). + + // - Wait until all the headers are transmitted. + + // - Any responses whose status is in the range 100 to 199, inclusive, + // and is not 101, are to be ignored, except for the purposes of setting + // timingInfo’s final network-response start time above. + + // - If request’s header list contains `Transfer-Encoding`/`chunked` and + // response is transferred via HTTP/1.0 or older, then return a network + // error. + + // - If the HTTP request results in a TLS client certificate dialog, then: + + // 1. If request’s window is an environment settings object, make the + // dialog available in request’s window. + + // 2. Otherwise, return a network error. + + // To transmit request’s body body, run these steps: + let requestBody = null + // 1. If body is null and fetchParams’s process request end-of-body is + // non-null, then queue a fetch task given fetchParams’s process request + // end-of-body and fetchParams’s task destination. + if (request.body == null && fetchParams.processRequestEndOfBody) { + queueMicrotask(() => fetchParams.processRequestEndOfBody()) + } else if (request.body != null) { + // 2. Otherwise, if body is non-null: + + // 1. Let processBodyChunk given bytes be these steps: + const processBodyChunk = async function * (bytes) { + // 1. If the ongoing fetch is terminated, then abort these steps. + if (isCancelled(fetchParams)) { + return + } + + // 2. Run this step in parallel: transmit bytes. + yield bytes + + // 3. If fetchParams’s process request body is non-null, then run + // fetchParams’s process request body given bytes’s length. + fetchParams.processRequestBodyChunkLength?.(bytes.byteLength) + } + + // 2. Let processEndOfBody be these steps: + const processEndOfBody = () => { + // 1. If fetchParams is canceled, then abort these steps. + if (isCancelled(fetchParams)) { + return + } + + // 2. If fetchParams’s process request end-of-body is non-null, + // then run fetchParams’s process request end-of-body. + if (fetchParams.processRequestEndOfBody) { + fetchParams.processRequestEndOfBody() + } + } + + // 3. Let processBodyError given e be these steps: + const processBodyError = (e) => { + // 1. If fetchParams is canceled, then abort these steps. + if (isCancelled(fetchParams)) { + return + } + + // 2. If e is an "AbortError" DOMException, then abort fetchParams’s controller. + if (e.name === 'AbortError') { + fetchParams.controller.abort() + } else { + fetchParams.controller.terminate(e) + } + } + + // 4. Incrementally read request’s body given processBodyChunk, processEndOfBody, + // processBodyError, and fetchParams’s task destination. + requestBody = (async function * () { + try { + for await (const bytes of request.body.stream) { + yield * processBodyChunk(bytes) + } + processEndOfBody() + } catch (err) { + processBodyError(err) + } + })() + } + + try { + // socket is only provided for websockets + const { body, status, statusText, headersList, socket } = await dispatch({ body: requestBody }) + + if (socket) { + response = makeResponse({ status, statusText, headersList, socket }) + } else { + const iterator = body[Symbol.asyncIterator]() + fetchParams.controller.next = () => iterator.next() + + response = makeResponse({ status, statusText, headersList }) + } + } catch (err) { + // 10. If aborted, then: + if (err.name === 'AbortError') { + // 1. If connection uses HTTP/2, then transmit an RST_STREAM frame. + fetchParams.controller.connection.destroy() + + // 2. Return the appropriate network error for fetchParams. + return makeAppropriateNetworkError(fetchParams, err) + } + + return makeNetworkError(err) + } + + // 11. Let pullAlgorithm be an action that resumes the ongoing fetch + // if it is suspended. + const pullAlgorithm = () => { + fetchParams.controller.resume() + } + + // 12. Let cancelAlgorithm be an algorithm that aborts fetchParams’s + // controller with reason, given reason. + const cancelAlgorithm = (reason) => { + fetchParams.controller.abort(reason) + } + + // 13. Let highWaterMark be a non-negative, non-NaN number, chosen by + // the user agent. + // TODO + + // 14. Let sizeAlgorithm be an algorithm that accepts a chunk object + // and returns a non-negative, non-NaN, non-infinite number, chosen by the user agent. + // TODO + + // 15. Let stream be a new ReadableStream. + // 16. Set up stream with pullAlgorithm set to pullAlgorithm, + // cancelAlgorithm set to cancelAlgorithm, highWaterMark set to + // highWaterMark, and sizeAlgorithm set to sizeAlgorithm. + if (!ReadableStream) { + ReadableStream = (__nccwpck_require__(3774).ReadableStream) + } + + const stream = new ReadableStream( + { + async start (controller) { + fetchParams.controller.controller = controller + }, + async pull (controller) { + await pullAlgorithm(controller) + }, + async cancel (reason) { + await cancelAlgorithm(reason) + } + }, + { + highWaterMark: 0, + size () { + return 1 + } + } + ) + + // 17. Run these steps, but abort when the ongoing fetch is terminated: + + // 1. Set response’s body to a new body whose stream is stream. + response.body = { stream } + + // 2. If response is not a network error and request’s cache mode is + // not "no-store", then update response in httpCache for request. + // TODO + + // 3. If includeCredentials is true and the user agent is not configured + // to block cookies for request (see section 7 of [COOKIES]), then run the + // "set-cookie-string" parsing algorithm (see section 5.2 of [COOKIES]) on + // the value of each header whose name is a byte-case-insensitive match for + // `Set-Cookie` in response’s header list, if any, and request’s current URL. + // TODO + + // 18. If aborted, then: + // TODO + + // 19. Run these steps in parallel: + + // 1. Run these steps, but abort when fetchParams is canceled: + fetchParams.controller.on('terminated', onAborted) + fetchParams.controller.resume = async () => { + // 1. While true + while (true) { + // 1-3. See onData... + + // 4. Set bytes to the result of handling content codings given + // codings and bytes. + let bytes + let isFailure + try { + const { done, value } = await fetchParams.controller.next() + + if (isAborted(fetchParams)) { + break + } + + bytes = done ? undefined : value + } catch (err) { + if (fetchParams.controller.ended && !timingInfo.encodedBodySize) { + // zlib doesn't like empty streams. + bytes = undefined + } else { + bytes = err + + // err may be propagated from the result of calling readablestream.cancel, + // which might not be an error. https://github.com/nodejs/undici/issues/2009 + isFailure = true + } + } + + if (bytes === undefined) { + // 2. Otherwise, if the bytes transmission for response’s message + // body is done normally and stream is readable, then close + // stream, finalize response for fetchParams and response, and + // abort these in-parallel steps. + readableStreamClose(fetchParams.controller.controller) + + finalizeResponse(fetchParams, response) + + return + } + + // 5. Increase timingInfo’s decoded body size by bytes’s length. + timingInfo.decodedBodySize += bytes?.byteLength ?? 0 + + // 6. If bytes is failure, then terminate fetchParams’s controller. + if (isFailure) { + fetchParams.controller.terminate(bytes) + return + } + + // 7. Enqueue a Uint8Array wrapping an ArrayBuffer containing bytes + // into stream. + fetchParams.controller.controller.enqueue(new Uint8Array(bytes)) + + // 8. If stream is errored, then terminate the ongoing fetch. + if (isErrored(stream)) { + fetchParams.controller.terminate() + return + } + + // 9. If stream doesn’t need more data ask the user agent to suspend + // the ongoing fetch. + if (!fetchParams.controller.controller.desiredSize) { + return + } + } + } + + // 2. If aborted, then: + function onAborted (reason) { + // 2. If fetchParams is aborted, then: + if (isAborted(fetchParams)) { + // 1. Set response’s aborted flag. + response.aborted = true + + // 2. If stream is readable, then error stream with the result of + // deserialize a serialized abort reason given fetchParams’s + // controller’s serialized abort reason and an + // implementation-defined realm. + if (isReadable(stream)) { + fetchParams.controller.controller.error( + fetchParams.controller.serializedAbortReason + ) + } + } else { + // 3. Otherwise, if stream is readable, error stream with a TypeError. + if (isReadable(stream)) { + fetchParams.controller.controller.error(new TypeError('terminated', { + cause: isErrorLike(reason) ? reason : undefined + })) + } + } + + // 4. If connection uses HTTP/2, then transmit an RST_STREAM frame. + // 5. Otherwise, the user agent should close connection unless it would be bad for performance to do so. + fetchParams.controller.connection.destroy() + } + + // 20. Return response. + return response + + async function dispatch ({ body }) { + const url = requestCurrentURL(request) + /** @type {import('../..').Agent} */ + const agent = fetchParams.controller.dispatcher + + return new Promise((resolve, reject) => agent.dispatch( + { + path: url.pathname + url.search, + origin: url.origin, + method: request.method, + body: fetchParams.controller.dispatcher.isMockActive ? request.body && (request.body.source || request.body.stream) : body, + headers: request.headersList.entries, + maxRedirections: 0, + upgrade: request.mode === 'websocket' ? 'websocket' : undefined + }, + { + body: null, + abort: null, + + onConnect (abort) { + // TODO (fix): Do we need connection here? + const { connection } = fetchParams.controller + + if (connection.destroyed) { + abort(new DOMException('The operation was aborted.', 'AbortError')) + } else { + fetchParams.controller.on('terminated', abort) + this.abort = connection.abort = abort + } + }, + + onHeaders (status, headersList, resume, statusText) { + if (status < 200) { + return + } + + let codings = [] + let location = '' + + const headers = new Headers() + + // For H2, the headers are a plain JS object + // We distinguish between them and iterate accordingly + if (Array.isArray(headersList)) { + for (let n = 0; n < headersList.length; n += 2) { + const key = headersList[n + 0].toString('latin1') + const val = headersList[n + 1].toString('latin1') + if (key.toLowerCase() === 'content-encoding') { + // https://www.rfc-editor.org/rfc/rfc7231#section-3.1.2.1 + // "All content-coding values are case-insensitive..." + codings = val.toLowerCase().split(',').map((x) => x.trim()) + } else if (key.toLowerCase() === 'location') { + location = val + } + + headers[kHeadersList].append(key, val) + } + } else { + const keys = Object.keys(headersList) + for (const key of keys) { + const val = headersList[key] + if (key.toLowerCase() === 'content-encoding') { + // https://www.rfc-editor.org/rfc/rfc7231#section-3.1.2.1 + // "All content-coding values are case-insensitive..." + codings = val.toLowerCase().split(',').map((x) => x.trim()).reverse() + } else if (key.toLowerCase() === 'location') { + location = val + } + + headers[kHeadersList].append(key, val) + } + } + + this.body = new Readable({ read: resume }) + + const decoders = [] + + const willFollow = request.redirect === 'follow' && + location && + redirectStatusSet.has(status) + + // https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Encoding + if (request.method !== 'HEAD' && request.method !== 'CONNECT' && !nullBodyStatus.includes(status) && !willFollow) { + for (const coding of codings) { + // https://www.rfc-editor.org/rfc/rfc9112.html#section-7.2 + if (coding === 'x-gzip' || coding === 'gzip') { + decoders.push(zlib.createGunzip({ + // Be less strict when decoding compressed responses, since sometimes + // servers send slightly invalid responses that are still accepted + // by common browsers. + // Always using Z_SYNC_FLUSH is what cURL does. + flush: zlib.constants.Z_SYNC_FLUSH, + finishFlush: zlib.constants.Z_SYNC_FLUSH + })) + } else if (coding === 'deflate') { + decoders.push(zlib.createInflate()) + } else if (coding === 'br') { + decoders.push(zlib.createBrotliDecompress()) + } else { + decoders.length = 0 + break + } + } + } + + resolve({ + status, + statusText, + headersList: headers[kHeadersList], + body: decoders.length + ? pipeline(this.body, ...decoders, () => { }) + : this.body.on('error', () => {}) + }) + + return true + }, + + onData (chunk) { + if (fetchParams.controller.dump) { + return + } + + // 1. If one or more bytes have been transmitted from response’s + // message body, then: + + // 1. Let bytes be the transmitted bytes. + const bytes = chunk + + // 2. Let codings be the result of extracting header list values + // given `Content-Encoding` and response’s header list. + // See pullAlgorithm. + + // 3. Increase timingInfo’s encoded body size by bytes’s length. + timingInfo.encodedBodySize += bytes.byteLength + + // 4. See pullAlgorithm... + + return this.body.push(bytes) + }, + + onComplete () { + if (this.abort) { + fetchParams.controller.off('terminated', this.abort) + } + + fetchParams.controller.ended = true + + this.body.push(null) + }, + + onError (error) { + if (this.abort) { + fetchParams.controller.off('terminated', this.abort) + } + + this.body?.destroy(error) + + fetchParams.controller.terminate(error) + + reject(error) + }, + + onUpgrade (status, headersList, socket) { + if (status !== 101) { + return + } + + const headers = new Headers() + + for (let n = 0; n < headersList.length; n += 2) { + const key = headersList[n + 0].toString('latin1') + const val = headersList[n + 1].toString('latin1') + + headers[kHeadersList].append(key, val) + } + + resolve({ + status, + statusText: STATUS_CODES[status], + headersList: headers[kHeadersList], + socket + }) + + return true + } + } + )) + } +} + +module.exports = { + fetch, + Fetch, + fetching, + finalizeAndReportTiming +} + + +/***/ }), + +/***/ 5194: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +/* globals AbortController */ + + + +const { extractBody, mixinBody, cloneBody } = __nccwpck_require__(8923) +const { Headers, fill: fillHeaders, HeadersList } = __nccwpck_require__(6349) +const { FinalizationRegistry } = __nccwpck_require__(3194)() +const util = __nccwpck_require__(3440) +const { + isValidHTTPToken, + sameOrigin, + normalizeMethod, + makePolicyContainer, + normalizeMethodRecord +} = __nccwpck_require__(5523) +const { + forbiddenMethodsSet, + corsSafeListedMethodsSet, + referrerPolicy, + requestRedirect, + requestMode, + requestCredentials, + requestCache, + requestDuplex +} = __nccwpck_require__(7326) +const { kEnumerableProperty } = util +const { kHeaders, kSignal, kState, kGuard, kRealm } = __nccwpck_require__(9710) +const { webidl } = __nccwpck_require__(4222) +const { getGlobalOrigin } = __nccwpck_require__(5628) +const { URLSerializer } = __nccwpck_require__(4322) +const { kHeadersList, kConstruct } = __nccwpck_require__(6443) +const assert = __nccwpck_require__(2613) +const { getMaxListeners, setMaxListeners, getEventListeners, defaultMaxListeners } = __nccwpck_require__(4434) + +let TransformStream = globalThis.TransformStream + +const kAbortController = Symbol('abortController') + +const requestFinalizer = new FinalizationRegistry(({ signal, abort }) => { + signal.removeEventListener('abort', abort) +}) + +// https://fetch.spec.whatwg.org/#request-class +class Request { + // https://fetch.spec.whatwg.org/#dom-request + constructor (input, init = {}) { + if (input === kConstruct) { + return + } + + webidl.argumentLengthCheck(arguments, 1, { header: 'Request constructor' }) + + input = webidl.converters.RequestInfo(input) + init = webidl.converters.RequestInit(init) + + // https://html.spec.whatwg.org/multipage/webappapis.html#environment-settings-object + this[kRealm] = { + settingsObject: { + baseUrl: getGlobalOrigin(), + get origin () { + return this.baseUrl?.origin + }, + policyContainer: makePolicyContainer() + } + } + + // 1. Let request be null. + let request = null + + // 2. Let fallbackMode be null. + let fallbackMode = null + + // 3. Let baseURL be this’s relevant settings object’s API base URL. + const baseUrl = this[kRealm].settingsObject.baseUrl + + // 4. Let signal be null. + let signal = null + + // 5. If input is a string, then: + if (typeof input === 'string') { + // 1. Let parsedURL be the result of parsing input with baseURL. + // 2. If parsedURL is failure, then throw a TypeError. + let parsedURL + try { + parsedURL = new URL(input, baseUrl) + } catch (err) { + throw new TypeError('Failed to parse URL from ' + input, { cause: err }) + } + + // 3. If parsedURL includes credentials, then throw a TypeError. + if (parsedURL.username || parsedURL.password) { + throw new TypeError( + 'Request cannot be constructed from a URL that includes credentials: ' + + input + ) + } + + // 4. Set request to a new request whose URL is parsedURL. + request = makeRequest({ urlList: [parsedURL] }) + + // 5. Set fallbackMode to "cors". + fallbackMode = 'cors' + } else { + // 6. Otherwise: + + // 7. Assert: input is a Request object. + assert(input instanceof Request) + + // 8. Set request to input’s request. + request = input[kState] + + // 9. Set signal to input’s signal. + signal = input[kSignal] + } + + // 7. Let origin be this’s relevant settings object’s origin. + const origin = this[kRealm].settingsObject.origin + + // 8. Let window be "client". + let window = 'client' + + // 9. If request’s window is an environment settings object and its origin + // is same origin with origin, then set window to request’s window. + if ( + request.window?.constructor?.name === 'EnvironmentSettingsObject' && + sameOrigin(request.window, origin) + ) { + window = request.window + } + + // 10. If init["window"] exists and is non-null, then throw a TypeError. + if (init.window != null) { + throw new TypeError(`'window' option '${window}' must be null`) + } + + // 11. If init["window"] exists, then set window to "no-window". + if ('window' in init) { + window = 'no-window' + } + + // 12. Set request to a new request with the following properties: + request = makeRequest({ + // URL request’s URL. + // undici implementation note: this is set as the first item in request's urlList in makeRequest + // method request’s method. + method: request.method, + // header list A copy of request’s header list. + // undici implementation note: headersList is cloned in makeRequest + headersList: request.headersList, + // unsafe-request flag Set. + unsafeRequest: request.unsafeRequest, + // client This’s relevant settings object. + client: this[kRealm].settingsObject, + // window window. + window, + // priority request’s priority. + priority: request.priority, + // origin request’s origin. The propagation of the origin is only significant for navigation requests + // being handled by a service worker. In this scenario a request can have an origin that is different + // from the current client. + origin: request.origin, + // referrer request’s referrer. + referrer: request.referrer, + // referrer policy request’s referrer policy. + referrerPolicy: request.referrerPolicy, + // mode request’s mode. + mode: request.mode, + // credentials mode request’s credentials mode. + credentials: request.credentials, + // cache mode request’s cache mode. + cache: request.cache, + // redirect mode request’s redirect mode. + redirect: request.redirect, + // integrity metadata request’s integrity metadata. + integrity: request.integrity, + // keepalive request’s keepalive. + keepalive: request.keepalive, + // reload-navigation flag request’s reload-navigation flag. + reloadNavigation: request.reloadNavigation, + // history-navigation flag request’s history-navigation flag. + historyNavigation: request.historyNavigation, + // URL list A clone of request’s URL list. + urlList: [...request.urlList] + }) + + const initHasKey = Object.keys(init).length !== 0 + + // 13. If init is not empty, then: + if (initHasKey) { + // 1. If request’s mode is "navigate", then set it to "same-origin". + if (request.mode === 'navigate') { + request.mode = 'same-origin' + } + + // 2. Unset request’s reload-navigation flag. + request.reloadNavigation = false + + // 3. Unset request’s history-navigation flag. + request.historyNavigation = false + + // 4. Set request’s origin to "client". + request.origin = 'client' + + // 5. Set request’s referrer to "client" + request.referrer = 'client' + + // 6. Set request’s referrer policy to the empty string. + request.referrerPolicy = '' + + // 7. Set request’s URL to request’s current URL. + request.url = request.urlList[request.urlList.length - 1] + + // 8. Set request’s URL list to « request’s URL ». + request.urlList = [request.url] + } + + // 14. If init["referrer"] exists, then: + if (init.referrer !== undefined) { + // 1. Let referrer be init["referrer"]. + const referrer = init.referrer + + // 2. If referrer is the empty string, then set request’s referrer to "no-referrer". + if (referrer === '') { + request.referrer = 'no-referrer' + } else { + // 1. Let parsedReferrer be the result of parsing referrer with + // baseURL. + // 2. If parsedReferrer is failure, then throw a TypeError. + let parsedReferrer + try { + parsedReferrer = new URL(referrer, baseUrl) + } catch (err) { + throw new TypeError(`Referrer "${referrer}" is not a valid URL.`, { cause: err }) + } + + // 3. If one of the following is true + // - parsedReferrer’s scheme is "about" and path is the string "client" + // - parsedReferrer’s origin is not same origin with origin + // then set request’s referrer to "client". + if ( + (parsedReferrer.protocol === 'about:' && parsedReferrer.hostname === 'client') || + (origin && !sameOrigin(parsedReferrer, this[kRealm].settingsObject.baseUrl)) + ) { + request.referrer = 'client' + } else { + // 4. Otherwise, set request’s referrer to parsedReferrer. + request.referrer = parsedReferrer + } + } + } + + // 15. If init["referrerPolicy"] exists, then set request’s referrer policy + // to it. + if (init.referrerPolicy !== undefined) { + request.referrerPolicy = init.referrerPolicy + } + + // 16. Let mode be init["mode"] if it exists, and fallbackMode otherwise. + let mode + if (init.mode !== undefined) { + mode = init.mode + } else { + mode = fallbackMode + } + + // 17. If mode is "navigate", then throw a TypeError. + if (mode === 'navigate') { + throw webidl.errors.exception({ + header: 'Request constructor', + message: 'invalid request mode navigate.' + }) + } + + // 18. If mode is non-null, set request’s mode to mode. + if (mode != null) { + request.mode = mode + } + + // 19. If init["credentials"] exists, then set request’s credentials mode + // to it. + if (init.credentials !== undefined) { + request.credentials = init.credentials + } + + // 18. If init["cache"] exists, then set request’s cache mode to it. + if (init.cache !== undefined) { + request.cache = init.cache + } + + // 21. If request’s cache mode is "only-if-cached" and request’s mode is + // not "same-origin", then throw a TypeError. + if (request.cache === 'only-if-cached' && request.mode !== 'same-origin') { + throw new TypeError( + "'only-if-cached' can be set only with 'same-origin' mode" + ) + } + + // 22. If init["redirect"] exists, then set request’s redirect mode to it. + if (init.redirect !== undefined) { + request.redirect = init.redirect + } + + // 23. If init["integrity"] exists, then set request’s integrity metadata to it. + if (init.integrity != null) { + request.integrity = String(init.integrity) + } + + // 24. If init["keepalive"] exists, then set request’s keepalive to it. + if (init.keepalive !== undefined) { + request.keepalive = Boolean(init.keepalive) + } + + // 25. If init["method"] exists, then: + if (init.method !== undefined) { + // 1. Let method be init["method"]. + let method = init.method + + // 2. If method is not a method or method is a forbidden method, then + // throw a TypeError. + if (!isValidHTTPToken(method)) { + throw new TypeError(`'${method}' is not a valid HTTP method.`) + } + + if (forbiddenMethodsSet.has(method.toUpperCase())) { + throw new TypeError(`'${method}' HTTP method is unsupported.`) + } + + // 3. Normalize method. + method = normalizeMethodRecord[method] ?? normalizeMethod(method) + + // 4. Set request’s method to method. + request.method = method + } + + // 26. If init["signal"] exists, then set signal to it. + if (init.signal !== undefined) { + signal = init.signal + } + + // 27. Set this’s request to request. + this[kState] = request + + // 28. Set this’s signal to a new AbortSignal object with this’s relevant + // Realm. + // TODO: could this be simplified with AbortSignal.any + // (https://dom.spec.whatwg.org/#dom-abortsignal-any) + const ac = new AbortController() + this[kSignal] = ac.signal + this[kSignal][kRealm] = this[kRealm] + + // 29. If signal is not null, then make this’s signal follow signal. + if (signal != null) { + if ( + !signal || + typeof signal.aborted !== 'boolean' || + typeof signal.addEventListener !== 'function' + ) { + throw new TypeError( + "Failed to construct 'Request': member signal is not of type AbortSignal." + ) + } + + if (signal.aborted) { + ac.abort(signal.reason) + } else { + // Keep a strong ref to ac while request object + // is alive. This is needed to prevent AbortController + // from being prematurely garbage collected. + // See, https://github.com/nodejs/undici/issues/1926. + this[kAbortController] = ac + + const acRef = new WeakRef(ac) + const abort = function () { + const ac = acRef.deref() + if (ac !== undefined) { + ac.abort(this.reason) + } + } + + // Third-party AbortControllers may not work with these. + // See, https://github.com/nodejs/undici/pull/1910#issuecomment-1464495619. + try { + // If the max amount of listeners is equal to the default, increase it + // This is only available in node >= v19.9.0 + if (typeof getMaxListeners === 'function' && getMaxListeners(signal) === defaultMaxListeners) { + setMaxListeners(100, signal) + } else if (getEventListeners(signal, 'abort').length >= defaultMaxListeners) { + setMaxListeners(100, signal) + } + } catch {} + + util.addAbortListener(signal, abort) + requestFinalizer.register(ac, { signal, abort }) + } + } + + // 30. Set this’s headers to a new Headers object with this’s relevant + // Realm, whose header list is request’s header list and guard is + // "request". + this[kHeaders] = new Headers(kConstruct) + this[kHeaders][kHeadersList] = request.headersList + this[kHeaders][kGuard] = 'request' + this[kHeaders][kRealm] = this[kRealm] + + // 31. If this’s request’s mode is "no-cors", then: + if (mode === 'no-cors') { + // 1. If this’s request’s method is not a CORS-safelisted method, + // then throw a TypeError. + if (!corsSafeListedMethodsSet.has(request.method)) { + throw new TypeError( + `'${request.method} is unsupported in no-cors mode.` + ) + } + + // 2. Set this’s headers’s guard to "request-no-cors". + this[kHeaders][kGuard] = 'request-no-cors' + } + + // 32. If init is not empty, then: + if (initHasKey) { + /** @type {HeadersList} */ + const headersList = this[kHeaders][kHeadersList] + // 1. Let headers be a copy of this’s headers and its associated header + // list. + // 2. If init["headers"] exists, then set headers to init["headers"]. + const headers = init.headers !== undefined ? init.headers : new HeadersList(headersList) + + // 3. Empty this’s headers’s header list. + headersList.clear() + + // 4. If headers is a Headers object, then for each header in its header + // list, append header’s name/header’s value to this’s headers. + if (headers instanceof HeadersList) { + for (const [key, val] of headers) { + headersList.append(key, val) + } + // Note: Copy the `set-cookie` meta-data. + headersList.cookies = headers.cookies + } else { + // 5. Otherwise, fill this’s headers with headers. + fillHeaders(this[kHeaders], headers) + } + } + + // 33. Let inputBody be input’s request’s body if input is a Request + // object; otherwise null. + const inputBody = input instanceof Request ? input[kState].body : null + + // 34. If either init["body"] exists and is non-null or inputBody is + // non-null, and request’s method is `GET` or `HEAD`, then throw a + // TypeError. + if ( + (init.body != null || inputBody != null) && + (request.method === 'GET' || request.method === 'HEAD') + ) { + throw new TypeError('Request with GET/HEAD method cannot have body.') + } + + // 35. Let initBody be null. + let initBody = null + + // 36. If init["body"] exists and is non-null, then: + if (init.body != null) { + // 1. Let Content-Type be null. + // 2. Set initBody and Content-Type to the result of extracting + // init["body"], with keepalive set to request’s keepalive. + const [extractedBody, contentType] = extractBody( + init.body, + request.keepalive + ) + initBody = extractedBody + + // 3, If Content-Type is non-null and this’s headers’s header list does + // not contain `Content-Type`, then append `Content-Type`/Content-Type to + // this’s headers. + if (contentType && !this[kHeaders][kHeadersList].contains('content-type')) { + this[kHeaders].append('content-type', contentType) + } + } + + // 37. Let inputOrInitBody be initBody if it is non-null; otherwise + // inputBody. + const inputOrInitBody = initBody ?? inputBody + + // 38. If inputOrInitBody is non-null and inputOrInitBody’s source is + // null, then: + if (inputOrInitBody != null && inputOrInitBody.source == null) { + // 1. If initBody is non-null and init["duplex"] does not exist, + // then throw a TypeError. + if (initBody != null && init.duplex == null) { + throw new TypeError('RequestInit: duplex option is required when sending a body.') + } + + // 2. If this’s request’s mode is neither "same-origin" nor "cors", + // then throw a TypeError. + if (request.mode !== 'same-origin' && request.mode !== 'cors') { + throw new TypeError( + 'If request is made from ReadableStream, mode should be "same-origin" or "cors"' + ) + } + + // 3. Set this’s request’s use-CORS-preflight flag. + request.useCORSPreflightFlag = true + } + + // 39. Let finalBody be inputOrInitBody. + let finalBody = inputOrInitBody + + // 40. If initBody is null and inputBody is non-null, then: + if (initBody == null && inputBody != null) { + // 1. If input is unusable, then throw a TypeError. + if (util.isDisturbed(inputBody.stream) || inputBody.stream.locked) { + throw new TypeError( + 'Cannot construct a Request with a Request object that has already been used.' + ) + } + + // 2. Set finalBody to the result of creating a proxy for inputBody. + if (!TransformStream) { + TransformStream = (__nccwpck_require__(3774).TransformStream) + } + + // https://streams.spec.whatwg.org/#readablestream-create-a-proxy + const identityTransform = new TransformStream() + inputBody.stream.pipeThrough(identityTransform) + finalBody = { + source: inputBody.source, + length: inputBody.length, + stream: identityTransform.readable + } + } + + // 41. Set this’s request’s body to finalBody. + this[kState].body = finalBody + } + + // Returns request’s HTTP method, which is "GET" by default. + get method () { + webidl.brandCheck(this, Request) + + // The method getter steps are to return this’s request’s method. + return this[kState].method + } + + // Returns the URL of request as a string. + get url () { + webidl.brandCheck(this, Request) + + // The url getter steps are to return this’s request’s URL, serialized. + return URLSerializer(this[kState].url) + } + + // Returns a Headers object consisting of the headers associated with request. + // Note that headers added in the network layer by the user agent will not + // be accounted for in this object, e.g., the "Host" header. + get headers () { + webidl.brandCheck(this, Request) + + // The headers getter steps are to return this’s headers. + return this[kHeaders] + } + + // Returns the kind of resource requested by request, e.g., "document" + // or "script". + get destination () { + webidl.brandCheck(this, Request) + + // The destination getter are to return this’s request’s destination. + return this[kState].destination + } + + // Returns the referrer of request. Its value can be a same-origin URL if + // explicitly set in init, the empty string to indicate no referrer, and + // "about:client" when defaulting to the global’s default. This is used + // during fetching to determine the value of the `Referer` header of the + // request being made. + get referrer () { + webidl.brandCheck(this, Request) + + // 1. If this’s request’s referrer is "no-referrer", then return the + // empty string. + if (this[kState].referrer === 'no-referrer') { + return '' + } + + // 2. If this’s request’s referrer is "client", then return + // "about:client". + if (this[kState].referrer === 'client') { + return 'about:client' + } + + // Return this’s request’s referrer, serialized. + return this[kState].referrer.toString() + } + + // Returns the referrer policy associated with request. + // This is used during fetching to compute the value of the request’s + // referrer. + get referrerPolicy () { + webidl.brandCheck(this, Request) + + // The referrerPolicy getter steps are to return this’s request’s referrer policy. + return this[kState].referrerPolicy + } + + // Returns the mode associated with request, which is a string indicating + // whether the request will use CORS, or will be restricted to same-origin + // URLs. + get mode () { + webidl.brandCheck(this, Request) + + // The mode getter steps are to return this’s request’s mode. + return this[kState].mode + } + + // Returns the credentials mode associated with request, + // which is a string indicating whether credentials will be sent with the + // request always, never, or only when sent to a same-origin URL. + get credentials () { + // The credentials getter steps are to return this’s request’s credentials mode. + return this[kState].credentials + } + + // Returns the cache mode associated with request, + // which is a string indicating how the request will + // interact with the browser’s cache when fetching. + get cache () { + webidl.brandCheck(this, Request) + + // The cache getter steps are to return this’s request’s cache mode. + return this[kState].cache + } + + // Returns the redirect mode associated with request, + // which is a string indicating how redirects for the + // request will be handled during fetching. A request + // will follow redirects by default. + get redirect () { + webidl.brandCheck(this, Request) + + // The redirect getter steps are to return this’s request’s redirect mode. + return this[kState].redirect + } + + // Returns request’s subresource integrity metadata, which is a + // cryptographic hash of the resource being fetched. Its value + // consists of multiple hashes separated by whitespace. [SRI] + get integrity () { + webidl.brandCheck(this, Request) + + // The integrity getter steps are to return this’s request’s integrity + // metadata. + return this[kState].integrity + } + + // Returns a boolean indicating whether or not request can outlive the + // global in which it was created. + get keepalive () { + webidl.brandCheck(this, Request) + + // The keepalive getter steps are to return this’s request’s keepalive. + return this[kState].keepalive + } + + // Returns a boolean indicating whether or not request is for a reload + // navigation. + get isReloadNavigation () { + webidl.brandCheck(this, Request) + + // The isReloadNavigation getter steps are to return true if this’s + // request’s reload-navigation flag is set; otherwise false. + return this[kState].reloadNavigation + } + + // Returns a boolean indicating whether or not request is for a history + // navigation (a.k.a. back-foward navigation). + get isHistoryNavigation () { + webidl.brandCheck(this, Request) + + // The isHistoryNavigation getter steps are to return true if this’s request’s + // history-navigation flag is set; otherwise false. + return this[kState].historyNavigation + } + + // Returns the signal associated with request, which is an AbortSignal + // object indicating whether or not request has been aborted, and its + // abort event handler. + get signal () { + webidl.brandCheck(this, Request) + + // The signal getter steps are to return this’s signal. + return this[kSignal] + } + + get body () { + webidl.brandCheck(this, Request) + + return this[kState].body ? this[kState].body.stream : null + } + + get bodyUsed () { + webidl.brandCheck(this, Request) + + return !!this[kState].body && util.isDisturbed(this[kState].body.stream) + } + + get duplex () { + webidl.brandCheck(this, Request) + + return 'half' + } + + // Returns a clone of request. + clone () { + webidl.brandCheck(this, Request) + + // 1. If this is unusable, then throw a TypeError. + if (this.bodyUsed || this.body?.locked) { + throw new TypeError('unusable') + } + + // 2. Let clonedRequest be the result of cloning this’s request. + const clonedRequest = cloneRequest(this[kState]) + + // 3. Let clonedRequestObject be the result of creating a Request object, + // given clonedRequest, this’s headers’s guard, and this’s relevant Realm. + const clonedRequestObject = new Request(kConstruct) + clonedRequestObject[kState] = clonedRequest + clonedRequestObject[kRealm] = this[kRealm] + clonedRequestObject[kHeaders] = new Headers(kConstruct) + clonedRequestObject[kHeaders][kHeadersList] = clonedRequest.headersList + clonedRequestObject[kHeaders][kGuard] = this[kHeaders][kGuard] + clonedRequestObject[kHeaders][kRealm] = this[kHeaders][kRealm] + + // 4. Make clonedRequestObject’s signal follow this’s signal. + const ac = new AbortController() + if (this.signal.aborted) { + ac.abort(this.signal.reason) + } else { + util.addAbortListener( + this.signal, + () => { + ac.abort(this.signal.reason) + } + ) + } + clonedRequestObject[kSignal] = ac.signal + + // 4. Return clonedRequestObject. + return clonedRequestObject + } +} + +mixinBody(Request) + +function makeRequest (init) { + // https://fetch.spec.whatwg.org/#requests + const request = { + method: 'GET', + localURLsOnly: false, + unsafeRequest: false, + body: null, + client: null, + reservedClient: null, + replacesClientId: '', + window: 'client', + keepalive: false, + serviceWorkers: 'all', + initiator: '', + destination: '', + priority: null, + origin: 'client', + policyContainer: 'client', + referrer: 'client', + referrerPolicy: '', + mode: 'no-cors', + useCORSPreflightFlag: false, + credentials: 'same-origin', + useCredentials: false, + cache: 'default', + redirect: 'follow', + integrity: '', + cryptoGraphicsNonceMetadata: '', + parserMetadata: '', + reloadNavigation: false, + historyNavigation: false, + userActivation: false, + taintedOrigin: false, + redirectCount: 0, + responseTainting: 'basic', + preventNoCacheCacheControlHeaderModification: false, + done: false, + timingAllowFailed: false, + ...init, + headersList: init.headersList + ? new HeadersList(init.headersList) + : new HeadersList() + } + request.url = request.urlList[0] + return request +} + +// https://fetch.spec.whatwg.org/#concept-request-clone +function cloneRequest (request) { + // To clone a request request, run these steps: + + // 1. Let newRequest be a copy of request, except for its body. + const newRequest = makeRequest({ ...request, body: null }) + + // 2. If request’s body is non-null, set newRequest’s body to the + // result of cloning request’s body. + if (request.body != null) { + newRequest.body = cloneBody(request.body) + } + + // 3. Return newRequest. + return newRequest +} + +Object.defineProperties(Request.prototype, { + method: kEnumerableProperty, + url: kEnumerableProperty, + headers: kEnumerableProperty, + redirect: kEnumerableProperty, + clone: kEnumerableProperty, + signal: kEnumerableProperty, + duplex: kEnumerableProperty, + destination: kEnumerableProperty, + body: kEnumerableProperty, + bodyUsed: kEnumerableProperty, + isHistoryNavigation: kEnumerableProperty, + isReloadNavigation: kEnumerableProperty, + keepalive: kEnumerableProperty, + integrity: kEnumerableProperty, + cache: kEnumerableProperty, + credentials: kEnumerableProperty, + attribute: kEnumerableProperty, + referrerPolicy: kEnumerableProperty, + referrer: kEnumerableProperty, + mode: kEnumerableProperty, + [Symbol.toStringTag]: { + value: 'Request', + configurable: true + } +}) + +webidl.converters.Request = webidl.interfaceConverter( + Request +) + +// https://fetch.spec.whatwg.org/#requestinfo +webidl.converters.RequestInfo = function (V) { + if (typeof V === 'string') { + return webidl.converters.USVString(V) + } + + if (V instanceof Request) { + return webidl.converters.Request(V) + } + + return webidl.converters.USVString(V) +} + +webidl.converters.AbortSignal = webidl.interfaceConverter( + AbortSignal +) + +// https://fetch.spec.whatwg.org/#requestinit +webidl.converters.RequestInit = webidl.dictionaryConverter([ + { + key: 'method', + converter: webidl.converters.ByteString + }, + { + key: 'headers', + converter: webidl.converters.HeadersInit + }, + { + key: 'body', + converter: webidl.nullableConverter( + webidl.converters.BodyInit + ) + }, + { + key: 'referrer', + converter: webidl.converters.USVString + }, + { + key: 'referrerPolicy', + converter: webidl.converters.DOMString, + // https://w3c.github.io/webappsec-referrer-policy/#referrer-policy + allowedValues: referrerPolicy + }, + { + key: 'mode', + converter: webidl.converters.DOMString, + // https://fetch.spec.whatwg.org/#concept-request-mode + allowedValues: requestMode + }, + { + key: 'credentials', + converter: webidl.converters.DOMString, + // https://fetch.spec.whatwg.org/#requestcredentials + allowedValues: requestCredentials + }, + { + key: 'cache', + converter: webidl.converters.DOMString, + // https://fetch.spec.whatwg.org/#requestcache + allowedValues: requestCache + }, + { + key: 'redirect', + converter: webidl.converters.DOMString, + // https://fetch.spec.whatwg.org/#requestredirect + allowedValues: requestRedirect + }, + { + key: 'integrity', + converter: webidl.converters.DOMString + }, + { + key: 'keepalive', + converter: webidl.converters.boolean + }, + { + key: 'signal', + converter: webidl.nullableConverter( + (signal) => webidl.converters.AbortSignal( + signal, + { strict: false } + ) + ) + }, + { + key: 'window', + converter: webidl.converters.any + }, + { + key: 'duplex', + converter: webidl.converters.DOMString, + allowedValues: requestDuplex + } +]) + +module.exports = { Request, makeRequest } + + +/***/ }), + +/***/ 8676: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { Headers, HeadersList, fill } = __nccwpck_require__(6349) +const { extractBody, cloneBody, mixinBody } = __nccwpck_require__(8923) +const util = __nccwpck_require__(3440) +const { kEnumerableProperty } = util +const { + isValidReasonPhrase, + isCancelled, + isAborted, + isBlobLike, + serializeJavascriptValueToJSONString, + isErrorLike, + isomorphicEncode +} = __nccwpck_require__(5523) +const { + redirectStatusSet, + nullBodyStatus, + DOMException +} = __nccwpck_require__(7326) +const { kState, kHeaders, kGuard, kRealm } = __nccwpck_require__(9710) +const { webidl } = __nccwpck_require__(4222) +const { FormData } = __nccwpck_require__(3073) +const { getGlobalOrigin } = __nccwpck_require__(5628) +const { URLSerializer } = __nccwpck_require__(4322) +const { kHeadersList, kConstruct } = __nccwpck_require__(6443) +const assert = __nccwpck_require__(2613) +const { types } = __nccwpck_require__(9023) + +const ReadableStream = globalThis.ReadableStream || (__nccwpck_require__(3774).ReadableStream) +const textEncoder = new TextEncoder('utf-8') + +// https://fetch.spec.whatwg.org/#response-class +class Response { + // Creates network error Response. + static error () { + // TODO + const relevantRealm = { settingsObject: {} } + + // The static error() method steps are to return the result of creating a + // Response object, given a new network error, "immutable", and this’s + // relevant Realm. + const responseObject = new Response() + responseObject[kState] = makeNetworkError() + responseObject[kRealm] = relevantRealm + responseObject[kHeaders][kHeadersList] = responseObject[kState].headersList + responseObject[kHeaders][kGuard] = 'immutable' + responseObject[kHeaders][kRealm] = relevantRealm + return responseObject + } + + // https://fetch.spec.whatwg.org/#dom-response-json + static json (data, init = {}) { + webidl.argumentLengthCheck(arguments, 1, { header: 'Response.json' }) + + if (init !== null) { + init = webidl.converters.ResponseInit(init) + } + + // 1. Let bytes the result of running serialize a JavaScript value to JSON bytes on data. + const bytes = textEncoder.encode( + serializeJavascriptValueToJSONString(data) + ) + + // 2. Let body be the result of extracting bytes. + const body = extractBody(bytes) + + // 3. Let responseObject be the result of creating a Response object, given a new response, + // "response", and this’s relevant Realm. + const relevantRealm = { settingsObject: {} } + const responseObject = new Response() + responseObject[kRealm] = relevantRealm + responseObject[kHeaders][kGuard] = 'response' + responseObject[kHeaders][kRealm] = relevantRealm + + // 4. Perform initialize a response given responseObject, init, and (body, "application/json"). + initializeResponse(responseObject, init, { body: body[0], type: 'application/json' }) + + // 5. Return responseObject. + return responseObject + } + + // Creates a redirect Response that redirects to url with status status. + static redirect (url, status = 302) { + const relevantRealm = { settingsObject: {} } + + webidl.argumentLengthCheck(arguments, 1, { header: 'Response.redirect' }) + + url = webidl.converters.USVString(url) + status = webidl.converters['unsigned short'](status) + + // 1. Let parsedURL be the result of parsing url with current settings + // object’s API base URL. + // 2. If parsedURL is failure, then throw a TypeError. + // TODO: base-URL? + let parsedURL + try { + parsedURL = new URL(url, getGlobalOrigin()) + } catch (err) { + throw Object.assign(new TypeError('Failed to parse URL from ' + url), { + cause: err + }) + } + + // 3. If status is not a redirect status, then throw a RangeError. + if (!redirectStatusSet.has(status)) { + throw new RangeError('Invalid status code ' + status) + } + + // 4. Let responseObject be the result of creating a Response object, + // given a new response, "immutable", and this’s relevant Realm. + const responseObject = new Response() + responseObject[kRealm] = relevantRealm + responseObject[kHeaders][kGuard] = 'immutable' + responseObject[kHeaders][kRealm] = relevantRealm + + // 5. Set responseObject’s response’s status to status. + responseObject[kState].status = status + + // 6. Let value be parsedURL, serialized and isomorphic encoded. + const value = isomorphicEncode(URLSerializer(parsedURL)) + + // 7. Append `Location`/value to responseObject’s response’s header list. + responseObject[kState].headersList.append('location', value) + + // 8. Return responseObject. + return responseObject + } + + // https://fetch.spec.whatwg.org/#dom-response + constructor (body = null, init = {}) { + if (body !== null) { + body = webidl.converters.BodyInit(body) + } + + init = webidl.converters.ResponseInit(init) + + // TODO + this[kRealm] = { settingsObject: {} } + + // 1. Set this’s response to a new response. + this[kState] = makeResponse({}) + + // 2. Set this’s headers to a new Headers object with this’s relevant + // Realm, whose header list is this’s response’s header list and guard + // is "response". + this[kHeaders] = new Headers(kConstruct) + this[kHeaders][kGuard] = 'response' + this[kHeaders][kHeadersList] = this[kState].headersList + this[kHeaders][kRealm] = this[kRealm] + + // 3. Let bodyWithType be null. + let bodyWithType = null + + // 4. If body is non-null, then set bodyWithType to the result of extracting body. + if (body != null) { + const [extractedBody, type] = extractBody(body) + bodyWithType = { body: extractedBody, type } + } + + // 5. Perform initialize a response given this, init, and bodyWithType. + initializeResponse(this, init, bodyWithType) + } + + // Returns response’s type, e.g., "cors". + get type () { + webidl.brandCheck(this, Response) + + // The type getter steps are to return this’s response’s type. + return this[kState].type + } + + // Returns response’s URL, if it has one; otherwise the empty string. + get url () { + webidl.brandCheck(this, Response) + + const urlList = this[kState].urlList + + // The url getter steps are to return the empty string if this’s + // response’s URL is null; otherwise this’s response’s URL, + // serialized with exclude fragment set to true. + const url = urlList[urlList.length - 1] ?? null + + if (url === null) { + return '' + } + + return URLSerializer(url, true) + } + + // Returns whether response was obtained through a redirect. + get redirected () { + webidl.brandCheck(this, Response) + + // The redirected getter steps are to return true if this’s response’s URL + // list has more than one item; otherwise false. + return this[kState].urlList.length > 1 + } + + // Returns response’s status. + get status () { + webidl.brandCheck(this, Response) + + // The status getter steps are to return this’s response’s status. + return this[kState].status + } + + // Returns whether response’s status is an ok status. + get ok () { + webidl.brandCheck(this, Response) + + // The ok getter steps are to return true if this’s response’s status is an + // ok status; otherwise false. + return this[kState].status >= 200 && this[kState].status <= 299 + } + + // Returns response’s status message. + get statusText () { + webidl.brandCheck(this, Response) + + // The statusText getter steps are to return this’s response’s status + // message. + return this[kState].statusText + } + + // Returns response’s headers as Headers. + get headers () { + webidl.brandCheck(this, Response) + + // The headers getter steps are to return this’s headers. + return this[kHeaders] + } + + get body () { + webidl.brandCheck(this, Response) + + return this[kState].body ? this[kState].body.stream : null + } + + get bodyUsed () { + webidl.brandCheck(this, Response) + + return !!this[kState].body && util.isDisturbed(this[kState].body.stream) + } + + // Returns a clone of response. + clone () { + webidl.brandCheck(this, Response) + + // 1. If this is unusable, then throw a TypeError. + if (this.bodyUsed || (this.body && this.body.locked)) { + throw webidl.errors.exception({ + header: 'Response.clone', + message: 'Body has already been consumed.' + }) + } + + // 2. Let clonedResponse be the result of cloning this’s response. + const clonedResponse = cloneResponse(this[kState]) + + // 3. Return the result of creating a Response object, given + // clonedResponse, this’s headers’s guard, and this’s relevant Realm. + const clonedResponseObject = new Response() + clonedResponseObject[kState] = clonedResponse + clonedResponseObject[kRealm] = this[kRealm] + clonedResponseObject[kHeaders][kHeadersList] = clonedResponse.headersList + clonedResponseObject[kHeaders][kGuard] = this[kHeaders][kGuard] + clonedResponseObject[kHeaders][kRealm] = this[kHeaders][kRealm] + + return clonedResponseObject + } +} + +mixinBody(Response) + +Object.defineProperties(Response.prototype, { + type: kEnumerableProperty, + url: kEnumerableProperty, + status: kEnumerableProperty, + ok: kEnumerableProperty, + redirected: kEnumerableProperty, + statusText: kEnumerableProperty, + headers: kEnumerableProperty, + clone: kEnumerableProperty, + body: kEnumerableProperty, + bodyUsed: kEnumerableProperty, + [Symbol.toStringTag]: { + value: 'Response', + configurable: true + } +}) + +Object.defineProperties(Response, { + json: kEnumerableProperty, + redirect: kEnumerableProperty, + error: kEnumerableProperty +}) + +// https://fetch.spec.whatwg.org/#concept-response-clone +function cloneResponse (response) { + // To clone a response response, run these steps: + + // 1. If response is a filtered response, then return a new identical + // filtered response whose internal response is a clone of response’s + // internal response. + if (response.internalResponse) { + return filterResponse( + cloneResponse(response.internalResponse), + response.type + ) + } + + // 2. Let newResponse be a copy of response, except for its body. + const newResponse = makeResponse({ ...response, body: null }) + + // 3. If response’s body is non-null, then set newResponse’s body to the + // result of cloning response’s body. + if (response.body != null) { + newResponse.body = cloneBody(response.body) + } + + // 4. Return newResponse. + return newResponse +} + +function makeResponse (init) { + return { + aborted: false, + rangeRequested: false, + timingAllowPassed: false, + requestIncludesCredentials: false, + type: 'default', + status: 200, + timingInfo: null, + cacheState: '', + statusText: '', + ...init, + headersList: init.headersList + ? new HeadersList(init.headersList) + : new HeadersList(), + urlList: init.urlList ? [...init.urlList] : [] + } +} + +function makeNetworkError (reason) { + const isError = isErrorLike(reason) + return makeResponse({ + type: 'error', + status: 0, + error: isError + ? reason + : new Error(reason ? String(reason) : reason), + aborted: reason && reason.name === 'AbortError' + }) +} + +function makeFilteredResponse (response, state) { + state = { + internalResponse: response, + ...state + } + + return new Proxy(response, { + get (target, p) { + return p in state ? state[p] : target[p] + }, + set (target, p, value) { + assert(!(p in state)) + target[p] = value + return true + } + }) +} + +// https://fetch.spec.whatwg.org/#concept-filtered-response +function filterResponse (response, type) { + // Set response to the following filtered response with response as its + // internal response, depending on request’s response tainting: + if (type === 'basic') { + // A basic filtered response is a filtered response whose type is "basic" + // and header list excludes any headers in internal response’s header list + // whose name is a forbidden response-header name. + + // Note: undici does not implement forbidden response-header names + return makeFilteredResponse(response, { + type: 'basic', + headersList: response.headersList + }) + } else if (type === 'cors') { + // A CORS filtered response is a filtered response whose type is "cors" + // and header list excludes any headers in internal response’s header + // list whose name is not a CORS-safelisted response-header name, given + // internal response’s CORS-exposed header-name list. + + // Note: undici does not implement CORS-safelisted response-header names + return makeFilteredResponse(response, { + type: 'cors', + headersList: response.headersList + }) + } else if (type === 'opaque') { + // An opaque filtered response is a filtered response whose type is + // "opaque", URL list is the empty list, status is 0, status message + // is the empty byte sequence, header list is empty, and body is null. + + return makeFilteredResponse(response, { + type: 'opaque', + urlList: Object.freeze([]), + status: 0, + statusText: '', + body: null + }) + } else if (type === 'opaqueredirect') { + // An opaque-redirect filtered response is a filtered response whose type + // is "opaqueredirect", status is 0, status message is the empty byte + // sequence, header list is empty, and body is null. + + return makeFilteredResponse(response, { + type: 'opaqueredirect', + status: 0, + statusText: '', + headersList: [], + body: null + }) + } else { + assert(false) + } +} + +// https://fetch.spec.whatwg.org/#appropriate-network-error +function makeAppropriateNetworkError (fetchParams, err = null) { + // 1. Assert: fetchParams is canceled. + assert(isCancelled(fetchParams)) + + // 2. Return an aborted network error if fetchParams is aborted; + // otherwise return a network error. + return isAborted(fetchParams) + ? makeNetworkError(Object.assign(new DOMException('The operation was aborted.', 'AbortError'), { cause: err })) + : makeNetworkError(Object.assign(new DOMException('Request was cancelled.'), { cause: err })) +} + +// https://whatpr.org/fetch/1392.html#initialize-a-response +function initializeResponse (response, init, body) { + // 1. If init["status"] is not in the range 200 to 599, inclusive, then + // throw a RangeError. + if (init.status !== null && (init.status < 200 || init.status > 599)) { + throw new RangeError('init["status"] must be in the range of 200 to 599, inclusive.') + } + + // 2. If init["statusText"] does not match the reason-phrase token production, + // then throw a TypeError. + if ('statusText' in init && init.statusText != null) { + // See, https://datatracker.ietf.org/doc/html/rfc7230#section-3.1.2: + // reason-phrase = *( HTAB / SP / VCHAR / obs-text ) + if (!isValidReasonPhrase(String(init.statusText))) { + throw new TypeError('Invalid statusText') + } + } + + // 3. Set response’s response’s status to init["status"]. + if ('status' in init && init.status != null) { + response[kState].status = init.status + } + + // 4. Set response’s response’s status message to init["statusText"]. + if ('statusText' in init && init.statusText != null) { + response[kState].statusText = init.statusText + } + + // 5. If init["headers"] exists, then fill response’s headers with init["headers"]. + if ('headers' in init && init.headers != null) { + fill(response[kHeaders], init.headers) + } + + // 6. If body was given, then: + if (body) { + // 1. If response's status is a null body status, then throw a TypeError. + if (nullBodyStatus.includes(response.status)) { + throw webidl.errors.exception({ + header: 'Response constructor', + message: 'Invalid response status code ' + response.status + }) + } + + // 2. Set response's body to body's body. + response[kState].body = body.body + + // 3. If body's type is non-null and response's header list does not contain + // `Content-Type`, then append (`Content-Type`, body's type) to response's header list. + if (body.type != null && !response[kState].headersList.contains('Content-Type')) { + response[kState].headersList.append('content-type', body.type) + } + } +} + +webidl.converters.ReadableStream = webidl.interfaceConverter( + ReadableStream +) + +webidl.converters.FormData = webidl.interfaceConverter( + FormData +) + +webidl.converters.URLSearchParams = webidl.interfaceConverter( + URLSearchParams +) + +// https://fetch.spec.whatwg.org/#typedefdef-xmlhttprequestbodyinit +webidl.converters.XMLHttpRequestBodyInit = function (V) { + if (typeof V === 'string') { + return webidl.converters.USVString(V) + } + + if (isBlobLike(V)) { + return webidl.converters.Blob(V, { strict: false }) + } + + if (types.isArrayBuffer(V) || types.isTypedArray(V) || types.isDataView(V)) { + return webidl.converters.BufferSource(V) + } + + if (util.isFormDataLike(V)) { + return webidl.converters.FormData(V, { strict: false }) + } + + if (V instanceof URLSearchParams) { + return webidl.converters.URLSearchParams(V) + } + + return webidl.converters.DOMString(V) +} + +// https://fetch.spec.whatwg.org/#bodyinit +webidl.converters.BodyInit = function (V) { + if (V instanceof ReadableStream) { + return webidl.converters.ReadableStream(V) + } + + // Note: the spec doesn't include async iterables, + // this is an undici extension. + if (V?.[Symbol.asyncIterator]) { + return V + } + + return webidl.converters.XMLHttpRequestBodyInit(V) +} + +webidl.converters.ResponseInit = webidl.dictionaryConverter([ + { + key: 'status', + converter: webidl.converters['unsigned short'], + defaultValue: 200 + }, + { + key: 'statusText', + converter: webidl.converters.ByteString, + defaultValue: '' + }, + { + key: 'headers', + converter: webidl.converters.HeadersInit + } +]) + +module.exports = { + makeNetworkError, + makeResponse, + makeAppropriateNetworkError, + filterResponse, + Response, + cloneResponse +} + + +/***/ }), + +/***/ 9710: +/***/ ((module) => { + +"use strict"; + + +module.exports = { + kUrl: Symbol('url'), + kHeaders: Symbol('headers'), + kSignal: Symbol('signal'), + kState: Symbol('state'), + kGuard: Symbol('guard'), + kRealm: Symbol('realm') +} + + +/***/ }), + +/***/ 5523: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { redirectStatusSet, referrerPolicySet: referrerPolicyTokens, badPortsSet } = __nccwpck_require__(7326) +const { getGlobalOrigin } = __nccwpck_require__(5628) +const { performance } = __nccwpck_require__(2987) +const { isBlobLike, toUSVString, ReadableStreamFrom } = __nccwpck_require__(3440) +const assert = __nccwpck_require__(2613) +const { isUint8Array } = __nccwpck_require__(8253) + +let supportedHashes = [] + +// https://nodejs.org/api/crypto.html#determining-if-crypto-support-is-unavailable +/** @type {import('crypto')|undefined} */ +let crypto + +try { + crypto = __nccwpck_require__(6982) + const possibleRelevantHashes = ['sha256', 'sha384', 'sha512'] + supportedHashes = crypto.getHashes().filter((hash) => possibleRelevantHashes.includes(hash)) +/* c8 ignore next 3 */ +} catch { +} + +function responseURL (response) { + // https://fetch.spec.whatwg.org/#responses + // A response has an associated URL. It is a pointer to the last URL + // in response’s URL list and null if response’s URL list is empty. + const urlList = response.urlList + const length = urlList.length + return length === 0 ? null : urlList[length - 1].toString() +} + +// https://fetch.spec.whatwg.org/#concept-response-location-url +function responseLocationURL (response, requestFragment) { + // 1. If response’s status is not a redirect status, then return null. + if (!redirectStatusSet.has(response.status)) { + return null + } + + // 2. Let location be the result of extracting header list values given + // `Location` and response’s header list. + let location = response.headersList.get('location') + + // 3. If location is a header value, then set location to the result of + // parsing location with response’s URL. + if (location !== null && isValidHeaderValue(location)) { + location = new URL(location, responseURL(response)) + } + + // 4. If location is a URL whose fragment is null, then set location’s + // fragment to requestFragment. + if (location && !location.hash) { + location.hash = requestFragment + } + + // 5. Return location. + return location +} + +/** @returns {URL} */ +function requestCurrentURL (request) { + return request.urlList[request.urlList.length - 1] +} + +function requestBadPort (request) { + // 1. Let url be request’s current URL. + const url = requestCurrentURL(request) + + // 2. If url’s scheme is an HTTP(S) scheme and url’s port is a bad port, + // then return blocked. + if (urlIsHttpHttpsScheme(url) && badPortsSet.has(url.port)) { + return 'blocked' + } + + // 3. Return allowed. + return 'allowed' +} + +function isErrorLike (object) { + return object instanceof Error || ( + object?.constructor?.name === 'Error' || + object?.constructor?.name === 'DOMException' + ) +} + +// Check whether |statusText| is a ByteString and +// matches the Reason-Phrase token production. +// RFC 2616: https://tools.ietf.org/html/rfc2616 +// RFC 7230: https://tools.ietf.org/html/rfc7230 +// "reason-phrase = *( HTAB / SP / VCHAR / obs-text )" +// https://github.com/chromium/chromium/blob/94.0.4604.1/third_party/blink/renderer/core/fetch/response.cc#L116 +function isValidReasonPhrase (statusText) { + for (let i = 0; i < statusText.length; ++i) { + const c = statusText.charCodeAt(i) + if ( + !( + ( + c === 0x09 || // HTAB + (c >= 0x20 && c <= 0x7e) || // SP / VCHAR + (c >= 0x80 && c <= 0xff) + ) // obs-text + ) + ) { + return false + } + } + return true +} + +/** + * @see https://tools.ietf.org/html/rfc7230#section-3.2.6 + * @param {number} c + */ +function isTokenCharCode (c) { + switch (c) { + case 0x22: + case 0x28: + case 0x29: + case 0x2c: + case 0x2f: + case 0x3a: + case 0x3b: + case 0x3c: + case 0x3d: + case 0x3e: + case 0x3f: + case 0x40: + case 0x5b: + case 0x5c: + case 0x5d: + case 0x7b: + case 0x7d: + // DQUOTE and "(),/:;<=>?@[\]{}" + return false + default: + // VCHAR %x21-7E + return c >= 0x21 && c <= 0x7e + } +} + +/** + * @param {string} characters + */ +function isValidHTTPToken (characters) { + if (characters.length === 0) { + return false + } + for (let i = 0; i < characters.length; ++i) { + if (!isTokenCharCode(characters.charCodeAt(i))) { + return false + } + } + return true +} + +/** + * @see https://fetch.spec.whatwg.org/#header-name + * @param {string} potentialValue + */ +function isValidHeaderName (potentialValue) { + return isValidHTTPToken(potentialValue) +} + +/** + * @see https://fetch.spec.whatwg.org/#header-value + * @param {string} potentialValue + */ +function isValidHeaderValue (potentialValue) { + // - Has no leading or trailing HTTP tab or space bytes. + // - Contains no 0x00 (NUL) or HTTP newline bytes. + if ( + potentialValue.startsWith('\t') || + potentialValue.startsWith(' ') || + potentialValue.endsWith('\t') || + potentialValue.endsWith(' ') + ) { + return false + } + + if ( + potentialValue.includes('\0') || + potentialValue.includes('\r') || + potentialValue.includes('\n') + ) { + return false + } + + return true +} + +// https://w3c.github.io/webappsec-referrer-policy/#set-requests-referrer-policy-on-redirect +function setRequestReferrerPolicyOnRedirect (request, actualResponse) { + // Given a request request and a response actualResponse, this algorithm + // updates request’s referrer policy according to the Referrer-Policy + // header (if any) in actualResponse. + + // 1. Let policy be the result of executing § 8.1 Parse a referrer policy + // from a Referrer-Policy header on actualResponse. + + // 8.1 Parse a referrer policy from a Referrer-Policy header + // 1. Let policy-tokens be the result of extracting header list values given `Referrer-Policy` and response’s header list. + const { headersList } = actualResponse + // 2. Let policy be the empty string. + // 3. For each token in policy-tokens, if token is a referrer policy and token is not the empty string, then set policy to token. + // 4. Return policy. + const policyHeader = (headersList.get('referrer-policy') ?? '').split(',') + + // Note: As the referrer-policy can contain multiple policies + // separated by comma, we need to loop through all of them + // and pick the first valid one. + // Ref: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#specify_a_fallback_policy + let policy = '' + if (policyHeader.length > 0) { + // The right-most policy takes precedence. + // The left-most policy is the fallback. + for (let i = policyHeader.length; i !== 0; i--) { + const token = policyHeader[i - 1].trim() + if (referrerPolicyTokens.has(token)) { + policy = token + break + } + } + } + + // 2. If policy is not the empty string, then set request’s referrer policy to policy. + if (policy !== '') { + request.referrerPolicy = policy + } +} + +// https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check +function crossOriginResourcePolicyCheck () { + // TODO + return 'allowed' +} + +// https://fetch.spec.whatwg.org/#concept-cors-check +function corsCheck () { + // TODO + return 'success' +} + +// https://fetch.spec.whatwg.org/#concept-tao-check +function TAOCheck () { + // TODO + return 'success' +} + +function appendFetchMetadata (httpRequest) { + // https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-dest-header + // TODO + + // https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-mode-header + + // 1. Assert: r’s url is a potentially trustworthy URL. + // TODO + + // 2. Let header be a Structured Header whose value is a token. + let header = null + + // 3. Set header’s value to r’s mode. + header = httpRequest.mode + + // 4. Set a structured field value `Sec-Fetch-Mode`/header in r’s header list. + httpRequest.headersList.set('sec-fetch-mode', header) + + // https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-site-header + // TODO + + // https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-user-header + // TODO +} + +// https://fetch.spec.whatwg.org/#append-a-request-origin-header +function appendRequestOriginHeader (request) { + // 1. Let serializedOrigin be the result of byte-serializing a request origin with request. + let serializedOrigin = request.origin + + // 2. If request’s response tainting is "cors" or request’s mode is "websocket", then append (`Origin`, serializedOrigin) to request’s header list. + if (request.responseTainting === 'cors' || request.mode === 'websocket') { + if (serializedOrigin) { + request.headersList.append('origin', serializedOrigin) + } + + // 3. Otherwise, if request’s method is neither `GET` nor `HEAD`, then: + } else if (request.method !== 'GET' && request.method !== 'HEAD') { + // 1. Switch on request’s referrer policy: + switch (request.referrerPolicy) { + case 'no-referrer': + // Set serializedOrigin to `null`. + serializedOrigin = null + break + case 'no-referrer-when-downgrade': + case 'strict-origin': + case 'strict-origin-when-cross-origin': + // If request’s origin is a tuple origin, its scheme is "https", and request’s current URL’s scheme is not "https", then set serializedOrigin to `null`. + if (request.origin && urlHasHttpsScheme(request.origin) && !urlHasHttpsScheme(requestCurrentURL(request))) { + serializedOrigin = null + } + break + case 'same-origin': + // If request’s origin is not same origin with request’s current URL’s origin, then set serializedOrigin to `null`. + if (!sameOrigin(request, requestCurrentURL(request))) { + serializedOrigin = null + } + break + default: + // Do nothing. + } + + if (serializedOrigin) { + // 2. Append (`Origin`, serializedOrigin) to request’s header list. + request.headersList.append('origin', serializedOrigin) + } + } +} + +function coarsenedSharedCurrentTime (crossOriginIsolatedCapability) { + // TODO + return performance.now() +} + +// https://fetch.spec.whatwg.org/#create-an-opaque-timing-info +function createOpaqueTimingInfo (timingInfo) { + return { + startTime: timingInfo.startTime ?? 0, + redirectStartTime: 0, + redirectEndTime: 0, + postRedirectStartTime: timingInfo.startTime ?? 0, + finalServiceWorkerStartTime: 0, + finalNetworkResponseStartTime: 0, + finalNetworkRequestStartTime: 0, + endTime: 0, + encodedBodySize: 0, + decodedBodySize: 0, + finalConnectionTimingInfo: null + } +} + +// https://html.spec.whatwg.org/multipage/origin.html#policy-container +function makePolicyContainer () { + // Note: the fetch spec doesn't make use of embedder policy or CSP list + return { + referrerPolicy: 'strict-origin-when-cross-origin' + } +} + +// https://html.spec.whatwg.org/multipage/origin.html#clone-a-policy-container +function clonePolicyContainer (policyContainer) { + return { + referrerPolicy: policyContainer.referrerPolicy + } +} + +// https://w3c.github.io/webappsec-referrer-policy/#determine-requests-referrer +function determineRequestsReferrer (request) { + // 1. Let policy be request's referrer policy. + const policy = request.referrerPolicy + + // Note: policy cannot (shouldn't) be null or an empty string. + assert(policy) + + // 2. Let environment be request’s client. + + let referrerSource = null + + // 3. Switch on request’s referrer: + if (request.referrer === 'client') { + // Note: node isn't a browser and doesn't implement document/iframes, + // so we bypass this step and replace it with our own. + + const globalOrigin = getGlobalOrigin() + + if (!globalOrigin || globalOrigin.origin === 'null') { + return 'no-referrer' + } + + // note: we need to clone it as it's mutated + referrerSource = new URL(globalOrigin) + } else if (request.referrer instanceof URL) { + // Let referrerSource be request’s referrer. + referrerSource = request.referrer + } + + // 4. Let request’s referrerURL be the result of stripping referrerSource for + // use as a referrer. + let referrerURL = stripURLForReferrer(referrerSource) + + // 5. Let referrerOrigin be the result of stripping referrerSource for use as + // a referrer, with the origin-only flag set to true. + const referrerOrigin = stripURLForReferrer(referrerSource, true) + + // 6. If the result of serializing referrerURL is a string whose length is + // greater than 4096, set referrerURL to referrerOrigin. + if (referrerURL.toString().length > 4096) { + referrerURL = referrerOrigin + } + + const areSameOrigin = sameOrigin(request, referrerURL) + const isNonPotentiallyTrustWorthy = isURLPotentiallyTrustworthy(referrerURL) && + !isURLPotentiallyTrustworthy(request.url) + + // 8. Execute the switch statements corresponding to the value of policy: + switch (policy) { + case 'origin': return referrerOrigin != null ? referrerOrigin : stripURLForReferrer(referrerSource, true) + case 'unsafe-url': return referrerURL + case 'same-origin': + return areSameOrigin ? referrerOrigin : 'no-referrer' + case 'origin-when-cross-origin': + return areSameOrigin ? referrerURL : referrerOrigin + case 'strict-origin-when-cross-origin': { + const currentURL = requestCurrentURL(request) + + // 1. If the origin of referrerURL and the origin of request’s current + // URL are the same, then return referrerURL. + if (sameOrigin(referrerURL, currentURL)) { + return referrerURL + } + + // 2. If referrerURL is a potentially trustworthy URL and request’s + // current URL is not a potentially trustworthy URL, then return no + // referrer. + if (isURLPotentiallyTrustworthy(referrerURL) && !isURLPotentiallyTrustworthy(currentURL)) { + return 'no-referrer' + } + + // 3. Return referrerOrigin. + return referrerOrigin + } + case 'strict-origin': // eslint-disable-line + /** + * 1. If referrerURL is a potentially trustworthy URL and + * request’s current URL is not a potentially trustworthy URL, + * then return no referrer. + * 2. Return referrerOrigin + */ + case 'no-referrer-when-downgrade': // eslint-disable-line + /** + * 1. If referrerURL is a potentially trustworthy URL and + * request’s current URL is not a potentially trustworthy URL, + * then return no referrer. + * 2. Return referrerOrigin + */ + + default: // eslint-disable-line + return isNonPotentiallyTrustWorthy ? 'no-referrer' : referrerOrigin + } +} + +/** + * @see https://w3c.github.io/webappsec-referrer-policy/#strip-url + * @param {URL} url + * @param {boolean|undefined} originOnly + */ +function stripURLForReferrer (url, originOnly) { + // 1. Assert: url is a URL. + assert(url instanceof URL) + + // 2. If url’s scheme is a local scheme, then return no referrer. + if (url.protocol === 'file:' || url.protocol === 'about:' || url.protocol === 'blank:') { + return 'no-referrer' + } + + // 3. Set url’s username to the empty string. + url.username = '' + + // 4. Set url’s password to the empty string. + url.password = '' + + // 5. Set url’s fragment to null. + url.hash = '' + + // 6. If the origin-only flag is true, then: + if (originOnly) { + // 1. Set url’s path to « the empty string ». + url.pathname = '' + + // 2. Set url’s query to null. + url.search = '' + } + + // 7. Return url. + return url +} + +function isURLPotentiallyTrustworthy (url) { + if (!(url instanceof URL)) { + return false + } + + // If child of about, return true + if (url.href === 'about:blank' || url.href === 'about:srcdoc') { + return true + } + + // If scheme is data, return true + if (url.protocol === 'data:') return true + + // If file, return true + if (url.protocol === 'file:') return true + + return isOriginPotentiallyTrustworthy(url.origin) + + function isOriginPotentiallyTrustworthy (origin) { + // If origin is explicitly null, return false + if (origin == null || origin === 'null') return false + + const originAsURL = new URL(origin) + + // If secure, return true + if (originAsURL.protocol === 'https:' || originAsURL.protocol === 'wss:') { + return true + } + + // If localhost or variants, return true + if (/^127(?:\.[0-9]+){0,2}\.[0-9]+$|^\[(?:0*:)*?:?0*1\]$/.test(originAsURL.hostname) || + (originAsURL.hostname === 'localhost' || originAsURL.hostname.includes('localhost.')) || + (originAsURL.hostname.endsWith('.localhost'))) { + return true + } + + // If any other, return false + return false + } +} + +/** + * @see https://w3c.github.io/webappsec-subresource-integrity/#does-response-match-metadatalist + * @param {Uint8Array} bytes + * @param {string} metadataList + */ +function bytesMatch (bytes, metadataList) { + // If node is not built with OpenSSL support, we cannot check + // a request's integrity, so allow it by default (the spec will + // allow requests if an invalid hash is given, as precedence). + /* istanbul ignore if: only if node is built with --without-ssl */ + if (crypto === undefined) { + return true + } + + // 1. Let parsedMetadata be the result of parsing metadataList. + const parsedMetadata = parseMetadata(metadataList) + + // 2. If parsedMetadata is no metadata, return true. + if (parsedMetadata === 'no metadata') { + return true + } + + // 3. If response is not eligible for integrity validation, return false. + // TODO + + // 4. If parsedMetadata is the empty set, return true. + if (parsedMetadata.length === 0) { + return true + } + + // 5. Let metadata be the result of getting the strongest + // metadata from parsedMetadata. + const strongest = getStrongestMetadata(parsedMetadata) + const metadata = filterMetadataListByAlgorithm(parsedMetadata, strongest) + + // 6. For each item in metadata: + for (const item of metadata) { + // 1. Let algorithm be the alg component of item. + const algorithm = item.algo + + // 2. Let expectedValue be the val component of item. + const expectedValue = item.hash + + // See https://github.com/web-platform-tests/wpt/commit/e4c5cc7a5e48093220528dfdd1c4012dc3837a0e + // "be liberal with padding". This is annoying, and it's not even in the spec. + + // 3. Let actualValue be the result of applying algorithm to bytes. + let actualValue = crypto.createHash(algorithm).update(bytes).digest('base64') + + if (actualValue[actualValue.length - 1] === '=') { + if (actualValue[actualValue.length - 2] === '=') { + actualValue = actualValue.slice(0, -2) + } else { + actualValue = actualValue.slice(0, -1) + } + } + + // 4. If actualValue is a case-sensitive match for expectedValue, + // return true. + if (compareBase64Mixed(actualValue, expectedValue)) { + return true + } + } + + // 7. Return false. + return false +} + +// https://w3c.github.io/webappsec-subresource-integrity/#grammardef-hash-with-options +// https://www.w3.org/TR/CSP2/#source-list-syntax +// https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1 +const parseHashWithOptions = /(?sha256|sha384|sha512)-((?[A-Za-z0-9+/]+|[A-Za-z0-9_-]+)={0,2}(?:\s|$)( +[!-~]*)?)?/i + +/** + * @see https://w3c.github.io/webappsec-subresource-integrity/#parse-metadata + * @param {string} metadata + */ +function parseMetadata (metadata) { + // 1. Let result be the empty set. + /** @type {{ algo: string, hash: string }[]} */ + const result = [] + + // 2. Let empty be equal to true. + let empty = true + + // 3. For each token returned by splitting metadata on spaces: + for (const token of metadata.split(' ')) { + // 1. Set empty to false. + empty = false + + // 2. Parse token as a hash-with-options. + const parsedToken = parseHashWithOptions.exec(token) + + // 3. If token does not parse, continue to the next token. + if ( + parsedToken === null || + parsedToken.groups === undefined || + parsedToken.groups.algo === undefined + ) { + // Note: Chromium blocks the request at this point, but Firefox + // gives a warning that an invalid integrity was given. The + // correct behavior is to ignore these, and subsequently not + // check the integrity of the resource. + continue + } + + // 4. Let algorithm be the hash-algo component of token. + const algorithm = parsedToken.groups.algo.toLowerCase() + + // 5. If algorithm is a hash function recognized by the user + // agent, add the parsed token to result. + if (supportedHashes.includes(algorithm)) { + result.push(parsedToken.groups) + } + } + + // 4. Return no metadata if empty is true, otherwise return result. + if (empty === true) { + return 'no metadata' + } + + return result +} + +/** + * @param {{ algo: 'sha256' | 'sha384' | 'sha512' }[]} metadataList + */ +function getStrongestMetadata (metadataList) { + // Let algorithm be the algo component of the first item in metadataList. + // Can be sha256 + let algorithm = metadataList[0].algo + // If the algorithm is sha512, then it is the strongest + // and we can return immediately + if (algorithm[3] === '5') { + return algorithm + } + + for (let i = 1; i < metadataList.length; ++i) { + const metadata = metadataList[i] + // If the algorithm is sha512, then it is the strongest + // and we can break the loop immediately + if (metadata.algo[3] === '5') { + algorithm = 'sha512' + break + // If the algorithm is sha384, then a potential sha256 or sha384 is ignored + } else if (algorithm[3] === '3') { + continue + // algorithm is sha256, check if algorithm is sha384 and if so, set it as + // the strongest + } else if (metadata.algo[3] === '3') { + algorithm = 'sha384' + } + } + return algorithm +} + +function filterMetadataListByAlgorithm (metadataList, algorithm) { + if (metadataList.length === 1) { + return metadataList + } + + let pos = 0 + for (let i = 0; i < metadataList.length; ++i) { + if (metadataList[i].algo === algorithm) { + metadataList[pos++] = metadataList[i] + } + } + + metadataList.length = pos + + return metadataList +} + +/** + * Compares two base64 strings, allowing for base64url + * in the second string. + * +* @param {string} actualValue always base64 + * @param {string} expectedValue base64 or base64url + * @returns {boolean} + */ +function compareBase64Mixed (actualValue, expectedValue) { + if (actualValue.length !== expectedValue.length) { + return false + } + for (let i = 0; i < actualValue.length; ++i) { + if (actualValue[i] !== expectedValue[i]) { + if ( + (actualValue[i] === '+' && expectedValue[i] === '-') || + (actualValue[i] === '/' && expectedValue[i] === '_') + ) { + continue + } + return false + } + } + + return true +} + +// https://w3c.github.io/webappsec-upgrade-insecure-requests/#upgrade-request +function tryUpgradeRequestToAPotentiallyTrustworthyURL (request) { + // TODO +} + +/** + * @link {https://html.spec.whatwg.org/multipage/origin.html#same-origin} + * @param {URL} A + * @param {URL} B + */ +function sameOrigin (A, B) { + // 1. If A and B are the same opaque origin, then return true. + if (A.origin === B.origin && A.origin === 'null') { + return true + } + + // 2. If A and B are both tuple origins and their schemes, + // hosts, and port are identical, then return true. + if (A.protocol === B.protocol && A.hostname === B.hostname && A.port === B.port) { + return true + } + + // 3. Return false. + return false +} + +function createDeferredPromise () { + let res + let rej + const promise = new Promise((resolve, reject) => { + res = resolve + rej = reject + }) + + return { promise, resolve: res, reject: rej } +} + +function isAborted (fetchParams) { + return fetchParams.controller.state === 'aborted' +} + +function isCancelled (fetchParams) { + return fetchParams.controller.state === 'aborted' || + fetchParams.controller.state === 'terminated' +} + +const normalizeMethodRecord = { + delete: 'DELETE', + DELETE: 'DELETE', + get: 'GET', + GET: 'GET', + head: 'HEAD', + HEAD: 'HEAD', + options: 'OPTIONS', + OPTIONS: 'OPTIONS', + post: 'POST', + POST: 'POST', + put: 'PUT', + PUT: 'PUT' +} + +// Note: object prototypes should not be able to be referenced. e.g. `Object#hasOwnProperty`. +Object.setPrototypeOf(normalizeMethodRecord, null) + +/** + * @see https://fetch.spec.whatwg.org/#concept-method-normalize + * @param {string} method + */ +function normalizeMethod (method) { + return normalizeMethodRecord[method.toLowerCase()] ?? method +} + +// https://infra.spec.whatwg.org/#serialize-a-javascript-value-to-a-json-string +function serializeJavascriptValueToJSONString (value) { + // 1. Let result be ? Call(%JSON.stringify%, undefined, « value »). + const result = JSON.stringify(value) + + // 2. If result is undefined, then throw a TypeError. + if (result === undefined) { + throw new TypeError('Value is not JSON serializable') + } + + // 3. Assert: result is a string. + assert(typeof result === 'string') + + // 4. Return result. + return result +} + +// https://tc39.es/ecma262/#sec-%25iteratorprototype%25-object +const esIteratorPrototype = Object.getPrototypeOf(Object.getPrototypeOf([][Symbol.iterator]())) + +/** + * @see https://webidl.spec.whatwg.org/#dfn-iterator-prototype-object + * @param {() => unknown[]} iterator + * @param {string} name name of the instance + * @param {'key'|'value'|'key+value'} kind + */ +function makeIterator (iterator, name, kind) { + const object = { + index: 0, + kind, + target: iterator + } + + const i = { + next () { + // 1. Let interface be the interface for which the iterator prototype object exists. + + // 2. Let thisValue be the this value. + + // 3. Let object be ? ToObject(thisValue). + + // 4. If object is a platform object, then perform a security + // check, passing: + + // 5. If object is not a default iterator object for interface, + // then throw a TypeError. + if (Object.getPrototypeOf(this) !== i) { + throw new TypeError( + `'next' called on an object that does not implement interface ${name} Iterator.` + ) + } + + // 6. Let index be object’s index. + // 7. Let kind be object’s kind. + // 8. Let values be object’s target's value pairs to iterate over. + const { index, kind, target } = object + const values = target() + + // 9. Let len be the length of values. + const len = values.length + + // 10. If index is greater than or equal to len, then return + // CreateIterResultObject(undefined, true). + if (index >= len) { + return { value: undefined, done: true } + } + + // 11. Let pair be the entry in values at index index. + const pair = values[index] + + // 12. Set object’s index to index + 1. + object.index = index + 1 + + // 13. Return the iterator result for pair and kind. + return iteratorResult(pair, kind) + }, + // The class string of an iterator prototype object for a given interface is the + // result of concatenating the identifier of the interface and the string " Iterator". + [Symbol.toStringTag]: `${name} Iterator` + } + + // The [[Prototype]] internal slot of an iterator prototype object must be %IteratorPrototype%. + Object.setPrototypeOf(i, esIteratorPrototype) + // esIteratorPrototype needs to be the prototype of i + // which is the prototype of an empty object. Yes, it's confusing. + return Object.setPrototypeOf({}, i) +} + +// https://webidl.spec.whatwg.org/#iterator-result +function iteratorResult (pair, kind) { + let result + + // 1. Let result be a value determined by the value of kind: + switch (kind) { + case 'key': { + // 1. Let idlKey be pair’s key. + // 2. Let key be the result of converting idlKey to an + // ECMAScript value. + // 3. result is key. + result = pair[0] + break + } + case 'value': { + // 1. Let idlValue be pair’s value. + // 2. Let value be the result of converting idlValue to + // an ECMAScript value. + // 3. result is value. + result = pair[1] + break + } + case 'key+value': { + // 1. Let idlKey be pair’s key. + // 2. Let idlValue be pair’s value. + // 3. Let key be the result of converting idlKey to an + // ECMAScript value. + // 4. Let value be the result of converting idlValue to + // an ECMAScript value. + // 5. Let array be ! ArrayCreate(2). + // 6. Call ! CreateDataProperty(array, "0", key). + // 7. Call ! CreateDataProperty(array, "1", value). + // 8. result is array. + result = pair + break + } + } + + // 2. Return CreateIterResultObject(result, false). + return { value: result, done: false } +} + +/** + * @see https://fetch.spec.whatwg.org/#body-fully-read + */ +async function fullyReadBody (body, processBody, processBodyError) { + // 1. If taskDestination is null, then set taskDestination to + // the result of starting a new parallel queue. + + // 2. Let successSteps given a byte sequence bytes be to queue a + // fetch task to run processBody given bytes, with taskDestination. + const successSteps = processBody + + // 3. Let errorSteps be to queue a fetch task to run processBodyError, + // with taskDestination. + const errorSteps = processBodyError + + // 4. Let reader be the result of getting a reader for body’s stream. + // If that threw an exception, then run errorSteps with that + // exception and return. + let reader + + try { + reader = body.stream.getReader() + } catch (e) { + errorSteps(e) + return + } + + // 5. Read all bytes from reader, given successSteps and errorSteps. + try { + const result = await readAllBytes(reader) + successSteps(result) + } catch (e) { + errorSteps(e) + } +} + +/** @type {ReadableStream} */ +let ReadableStream = globalThis.ReadableStream + +function isReadableStreamLike (stream) { + if (!ReadableStream) { + ReadableStream = (__nccwpck_require__(3774).ReadableStream) + } + + return stream instanceof ReadableStream || ( + stream[Symbol.toStringTag] === 'ReadableStream' && + typeof stream.tee === 'function' + ) +} + +const MAXIMUM_ARGUMENT_LENGTH = 65535 + +/** + * @see https://infra.spec.whatwg.org/#isomorphic-decode + * @param {number[]|Uint8Array} input + */ +function isomorphicDecode (input) { + // 1. To isomorphic decode a byte sequence input, return a string whose code point + // length is equal to input’s length and whose code points have the same values + // as the values of input’s bytes, in the same order. + + if (input.length < MAXIMUM_ARGUMENT_LENGTH) { + return String.fromCharCode(...input) + } + + return input.reduce((previous, current) => previous + String.fromCharCode(current), '') +} + +/** + * @param {ReadableStreamController} controller + */ +function readableStreamClose (controller) { + try { + controller.close() + } catch (err) { + // TODO: add comment explaining why this error occurs. + if (!err.message.includes('Controller is already closed')) { + throw err + } + } +} + +/** + * @see https://infra.spec.whatwg.org/#isomorphic-encode + * @param {string} input + */ +function isomorphicEncode (input) { + // 1. Assert: input contains no code points greater than U+00FF. + for (let i = 0; i < input.length; i++) { + assert(input.charCodeAt(i) <= 0xFF) + } + + // 2. Return a byte sequence whose length is equal to input’s code + // point length and whose bytes have the same values as the + // values of input’s code points, in the same order + return input +} + +/** + * @see https://streams.spec.whatwg.org/#readablestreamdefaultreader-read-all-bytes + * @see https://streams.spec.whatwg.org/#read-loop + * @param {ReadableStreamDefaultReader} reader + */ +async function readAllBytes (reader) { + const bytes = [] + let byteLength = 0 + + while (true) { + const { done, value: chunk } = await reader.read() + + if (done) { + // 1. Call successSteps with bytes. + return Buffer.concat(bytes, byteLength) + } + + // 1. If chunk is not a Uint8Array object, call failureSteps + // with a TypeError and abort these steps. + if (!isUint8Array(chunk)) { + throw new TypeError('Received non-Uint8Array chunk') + } + + // 2. Append the bytes represented by chunk to bytes. + bytes.push(chunk) + byteLength += chunk.length + + // 3. Read-loop given reader, bytes, successSteps, and failureSteps. + } +} + +/** + * @see https://fetch.spec.whatwg.org/#is-local + * @param {URL} url + */ +function urlIsLocal (url) { + assert('protocol' in url) // ensure it's a url object + + const protocol = url.protocol + + return protocol === 'about:' || protocol === 'blob:' || protocol === 'data:' +} + +/** + * @param {string|URL} url + */ +function urlHasHttpsScheme (url) { + if (typeof url === 'string') { + return url.startsWith('https:') + } + + return url.protocol === 'https:' +} + +/** + * @see https://fetch.spec.whatwg.org/#http-scheme + * @param {URL} url + */ +function urlIsHttpHttpsScheme (url) { + assert('protocol' in url) // ensure it's a url object + + const protocol = url.protocol + + return protocol === 'http:' || protocol === 'https:' +} + +/** + * Fetch supports node >= 16.8.0, but Object.hasOwn was added in v16.9.0. + */ +const hasOwn = Object.hasOwn || ((dict, key) => Object.prototype.hasOwnProperty.call(dict, key)) + +module.exports = { + isAborted, + isCancelled, + createDeferredPromise, + ReadableStreamFrom, + toUSVString, + tryUpgradeRequestToAPotentiallyTrustworthyURL, + coarsenedSharedCurrentTime, + determineRequestsReferrer, + makePolicyContainer, + clonePolicyContainer, + appendFetchMetadata, + appendRequestOriginHeader, + TAOCheck, + corsCheck, + crossOriginResourcePolicyCheck, + createOpaqueTimingInfo, + setRequestReferrerPolicyOnRedirect, + isValidHTTPToken, + requestBadPort, + requestCurrentURL, + responseURL, + responseLocationURL, + isBlobLike, + isURLPotentiallyTrustworthy, + isValidReasonPhrase, + sameOrigin, + normalizeMethod, + serializeJavascriptValueToJSONString, + makeIterator, + isValidHeaderName, + isValidHeaderValue, + hasOwn, + isErrorLike, + fullyReadBody, + bytesMatch, + isReadableStreamLike, + readableStreamClose, + isomorphicEncode, + isomorphicDecode, + urlIsLocal, + urlHasHttpsScheme, + urlIsHttpHttpsScheme, + readAllBytes, + normalizeMethodRecord, + parseMetadata +} + + +/***/ }), + +/***/ 4222: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { types } = __nccwpck_require__(9023) +const { hasOwn, toUSVString } = __nccwpck_require__(5523) + +/** @type {import('../../types/webidl').Webidl} */ +const webidl = {} +webidl.converters = {} +webidl.util = {} +webidl.errors = {} + +webidl.errors.exception = function (message) { + return new TypeError(`${message.header}: ${message.message}`) +} + +webidl.errors.conversionFailed = function (context) { + const plural = context.types.length === 1 ? '' : ' one of' + const message = + `${context.argument} could not be converted to` + + `${plural}: ${context.types.join(', ')}.` + + return webidl.errors.exception({ + header: context.prefix, + message + }) +} + +webidl.errors.invalidArgument = function (context) { + return webidl.errors.exception({ + header: context.prefix, + message: `"${context.value}" is an invalid ${context.type}.` + }) +} + +// https://webidl.spec.whatwg.org/#implements +webidl.brandCheck = function (V, I, opts = undefined) { + if (opts?.strict !== false && !(V instanceof I)) { + throw new TypeError('Illegal invocation') + } else { + return V?.[Symbol.toStringTag] === I.prototype[Symbol.toStringTag] + } +} + +webidl.argumentLengthCheck = function ({ length }, min, ctx) { + if (length < min) { + throw webidl.errors.exception({ + message: `${min} argument${min !== 1 ? 's' : ''} required, ` + + `but${length ? ' only' : ''} ${length} found.`, + ...ctx + }) + } +} + +webidl.illegalConstructor = function () { + throw webidl.errors.exception({ + header: 'TypeError', + message: 'Illegal constructor' + }) +} + +// https://tc39.es/ecma262/#sec-ecmascript-data-types-and-values +webidl.util.Type = function (V) { + switch (typeof V) { + case 'undefined': return 'Undefined' + case 'boolean': return 'Boolean' + case 'string': return 'String' + case 'symbol': return 'Symbol' + case 'number': return 'Number' + case 'bigint': return 'BigInt' + case 'function': + case 'object': { + if (V === null) { + return 'Null' + } + + return 'Object' + } + } +} + +// https://webidl.spec.whatwg.org/#abstract-opdef-converttoint +webidl.util.ConvertToInt = function (V, bitLength, signedness, opts = {}) { + let upperBound + let lowerBound + + // 1. If bitLength is 64, then: + if (bitLength === 64) { + // 1. Let upperBound be 2^53 − 1. + upperBound = Math.pow(2, 53) - 1 + + // 2. If signedness is "unsigned", then let lowerBound be 0. + if (signedness === 'unsigned') { + lowerBound = 0 + } else { + // 3. Otherwise let lowerBound be −2^53 + 1. + lowerBound = Math.pow(-2, 53) + 1 + } + } else if (signedness === 'unsigned') { + // 2. Otherwise, if signedness is "unsigned", then: + + // 1. Let lowerBound be 0. + lowerBound = 0 + + // 2. Let upperBound be 2^bitLength − 1. + upperBound = Math.pow(2, bitLength) - 1 + } else { + // 3. Otherwise: + + // 1. Let lowerBound be -2^bitLength − 1. + lowerBound = Math.pow(-2, bitLength) - 1 + + // 2. Let upperBound be 2^bitLength − 1 − 1. + upperBound = Math.pow(2, bitLength - 1) - 1 + } + + // 4. Let x be ? ToNumber(V). + let x = Number(V) + + // 5. If x is −0, then set x to +0. + if (x === 0) { + x = 0 + } + + // 6. If the conversion is to an IDL type associated + // with the [EnforceRange] extended attribute, then: + if (opts.enforceRange === true) { + // 1. If x is NaN, +∞, or −∞, then throw a TypeError. + if ( + Number.isNaN(x) || + x === Number.POSITIVE_INFINITY || + x === Number.NEGATIVE_INFINITY + ) { + throw webidl.errors.exception({ + header: 'Integer conversion', + message: `Could not convert ${V} to an integer.` + }) + } + + // 2. Set x to IntegerPart(x). + x = webidl.util.IntegerPart(x) + + // 3. If x < lowerBound or x > upperBound, then + // throw a TypeError. + if (x < lowerBound || x > upperBound) { + throw webidl.errors.exception({ + header: 'Integer conversion', + message: `Value must be between ${lowerBound}-${upperBound}, got ${x}.` + }) + } + + // 4. Return x. + return x + } + + // 7. If x is not NaN and the conversion is to an IDL + // type associated with the [Clamp] extended + // attribute, then: + if (!Number.isNaN(x) && opts.clamp === true) { + // 1. Set x to min(max(x, lowerBound), upperBound). + x = Math.min(Math.max(x, lowerBound), upperBound) + + // 2. Round x to the nearest integer, choosing the + // even integer if it lies halfway between two, + // and choosing +0 rather than −0. + if (Math.floor(x) % 2 === 0) { + x = Math.floor(x) + } else { + x = Math.ceil(x) + } + + // 3. Return x. + return x + } + + // 8. If x is NaN, +0, +∞, or −∞, then return +0. + if ( + Number.isNaN(x) || + (x === 0 && Object.is(0, x)) || + x === Number.POSITIVE_INFINITY || + x === Number.NEGATIVE_INFINITY + ) { + return 0 + } + + // 9. Set x to IntegerPart(x). + x = webidl.util.IntegerPart(x) + + // 10. Set x to x modulo 2^bitLength. + x = x % Math.pow(2, bitLength) + + // 11. If signedness is "signed" and x ≥ 2^bitLength − 1, + // then return x − 2^bitLength. + if (signedness === 'signed' && x >= Math.pow(2, bitLength) - 1) { + return x - Math.pow(2, bitLength) + } + + // 12. Otherwise, return x. + return x +} + +// https://webidl.spec.whatwg.org/#abstract-opdef-integerpart +webidl.util.IntegerPart = function (n) { + // 1. Let r be floor(abs(n)). + const r = Math.floor(Math.abs(n)) + + // 2. If n < 0, then return -1 × r. + if (n < 0) { + return -1 * r + } + + // 3. Otherwise, return r. + return r +} + +// https://webidl.spec.whatwg.org/#es-sequence +webidl.sequenceConverter = function (converter) { + return (V) => { + // 1. If Type(V) is not Object, throw a TypeError. + if (webidl.util.Type(V) !== 'Object') { + throw webidl.errors.exception({ + header: 'Sequence', + message: `Value of type ${webidl.util.Type(V)} is not an Object.` + }) + } + + // 2. Let method be ? GetMethod(V, @@iterator). + /** @type {Generator} */ + const method = V?.[Symbol.iterator]?.() + const seq = [] + + // 3. If method is undefined, throw a TypeError. + if ( + method === undefined || + typeof method.next !== 'function' + ) { + throw webidl.errors.exception({ + header: 'Sequence', + message: 'Object is not an iterator.' + }) + } + + // https://webidl.spec.whatwg.org/#create-sequence-from-iterable + while (true) { + const { done, value } = method.next() + + if (done) { + break + } + + seq.push(converter(value)) + } + + return seq + } +} + +// https://webidl.spec.whatwg.org/#es-to-record +webidl.recordConverter = function (keyConverter, valueConverter) { + return (O) => { + // 1. If Type(O) is not Object, throw a TypeError. + if (webidl.util.Type(O) !== 'Object') { + throw webidl.errors.exception({ + header: 'Record', + message: `Value of type ${webidl.util.Type(O)} is not an Object.` + }) + } + + // 2. Let result be a new empty instance of record. + const result = {} + + if (!types.isProxy(O)) { + // Object.keys only returns enumerable properties + const keys = Object.keys(O) + + for (const key of keys) { + // 1. Let typedKey be key converted to an IDL value of type K. + const typedKey = keyConverter(key) + + // 2. Let value be ? Get(O, key). + // 3. Let typedValue be value converted to an IDL value of type V. + const typedValue = valueConverter(O[key]) + + // 4. Set result[typedKey] to typedValue. + result[typedKey] = typedValue + } + + // 5. Return result. + return result + } + + // 3. Let keys be ? O.[[OwnPropertyKeys]](). + const keys = Reflect.ownKeys(O) + + // 4. For each key of keys. + for (const key of keys) { + // 1. Let desc be ? O.[[GetOwnProperty]](key). + const desc = Reflect.getOwnPropertyDescriptor(O, key) + + // 2. If desc is not undefined and desc.[[Enumerable]] is true: + if (desc?.enumerable) { + // 1. Let typedKey be key converted to an IDL value of type K. + const typedKey = keyConverter(key) + + // 2. Let value be ? Get(O, key). + // 3. Let typedValue be value converted to an IDL value of type V. + const typedValue = valueConverter(O[key]) + + // 4. Set result[typedKey] to typedValue. + result[typedKey] = typedValue + } + } + + // 5. Return result. + return result + } +} + +webidl.interfaceConverter = function (i) { + return (V, opts = {}) => { + if (opts.strict !== false && !(V instanceof i)) { + throw webidl.errors.exception({ + header: i.name, + message: `Expected ${V} to be an instance of ${i.name}.` + }) + } + + return V + } +} + +webidl.dictionaryConverter = function (converters) { + return (dictionary) => { + const type = webidl.util.Type(dictionary) + const dict = {} + + if (type === 'Null' || type === 'Undefined') { + return dict + } else if (type !== 'Object') { + throw webidl.errors.exception({ + header: 'Dictionary', + message: `Expected ${dictionary} to be one of: Null, Undefined, Object.` + }) + } + + for (const options of converters) { + const { key, defaultValue, required, converter } = options + + if (required === true) { + if (!hasOwn(dictionary, key)) { + throw webidl.errors.exception({ + header: 'Dictionary', + message: `Missing required key "${key}".` + }) + } + } + + let value = dictionary[key] + const hasDefault = hasOwn(options, 'defaultValue') + + // Only use defaultValue if value is undefined and + // a defaultValue options was provided. + if (hasDefault && value !== null) { + value = value ?? defaultValue + } + + // A key can be optional and have no default value. + // When this happens, do not perform a conversion, + // and do not assign the key a value. + if (required || hasDefault || value !== undefined) { + value = converter(value) + + if ( + options.allowedValues && + !options.allowedValues.includes(value) + ) { + throw webidl.errors.exception({ + header: 'Dictionary', + message: `${value} is not an accepted type. Expected one of ${options.allowedValues.join(', ')}.` + }) + } + + dict[key] = value + } + } + + return dict + } +} + +webidl.nullableConverter = function (converter) { + return (V) => { + if (V === null) { + return V + } + + return converter(V) + } +} + +// https://webidl.spec.whatwg.org/#es-DOMString +webidl.converters.DOMString = function (V, opts = {}) { + // 1. If V is null and the conversion is to an IDL type + // associated with the [LegacyNullToEmptyString] + // extended attribute, then return the DOMString value + // that represents the empty string. + if (V === null && opts.legacyNullToEmptyString) { + return '' + } + + // 2. Let x be ? ToString(V). + if (typeof V === 'symbol') { + throw new TypeError('Could not convert argument of type symbol to string.') + } + + // 3. Return the IDL DOMString value that represents the + // same sequence of code units as the one the + // ECMAScript String value x represents. + return String(V) +} + +// https://webidl.spec.whatwg.org/#es-ByteString +webidl.converters.ByteString = function (V) { + // 1. Let x be ? ToString(V). + // Note: DOMString converter perform ? ToString(V) + const x = webidl.converters.DOMString(V) + + // 2. If the value of any element of x is greater than + // 255, then throw a TypeError. + for (let index = 0; index < x.length; index++) { + if (x.charCodeAt(index) > 255) { + throw new TypeError( + 'Cannot convert argument to a ByteString because the character at ' + + `index ${index} has a value of ${x.charCodeAt(index)} which is greater than 255.` + ) + } + } + + // 3. Return an IDL ByteString value whose length is the + // length of x, and where the value of each element is + // the value of the corresponding element of x. + return x +} + +// https://webidl.spec.whatwg.org/#es-USVString +webidl.converters.USVString = toUSVString + +// https://webidl.spec.whatwg.org/#es-boolean +webidl.converters.boolean = function (V) { + // 1. Let x be the result of computing ToBoolean(V). + const x = Boolean(V) + + // 2. Return the IDL boolean value that is the one that represents + // the same truth value as the ECMAScript Boolean value x. + return x +} + +// https://webidl.spec.whatwg.org/#es-any +webidl.converters.any = function (V) { + return V +} + +// https://webidl.spec.whatwg.org/#es-long-long +webidl.converters['long long'] = function (V) { + // 1. Let x be ? ConvertToInt(V, 64, "signed"). + const x = webidl.util.ConvertToInt(V, 64, 'signed') + + // 2. Return the IDL long long value that represents + // the same numeric value as x. + return x +} + +// https://webidl.spec.whatwg.org/#es-unsigned-long-long +webidl.converters['unsigned long long'] = function (V) { + // 1. Let x be ? ConvertToInt(V, 64, "unsigned"). + const x = webidl.util.ConvertToInt(V, 64, 'unsigned') + + // 2. Return the IDL unsigned long long value that + // represents the same numeric value as x. + return x +} + +// https://webidl.spec.whatwg.org/#es-unsigned-long +webidl.converters['unsigned long'] = function (V) { + // 1. Let x be ? ConvertToInt(V, 32, "unsigned"). + const x = webidl.util.ConvertToInt(V, 32, 'unsigned') + + // 2. Return the IDL unsigned long value that + // represents the same numeric value as x. + return x +} + +// https://webidl.spec.whatwg.org/#es-unsigned-short +webidl.converters['unsigned short'] = function (V, opts) { + // 1. Let x be ? ConvertToInt(V, 16, "unsigned"). + const x = webidl.util.ConvertToInt(V, 16, 'unsigned', opts) + + // 2. Return the IDL unsigned short value that represents + // the same numeric value as x. + return x +} + +// https://webidl.spec.whatwg.org/#idl-ArrayBuffer +webidl.converters.ArrayBuffer = function (V, opts = {}) { + // 1. If Type(V) is not Object, or V does not have an + // [[ArrayBufferData]] internal slot, then throw a + // TypeError. + // see: https://tc39.es/ecma262/#sec-properties-of-the-arraybuffer-instances + // see: https://tc39.es/ecma262/#sec-properties-of-the-sharedarraybuffer-instances + if ( + webidl.util.Type(V) !== 'Object' || + !types.isAnyArrayBuffer(V) + ) { + throw webidl.errors.conversionFailed({ + prefix: `${V}`, + argument: `${V}`, + types: ['ArrayBuffer'] + }) + } + + // 2. If the conversion is not to an IDL type associated + // with the [AllowShared] extended attribute, and + // IsSharedArrayBuffer(V) is true, then throw a + // TypeError. + if (opts.allowShared === false && types.isSharedArrayBuffer(V)) { + throw webidl.errors.exception({ + header: 'ArrayBuffer', + message: 'SharedArrayBuffer is not allowed.' + }) + } + + // 3. If the conversion is not to an IDL type associated + // with the [AllowResizable] extended attribute, and + // IsResizableArrayBuffer(V) is true, then throw a + // TypeError. + // Note: resizable ArrayBuffers are currently a proposal. + + // 4. Return the IDL ArrayBuffer value that is a + // reference to the same object as V. + return V +} + +webidl.converters.TypedArray = function (V, T, opts = {}) { + // 1. Let T be the IDL type V is being converted to. + + // 2. If Type(V) is not Object, or V does not have a + // [[TypedArrayName]] internal slot with a value + // equal to T’s name, then throw a TypeError. + if ( + webidl.util.Type(V) !== 'Object' || + !types.isTypedArray(V) || + V.constructor.name !== T.name + ) { + throw webidl.errors.conversionFailed({ + prefix: `${T.name}`, + argument: `${V}`, + types: [T.name] + }) + } + + // 3. If the conversion is not to an IDL type associated + // with the [AllowShared] extended attribute, and + // IsSharedArrayBuffer(V.[[ViewedArrayBuffer]]) is + // true, then throw a TypeError. + if (opts.allowShared === false && types.isSharedArrayBuffer(V.buffer)) { + throw webidl.errors.exception({ + header: 'ArrayBuffer', + message: 'SharedArrayBuffer is not allowed.' + }) + } + + // 4. If the conversion is not to an IDL type associated + // with the [AllowResizable] extended attribute, and + // IsResizableArrayBuffer(V.[[ViewedArrayBuffer]]) is + // true, then throw a TypeError. + // Note: resizable array buffers are currently a proposal + + // 5. Return the IDL value of type T that is a reference + // to the same object as V. + return V +} + +webidl.converters.DataView = function (V, opts = {}) { + // 1. If Type(V) is not Object, or V does not have a + // [[DataView]] internal slot, then throw a TypeError. + if (webidl.util.Type(V) !== 'Object' || !types.isDataView(V)) { + throw webidl.errors.exception({ + header: 'DataView', + message: 'Object is not a DataView.' + }) + } + + // 2. If the conversion is not to an IDL type associated + // with the [AllowShared] extended attribute, and + // IsSharedArrayBuffer(V.[[ViewedArrayBuffer]]) is true, + // then throw a TypeError. + if (opts.allowShared === false && types.isSharedArrayBuffer(V.buffer)) { + throw webidl.errors.exception({ + header: 'ArrayBuffer', + message: 'SharedArrayBuffer is not allowed.' + }) + } + + // 3. If the conversion is not to an IDL type associated + // with the [AllowResizable] extended attribute, and + // IsResizableArrayBuffer(V.[[ViewedArrayBuffer]]) is + // true, then throw a TypeError. + // Note: resizable ArrayBuffers are currently a proposal + + // 4. Return the IDL DataView value that is a reference + // to the same object as V. + return V +} + +// https://webidl.spec.whatwg.org/#BufferSource +webidl.converters.BufferSource = function (V, opts = {}) { + if (types.isAnyArrayBuffer(V)) { + return webidl.converters.ArrayBuffer(V, opts) + } + + if (types.isTypedArray(V)) { + return webidl.converters.TypedArray(V, V.constructor) + } + + if (types.isDataView(V)) { + return webidl.converters.DataView(V, opts) + } + + throw new TypeError(`Could not convert ${V} to a BufferSource.`) +} + +webidl.converters['sequence'] = webidl.sequenceConverter( + webidl.converters.ByteString +) + +webidl.converters['sequence>'] = webidl.sequenceConverter( + webidl.converters['sequence'] +) + +webidl.converters['record'] = webidl.recordConverter( + webidl.converters.ByteString, + webidl.converters.ByteString +) + +module.exports = { + webidl +} + + +/***/ }), + +/***/ 396: +/***/ ((module) => { + +"use strict"; + + +/** + * @see https://encoding.spec.whatwg.org/#concept-encoding-get + * @param {string|undefined} label + */ +function getEncoding (label) { + if (!label) { + return 'failure' + } + + // 1. Remove any leading and trailing ASCII whitespace from label. + // 2. If label is an ASCII case-insensitive match for any of the + // labels listed in the table below, then return the + // corresponding encoding; otherwise return failure. + switch (label.trim().toLowerCase()) { + case 'unicode-1-1-utf-8': + case 'unicode11utf8': + case 'unicode20utf8': + case 'utf-8': + case 'utf8': + case 'x-unicode20utf8': + return 'UTF-8' + case '866': + case 'cp866': + case 'csibm866': + case 'ibm866': + return 'IBM866' + case 'csisolatin2': + case 'iso-8859-2': + case 'iso-ir-101': + case 'iso8859-2': + case 'iso88592': + case 'iso_8859-2': + case 'iso_8859-2:1987': + case 'l2': + case 'latin2': + return 'ISO-8859-2' + case 'csisolatin3': + case 'iso-8859-3': + case 'iso-ir-109': + case 'iso8859-3': + case 'iso88593': + case 'iso_8859-3': + case 'iso_8859-3:1988': + case 'l3': + case 'latin3': + return 'ISO-8859-3' + case 'csisolatin4': + case 'iso-8859-4': + case 'iso-ir-110': + case 'iso8859-4': + case 'iso88594': + case 'iso_8859-4': + case 'iso_8859-4:1988': + case 'l4': + case 'latin4': + return 'ISO-8859-4' + case 'csisolatincyrillic': + case 'cyrillic': + case 'iso-8859-5': + case 'iso-ir-144': + case 'iso8859-5': + case 'iso88595': + case 'iso_8859-5': + case 'iso_8859-5:1988': + return 'ISO-8859-5' + case 'arabic': + case 'asmo-708': + case 'csiso88596e': + case 'csiso88596i': + case 'csisolatinarabic': + case 'ecma-114': + case 'iso-8859-6': + case 'iso-8859-6-e': + case 'iso-8859-6-i': + case 'iso-ir-127': + case 'iso8859-6': + case 'iso88596': + case 'iso_8859-6': + case 'iso_8859-6:1987': + return 'ISO-8859-6' + case 'csisolatingreek': + case 'ecma-118': + case 'elot_928': + case 'greek': + case 'greek8': + case 'iso-8859-7': + case 'iso-ir-126': + case 'iso8859-7': + case 'iso88597': + case 'iso_8859-7': + case 'iso_8859-7:1987': + case 'sun_eu_greek': + return 'ISO-8859-7' + case 'csiso88598e': + case 'csisolatinhebrew': + case 'hebrew': + case 'iso-8859-8': + case 'iso-8859-8-e': + case 'iso-ir-138': + case 'iso8859-8': + case 'iso88598': + case 'iso_8859-8': + case 'iso_8859-8:1988': + case 'visual': + return 'ISO-8859-8' + case 'csiso88598i': + case 'iso-8859-8-i': + case 'logical': + return 'ISO-8859-8-I' + case 'csisolatin6': + case 'iso-8859-10': + case 'iso-ir-157': + case 'iso8859-10': + case 'iso885910': + case 'l6': + case 'latin6': + return 'ISO-8859-10' + case 'iso-8859-13': + case 'iso8859-13': + case 'iso885913': + return 'ISO-8859-13' + case 'iso-8859-14': + case 'iso8859-14': + case 'iso885914': + return 'ISO-8859-14' + case 'csisolatin9': + case 'iso-8859-15': + case 'iso8859-15': + case 'iso885915': + case 'iso_8859-15': + case 'l9': + return 'ISO-8859-15' + case 'iso-8859-16': + return 'ISO-8859-16' + case 'cskoi8r': + case 'koi': + case 'koi8': + case 'koi8-r': + case 'koi8_r': + return 'KOI8-R' + case 'koi8-ru': + case 'koi8-u': + return 'KOI8-U' + case 'csmacintosh': + case 'mac': + case 'macintosh': + case 'x-mac-roman': + return 'macintosh' + case 'iso-8859-11': + case 'iso8859-11': + case 'iso885911': + case 'tis-620': + case 'windows-874': + return 'windows-874' + case 'cp1250': + case 'windows-1250': + case 'x-cp1250': + return 'windows-1250' + case 'cp1251': + case 'windows-1251': + case 'x-cp1251': + return 'windows-1251' + case 'ansi_x3.4-1968': + case 'ascii': + case 'cp1252': + case 'cp819': + case 'csisolatin1': + case 'ibm819': + case 'iso-8859-1': + case 'iso-ir-100': + case 'iso8859-1': + case 'iso88591': + case 'iso_8859-1': + case 'iso_8859-1:1987': + case 'l1': + case 'latin1': + case 'us-ascii': + case 'windows-1252': + case 'x-cp1252': + return 'windows-1252' + case 'cp1253': + case 'windows-1253': + case 'x-cp1253': + return 'windows-1253' + case 'cp1254': + case 'csisolatin5': + case 'iso-8859-9': + case 'iso-ir-148': + case 'iso8859-9': + case 'iso88599': + case 'iso_8859-9': + case 'iso_8859-9:1989': + case 'l5': + case 'latin5': + case 'windows-1254': + case 'x-cp1254': + return 'windows-1254' + case 'cp1255': + case 'windows-1255': + case 'x-cp1255': + return 'windows-1255' + case 'cp1256': + case 'windows-1256': + case 'x-cp1256': + return 'windows-1256' + case 'cp1257': + case 'windows-1257': + case 'x-cp1257': + return 'windows-1257' + case 'cp1258': + case 'windows-1258': + case 'x-cp1258': + return 'windows-1258' + case 'x-mac-cyrillic': + case 'x-mac-ukrainian': + return 'x-mac-cyrillic' + case 'chinese': + case 'csgb2312': + case 'csiso58gb231280': + case 'gb2312': + case 'gb_2312': + case 'gb_2312-80': + case 'gbk': + case 'iso-ir-58': + case 'x-gbk': + return 'GBK' + case 'gb18030': + return 'gb18030' + case 'big5': + case 'big5-hkscs': + case 'cn-big5': + case 'csbig5': + case 'x-x-big5': + return 'Big5' + case 'cseucpkdfmtjapanese': + case 'euc-jp': + case 'x-euc-jp': + return 'EUC-JP' + case 'csiso2022jp': + case 'iso-2022-jp': + return 'ISO-2022-JP' + case 'csshiftjis': + case 'ms932': + case 'ms_kanji': + case 'shift-jis': + case 'shift_jis': + case 'sjis': + case 'windows-31j': + case 'x-sjis': + return 'Shift_JIS' + case 'cseuckr': + case 'csksc56011987': + case 'euc-kr': + case 'iso-ir-149': + case 'korean': + case 'ks_c_5601-1987': + case 'ks_c_5601-1989': + case 'ksc5601': + case 'ksc_5601': + case 'windows-949': + return 'EUC-KR' + case 'csiso2022kr': + case 'hz-gb-2312': + case 'iso-2022-cn': + case 'iso-2022-cn-ext': + case 'iso-2022-kr': + case 'replacement': + return 'replacement' + case 'unicodefffe': + case 'utf-16be': + return 'UTF-16BE' + case 'csunicode': + case 'iso-10646-ucs-2': + case 'ucs-2': + case 'unicode': + case 'unicodefeff': + case 'utf-16': + case 'utf-16le': + return 'UTF-16LE' + case 'x-user-defined': + return 'x-user-defined' + default: return 'failure' + } +} + +module.exports = { + getEncoding +} + + +/***/ }), + +/***/ 2160: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + staticPropertyDescriptors, + readOperation, + fireAProgressEvent +} = __nccwpck_require__(165) +const { + kState, + kError, + kResult, + kEvents, + kAborted +} = __nccwpck_require__(6812) +const { webidl } = __nccwpck_require__(4222) +const { kEnumerableProperty } = __nccwpck_require__(3440) + +class FileReader extends EventTarget { + constructor () { + super() + + this[kState] = 'empty' + this[kResult] = null + this[kError] = null + this[kEvents] = { + loadend: null, + error: null, + abort: null, + load: null, + progress: null, + loadstart: null + } + } + + /** + * @see https://w3c.github.io/FileAPI/#dfn-readAsArrayBuffer + * @param {import('buffer').Blob} blob + */ + readAsArrayBuffer (blob) { + webidl.brandCheck(this, FileReader) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FileReader.readAsArrayBuffer' }) + + blob = webidl.converters.Blob(blob, { strict: false }) + + // The readAsArrayBuffer(blob) method, when invoked, + // must initiate a read operation for blob with ArrayBuffer. + readOperation(this, blob, 'ArrayBuffer') + } + + /** + * @see https://w3c.github.io/FileAPI/#readAsBinaryString + * @param {import('buffer').Blob} blob + */ + readAsBinaryString (blob) { + webidl.brandCheck(this, FileReader) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FileReader.readAsBinaryString' }) + + blob = webidl.converters.Blob(blob, { strict: false }) + + // The readAsBinaryString(blob) method, when invoked, + // must initiate a read operation for blob with BinaryString. + readOperation(this, blob, 'BinaryString') + } + + /** + * @see https://w3c.github.io/FileAPI/#readAsDataText + * @param {import('buffer').Blob} blob + * @param {string?} encoding + */ + readAsText (blob, encoding = undefined) { + webidl.brandCheck(this, FileReader) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FileReader.readAsText' }) + + blob = webidl.converters.Blob(blob, { strict: false }) + + if (encoding !== undefined) { + encoding = webidl.converters.DOMString(encoding) + } + + // The readAsText(blob, encoding) method, when invoked, + // must initiate a read operation for blob with Text and encoding. + readOperation(this, blob, 'Text', encoding) + } + + /** + * @see https://w3c.github.io/FileAPI/#dfn-readAsDataURL + * @param {import('buffer').Blob} blob + */ + readAsDataURL (blob) { + webidl.brandCheck(this, FileReader) + + webidl.argumentLengthCheck(arguments, 1, { header: 'FileReader.readAsDataURL' }) + + blob = webidl.converters.Blob(blob, { strict: false }) + + // The readAsDataURL(blob) method, when invoked, must + // initiate a read operation for blob with DataURL. + readOperation(this, blob, 'DataURL') + } + + /** + * @see https://w3c.github.io/FileAPI/#dfn-abort + */ + abort () { + // 1. If this's state is "empty" or if this's state is + // "done" set this's result to null and terminate + // this algorithm. + if (this[kState] === 'empty' || this[kState] === 'done') { + this[kResult] = null + return + } + + // 2. If this's state is "loading" set this's state to + // "done" and set this's result to null. + if (this[kState] === 'loading') { + this[kState] = 'done' + this[kResult] = null + } + + // 3. If there are any tasks from this on the file reading + // task source in an affiliated task queue, then remove + // those tasks from that task queue. + this[kAborted] = true + + // 4. Terminate the algorithm for the read method being processed. + // TODO + + // 5. Fire a progress event called abort at this. + fireAProgressEvent('abort', this) + + // 6. If this's state is not "loading", fire a progress + // event called loadend at this. + if (this[kState] !== 'loading') { + fireAProgressEvent('loadend', this) + } + } + + /** + * @see https://w3c.github.io/FileAPI/#dom-filereader-readystate + */ + get readyState () { + webidl.brandCheck(this, FileReader) + + switch (this[kState]) { + case 'empty': return this.EMPTY + case 'loading': return this.LOADING + case 'done': return this.DONE + } + } + + /** + * @see https://w3c.github.io/FileAPI/#dom-filereader-result + */ + get result () { + webidl.brandCheck(this, FileReader) + + // The result attribute’s getter, when invoked, must return + // this's result. + return this[kResult] + } + + /** + * @see https://w3c.github.io/FileAPI/#dom-filereader-error + */ + get error () { + webidl.brandCheck(this, FileReader) + + // The error attribute’s getter, when invoked, must return + // this's error. + return this[kError] + } + + get onloadend () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].loadend + } + + set onloadend (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].loadend) { + this.removeEventListener('loadend', this[kEvents].loadend) + } + + if (typeof fn === 'function') { + this[kEvents].loadend = fn + this.addEventListener('loadend', fn) + } else { + this[kEvents].loadend = null + } + } + + get onerror () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].error + } + + set onerror (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].error) { + this.removeEventListener('error', this[kEvents].error) + } + + if (typeof fn === 'function') { + this[kEvents].error = fn + this.addEventListener('error', fn) + } else { + this[kEvents].error = null + } + } + + get onloadstart () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].loadstart + } + + set onloadstart (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].loadstart) { + this.removeEventListener('loadstart', this[kEvents].loadstart) + } + + if (typeof fn === 'function') { + this[kEvents].loadstart = fn + this.addEventListener('loadstart', fn) + } else { + this[kEvents].loadstart = null + } + } + + get onprogress () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].progress + } + + set onprogress (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].progress) { + this.removeEventListener('progress', this[kEvents].progress) + } + + if (typeof fn === 'function') { + this[kEvents].progress = fn + this.addEventListener('progress', fn) + } else { + this[kEvents].progress = null + } + } + + get onload () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].load + } + + set onload (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].load) { + this.removeEventListener('load', this[kEvents].load) + } + + if (typeof fn === 'function') { + this[kEvents].load = fn + this.addEventListener('load', fn) + } else { + this[kEvents].load = null + } + } + + get onabort () { + webidl.brandCheck(this, FileReader) + + return this[kEvents].abort + } + + set onabort (fn) { + webidl.brandCheck(this, FileReader) + + if (this[kEvents].abort) { + this.removeEventListener('abort', this[kEvents].abort) + } + + if (typeof fn === 'function') { + this[kEvents].abort = fn + this.addEventListener('abort', fn) + } else { + this[kEvents].abort = null + } + } +} + +// https://w3c.github.io/FileAPI/#dom-filereader-empty +FileReader.EMPTY = FileReader.prototype.EMPTY = 0 +// https://w3c.github.io/FileAPI/#dom-filereader-loading +FileReader.LOADING = FileReader.prototype.LOADING = 1 +// https://w3c.github.io/FileAPI/#dom-filereader-done +FileReader.DONE = FileReader.prototype.DONE = 2 + +Object.defineProperties(FileReader.prototype, { + EMPTY: staticPropertyDescriptors, + LOADING: staticPropertyDescriptors, + DONE: staticPropertyDescriptors, + readAsArrayBuffer: kEnumerableProperty, + readAsBinaryString: kEnumerableProperty, + readAsText: kEnumerableProperty, + readAsDataURL: kEnumerableProperty, + abort: kEnumerableProperty, + readyState: kEnumerableProperty, + result: kEnumerableProperty, + error: kEnumerableProperty, + onloadstart: kEnumerableProperty, + onprogress: kEnumerableProperty, + onload: kEnumerableProperty, + onabort: kEnumerableProperty, + onerror: kEnumerableProperty, + onloadend: kEnumerableProperty, + [Symbol.toStringTag]: { + value: 'FileReader', + writable: false, + enumerable: false, + configurable: true + } +}) + +Object.defineProperties(FileReader, { + EMPTY: staticPropertyDescriptors, + LOADING: staticPropertyDescriptors, + DONE: staticPropertyDescriptors +}) + +module.exports = { + FileReader +} + + +/***/ }), + +/***/ 5976: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { webidl } = __nccwpck_require__(4222) + +const kState = Symbol('ProgressEvent state') + +/** + * @see https://xhr.spec.whatwg.org/#progressevent + */ +class ProgressEvent extends Event { + constructor (type, eventInitDict = {}) { + type = webidl.converters.DOMString(type) + eventInitDict = webidl.converters.ProgressEventInit(eventInitDict ?? {}) + + super(type, eventInitDict) + + this[kState] = { + lengthComputable: eventInitDict.lengthComputable, + loaded: eventInitDict.loaded, + total: eventInitDict.total + } + } + + get lengthComputable () { + webidl.brandCheck(this, ProgressEvent) + + return this[kState].lengthComputable + } + + get loaded () { + webidl.brandCheck(this, ProgressEvent) + + return this[kState].loaded + } + + get total () { + webidl.brandCheck(this, ProgressEvent) + + return this[kState].total + } +} + +webidl.converters.ProgressEventInit = webidl.dictionaryConverter([ + { + key: 'lengthComputable', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'loaded', + converter: webidl.converters['unsigned long long'], + defaultValue: 0 + }, + { + key: 'total', + converter: webidl.converters['unsigned long long'], + defaultValue: 0 + }, + { + key: 'bubbles', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'cancelable', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'composed', + converter: webidl.converters.boolean, + defaultValue: false + } +]) + +module.exports = { + ProgressEvent +} + + +/***/ }), + +/***/ 6812: +/***/ ((module) => { + +"use strict"; + + +module.exports = { + kState: Symbol('FileReader state'), + kResult: Symbol('FileReader result'), + kError: Symbol('FileReader error'), + kLastProgressEventFired: Symbol('FileReader last progress event fired timestamp'), + kEvents: Symbol('FileReader events'), + kAborted: Symbol('FileReader aborted') +} + + +/***/ }), + +/***/ 165: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + kState, + kError, + kResult, + kAborted, + kLastProgressEventFired +} = __nccwpck_require__(6812) +const { ProgressEvent } = __nccwpck_require__(5976) +const { getEncoding } = __nccwpck_require__(396) +const { DOMException } = __nccwpck_require__(7326) +const { serializeAMimeType, parseMIMEType } = __nccwpck_require__(4322) +const { types } = __nccwpck_require__(9023) +const { StringDecoder } = __nccwpck_require__(3193) +const { btoa } = __nccwpck_require__(181) + +/** @type {PropertyDescriptor} */ +const staticPropertyDescriptors = { + enumerable: true, + writable: false, + configurable: false +} + +/** + * @see https://w3c.github.io/FileAPI/#readOperation + * @param {import('./filereader').FileReader} fr + * @param {import('buffer').Blob} blob + * @param {string} type + * @param {string?} encodingName + */ +function readOperation (fr, blob, type, encodingName) { + // 1. If fr’s state is "loading", throw an InvalidStateError + // DOMException. + if (fr[kState] === 'loading') { + throw new DOMException('Invalid state', 'InvalidStateError') + } + + // 2. Set fr’s state to "loading". + fr[kState] = 'loading' + + // 3. Set fr’s result to null. + fr[kResult] = null + + // 4. Set fr’s error to null. + fr[kError] = null + + // 5. Let stream be the result of calling get stream on blob. + /** @type {import('stream/web').ReadableStream} */ + const stream = blob.stream() + + // 6. Let reader be the result of getting a reader from stream. + const reader = stream.getReader() + + // 7. Let bytes be an empty byte sequence. + /** @type {Uint8Array[]} */ + const bytes = [] + + // 8. Let chunkPromise be the result of reading a chunk from + // stream with reader. + let chunkPromise = reader.read() + + // 9. Let isFirstChunk be true. + let isFirstChunk = true + + // 10. In parallel, while true: + // Note: "In parallel" just means non-blocking + // Note 2: readOperation itself cannot be async as double + // reading the body would then reject the promise, instead + // of throwing an error. + ;(async () => { + while (!fr[kAborted]) { + // 1. Wait for chunkPromise to be fulfilled or rejected. + try { + const { done, value } = await chunkPromise + + // 2. If chunkPromise is fulfilled, and isFirstChunk is + // true, queue a task to fire a progress event called + // loadstart at fr. + if (isFirstChunk && !fr[kAborted]) { + queueMicrotask(() => { + fireAProgressEvent('loadstart', fr) + }) + } + + // 3. Set isFirstChunk to false. + isFirstChunk = false + + // 4. If chunkPromise is fulfilled with an object whose + // done property is false and whose value property is + // a Uint8Array object, run these steps: + if (!done && types.isUint8Array(value)) { + // 1. Let bs be the byte sequence represented by the + // Uint8Array object. + + // 2. Append bs to bytes. + bytes.push(value) + + // 3. If roughly 50ms have passed since these steps + // were last invoked, queue a task to fire a + // progress event called progress at fr. + if ( + ( + fr[kLastProgressEventFired] === undefined || + Date.now() - fr[kLastProgressEventFired] >= 50 + ) && + !fr[kAborted] + ) { + fr[kLastProgressEventFired] = Date.now() + queueMicrotask(() => { + fireAProgressEvent('progress', fr) + }) + } + + // 4. Set chunkPromise to the result of reading a + // chunk from stream with reader. + chunkPromise = reader.read() + } else if (done) { + // 5. Otherwise, if chunkPromise is fulfilled with an + // object whose done property is true, queue a task + // to run the following steps and abort this algorithm: + queueMicrotask(() => { + // 1. Set fr’s state to "done". + fr[kState] = 'done' + + // 2. Let result be the result of package data given + // bytes, type, blob’s type, and encodingName. + try { + const result = packageData(bytes, type, blob.type, encodingName) + + // 4. Else: + + if (fr[kAborted]) { + return + } + + // 1. Set fr’s result to result. + fr[kResult] = result + + // 2. Fire a progress event called load at the fr. + fireAProgressEvent('load', fr) + } catch (error) { + // 3. If package data threw an exception error: + + // 1. Set fr’s error to error. + fr[kError] = error + + // 2. Fire a progress event called error at fr. + fireAProgressEvent('error', fr) + } + + // 5. If fr’s state is not "loading", fire a progress + // event called loadend at the fr. + if (fr[kState] !== 'loading') { + fireAProgressEvent('loadend', fr) + } + }) + + break + } + } catch (error) { + if (fr[kAborted]) { + return + } + + // 6. Otherwise, if chunkPromise is rejected with an + // error error, queue a task to run the following + // steps and abort this algorithm: + queueMicrotask(() => { + // 1. Set fr’s state to "done". + fr[kState] = 'done' + + // 2. Set fr’s error to error. + fr[kError] = error + + // 3. Fire a progress event called error at fr. + fireAProgressEvent('error', fr) + + // 4. If fr’s state is not "loading", fire a progress + // event called loadend at fr. + if (fr[kState] !== 'loading') { + fireAProgressEvent('loadend', fr) + } + }) + + break + } + } + })() +} + +/** + * @see https://w3c.github.io/FileAPI/#fire-a-progress-event + * @see https://dom.spec.whatwg.org/#concept-event-fire + * @param {string} e The name of the event + * @param {import('./filereader').FileReader} reader + */ +function fireAProgressEvent (e, reader) { + // The progress event e does not bubble. e.bubbles must be false + // The progress event e is NOT cancelable. e.cancelable must be false + const event = new ProgressEvent(e, { + bubbles: false, + cancelable: false + }) + + reader.dispatchEvent(event) +} + +/** + * @see https://w3c.github.io/FileAPI/#blob-package-data + * @param {Uint8Array[]} bytes + * @param {string} type + * @param {string?} mimeType + * @param {string?} encodingName + */ +function packageData (bytes, type, mimeType, encodingName) { + // 1. A Blob has an associated package data algorithm, given + // bytes, a type, a optional mimeType, and a optional + // encodingName, which switches on type and runs the + // associated steps: + + switch (type) { + case 'DataURL': { + // 1. Return bytes as a DataURL [RFC2397] subject to + // the considerations below: + // * Use mimeType as part of the Data URL if it is + // available in keeping with the Data URL + // specification [RFC2397]. + // * If mimeType is not available return a Data URL + // without a media-type. [RFC2397]. + + // https://datatracker.ietf.org/doc/html/rfc2397#section-3 + // dataurl := "data:" [ mediatype ] [ ";base64" ] "," data + // mediatype := [ type "/" subtype ] *( ";" parameter ) + // data := *urlchar + // parameter := attribute "=" value + let dataURL = 'data:' + + const parsed = parseMIMEType(mimeType || 'application/octet-stream') + + if (parsed !== 'failure') { + dataURL += serializeAMimeType(parsed) + } + + dataURL += ';base64,' + + const decoder = new StringDecoder('latin1') + + for (const chunk of bytes) { + dataURL += btoa(decoder.write(chunk)) + } + + dataURL += btoa(decoder.end()) + + return dataURL + } + case 'Text': { + // 1. Let encoding be failure + let encoding = 'failure' + + // 2. If the encodingName is present, set encoding to the + // result of getting an encoding from encodingName. + if (encodingName) { + encoding = getEncoding(encodingName) + } + + // 3. If encoding is failure, and mimeType is present: + if (encoding === 'failure' && mimeType) { + // 1. Let type be the result of parse a MIME type + // given mimeType. + const type = parseMIMEType(mimeType) + + // 2. If type is not failure, set encoding to the result + // of getting an encoding from type’s parameters["charset"]. + if (type !== 'failure') { + encoding = getEncoding(type.parameters.get('charset')) + } + } + + // 4. If encoding is failure, then set encoding to UTF-8. + if (encoding === 'failure') { + encoding = 'UTF-8' + } + + // 5. Decode bytes using fallback encoding encoding, and + // return the result. + return decode(bytes, encoding) + } + case 'ArrayBuffer': { + // Return a new ArrayBuffer whose contents are bytes. + const sequence = combineByteSequences(bytes) + + return sequence.buffer + } + case 'BinaryString': { + // Return bytes as a binary string, in which every byte + // is represented by a code unit of equal value [0..255]. + let binaryString = '' + + const decoder = new StringDecoder('latin1') + + for (const chunk of bytes) { + binaryString += decoder.write(chunk) + } + + binaryString += decoder.end() + + return binaryString + } + } +} + +/** + * @see https://encoding.spec.whatwg.org/#decode + * @param {Uint8Array[]} ioQueue + * @param {string} encoding + */ +function decode (ioQueue, encoding) { + const bytes = combineByteSequences(ioQueue) + + // 1. Let BOMEncoding be the result of BOM sniffing ioQueue. + const BOMEncoding = BOMSniffing(bytes) + + let slice = 0 + + // 2. If BOMEncoding is non-null: + if (BOMEncoding !== null) { + // 1. Set encoding to BOMEncoding. + encoding = BOMEncoding + + // 2. Read three bytes from ioQueue, if BOMEncoding is + // UTF-8; otherwise read two bytes. + // (Do nothing with those bytes.) + slice = BOMEncoding === 'UTF-8' ? 3 : 2 + } + + // 3. Process a queue with an instance of encoding’s + // decoder, ioQueue, output, and "replacement". + + // 4. Return output. + + const sliced = bytes.slice(slice) + return new TextDecoder(encoding).decode(sliced) +} + +/** + * @see https://encoding.spec.whatwg.org/#bom-sniff + * @param {Uint8Array} ioQueue + */ +function BOMSniffing (ioQueue) { + // 1. Let BOM be the result of peeking 3 bytes from ioQueue, + // converted to a byte sequence. + const [a, b, c] = ioQueue + + // 2. For each of the rows in the table below, starting with + // the first one and going down, if BOM starts with the + // bytes given in the first column, then return the + // encoding given in the cell in the second column of that + // row. Otherwise, return null. + if (a === 0xEF && b === 0xBB && c === 0xBF) { + return 'UTF-8' + } else if (a === 0xFE && b === 0xFF) { + return 'UTF-16BE' + } else if (a === 0xFF && b === 0xFE) { + return 'UTF-16LE' + } + + return null +} + +/** + * @param {Uint8Array[]} sequences + */ +function combineByteSequences (sequences) { + const size = sequences.reduce((a, b) => { + return a + b.byteLength + }, 0) + + let offset = 0 + + return sequences.reduce((a, b) => { + a.set(b, offset) + offset += b.byteLength + return a + }, new Uint8Array(size)) +} + +module.exports = { + staticPropertyDescriptors, + readOperation, + fireAProgressEvent +} + + +/***/ }), + +/***/ 2581: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +// We include a version number for the Dispatcher API. In case of breaking changes, +// this version number must be increased to avoid conflicts. +const globalDispatcher = Symbol.for('undici.globalDispatcher.1') +const { InvalidArgumentError } = __nccwpck_require__(8707) +const Agent = __nccwpck_require__(9965) + +if (getGlobalDispatcher() === undefined) { + setGlobalDispatcher(new Agent()) +} + +function setGlobalDispatcher (agent) { + if (!agent || typeof agent.dispatch !== 'function') { + throw new InvalidArgumentError('Argument agent must implement Agent') + } + Object.defineProperty(globalThis, globalDispatcher, { + value: agent, + writable: true, + enumerable: false, + configurable: false + }) +} + +function getGlobalDispatcher () { + return globalThis[globalDispatcher] +} + +module.exports = { + setGlobalDispatcher, + getGlobalDispatcher +} + + +/***/ }), + +/***/ 8840: +/***/ ((module) => { + +"use strict"; + + +module.exports = class DecoratorHandler { + constructor (handler) { + this.handler = handler + } + + onConnect (...args) { + return this.handler.onConnect(...args) + } + + onError (...args) { + return this.handler.onError(...args) + } + + onUpgrade (...args) { + return this.handler.onUpgrade(...args) + } + + onHeaders (...args) { + return this.handler.onHeaders(...args) + } + + onData (...args) { + return this.handler.onData(...args) + } + + onComplete (...args) { + return this.handler.onComplete(...args) + } + + onBodySent (...args) { + return this.handler.onBodySent(...args) + } +} + + +/***/ }), + +/***/ 8299: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const util = __nccwpck_require__(3440) +const { kBodyUsed } = __nccwpck_require__(6443) +const assert = __nccwpck_require__(2613) +const { InvalidArgumentError } = __nccwpck_require__(8707) +const EE = __nccwpck_require__(4434) + +const redirectableStatusCodes = [300, 301, 302, 303, 307, 308] + +const kBody = Symbol('body') + +class BodyAsyncIterable { + constructor (body) { + this[kBody] = body + this[kBodyUsed] = false + } + + async * [Symbol.asyncIterator] () { + assert(!this[kBodyUsed], 'disturbed') + this[kBodyUsed] = true + yield * this[kBody] + } +} + +class RedirectHandler { + constructor (dispatch, maxRedirections, opts, handler) { + if (maxRedirections != null && (!Number.isInteger(maxRedirections) || maxRedirections < 0)) { + throw new InvalidArgumentError('maxRedirections must be a positive number') + } + + util.validateHandler(handler, opts.method, opts.upgrade) + + this.dispatch = dispatch + this.location = null + this.abort = null + this.opts = { ...opts, maxRedirections: 0 } // opts must be a copy + this.maxRedirections = maxRedirections + this.handler = handler + this.history = [] + + if (util.isStream(this.opts.body)) { + // TODO (fix): Provide some way for the user to cache the file to e.g. /tmp + // so that it can be dispatched again? + // TODO (fix): Do we need 100-expect support to provide a way to do this properly? + if (util.bodyLength(this.opts.body) === 0) { + this.opts.body + .on('data', function () { + assert(false) + }) + } + + if (typeof this.opts.body.readableDidRead !== 'boolean') { + this.opts.body[kBodyUsed] = false + EE.prototype.on.call(this.opts.body, 'data', function () { + this[kBodyUsed] = true + }) + } + } else if (this.opts.body && typeof this.opts.body.pipeTo === 'function') { + // TODO (fix): We can't access ReadableStream internal state + // to determine whether or not it has been disturbed. This is just + // a workaround. + this.opts.body = new BodyAsyncIterable(this.opts.body) + } else if ( + this.opts.body && + typeof this.opts.body !== 'string' && + !ArrayBuffer.isView(this.opts.body) && + util.isIterable(this.opts.body) + ) { + // TODO: Should we allow re-using iterable if !this.opts.idempotent + // or through some other flag? + this.opts.body = new BodyAsyncIterable(this.opts.body) + } + } + + onConnect (abort) { + this.abort = abort + this.handler.onConnect(abort, { history: this.history }) + } + + onUpgrade (statusCode, headers, socket) { + this.handler.onUpgrade(statusCode, headers, socket) + } + + onError (error) { + this.handler.onError(error) + } + + onHeaders (statusCode, headers, resume, statusText) { + this.location = this.history.length >= this.maxRedirections || util.isDisturbed(this.opts.body) + ? null + : parseLocation(statusCode, headers) + + if (this.opts.origin) { + this.history.push(new URL(this.opts.path, this.opts.origin)) + } + + if (!this.location) { + return this.handler.onHeaders(statusCode, headers, resume, statusText) + } + + const { origin, pathname, search } = util.parseURL(new URL(this.location, this.opts.origin && new URL(this.opts.path, this.opts.origin))) + const path = search ? `${pathname}${search}` : pathname + + // Remove headers referring to the original URL. + // By default it is Host only, unless it's a 303 (see below), which removes also all Content-* headers. + // https://tools.ietf.org/html/rfc7231#section-6.4 + this.opts.headers = cleanRequestHeaders(this.opts.headers, statusCode === 303, this.opts.origin !== origin) + this.opts.path = path + this.opts.origin = origin + this.opts.maxRedirections = 0 + this.opts.query = null + + // https://tools.ietf.org/html/rfc7231#section-6.4.4 + // In case of HTTP 303, always replace method to be either HEAD or GET + if (statusCode === 303 && this.opts.method !== 'HEAD') { + this.opts.method = 'GET' + this.opts.body = null + } + } + + onData (chunk) { + if (this.location) { + /* + https://tools.ietf.org/html/rfc7231#section-6.4 + + TLDR: undici always ignores 3xx response bodies. + + Redirection is used to serve the requested resource from another URL, so it is assumes that + no body is generated (and thus can be ignored). Even though generating a body is not prohibited. + + For status 301, 302, 303, 307 and 308 (the latter from RFC 7238), the specs mention that the body usually + (which means it's optional and not mandated) contain just an hyperlink to the value of + the Location response header, so the body can be ignored safely. + + For status 300, which is "Multiple Choices", the spec mentions both generating a Location + response header AND a response body with the other possible location to follow. + Since the spec explicitily chooses not to specify a format for such body and leave it to + servers and browsers implementors, we ignore the body as there is no specified way to eventually parse it. + */ + } else { + return this.handler.onData(chunk) + } + } + + onComplete (trailers) { + if (this.location) { + /* + https://tools.ietf.org/html/rfc7231#section-6.4 + + TLDR: undici always ignores 3xx response trailers as they are not expected in case of redirections + and neither are useful if present. + + See comment on onData method above for more detailed informations. + */ + + this.location = null + this.abort = null + + this.dispatch(this.opts, this) + } else { + this.handler.onComplete(trailers) + } + } + + onBodySent (chunk) { + if (this.handler.onBodySent) { + this.handler.onBodySent(chunk) + } + } +} + +function parseLocation (statusCode, headers) { + if (redirectableStatusCodes.indexOf(statusCode) === -1) { + return null + } + + for (let i = 0; i < headers.length; i += 2) { + if (headers[i].toString().toLowerCase() === 'location') { + return headers[i + 1] + } + } +} + +// https://tools.ietf.org/html/rfc7231#section-6.4.4 +function shouldRemoveHeader (header, removeContent, unknownOrigin) { + if (header.length === 4) { + return util.headerNameToString(header) === 'host' + } + if (removeContent && util.headerNameToString(header).startsWith('content-')) { + return true + } + if (unknownOrigin && (header.length === 13 || header.length === 6 || header.length === 19)) { + const name = util.headerNameToString(header) + return name === 'authorization' || name === 'cookie' || name === 'proxy-authorization' + } + return false +} + +// https://tools.ietf.org/html/rfc7231#section-6.4 +function cleanRequestHeaders (headers, removeContent, unknownOrigin) { + const ret = [] + if (Array.isArray(headers)) { + for (let i = 0; i < headers.length; i += 2) { + if (!shouldRemoveHeader(headers[i], removeContent, unknownOrigin)) { + ret.push(headers[i], headers[i + 1]) + } + } + } else if (headers && typeof headers === 'object') { + for (const key of Object.keys(headers)) { + if (!shouldRemoveHeader(key, removeContent, unknownOrigin)) { + ret.push(key, headers[key]) + } + } + } else { + assert(headers == null, 'headers must be an object or an array') + } + return ret +} + +module.exports = RedirectHandler + + +/***/ }), + +/***/ 3573: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +const assert = __nccwpck_require__(2613) + +const { kRetryHandlerDefaultRetry } = __nccwpck_require__(6443) +const { RequestRetryError } = __nccwpck_require__(8707) +const { isDisturbed, parseHeaders, parseRangeHeader } = __nccwpck_require__(3440) + +function calculateRetryAfterHeader (retryAfter) { + const current = Date.now() + const diff = new Date(retryAfter).getTime() - current + + return diff +} + +class RetryHandler { + constructor (opts, handlers) { + const { retryOptions, ...dispatchOpts } = opts + const { + // Retry scoped + retry: retryFn, + maxRetries, + maxTimeout, + minTimeout, + timeoutFactor, + // Response scoped + methods, + errorCodes, + retryAfter, + statusCodes + } = retryOptions ?? {} + + this.dispatch = handlers.dispatch + this.handler = handlers.handler + this.opts = dispatchOpts + this.abort = null + this.aborted = false + this.retryOpts = { + retry: retryFn ?? RetryHandler[kRetryHandlerDefaultRetry], + retryAfter: retryAfter ?? true, + maxTimeout: maxTimeout ?? 30 * 1000, // 30s, + timeout: minTimeout ?? 500, // .5s + timeoutFactor: timeoutFactor ?? 2, + maxRetries: maxRetries ?? 5, + // What errors we should retry + methods: methods ?? ['GET', 'HEAD', 'OPTIONS', 'PUT', 'DELETE', 'TRACE'], + // Indicates which errors to retry + statusCodes: statusCodes ?? [500, 502, 503, 504, 429], + // List of errors to retry + errorCodes: errorCodes ?? [ + 'ECONNRESET', + 'ECONNREFUSED', + 'ENOTFOUND', + 'ENETDOWN', + 'ENETUNREACH', + 'EHOSTDOWN', + 'EHOSTUNREACH', + 'EPIPE' + ] + } + + this.retryCount = 0 + this.start = 0 + this.end = null + this.etag = null + this.resume = null + + // Handle possible onConnect duplication + this.handler.onConnect(reason => { + this.aborted = true + if (this.abort) { + this.abort(reason) + } else { + this.reason = reason + } + }) + } + + onRequestSent () { + if (this.handler.onRequestSent) { + this.handler.onRequestSent() + } + } + + onUpgrade (statusCode, headers, socket) { + if (this.handler.onUpgrade) { + this.handler.onUpgrade(statusCode, headers, socket) + } + } + + onConnect (abort) { + if (this.aborted) { + abort(this.reason) + } else { + this.abort = abort + } + } + + onBodySent (chunk) { + if (this.handler.onBodySent) return this.handler.onBodySent(chunk) + } + + static [kRetryHandlerDefaultRetry] (err, { state, opts }, cb) { + const { statusCode, code, headers } = err + const { method, retryOptions } = opts + const { + maxRetries, + timeout, + maxTimeout, + timeoutFactor, + statusCodes, + errorCodes, + methods + } = retryOptions + let { counter, currentTimeout } = state + + currentTimeout = + currentTimeout != null && currentTimeout > 0 ? currentTimeout : timeout + + // Any code that is not a Undici's originated and allowed to retry + if ( + code && + code !== 'UND_ERR_REQ_RETRY' && + code !== 'UND_ERR_SOCKET' && + !errorCodes.includes(code) + ) { + cb(err) + return + } + + // If a set of method are provided and the current method is not in the list + if (Array.isArray(methods) && !methods.includes(method)) { + cb(err) + return + } + + // If a set of status code are provided and the current status code is not in the list + if ( + statusCode != null && + Array.isArray(statusCodes) && + !statusCodes.includes(statusCode) + ) { + cb(err) + return + } + + // If we reached the max number of retries + if (counter > maxRetries) { + cb(err) + return + } + + let retryAfterHeader = headers != null && headers['retry-after'] + if (retryAfterHeader) { + retryAfterHeader = Number(retryAfterHeader) + retryAfterHeader = isNaN(retryAfterHeader) + ? calculateRetryAfterHeader(retryAfterHeader) + : retryAfterHeader * 1e3 // Retry-After is in seconds + } + + const retryTimeout = + retryAfterHeader > 0 + ? Math.min(retryAfterHeader, maxTimeout) + : Math.min(currentTimeout * timeoutFactor ** counter, maxTimeout) + + state.currentTimeout = retryTimeout + + setTimeout(() => cb(null), retryTimeout) + } + + onHeaders (statusCode, rawHeaders, resume, statusMessage) { + const headers = parseHeaders(rawHeaders) + + this.retryCount += 1 + + if (statusCode >= 300) { + this.abort( + new RequestRetryError('Request failed', statusCode, { + headers, + count: this.retryCount + }) + ) + return false + } + + // Checkpoint for resume from where we left it + if (this.resume != null) { + this.resume = null + + if (statusCode !== 206) { + return true + } + + const contentRange = parseRangeHeader(headers['content-range']) + // If no content range + if (!contentRange) { + this.abort( + new RequestRetryError('Content-Range mismatch', statusCode, { + headers, + count: this.retryCount + }) + ) + return false + } + + // Let's start with a weak etag check + if (this.etag != null && this.etag !== headers.etag) { + this.abort( + new RequestRetryError('ETag mismatch', statusCode, { + headers, + count: this.retryCount + }) + ) + return false + } + + const { start, size, end = size } = contentRange + + assert(this.start === start, 'content-range mismatch') + assert(this.end == null || this.end === end, 'content-range mismatch') + + this.resume = resume + return true + } + + if (this.end == null) { + if (statusCode === 206) { + // First time we receive 206 + const range = parseRangeHeader(headers['content-range']) + + if (range == null) { + return this.handler.onHeaders( + statusCode, + rawHeaders, + resume, + statusMessage + ) + } + + const { start, size, end = size } = range + + assert( + start != null && Number.isFinite(start) && this.start !== start, + 'content-range mismatch' + ) + assert(Number.isFinite(start)) + assert( + end != null && Number.isFinite(end) && this.end !== end, + 'invalid content-length' + ) + + this.start = start + this.end = end + } + + // We make our best to checkpoint the body for further range headers + if (this.end == null) { + const contentLength = headers['content-length'] + this.end = contentLength != null ? Number(contentLength) : null + } + + assert(Number.isFinite(this.start)) + assert( + this.end == null || Number.isFinite(this.end), + 'invalid content-length' + ) + + this.resume = resume + this.etag = headers.etag != null ? headers.etag : null + + return this.handler.onHeaders( + statusCode, + rawHeaders, + resume, + statusMessage + ) + } + + const err = new RequestRetryError('Request failed', statusCode, { + headers, + count: this.retryCount + }) + + this.abort(err) + + return false + } + + onData (chunk) { + this.start += chunk.length + + return this.handler.onData(chunk) + } + + onComplete (rawTrailers) { + this.retryCount = 0 + return this.handler.onComplete(rawTrailers) + } + + onError (err) { + if (this.aborted || isDisturbed(this.opts.body)) { + return this.handler.onError(err) + } + + this.retryOpts.retry( + err, + { + state: { counter: this.retryCount++, currentTimeout: this.retryAfter }, + opts: { retryOptions: this.retryOpts, ...this.opts } + }, + onRetry.bind(this) + ) + + function onRetry (err) { + if (err != null || this.aborted || isDisturbed(this.opts.body)) { + return this.handler.onError(err) + } + + if (this.start !== 0) { + this.opts = { + ...this.opts, + headers: { + ...this.opts.headers, + range: `bytes=${this.start}-${this.end ?? ''}` + } + } + } + + try { + this.dispatch(this.opts, this) + } catch (err) { + this.handler.onError(err) + } + } + } +} + +module.exports = RetryHandler + + +/***/ }), + +/***/ 4415: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const RedirectHandler = __nccwpck_require__(8299) + +function createRedirectInterceptor ({ maxRedirections: defaultMaxRedirections }) { + return (dispatch) => { + return function Intercept (opts, handler) { + const { maxRedirections = defaultMaxRedirections } = opts + + if (!maxRedirections) { + return dispatch(opts, handler) + } + + const redirectHandler = new RedirectHandler(dispatch, maxRedirections, opts, handler) + opts = { ...opts, maxRedirections: 0 } // Stop sub dispatcher from also redirecting. + return dispatch(opts, redirectHandler) + } + } +} + +module.exports = createRedirectInterceptor + + +/***/ }), + +/***/ 2824: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.SPECIAL_HEADERS = exports.HEADER_STATE = exports.MINOR = exports.MAJOR = exports.CONNECTION_TOKEN_CHARS = exports.HEADER_CHARS = exports.TOKEN = exports.STRICT_TOKEN = exports.HEX = exports.URL_CHAR = exports.STRICT_URL_CHAR = exports.USERINFO_CHARS = exports.MARK = exports.ALPHANUM = exports.NUM = exports.HEX_MAP = exports.NUM_MAP = exports.ALPHA = exports.FINISH = exports.H_METHOD_MAP = exports.METHOD_MAP = exports.METHODS_RTSP = exports.METHODS_ICE = exports.METHODS_HTTP = exports.METHODS = exports.LENIENT_FLAGS = exports.FLAGS = exports.TYPE = exports.ERROR = void 0; +const utils_1 = __nccwpck_require__(172); +// C headers +var ERROR; +(function (ERROR) { + ERROR[ERROR["OK"] = 0] = "OK"; + ERROR[ERROR["INTERNAL"] = 1] = "INTERNAL"; + ERROR[ERROR["STRICT"] = 2] = "STRICT"; + ERROR[ERROR["LF_EXPECTED"] = 3] = "LF_EXPECTED"; + ERROR[ERROR["UNEXPECTED_CONTENT_LENGTH"] = 4] = "UNEXPECTED_CONTENT_LENGTH"; + ERROR[ERROR["CLOSED_CONNECTION"] = 5] = "CLOSED_CONNECTION"; + ERROR[ERROR["INVALID_METHOD"] = 6] = "INVALID_METHOD"; + ERROR[ERROR["INVALID_URL"] = 7] = "INVALID_URL"; + ERROR[ERROR["INVALID_CONSTANT"] = 8] = "INVALID_CONSTANT"; + ERROR[ERROR["INVALID_VERSION"] = 9] = "INVALID_VERSION"; + ERROR[ERROR["INVALID_HEADER_TOKEN"] = 10] = "INVALID_HEADER_TOKEN"; + ERROR[ERROR["INVALID_CONTENT_LENGTH"] = 11] = "INVALID_CONTENT_LENGTH"; + ERROR[ERROR["INVALID_CHUNK_SIZE"] = 12] = "INVALID_CHUNK_SIZE"; + ERROR[ERROR["INVALID_STATUS"] = 13] = "INVALID_STATUS"; + ERROR[ERROR["INVALID_EOF_STATE"] = 14] = "INVALID_EOF_STATE"; + ERROR[ERROR["INVALID_TRANSFER_ENCODING"] = 15] = "INVALID_TRANSFER_ENCODING"; + ERROR[ERROR["CB_MESSAGE_BEGIN"] = 16] = "CB_MESSAGE_BEGIN"; + ERROR[ERROR["CB_HEADERS_COMPLETE"] = 17] = "CB_HEADERS_COMPLETE"; + ERROR[ERROR["CB_MESSAGE_COMPLETE"] = 18] = "CB_MESSAGE_COMPLETE"; + ERROR[ERROR["CB_CHUNK_HEADER"] = 19] = "CB_CHUNK_HEADER"; + ERROR[ERROR["CB_CHUNK_COMPLETE"] = 20] = "CB_CHUNK_COMPLETE"; + ERROR[ERROR["PAUSED"] = 21] = "PAUSED"; + ERROR[ERROR["PAUSED_UPGRADE"] = 22] = "PAUSED_UPGRADE"; + ERROR[ERROR["PAUSED_H2_UPGRADE"] = 23] = "PAUSED_H2_UPGRADE"; + ERROR[ERROR["USER"] = 24] = "USER"; +})(ERROR = exports.ERROR || (exports.ERROR = {})); +var TYPE; +(function (TYPE) { + TYPE[TYPE["BOTH"] = 0] = "BOTH"; + TYPE[TYPE["REQUEST"] = 1] = "REQUEST"; + TYPE[TYPE["RESPONSE"] = 2] = "RESPONSE"; +})(TYPE = exports.TYPE || (exports.TYPE = {})); +var FLAGS; +(function (FLAGS) { + FLAGS[FLAGS["CONNECTION_KEEP_ALIVE"] = 1] = "CONNECTION_KEEP_ALIVE"; + FLAGS[FLAGS["CONNECTION_CLOSE"] = 2] = "CONNECTION_CLOSE"; + FLAGS[FLAGS["CONNECTION_UPGRADE"] = 4] = "CONNECTION_UPGRADE"; + FLAGS[FLAGS["CHUNKED"] = 8] = "CHUNKED"; + FLAGS[FLAGS["UPGRADE"] = 16] = "UPGRADE"; + FLAGS[FLAGS["CONTENT_LENGTH"] = 32] = "CONTENT_LENGTH"; + FLAGS[FLAGS["SKIPBODY"] = 64] = "SKIPBODY"; + FLAGS[FLAGS["TRAILING"] = 128] = "TRAILING"; + // 1 << 8 is unused + FLAGS[FLAGS["TRANSFER_ENCODING"] = 512] = "TRANSFER_ENCODING"; +})(FLAGS = exports.FLAGS || (exports.FLAGS = {})); +var LENIENT_FLAGS; +(function (LENIENT_FLAGS) { + LENIENT_FLAGS[LENIENT_FLAGS["HEADERS"] = 1] = "HEADERS"; + LENIENT_FLAGS[LENIENT_FLAGS["CHUNKED_LENGTH"] = 2] = "CHUNKED_LENGTH"; + LENIENT_FLAGS[LENIENT_FLAGS["KEEP_ALIVE"] = 4] = "KEEP_ALIVE"; +})(LENIENT_FLAGS = exports.LENIENT_FLAGS || (exports.LENIENT_FLAGS = {})); +var METHODS; +(function (METHODS) { + METHODS[METHODS["DELETE"] = 0] = "DELETE"; + METHODS[METHODS["GET"] = 1] = "GET"; + METHODS[METHODS["HEAD"] = 2] = "HEAD"; + METHODS[METHODS["POST"] = 3] = "POST"; + METHODS[METHODS["PUT"] = 4] = "PUT"; + /* pathological */ + METHODS[METHODS["CONNECT"] = 5] = "CONNECT"; + METHODS[METHODS["OPTIONS"] = 6] = "OPTIONS"; + METHODS[METHODS["TRACE"] = 7] = "TRACE"; + /* WebDAV */ + METHODS[METHODS["COPY"] = 8] = "COPY"; + METHODS[METHODS["LOCK"] = 9] = "LOCK"; + METHODS[METHODS["MKCOL"] = 10] = "MKCOL"; + METHODS[METHODS["MOVE"] = 11] = "MOVE"; + METHODS[METHODS["PROPFIND"] = 12] = "PROPFIND"; + METHODS[METHODS["PROPPATCH"] = 13] = "PROPPATCH"; + METHODS[METHODS["SEARCH"] = 14] = "SEARCH"; + METHODS[METHODS["UNLOCK"] = 15] = "UNLOCK"; + METHODS[METHODS["BIND"] = 16] = "BIND"; + METHODS[METHODS["REBIND"] = 17] = "REBIND"; + METHODS[METHODS["UNBIND"] = 18] = "UNBIND"; + METHODS[METHODS["ACL"] = 19] = "ACL"; + /* subversion */ + METHODS[METHODS["REPORT"] = 20] = "REPORT"; + METHODS[METHODS["MKACTIVITY"] = 21] = "MKACTIVITY"; + METHODS[METHODS["CHECKOUT"] = 22] = "CHECKOUT"; + METHODS[METHODS["MERGE"] = 23] = "MERGE"; + /* upnp */ + METHODS[METHODS["M-SEARCH"] = 24] = "M-SEARCH"; + METHODS[METHODS["NOTIFY"] = 25] = "NOTIFY"; + METHODS[METHODS["SUBSCRIBE"] = 26] = "SUBSCRIBE"; + METHODS[METHODS["UNSUBSCRIBE"] = 27] = "UNSUBSCRIBE"; + /* RFC-5789 */ + METHODS[METHODS["PATCH"] = 28] = "PATCH"; + METHODS[METHODS["PURGE"] = 29] = "PURGE"; + /* CalDAV */ + METHODS[METHODS["MKCALENDAR"] = 30] = "MKCALENDAR"; + /* RFC-2068, section 19.6.1.2 */ + METHODS[METHODS["LINK"] = 31] = "LINK"; + METHODS[METHODS["UNLINK"] = 32] = "UNLINK"; + /* icecast */ + METHODS[METHODS["SOURCE"] = 33] = "SOURCE"; + /* RFC-7540, section 11.6 */ + METHODS[METHODS["PRI"] = 34] = "PRI"; + /* RFC-2326 RTSP */ + METHODS[METHODS["DESCRIBE"] = 35] = "DESCRIBE"; + METHODS[METHODS["ANNOUNCE"] = 36] = "ANNOUNCE"; + METHODS[METHODS["SETUP"] = 37] = "SETUP"; + METHODS[METHODS["PLAY"] = 38] = "PLAY"; + METHODS[METHODS["PAUSE"] = 39] = "PAUSE"; + METHODS[METHODS["TEARDOWN"] = 40] = "TEARDOWN"; + METHODS[METHODS["GET_PARAMETER"] = 41] = "GET_PARAMETER"; + METHODS[METHODS["SET_PARAMETER"] = 42] = "SET_PARAMETER"; + METHODS[METHODS["REDIRECT"] = 43] = "REDIRECT"; + METHODS[METHODS["RECORD"] = 44] = "RECORD"; + /* RAOP */ + METHODS[METHODS["FLUSH"] = 45] = "FLUSH"; +})(METHODS = exports.METHODS || (exports.METHODS = {})); +exports.METHODS_HTTP = [ + METHODS.DELETE, + METHODS.GET, + METHODS.HEAD, + METHODS.POST, + METHODS.PUT, + METHODS.CONNECT, + METHODS.OPTIONS, + METHODS.TRACE, + METHODS.COPY, + METHODS.LOCK, + METHODS.MKCOL, + METHODS.MOVE, + METHODS.PROPFIND, + METHODS.PROPPATCH, + METHODS.SEARCH, + METHODS.UNLOCK, + METHODS.BIND, + METHODS.REBIND, + METHODS.UNBIND, + METHODS.ACL, + METHODS.REPORT, + METHODS.MKACTIVITY, + METHODS.CHECKOUT, + METHODS.MERGE, + METHODS['M-SEARCH'], + METHODS.NOTIFY, + METHODS.SUBSCRIBE, + METHODS.UNSUBSCRIBE, + METHODS.PATCH, + METHODS.PURGE, + METHODS.MKCALENDAR, + METHODS.LINK, + METHODS.UNLINK, + METHODS.PRI, + // TODO(indutny): should we allow it with HTTP? + METHODS.SOURCE, +]; +exports.METHODS_ICE = [ + METHODS.SOURCE, +]; +exports.METHODS_RTSP = [ + METHODS.OPTIONS, + METHODS.DESCRIBE, + METHODS.ANNOUNCE, + METHODS.SETUP, + METHODS.PLAY, + METHODS.PAUSE, + METHODS.TEARDOWN, + METHODS.GET_PARAMETER, + METHODS.SET_PARAMETER, + METHODS.REDIRECT, + METHODS.RECORD, + METHODS.FLUSH, + // For AirPlay + METHODS.GET, + METHODS.POST, +]; +exports.METHOD_MAP = utils_1.enumToMap(METHODS); +exports.H_METHOD_MAP = {}; +Object.keys(exports.METHOD_MAP).forEach((key) => { + if (/^H/.test(key)) { + exports.H_METHOD_MAP[key] = exports.METHOD_MAP[key]; + } +}); +var FINISH; +(function (FINISH) { + FINISH[FINISH["SAFE"] = 0] = "SAFE"; + FINISH[FINISH["SAFE_WITH_CB"] = 1] = "SAFE_WITH_CB"; + FINISH[FINISH["UNSAFE"] = 2] = "UNSAFE"; +})(FINISH = exports.FINISH || (exports.FINISH = {})); +exports.ALPHA = []; +for (let i = 'A'.charCodeAt(0); i <= 'Z'.charCodeAt(0); i++) { + // Upper case + exports.ALPHA.push(String.fromCharCode(i)); + // Lower case + exports.ALPHA.push(String.fromCharCode(i + 0x20)); +} +exports.NUM_MAP = { + 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, + 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, +}; +exports.HEX_MAP = { + 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, + 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, + A: 0XA, B: 0XB, C: 0XC, D: 0XD, E: 0XE, F: 0XF, + a: 0xa, b: 0xb, c: 0xc, d: 0xd, e: 0xe, f: 0xf, +}; +exports.NUM = [ + '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', +]; +exports.ALPHANUM = exports.ALPHA.concat(exports.NUM); +exports.MARK = ['-', '_', '.', '!', '~', '*', '\'', '(', ')']; +exports.USERINFO_CHARS = exports.ALPHANUM + .concat(exports.MARK) + .concat(['%', ';', ':', '&', '=', '+', '$', ',']); +// TODO(indutny): use RFC +exports.STRICT_URL_CHAR = [ + '!', '"', '$', '%', '&', '\'', + '(', ')', '*', '+', ',', '-', '.', '/', + ':', ';', '<', '=', '>', + '@', '[', '\\', ']', '^', '_', + '`', + '{', '|', '}', '~', +].concat(exports.ALPHANUM); +exports.URL_CHAR = exports.STRICT_URL_CHAR + .concat(['\t', '\f']); +// All characters with 0x80 bit set to 1 +for (let i = 0x80; i <= 0xff; i++) { + exports.URL_CHAR.push(i); +} +exports.HEX = exports.NUM.concat(['a', 'b', 'c', 'd', 'e', 'f', 'A', 'B', 'C', 'D', 'E', 'F']); +/* Tokens as defined by rfc 2616. Also lowercases them. + * token = 1* + * separators = "(" | ")" | "<" | ">" | "@" + * | "," | ";" | ":" | "\" | <"> + * | "/" | "[" | "]" | "?" | "=" + * | "{" | "}" | SP | HT + */ +exports.STRICT_TOKEN = [ + '!', '#', '$', '%', '&', '\'', + '*', '+', '-', '.', + '^', '_', '`', + '|', '~', +].concat(exports.ALPHANUM); +exports.TOKEN = exports.STRICT_TOKEN.concat([' ']); +/* + * Verify that a char is a valid visible (printable) US-ASCII + * character or %x80-FF + */ +exports.HEADER_CHARS = ['\t']; +for (let i = 32; i <= 255; i++) { + if (i !== 127) { + exports.HEADER_CHARS.push(i); + } +} +// ',' = \x44 +exports.CONNECTION_TOKEN_CHARS = exports.HEADER_CHARS.filter((c) => c !== 44); +exports.MAJOR = exports.NUM_MAP; +exports.MINOR = exports.MAJOR; +var HEADER_STATE; +(function (HEADER_STATE) { + HEADER_STATE[HEADER_STATE["GENERAL"] = 0] = "GENERAL"; + HEADER_STATE[HEADER_STATE["CONNECTION"] = 1] = "CONNECTION"; + HEADER_STATE[HEADER_STATE["CONTENT_LENGTH"] = 2] = "CONTENT_LENGTH"; + HEADER_STATE[HEADER_STATE["TRANSFER_ENCODING"] = 3] = "TRANSFER_ENCODING"; + HEADER_STATE[HEADER_STATE["UPGRADE"] = 4] = "UPGRADE"; + HEADER_STATE[HEADER_STATE["CONNECTION_KEEP_ALIVE"] = 5] = "CONNECTION_KEEP_ALIVE"; + HEADER_STATE[HEADER_STATE["CONNECTION_CLOSE"] = 6] = "CONNECTION_CLOSE"; + HEADER_STATE[HEADER_STATE["CONNECTION_UPGRADE"] = 7] = "CONNECTION_UPGRADE"; + HEADER_STATE[HEADER_STATE["TRANSFER_ENCODING_CHUNKED"] = 8] = "TRANSFER_ENCODING_CHUNKED"; +})(HEADER_STATE = exports.HEADER_STATE || (exports.HEADER_STATE = {})); +exports.SPECIAL_HEADERS = { + 'connection': HEADER_STATE.CONNECTION, + 'content-length': HEADER_STATE.CONTENT_LENGTH, + 'proxy-connection': HEADER_STATE.CONNECTION, + 'transfer-encoding': HEADER_STATE.TRANSFER_ENCODING, + 'upgrade': HEADER_STATE.UPGRADE, +}; +//# sourceMappingURL=constants.js.map + +/***/ }), + +/***/ 3870: +/***/ ((module) => { + +module.exports = 'AGFzbQEAAAABMAhgAX8Bf2ADf39/AX9gBH9/f38Bf2AAAGADf39/AGABfwBgAn9/AGAGf39/f39/AALLAQgDZW52GHdhc21fb25faGVhZGVyc19jb21wbGV0ZQACA2VudhV3YXNtX29uX21lc3NhZ2VfYmVnaW4AAANlbnYLd2FzbV9vbl91cmwAAQNlbnYOd2FzbV9vbl9zdGF0dXMAAQNlbnYUd2FzbV9vbl9oZWFkZXJfZmllbGQAAQNlbnYUd2FzbV9vbl9oZWFkZXJfdmFsdWUAAQNlbnYMd2FzbV9vbl9ib2R5AAEDZW52GHdhc21fb25fbWVzc2FnZV9jb21wbGV0ZQAAA0ZFAwMEAAAFAAAAAAAABQEFAAUFBQAABgAAAAAGBgYGAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAAABAQcAAAUFAwABBAUBcAESEgUDAQACBggBfwFBgNQECwfRBSIGbWVtb3J5AgALX2luaXRpYWxpemUACRlfX2luZGlyZWN0X2Z1bmN0aW9uX3RhYmxlAQALbGxodHRwX2luaXQAChhsbGh0dHBfc2hvdWxkX2tlZXBfYWxpdmUAQQxsbGh0dHBfYWxsb2MADAZtYWxsb2MARgtsbGh0dHBfZnJlZQANBGZyZWUASA9sbGh0dHBfZ2V0X3R5cGUADhVsbGh0dHBfZ2V0X2h0dHBfbWFqb3IADxVsbGh0dHBfZ2V0X2h0dHBfbWlub3IAEBFsbGh0dHBfZ2V0X21ldGhvZAARFmxsaHR0cF9nZXRfc3RhdHVzX2NvZGUAEhJsbGh0dHBfZ2V0X3VwZ3JhZGUAEwxsbGh0dHBfcmVzZXQAFA5sbGh0dHBfZXhlY3V0ZQAVFGxsaHR0cF9zZXR0aW5nc19pbml0ABYNbGxodHRwX2ZpbmlzaAAXDGxsaHR0cF9wYXVzZQAYDWxsaHR0cF9yZXN1bWUAGRtsbGh0dHBfcmVzdW1lX2FmdGVyX3VwZ3JhZGUAGhBsbGh0dHBfZ2V0X2Vycm5vABsXbGxodHRwX2dldF9lcnJvcl9yZWFzb24AHBdsbGh0dHBfc2V0X2Vycm9yX3JlYXNvbgAdFGxsaHR0cF9nZXRfZXJyb3JfcG9zAB4RbGxodHRwX2Vycm5vX25hbWUAHxJsbGh0dHBfbWV0aG9kX25hbWUAIBJsbGh0dHBfc3RhdHVzX25hbWUAIRpsbGh0dHBfc2V0X2xlbmllbnRfaGVhZGVycwAiIWxsaHR0cF9zZXRfbGVuaWVudF9jaHVua2VkX2xlbmd0aAAjHWxsaHR0cF9zZXRfbGVuaWVudF9rZWVwX2FsaXZlACQkbGxodHRwX3NldF9sZW5pZW50X3RyYW5zZmVyX2VuY29kaW5nACUYbGxodHRwX21lc3NhZ2VfbmVlZHNfZW9mAD8JFwEAQQELEQECAwQFCwYHNTk3MS8tJyspCsLgAkUCAAsIABCIgICAAAsZACAAEMKAgIAAGiAAIAI2AjggACABOgAoCxwAIAAgAC8BMiAALQAuIAAQwYCAgAAQgICAgAALKgEBf0HAABDGgICAACIBEMKAgIAAGiABQYCIgIAANgI4IAEgADoAKCABCwoAIAAQyICAgAALBwAgAC0AKAsHACAALQAqCwcAIAAtACsLBwAgAC0AKQsHACAALwEyCwcAIAAtAC4LRQEEfyAAKAIYIQEgAC0ALSECIAAtACghAyAAKAI4IQQgABDCgICAABogACAENgI4IAAgAzoAKCAAIAI6AC0gACABNgIYCxEAIAAgASABIAJqEMOAgIAACxAAIABBAEHcABDMgICAABoLZwEBf0EAIQECQCAAKAIMDQACQAJAAkACQCAALQAvDgMBAAMCCyAAKAI4IgFFDQAgASgCLCIBRQ0AIAAgARGAgICAAAAiAQ0DC0EADwsQyoCAgAAACyAAQcOWgIAANgIQQQ4hAQsgAQseAAJAIAAoAgwNACAAQdGbgIAANgIQIABBFTYCDAsLFgACQCAAKAIMQRVHDQAgAEEANgIMCwsWAAJAIAAoAgxBFkcNACAAQQA2AgwLCwcAIAAoAgwLBwAgACgCEAsJACAAIAE2AhALBwAgACgCFAsiAAJAIABBJEkNABDKgICAAAALIABBAnRBoLOAgABqKAIACyIAAkAgAEEuSQ0AEMqAgIAAAAsgAEECdEGwtICAAGooAgAL7gsBAX9B66iAgAAhAQJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAIABBnH9qDvQDY2IAAWFhYWFhYQIDBAVhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhBgcICQoLDA0OD2FhYWFhEGFhYWFhYWFhYWFhEWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYRITFBUWFxgZGhthYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhHB0eHyAhIiMkJSYnKCkqKywtLi8wMTIzNDU2YTc4OTphYWFhYWFhYTthYWE8YWFhYT0+P2FhYWFhYWFhQGFhQWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYUJDREVGR0hJSktMTU5PUFFSU2FhYWFhYWFhVFVWV1hZWlthXF1hYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFeYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhX2BhC0Hhp4CAAA8LQaShgIAADwtBy6yAgAAPC0H+sYCAAA8LQcCkgIAADwtBq6SAgAAPC0GNqICAAA8LQeKmgIAADwtBgLCAgAAPC0G5r4CAAA8LQdekgIAADwtB75+AgAAPC0Hhn4CAAA8LQfqfgIAADwtB8qCAgAAPC0Gor4CAAA8LQa6ygIAADwtBiLCAgAAPC0Hsp4CAAA8LQYKigIAADwtBjp2AgAAPC0HQroCAAA8LQcqjgIAADwtBxbKAgAAPC0HfnICAAA8LQdKcgIAADwtBxKCAgAAPC0HXoICAAA8LQaKfgIAADwtB7a6AgAAPC0GrsICAAA8LQdSlgIAADwtBzK6AgAAPC0H6roCAAA8LQfyrgIAADwtB0rCAgAAPC0HxnYCAAA8LQbuggIAADwtB96uAgAAPC0GQsYCAAA8LQdexgIAADwtBoq2AgAAPC0HUp4CAAA8LQeCrgIAADwtBn6yAgAAPC0HrsYCAAA8LQdWfgIAADwtByrGAgAAPC0HepYCAAA8LQdSegIAADwtB9JyAgAAPC0GnsoCAAA8LQbGdgIAADwtBoJ2AgAAPC0G5sYCAAA8LQbywgIAADwtBkqGAgAAPC0GzpoCAAA8LQemsgIAADwtBrJ6AgAAPC0HUq4CAAA8LQfemgIAADwtBgKaAgAAPC0GwoYCAAA8LQf6egIAADwtBjaOAgAAPC0GJrYCAAA8LQfeigIAADwtBoLGAgAAPC0Gun4CAAA8LQcalgIAADwtB6J6AgAAPC0GTooCAAA8LQcKvgIAADwtBw52AgAAPC0GLrICAAA8LQeGdgIAADwtBja+AgAAPC0HqoYCAAA8LQbStgIAADwtB0q+AgAAPC0HfsoCAAA8LQdKygIAADwtB8LCAgAAPC0GpooCAAA8LQfmjgIAADwtBmZ6AgAAPC0G1rICAAA8LQZuwgIAADwtBkrKAgAAPC0G2q4CAAA8LQcKigIAADwtB+LKAgAAPC0GepYCAAA8LQdCigIAADwtBup6AgAAPC0GBnoCAAA8LEMqAgIAAAAtB1qGAgAAhAQsgAQsWACAAIAAtAC1B/gFxIAFBAEdyOgAtCxkAIAAgAC0ALUH9AXEgAUEAR0EBdHI6AC0LGQAgACAALQAtQfsBcSABQQBHQQJ0cjoALQsZACAAIAAtAC1B9wFxIAFBAEdBA3RyOgAtCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAgAiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCBCIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQcaRgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIwIgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAggiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEH2ioCAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCNCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIMIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABB7ZqAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAjgiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCECIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQZWQgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAI8IgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAhQiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEGqm4CAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCQCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIYIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABB7ZOAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAkQiBEUNACAAIAQRgICAgAAAIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCJCIERQ0AIAAgBBGAgICAAAAhAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIsIgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAigiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEH2iICAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCUCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIcIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABBwpmAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAkgiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCICIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQZSUgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAJMIgRFDQAgACAEEYCAgIAAACEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAlQiBEUNACAAIAQRgICAgAAAIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCWCIERQ0AIAAgBBGAgICAAAAhAwsgAwtFAQF/AkACQCAALwEwQRRxQRRHDQBBASEDIAAtAChBAUYNASAALwEyQeUARiEDDAELIAAtAClBBUYhAwsgACADOgAuQQAL/gEBA39BASEDAkAgAC8BMCIEQQhxDQAgACkDIEIAUiEDCwJAAkAgAC0ALkUNAEEBIQUgAC0AKUEFRg0BQQEhBSAEQcAAcUUgA3FBAUcNAQtBACEFIARBwABxDQBBAiEFIARB//8DcSIDQQhxDQACQCADQYAEcUUNAAJAIAAtAChBAUcNACAALQAtQQpxDQBBBQ8LQQQPCwJAIANBIHENAAJAIAAtAChBAUYNACAALwEyQf//A3EiAEGcf2pB5ABJDQAgAEHMAUYNACAAQbACRg0AQQQhBSAEQShxRQ0CIANBiARxQYAERg0CC0EADwtBAEEDIAApAyBQGyEFCyAFC2IBAn9BACEBAkAgAC0AKEEBRg0AIAAvATJB//8DcSICQZx/akHkAEkNACACQcwBRg0AIAJBsAJGDQAgAC8BMCIAQcAAcQ0AQQEhASAAQYgEcUGABEYNACAAQShxRSEBCyABC6cBAQN/AkACQAJAIAAtACpFDQAgAC0AK0UNAEEAIQMgAC8BMCIEQQJxRQ0BDAILQQAhAyAALwEwIgRBAXFFDQELQQEhAyAALQAoQQFGDQAgAC8BMkH//wNxIgVBnH9qQeQASQ0AIAVBzAFGDQAgBUGwAkYNACAEQcAAcQ0AQQAhAyAEQYgEcUGABEYNACAEQShxQQBHIQMLIABBADsBMCAAQQA6AC8gAwuZAQECfwJAAkACQCAALQAqRQ0AIAAtACtFDQBBACEBIAAvATAiAkECcUUNAQwCC0EAIQEgAC8BMCICQQFxRQ0BC0EBIQEgAC0AKEEBRg0AIAAvATJB//8DcSIAQZx/akHkAEkNACAAQcwBRg0AIABBsAJGDQAgAkHAAHENAEEAIQEgAkGIBHFBgARGDQAgAkEocUEARyEBCyABC1kAIABBGGpCADcDACAAQgA3AwAgAEE4akIANwMAIABBMGpCADcDACAAQShqQgA3AwAgAEEgakIANwMAIABBEGpCADcDACAAQQhqQgA3AwAgAEHdATYCHEEAC3sBAX8CQCAAKAIMIgMNAAJAIAAoAgRFDQAgACABNgIECwJAIAAgASACEMSAgIAAIgMNACAAKAIMDwsgACADNgIcQQAhAyAAKAIEIgFFDQAgACABIAIgACgCCBGBgICAAAAiAUUNACAAIAI2AhQgACABNgIMIAEhAwsgAwvk8wEDDn8DfgR/I4CAgIAAQRBrIgMkgICAgAAgASEEIAEhBSABIQYgASEHIAEhCCABIQkgASEKIAEhCyABIQwgASENIAEhDiABIQ8CQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkAgACgCHCIQQX9qDt0B2gEB2QECAwQFBgcICQoLDA0O2AEPENcBERLWARMUFRYXGBkaG+AB3wEcHR7VAR8gISIjJCXUASYnKCkqKyzTAdIBLS7RAdABLzAxMjM0NTY3ODk6Ozw9Pj9AQUJDREVG2wFHSElKzwHOAUvNAUzMAU1OT1BRUlNUVVZXWFlaW1xdXl9gYWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXp7fH1+f4ABgQGCAYMBhAGFAYYBhwGIAYkBigGLAYwBjQGOAY8BkAGRAZIBkwGUAZUBlgGXAZgBmQGaAZsBnAGdAZ4BnwGgAaEBogGjAaQBpQGmAacBqAGpAaoBqwGsAa0BrgGvAbABsQGyAbMBtAG1AbYBtwHLAcoBuAHJAbkByAG6AbsBvAG9Ab4BvwHAAcEBwgHDAcQBxQHGAQDcAQtBACEQDMYBC0EOIRAMxQELQQ0hEAzEAQtBDyEQDMMBC0EQIRAMwgELQRMhEAzBAQtBFCEQDMABC0EVIRAMvwELQRYhEAy+AQtBFyEQDL0BC0EYIRAMvAELQRkhEAy7AQtBGiEQDLoBC0EbIRAMuQELQRwhEAy4AQtBCCEQDLcBC0EdIRAMtgELQSAhEAy1AQtBHyEQDLQBC0EHIRAMswELQSEhEAyyAQtBIiEQDLEBC0EeIRAMsAELQSMhEAyvAQtBEiEQDK4BC0ERIRAMrQELQSQhEAysAQtBJSEQDKsBC0EmIRAMqgELQSchEAypAQtBwwEhEAyoAQtBKSEQDKcBC0ErIRAMpgELQSwhEAylAQtBLSEQDKQBC0EuIRAMowELQS8hEAyiAQtBxAEhEAyhAQtBMCEQDKABC0E0IRAMnwELQQwhEAyeAQtBMSEQDJ0BC0EyIRAMnAELQTMhEAybAQtBOSEQDJoBC0E1IRAMmQELQcUBIRAMmAELQQshEAyXAQtBOiEQDJYBC0E2IRAMlQELQQohEAyUAQtBNyEQDJMBC0E4IRAMkgELQTwhEAyRAQtBOyEQDJABC0E9IRAMjwELQQkhEAyOAQtBKCEQDI0BC0E+IRAMjAELQT8hEAyLAQtBwAAhEAyKAQtBwQAhEAyJAQtBwgAhEAyIAQtBwwAhEAyHAQtBxAAhEAyGAQtBxQAhEAyFAQtBxgAhEAyEAQtBKiEQDIMBC0HHACEQDIIBC0HIACEQDIEBC0HJACEQDIABC0HKACEQDH8LQcsAIRAMfgtBzQAhEAx9C0HMACEQDHwLQc4AIRAMewtBzwAhEAx6C0HQACEQDHkLQdEAIRAMeAtB0gAhEAx3C0HTACEQDHYLQdQAIRAMdQtB1gAhEAx0C0HVACEQDHMLQQYhEAxyC0HXACEQDHELQQUhEAxwC0HYACEQDG8LQQQhEAxuC0HZACEQDG0LQdoAIRAMbAtB2wAhEAxrC0HcACEQDGoLQQMhEAxpC0HdACEQDGgLQd4AIRAMZwtB3wAhEAxmC0HhACEQDGULQeAAIRAMZAtB4gAhEAxjC0HjACEQDGILQQIhEAxhC0HkACEQDGALQeUAIRAMXwtB5gAhEAxeC0HnACEQDF0LQegAIRAMXAtB6QAhEAxbC0HqACEQDFoLQesAIRAMWQtB7AAhEAxYC0HtACEQDFcLQe4AIRAMVgtB7wAhEAxVC0HwACEQDFQLQfEAIRAMUwtB8gAhEAxSC0HzACEQDFELQfQAIRAMUAtB9QAhEAxPC0H2ACEQDE4LQfcAIRAMTQtB+AAhEAxMC0H5ACEQDEsLQfoAIRAMSgtB+wAhEAxJC0H8ACEQDEgLQf0AIRAMRwtB/gAhEAxGC0H/ACEQDEULQYABIRAMRAtBgQEhEAxDC0GCASEQDEILQYMBIRAMQQtBhAEhEAxAC0GFASEQDD8LQYYBIRAMPgtBhwEhEAw9C0GIASEQDDwLQYkBIRAMOwtBigEhEAw6C0GLASEQDDkLQYwBIRAMOAtBjQEhEAw3C0GOASEQDDYLQY8BIRAMNQtBkAEhEAw0C0GRASEQDDMLQZIBIRAMMgtBkwEhEAwxC0GUASEQDDALQZUBIRAMLwtBlgEhEAwuC0GXASEQDC0LQZgBIRAMLAtBmQEhEAwrC0GaASEQDCoLQZsBIRAMKQtBnAEhEAwoC0GdASEQDCcLQZ4BIRAMJgtBnwEhEAwlC0GgASEQDCQLQaEBIRAMIwtBogEhEAwiC0GjASEQDCELQaQBIRAMIAtBpQEhEAwfC0GmASEQDB4LQacBIRAMHQtBqAEhEAwcC0GpASEQDBsLQaoBIRAMGgtBqwEhEAwZC0GsASEQDBgLQa0BIRAMFwtBrgEhEAwWC0EBIRAMFQtBrwEhEAwUC0GwASEQDBMLQbEBIRAMEgtBswEhEAwRC0GyASEQDBALQbQBIRAMDwtBtQEhEAwOC0G2ASEQDA0LQbcBIRAMDAtBuAEhEAwLC0G5ASEQDAoLQboBIRAMCQtBuwEhEAwIC0HGASEQDAcLQbwBIRAMBgtBvQEhEAwFC0G+ASEQDAQLQb8BIRAMAwtBwAEhEAwCC0HCASEQDAELQcEBIRALA0ACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQCAQDscBAAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxweHyAhIyUoP0BBREVGR0hJSktMTU9QUVJT3gNXWVtcXWBiZWZnaGlqa2xtb3BxcnN0dXZ3eHl6e3x9foABggGFAYYBhwGJAYsBjAGNAY4BjwGQAZEBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B4AHhAeIB4wHkAeUB5gHnAegB6QHqAesB7AHtAe4B7wHwAfEB8gHzAZkCpAKwAv4C/gILIAEiBCACRw3zAUHdASEQDP8DCyABIhAgAkcN3QFBwwEhEAz+AwsgASIBIAJHDZABQfcAIRAM/QMLIAEiASACRw2GAUHvACEQDPwDCyABIgEgAkcNf0HqACEQDPsDCyABIgEgAkcNe0HoACEQDPoDCyABIgEgAkcNeEHmACEQDPkDCyABIgEgAkcNGkEYIRAM+AMLIAEiASACRw0UQRIhEAz3AwsgASIBIAJHDVlBxQAhEAz2AwsgASIBIAJHDUpBPyEQDPUDCyABIgEgAkcNSEE8IRAM9AMLIAEiASACRw1BQTEhEAzzAwsgAC0ALkEBRg3rAwyHAgsgACABIgEgAhDAgICAAEEBRw3mASAAQgA3AyAM5wELIAAgASIBIAIQtICAgAAiEA3nASABIQEM9QILAkAgASIBIAJHDQBBBiEQDPADCyAAIAFBAWoiASACELuAgIAAIhAN6AEgASEBDDELIABCADcDIEESIRAM1QMLIAEiECACRw0rQR0hEAztAwsCQCABIgEgAkYNACABQQFqIQFBECEQDNQDC0EHIRAM7AMLIABCACAAKQMgIhEgAiABIhBrrSISfSITIBMgEVYbNwMgIBEgElYiFEUN5QFBCCEQDOsDCwJAIAEiASACRg0AIABBiYCAgAA2AgggACABNgIEIAEhAUEUIRAM0gMLQQkhEAzqAwsgASEBIAApAyBQDeQBIAEhAQzyAgsCQCABIgEgAkcNAEELIRAM6QMLIAAgAUEBaiIBIAIQtoCAgAAiEA3lASABIQEM8gILIAAgASIBIAIQuICAgAAiEA3lASABIQEM8gILIAAgASIBIAIQuICAgAAiEA3mASABIQEMDQsgACABIgEgAhC6gICAACIQDecBIAEhAQzwAgsCQCABIgEgAkcNAEEPIRAM5QMLIAEtAAAiEEE7Rg0IIBBBDUcN6AEgAUEBaiEBDO8CCyAAIAEiASACELqAgIAAIhAN6AEgASEBDPICCwNAAkAgAS0AAEHwtYCAAGotAAAiEEEBRg0AIBBBAkcN6wEgACgCBCEQIABBADYCBCAAIBAgAUEBaiIBELmAgIAAIhAN6gEgASEBDPQCCyABQQFqIgEgAkcNAAtBEiEQDOIDCyAAIAEiASACELqAgIAAIhAN6QEgASEBDAoLIAEiASACRw0GQRshEAzgAwsCQCABIgEgAkcNAEEWIRAM4AMLIABBioCAgAA2AgggACABNgIEIAAgASACELiAgIAAIhAN6gEgASEBQSAhEAzGAwsCQCABIgEgAkYNAANAAkAgAS0AAEHwt4CAAGotAAAiEEECRg0AAkAgEEF/ag4E5QHsAQDrAewBCyABQQFqIQFBCCEQDMgDCyABQQFqIgEgAkcNAAtBFSEQDN8DC0EVIRAM3gMLA0ACQCABLQAAQfC5gIAAai0AACIQQQJGDQAgEEF/ag4E3gHsAeAB6wHsAQsgAUEBaiIBIAJHDQALQRghEAzdAwsCQCABIgEgAkYNACAAQYuAgIAANgIIIAAgATYCBCABIQFBByEQDMQDC0EZIRAM3AMLIAFBAWohAQwCCwJAIAEiFCACRw0AQRohEAzbAwsgFCEBAkAgFC0AAEFzag4U3QLuAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gIA7gILQQAhECAAQQA2AhwgAEGvi4CAADYCECAAQQI2AgwgACAUQQFqNgIUDNoDCwJAIAEtAAAiEEE7Rg0AIBBBDUcN6AEgAUEBaiEBDOUCCyABQQFqIQELQSIhEAy/AwsCQCABIhAgAkcNAEEcIRAM2AMLQgAhESAQIQEgEC0AAEFQag435wHmAQECAwQFBgcIAAAAAAAAAAkKCwwNDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxAREhMUAAtBHiEQDL0DC0ICIREM5QELQgMhEQzkAQtCBCERDOMBC0IFIREM4gELQgYhEQzhAQtCByERDOABC0IIIREM3wELQgkhEQzeAQtCCiERDN0BC0ILIREM3AELQgwhEQzbAQtCDSERDNoBC0IOIREM2QELQg8hEQzYAQtCCiERDNcBC0ILIREM1gELQgwhEQzVAQtCDSERDNQBC0IOIREM0wELQg8hEQzSAQtCACERAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQCAQLQAAQVBqDjflAeQBAAECAwQFBgfmAeYB5gHmAeYB5gHmAQgJCgsMDeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gEODxAREhPmAQtCAiERDOQBC0IDIREM4wELQgQhEQziAQtCBSERDOEBC0IGIREM4AELQgchEQzfAQtCCCERDN4BC0IJIREM3QELQgohEQzcAQtCCyERDNsBC0IMIREM2gELQg0hEQzZAQtCDiERDNgBC0IPIREM1wELQgohEQzWAQtCCyERDNUBC0IMIREM1AELQg0hEQzTAQtCDiERDNIBC0IPIREM0QELIABCACAAKQMgIhEgAiABIhBrrSISfSITIBMgEVYbNwMgIBEgElYiFEUN0gFBHyEQDMADCwJAIAEiASACRg0AIABBiYCAgAA2AgggACABNgIEIAEhAUEkIRAMpwMLQSAhEAy/AwsgACABIhAgAhC+gICAAEF/ag4FtgEAxQIB0QHSAQtBESEQDKQDCyAAQQE6AC8gECEBDLsDCyABIgEgAkcN0gFBJCEQDLsDCyABIg0gAkcNHkHGACEQDLoDCyAAIAEiASACELKAgIAAIhAN1AEgASEBDLUBCyABIhAgAkcNJkHQACEQDLgDCwJAIAEiASACRw0AQSghEAy4AwsgAEEANgIEIABBjICAgAA2AgggACABIAEQsYCAgAAiEA3TASABIQEM2AELAkAgASIQIAJHDQBBKSEQDLcDCyAQLQAAIgFBIEYNFCABQQlHDdMBIBBBAWohAQwVCwJAIAEiASACRg0AIAFBAWohAQwXC0EqIRAMtQMLAkAgASIQIAJHDQBBKyEQDLUDCwJAIBAtAAAiAUEJRg0AIAFBIEcN1QELIAAtACxBCEYN0wEgECEBDJEDCwJAIAEiASACRw0AQSwhEAy0AwsgAS0AAEEKRw3VASABQQFqIQEMyQILIAEiDiACRw3VAUEvIRAMsgMLA0ACQCABLQAAIhBBIEYNAAJAIBBBdmoOBADcAdwBANoBCyABIQEM4AELIAFBAWoiASACRw0AC0ExIRAMsQMLQTIhECABIhQgAkYNsAMgAiAUayAAKAIAIgFqIRUgFCABa0EDaiEWAkADQCAULQAAIhdBIHIgFyAXQb9/akH/AXFBGkkbQf8BcSABQfC7gIAAai0AAEcNAQJAIAFBA0cNAEEGIQEMlgMLIAFBAWohASAUQQFqIhQgAkcNAAsgACAVNgIADLEDCyAAQQA2AgAgFCEBDNkBC0EzIRAgASIUIAJGDa8DIAIgFGsgACgCACIBaiEVIBQgAWtBCGohFgJAA0AgFC0AACIXQSByIBcgF0G/f2pB/wFxQRpJG0H/AXEgAUH0u4CAAGotAABHDQECQCABQQhHDQBBBSEBDJUDCyABQQFqIQEgFEEBaiIUIAJHDQALIAAgFTYCAAywAwsgAEEANgIAIBQhAQzYAQtBNCEQIAEiFCACRg2uAyACIBRrIAAoAgAiAWohFSAUIAFrQQVqIRYCQANAIBQtAAAiF0EgciAXIBdBv39qQf8BcUEaSRtB/wFxIAFB0MKAgABqLQAARw0BAkAgAUEFRw0AQQchAQyUAwsgAUEBaiEBIBRBAWoiFCACRw0ACyAAIBU2AgAMrwMLIABBADYCACAUIQEM1wELAkAgASIBIAJGDQADQAJAIAEtAABBgL6AgABqLQAAIhBBAUYNACAQQQJGDQogASEBDN0BCyABQQFqIgEgAkcNAAtBMCEQDK4DC0EwIRAMrQMLAkAgASIBIAJGDQADQAJAIAEtAAAiEEEgRg0AIBBBdmoOBNkB2gHaAdkB2gELIAFBAWoiASACRw0AC0E4IRAMrQMLQTghEAysAwsDQAJAIAEtAAAiEEEgRg0AIBBBCUcNAwsgAUEBaiIBIAJHDQALQTwhEAyrAwsDQAJAIAEtAAAiEEEgRg0AAkACQCAQQXZqDgTaAQEB2gEACyAQQSxGDdsBCyABIQEMBAsgAUEBaiIBIAJHDQALQT8hEAyqAwsgASEBDNsBC0HAACEQIAEiFCACRg2oAyACIBRrIAAoAgAiAWohFiAUIAFrQQZqIRcCQANAIBQtAABBIHIgAUGAwICAAGotAABHDQEgAUEGRg2OAyABQQFqIQEgFEEBaiIUIAJHDQALIAAgFjYCAAypAwsgAEEANgIAIBQhAQtBNiEQDI4DCwJAIAEiDyACRw0AQcEAIRAMpwMLIABBjICAgAA2AgggACAPNgIEIA8hASAALQAsQX9qDgTNAdUB1wHZAYcDCyABQQFqIQEMzAELAkAgASIBIAJGDQADQAJAIAEtAAAiEEEgciAQIBBBv39qQf8BcUEaSRtB/wFxIhBBCUYNACAQQSBGDQACQAJAAkACQCAQQZ1/ag4TAAMDAwMDAwMBAwMDAwMDAwMDAgMLIAFBAWohAUExIRAMkQMLIAFBAWohAUEyIRAMkAMLIAFBAWohAUEzIRAMjwMLIAEhAQzQAQsgAUEBaiIBIAJHDQALQTUhEAylAwtBNSEQDKQDCwJAIAEiASACRg0AA0ACQCABLQAAQYC8gIAAai0AAEEBRg0AIAEhAQzTAQsgAUEBaiIBIAJHDQALQT0hEAykAwtBPSEQDKMDCyAAIAEiASACELCAgIAAIhAN1gEgASEBDAELIBBBAWohAQtBPCEQDIcDCwJAIAEiASACRw0AQcIAIRAMoAMLAkADQAJAIAEtAABBd2oOGAAC/gL+AoQD/gL+Av4C/gL+Av4C/gL+Av4C/gL+Av4C/gL+Av4C/gL+Av4CAP4CCyABQQFqIgEgAkcNAAtBwgAhEAygAwsgAUEBaiEBIAAtAC1BAXFFDb0BIAEhAQtBLCEQDIUDCyABIgEgAkcN0wFBxAAhEAydAwsDQAJAIAEtAABBkMCAgABqLQAAQQFGDQAgASEBDLcCCyABQQFqIgEgAkcNAAtBxQAhEAycAwsgDS0AACIQQSBGDbMBIBBBOkcNgQMgACgCBCEBIABBADYCBCAAIAEgDRCvgICAACIBDdABIA1BAWohAQyzAgtBxwAhECABIg0gAkYNmgMgAiANayAAKAIAIgFqIRYgDSABa0EFaiEXA0AgDS0AACIUQSByIBQgFEG/f2pB/wFxQRpJG0H/AXEgAUGQwoCAAGotAABHDYADIAFBBUYN9AIgAUEBaiEBIA1BAWoiDSACRw0ACyAAIBY2AgAMmgMLQcgAIRAgASINIAJGDZkDIAIgDWsgACgCACIBaiEWIA0gAWtBCWohFwNAIA0tAAAiFEEgciAUIBRBv39qQf8BcUEaSRtB/wFxIAFBlsKAgABqLQAARw3/AgJAIAFBCUcNAEECIQEM9QILIAFBAWohASANQQFqIg0gAkcNAAsgACAWNgIADJkDCwJAIAEiDSACRw0AQckAIRAMmQMLAkACQCANLQAAIgFBIHIgASABQb9/akH/AXFBGkkbQf8BcUGSf2oOBwCAA4ADgAOAA4ADAYADCyANQQFqIQFBPiEQDIADCyANQQFqIQFBPyEQDP8CC0HKACEQIAEiDSACRg2XAyACIA1rIAAoAgAiAWohFiANIAFrQQFqIRcDQCANLQAAIhRBIHIgFCAUQb9/akH/AXFBGkkbQf8BcSABQaDCgIAAai0AAEcN/QIgAUEBRg3wAiABQQFqIQEgDUEBaiINIAJHDQALIAAgFjYCAAyXAwtBywAhECABIg0gAkYNlgMgAiANayAAKAIAIgFqIRYgDSABa0EOaiEXA0AgDS0AACIUQSByIBQgFEG/f2pB/wFxQRpJG0H/AXEgAUGiwoCAAGotAABHDfwCIAFBDkYN8AIgAUEBaiEBIA1BAWoiDSACRw0ACyAAIBY2AgAMlgMLQcwAIRAgASINIAJGDZUDIAIgDWsgACgCACIBaiEWIA0gAWtBD2ohFwNAIA0tAAAiFEEgciAUIBRBv39qQf8BcUEaSRtB/wFxIAFBwMKAgABqLQAARw37AgJAIAFBD0cNAEEDIQEM8QILIAFBAWohASANQQFqIg0gAkcNAAsgACAWNgIADJUDC0HNACEQIAEiDSACRg2UAyACIA1rIAAoAgAiAWohFiANIAFrQQVqIRcDQCANLQAAIhRBIHIgFCAUQb9/akH/AXFBGkkbQf8BcSABQdDCgIAAai0AAEcN+gICQCABQQVHDQBBBCEBDPACCyABQQFqIQEgDUEBaiINIAJHDQALIAAgFjYCAAyUAwsCQCABIg0gAkcNAEHOACEQDJQDCwJAAkACQAJAIA0tAAAiAUEgciABIAFBv39qQf8BcUEaSRtB/wFxQZ1/ag4TAP0C/QL9Av0C/QL9Av0C/QL9Av0C/QL9AgH9Av0C/QICA/0CCyANQQFqIQFBwQAhEAz9AgsgDUEBaiEBQcIAIRAM/AILIA1BAWohAUHDACEQDPsCCyANQQFqIQFBxAAhEAz6AgsCQCABIgEgAkYNACAAQY2AgIAANgIIIAAgATYCBCABIQFBxQAhEAz6AgtBzwAhEAySAwsgECEBAkACQCAQLQAAQXZqDgQBqAKoAgCoAgsgEEEBaiEBC0EnIRAM+AILAkAgASIBIAJHDQBB0QAhEAyRAwsCQCABLQAAQSBGDQAgASEBDI0BCyABQQFqIQEgAC0ALUEBcUUNxwEgASEBDIwBCyABIhcgAkcNyAFB0gAhEAyPAwtB0wAhECABIhQgAkYNjgMgAiAUayAAKAIAIgFqIRYgFCABa0EBaiEXA0AgFC0AACABQdbCgIAAai0AAEcNzAEgAUEBRg3HASABQQFqIQEgFEEBaiIUIAJHDQALIAAgFjYCAAyOAwsCQCABIgEgAkcNAEHVACEQDI4DCyABLQAAQQpHDcwBIAFBAWohAQzHAQsCQCABIgEgAkcNAEHWACEQDI0DCwJAAkAgAS0AAEF2ag4EAM0BzQEBzQELIAFBAWohAQzHAQsgAUEBaiEBQcoAIRAM8wILIAAgASIBIAIQroCAgAAiEA3LASABIQFBzQAhEAzyAgsgAC0AKUEiRg2FAwymAgsCQCABIgEgAkcNAEHbACEQDIoDC0EAIRRBASEXQQEhFkEAIRACQAJAAkACQAJAAkACQAJAAkAgAS0AAEFQag4K1AHTAQABAgMEBQYI1QELQQIhEAwGC0EDIRAMBQtBBCEQDAQLQQUhEAwDC0EGIRAMAgtBByEQDAELQQghEAtBACEXQQAhFkEAIRQMzAELQQkhEEEBIRRBACEXQQAhFgzLAQsCQCABIgEgAkcNAEHdACEQDIkDCyABLQAAQS5HDcwBIAFBAWohAQymAgsgASIBIAJHDcwBQd8AIRAMhwMLAkAgASIBIAJGDQAgAEGOgICAADYCCCAAIAE2AgQgASEBQdAAIRAM7gILQeAAIRAMhgMLQeEAIRAgASIBIAJGDYUDIAIgAWsgACgCACIUaiEWIAEgFGtBA2ohFwNAIAEtAAAgFEHiwoCAAGotAABHDc0BIBRBA0YNzAEgFEEBaiEUIAFBAWoiASACRw0ACyAAIBY2AgAMhQMLQeIAIRAgASIBIAJGDYQDIAIgAWsgACgCACIUaiEWIAEgFGtBAmohFwNAIAEtAAAgFEHmwoCAAGotAABHDcwBIBRBAkYNzgEgFEEBaiEUIAFBAWoiASACRw0ACyAAIBY2AgAMhAMLQeMAIRAgASIBIAJGDYMDIAIgAWsgACgCACIUaiEWIAEgFGtBA2ohFwNAIAEtAAAgFEHpwoCAAGotAABHDcsBIBRBA0YNzgEgFEEBaiEUIAFBAWoiASACRw0ACyAAIBY2AgAMgwMLAkAgASIBIAJHDQBB5QAhEAyDAwsgACABQQFqIgEgAhCogICAACIQDc0BIAEhAUHWACEQDOkCCwJAIAEiASACRg0AA0ACQCABLQAAIhBBIEYNAAJAAkACQCAQQbh/ag4LAAHPAc8BzwHPAc8BzwHPAc8BAs8BCyABQQFqIQFB0gAhEAztAgsgAUEBaiEBQdMAIRAM7AILIAFBAWohAUHUACEQDOsCCyABQQFqIgEgAkcNAAtB5AAhEAyCAwtB5AAhEAyBAwsDQAJAIAEtAABB8MKAgABqLQAAIhBBAUYNACAQQX5qDgPPAdAB0QHSAQsgAUEBaiIBIAJHDQALQeYAIRAMgAMLAkAgASIBIAJGDQAgAUEBaiEBDAMLQecAIRAM/wILA0ACQCABLQAAQfDEgIAAai0AACIQQQFGDQACQCAQQX5qDgTSAdMB1AEA1QELIAEhAUHXACEQDOcCCyABQQFqIgEgAkcNAAtB6AAhEAz+AgsCQCABIgEgAkcNAEHpACEQDP4CCwJAIAEtAAAiEEF2ag4augHVAdUBvAHVAdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHKAdUB1QEA0wELIAFBAWohAQtBBiEQDOMCCwNAAkAgAS0AAEHwxoCAAGotAABBAUYNACABIQEMngILIAFBAWoiASACRw0AC0HqACEQDPsCCwJAIAEiASACRg0AIAFBAWohAQwDC0HrACEQDPoCCwJAIAEiASACRw0AQewAIRAM+gILIAFBAWohAQwBCwJAIAEiASACRw0AQe0AIRAM+QILIAFBAWohAQtBBCEQDN4CCwJAIAEiFCACRw0AQe4AIRAM9wILIBQhAQJAAkACQCAULQAAQfDIgIAAai0AAEF/ag4H1AHVAdYBAJwCAQLXAQsgFEEBaiEBDAoLIBRBAWohAQzNAQtBACEQIABBADYCHCAAQZuSgIAANgIQIABBBzYCDCAAIBRBAWo2AhQM9gILAkADQAJAIAEtAABB8MiAgABqLQAAIhBBBEYNAAJAAkAgEEF/ag4H0gHTAdQB2QEABAHZAQsgASEBQdoAIRAM4AILIAFBAWohAUHcACEQDN8CCyABQQFqIgEgAkcNAAtB7wAhEAz2AgsgAUEBaiEBDMsBCwJAIAEiFCACRw0AQfAAIRAM9QILIBQtAABBL0cN1AEgFEEBaiEBDAYLAkAgASIUIAJHDQBB8QAhEAz0AgsCQCAULQAAIgFBL0cNACAUQQFqIQFB3QAhEAzbAgsgAUF2aiIEQRZLDdMBQQEgBHRBiYCAAnFFDdMBDMoCCwJAIAEiASACRg0AIAFBAWohAUHeACEQDNoCC0HyACEQDPICCwJAIAEiFCACRw0AQfQAIRAM8gILIBQhAQJAIBQtAABB8MyAgABqLQAAQX9qDgPJApQCANQBC0HhACEQDNgCCwJAIAEiFCACRg0AA0ACQCAULQAAQfDKgIAAai0AACIBQQNGDQACQCABQX9qDgLLAgDVAQsgFCEBQd8AIRAM2gILIBRBAWoiFCACRw0AC0HzACEQDPECC0HzACEQDPACCwJAIAEiASACRg0AIABBj4CAgAA2AgggACABNgIEIAEhAUHgACEQDNcCC0H1ACEQDO8CCwJAIAEiASACRw0AQfYAIRAM7wILIABBj4CAgAA2AgggACABNgIEIAEhAQtBAyEQDNQCCwNAIAEtAABBIEcNwwIgAUEBaiIBIAJHDQALQfcAIRAM7AILAkAgASIBIAJHDQBB+AAhEAzsAgsgAS0AAEEgRw3OASABQQFqIQEM7wELIAAgASIBIAIQrICAgAAiEA3OASABIQEMjgILAkAgASIEIAJHDQBB+gAhEAzqAgsgBC0AAEHMAEcN0QEgBEEBaiEBQRMhEAzPAQsCQCABIgQgAkcNAEH7ACEQDOkCCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRADQCAELQAAIAFB8M6AgABqLQAARw3QASABQQVGDc4BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQfsAIRAM6AILAkAgASIEIAJHDQBB/AAhEAzoAgsCQAJAIAQtAABBvX9qDgwA0QHRAdEB0QHRAdEB0QHRAdEB0QEB0QELIARBAWohAUHmACEQDM8CCyAEQQFqIQFB5wAhEAzOAgsCQCABIgQgAkcNAEH9ACEQDOcCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHtz4CAAGotAABHDc8BIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEH9ACEQDOcCCyAAQQA2AgAgEEEBaiEBQRAhEAzMAQsCQCABIgQgAkcNAEH+ACEQDOYCCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRACQANAIAQtAAAgAUH2zoCAAGotAABHDc4BIAFBBUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEH+ACEQDOYCCyAAQQA2AgAgEEEBaiEBQRYhEAzLAQsCQCABIgQgAkcNAEH/ACEQDOUCCyACIARrIAAoAgAiAWohFCAEIAFrQQNqIRACQANAIAQtAAAgAUH8zoCAAGotAABHDc0BIAFBA0YNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEH/ACEQDOUCCyAAQQA2AgAgEEEBaiEBQQUhEAzKAQsCQCABIgQgAkcNAEGAASEQDOQCCyAELQAAQdkARw3LASAEQQFqIQFBCCEQDMkBCwJAIAEiBCACRw0AQYEBIRAM4wILAkACQCAELQAAQbJ/ag4DAMwBAcwBCyAEQQFqIQFB6wAhEAzKAgsgBEEBaiEBQewAIRAMyQILAkAgASIEIAJHDQBBggEhEAziAgsCQAJAIAQtAABBuH9qDggAywHLAcsBywHLAcsBAcsBCyAEQQFqIQFB6gAhEAzJAgsgBEEBaiEBQe0AIRAMyAILAkAgASIEIAJHDQBBgwEhEAzhAgsgAiAEayAAKAIAIgFqIRAgBCABa0ECaiEUAkADQCAELQAAIAFBgM+AgABqLQAARw3JASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBA2AgBBgwEhEAzhAgtBACEQIABBADYCACAUQQFqIQEMxgELAkAgASIEIAJHDQBBhAEhEAzgAgsgAiAEayAAKAIAIgFqIRQgBCABa0EEaiEQAkADQCAELQAAIAFBg8+AgABqLQAARw3IASABQQRGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBhAEhEAzgAgsgAEEANgIAIBBBAWohAUEjIRAMxQELAkAgASIEIAJHDQBBhQEhEAzfAgsCQAJAIAQtAABBtH9qDggAyAHIAcgByAHIAcgBAcgBCyAEQQFqIQFB7wAhEAzGAgsgBEEBaiEBQfAAIRAMxQILAkAgASIEIAJHDQBBhgEhEAzeAgsgBC0AAEHFAEcNxQEgBEEBaiEBDIMCCwJAIAEiBCACRw0AQYcBIRAM3QILIAIgBGsgACgCACIBaiEUIAQgAWtBA2ohEAJAA0AgBC0AACABQYjPgIAAai0AAEcNxQEgAUEDRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQYcBIRAM3QILIABBADYCACAQQQFqIQFBLSEQDMIBCwJAIAEiBCACRw0AQYgBIRAM3AILIAIgBGsgACgCACIBaiEUIAQgAWtBCGohEAJAA0AgBC0AACABQdDPgIAAai0AAEcNxAEgAUEIRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQYgBIRAM3AILIABBADYCACAQQQFqIQFBKSEQDMEBCwJAIAEiASACRw0AQYkBIRAM2wILQQEhECABLQAAQd8ARw3AASABQQFqIQEMgQILAkAgASIEIAJHDQBBigEhEAzaAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQA0AgBC0AACABQYzPgIAAai0AAEcNwQEgAUEBRg2vAiABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGKASEQDNkCCwJAIAEiBCACRw0AQYsBIRAM2QILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQY7PgIAAai0AAEcNwQEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQYsBIRAM2QILIABBADYCACAQQQFqIQFBAiEQDL4BCwJAIAEiBCACRw0AQYwBIRAM2AILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQfDPgIAAai0AAEcNwAEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQYwBIRAM2AILIABBADYCACAQQQFqIQFBHyEQDL0BCwJAIAEiBCACRw0AQY0BIRAM1wILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQfLPgIAAai0AAEcNvwEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQY0BIRAM1wILIABBADYCACAQQQFqIQFBCSEQDLwBCwJAIAEiBCACRw0AQY4BIRAM1gILAkACQCAELQAAQbd/ag4HAL8BvwG/Ab8BvwEBvwELIARBAWohAUH4ACEQDL0CCyAEQQFqIQFB+QAhEAy8AgsCQCABIgQgAkcNAEGPASEQDNUCCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRACQANAIAQtAAAgAUGRz4CAAGotAABHDb0BIAFBBUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGPASEQDNUCCyAAQQA2AgAgEEEBaiEBQRghEAy6AQsCQCABIgQgAkcNAEGQASEQDNQCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUGXz4CAAGotAABHDbwBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGQASEQDNQCCyAAQQA2AgAgEEEBaiEBQRchEAy5AQsCQCABIgQgAkcNAEGRASEQDNMCCyACIARrIAAoAgAiAWohFCAEIAFrQQZqIRACQANAIAQtAAAgAUGaz4CAAGotAABHDbsBIAFBBkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGRASEQDNMCCyAAQQA2AgAgEEEBaiEBQRUhEAy4AQsCQCABIgQgAkcNAEGSASEQDNICCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRACQANAIAQtAAAgAUGhz4CAAGotAABHDboBIAFBBUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGSASEQDNICCyAAQQA2AgAgEEEBaiEBQR4hEAy3AQsCQCABIgQgAkcNAEGTASEQDNECCyAELQAAQcwARw24ASAEQQFqIQFBCiEQDLYBCwJAIAQgAkcNAEGUASEQDNACCwJAAkAgBC0AAEG/f2oODwC5AbkBuQG5AbkBuQG5AbkBuQG5AbkBuQG5AQG5AQsgBEEBaiEBQf4AIRAMtwILIARBAWohAUH/ACEQDLYCCwJAIAQgAkcNAEGVASEQDM8CCwJAAkAgBC0AAEG/f2oOAwC4AQG4AQsgBEEBaiEBQf0AIRAMtgILIARBAWohBEGAASEQDLUCCwJAIAQgAkcNAEGWASEQDM4CCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRACQANAIAQtAAAgAUGnz4CAAGotAABHDbYBIAFBAUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGWASEQDM4CCyAAQQA2AgAgEEEBaiEBQQshEAyzAQsCQCAEIAJHDQBBlwEhEAzNAgsCQAJAAkACQCAELQAAQVNqDiMAuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AQG4AbgBuAG4AbgBArgBuAG4AQO4AQsgBEEBaiEBQfsAIRAMtgILIARBAWohAUH8ACEQDLUCCyAEQQFqIQRBgQEhEAy0AgsgBEEBaiEEQYIBIRAMswILAkAgBCACRw0AQZgBIRAMzAILIAIgBGsgACgCACIBaiEUIAQgAWtBBGohEAJAA0AgBC0AACABQanPgIAAai0AAEcNtAEgAUEERg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZgBIRAMzAILIABBADYCACAQQQFqIQFBGSEQDLEBCwJAIAQgAkcNAEGZASEQDMsCCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRACQANAIAQtAAAgAUGuz4CAAGotAABHDbMBIAFBBUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGZASEQDMsCCyAAQQA2AgAgEEEBaiEBQQYhEAywAQsCQCAEIAJHDQBBmgEhEAzKAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFBtM+AgABqLQAARw2yASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBmgEhEAzKAgsgAEEANgIAIBBBAWohAUEcIRAMrwELAkAgBCACRw0AQZsBIRAMyQILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQbbPgIAAai0AAEcNsQEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZsBIRAMyQILIABBADYCACAQQQFqIQFBJyEQDK4BCwJAIAQgAkcNAEGcASEQDMgCCwJAAkAgBC0AAEGsf2oOAgABsQELIARBAWohBEGGASEQDK8CCyAEQQFqIQRBhwEhEAyuAgsCQCAEIAJHDQBBnQEhEAzHAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFBuM+AgABqLQAARw2vASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBnQEhEAzHAgsgAEEANgIAIBBBAWohAUEmIRAMrAELAkAgBCACRw0AQZ4BIRAMxgILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQbrPgIAAai0AAEcNrgEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZ4BIRAMxgILIABBADYCACAQQQFqIQFBAyEQDKsBCwJAIAQgAkcNAEGfASEQDMUCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHtz4CAAGotAABHDa0BIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGfASEQDMUCCyAAQQA2AgAgEEEBaiEBQQwhEAyqAQsCQCAEIAJHDQBBoAEhEAzEAgsgAiAEayAAKAIAIgFqIRQgBCABa0EDaiEQAkADQCAELQAAIAFBvM+AgABqLQAARw2sASABQQNGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBoAEhEAzEAgsgAEEANgIAIBBBAWohAUENIRAMqQELAkAgBCACRw0AQaEBIRAMwwILAkACQCAELQAAQbp/ag4LAKwBrAGsAawBrAGsAawBrAGsAQGsAQsgBEEBaiEEQYsBIRAMqgILIARBAWohBEGMASEQDKkCCwJAIAQgAkcNAEGiASEQDMICCyAELQAAQdAARw2pASAEQQFqIQQM6QELAkAgBCACRw0AQaMBIRAMwQILAkACQCAELQAAQbd/ag4HAaoBqgGqAaoBqgEAqgELIARBAWohBEGOASEQDKgCCyAEQQFqIQFBIiEQDKYBCwJAIAQgAkcNAEGkASEQDMACCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRACQANAIAQtAAAgAUHAz4CAAGotAABHDagBIAFBAUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGkASEQDMACCyAAQQA2AgAgEEEBaiEBQR0hEAylAQsCQCAEIAJHDQBBpQEhEAy/AgsCQAJAIAQtAABBrn9qDgMAqAEBqAELIARBAWohBEGQASEQDKYCCyAEQQFqIQFBBCEQDKQBCwJAIAQgAkcNAEGmASEQDL4CCwJAAkACQAJAAkAgBC0AAEG/f2oOFQCqAaoBqgGqAaoBqgGqAaoBqgGqAQGqAaoBAqoBqgEDqgGqAQSqAQsgBEEBaiEEQYgBIRAMqAILIARBAWohBEGJASEQDKcCCyAEQQFqIQRBigEhEAymAgsgBEEBaiEEQY8BIRAMpQILIARBAWohBEGRASEQDKQCCwJAIAQgAkcNAEGnASEQDL0CCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHtz4CAAGotAABHDaUBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGnASEQDL0CCyAAQQA2AgAgEEEBaiEBQREhEAyiAQsCQCAEIAJHDQBBqAEhEAy8AgsgAiAEayAAKAIAIgFqIRQgBCABa0ECaiEQAkADQCAELQAAIAFBws+AgABqLQAARw2kASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBqAEhEAy8AgsgAEEANgIAIBBBAWohAUEsIRAMoQELAkAgBCACRw0AQakBIRAMuwILIAIgBGsgACgCACIBaiEUIAQgAWtBBGohEAJAA0AgBC0AACABQcXPgIAAai0AAEcNowEgAUEERg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQakBIRAMuwILIABBADYCACAQQQFqIQFBKyEQDKABCwJAIAQgAkcNAEGqASEQDLoCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHKz4CAAGotAABHDaIBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGqASEQDLoCCyAAQQA2AgAgEEEBaiEBQRQhEAyfAQsCQCAEIAJHDQBBqwEhEAy5AgsCQAJAAkACQCAELQAAQb5/ag4PAAECpAGkAaQBpAGkAaQBpAGkAaQBpAGkAQOkAQsgBEEBaiEEQZMBIRAMogILIARBAWohBEGUASEQDKECCyAEQQFqIQRBlQEhEAygAgsgBEEBaiEEQZYBIRAMnwILAkAgBCACRw0AQawBIRAMuAILIAQtAABBxQBHDZ8BIARBAWohBAzgAQsCQCAEIAJHDQBBrQEhEAy3AgsgAiAEayAAKAIAIgFqIRQgBCABa0ECaiEQAkADQCAELQAAIAFBzc+AgABqLQAARw2fASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBrQEhEAy3AgsgAEEANgIAIBBBAWohAUEOIRAMnAELAkAgBCACRw0AQa4BIRAMtgILIAQtAABB0ABHDZ0BIARBAWohAUElIRAMmwELAkAgBCACRw0AQa8BIRAMtQILIAIgBGsgACgCACIBaiEUIAQgAWtBCGohEAJAA0AgBC0AACABQdDPgIAAai0AAEcNnQEgAUEIRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQa8BIRAMtQILIABBADYCACAQQQFqIQFBKiEQDJoBCwJAIAQgAkcNAEGwASEQDLQCCwJAAkAgBC0AAEGrf2oOCwCdAZ0BnQGdAZ0BnQGdAZ0BnQEBnQELIARBAWohBEGaASEQDJsCCyAEQQFqIQRBmwEhEAyaAgsCQCAEIAJHDQBBsQEhEAyzAgsCQAJAIAQtAABBv39qDhQAnAGcAZwBnAGcAZwBnAGcAZwBnAGcAZwBnAGcAZwBnAGcAZwBAZwBCyAEQQFqIQRBmQEhEAyaAgsgBEEBaiEEQZwBIRAMmQILAkAgBCACRw0AQbIBIRAMsgILIAIgBGsgACgCACIBaiEUIAQgAWtBA2ohEAJAA0AgBC0AACABQdnPgIAAai0AAEcNmgEgAUEDRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQbIBIRAMsgILIABBADYCACAQQQFqIQFBISEQDJcBCwJAIAQgAkcNAEGzASEQDLECCyACIARrIAAoAgAiAWohFCAEIAFrQQZqIRACQANAIAQtAAAgAUHdz4CAAGotAABHDZkBIAFBBkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGzASEQDLECCyAAQQA2AgAgEEEBaiEBQRohEAyWAQsCQCAEIAJHDQBBtAEhEAywAgsCQAJAAkAgBC0AAEG7f2oOEQCaAZoBmgGaAZoBmgGaAZoBmgEBmgGaAZoBmgGaAQKaAQsgBEEBaiEEQZ0BIRAMmAILIARBAWohBEGeASEQDJcCCyAEQQFqIQRBnwEhEAyWAgsCQCAEIAJHDQBBtQEhEAyvAgsgAiAEayAAKAIAIgFqIRQgBCABa0EFaiEQAkADQCAELQAAIAFB5M+AgABqLQAARw2XASABQQVGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBtQEhEAyvAgsgAEEANgIAIBBBAWohAUEoIRAMlAELAkAgBCACRw0AQbYBIRAMrgILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQerPgIAAai0AAEcNlgEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQbYBIRAMrgILIABBADYCACAQQQFqIQFBByEQDJMBCwJAIAQgAkcNAEG3ASEQDK0CCwJAAkAgBC0AAEG7f2oODgCWAZYBlgGWAZYBlgGWAZYBlgGWAZYBlgEBlgELIARBAWohBEGhASEQDJQCCyAEQQFqIQRBogEhEAyTAgsCQCAEIAJHDQBBuAEhEAysAgsgAiAEayAAKAIAIgFqIRQgBCABa0ECaiEQAkADQCAELQAAIAFB7c+AgABqLQAARw2UASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBuAEhEAysAgsgAEEANgIAIBBBAWohAUESIRAMkQELAkAgBCACRw0AQbkBIRAMqwILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQfDPgIAAai0AAEcNkwEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQbkBIRAMqwILIABBADYCACAQQQFqIQFBICEQDJABCwJAIAQgAkcNAEG6ASEQDKoCCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRACQANAIAQtAAAgAUHyz4CAAGotAABHDZIBIAFBAUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEG6ASEQDKoCCyAAQQA2AgAgEEEBaiEBQQ8hEAyPAQsCQCAEIAJHDQBBuwEhEAypAgsCQAJAIAQtAABBt39qDgcAkgGSAZIBkgGSAQGSAQsgBEEBaiEEQaUBIRAMkAILIARBAWohBEGmASEQDI8CCwJAIAQgAkcNAEG8ASEQDKgCCyACIARrIAAoAgAiAWohFCAEIAFrQQdqIRACQANAIAQtAAAgAUH0z4CAAGotAABHDZABIAFBB0YNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEG8ASEQDKgCCyAAQQA2AgAgEEEBaiEBQRshEAyNAQsCQCAEIAJHDQBBvQEhEAynAgsCQAJAAkAgBC0AAEG+f2oOEgCRAZEBkQGRAZEBkQGRAZEBkQEBkQGRAZEBkQGRAZEBApEBCyAEQQFqIQRBpAEhEAyPAgsgBEEBaiEEQacBIRAMjgILIARBAWohBEGoASEQDI0CCwJAIAQgAkcNAEG+ASEQDKYCCyAELQAAQc4ARw2NASAEQQFqIQQMzwELAkAgBCACRw0AQb8BIRAMpQILAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkAgBC0AAEG/f2oOFQABAgOcAQQFBpwBnAGcAQcICQoLnAEMDQ4PnAELIARBAWohAUHoACEQDJoCCyAEQQFqIQFB6QAhEAyZAgsgBEEBaiEBQe4AIRAMmAILIARBAWohAUHyACEQDJcCCyAEQQFqIQFB8wAhEAyWAgsgBEEBaiEBQfYAIRAMlQILIARBAWohAUH3ACEQDJQCCyAEQQFqIQFB+gAhEAyTAgsgBEEBaiEEQYMBIRAMkgILIARBAWohBEGEASEQDJECCyAEQQFqIQRBhQEhEAyQAgsgBEEBaiEEQZIBIRAMjwILIARBAWohBEGYASEQDI4CCyAEQQFqIQRBoAEhEAyNAgsgBEEBaiEEQaMBIRAMjAILIARBAWohBEGqASEQDIsCCwJAIAQgAkYNACAAQZCAgIAANgIIIAAgBDYCBEGrASEQDIsCC0HAASEQDKMCCyAAIAUgAhCqgICAACIBDYsBIAUhAQxcCwJAIAYgAkYNACAGQQFqIQUMjQELQcIBIRAMoQILA0ACQCAQLQAAQXZqDgSMAQAAjwEACyAQQQFqIhAgAkcNAAtBwwEhEAygAgsCQCAHIAJGDQAgAEGRgICAADYCCCAAIAc2AgQgByEBQQEhEAyHAgtBxAEhEAyfAgsCQCAHIAJHDQBBxQEhEAyfAgsCQAJAIActAABBdmoOBAHOAc4BAM4BCyAHQQFqIQYMjQELIAdBAWohBQyJAQsCQCAHIAJHDQBBxgEhEAyeAgsCQAJAIActAABBdmoOFwGPAY8BAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAQCPAQsgB0EBaiEHC0GwASEQDIQCCwJAIAggAkcNAEHIASEQDJ0CCyAILQAAQSBHDY0BIABBADsBMiAIQQFqIQFBswEhEAyDAgsgASEXAkADQCAXIgcgAkYNASAHLQAAQVBqQf8BcSIQQQpPDcwBAkAgAC8BMiIUQZkzSw0AIAAgFEEKbCIUOwEyIBBB//8DcyAUQf7/A3FJDQAgB0EBaiEXIAAgFCAQaiIQOwEyIBBB//8DcUHoB0kNAQsLQQAhECAAQQA2AhwgAEHBiYCAADYCECAAQQ02AgwgACAHQQFqNgIUDJwCC0HHASEQDJsCCyAAIAggAhCugICAACIQRQ3KASAQQRVHDYwBIABByAE2AhwgACAINgIUIABByZeAgAA2AhAgAEEVNgIMQQAhEAyaAgsCQCAJIAJHDQBBzAEhEAyaAgtBACEUQQEhF0EBIRZBACEQAkACQAJAAkACQAJAAkACQAJAIAktAABBUGoOCpYBlQEAAQIDBAUGCJcBC0ECIRAMBgtBAyEQDAULQQQhEAwEC0EFIRAMAwtBBiEQDAILQQchEAwBC0EIIRALQQAhF0EAIRZBACEUDI4BC0EJIRBBASEUQQAhF0EAIRYMjQELAkAgCiACRw0AQc4BIRAMmQILIAotAABBLkcNjgEgCkEBaiEJDMoBCyALIAJHDY4BQdABIRAMlwILAkAgCyACRg0AIABBjoCAgAA2AgggACALNgIEQbcBIRAM/gELQdEBIRAMlgILAkAgBCACRw0AQdIBIRAMlgILIAIgBGsgACgCACIQaiEUIAQgEGtBBGohCwNAIAQtAAAgEEH8z4CAAGotAABHDY4BIBBBBEYN6QEgEEEBaiEQIARBAWoiBCACRw0ACyAAIBQ2AgBB0gEhEAyVAgsgACAMIAIQrICAgAAiAQ2NASAMIQEMuAELAkAgBCACRw0AQdQBIRAMlAILIAIgBGsgACgCACIQaiEUIAQgEGtBAWohDANAIAQtAAAgEEGB0ICAAGotAABHDY8BIBBBAUYNjgEgEEEBaiEQIARBAWoiBCACRw0ACyAAIBQ2AgBB1AEhEAyTAgsCQCAEIAJHDQBB1gEhEAyTAgsgAiAEayAAKAIAIhBqIRQgBCAQa0ECaiELA0AgBC0AACAQQYPQgIAAai0AAEcNjgEgEEECRg2QASAQQQFqIRAgBEEBaiIEIAJHDQALIAAgFDYCAEHWASEQDJICCwJAIAQgAkcNAEHXASEQDJICCwJAAkAgBC0AAEG7f2oOEACPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BAY8BCyAEQQFqIQRBuwEhEAz5AQsgBEEBaiEEQbwBIRAM+AELAkAgBCACRw0AQdgBIRAMkQILIAQtAABByABHDYwBIARBAWohBAzEAQsCQCAEIAJGDQAgAEGQgICAADYCCCAAIAQ2AgRBvgEhEAz3AQtB2QEhEAyPAgsCQCAEIAJHDQBB2gEhEAyPAgsgBC0AAEHIAEYNwwEgAEEBOgAoDLkBCyAAQQI6AC8gACAEIAIQpoCAgAAiEA2NAUHCASEQDPQBCyAALQAoQX9qDgK3AbkBuAELA0ACQCAELQAAQXZqDgQAjgGOAQCOAQsgBEEBaiIEIAJHDQALQd0BIRAMiwILIABBADoALyAALQAtQQRxRQ2EAgsgAEEAOgAvIABBAToANCABIQEMjAELIBBBFUYN2gEgAEEANgIcIAAgATYCFCAAQaeOgIAANgIQIABBEjYCDEEAIRAMiAILAkAgACAQIAIQtICAgAAiBA0AIBAhAQyBAgsCQCAEQRVHDQAgAEEDNgIcIAAgEDYCFCAAQbCYgIAANgIQIABBFTYCDEEAIRAMiAILIABBADYCHCAAIBA2AhQgAEGnjoCAADYCECAAQRI2AgxBACEQDIcCCyAQQRVGDdYBIABBADYCHCAAIAE2AhQgAEHajYCAADYCECAAQRQ2AgxBACEQDIYCCyAAKAIEIRcgAEEANgIEIBAgEadqIhYhASAAIBcgECAWIBQbIhAQtYCAgAAiFEUNjQEgAEEHNgIcIAAgEDYCFCAAIBQ2AgxBACEQDIUCCyAAIAAvATBBgAFyOwEwIAEhAQtBKiEQDOoBCyAQQRVGDdEBIABBADYCHCAAIAE2AhQgAEGDjICAADYCECAAQRM2AgxBACEQDIICCyAQQRVGDc8BIABBADYCHCAAIAE2AhQgAEGaj4CAADYCECAAQSI2AgxBACEQDIECCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQt4CAgAAiEA0AIAFBAWohAQyNAQsgAEEMNgIcIAAgEDYCDCAAIAFBAWo2AhRBACEQDIACCyAQQRVGDcwBIABBADYCHCAAIAE2AhQgAEGaj4CAADYCECAAQSI2AgxBACEQDP8BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQt4CAgAAiEA0AIAFBAWohAQyMAQsgAEENNgIcIAAgEDYCDCAAIAFBAWo2AhRBACEQDP4BCyAQQRVGDckBIABBADYCHCAAIAE2AhQgAEHGjICAADYCECAAQSM2AgxBACEQDP0BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQuYCAgAAiEA0AIAFBAWohAQyLAQsgAEEONgIcIAAgEDYCDCAAIAFBAWo2AhRBACEQDPwBCyAAQQA2AhwgACABNgIUIABBwJWAgAA2AhAgAEECNgIMQQAhEAz7AQsgEEEVRg3FASAAQQA2AhwgACABNgIUIABBxoyAgAA2AhAgAEEjNgIMQQAhEAz6AQsgAEEQNgIcIAAgATYCFCAAIBA2AgxBACEQDPkBCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQuYCAgAAiBA0AIAFBAWohAQzxAQsgAEERNgIcIAAgBDYCDCAAIAFBAWo2AhRBACEQDPgBCyAQQRVGDcEBIABBADYCHCAAIAE2AhQgAEHGjICAADYCECAAQSM2AgxBACEQDPcBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQuYCAgAAiEA0AIAFBAWohAQyIAQsgAEETNgIcIAAgEDYCDCAAIAFBAWo2AhRBACEQDPYBCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQuYCAgAAiBA0AIAFBAWohAQztAQsgAEEUNgIcIAAgBDYCDCAAIAFBAWo2AhRBACEQDPUBCyAQQRVGDb0BIABBADYCHCAAIAE2AhQgAEGaj4CAADYCECAAQSI2AgxBACEQDPQBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQt4CAgAAiEA0AIAFBAWohAQyGAQsgAEEWNgIcIAAgEDYCDCAAIAFBAWo2AhRBACEQDPMBCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQt4CAgAAiBA0AIAFBAWohAQzpAQsgAEEXNgIcIAAgBDYCDCAAIAFBAWo2AhRBACEQDPIBCyAAQQA2AhwgACABNgIUIABBzZOAgAA2AhAgAEEMNgIMQQAhEAzxAQtCASERCyAQQQFqIQECQCAAKQMgIhJC//////////8PVg0AIAAgEkIEhiARhDcDICABIQEMhAELIABBADYCHCAAIAE2AhQgAEGtiYCAADYCECAAQQw2AgxBACEQDO8BCyAAQQA2AhwgACAQNgIUIABBzZOAgAA2AhAgAEEMNgIMQQAhEAzuAQsgACgCBCEXIABBADYCBCAQIBGnaiIWIQEgACAXIBAgFiAUGyIQELWAgIAAIhRFDXMgAEEFNgIcIAAgEDYCFCAAIBQ2AgxBACEQDO0BCyAAQQA2AhwgACAQNgIUIABBqpyAgAA2AhAgAEEPNgIMQQAhEAzsAQsgACAQIAIQtICAgAAiAQ0BIBAhAQtBDiEQDNEBCwJAIAFBFUcNACAAQQI2AhwgACAQNgIUIABBsJiAgAA2AhAgAEEVNgIMQQAhEAzqAQsgAEEANgIcIAAgEDYCFCAAQaeOgIAANgIQIABBEjYCDEEAIRAM6QELIAFBAWohEAJAIAAvATAiAUGAAXFFDQACQCAAIBAgAhC7gICAACIBDQAgECEBDHALIAFBFUcNugEgAEEFNgIcIAAgEDYCFCAAQfmXgIAANgIQIABBFTYCDEEAIRAM6QELAkAgAUGgBHFBoARHDQAgAC0ALUECcQ0AIABBADYCHCAAIBA2AhQgAEGWk4CAADYCECAAQQQ2AgxBACEQDOkBCyAAIBAgAhC9gICAABogECEBAkACQAJAAkACQCAAIBAgAhCzgICAAA4WAgEABAQEBAQEBAQEBAQEBAQEBAQEAwQLIABBAToALgsgACAALwEwQcAAcjsBMCAQIQELQSYhEAzRAQsgAEEjNgIcIAAgEDYCFCAAQaWWgIAANgIQIABBFTYCDEEAIRAM6QELIABBADYCHCAAIBA2AhQgAEHVi4CAADYCECAAQRE2AgxBACEQDOgBCyAALQAtQQFxRQ0BQcMBIRAMzgELAkAgDSACRg0AA0ACQCANLQAAQSBGDQAgDSEBDMQBCyANQQFqIg0gAkcNAAtBJSEQDOcBC0ElIRAM5gELIAAoAgQhBCAAQQA2AgQgACAEIA0Qr4CAgAAiBEUNrQEgAEEmNgIcIAAgBDYCDCAAIA1BAWo2AhRBACEQDOUBCyAQQRVGDasBIABBADYCHCAAIAE2AhQgAEH9jYCAADYCECAAQR02AgxBACEQDOQBCyAAQSc2AhwgACABNgIUIAAgEDYCDEEAIRAM4wELIBAhAUEBIRQCQAJAAkACQAJAAkACQCAALQAsQX5qDgcGBQUDAQIABQsgACAALwEwQQhyOwEwDAMLQQIhFAwBC0EEIRQLIABBAToALCAAIAAvATAgFHI7ATALIBAhAQtBKyEQDMoBCyAAQQA2AhwgACAQNgIUIABBq5KAgAA2AhAgAEELNgIMQQAhEAziAQsgAEEANgIcIAAgATYCFCAAQeGPgIAANgIQIABBCjYCDEEAIRAM4QELIABBADoALCAQIQEMvQELIBAhAUEBIRQCQAJAAkACQAJAIAAtACxBe2oOBAMBAgAFCyAAIAAvATBBCHI7ATAMAwtBAiEUDAELQQQhFAsgAEEBOgAsIAAgAC8BMCAUcjsBMAsgECEBC0EpIRAMxQELIABBADYCHCAAIAE2AhQgAEHwlICAADYCECAAQQM2AgxBACEQDN0BCwJAIA4tAABBDUcNACAAKAIEIQEgAEEANgIEAkAgACABIA4QsYCAgAAiAQ0AIA5BAWohAQx1CyAAQSw2AhwgACABNgIMIAAgDkEBajYCFEEAIRAM3QELIAAtAC1BAXFFDQFBxAEhEAzDAQsCQCAOIAJHDQBBLSEQDNwBCwJAAkADQAJAIA4tAABBdmoOBAIAAAMACyAOQQFqIg4gAkcNAAtBLSEQDN0BCyAAKAIEIQEgAEEANgIEAkAgACABIA4QsYCAgAAiAQ0AIA4hAQx0CyAAQSw2AhwgACAONgIUIAAgATYCDEEAIRAM3AELIAAoAgQhASAAQQA2AgQCQCAAIAEgDhCxgICAACIBDQAgDkEBaiEBDHMLIABBLDYCHCAAIAE2AgwgACAOQQFqNgIUQQAhEAzbAQsgACgCBCEEIABBADYCBCAAIAQgDhCxgICAACIEDaABIA4hAQzOAQsgEEEsRw0BIAFBAWohEEEBIQECQAJAAkACQAJAIAAtACxBe2oOBAMBAgQACyAQIQEMBAtBAiEBDAELQQQhAQsgAEEBOgAsIAAgAC8BMCABcjsBMCAQIQEMAQsgACAALwEwQQhyOwEwIBAhAQtBOSEQDL8BCyAAQQA6ACwgASEBC0E0IRAMvQELIAAgAC8BMEEgcjsBMCABIQEMAgsgACgCBCEEIABBADYCBAJAIAAgBCABELGAgIAAIgQNACABIQEMxwELIABBNzYCHCAAIAE2AhQgACAENgIMQQAhEAzUAQsgAEEIOgAsIAEhAQtBMCEQDLkBCwJAIAAtAChBAUYNACABIQEMBAsgAC0ALUEIcUUNkwEgASEBDAMLIAAtADBBIHENlAFBxQEhEAy3AQsCQCAPIAJGDQACQANAAkAgDy0AAEFQaiIBQf8BcUEKSQ0AIA8hAUE1IRAMugELIAApAyAiEUKZs+bMmbPmzBlWDQEgACARQgp+IhE3AyAgESABrUL/AYMiEkJ/hVYNASAAIBEgEnw3AyAgD0EBaiIPIAJHDQALQTkhEAzRAQsgACgCBCECIABBADYCBCAAIAIgD0EBaiIEELGAgIAAIgINlQEgBCEBDMMBC0E5IRAMzwELAkAgAC8BMCIBQQhxRQ0AIAAtAChBAUcNACAALQAtQQhxRQ2QAQsgACABQff7A3FBgARyOwEwIA8hAQtBNyEQDLQBCyAAIAAvATBBEHI7ATAMqwELIBBBFUYNiwEgAEEANgIcIAAgATYCFCAAQfCOgIAANgIQIABBHDYCDEEAIRAMywELIABBwwA2AhwgACABNgIMIAAgDUEBajYCFEEAIRAMygELAkAgAS0AAEE6Rw0AIAAoAgQhECAAQQA2AgQCQCAAIBAgARCvgICAACIQDQAgAUEBaiEBDGMLIABBwwA2AhwgACAQNgIMIAAgAUEBajYCFEEAIRAMygELIABBADYCHCAAIAE2AhQgAEGxkYCAADYCECAAQQo2AgxBACEQDMkBCyAAQQA2AhwgACABNgIUIABBoJmAgAA2AhAgAEEeNgIMQQAhEAzIAQsgAEEANgIACyAAQYASOwEqIAAgF0EBaiIBIAIQqICAgAAiEA0BIAEhAQtBxwAhEAysAQsgEEEVRw2DASAAQdEANgIcIAAgATYCFCAAQeOXgIAANgIQIABBFTYCDEEAIRAMxAELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDF4LIABB0gA2AhwgACABNgIUIAAgEDYCDEEAIRAMwwELIABBADYCHCAAIBQ2AhQgAEHBqICAADYCECAAQQc2AgwgAEEANgIAQQAhEAzCAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMXQsgAEHTADYCHCAAIAE2AhQgACAQNgIMQQAhEAzBAQtBACEQIABBADYCHCAAIAE2AhQgAEGAkYCAADYCECAAQQk2AgwMwAELIBBBFUYNfSAAQQA2AhwgACABNgIUIABBlI2AgAA2AhAgAEEhNgIMQQAhEAy/AQtBASEWQQAhF0EAIRRBASEQCyAAIBA6ACsgAUEBaiEBAkACQCAALQAtQRBxDQACQAJAAkAgAC0AKg4DAQACBAsgFkUNAwwCCyAUDQEMAgsgF0UNAQsgACgCBCEQIABBADYCBAJAIAAgECABEK2AgIAAIhANACABIQEMXAsgAEHYADYCHCAAIAE2AhQgACAQNgIMQQAhEAy+AQsgACgCBCEEIABBADYCBAJAIAAgBCABEK2AgIAAIgQNACABIQEMrQELIABB2QA2AhwgACABNgIUIAAgBDYCDEEAIRAMvQELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARCtgICAACIEDQAgASEBDKsBCyAAQdoANgIcIAAgATYCFCAAIAQ2AgxBACEQDLwBCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQrYCAgAAiBA0AIAEhAQypAQsgAEHcADYCHCAAIAE2AhQgACAENgIMQQAhEAy7AQsCQCABLQAAQVBqIhBB/wFxQQpPDQAgACAQOgAqIAFBAWohAUHPACEQDKIBCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQrYCAgAAiBA0AIAEhAQynAQsgAEHeADYCHCAAIAE2AhQgACAENgIMQQAhEAy6AQsgAEEANgIAIBdBAWohAQJAIAAtAClBI08NACABIQEMWQsgAEEANgIcIAAgATYCFCAAQdOJgIAANgIQIABBCDYCDEEAIRAMuQELIABBADYCAAtBACEQIABBADYCHCAAIAE2AhQgAEGQs4CAADYCECAAQQg2AgwMtwELIABBADYCACAXQQFqIQECQCAALQApQSFHDQAgASEBDFYLIABBADYCHCAAIAE2AhQgAEGbioCAADYCECAAQQg2AgxBACEQDLYBCyAAQQA2AgAgF0EBaiEBAkAgAC0AKSIQQV1qQQtPDQAgASEBDFULAkAgEEEGSw0AQQEgEHRBygBxRQ0AIAEhAQxVC0EAIRAgAEEANgIcIAAgATYCFCAAQfeJgIAANgIQIABBCDYCDAy1AQsgEEEVRg1xIABBADYCHCAAIAE2AhQgAEG5jYCAADYCECAAQRo2AgxBACEQDLQBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxUCyAAQeUANgIcIAAgATYCFCAAIBA2AgxBACEQDLMBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxNCyAAQdIANgIcIAAgATYCFCAAIBA2AgxBACEQDLIBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxNCyAAQdMANgIcIAAgATYCFCAAIBA2AgxBACEQDLEBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxRCyAAQeUANgIcIAAgATYCFCAAIBA2AgxBACEQDLABCyAAQQA2AhwgACABNgIUIABBxoqAgAA2AhAgAEEHNgIMQQAhEAyvAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMSQsgAEHSADYCHCAAIAE2AhQgACAQNgIMQQAhEAyuAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMSQsgAEHTADYCHCAAIAE2AhQgACAQNgIMQQAhEAytAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMTQsgAEHlADYCHCAAIAE2AhQgACAQNgIMQQAhEAysAQsgAEEANgIcIAAgATYCFCAAQdyIgIAANgIQIABBBzYCDEEAIRAMqwELIBBBP0cNASABQQFqIQELQQUhEAyQAQtBACEQIABBADYCHCAAIAE2AhQgAEH9koCAADYCECAAQQc2AgwMqAELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDEILIABB0gA2AhwgACABNgIUIAAgEDYCDEEAIRAMpwELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDEILIABB0wA2AhwgACABNgIUIAAgEDYCDEEAIRAMpgELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDEYLIABB5QA2AhwgACABNgIUIAAgEDYCDEEAIRAMpQELIAAoAgQhASAAQQA2AgQCQCAAIAEgFBCngICAACIBDQAgFCEBDD8LIABB0gA2AhwgACAUNgIUIAAgATYCDEEAIRAMpAELIAAoAgQhASAAQQA2AgQCQCAAIAEgFBCngICAACIBDQAgFCEBDD8LIABB0wA2AhwgACAUNgIUIAAgATYCDEEAIRAMowELIAAoAgQhASAAQQA2AgQCQCAAIAEgFBCngICAACIBDQAgFCEBDEMLIABB5QA2AhwgACAUNgIUIAAgATYCDEEAIRAMogELIABBADYCHCAAIBQ2AhQgAEHDj4CAADYCECAAQQc2AgxBACEQDKEBCyAAQQA2AhwgACABNgIUIABBw4+AgAA2AhAgAEEHNgIMQQAhEAygAQtBACEQIABBADYCHCAAIBQ2AhQgAEGMnICAADYCECAAQQc2AgwMnwELIABBADYCHCAAIBQ2AhQgAEGMnICAADYCECAAQQc2AgxBACEQDJ4BCyAAQQA2AhwgACAUNgIUIABB/pGAgAA2AhAgAEEHNgIMQQAhEAydAQsgAEEANgIcIAAgATYCFCAAQY6bgIAANgIQIABBBjYCDEEAIRAMnAELIBBBFUYNVyAAQQA2AhwgACABNgIUIABBzI6AgAA2AhAgAEEgNgIMQQAhEAybAQsgAEEANgIAIBBBAWohAUEkIRALIAAgEDoAKSAAKAIEIRAgAEEANgIEIAAgECABEKuAgIAAIhANVCABIQEMPgsgAEEANgIAC0EAIRAgAEEANgIcIAAgBDYCFCAAQfGbgIAANgIQIABBBjYCDAyXAQsgAUEVRg1QIABBADYCHCAAIAU2AhQgAEHwjICAADYCECAAQRs2AgxBACEQDJYBCyAAKAIEIQUgAEEANgIEIAAgBSAQEKmAgIAAIgUNASAQQQFqIQULQa0BIRAMewsgAEHBATYCHCAAIAU2AgwgACAQQQFqNgIUQQAhEAyTAQsgACgCBCEGIABBADYCBCAAIAYgEBCpgICAACIGDQEgEEEBaiEGC0GuASEQDHgLIABBwgE2AhwgACAGNgIMIAAgEEEBajYCFEEAIRAMkAELIABBADYCHCAAIAc2AhQgAEGXi4CAADYCECAAQQ02AgxBACEQDI8BCyAAQQA2AhwgACAINgIUIABB45CAgAA2AhAgAEEJNgIMQQAhEAyOAQsgAEEANgIcIAAgCDYCFCAAQZSNgIAANgIQIABBITYCDEEAIRAMjQELQQEhFkEAIRdBACEUQQEhEAsgACAQOgArIAlBAWohCAJAAkAgAC0ALUEQcQ0AAkACQAJAIAAtACoOAwEAAgQLIBZFDQMMAgsgFA0BDAILIBdFDQELIAAoAgQhECAAQQA2AgQgACAQIAgQrYCAgAAiEEUNPSAAQckBNgIcIAAgCDYCFCAAIBA2AgxBACEQDIwBCyAAKAIEIQQgAEEANgIEIAAgBCAIEK2AgIAAIgRFDXYgAEHKATYCHCAAIAg2AhQgACAENgIMQQAhEAyLAQsgACgCBCEEIABBADYCBCAAIAQgCRCtgICAACIERQ10IABBywE2AhwgACAJNgIUIAAgBDYCDEEAIRAMigELIAAoAgQhBCAAQQA2AgQgACAEIAoQrYCAgAAiBEUNciAAQc0BNgIcIAAgCjYCFCAAIAQ2AgxBACEQDIkBCwJAIAstAABBUGoiEEH/AXFBCk8NACAAIBA6ACogC0EBaiEKQbYBIRAMcAsgACgCBCEEIABBADYCBCAAIAQgCxCtgICAACIERQ1wIABBzwE2AhwgACALNgIUIAAgBDYCDEEAIRAMiAELIABBADYCHCAAIAQ2AhQgAEGQs4CAADYCECAAQQg2AgwgAEEANgIAQQAhEAyHAQsgAUEVRg0/IABBADYCHCAAIAw2AhQgAEHMjoCAADYCECAAQSA2AgxBACEQDIYBCyAAQYEEOwEoIAAoAgQhECAAQgA3AwAgACAQIAxBAWoiDBCrgICAACIQRQ04IABB0wE2AhwgACAMNgIUIAAgEDYCDEEAIRAMhQELIABBADYCAAtBACEQIABBADYCHCAAIAQ2AhQgAEHYm4CAADYCECAAQQg2AgwMgwELIAAoAgQhECAAQgA3AwAgACAQIAtBAWoiCxCrgICAACIQDQFBxgEhEAxpCyAAQQI6ACgMVQsgAEHVATYCHCAAIAs2AhQgACAQNgIMQQAhEAyAAQsgEEEVRg03IABBADYCHCAAIAQ2AhQgAEGkjICAADYCECAAQRA2AgxBACEQDH8LIAAtADRBAUcNNCAAIAQgAhC8gICAACIQRQ00IBBBFUcNNSAAQdwBNgIcIAAgBDYCFCAAQdWWgIAANgIQIABBFTYCDEEAIRAMfgtBACEQIABBADYCHCAAQa+LgIAANgIQIABBAjYCDCAAIBRBAWo2AhQMfQtBACEQDGMLQQIhEAxiC0ENIRAMYQtBDyEQDGALQSUhEAxfC0ETIRAMXgtBFSEQDF0LQRYhEAxcC0EXIRAMWwtBGCEQDFoLQRkhEAxZC0EaIRAMWAtBGyEQDFcLQRwhEAxWC0EdIRAMVQtBHyEQDFQLQSEhEAxTC0EjIRAMUgtBxgAhEAxRC0EuIRAMUAtBLyEQDE8LQTshEAxOC0E9IRAMTQtByAAhEAxMC0HJACEQDEsLQcsAIRAMSgtBzAAhEAxJC0HOACEQDEgLQdEAIRAMRwtB1QAhEAxGC0HYACEQDEULQdkAIRAMRAtB2wAhEAxDC0HkACEQDEILQeUAIRAMQQtB8QAhEAxAC0H0ACEQDD8LQY0BIRAMPgtBlwEhEAw9C0GpASEQDDwLQawBIRAMOwtBwAEhEAw6C0G5ASEQDDkLQa8BIRAMOAtBsQEhEAw3C0GyASEQDDYLQbQBIRAMNQtBtQEhEAw0C0G6ASEQDDMLQb0BIRAMMgtBvwEhEAwxC0HBASEQDDALIABBADYCHCAAIAQ2AhQgAEHpi4CAADYCECAAQR82AgxBACEQDEgLIABB2wE2AhwgACAENgIUIABB+paAgAA2AhAgAEEVNgIMQQAhEAxHCyAAQfgANgIcIAAgDDYCFCAAQcqYgIAANgIQIABBFTYCDEEAIRAMRgsgAEHRADYCHCAAIAU2AhQgAEGwl4CAADYCECAAQRU2AgxBACEQDEULIABB+QA2AhwgACABNgIUIAAgEDYCDEEAIRAMRAsgAEH4ADYCHCAAIAE2AhQgAEHKmICAADYCECAAQRU2AgxBACEQDEMLIABB5AA2AhwgACABNgIUIABB45eAgAA2AhAgAEEVNgIMQQAhEAxCCyAAQdcANgIcIAAgATYCFCAAQcmXgIAANgIQIABBFTYCDEEAIRAMQQsgAEEANgIcIAAgATYCFCAAQbmNgIAANgIQIABBGjYCDEEAIRAMQAsgAEHCADYCHCAAIAE2AhQgAEHjmICAADYCECAAQRU2AgxBACEQDD8LIABBADYCBCAAIA8gDxCxgICAACIERQ0BIABBOjYCHCAAIAQ2AgwgACAPQQFqNgIUQQAhEAw+CyAAKAIEIQQgAEEANgIEAkAgACAEIAEQsYCAgAAiBEUNACAAQTs2AhwgACAENgIMIAAgAUEBajYCFEEAIRAMPgsgAUEBaiEBDC0LIA9BAWohAQwtCyAAQQA2AhwgACAPNgIUIABB5JKAgAA2AhAgAEEENgIMQQAhEAw7CyAAQTY2AhwgACAENgIUIAAgAjYCDEEAIRAMOgsgAEEuNgIcIAAgDjYCFCAAIAQ2AgxBACEQDDkLIABB0AA2AhwgACABNgIUIABBkZiAgAA2AhAgAEEVNgIMQQAhEAw4CyANQQFqIQEMLAsgAEEVNgIcIAAgATYCFCAAQYKZgIAANgIQIABBFTYCDEEAIRAMNgsgAEEbNgIcIAAgATYCFCAAQZGXgIAANgIQIABBFTYCDEEAIRAMNQsgAEEPNgIcIAAgATYCFCAAQZGXgIAANgIQIABBFTYCDEEAIRAMNAsgAEELNgIcIAAgATYCFCAAQZGXgIAANgIQIABBFTYCDEEAIRAMMwsgAEEaNgIcIAAgATYCFCAAQYKZgIAANgIQIABBFTYCDEEAIRAMMgsgAEELNgIcIAAgATYCFCAAQYKZgIAANgIQIABBFTYCDEEAIRAMMQsgAEEKNgIcIAAgATYCFCAAQeSWgIAANgIQIABBFTYCDEEAIRAMMAsgAEEeNgIcIAAgATYCFCAAQfmXgIAANgIQIABBFTYCDEEAIRAMLwsgAEEANgIcIAAgEDYCFCAAQdqNgIAANgIQIABBFDYCDEEAIRAMLgsgAEEENgIcIAAgATYCFCAAQbCYgIAANgIQIABBFTYCDEEAIRAMLQsgAEEANgIAIAtBAWohCwtBuAEhEAwSCyAAQQA2AgAgEEEBaiEBQfUAIRAMEQsgASEBAkAgAC0AKUEFRw0AQeMAIRAMEQtB4gAhEAwQC0EAIRAgAEEANgIcIABB5JGAgAA2AhAgAEEHNgIMIAAgFEEBajYCFAwoCyAAQQA2AgAgF0EBaiEBQcAAIRAMDgtBASEBCyAAIAE6ACwgAEEANgIAIBdBAWohAQtBKCEQDAsLIAEhAQtBOCEQDAkLAkAgASIPIAJGDQADQAJAIA8tAABBgL6AgABqLQAAIgFBAUYNACABQQJHDQMgD0EBaiEBDAQLIA9BAWoiDyACRw0AC0E+IRAMIgtBPiEQDCELIABBADoALCAPIQEMAQtBCyEQDAYLQTohEAwFCyABQQFqIQFBLSEQDAQLIAAgAToALCAAQQA2AgAgFkEBaiEBQQwhEAwDCyAAQQA2AgAgF0EBaiEBQQohEAwCCyAAQQA2AgALIABBADoALCANIQFBCSEQDAALC0EAIRAgAEEANgIcIAAgCzYCFCAAQc2QgIAANgIQIABBCTYCDAwXC0EAIRAgAEEANgIcIAAgCjYCFCAAQemKgIAANgIQIABBCTYCDAwWC0EAIRAgAEEANgIcIAAgCTYCFCAAQbeQgIAANgIQIABBCTYCDAwVC0EAIRAgAEEANgIcIAAgCDYCFCAAQZyRgIAANgIQIABBCTYCDAwUC0EAIRAgAEEANgIcIAAgATYCFCAAQc2QgIAANgIQIABBCTYCDAwTC0EAIRAgAEEANgIcIAAgATYCFCAAQemKgIAANgIQIABBCTYCDAwSC0EAIRAgAEEANgIcIAAgATYCFCAAQbeQgIAANgIQIABBCTYCDAwRC0EAIRAgAEEANgIcIAAgATYCFCAAQZyRgIAANgIQIABBCTYCDAwQC0EAIRAgAEEANgIcIAAgATYCFCAAQZeVgIAANgIQIABBDzYCDAwPC0EAIRAgAEEANgIcIAAgATYCFCAAQZeVgIAANgIQIABBDzYCDAwOC0EAIRAgAEEANgIcIAAgATYCFCAAQcCSgIAANgIQIABBCzYCDAwNC0EAIRAgAEEANgIcIAAgATYCFCAAQZWJgIAANgIQIABBCzYCDAwMC0EAIRAgAEEANgIcIAAgATYCFCAAQeGPgIAANgIQIABBCjYCDAwLC0EAIRAgAEEANgIcIAAgATYCFCAAQfuPgIAANgIQIABBCjYCDAwKC0EAIRAgAEEANgIcIAAgATYCFCAAQfGZgIAANgIQIABBAjYCDAwJC0EAIRAgAEEANgIcIAAgATYCFCAAQcSUgIAANgIQIABBAjYCDAwIC0EAIRAgAEEANgIcIAAgATYCFCAAQfKVgIAANgIQIABBAjYCDAwHCyAAQQI2AhwgACABNgIUIABBnJqAgAA2AhAgAEEWNgIMQQAhEAwGC0EBIRAMBQtB1AAhECABIgQgAkYNBCADQQhqIAAgBCACQdjCgIAAQQoQxYCAgAAgAygCDCEEIAMoAggOAwEEAgALEMqAgIAAAAsgAEEANgIcIABBtZqAgAA2AhAgAEEXNgIMIAAgBEEBajYCFEEAIRAMAgsgAEEANgIcIAAgBDYCFCAAQcqagIAANgIQIABBCTYCDEEAIRAMAQsCQCABIgQgAkcNAEEiIRAMAQsgAEGJgICAADYCCCAAIAQ2AgRBISEQCyADQRBqJICAgIAAIBALrwEBAn8gASgCACEGAkACQCACIANGDQAgBCAGaiEEIAYgA2ogAmshByACIAZBf3MgBWoiBmohBQNAAkAgAi0AACAELQAARg0AQQIhBAwDCwJAIAYNAEEAIQQgBSECDAMLIAZBf2ohBiAEQQFqIQQgAkEBaiICIANHDQALIAchBiADIQILIABBATYCACABIAY2AgAgACACNgIEDwsgAUEANgIAIAAgBDYCACAAIAI2AgQLCgAgABDHgICAAAvyNgELfyOAgICAAEEQayIBJICAgIAAAkBBACgCoNCAgAANAEEAEMuAgIAAQYDUhIAAayICQdkASQ0AQQAhAwJAQQAoAuDTgIAAIgQNAEEAQn83AuzTgIAAQQBCgICEgICAwAA3AuTTgIAAQQAgAUEIakFwcUHYqtWqBXMiBDYC4NOAgABBAEEANgL004CAAEEAQQA2AsTTgIAAC0EAIAI2AszTgIAAQQBBgNSEgAA2AsjTgIAAQQBBgNSEgAA2ApjQgIAAQQAgBDYCrNCAgABBAEF/NgKo0ICAAANAIANBxNCAgABqIANBuNCAgABqIgQ2AgAgBCADQbDQgIAAaiIFNgIAIANBvNCAgABqIAU2AgAgA0HM0ICAAGogA0HA0ICAAGoiBTYCACAFIAQ2AgAgA0HU0ICAAGogA0HI0ICAAGoiBDYCACAEIAU2AgAgA0HQ0ICAAGogBDYCACADQSBqIgNBgAJHDQALQYDUhIAAQXhBgNSEgABrQQ9xQQBBgNSEgABBCGpBD3EbIgNqIgRBBGogAkFIaiIFIANrIgNBAXI2AgBBAEEAKALw04CAADYCpNCAgABBACADNgKU0ICAAEEAIAQ2AqDQgIAAQYDUhIAAIAVqQTg2AgQLAkACQAJAAkACQAJAAkACQAJAAkACQAJAIABB7AFLDQACQEEAKAKI0ICAACIGQRAgAEETakFwcSAAQQtJGyICQQN2IgR2IgNBA3FFDQACQAJAIANBAXEgBHJBAXMiBUEDdCIEQbDQgIAAaiIDIARBuNCAgABqKAIAIgQoAggiAkcNAEEAIAZBfiAFd3E2AojQgIAADAELIAMgAjYCCCACIAM2AgwLIARBCGohAyAEIAVBA3QiBUEDcjYCBCAEIAVqIgQgBCgCBEEBcjYCBAwMCyACQQAoApDQgIAAIgdNDQECQCADRQ0AAkACQCADIAR0QQIgBHQiA0EAIANrcnEiA0EAIANrcUF/aiIDIANBDHZBEHEiA3YiBEEFdkEIcSIFIANyIAQgBXYiA0ECdkEEcSIEciADIAR2IgNBAXZBAnEiBHIgAyAEdiIDQQF2QQFxIgRyIAMgBHZqIgRBA3QiA0Gw0ICAAGoiBSADQbjQgIAAaigCACIDKAIIIgBHDQBBACAGQX4gBHdxIgY2AojQgIAADAELIAUgADYCCCAAIAU2AgwLIAMgAkEDcjYCBCADIARBA3QiBGogBCACayIFNgIAIAMgAmoiACAFQQFyNgIEAkAgB0UNACAHQXhxQbDQgIAAaiECQQAoApzQgIAAIQQCQAJAIAZBASAHQQN2dCIIcQ0AQQAgBiAIcjYCiNCAgAAgAiEIDAELIAIoAgghCAsgCCAENgIMIAIgBDYCCCAEIAI2AgwgBCAINgIICyADQQhqIQNBACAANgKc0ICAAEEAIAU2ApDQgIAADAwLQQAoAozQgIAAIglFDQEgCUEAIAlrcUF/aiIDIANBDHZBEHEiA3YiBEEFdkEIcSIFIANyIAQgBXYiA0ECdkEEcSIEciADIAR2IgNBAXZBAnEiBHIgAyAEdiIDQQF2QQFxIgRyIAMgBHZqQQJ0QbjSgIAAaigCACIAKAIEQXhxIAJrIQQgACEFAkADQAJAIAUoAhAiAw0AIAVBFGooAgAiA0UNAgsgAygCBEF4cSACayIFIAQgBSAESSIFGyEEIAMgACAFGyEAIAMhBQwACwsgACgCGCEKAkAgACgCDCIIIABGDQAgACgCCCIDQQAoApjQgIAASRogCCADNgIIIAMgCDYCDAwLCwJAIABBFGoiBSgCACIDDQAgACgCECIDRQ0DIABBEGohBQsDQCAFIQsgAyIIQRRqIgUoAgAiAw0AIAhBEGohBSAIKAIQIgMNAAsgC0EANgIADAoLQX8hAiAAQb9/Sw0AIABBE2oiA0FwcSECQQAoAozQgIAAIgdFDQBBACELAkAgAkGAAkkNAEEfIQsgAkH///8HSw0AIANBCHYiAyADQYD+P2pBEHZBCHEiA3QiBCAEQYDgH2pBEHZBBHEiBHQiBSAFQYCAD2pBEHZBAnEiBXRBD3YgAyAEciAFcmsiA0EBdCACIANBFWp2QQFxckEcaiELC0EAIAJrIQQCQAJAAkACQCALQQJ0QbjSgIAAaigCACIFDQBBACEDQQAhCAwBC0EAIQMgAkEAQRkgC0EBdmsgC0EfRht0IQBBACEIA0ACQCAFKAIEQXhxIAJrIgYgBE8NACAGIQQgBSEIIAYNAEEAIQQgBSEIIAUhAwwDCyADIAVBFGooAgAiBiAGIAUgAEEddkEEcWpBEGooAgAiBUYbIAMgBhshAyAAQQF0IQAgBQ0ACwsCQCADIAhyDQBBACEIQQIgC3QiA0EAIANrciAHcSIDRQ0DIANBACADa3FBf2oiAyADQQx2QRBxIgN2IgVBBXZBCHEiACADciAFIAB2IgNBAnZBBHEiBXIgAyAFdiIDQQF2QQJxIgVyIAMgBXYiA0EBdkEBcSIFciADIAV2akECdEG40oCAAGooAgAhAwsgA0UNAQsDQCADKAIEQXhxIAJrIgYgBEkhAAJAIAMoAhAiBQ0AIANBFGooAgAhBQsgBiAEIAAbIQQgAyAIIAAbIQggBSEDIAUNAAsLIAhFDQAgBEEAKAKQ0ICAACACa08NACAIKAIYIQsCQCAIKAIMIgAgCEYNACAIKAIIIgNBACgCmNCAgABJGiAAIAM2AgggAyAANgIMDAkLAkAgCEEUaiIFKAIAIgMNACAIKAIQIgNFDQMgCEEQaiEFCwNAIAUhBiADIgBBFGoiBSgCACIDDQAgAEEQaiEFIAAoAhAiAw0ACyAGQQA2AgAMCAsCQEEAKAKQ0ICAACIDIAJJDQBBACgCnNCAgAAhBAJAAkAgAyACayIFQRBJDQAgBCACaiIAIAVBAXI2AgRBACAFNgKQ0ICAAEEAIAA2ApzQgIAAIAQgA2ogBTYCACAEIAJBA3I2AgQMAQsgBCADQQNyNgIEIAQgA2oiAyADKAIEQQFyNgIEQQBBADYCnNCAgABBAEEANgKQ0ICAAAsgBEEIaiEDDAoLAkBBACgClNCAgAAiACACTQ0AQQAoAqDQgIAAIgMgAmoiBCAAIAJrIgVBAXI2AgRBACAFNgKU0ICAAEEAIAQ2AqDQgIAAIAMgAkEDcjYCBCADQQhqIQMMCgsCQAJAQQAoAuDTgIAARQ0AQQAoAujTgIAAIQQMAQtBAEJ/NwLs04CAAEEAQoCAhICAgMAANwLk04CAAEEAIAFBDGpBcHFB2KrVqgVzNgLg04CAAEEAQQA2AvTTgIAAQQBBADYCxNOAgABBgIAEIQQLQQAhAwJAIAQgAkHHAGoiB2oiBkEAIARrIgtxIgggAksNAEEAQTA2AvjTgIAADAoLAkBBACgCwNOAgAAiA0UNAAJAQQAoArjTgIAAIgQgCGoiBSAETQ0AIAUgA00NAQtBACEDQQBBMDYC+NOAgAAMCgtBAC0AxNOAgABBBHENBAJAAkACQEEAKAKg0ICAACIERQ0AQcjTgIAAIQMDQAJAIAMoAgAiBSAESw0AIAUgAygCBGogBEsNAwsgAygCCCIDDQALC0EAEMuAgIAAIgBBf0YNBSAIIQYCQEEAKALk04CAACIDQX9qIgQgAHFFDQAgCCAAayAEIABqQQAgA2txaiEGCyAGIAJNDQUgBkH+////B0sNBQJAQQAoAsDTgIAAIgNFDQBBACgCuNOAgAAiBCAGaiIFIARNDQYgBSADSw0GCyAGEMuAgIAAIgMgAEcNAQwHCyAGIABrIAtxIgZB/v///wdLDQQgBhDLgICAACIAIAMoAgAgAygCBGpGDQMgACEDCwJAIANBf0YNACACQcgAaiAGTQ0AAkAgByAGa0EAKALo04CAACIEakEAIARrcSIEQf7///8HTQ0AIAMhAAwHCwJAIAQQy4CAgABBf0YNACAEIAZqIQYgAyEADAcLQQAgBmsQy4CAgAAaDAQLIAMhACADQX9HDQUMAwtBACEIDAcLQQAhAAwFCyAAQX9HDQILQQBBACgCxNOAgABBBHI2AsTTgIAACyAIQf7///8HSw0BIAgQy4CAgAAhAEEAEMuAgIAAIQMgAEF/Rg0BIANBf0YNASAAIANPDQEgAyAAayIGIAJBOGpNDQELQQBBACgCuNOAgAAgBmoiAzYCuNOAgAACQCADQQAoArzTgIAATQ0AQQAgAzYCvNOAgAALAkACQAJAAkBBACgCoNCAgAAiBEUNAEHI04CAACEDA0AgACADKAIAIgUgAygCBCIIakYNAiADKAIIIgMNAAwDCwsCQAJAQQAoApjQgIAAIgNFDQAgACADTw0BC0EAIAA2ApjQgIAAC0EAIQNBACAGNgLM04CAAEEAIAA2AsjTgIAAQQBBfzYCqNCAgABBAEEAKALg04CAADYCrNCAgABBAEEANgLU04CAAANAIANBxNCAgABqIANBuNCAgABqIgQ2AgAgBCADQbDQgIAAaiIFNgIAIANBvNCAgABqIAU2AgAgA0HM0ICAAGogA0HA0ICAAGoiBTYCACAFIAQ2AgAgA0HU0ICAAGogA0HI0ICAAGoiBDYCACAEIAU2AgAgA0HQ0ICAAGogBDYCACADQSBqIgNBgAJHDQALIABBeCAAa0EPcUEAIABBCGpBD3EbIgNqIgQgBkFIaiIFIANrIgNBAXI2AgRBAEEAKALw04CAADYCpNCAgABBACADNgKU0ICAAEEAIAQ2AqDQgIAAIAAgBWpBODYCBAwCCyADLQAMQQhxDQAgBCAFSQ0AIAQgAE8NACAEQXggBGtBD3FBACAEQQhqQQ9xGyIFaiIAQQAoApTQgIAAIAZqIgsgBWsiBUEBcjYCBCADIAggBmo2AgRBAEEAKALw04CAADYCpNCAgABBACAFNgKU0ICAAEEAIAA2AqDQgIAAIAQgC2pBODYCBAwBCwJAIABBACgCmNCAgAAiCE8NAEEAIAA2ApjQgIAAIAAhCAsgACAGaiEFQcjTgIAAIQMCQAJAAkACQAJAAkACQANAIAMoAgAgBUYNASADKAIIIgMNAAwCCwsgAy0ADEEIcUUNAQtByNOAgAAhAwNAAkAgAygCACIFIARLDQAgBSADKAIEaiIFIARLDQMLIAMoAgghAwwACwsgAyAANgIAIAMgAygCBCAGajYCBCAAQXggAGtBD3FBACAAQQhqQQ9xG2oiCyACQQNyNgIEIAVBeCAFa0EPcUEAIAVBCGpBD3EbaiIGIAsgAmoiAmshAwJAIAYgBEcNAEEAIAI2AqDQgIAAQQBBACgClNCAgAAgA2oiAzYClNCAgAAgAiADQQFyNgIEDAMLAkAgBkEAKAKc0ICAAEcNAEEAIAI2ApzQgIAAQQBBACgCkNCAgAAgA2oiAzYCkNCAgAAgAiADQQFyNgIEIAIgA2ogAzYCAAwDCwJAIAYoAgQiBEEDcUEBRw0AIARBeHEhBwJAAkAgBEH/AUsNACAGKAIIIgUgBEEDdiIIQQN0QbDQgIAAaiIARhoCQCAGKAIMIgQgBUcNAEEAQQAoAojQgIAAQX4gCHdxNgKI0ICAAAwCCyAEIABGGiAEIAU2AgggBSAENgIMDAELIAYoAhghCQJAAkAgBigCDCIAIAZGDQAgBigCCCIEIAhJGiAAIAQ2AgggBCAANgIMDAELAkAgBkEUaiIEKAIAIgUNACAGQRBqIgQoAgAiBQ0AQQAhAAwBCwNAIAQhCCAFIgBBFGoiBCgCACIFDQAgAEEQaiEEIAAoAhAiBQ0ACyAIQQA2AgALIAlFDQACQAJAIAYgBigCHCIFQQJ0QbjSgIAAaiIEKAIARw0AIAQgADYCACAADQFBAEEAKAKM0ICAAEF+IAV3cTYCjNCAgAAMAgsgCUEQQRQgCSgCECAGRhtqIAA2AgAgAEUNAQsgACAJNgIYAkAgBigCECIERQ0AIAAgBDYCECAEIAA2AhgLIAYoAhQiBEUNACAAQRRqIAQ2AgAgBCAANgIYCyAHIANqIQMgBiAHaiIGKAIEIQQLIAYgBEF+cTYCBCACIANqIAM2AgAgAiADQQFyNgIEAkAgA0H/AUsNACADQXhxQbDQgIAAaiEEAkACQEEAKAKI0ICAACIFQQEgA0EDdnQiA3ENAEEAIAUgA3I2AojQgIAAIAQhAwwBCyAEKAIIIQMLIAMgAjYCDCAEIAI2AgggAiAENgIMIAIgAzYCCAwDC0EfIQQCQCADQf///wdLDQAgA0EIdiIEIARBgP4/akEQdkEIcSIEdCIFIAVBgOAfakEQdkEEcSIFdCIAIABBgIAPakEQdkECcSIAdEEPdiAEIAVyIAByayIEQQF0IAMgBEEVanZBAXFyQRxqIQQLIAIgBDYCHCACQgA3AhAgBEECdEG40oCAAGohBQJAQQAoAozQgIAAIgBBASAEdCIIcQ0AIAUgAjYCAEEAIAAgCHI2AozQgIAAIAIgBTYCGCACIAI2AgggAiACNgIMDAMLIANBAEEZIARBAXZrIARBH0YbdCEEIAUoAgAhAANAIAAiBSgCBEF4cSADRg0CIARBHXYhACAEQQF0IQQgBSAAQQRxakEQaiIIKAIAIgANAAsgCCACNgIAIAIgBTYCGCACIAI2AgwgAiACNgIIDAILIABBeCAAa0EPcUEAIABBCGpBD3EbIgNqIgsgBkFIaiIIIANrIgNBAXI2AgQgACAIakE4NgIEIAQgBUE3IAVrQQ9xQQAgBUFJakEPcRtqQUFqIgggCCAEQRBqSRsiCEEjNgIEQQBBACgC8NOAgAA2AqTQgIAAQQAgAzYClNCAgABBACALNgKg0ICAACAIQRBqQQApAtDTgIAANwIAIAhBACkCyNOAgAA3AghBACAIQQhqNgLQ04CAAEEAIAY2AszTgIAAQQAgADYCyNOAgABBAEEANgLU04CAACAIQSRqIQMDQCADQQc2AgAgA0EEaiIDIAVJDQALIAggBEYNAyAIIAgoAgRBfnE2AgQgCCAIIARrIgA2AgAgBCAAQQFyNgIEAkAgAEH/AUsNACAAQXhxQbDQgIAAaiEDAkACQEEAKAKI0ICAACIFQQEgAEEDdnQiAHENAEEAIAUgAHI2AojQgIAAIAMhBQwBCyADKAIIIQULIAUgBDYCDCADIAQ2AgggBCADNgIMIAQgBTYCCAwEC0EfIQMCQCAAQf///wdLDQAgAEEIdiIDIANBgP4/akEQdkEIcSIDdCIFIAVBgOAfakEQdkEEcSIFdCIIIAhBgIAPakEQdkECcSIIdEEPdiADIAVyIAhyayIDQQF0IAAgA0EVanZBAXFyQRxqIQMLIAQgAzYCHCAEQgA3AhAgA0ECdEG40oCAAGohBQJAQQAoAozQgIAAIghBASADdCIGcQ0AIAUgBDYCAEEAIAggBnI2AozQgIAAIAQgBTYCGCAEIAQ2AgggBCAENgIMDAQLIABBAEEZIANBAXZrIANBH0YbdCEDIAUoAgAhCANAIAgiBSgCBEF4cSAARg0DIANBHXYhCCADQQF0IQMgBSAIQQRxakEQaiIGKAIAIggNAAsgBiAENgIAIAQgBTYCGCAEIAQ2AgwgBCAENgIIDAMLIAUoAggiAyACNgIMIAUgAjYCCCACQQA2AhggAiAFNgIMIAIgAzYCCAsgC0EIaiEDDAULIAUoAggiAyAENgIMIAUgBDYCCCAEQQA2AhggBCAFNgIMIAQgAzYCCAtBACgClNCAgAAiAyACTQ0AQQAoAqDQgIAAIgQgAmoiBSADIAJrIgNBAXI2AgRBACADNgKU0ICAAEEAIAU2AqDQgIAAIAQgAkEDcjYCBCAEQQhqIQMMAwtBACEDQQBBMDYC+NOAgAAMAgsCQCALRQ0AAkACQCAIIAgoAhwiBUECdEG40oCAAGoiAygCAEcNACADIAA2AgAgAA0BQQAgB0F+IAV3cSIHNgKM0ICAAAwCCyALQRBBFCALKAIQIAhGG2ogADYCACAARQ0BCyAAIAs2AhgCQCAIKAIQIgNFDQAgACADNgIQIAMgADYCGAsgCEEUaigCACIDRQ0AIABBFGogAzYCACADIAA2AhgLAkACQCAEQQ9LDQAgCCAEIAJqIgNBA3I2AgQgCCADaiIDIAMoAgRBAXI2AgQMAQsgCCACaiIAIARBAXI2AgQgCCACQQNyNgIEIAAgBGogBDYCAAJAIARB/wFLDQAgBEF4cUGw0ICAAGohAwJAAkBBACgCiNCAgAAiBUEBIARBA3Z0IgRxDQBBACAFIARyNgKI0ICAACADIQQMAQsgAygCCCEECyAEIAA2AgwgAyAANgIIIAAgAzYCDCAAIAQ2AggMAQtBHyEDAkAgBEH///8HSw0AIARBCHYiAyADQYD+P2pBEHZBCHEiA3QiBSAFQYDgH2pBEHZBBHEiBXQiAiACQYCAD2pBEHZBAnEiAnRBD3YgAyAFciACcmsiA0EBdCAEIANBFWp2QQFxckEcaiEDCyAAIAM2AhwgAEIANwIQIANBAnRBuNKAgABqIQUCQCAHQQEgA3QiAnENACAFIAA2AgBBACAHIAJyNgKM0ICAACAAIAU2AhggACAANgIIIAAgADYCDAwBCyAEQQBBGSADQQF2ayADQR9GG3QhAyAFKAIAIQICQANAIAIiBSgCBEF4cSAERg0BIANBHXYhAiADQQF0IQMgBSACQQRxakEQaiIGKAIAIgINAAsgBiAANgIAIAAgBTYCGCAAIAA2AgwgACAANgIIDAELIAUoAggiAyAANgIMIAUgADYCCCAAQQA2AhggACAFNgIMIAAgAzYCCAsgCEEIaiEDDAELAkAgCkUNAAJAAkAgACAAKAIcIgVBAnRBuNKAgABqIgMoAgBHDQAgAyAINgIAIAgNAUEAIAlBfiAFd3E2AozQgIAADAILIApBEEEUIAooAhAgAEYbaiAINgIAIAhFDQELIAggCjYCGAJAIAAoAhAiA0UNACAIIAM2AhAgAyAINgIYCyAAQRRqKAIAIgNFDQAgCEEUaiADNgIAIAMgCDYCGAsCQAJAIARBD0sNACAAIAQgAmoiA0EDcjYCBCAAIANqIgMgAygCBEEBcjYCBAwBCyAAIAJqIgUgBEEBcjYCBCAAIAJBA3I2AgQgBSAEaiAENgIAAkAgB0UNACAHQXhxQbDQgIAAaiECQQAoApzQgIAAIQMCQAJAQQEgB0EDdnQiCCAGcQ0AQQAgCCAGcjYCiNCAgAAgAiEIDAELIAIoAgghCAsgCCADNgIMIAIgAzYCCCADIAI2AgwgAyAINgIIC0EAIAU2ApzQgIAAQQAgBDYCkNCAgAALIABBCGohAwsgAUEQaiSAgICAACADCwoAIAAQyYCAgAAL4g0BB38CQCAARQ0AIABBeGoiASAAQXxqKAIAIgJBeHEiAGohAwJAIAJBAXENACACQQNxRQ0BIAEgASgCACICayIBQQAoApjQgIAAIgRJDQEgAiAAaiEAAkAgAUEAKAKc0ICAAEYNAAJAIAJB/wFLDQAgASgCCCIEIAJBA3YiBUEDdEGw0ICAAGoiBkYaAkAgASgCDCICIARHDQBBAEEAKAKI0ICAAEF+IAV3cTYCiNCAgAAMAwsgAiAGRhogAiAENgIIIAQgAjYCDAwCCyABKAIYIQcCQAJAIAEoAgwiBiABRg0AIAEoAggiAiAESRogBiACNgIIIAIgBjYCDAwBCwJAIAFBFGoiAigCACIEDQAgAUEQaiICKAIAIgQNAEEAIQYMAQsDQCACIQUgBCIGQRRqIgIoAgAiBA0AIAZBEGohAiAGKAIQIgQNAAsgBUEANgIACyAHRQ0BAkACQCABIAEoAhwiBEECdEG40oCAAGoiAigCAEcNACACIAY2AgAgBg0BQQBBACgCjNCAgABBfiAEd3E2AozQgIAADAMLIAdBEEEUIAcoAhAgAUYbaiAGNgIAIAZFDQILIAYgBzYCGAJAIAEoAhAiAkUNACAGIAI2AhAgAiAGNgIYCyABKAIUIgJFDQEgBkEUaiACNgIAIAIgBjYCGAwBCyADKAIEIgJBA3FBA0cNACADIAJBfnE2AgRBACAANgKQ0ICAACABIABqIAA2AgAgASAAQQFyNgIEDwsgASADTw0AIAMoAgQiAkEBcUUNAAJAAkAgAkECcQ0AAkAgA0EAKAKg0ICAAEcNAEEAIAE2AqDQgIAAQQBBACgClNCAgAAgAGoiADYClNCAgAAgASAAQQFyNgIEIAFBACgCnNCAgABHDQNBAEEANgKQ0ICAAEEAQQA2ApzQgIAADwsCQCADQQAoApzQgIAARw0AQQAgATYCnNCAgABBAEEAKAKQ0ICAACAAaiIANgKQ0ICAACABIABBAXI2AgQgASAAaiAANgIADwsgAkF4cSAAaiEAAkACQCACQf8BSw0AIAMoAggiBCACQQN2IgVBA3RBsNCAgABqIgZGGgJAIAMoAgwiAiAERw0AQQBBACgCiNCAgABBfiAFd3E2AojQgIAADAILIAIgBkYaIAIgBDYCCCAEIAI2AgwMAQsgAygCGCEHAkACQCADKAIMIgYgA0YNACADKAIIIgJBACgCmNCAgABJGiAGIAI2AgggAiAGNgIMDAELAkAgA0EUaiICKAIAIgQNACADQRBqIgIoAgAiBA0AQQAhBgwBCwNAIAIhBSAEIgZBFGoiAigCACIEDQAgBkEQaiECIAYoAhAiBA0ACyAFQQA2AgALIAdFDQACQAJAIAMgAygCHCIEQQJ0QbjSgIAAaiICKAIARw0AIAIgBjYCACAGDQFBAEEAKAKM0ICAAEF+IAR3cTYCjNCAgAAMAgsgB0EQQRQgBygCECADRhtqIAY2AgAgBkUNAQsgBiAHNgIYAkAgAygCECICRQ0AIAYgAjYCECACIAY2AhgLIAMoAhQiAkUNACAGQRRqIAI2AgAgAiAGNgIYCyABIABqIAA2AgAgASAAQQFyNgIEIAFBACgCnNCAgABHDQFBACAANgKQ0ICAAA8LIAMgAkF+cTYCBCABIABqIAA2AgAgASAAQQFyNgIECwJAIABB/wFLDQAgAEF4cUGw0ICAAGohAgJAAkBBACgCiNCAgAAiBEEBIABBA3Z0IgBxDQBBACAEIAByNgKI0ICAACACIQAMAQsgAigCCCEACyAAIAE2AgwgAiABNgIIIAEgAjYCDCABIAA2AggPC0EfIQICQCAAQf///wdLDQAgAEEIdiICIAJBgP4/akEQdkEIcSICdCIEIARBgOAfakEQdkEEcSIEdCIGIAZBgIAPakEQdkECcSIGdEEPdiACIARyIAZyayICQQF0IAAgAkEVanZBAXFyQRxqIQILIAEgAjYCHCABQgA3AhAgAkECdEG40oCAAGohBAJAAkBBACgCjNCAgAAiBkEBIAJ0IgNxDQAgBCABNgIAQQAgBiADcjYCjNCAgAAgASAENgIYIAEgATYCCCABIAE2AgwMAQsgAEEAQRkgAkEBdmsgAkEfRht0IQIgBCgCACEGAkADQCAGIgQoAgRBeHEgAEYNASACQR12IQYgAkEBdCECIAQgBkEEcWpBEGoiAygCACIGDQALIAMgATYCACABIAQ2AhggASABNgIMIAEgATYCCAwBCyAEKAIIIgAgATYCDCAEIAE2AgggAUEANgIYIAEgBDYCDCABIAA2AggLQQBBACgCqNCAgABBf2oiAUF/IAEbNgKo0ICAAAsLBAAAAAtOAAJAIAANAD8AQRB0DwsCQCAAQf//A3ENACAAQX9MDQACQCAAQRB2QAAiAEF/Rw0AQQBBMDYC+NOAgABBfw8LIABBEHQPCxDKgICAAAAL8gICA38BfgJAIAJFDQAgACABOgAAIAIgAGoiA0F/aiABOgAAIAJBA0kNACAAIAE6AAIgACABOgABIANBfWogAToAACADQX5qIAE6AAAgAkEHSQ0AIAAgAToAAyADQXxqIAE6AAAgAkEJSQ0AIABBACAAa0EDcSIEaiIDIAFB/wFxQYGChAhsIgE2AgAgAyACIARrQXxxIgRqIgJBfGogATYCACAEQQlJDQAgAyABNgIIIAMgATYCBCACQXhqIAE2AgAgAkF0aiABNgIAIARBGUkNACADIAE2AhggAyABNgIUIAMgATYCECADIAE2AgwgAkFwaiABNgIAIAJBbGogATYCACACQWhqIAE2AgAgAkFkaiABNgIAIAQgA0EEcUEYciIFayICQSBJDQAgAa1CgYCAgBB+IQYgAyAFaiEBA0AgASAGNwMYIAEgBjcDECABIAY3AwggASAGNwMAIAFBIGohASACQWBqIgJBH0sNAAsLIAALC45IAQBBgAgLhkgBAAAAAgAAAAMAAAAAAAAAAAAAAAQAAAAFAAAAAAAAAAAAAAAGAAAABwAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEludmFsaWQgY2hhciBpbiB1cmwgcXVlcnkAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9ib2R5AENvbnRlbnQtTGVuZ3RoIG92ZXJmbG93AENodW5rIHNpemUgb3ZlcmZsb3cAUmVzcG9uc2Ugb3ZlcmZsb3cASW52YWxpZCBtZXRob2QgZm9yIEhUVFAveC54IHJlcXVlc3QASW52YWxpZCBtZXRob2QgZm9yIFJUU1AveC54IHJlcXVlc3QARXhwZWN0ZWQgU09VUkNFIG1ldGhvZCBmb3IgSUNFL3gueCByZXF1ZXN0AEludmFsaWQgY2hhciBpbiB1cmwgZnJhZ21lbnQgc3RhcnQARXhwZWN0ZWQgZG90AFNwYW4gY2FsbGJhY2sgZXJyb3IgaW4gb25fc3RhdHVzAEludmFsaWQgcmVzcG9uc2Ugc3RhdHVzAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIGV4dGVuc2lvbnMAVXNlciBjYWxsYmFjayBlcnJvcgBgb25fcmVzZXRgIGNhbGxiYWNrIGVycm9yAGBvbl9jaHVua19oZWFkZXJgIGNhbGxiYWNrIGVycm9yAGBvbl9tZXNzYWdlX2JlZ2luYCBjYWxsYmFjayBlcnJvcgBgb25fY2h1bmtfZXh0ZW5zaW9uX3ZhbHVlYCBjYWxsYmFjayBlcnJvcgBgb25fc3RhdHVzX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fdmVyc2lvbl9jb21wbGV0ZWAgY2FsbGJhY2sgZXJyb3IAYG9uX3VybF9jb21wbGV0ZWAgY2FsbGJhY2sgZXJyb3IAYG9uX2NodW5rX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25faGVhZGVyX3ZhbHVlX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fbWVzc2FnZV9jb21wbGV0ZWAgY2FsbGJhY2sgZXJyb3IAYG9uX21ldGhvZF9jb21wbGV0ZWAgY2FsbGJhY2sgZXJyb3IAYG9uX2hlYWRlcl9maWVsZF9jb21wbGV0ZWAgY2FsbGJhY2sgZXJyb3IAYG9uX2NodW5rX2V4dGVuc2lvbl9uYW1lYCBjYWxsYmFjayBlcnJvcgBVbmV4cGVjdGVkIGNoYXIgaW4gdXJsIHNlcnZlcgBJbnZhbGlkIGhlYWRlciB2YWx1ZSBjaGFyAEludmFsaWQgaGVhZGVyIGZpZWxkIGNoYXIAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl92ZXJzaW9uAEludmFsaWQgbWlub3IgdmVyc2lvbgBJbnZhbGlkIG1ham9yIHZlcnNpb24ARXhwZWN0ZWQgc3BhY2UgYWZ0ZXIgdmVyc2lvbgBFeHBlY3RlZCBDUkxGIGFmdGVyIHZlcnNpb24ASW52YWxpZCBIVFRQIHZlcnNpb24ASW52YWxpZCBoZWFkZXIgdG9rZW4AU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl91cmwASW52YWxpZCBjaGFyYWN0ZXJzIGluIHVybABVbmV4cGVjdGVkIHN0YXJ0IGNoYXIgaW4gdXJsAERvdWJsZSBAIGluIHVybABFbXB0eSBDb250ZW50LUxlbmd0aABJbnZhbGlkIGNoYXJhY3RlciBpbiBDb250ZW50LUxlbmd0aABEdXBsaWNhdGUgQ29udGVudC1MZW5ndGgASW52YWxpZCBjaGFyIGluIHVybCBwYXRoAENvbnRlbnQtTGVuZ3RoIGNhbid0IGJlIHByZXNlbnQgd2l0aCBUcmFuc2Zlci1FbmNvZGluZwBJbnZhbGlkIGNoYXJhY3RlciBpbiBjaHVuayBzaXplAFNwYW4gY2FsbGJhY2sgZXJyb3IgaW4gb25faGVhZGVyX3ZhbHVlAFNwYW4gY2FsbGJhY2sgZXJyb3IgaW4gb25fY2h1bmtfZXh0ZW5zaW9uX3ZhbHVlAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIGV4dGVuc2lvbnMgdmFsdWUATWlzc2luZyBleHBlY3RlZCBMRiBhZnRlciBoZWFkZXIgdmFsdWUASW52YWxpZCBgVHJhbnNmZXItRW5jb2RpbmdgIGhlYWRlciB2YWx1ZQBJbnZhbGlkIGNoYXJhY3RlciBpbiBjaHVuayBleHRlbnNpb25zIHF1b3RlIHZhbHVlAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIGV4dGVuc2lvbnMgcXVvdGVkIHZhbHVlAFBhdXNlZCBieSBvbl9oZWFkZXJzX2NvbXBsZXRlAEludmFsaWQgRU9GIHN0YXRlAG9uX3Jlc2V0IHBhdXNlAG9uX2NodW5rX2hlYWRlciBwYXVzZQBvbl9tZXNzYWdlX2JlZ2luIHBhdXNlAG9uX2NodW5rX2V4dGVuc2lvbl92YWx1ZSBwYXVzZQBvbl9zdGF0dXNfY29tcGxldGUgcGF1c2UAb25fdmVyc2lvbl9jb21wbGV0ZSBwYXVzZQBvbl91cmxfY29tcGxldGUgcGF1c2UAb25fY2h1bmtfY29tcGxldGUgcGF1c2UAb25faGVhZGVyX3ZhbHVlX2NvbXBsZXRlIHBhdXNlAG9uX21lc3NhZ2VfY29tcGxldGUgcGF1c2UAb25fbWV0aG9kX2NvbXBsZXRlIHBhdXNlAG9uX2hlYWRlcl9maWVsZF9jb21wbGV0ZSBwYXVzZQBvbl9jaHVua19leHRlbnNpb25fbmFtZSBwYXVzZQBVbmV4cGVjdGVkIHNwYWNlIGFmdGVyIHN0YXJ0IGxpbmUAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9jaHVua19leHRlbnNpb25fbmFtZQBJbnZhbGlkIGNoYXJhY3RlciBpbiBjaHVuayBleHRlbnNpb25zIG5hbWUAUGF1c2Ugb24gQ09OTkVDVC9VcGdyYWRlAFBhdXNlIG9uIFBSSS9VcGdyYWRlAEV4cGVjdGVkIEhUVFAvMiBDb25uZWN0aW9uIFByZWZhY2UAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9tZXRob2QARXhwZWN0ZWQgc3BhY2UgYWZ0ZXIgbWV0aG9kAFNwYW4gY2FsbGJhY2sgZXJyb3IgaW4gb25faGVhZGVyX2ZpZWxkAFBhdXNlZABJbnZhbGlkIHdvcmQgZW5jb3VudGVyZWQASW52YWxpZCBtZXRob2QgZW5jb3VudGVyZWQAVW5leHBlY3RlZCBjaGFyIGluIHVybCBzY2hlbWEAUmVxdWVzdCBoYXMgaW52YWxpZCBgVHJhbnNmZXItRW5jb2RpbmdgAFNXSVRDSF9QUk9YWQBVU0VfUFJPWFkATUtBQ1RJVklUWQBVTlBST0NFU1NBQkxFX0VOVElUWQBDT1BZAE1PVkVEX1BFUk1BTkVOVExZAFRPT19FQVJMWQBOT1RJRlkARkFJTEVEX0RFUEVOREVOQ1kAQkFEX0dBVEVXQVkAUExBWQBQVVQAQ0hFQ0tPVVQAR0FURVdBWV9USU1FT1VUAFJFUVVFU1RfVElNRU9VVABORVRXT1JLX0NPTk5FQ1RfVElNRU9VVABDT05ORUNUSU9OX1RJTUVPVVQATE9HSU5fVElNRU9VVABORVRXT1JLX1JFQURfVElNRU9VVABQT1NUAE1JU0RJUkVDVEVEX1JFUVVFU1QAQ0xJRU5UX0NMT1NFRF9SRVFVRVNUAENMSUVOVF9DTE9TRURfTE9BRF9CQUxBTkNFRF9SRVFVRVNUAEJBRF9SRVFVRVNUAEhUVFBfUkVRVUVTVF9TRU5UX1RPX0hUVFBTX1BPUlQAUkVQT1JUAElNX0FfVEVBUE9UAFJFU0VUX0NPTlRFTlQATk9fQ09OVEVOVABQQVJUSUFMX0NPTlRFTlQASFBFX0lOVkFMSURfQ09OU1RBTlQASFBFX0NCX1JFU0VUAEdFVABIUEVfU1RSSUNUAENPTkZMSUNUAFRFTVBPUkFSWV9SRURJUkVDVABQRVJNQU5FTlRfUkVESVJFQ1QAQ09OTkVDVABNVUxUSV9TVEFUVVMASFBFX0lOVkFMSURfU1RBVFVTAFRPT19NQU5ZX1JFUVVFU1RTAEVBUkxZX0hJTlRTAFVOQVZBSUxBQkxFX0ZPUl9MRUdBTF9SRUFTT05TAE9QVElPTlMAU1dJVENISU5HX1BST1RPQ09MUwBWQVJJQU5UX0FMU09fTkVHT1RJQVRFUwBNVUxUSVBMRV9DSE9JQ0VTAElOVEVSTkFMX1NFUlZFUl9FUlJPUgBXRUJfU0VSVkVSX1VOS05PV05fRVJST1IAUkFJTEdVTl9FUlJPUgBJREVOVElUWV9QUk9WSURFUl9BVVRIRU5USUNBVElPTl9FUlJPUgBTU0xfQ0VSVElGSUNBVEVfRVJST1IASU5WQUxJRF9YX0ZPUldBUkRFRF9GT1IAU0VUX1BBUkFNRVRFUgBHRVRfUEFSQU1FVEVSAEhQRV9VU0VSAFNFRV9PVEhFUgBIUEVfQ0JfQ0hVTktfSEVBREVSAE1LQ0FMRU5EQVIAU0VUVVAAV0VCX1NFUlZFUl9JU19ET1dOAFRFQVJET1dOAEhQRV9DTE9TRURfQ09OTkVDVElPTgBIRVVSSVNUSUNfRVhQSVJBVElPTgBESVNDT05ORUNURURfT1BFUkFUSU9OAE5PTl9BVVRIT1JJVEFUSVZFX0lORk9STUFUSU9OAEhQRV9JTlZBTElEX1ZFUlNJT04ASFBFX0NCX01FU1NBR0VfQkVHSU4AU0lURV9JU19GUk9aRU4ASFBFX0lOVkFMSURfSEVBREVSX1RPS0VOAElOVkFMSURfVE9LRU4ARk9SQklEREVOAEVOSEFOQ0VfWU9VUl9DQUxNAEhQRV9JTlZBTElEX1VSTABCTE9DS0VEX0JZX1BBUkVOVEFMX0NPTlRST0wATUtDT0wAQUNMAEhQRV9JTlRFUk5BTABSRVFVRVNUX0hFQURFUl9GSUVMRFNfVE9PX0xBUkdFX1VOT0ZGSUNJQUwASFBFX09LAFVOTElOSwBVTkxPQ0sAUFJJAFJFVFJZX1dJVEgASFBFX0lOVkFMSURfQ09OVEVOVF9MRU5HVEgASFBFX1VORVhQRUNURURfQ09OVEVOVF9MRU5HVEgARkxVU0gAUFJPUFBBVENIAE0tU0VBUkNIAFVSSV9UT09fTE9ORwBQUk9DRVNTSU5HAE1JU0NFTExBTkVPVVNfUEVSU0lTVEVOVF9XQVJOSU5HAE1JU0NFTExBTkVPVVNfV0FSTklORwBIUEVfSU5WQUxJRF9UUkFOU0ZFUl9FTkNPRElORwBFeHBlY3RlZCBDUkxGAEhQRV9JTlZBTElEX0NIVU5LX1NJWkUATU9WRQBDT05USU5VRQBIUEVfQ0JfU1RBVFVTX0NPTVBMRVRFAEhQRV9DQl9IRUFERVJTX0NPTVBMRVRFAEhQRV9DQl9WRVJTSU9OX0NPTVBMRVRFAEhQRV9DQl9VUkxfQ09NUExFVEUASFBFX0NCX0NIVU5LX0NPTVBMRVRFAEhQRV9DQl9IRUFERVJfVkFMVUVfQ09NUExFVEUASFBFX0NCX0NIVU5LX0VYVEVOU0lPTl9WQUxVRV9DT01QTEVURQBIUEVfQ0JfQ0hVTktfRVhURU5TSU9OX05BTUVfQ09NUExFVEUASFBFX0NCX01FU1NBR0VfQ09NUExFVEUASFBFX0NCX01FVEhPRF9DT01QTEVURQBIUEVfQ0JfSEVBREVSX0ZJRUxEX0NPTVBMRVRFAERFTEVURQBIUEVfSU5WQUxJRF9FT0ZfU1RBVEUASU5WQUxJRF9TU0xfQ0VSVElGSUNBVEUAUEFVU0UATk9fUkVTUE9OU0UAVU5TVVBQT1JURURfTUVESUFfVFlQRQBHT05FAE5PVF9BQ0NFUFRBQkxFAFNFUlZJQ0VfVU5BVkFJTEFCTEUAUkFOR0VfTk9UX1NBVElTRklBQkxFAE9SSUdJTl9JU19VTlJFQUNIQUJMRQBSRVNQT05TRV9JU19TVEFMRQBQVVJHRQBNRVJHRQBSRVFVRVNUX0hFQURFUl9GSUVMRFNfVE9PX0xBUkdFAFJFUVVFU1RfSEVBREVSX1RPT19MQVJHRQBQQVlMT0FEX1RPT19MQVJHRQBJTlNVRkZJQ0lFTlRfU1RPUkFHRQBIUEVfUEFVU0VEX1VQR1JBREUASFBFX1BBVVNFRF9IMl9VUEdSQURFAFNPVVJDRQBBTk5PVU5DRQBUUkFDRQBIUEVfVU5FWFBFQ1RFRF9TUEFDRQBERVNDUklCRQBVTlNVQlNDUklCRQBSRUNPUkQASFBFX0lOVkFMSURfTUVUSE9EAE5PVF9GT1VORABQUk9QRklORABVTkJJTkQAUkVCSU5EAFVOQVVUSE9SSVpFRABNRVRIT0RfTk9UX0FMTE9XRUQASFRUUF9WRVJTSU9OX05PVF9TVVBQT1JURUQAQUxSRUFEWV9SRVBPUlRFRABBQ0NFUFRFRABOT1RfSU1QTEVNRU5URUQATE9PUF9ERVRFQ1RFRABIUEVfQ1JfRVhQRUNURUQASFBFX0xGX0VYUEVDVEVEAENSRUFURUQASU1fVVNFRABIUEVfUEFVU0VEAFRJTUVPVVRfT0NDVVJFRABQQVlNRU5UX1JFUVVJUkVEAFBSRUNPTkRJVElPTl9SRVFVSVJFRABQUk9YWV9BVVRIRU5USUNBVElPTl9SRVFVSVJFRABORVRXT1JLX0FVVEhFTlRJQ0FUSU9OX1JFUVVJUkVEAExFTkdUSF9SRVFVSVJFRABTU0xfQ0VSVElGSUNBVEVfUkVRVUlSRUQAVVBHUkFERV9SRVFVSVJFRABQQUdFX0VYUElSRUQAUFJFQ09ORElUSU9OX0ZBSUxFRABFWFBFQ1RBVElPTl9GQUlMRUQAUkVWQUxJREFUSU9OX0ZBSUxFRABTU0xfSEFORFNIQUtFX0ZBSUxFRABMT0NLRUQAVFJBTlNGT1JNQVRJT05fQVBQTElFRABOT1RfTU9ESUZJRUQATk9UX0VYVEVOREVEAEJBTkRXSURUSF9MSU1JVF9FWENFRURFRABTSVRFX0lTX09WRVJMT0FERUQASEVBRABFeHBlY3RlZCBIVFRQLwAAXhMAACYTAAAwEAAA8BcAAJ0TAAAVEgAAORcAAPASAAAKEAAAdRIAAK0SAACCEwAATxQAAH8QAACgFQAAIxQAAIkSAACLFAAATRUAANQRAADPFAAAEBgAAMkWAADcFgAAwREAAOAXAAC7FAAAdBQAAHwVAADlFAAACBcAAB8QAABlFQAAoxQAACgVAAACFQAAmRUAACwQAACLGQAATw8AANQOAABqEAAAzhAAAAIXAACJDgAAbhMAABwTAABmFAAAVhcAAMETAADNEwAAbBMAAGgXAABmFwAAXxcAACITAADODwAAaQ4AANgOAABjFgAAyxMAAKoOAAAoFwAAJhcAAMUTAABdFgAA6BEAAGcTAABlEwAA8hYAAHMTAAAdFwAA+RYAAPMRAADPDgAAzhUAAAwSAACzEQAApREAAGEQAAAyFwAAuxMAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQIBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAIDAgICAgIAAAICAAICAAICAgICAgICAgIABAAAAAAAAgICAgICAgICAgICAgICAgICAgICAgICAgIAAAACAgICAgICAgICAgICAgICAgICAgICAgICAgICAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAACAAICAgICAAACAgACAgACAgICAgICAgICAAMABAAAAAICAgICAgICAgICAgICAgICAgICAgICAgICAAAAAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAAgACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbG9zZWVlcC1hbGl2ZQAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEBAQEBAQEBAQIBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBY2h1bmtlZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAQEBAQEAAAEBAAEBAAEBAQEBAQEBAQEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlY3Rpb25lbnQtbGVuZ3Rob25yb3h5LWNvbm5lY3Rpb24AAAAAAAAAAAAAAAAAAAByYW5zZmVyLWVuY29kaW5ncGdyYWRlDQoNCg0KU00NCg0KVFRQL0NFL1RTUC8AAAAAAAAAAAAAAAABAgABAwAAAAAAAAAAAAAAAAAAAAAAAAQBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAAAAQIAAQMAAAAAAAAAAAAAAAAAAAAAAAAEAQEFAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAEAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAQAAAgAAAAAAAAAAAAAAAAAAAAAAAAMEAAAEBAQEBAQEBAQEBAUEBAQEBAQEBAQEBAQABAAGBwQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEAAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAEAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAADAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwAAAAAAAAMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAABAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAIAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAAAAAAAADAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOT1VOQ0VFQ0tPVVRORUNURVRFQ1JJQkVMVVNIRVRFQURTRUFSQ0hSR0VDVElWSVRZTEVOREFSVkVPVElGWVBUSU9OU0NIU0VBWVNUQVRDSEdFT1JESVJFQ1RPUlRSQ0hQQVJBTUVURVJVUkNFQlNDUklCRUFSRE9XTkFDRUlORE5LQ0tVQlNDUklCRUhUVFAvQURUUC8=' + + +/***/ }), + +/***/ 3434: +/***/ ((module) => { + +module.exports = 'AGFzbQEAAAABMAhgAX8Bf2ADf39/AX9gBH9/f38Bf2AAAGADf39/AGABfwBgAn9/AGAGf39/f39/AALLAQgDZW52GHdhc21fb25faGVhZGVyc19jb21wbGV0ZQACA2VudhV3YXNtX29uX21lc3NhZ2VfYmVnaW4AAANlbnYLd2FzbV9vbl91cmwAAQNlbnYOd2FzbV9vbl9zdGF0dXMAAQNlbnYUd2FzbV9vbl9oZWFkZXJfZmllbGQAAQNlbnYUd2FzbV9vbl9oZWFkZXJfdmFsdWUAAQNlbnYMd2FzbV9vbl9ib2R5AAEDZW52GHdhc21fb25fbWVzc2FnZV9jb21wbGV0ZQAAA0ZFAwMEAAAFAAAAAAAABQEFAAUFBQAABgAAAAAGBgYGAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAAABAQcAAAUFAwABBAUBcAESEgUDAQACBggBfwFBgNQECwfRBSIGbWVtb3J5AgALX2luaXRpYWxpemUACRlfX2luZGlyZWN0X2Z1bmN0aW9uX3RhYmxlAQALbGxodHRwX2luaXQAChhsbGh0dHBfc2hvdWxkX2tlZXBfYWxpdmUAQQxsbGh0dHBfYWxsb2MADAZtYWxsb2MARgtsbGh0dHBfZnJlZQANBGZyZWUASA9sbGh0dHBfZ2V0X3R5cGUADhVsbGh0dHBfZ2V0X2h0dHBfbWFqb3IADxVsbGh0dHBfZ2V0X2h0dHBfbWlub3IAEBFsbGh0dHBfZ2V0X21ldGhvZAARFmxsaHR0cF9nZXRfc3RhdHVzX2NvZGUAEhJsbGh0dHBfZ2V0X3VwZ3JhZGUAEwxsbGh0dHBfcmVzZXQAFA5sbGh0dHBfZXhlY3V0ZQAVFGxsaHR0cF9zZXR0aW5nc19pbml0ABYNbGxodHRwX2ZpbmlzaAAXDGxsaHR0cF9wYXVzZQAYDWxsaHR0cF9yZXN1bWUAGRtsbGh0dHBfcmVzdW1lX2FmdGVyX3VwZ3JhZGUAGhBsbGh0dHBfZ2V0X2Vycm5vABsXbGxodHRwX2dldF9lcnJvcl9yZWFzb24AHBdsbGh0dHBfc2V0X2Vycm9yX3JlYXNvbgAdFGxsaHR0cF9nZXRfZXJyb3JfcG9zAB4RbGxodHRwX2Vycm5vX25hbWUAHxJsbGh0dHBfbWV0aG9kX25hbWUAIBJsbGh0dHBfc3RhdHVzX25hbWUAIRpsbGh0dHBfc2V0X2xlbmllbnRfaGVhZGVycwAiIWxsaHR0cF9zZXRfbGVuaWVudF9jaHVua2VkX2xlbmd0aAAjHWxsaHR0cF9zZXRfbGVuaWVudF9rZWVwX2FsaXZlACQkbGxodHRwX3NldF9sZW5pZW50X3RyYW5zZmVyX2VuY29kaW5nACUYbGxodHRwX21lc3NhZ2VfbmVlZHNfZW9mAD8JFwEAQQELEQECAwQFCwYHNTk3MS8tJyspCrLgAkUCAAsIABCIgICAAAsZACAAEMKAgIAAGiAAIAI2AjggACABOgAoCxwAIAAgAC8BMiAALQAuIAAQwYCAgAAQgICAgAALKgEBf0HAABDGgICAACIBEMKAgIAAGiABQYCIgIAANgI4IAEgADoAKCABCwoAIAAQyICAgAALBwAgAC0AKAsHACAALQAqCwcAIAAtACsLBwAgAC0AKQsHACAALwEyCwcAIAAtAC4LRQEEfyAAKAIYIQEgAC0ALSECIAAtACghAyAAKAI4IQQgABDCgICAABogACAENgI4IAAgAzoAKCAAIAI6AC0gACABNgIYCxEAIAAgASABIAJqEMOAgIAACxAAIABBAEHcABDMgICAABoLZwEBf0EAIQECQCAAKAIMDQACQAJAAkACQCAALQAvDgMBAAMCCyAAKAI4IgFFDQAgASgCLCIBRQ0AIAAgARGAgICAAAAiAQ0DC0EADwsQyoCAgAAACyAAQcOWgIAANgIQQQ4hAQsgAQseAAJAIAAoAgwNACAAQdGbgIAANgIQIABBFTYCDAsLFgACQCAAKAIMQRVHDQAgAEEANgIMCwsWAAJAIAAoAgxBFkcNACAAQQA2AgwLCwcAIAAoAgwLBwAgACgCEAsJACAAIAE2AhALBwAgACgCFAsiAAJAIABBJEkNABDKgICAAAALIABBAnRBoLOAgABqKAIACyIAAkAgAEEuSQ0AEMqAgIAAAAsgAEECdEGwtICAAGooAgAL7gsBAX9B66iAgAAhAQJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAIABBnH9qDvQDY2IAAWFhYWFhYQIDBAVhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhBgcICQoLDA0OD2FhYWFhEGFhYWFhYWFhYWFhEWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYRITFBUWFxgZGhthYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhHB0eHyAhIiMkJSYnKCkqKywtLi8wMTIzNDU2YTc4OTphYWFhYWFhYTthYWE8YWFhYT0+P2FhYWFhYWFhQGFhQWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYUJDREVGR0hJSktMTU5PUFFSU2FhYWFhYWFhVFVWV1hZWlthXF1hYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFeYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhX2BhC0Hhp4CAAA8LQaShgIAADwtBy6yAgAAPC0H+sYCAAA8LQcCkgIAADwtBq6SAgAAPC0GNqICAAA8LQeKmgIAADwtBgLCAgAAPC0G5r4CAAA8LQdekgIAADwtB75+AgAAPC0Hhn4CAAA8LQfqfgIAADwtB8qCAgAAPC0Gor4CAAA8LQa6ygIAADwtBiLCAgAAPC0Hsp4CAAA8LQYKigIAADwtBjp2AgAAPC0HQroCAAA8LQcqjgIAADwtBxbKAgAAPC0HfnICAAA8LQdKcgIAADwtBxKCAgAAPC0HXoICAAA8LQaKfgIAADwtB7a6AgAAPC0GrsICAAA8LQdSlgIAADwtBzK6AgAAPC0H6roCAAA8LQfyrgIAADwtB0rCAgAAPC0HxnYCAAA8LQbuggIAADwtB96uAgAAPC0GQsYCAAA8LQdexgIAADwtBoq2AgAAPC0HUp4CAAA8LQeCrgIAADwtBn6yAgAAPC0HrsYCAAA8LQdWfgIAADwtByrGAgAAPC0HepYCAAA8LQdSegIAADwtB9JyAgAAPC0GnsoCAAA8LQbGdgIAADwtBoJ2AgAAPC0G5sYCAAA8LQbywgIAADwtBkqGAgAAPC0GzpoCAAA8LQemsgIAADwtBrJ6AgAAPC0HUq4CAAA8LQfemgIAADwtBgKaAgAAPC0GwoYCAAA8LQf6egIAADwtBjaOAgAAPC0GJrYCAAA8LQfeigIAADwtBoLGAgAAPC0Gun4CAAA8LQcalgIAADwtB6J6AgAAPC0GTooCAAA8LQcKvgIAADwtBw52AgAAPC0GLrICAAA8LQeGdgIAADwtBja+AgAAPC0HqoYCAAA8LQbStgIAADwtB0q+AgAAPC0HfsoCAAA8LQdKygIAADwtB8LCAgAAPC0GpooCAAA8LQfmjgIAADwtBmZ6AgAAPC0G1rICAAA8LQZuwgIAADwtBkrKAgAAPC0G2q4CAAA8LQcKigIAADwtB+LKAgAAPC0GepYCAAA8LQdCigIAADwtBup6AgAAPC0GBnoCAAA8LEMqAgIAAAAtB1qGAgAAhAQsgAQsWACAAIAAtAC1B/gFxIAFBAEdyOgAtCxkAIAAgAC0ALUH9AXEgAUEAR0EBdHI6AC0LGQAgACAALQAtQfsBcSABQQBHQQJ0cjoALQsZACAAIAAtAC1B9wFxIAFBAEdBA3RyOgAtCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAgAiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCBCIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQcaRgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIwIgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAggiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEH2ioCAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCNCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIMIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABB7ZqAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAjgiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCECIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQZWQgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAI8IgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAhQiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEGqm4CAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCQCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIYIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABB7ZOAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAkQiBEUNACAAIAQRgICAgAAAIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCJCIERQ0AIAAgBBGAgICAAAAhAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIsIgRFDQAgACAEEYCAgIAAACEDCyADC0kBAn9BACEDAkAgACgCOCIERQ0AIAQoAigiBEUNACAAIAEgAiABayAEEYGAgIAAACIDQX9HDQAgAEH2iICAADYCEEEYIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCUCIERQ0AIAAgBBGAgICAAAAhAwsgAwtJAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAIcIgRFDQAgACABIAIgAWsgBBGBgICAAAAiA0F/Rw0AIABBwpmAgAA2AhBBGCEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAkgiBEUNACAAIAQRgICAgAAAIQMLIAMLSQECf0EAIQMCQCAAKAI4IgRFDQAgBCgCICIERQ0AIAAgASACIAFrIAQRgYCAgAAAIgNBf0cNACAAQZSUgIAANgIQQRghAwsgAwsuAQJ/QQAhAwJAIAAoAjgiBEUNACAEKAJMIgRFDQAgACAEEYCAgIAAACEDCyADCy4BAn9BACEDAkAgACgCOCIERQ0AIAQoAlQiBEUNACAAIAQRgICAgAAAIQMLIAMLLgECf0EAIQMCQCAAKAI4IgRFDQAgBCgCWCIERQ0AIAAgBBGAgICAAAAhAwsgAwtFAQF/AkACQCAALwEwQRRxQRRHDQBBASEDIAAtAChBAUYNASAALwEyQeUARiEDDAELIAAtAClBBUYhAwsgACADOgAuQQAL/gEBA39BASEDAkAgAC8BMCIEQQhxDQAgACkDIEIAUiEDCwJAAkAgAC0ALkUNAEEBIQUgAC0AKUEFRg0BQQEhBSAEQcAAcUUgA3FBAUcNAQtBACEFIARBwABxDQBBAiEFIARB//8DcSIDQQhxDQACQCADQYAEcUUNAAJAIAAtAChBAUcNACAALQAtQQpxDQBBBQ8LQQQPCwJAIANBIHENAAJAIAAtAChBAUYNACAALwEyQf//A3EiAEGcf2pB5ABJDQAgAEHMAUYNACAAQbACRg0AQQQhBSAEQShxRQ0CIANBiARxQYAERg0CC0EADwtBAEEDIAApAyBQGyEFCyAFC2IBAn9BACEBAkAgAC0AKEEBRg0AIAAvATJB//8DcSICQZx/akHkAEkNACACQcwBRg0AIAJBsAJGDQAgAC8BMCIAQcAAcQ0AQQEhASAAQYgEcUGABEYNACAAQShxRSEBCyABC6cBAQN/AkACQAJAIAAtACpFDQAgAC0AK0UNAEEAIQMgAC8BMCIEQQJxRQ0BDAILQQAhAyAALwEwIgRBAXFFDQELQQEhAyAALQAoQQFGDQAgAC8BMkH//wNxIgVBnH9qQeQASQ0AIAVBzAFGDQAgBUGwAkYNACAEQcAAcQ0AQQAhAyAEQYgEcUGABEYNACAEQShxQQBHIQMLIABBADsBMCAAQQA6AC8gAwuZAQECfwJAAkACQCAALQAqRQ0AIAAtACtFDQBBACEBIAAvATAiAkECcUUNAQwCC0EAIQEgAC8BMCICQQFxRQ0BC0EBIQEgAC0AKEEBRg0AIAAvATJB//8DcSIAQZx/akHkAEkNACAAQcwBRg0AIABBsAJGDQAgAkHAAHENAEEAIQEgAkGIBHFBgARGDQAgAkEocUEARyEBCyABC0kBAXsgAEEQav0MAAAAAAAAAAAAAAAAAAAAACIB/QsDACAAIAH9CwMAIABBMGogAf0LAwAgAEEgaiAB/QsDACAAQd0BNgIcQQALewEBfwJAIAAoAgwiAw0AAkAgACgCBEUNACAAIAE2AgQLAkAgACABIAIQxICAgAAiAw0AIAAoAgwPCyAAIAM2AhxBACEDIAAoAgQiAUUNACAAIAEgAiAAKAIIEYGAgIAAACIBRQ0AIAAgAjYCFCAAIAE2AgwgASEDCyADC+TzAQMOfwN+BH8jgICAgABBEGsiAySAgICAACABIQQgASEFIAEhBiABIQcgASEIIAEhCSABIQogASELIAEhDCABIQ0gASEOIAEhDwJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQCAAKAIcIhBBf2oO3QHaAQHZAQIDBAUGBwgJCgsMDQ7YAQ8Q1wEREtYBExQVFhcYGRob4AHfARwdHtUBHyAhIiMkJdQBJicoKSorLNMB0gEtLtEB0AEvMDEyMzQ1Njc4OTo7PD0+P0BBQkNERUbbAUdISUrPAc4BS80BTMwBTU5PUFFSU1RVVldYWVpbXF1eX2BhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3h5ent8fX5/gAGBAYIBgwGEAYUBhgGHAYgBiQGKAYsBjAGNAY4BjwGQAZEBkgGTAZQBlQGWAZcBmAGZAZoBmwGcAZ0BngGfAaABoQGiAaMBpAGlAaYBpwGoAakBqgGrAawBrQGuAa8BsAGxAbIBswG0AbUBtgG3AcsBygG4AckBuQHIAboBuwG8Ab0BvgG/AcABwQHCAcMBxAHFAcYBANwBC0EAIRAMxgELQQ4hEAzFAQtBDSEQDMQBC0EPIRAMwwELQRAhEAzCAQtBEyEQDMEBC0EUIRAMwAELQRUhEAy/AQtBFiEQDL4BC0EXIRAMvQELQRghEAy8AQtBGSEQDLsBC0EaIRAMugELQRshEAy5AQtBHCEQDLgBC0EIIRAMtwELQR0hEAy2AQtBICEQDLUBC0EfIRAMtAELQQchEAyzAQtBISEQDLIBC0EiIRAMsQELQR4hEAywAQtBIyEQDK8BC0ESIRAMrgELQREhEAytAQtBJCEQDKwBC0ElIRAMqwELQSYhEAyqAQtBJyEQDKkBC0HDASEQDKgBC0EpIRAMpwELQSshEAymAQtBLCEQDKUBC0EtIRAMpAELQS4hEAyjAQtBLyEQDKIBC0HEASEQDKEBC0EwIRAMoAELQTQhEAyfAQtBDCEQDJ4BC0ExIRAMnQELQTIhEAycAQtBMyEQDJsBC0E5IRAMmgELQTUhEAyZAQtBxQEhEAyYAQtBCyEQDJcBC0E6IRAMlgELQTYhEAyVAQtBCiEQDJQBC0E3IRAMkwELQTghEAySAQtBPCEQDJEBC0E7IRAMkAELQT0hEAyPAQtBCSEQDI4BC0EoIRAMjQELQT4hEAyMAQtBPyEQDIsBC0HAACEQDIoBC0HBACEQDIkBC0HCACEQDIgBC0HDACEQDIcBC0HEACEQDIYBC0HFACEQDIUBC0HGACEQDIQBC0EqIRAMgwELQccAIRAMggELQcgAIRAMgQELQckAIRAMgAELQcoAIRAMfwtBywAhEAx+C0HNACEQDH0LQcwAIRAMfAtBzgAhEAx7C0HPACEQDHoLQdAAIRAMeQtB0QAhEAx4C0HSACEQDHcLQdMAIRAMdgtB1AAhEAx1C0HWACEQDHQLQdUAIRAMcwtBBiEQDHILQdcAIRAMcQtBBSEQDHALQdgAIRAMbwtBBCEQDG4LQdkAIRAMbQtB2gAhEAxsC0HbACEQDGsLQdwAIRAMagtBAyEQDGkLQd0AIRAMaAtB3gAhEAxnC0HfACEQDGYLQeEAIRAMZQtB4AAhEAxkC0HiACEQDGMLQeMAIRAMYgtBAiEQDGELQeQAIRAMYAtB5QAhEAxfC0HmACEQDF4LQecAIRAMXQtB6AAhEAxcC0HpACEQDFsLQeoAIRAMWgtB6wAhEAxZC0HsACEQDFgLQe0AIRAMVwtB7gAhEAxWC0HvACEQDFULQfAAIRAMVAtB8QAhEAxTC0HyACEQDFILQfMAIRAMUQtB9AAhEAxQC0H1ACEQDE8LQfYAIRAMTgtB9wAhEAxNC0H4ACEQDEwLQfkAIRAMSwtB+gAhEAxKC0H7ACEQDEkLQfwAIRAMSAtB/QAhEAxHC0H+ACEQDEYLQf8AIRAMRQtBgAEhEAxEC0GBASEQDEMLQYIBIRAMQgtBgwEhEAxBC0GEASEQDEALQYUBIRAMPwtBhgEhEAw+C0GHASEQDD0LQYgBIRAMPAtBiQEhEAw7C0GKASEQDDoLQYsBIRAMOQtBjAEhEAw4C0GNASEQDDcLQY4BIRAMNgtBjwEhEAw1C0GQASEQDDQLQZEBIRAMMwtBkgEhEAwyC0GTASEQDDELQZQBIRAMMAtBlQEhEAwvC0GWASEQDC4LQZcBIRAMLQtBmAEhEAwsC0GZASEQDCsLQZoBIRAMKgtBmwEhEAwpC0GcASEQDCgLQZ0BIRAMJwtBngEhEAwmC0GfASEQDCULQaABIRAMJAtBoQEhEAwjC0GiASEQDCILQaMBIRAMIQtBpAEhEAwgC0GlASEQDB8LQaYBIRAMHgtBpwEhEAwdC0GoASEQDBwLQakBIRAMGwtBqgEhEAwaC0GrASEQDBkLQawBIRAMGAtBrQEhEAwXC0GuASEQDBYLQQEhEAwVC0GvASEQDBQLQbABIRAMEwtBsQEhEAwSC0GzASEQDBELQbIBIRAMEAtBtAEhEAwPC0G1ASEQDA4LQbYBIRAMDQtBtwEhEAwMC0G4ASEQDAsLQbkBIRAMCgtBugEhEAwJC0G7ASEQDAgLQcYBIRAMBwtBvAEhEAwGC0G9ASEQDAULQb4BIRAMBAtBvwEhEAwDC0HAASEQDAILQcIBIRAMAQtBwQEhEAsDQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAIBAOxwEAAQIDBAUGBwgJCgsMDQ4PEBESExQVFhcYGRobHB4fICEjJSg/QEFERUZHSElKS0xNT1BRUlPeA1dZW1xdYGJlZmdoaWprbG1vcHFyc3R1dnd4eXp7fH1+gAGCAYUBhgGHAYkBiwGMAY0BjgGPAZABkQGUAZUBlgGXAZgBmQGaAZsBnAGdAZ4BnwGgAaEBogGjAaQBpQGmAacBqAGpAaoBqwGsAa0BrgGvAbABsQGyAbMBtAG1AbYBtwG4AbkBugG7AbwBvQG+Ab8BwAHBAcIBwwHEAcUBxgHHAcgByQHKAcsBzAHNAc4BzwHQAdEB0gHTAdQB1QHWAdcB2AHZAdoB2wHcAd0B3gHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMBmQKkArAC/gL+AgsgASIEIAJHDfMBQd0BIRAM/wMLIAEiECACRw3dAUHDASEQDP4DCyABIgEgAkcNkAFB9wAhEAz9AwsgASIBIAJHDYYBQe8AIRAM/AMLIAEiASACRw1/QeoAIRAM+wMLIAEiASACRw17QegAIRAM+gMLIAEiASACRw14QeYAIRAM+QMLIAEiASACRw0aQRghEAz4AwsgASIBIAJHDRRBEiEQDPcDCyABIgEgAkcNWUHFACEQDPYDCyABIgEgAkcNSkE/IRAM9QMLIAEiASACRw1IQTwhEAz0AwsgASIBIAJHDUFBMSEQDPMDCyAALQAuQQFGDesDDIcCCyAAIAEiASACEMCAgIAAQQFHDeYBIABCADcDIAznAQsgACABIgEgAhC0gICAACIQDecBIAEhAQz1AgsCQCABIgEgAkcNAEEGIRAM8AMLIAAgAUEBaiIBIAIQu4CAgAAiEA3oASABIQEMMQsgAEIANwMgQRIhEAzVAwsgASIQIAJHDStBHSEQDO0DCwJAIAEiASACRg0AIAFBAWohAUEQIRAM1AMLQQchEAzsAwsgAEIAIAApAyAiESACIAEiEGutIhJ9IhMgEyARVhs3AyAgESASViIURQ3lAUEIIRAM6wMLAkAgASIBIAJGDQAgAEGJgICAADYCCCAAIAE2AgQgASEBQRQhEAzSAwtBCSEQDOoDCyABIQEgACkDIFAN5AEgASEBDPICCwJAIAEiASACRw0AQQshEAzpAwsgACABQQFqIgEgAhC2gICAACIQDeUBIAEhAQzyAgsgACABIgEgAhC4gICAACIQDeUBIAEhAQzyAgsgACABIgEgAhC4gICAACIQDeYBIAEhAQwNCyAAIAEiASACELqAgIAAIhAN5wEgASEBDPACCwJAIAEiASACRw0AQQ8hEAzlAwsgAS0AACIQQTtGDQggEEENRw3oASABQQFqIQEM7wILIAAgASIBIAIQuoCAgAAiEA3oASABIQEM8gILA0ACQCABLQAAQfC1gIAAai0AACIQQQFGDQAgEEECRw3rASAAKAIEIRAgAEEANgIEIAAgECABQQFqIgEQuYCAgAAiEA3qASABIQEM9AILIAFBAWoiASACRw0AC0ESIRAM4gMLIAAgASIBIAIQuoCAgAAiEA3pASABIQEMCgsgASIBIAJHDQZBGyEQDOADCwJAIAEiASACRw0AQRYhEAzgAwsgAEGKgICAADYCCCAAIAE2AgQgACABIAIQuICAgAAiEA3qASABIQFBICEQDMYDCwJAIAEiASACRg0AA0ACQCABLQAAQfC3gIAAai0AACIQQQJGDQACQCAQQX9qDgTlAewBAOsB7AELIAFBAWohAUEIIRAMyAMLIAFBAWoiASACRw0AC0EVIRAM3wMLQRUhEAzeAwsDQAJAIAEtAABB8LmAgABqLQAAIhBBAkYNACAQQX9qDgTeAewB4AHrAewBCyABQQFqIgEgAkcNAAtBGCEQDN0DCwJAIAEiASACRg0AIABBi4CAgAA2AgggACABNgIEIAEhAUEHIRAMxAMLQRkhEAzcAwsgAUEBaiEBDAILAkAgASIUIAJHDQBBGiEQDNsDCyAUIQECQCAULQAAQXNqDhTdAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gLuAu4C7gLuAgDuAgtBACEQIABBADYCHCAAQa+LgIAANgIQIABBAjYCDCAAIBRBAWo2AhQM2gMLAkAgAS0AACIQQTtGDQAgEEENRw3oASABQQFqIQEM5QILIAFBAWohAQtBIiEQDL8DCwJAIAEiECACRw0AQRwhEAzYAwtCACERIBAhASAQLQAAQVBqDjfnAeYBAQIDBAUGBwgAAAAAAAAACQoLDA0OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEBESExQAC0EeIRAMvQMLQgIhEQzlAQtCAyERDOQBC0IEIREM4wELQgUhEQziAQtCBiERDOEBC0IHIREM4AELQgghEQzfAQtCCSERDN4BC0IKIREM3QELQgshEQzcAQtCDCERDNsBC0INIREM2gELQg4hEQzZAQtCDyERDNgBC0IKIREM1wELQgshEQzWAQtCDCERDNUBC0INIREM1AELQg4hEQzTAQtCDyERDNIBC0IAIRECQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAIBAtAABBUGoON+UB5AEAAQIDBAUGB+YB5gHmAeYB5gHmAeYBCAkKCwwN5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAeYB5gHmAQ4PEBESE+YBC0ICIREM5AELQgMhEQzjAQtCBCERDOIBC0IFIREM4QELQgYhEQzgAQtCByERDN8BC0IIIREM3gELQgkhEQzdAQtCCiERDNwBC0ILIREM2wELQgwhEQzaAQtCDSERDNkBC0IOIREM2AELQg8hEQzXAQtCCiERDNYBC0ILIREM1QELQgwhEQzUAQtCDSERDNMBC0IOIREM0gELQg8hEQzRAQsgAEIAIAApAyAiESACIAEiEGutIhJ9IhMgEyARVhs3AyAgESASViIURQ3SAUEfIRAMwAMLAkAgASIBIAJGDQAgAEGJgICAADYCCCAAIAE2AgQgASEBQSQhEAynAwtBICEQDL8DCyAAIAEiECACEL6AgIAAQX9qDgW2AQDFAgHRAdIBC0ERIRAMpAMLIABBAToALyAQIQEMuwMLIAEiASACRw3SAUEkIRAMuwMLIAEiDSACRw0eQcYAIRAMugMLIAAgASIBIAIQsoCAgAAiEA3UASABIQEMtQELIAEiECACRw0mQdAAIRAMuAMLAkAgASIBIAJHDQBBKCEQDLgDCyAAQQA2AgQgAEGMgICAADYCCCAAIAEgARCxgICAACIQDdMBIAEhAQzYAQsCQCABIhAgAkcNAEEpIRAMtwMLIBAtAAAiAUEgRg0UIAFBCUcN0wEgEEEBaiEBDBULAkAgASIBIAJGDQAgAUEBaiEBDBcLQSohEAy1AwsCQCABIhAgAkcNAEErIRAMtQMLAkAgEC0AACIBQQlGDQAgAUEgRw3VAQsgAC0ALEEIRg3TASAQIQEMkQMLAkAgASIBIAJHDQBBLCEQDLQDCyABLQAAQQpHDdUBIAFBAWohAQzJAgsgASIOIAJHDdUBQS8hEAyyAwsDQAJAIAEtAAAiEEEgRg0AAkAgEEF2ag4EANwB3AEA2gELIAEhAQzgAQsgAUEBaiIBIAJHDQALQTEhEAyxAwtBMiEQIAEiFCACRg2wAyACIBRrIAAoAgAiAWohFSAUIAFrQQNqIRYCQANAIBQtAAAiF0EgciAXIBdBv39qQf8BcUEaSRtB/wFxIAFB8LuAgABqLQAARw0BAkAgAUEDRw0AQQYhAQyWAwsgAUEBaiEBIBRBAWoiFCACRw0ACyAAIBU2AgAMsQMLIABBADYCACAUIQEM2QELQTMhECABIhQgAkYNrwMgAiAUayAAKAIAIgFqIRUgFCABa0EIaiEWAkADQCAULQAAIhdBIHIgFyAXQb9/akH/AXFBGkkbQf8BcSABQfS7gIAAai0AAEcNAQJAIAFBCEcNAEEFIQEMlQMLIAFBAWohASAUQQFqIhQgAkcNAAsgACAVNgIADLADCyAAQQA2AgAgFCEBDNgBC0E0IRAgASIUIAJGDa4DIAIgFGsgACgCACIBaiEVIBQgAWtBBWohFgJAA0AgFC0AACIXQSByIBcgF0G/f2pB/wFxQRpJG0H/AXEgAUHQwoCAAGotAABHDQECQCABQQVHDQBBByEBDJQDCyABQQFqIQEgFEEBaiIUIAJHDQALIAAgFTYCAAyvAwsgAEEANgIAIBQhAQzXAQsCQCABIgEgAkYNAANAAkAgAS0AAEGAvoCAAGotAAAiEEEBRg0AIBBBAkYNCiABIQEM3QELIAFBAWoiASACRw0AC0EwIRAMrgMLQTAhEAytAwsCQCABIgEgAkYNAANAAkAgAS0AACIQQSBGDQAgEEF2ag4E2QHaAdoB2QHaAQsgAUEBaiIBIAJHDQALQTghEAytAwtBOCEQDKwDCwNAAkAgAS0AACIQQSBGDQAgEEEJRw0DCyABQQFqIgEgAkcNAAtBPCEQDKsDCwNAAkAgAS0AACIQQSBGDQACQAJAIBBBdmoOBNoBAQHaAQALIBBBLEYN2wELIAEhAQwECyABQQFqIgEgAkcNAAtBPyEQDKoDCyABIQEM2wELQcAAIRAgASIUIAJGDagDIAIgFGsgACgCACIBaiEWIBQgAWtBBmohFwJAA0AgFC0AAEEgciABQYDAgIAAai0AAEcNASABQQZGDY4DIAFBAWohASAUQQFqIhQgAkcNAAsgACAWNgIADKkDCyAAQQA2AgAgFCEBC0E2IRAMjgMLAkAgASIPIAJHDQBBwQAhEAynAwsgAEGMgICAADYCCCAAIA82AgQgDyEBIAAtACxBf2oOBM0B1QHXAdkBhwMLIAFBAWohAQzMAQsCQCABIgEgAkYNAANAAkAgAS0AACIQQSByIBAgEEG/f2pB/wFxQRpJG0H/AXEiEEEJRg0AIBBBIEYNAAJAAkACQAJAIBBBnX9qDhMAAwMDAwMDAwEDAwMDAwMDAwMCAwsgAUEBaiEBQTEhEAyRAwsgAUEBaiEBQTIhEAyQAwsgAUEBaiEBQTMhEAyPAwsgASEBDNABCyABQQFqIgEgAkcNAAtBNSEQDKUDC0E1IRAMpAMLAkAgASIBIAJGDQADQAJAIAEtAABBgLyAgABqLQAAQQFGDQAgASEBDNMBCyABQQFqIgEgAkcNAAtBPSEQDKQDC0E9IRAMowMLIAAgASIBIAIQsICAgAAiEA3WASABIQEMAQsgEEEBaiEBC0E8IRAMhwMLAkAgASIBIAJHDQBBwgAhEAygAwsCQANAAkAgAS0AAEF3ag4YAAL+Av4ChAP+Av4C/gL+Av4C/gL+Av4C/gL+Av4C/gL+Av4C/gL+Av4C/gIA/gILIAFBAWoiASACRw0AC0HCACEQDKADCyABQQFqIQEgAC0ALUEBcUUNvQEgASEBC0EsIRAMhQMLIAEiASACRw3TAUHEACEQDJ0DCwNAAkAgAS0AAEGQwICAAGotAABBAUYNACABIQEMtwILIAFBAWoiASACRw0AC0HFACEQDJwDCyANLQAAIhBBIEYNswEgEEE6Rw2BAyAAKAIEIQEgAEEANgIEIAAgASANEK+AgIAAIgEN0AEgDUEBaiEBDLMCC0HHACEQIAEiDSACRg2aAyACIA1rIAAoAgAiAWohFiANIAFrQQVqIRcDQCANLQAAIhRBIHIgFCAUQb9/akH/AXFBGkkbQf8BcSABQZDCgIAAai0AAEcNgAMgAUEFRg30AiABQQFqIQEgDUEBaiINIAJHDQALIAAgFjYCAAyaAwtByAAhECABIg0gAkYNmQMgAiANayAAKAIAIgFqIRYgDSABa0EJaiEXA0AgDS0AACIUQSByIBQgFEG/f2pB/wFxQRpJG0H/AXEgAUGWwoCAAGotAABHDf8CAkAgAUEJRw0AQQIhAQz1AgsgAUEBaiEBIA1BAWoiDSACRw0ACyAAIBY2AgAMmQMLAkAgASINIAJHDQBByQAhEAyZAwsCQAJAIA0tAAAiAUEgciABIAFBv39qQf8BcUEaSRtB/wFxQZJ/ag4HAIADgAOAA4ADgAMBgAMLIA1BAWohAUE+IRAMgAMLIA1BAWohAUE/IRAM/wILQcoAIRAgASINIAJGDZcDIAIgDWsgACgCACIBaiEWIA0gAWtBAWohFwNAIA0tAAAiFEEgciAUIBRBv39qQf8BcUEaSRtB/wFxIAFBoMKAgABqLQAARw39AiABQQFGDfACIAFBAWohASANQQFqIg0gAkcNAAsgACAWNgIADJcDC0HLACEQIAEiDSACRg2WAyACIA1rIAAoAgAiAWohFiANIAFrQQ5qIRcDQCANLQAAIhRBIHIgFCAUQb9/akH/AXFBGkkbQf8BcSABQaLCgIAAai0AAEcN/AIgAUEORg3wAiABQQFqIQEgDUEBaiINIAJHDQALIAAgFjYCAAyWAwtBzAAhECABIg0gAkYNlQMgAiANayAAKAIAIgFqIRYgDSABa0EPaiEXA0AgDS0AACIUQSByIBQgFEG/f2pB/wFxQRpJG0H/AXEgAUHAwoCAAGotAABHDfsCAkAgAUEPRw0AQQMhAQzxAgsgAUEBaiEBIA1BAWoiDSACRw0ACyAAIBY2AgAMlQMLQc0AIRAgASINIAJGDZQDIAIgDWsgACgCACIBaiEWIA0gAWtBBWohFwNAIA0tAAAiFEEgciAUIBRBv39qQf8BcUEaSRtB/wFxIAFB0MKAgABqLQAARw36AgJAIAFBBUcNAEEEIQEM8AILIAFBAWohASANQQFqIg0gAkcNAAsgACAWNgIADJQDCwJAIAEiDSACRw0AQc4AIRAMlAMLAkACQAJAAkAgDS0AACIBQSByIAEgAUG/f2pB/wFxQRpJG0H/AXFBnX9qDhMA/QL9Av0C/QL9Av0C/QL9Av0C/QL9Av0CAf0C/QL9AgID/QILIA1BAWohAUHBACEQDP0CCyANQQFqIQFBwgAhEAz8AgsgDUEBaiEBQcMAIRAM+wILIA1BAWohAUHEACEQDPoCCwJAIAEiASACRg0AIABBjYCAgAA2AgggACABNgIEIAEhAUHFACEQDPoCC0HPACEQDJIDCyAQIQECQAJAIBAtAABBdmoOBAGoAqgCAKgCCyAQQQFqIQELQSchEAz4AgsCQCABIgEgAkcNAEHRACEQDJEDCwJAIAEtAABBIEYNACABIQEMjQELIAFBAWohASAALQAtQQFxRQ3HASABIQEMjAELIAEiFyACRw3IAUHSACEQDI8DC0HTACEQIAEiFCACRg2OAyACIBRrIAAoAgAiAWohFiAUIAFrQQFqIRcDQCAULQAAIAFB1sKAgABqLQAARw3MASABQQFGDccBIAFBAWohASAUQQFqIhQgAkcNAAsgACAWNgIADI4DCwJAIAEiASACRw0AQdUAIRAMjgMLIAEtAABBCkcNzAEgAUEBaiEBDMcBCwJAIAEiASACRw0AQdYAIRAMjQMLAkACQCABLQAAQXZqDgQAzQHNAQHNAQsgAUEBaiEBDMcBCyABQQFqIQFBygAhEAzzAgsgACABIgEgAhCugICAACIQDcsBIAEhAUHNACEQDPICCyAALQApQSJGDYUDDKYCCwJAIAEiASACRw0AQdsAIRAMigMLQQAhFEEBIRdBASEWQQAhEAJAAkACQAJAAkACQAJAAkACQCABLQAAQVBqDgrUAdMBAAECAwQFBgjVAQtBAiEQDAYLQQMhEAwFC0EEIRAMBAtBBSEQDAMLQQYhEAwCC0EHIRAMAQtBCCEQC0EAIRdBACEWQQAhFAzMAQtBCSEQQQEhFEEAIRdBACEWDMsBCwJAIAEiASACRw0AQd0AIRAMiQMLIAEtAABBLkcNzAEgAUEBaiEBDKYCCyABIgEgAkcNzAFB3wAhEAyHAwsCQCABIgEgAkYNACAAQY6AgIAANgIIIAAgATYCBCABIQFB0AAhEAzuAgtB4AAhEAyGAwtB4QAhECABIgEgAkYNhQMgAiABayAAKAIAIhRqIRYgASAUa0EDaiEXA0AgAS0AACAUQeLCgIAAai0AAEcNzQEgFEEDRg3MASAUQQFqIRQgAUEBaiIBIAJHDQALIAAgFjYCAAyFAwtB4gAhECABIgEgAkYNhAMgAiABayAAKAIAIhRqIRYgASAUa0ECaiEXA0AgAS0AACAUQebCgIAAai0AAEcNzAEgFEECRg3OASAUQQFqIRQgAUEBaiIBIAJHDQALIAAgFjYCAAyEAwtB4wAhECABIgEgAkYNgwMgAiABayAAKAIAIhRqIRYgASAUa0EDaiEXA0AgAS0AACAUQenCgIAAai0AAEcNywEgFEEDRg3OASAUQQFqIRQgAUEBaiIBIAJHDQALIAAgFjYCAAyDAwsCQCABIgEgAkcNAEHlACEQDIMDCyAAIAFBAWoiASACEKiAgIAAIhANzQEgASEBQdYAIRAM6QILAkAgASIBIAJGDQADQAJAIAEtAAAiEEEgRg0AAkACQAJAIBBBuH9qDgsAAc8BzwHPAc8BzwHPAc8BzwECzwELIAFBAWohAUHSACEQDO0CCyABQQFqIQFB0wAhEAzsAgsgAUEBaiEBQdQAIRAM6wILIAFBAWoiASACRw0AC0HkACEQDIIDC0HkACEQDIEDCwNAAkAgAS0AAEHwwoCAAGotAAAiEEEBRg0AIBBBfmoOA88B0AHRAdIBCyABQQFqIgEgAkcNAAtB5gAhEAyAAwsCQCABIgEgAkYNACABQQFqIQEMAwtB5wAhEAz/AgsDQAJAIAEtAABB8MSAgABqLQAAIhBBAUYNAAJAIBBBfmoOBNIB0wHUAQDVAQsgASEBQdcAIRAM5wILIAFBAWoiASACRw0AC0HoACEQDP4CCwJAIAEiASACRw0AQekAIRAM/gILAkAgAS0AACIQQXZqDhq6AdUB1QG8AdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHVAdUB1QHVAcoB1QHVAQDTAQsgAUEBaiEBC0EGIRAM4wILA0ACQCABLQAAQfDGgIAAai0AAEEBRg0AIAEhAQyeAgsgAUEBaiIBIAJHDQALQeoAIRAM+wILAkAgASIBIAJGDQAgAUEBaiEBDAMLQesAIRAM+gILAkAgASIBIAJHDQBB7AAhEAz6AgsgAUEBaiEBDAELAkAgASIBIAJHDQBB7QAhEAz5AgsgAUEBaiEBC0EEIRAM3gILAkAgASIUIAJHDQBB7gAhEAz3AgsgFCEBAkACQAJAIBQtAABB8MiAgABqLQAAQX9qDgfUAdUB1gEAnAIBAtcBCyAUQQFqIQEMCgsgFEEBaiEBDM0BC0EAIRAgAEEANgIcIABBm5KAgAA2AhAgAEEHNgIMIAAgFEEBajYCFAz2AgsCQANAAkAgAS0AAEHwyICAAGotAAAiEEEERg0AAkACQCAQQX9qDgfSAdMB1AHZAQAEAdkBCyABIQFB2gAhEAzgAgsgAUEBaiEBQdwAIRAM3wILIAFBAWoiASACRw0AC0HvACEQDPYCCyABQQFqIQEMywELAkAgASIUIAJHDQBB8AAhEAz1AgsgFC0AAEEvRw3UASAUQQFqIQEMBgsCQCABIhQgAkcNAEHxACEQDPQCCwJAIBQtAAAiAUEvRw0AIBRBAWohAUHdACEQDNsCCyABQXZqIgRBFksN0wFBASAEdEGJgIACcUUN0wEMygILAkAgASIBIAJGDQAgAUEBaiEBQd4AIRAM2gILQfIAIRAM8gILAkAgASIUIAJHDQBB9AAhEAzyAgsgFCEBAkAgFC0AAEHwzICAAGotAABBf2oOA8kClAIA1AELQeEAIRAM2AILAkAgASIUIAJGDQADQAJAIBQtAABB8MqAgABqLQAAIgFBA0YNAAJAIAFBf2oOAssCANUBCyAUIQFB3wAhEAzaAgsgFEEBaiIUIAJHDQALQfMAIRAM8QILQfMAIRAM8AILAkAgASIBIAJGDQAgAEGPgICAADYCCCAAIAE2AgQgASEBQeAAIRAM1wILQfUAIRAM7wILAkAgASIBIAJHDQBB9gAhEAzvAgsgAEGPgICAADYCCCAAIAE2AgQgASEBC0EDIRAM1AILA0AgAS0AAEEgRw3DAiABQQFqIgEgAkcNAAtB9wAhEAzsAgsCQCABIgEgAkcNAEH4ACEQDOwCCyABLQAAQSBHDc4BIAFBAWohAQzvAQsgACABIgEgAhCsgICAACIQDc4BIAEhAQyOAgsCQCABIgQgAkcNAEH6ACEQDOoCCyAELQAAQcwARw3RASAEQQFqIQFBEyEQDM8BCwJAIAEiBCACRw0AQfsAIRAM6QILIAIgBGsgACgCACIBaiEUIAQgAWtBBWohEANAIAQtAAAgAUHwzoCAAGotAABHDdABIAFBBUYNzgEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBB+wAhEAzoAgsCQCABIgQgAkcNAEH8ACEQDOgCCwJAAkAgBC0AAEG9f2oODADRAdEB0QHRAdEB0QHRAdEB0QHRAQHRAQsgBEEBaiEBQeYAIRAMzwILIARBAWohAUHnACEQDM4CCwJAIAEiBCACRw0AQf0AIRAM5wILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQe3PgIAAai0AAEcNzwEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQf0AIRAM5wILIABBADYCACAQQQFqIQFBECEQDMwBCwJAIAEiBCACRw0AQf4AIRAM5gILIAIgBGsgACgCACIBaiEUIAQgAWtBBWohEAJAA0AgBC0AACABQfbOgIAAai0AAEcNzgEgAUEFRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQf4AIRAM5gILIABBADYCACAQQQFqIQFBFiEQDMsBCwJAIAEiBCACRw0AQf8AIRAM5QILIAIgBGsgACgCACIBaiEUIAQgAWtBA2ohEAJAA0AgBC0AACABQfzOgIAAai0AAEcNzQEgAUEDRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQf8AIRAM5QILIABBADYCACAQQQFqIQFBBSEQDMoBCwJAIAEiBCACRw0AQYABIRAM5AILIAQtAABB2QBHDcsBIARBAWohAUEIIRAMyQELAkAgASIEIAJHDQBBgQEhEAzjAgsCQAJAIAQtAABBsn9qDgMAzAEBzAELIARBAWohAUHrACEQDMoCCyAEQQFqIQFB7AAhEAzJAgsCQCABIgQgAkcNAEGCASEQDOICCwJAAkAgBC0AAEG4f2oOCADLAcsBywHLAcsBywEBywELIARBAWohAUHqACEQDMkCCyAEQQFqIQFB7QAhEAzIAgsCQCABIgQgAkcNAEGDASEQDOECCyACIARrIAAoAgAiAWohECAEIAFrQQJqIRQCQANAIAQtAAAgAUGAz4CAAGotAABHDckBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgEDYCAEGDASEQDOECC0EAIRAgAEEANgIAIBRBAWohAQzGAQsCQCABIgQgAkcNAEGEASEQDOACCyACIARrIAAoAgAiAWohFCAEIAFrQQRqIRACQANAIAQtAAAgAUGDz4CAAGotAABHDcgBIAFBBEYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGEASEQDOACCyAAQQA2AgAgEEEBaiEBQSMhEAzFAQsCQCABIgQgAkcNAEGFASEQDN8CCwJAAkAgBC0AAEG0f2oOCADIAcgByAHIAcgByAEByAELIARBAWohAUHvACEQDMYCCyAEQQFqIQFB8AAhEAzFAgsCQCABIgQgAkcNAEGGASEQDN4CCyAELQAAQcUARw3FASAEQQFqIQEMgwILAkAgASIEIAJHDQBBhwEhEAzdAgsgAiAEayAAKAIAIgFqIRQgBCABa0EDaiEQAkADQCAELQAAIAFBiM+AgABqLQAARw3FASABQQNGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBhwEhEAzdAgsgAEEANgIAIBBBAWohAUEtIRAMwgELAkAgASIEIAJHDQBBiAEhEAzcAgsgAiAEayAAKAIAIgFqIRQgBCABa0EIaiEQAkADQCAELQAAIAFB0M+AgABqLQAARw3EASABQQhGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBiAEhEAzcAgsgAEEANgIAIBBBAWohAUEpIRAMwQELAkAgASIBIAJHDQBBiQEhEAzbAgtBASEQIAEtAABB3wBHDcABIAFBAWohAQyBAgsCQCABIgQgAkcNAEGKASEQDNoCCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRADQCAELQAAIAFBjM+AgABqLQAARw3BASABQQFGDa8CIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQYoBIRAM2QILAkAgASIEIAJHDQBBiwEhEAzZAgsgAiAEayAAKAIAIgFqIRQgBCABa0ECaiEQAkADQCAELQAAIAFBjs+AgABqLQAARw3BASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBiwEhEAzZAgsgAEEANgIAIBBBAWohAUECIRAMvgELAkAgASIEIAJHDQBBjAEhEAzYAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFB8M+AgABqLQAARw3AASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBjAEhEAzYAgsgAEEANgIAIBBBAWohAUEfIRAMvQELAkAgASIEIAJHDQBBjQEhEAzXAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFB8s+AgABqLQAARw2/ASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBjQEhEAzXAgsgAEEANgIAIBBBAWohAUEJIRAMvAELAkAgASIEIAJHDQBBjgEhEAzWAgsCQAJAIAQtAABBt39qDgcAvwG/Ab8BvwG/AQG/AQsgBEEBaiEBQfgAIRAMvQILIARBAWohAUH5ACEQDLwCCwJAIAEiBCACRw0AQY8BIRAM1QILIAIgBGsgACgCACIBaiEUIAQgAWtBBWohEAJAA0AgBC0AACABQZHPgIAAai0AAEcNvQEgAUEFRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQY8BIRAM1QILIABBADYCACAQQQFqIQFBGCEQDLoBCwJAIAEiBCACRw0AQZABIRAM1AILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQZfPgIAAai0AAEcNvAEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZABIRAM1AILIABBADYCACAQQQFqIQFBFyEQDLkBCwJAIAEiBCACRw0AQZEBIRAM0wILIAIgBGsgACgCACIBaiEUIAQgAWtBBmohEAJAA0AgBC0AACABQZrPgIAAai0AAEcNuwEgAUEGRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZEBIRAM0wILIABBADYCACAQQQFqIQFBFSEQDLgBCwJAIAEiBCACRw0AQZIBIRAM0gILIAIgBGsgACgCACIBaiEUIAQgAWtBBWohEAJAA0AgBC0AACABQaHPgIAAai0AAEcNugEgAUEFRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZIBIRAM0gILIABBADYCACAQQQFqIQFBHiEQDLcBCwJAIAEiBCACRw0AQZMBIRAM0QILIAQtAABBzABHDbgBIARBAWohAUEKIRAMtgELAkAgBCACRw0AQZQBIRAM0AILAkACQCAELQAAQb9/ag4PALkBuQG5AbkBuQG5AbkBuQG5AbkBuQG5AbkBAbkBCyAEQQFqIQFB/gAhEAy3AgsgBEEBaiEBQf8AIRAMtgILAkAgBCACRw0AQZUBIRAMzwILAkACQCAELQAAQb9/ag4DALgBAbgBCyAEQQFqIQFB/QAhEAy2AgsgBEEBaiEEQYABIRAMtQILAkAgBCACRw0AQZYBIRAMzgILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQafPgIAAai0AAEcNtgEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZYBIRAMzgILIABBADYCACAQQQFqIQFBCyEQDLMBCwJAIAQgAkcNAEGXASEQDM0CCwJAAkACQAJAIAQtAABBU2oOIwC4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBuAG4AbgBAbgBuAG4AbgBuAECuAG4AbgBA7gBCyAEQQFqIQFB+wAhEAy2AgsgBEEBaiEBQfwAIRAMtQILIARBAWohBEGBASEQDLQCCyAEQQFqIQRBggEhEAyzAgsCQCAEIAJHDQBBmAEhEAzMAgsgAiAEayAAKAIAIgFqIRQgBCABa0EEaiEQAkADQCAELQAAIAFBqc+AgABqLQAARw20ASABQQRGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBmAEhEAzMAgsgAEEANgIAIBBBAWohAUEZIRAMsQELAkAgBCACRw0AQZkBIRAMywILIAIgBGsgACgCACIBaiEUIAQgAWtBBWohEAJAA0AgBC0AACABQa7PgIAAai0AAEcNswEgAUEFRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZkBIRAMywILIABBADYCACAQQQFqIQFBBiEQDLABCwJAIAQgAkcNAEGaASEQDMoCCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRACQANAIAQtAAAgAUG0z4CAAGotAABHDbIBIAFBAUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGaASEQDMoCCyAAQQA2AgAgEEEBaiEBQRwhEAyvAQsCQCAEIAJHDQBBmwEhEAzJAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFBts+AgABqLQAARw2xASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBmwEhEAzJAgsgAEEANgIAIBBBAWohAUEnIRAMrgELAkAgBCACRw0AQZwBIRAMyAILAkACQCAELQAAQax/ag4CAAGxAQsgBEEBaiEEQYYBIRAMrwILIARBAWohBEGHASEQDK4CCwJAIAQgAkcNAEGdASEQDMcCCyACIARrIAAoAgAiAWohFCAEIAFrQQFqIRACQANAIAQtAAAgAUG4z4CAAGotAABHDa8BIAFBAUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGdASEQDMcCCyAAQQA2AgAgEEEBaiEBQSYhEAysAQsCQCAEIAJHDQBBngEhEAzGAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFBus+AgABqLQAARw2uASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBngEhEAzGAgsgAEEANgIAIBBBAWohAUEDIRAMqwELAkAgBCACRw0AQZ8BIRAMxQILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQe3PgIAAai0AAEcNrQEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQZ8BIRAMxQILIABBADYCACAQQQFqIQFBDCEQDKoBCwJAIAQgAkcNAEGgASEQDMQCCyACIARrIAAoAgAiAWohFCAEIAFrQQNqIRACQANAIAQtAAAgAUG8z4CAAGotAABHDawBIAFBA0YNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGgASEQDMQCCyAAQQA2AgAgEEEBaiEBQQ0hEAypAQsCQCAEIAJHDQBBoQEhEAzDAgsCQAJAIAQtAABBun9qDgsArAGsAawBrAGsAawBrAGsAawBAawBCyAEQQFqIQRBiwEhEAyqAgsgBEEBaiEEQYwBIRAMqQILAkAgBCACRw0AQaIBIRAMwgILIAQtAABB0ABHDakBIARBAWohBAzpAQsCQCAEIAJHDQBBowEhEAzBAgsCQAJAIAQtAABBt39qDgcBqgGqAaoBqgGqAQCqAQsgBEEBaiEEQY4BIRAMqAILIARBAWohAUEiIRAMpgELAkAgBCACRw0AQaQBIRAMwAILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQcDPgIAAai0AAEcNqAEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQaQBIRAMwAILIABBADYCACAQQQFqIQFBHSEQDKUBCwJAIAQgAkcNAEGlASEQDL8CCwJAAkAgBC0AAEGuf2oOAwCoAQGoAQsgBEEBaiEEQZABIRAMpgILIARBAWohAUEEIRAMpAELAkAgBCACRw0AQaYBIRAMvgILAkACQAJAAkACQCAELQAAQb9/ag4VAKoBqgGqAaoBqgGqAaoBqgGqAaoBAaoBqgECqgGqAQOqAaoBBKoBCyAEQQFqIQRBiAEhEAyoAgsgBEEBaiEEQYkBIRAMpwILIARBAWohBEGKASEQDKYCCyAEQQFqIQRBjwEhEAylAgsgBEEBaiEEQZEBIRAMpAILAkAgBCACRw0AQacBIRAMvQILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQe3PgIAAai0AAEcNpQEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQacBIRAMvQILIABBADYCACAQQQFqIQFBESEQDKIBCwJAIAQgAkcNAEGoASEQDLwCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHCz4CAAGotAABHDaQBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGoASEQDLwCCyAAQQA2AgAgEEEBaiEBQSwhEAyhAQsCQCAEIAJHDQBBqQEhEAy7AgsgAiAEayAAKAIAIgFqIRQgBCABa0EEaiEQAkADQCAELQAAIAFBxc+AgABqLQAARw2jASABQQRGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBqQEhEAy7AgsgAEEANgIAIBBBAWohAUErIRAMoAELAkAgBCACRw0AQaoBIRAMugILIAIgBGsgACgCACIBaiEUIAQgAWtBAmohEAJAA0AgBC0AACABQcrPgIAAai0AAEcNogEgAUECRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQaoBIRAMugILIABBADYCACAQQQFqIQFBFCEQDJ8BCwJAIAQgAkcNAEGrASEQDLkCCwJAAkACQAJAIAQtAABBvn9qDg8AAQKkAaQBpAGkAaQBpAGkAaQBpAGkAaQBA6QBCyAEQQFqIQRBkwEhEAyiAgsgBEEBaiEEQZQBIRAMoQILIARBAWohBEGVASEQDKACCyAEQQFqIQRBlgEhEAyfAgsCQCAEIAJHDQBBrAEhEAy4AgsgBC0AAEHFAEcNnwEgBEEBaiEEDOABCwJAIAQgAkcNAEGtASEQDLcCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHNz4CAAGotAABHDZ8BIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEGtASEQDLcCCyAAQQA2AgAgEEEBaiEBQQ4hEAycAQsCQCAEIAJHDQBBrgEhEAy2AgsgBC0AAEHQAEcNnQEgBEEBaiEBQSUhEAybAQsCQCAEIAJHDQBBrwEhEAy1AgsgAiAEayAAKAIAIgFqIRQgBCABa0EIaiEQAkADQCAELQAAIAFB0M+AgABqLQAARw2dASABQQhGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBrwEhEAy1AgsgAEEANgIAIBBBAWohAUEqIRAMmgELAkAgBCACRw0AQbABIRAMtAILAkACQCAELQAAQat/ag4LAJ0BnQGdAZ0BnQGdAZ0BnQGdAQGdAQsgBEEBaiEEQZoBIRAMmwILIARBAWohBEGbASEQDJoCCwJAIAQgAkcNAEGxASEQDLMCCwJAAkAgBC0AAEG/f2oOFACcAZwBnAGcAZwBnAGcAZwBnAGcAZwBnAGcAZwBnAGcAZwBnAEBnAELIARBAWohBEGZASEQDJoCCyAEQQFqIQRBnAEhEAyZAgsCQCAEIAJHDQBBsgEhEAyyAgsgAiAEayAAKAIAIgFqIRQgBCABa0EDaiEQAkADQCAELQAAIAFB2c+AgABqLQAARw2aASABQQNGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBsgEhEAyyAgsgAEEANgIAIBBBAWohAUEhIRAMlwELAkAgBCACRw0AQbMBIRAMsQILIAIgBGsgACgCACIBaiEUIAQgAWtBBmohEAJAA0AgBC0AACABQd3PgIAAai0AAEcNmQEgAUEGRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQbMBIRAMsQILIABBADYCACAQQQFqIQFBGiEQDJYBCwJAIAQgAkcNAEG0ASEQDLACCwJAAkACQCAELQAAQbt/ag4RAJoBmgGaAZoBmgGaAZoBmgGaAQGaAZoBmgGaAZoBApoBCyAEQQFqIQRBnQEhEAyYAgsgBEEBaiEEQZ4BIRAMlwILIARBAWohBEGfASEQDJYCCwJAIAQgAkcNAEG1ASEQDK8CCyACIARrIAAoAgAiAWohFCAEIAFrQQVqIRACQANAIAQtAAAgAUHkz4CAAGotAABHDZcBIAFBBUYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEG1ASEQDK8CCyAAQQA2AgAgEEEBaiEBQSghEAyUAQsCQCAEIAJHDQBBtgEhEAyuAgsgAiAEayAAKAIAIgFqIRQgBCABa0ECaiEQAkADQCAELQAAIAFB6s+AgABqLQAARw2WASABQQJGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBtgEhEAyuAgsgAEEANgIAIBBBAWohAUEHIRAMkwELAkAgBCACRw0AQbcBIRAMrQILAkACQCAELQAAQbt/ag4OAJYBlgGWAZYBlgGWAZYBlgGWAZYBlgGWAQGWAQsgBEEBaiEEQaEBIRAMlAILIARBAWohBEGiASEQDJMCCwJAIAQgAkcNAEG4ASEQDKwCCyACIARrIAAoAgAiAWohFCAEIAFrQQJqIRACQANAIAQtAAAgAUHtz4CAAGotAABHDZQBIAFBAkYNASABQQFqIQEgBEEBaiIEIAJHDQALIAAgFDYCAEG4ASEQDKwCCyAAQQA2AgAgEEEBaiEBQRIhEAyRAQsCQCAEIAJHDQBBuQEhEAyrAgsgAiAEayAAKAIAIgFqIRQgBCABa0EBaiEQAkADQCAELQAAIAFB8M+AgABqLQAARw2TASABQQFGDQEgAUEBaiEBIARBAWoiBCACRw0ACyAAIBQ2AgBBuQEhEAyrAgsgAEEANgIAIBBBAWohAUEgIRAMkAELAkAgBCACRw0AQboBIRAMqgILIAIgBGsgACgCACIBaiEUIAQgAWtBAWohEAJAA0AgBC0AACABQfLPgIAAai0AAEcNkgEgAUEBRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQboBIRAMqgILIABBADYCACAQQQFqIQFBDyEQDI8BCwJAIAQgAkcNAEG7ASEQDKkCCwJAAkAgBC0AAEG3f2oOBwCSAZIBkgGSAZIBAZIBCyAEQQFqIQRBpQEhEAyQAgsgBEEBaiEEQaYBIRAMjwILAkAgBCACRw0AQbwBIRAMqAILIAIgBGsgACgCACIBaiEUIAQgAWtBB2ohEAJAA0AgBC0AACABQfTPgIAAai0AAEcNkAEgAUEHRg0BIAFBAWohASAEQQFqIgQgAkcNAAsgACAUNgIAQbwBIRAMqAILIABBADYCACAQQQFqIQFBGyEQDI0BCwJAIAQgAkcNAEG9ASEQDKcCCwJAAkACQCAELQAAQb5/ag4SAJEBkQGRAZEBkQGRAZEBkQGRAQGRAZEBkQGRAZEBkQECkQELIARBAWohBEGkASEQDI8CCyAEQQFqIQRBpwEhEAyOAgsgBEEBaiEEQagBIRAMjQILAkAgBCACRw0AQb4BIRAMpgILIAQtAABBzgBHDY0BIARBAWohBAzPAQsCQCAEIAJHDQBBvwEhEAylAgsCQAJAAkACQAJAAkACQAJAAkACQAJAAkACQAJAAkACQCAELQAAQb9/ag4VAAECA5wBBAUGnAGcAZwBBwgJCgucAQwNDg+cAQsgBEEBaiEBQegAIRAMmgILIARBAWohAUHpACEQDJkCCyAEQQFqIQFB7gAhEAyYAgsgBEEBaiEBQfIAIRAMlwILIARBAWohAUHzACEQDJYCCyAEQQFqIQFB9gAhEAyVAgsgBEEBaiEBQfcAIRAMlAILIARBAWohAUH6ACEQDJMCCyAEQQFqIQRBgwEhEAySAgsgBEEBaiEEQYQBIRAMkQILIARBAWohBEGFASEQDJACCyAEQQFqIQRBkgEhEAyPAgsgBEEBaiEEQZgBIRAMjgILIARBAWohBEGgASEQDI0CCyAEQQFqIQRBowEhEAyMAgsgBEEBaiEEQaoBIRAMiwILAkAgBCACRg0AIABBkICAgAA2AgggACAENgIEQasBIRAMiwILQcABIRAMowILIAAgBSACEKqAgIAAIgENiwEgBSEBDFwLAkAgBiACRg0AIAZBAWohBQyNAQtBwgEhEAyhAgsDQAJAIBAtAABBdmoOBIwBAACPAQALIBBBAWoiECACRw0AC0HDASEQDKACCwJAIAcgAkYNACAAQZGAgIAANgIIIAAgBzYCBCAHIQFBASEQDIcCC0HEASEQDJ8CCwJAIAcgAkcNAEHFASEQDJ8CCwJAAkAgBy0AAEF2ag4EAc4BzgEAzgELIAdBAWohBgyNAQsgB0EBaiEFDIkBCwJAIAcgAkcNAEHGASEQDJ4CCwJAAkAgBy0AAEF2ag4XAY8BjwEBjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BAI8BCyAHQQFqIQcLQbABIRAMhAILAkAgCCACRw0AQcgBIRAMnQILIAgtAABBIEcNjQEgAEEAOwEyIAhBAWohAUGzASEQDIMCCyABIRcCQANAIBciByACRg0BIActAABBUGpB/wFxIhBBCk8NzAECQCAALwEyIhRBmTNLDQAgACAUQQpsIhQ7ATIgEEH//wNzIBRB/v8DcUkNACAHQQFqIRcgACAUIBBqIhA7ATIgEEH//wNxQegHSQ0BCwtBACEQIABBADYCHCAAQcGJgIAANgIQIABBDTYCDCAAIAdBAWo2AhQMnAILQccBIRAMmwILIAAgCCACEK6AgIAAIhBFDcoBIBBBFUcNjAEgAEHIATYCHCAAIAg2AhQgAEHJl4CAADYCECAAQRU2AgxBACEQDJoCCwJAIAkgAkcNAEHMASEQDJoCC0EAIRRBASEXQQEhFkEAIRACQAJAAkACQAJAAkACQAJAAkAgCS0AAEFQag4KlgGVAQABAgMEBQYIlwELQQIhEAwGC0EDIRAMBQtBBCEQDAQLQQUhEAwDC0EGIRAMAgtBByEQDAELQQghEAtBACEXQQAhFkEAIRQMjgELQQkhEEEBIRRBACEXQQAhFgyNAQsCQCAKIAJHDQBBzgEhEAyZAgsgCi0AAEEuRw2OASAKQQFqIQkMygELIAsgAkcNjgFB0AEhEAyXAgsCQCALIAJGDQAgAEGOgICAADYCCCAAIAs2AgRBtwEhEAz+AQtB0QEhEAyWAgsCQCAEIAJHDQBB0gEhEAyWAgsgAiAEayAAKAIAIhBqIRQgBCAQa0EEaiELA0AgBC0AACAQQfzPgIAAai0AAEcNjgEgEEEERg3pASAQQQFqIRAgBEEBaiIEIAJHDQALIAAgFDYCAEHSASEQDJUCCyAAIAwgAhCsgICAACIBDY0BIAwhAQy4AQsCQCAEIAJHDQBB1AEhEAyUAgsgAiAEayAAKAIAIhBqIRQgBCAQa0EBaiEMA0AgBC0AACAQQYHQgIAAai0AAEcNjwEgEEEBRg2OASAQQQFqIRAgBEEBaiIEIAJHDQALIAAgFDYCAEHUASEQDJMCCwJAIAQgAkcNAEHWASEQDJMCCyACIARrIAAoAgAiEGohFCAEIBBrQQJqIQsDQCAELQAAIBBBg9CAgABqLQAARw2OASAQQQJGDZABIBBBAWohECAEQQFqIgQgAkcNAAsgACAUNgIAQdYBIRAMkgILAkAgBCACRw0AQdcBIRAMkgILAkACQCAELQAAQbt/ag4QAI8BjwGPAY8BjwGPAY8BjwGPAY8BjwGPAY8BjwEBjwELIARBAWohBEG7ASEQDPkBCyAEQQFqIQRBvAEhEAz4AQsCQCAEIAJHDQBB2AEhEAyRAgsgBC0AAEHIAEcNjAEgBEEBaiEEDMQBCwJAIAQgAkYNACAAQZCAgIAANgIIIAAgBDYCBEG+ASEQDPcBC0HZASEQDI8CCwJAIAQgAkcNAEHaASEQDI8CCyAELQAAQcgARg3DASAAQQE6ACgMuQELIABBAjoALyAAIAQgAhCmgICAACIQDY0BQcIBIRAM9AELIAAtAChBf2oOArcBuQG4AQsDQAJAIAQtAABBdmoOBACOAY4BAI4BCyAEQQFqIgQgAkcNAAtB3QEhEAyLAgsgAEEAOgAvIAAtAC1BBHFFDYQCCyAAQQA6AC8gAEEBOgA0IAEhAQyMAQsgEEEVRg3aASAAQQA2AhwgACABNgIUIABBp46AgAA2AhAgAEESNgIMQQAhEAyIAgsCQCAAIBAgAhC0gICAACIEDQAgECEBDIECCwJAIARBFUcNACAAQQM2AhwgACAQNgIUIABBsJiAgAA2AhAgAEEVNgIMQQAhEAyIAgsgAEEANgIcIAAgEDYCFCAAQaeOgIAANgIQIABBEjYCDEEAIRAMhwILIBBBFUYN1gEgAEEANgIcIAAgATYCFCAAQdqNgIAANgIQIABBFDYCDEEAIRAMhgILIAAoAgQhFyAAQQA2AgQgECARp2oiFiEBIAAgFyAQIBYgFBsiEBC1gICAACIURQ2NASAAQQc2AhwgACAQNgIUIAAgFDYCDEEAIRAMhQILIAAgAC8BMEGAAXI7ATAgASEBC0EqIRAM6gELIBBBFUYN0QEgAEEANgIcIAAgATYCFCAAQYOMgIAANgIQIABBEzYCDEEAIRAMggILIBBBFUYNzwEgAEEANgIcIAAgATYCFCAAQZqPgIAANgIQIABBIjYCDEEAIRAMgQILIAAoAgQhECAAQQA2AgQCQCAAIBAgARC3gICAACIQDQAgAUEBaiEBDI0BCyAAQQw2AhwgACAQNgIMIAAgAUEBajYCFEEAIRAMgAILIBBBFUYNzAEgAEEANgIcIAAgATYCFCAAQZqPgIAANgIQIABBIjYCDEEAIRAM/wELIAAoAgQhECAAQQA2AgQCQCAAIBAgARC3gICAACIQDQAgAUEBaiEBDIwBCyAAQQ02AhwgACAQNgIMIAAgAUEBajYCFEEAIRAM/gELIBBBFUYNyQEgAEEANgIcIAAgATYCFCAAQcaMgIAANgIQIABBIzYCDEEAIRAM/QELIAAoAgQhECAAQQA2AgQCQCAAIBAgARC5gICAACIQDQAgAUEBaiEBDIsBCyAAQQ42AhwgACAQNgIMIAAgAUEBajYCFEEAIRAM/AELIABBADYCHCAAIAE2AhQgAEHAlYCAADYCECAAQQI2AgxBACEQDPsBCyAQQRVGDcUBIABBADYCHCAAIAE2AhQgAEHGjICAADYCECAAQSM2AgxBACEQDPoBCyAAQRA2AhwgACABNgIUIAAgEDYCDEEAIRAM+QELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARC5gICAACIEDQAgAUEBaiEBDPEBCyAAQRE2AhwgACAENgIMIAAgAUEBajYCFEEAIRAM+AELIBBBFUYNwQEgAEEANgIcIAAgATYCFCAAQcaMgIAANgIQIABBIzYCDEEAIRAM9wELIAAoAgQhECAAQQA2AgQCQCAAIBAgARC5gICAACIQDQAgAUEBaiEBDIgBCyAAQRM2AhwgACAQNgIMIAAgAUEBajYCFEEAIRAM9gELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARC5gICAACIEDQAgAUEBaiEBDO0BCyAAQRQ2AhwgACAENgIMIAAgAUEBajYCFEEAIRAM9QELIBBBFUYNvQEgAEEANgIcIAAgATYCFCAAQZqPgIAANgIQIABBIjYCDEEAIRAM9AELIAAoAgQhECAAQQA2AgQCQCAAIBAgARC3gICAACIQDQAgAUEBaiEBDIYBCyAAQRY2AhwgACAQNgIMIAAgAUEBajYCFEEAIRAM8wELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARC3gICAACIEDQAgAUEBaiEBDOkBCyAAQRc2AhwgACAENgIMIAAgAUEBajYCFEEAIRAM8gELIABBADYCHCAAIAE2AhQgAEHNk4CAADYCECAAQQw2AgxBACEQDPEBC0IBIRELIBBBAWohAQJAIAApAyAiEkL//////////w9WDQAgACASQgSGIBGENwMgIAEhAQyEAQsgAEEANgIcIAAgATYCFCAAQa2JgIAANgIQIABBDDYCDEEAIRAM7wELIABBADYCHCAAIBA2AhQgAEHNk4CAADYCECAAQQw2AgxBACEQDO4BCyAAKAIEIRcgAEEANgIEIBAgEadqIhYhASAAIBcgECAWIBQbIhAQtYCAgAAiFEUNcyAAQQU2AhwgACAQNgIUIAAgFDYCDEEAIRAM7QELIABBADYCHCAAIBA2AhQgAEGqnICAADYCECAAQQ82AgxBACEQDOwBCyAAIBAgAhC0gICAACIBDQEgECEBC0EOIRAM0QELAkAgAUEVRw0AIABBAjYCHCAAIBA2AhQgAEGwmICAADYCECAAQRU2AgxBACEQDOoBCyAAQQA2AhwgACAQNgIUIABBp46AgAA2AhAgAEESNgIMQQAhEAzpAQsgAUEBaiEQAkAgAC8BMCIBQYABcUUNAAJAIAAgECACELuAgIAAIgENACAQIQEMcAsgAUEVRw26ASAAQQU2AhwgACAQNgIUIABB+ZeAgAA2AhAgAEEVNgIMQQAhEAzpAQsCQCABQaAEcUGgBEcNACAALQAtQQJxDQAgAEEANgIcIAAgEDYCFCAAQZaTgIAANgIQIABBBDYCDEEAIRAM6QELIAAgECACEL2AgIAAGiAQIQECQAJAAkACQAJAIAAgECACELOAgIAADhYCAQAEBAQEBAQEBAQEBAQEBAQEBAQDBAsgAEEBOgAuCyAAIAAvATBBwAByOwEwIBAhAQtBJiEQDNEBCyAAQSM2AhwgACAQNgIUIABBpZaAgAA2AhAgAEEVNgIMQQAhEAzpAQsgAEEANgIcIAAgEDYCFCAAQdWLgIAANgIQIABBETYCDEEAIRAM6AELIAAtAC1BAXFFDQFBwwEhEAzOAQsCQCANIAJGDQADQAJAIA0tAABBIEYNACANIQEMxAELIA1BAWoiDSACRw0AC0ElIRAM5wELQSUhEAzmAQsgACgCBCEEIABBADYCBCAAIAQgDRCvgICAACIERQ2tASAAQSY2AhwgACAENgIMIAAgDUEBajYCFEEAIRAM5QELIBBBFUYNqwEgAEEANgIcIAAgATYCFCAAQf2NgIAANgIQIABBHTYCDEEAIRAM5AELIABBJzYCHCAAIAE2AhQgACAQNgIMQQAhEAzjAQsgECEBQQEhFAJAAkACQAJAAkACQAJAIAAtACxBfmoOBwYFBQMBAgAFCyAAIAAvATBBCHI7ATAMAwtBAiEUDAELQQQhFAsgAEEBOgAsIAAgAC8BMCAUcjsBMAsgECEBC0ErIRAMygELIABBADYCHCAAIBA2AhQgAEGrkoCAADYCECAAQQs2AgxBACEQDOIBCyAAQQA2AhwgACABNgIUIABB4Y+AgAA2AhAgAEEKNgIMQQAhEAzhAQsgAEEAOgAsIBAhAQy9AQsgECEBQQEhFAJAAkACQAJAAkAgAC0ALEF7ag4EAwECAAULIAAgAC8BMEEIcjsBMAwDC0ECIRQMAQtBBCEUCyAAQQE6ACwgACAALwEwIBRyOwEwCyAQIQELQSkhEAzFAQsgAEEANgIcIAAgATYCFCAAQfCUgIAANgIQIABBAzYCDEEAIRAM3QELAkAgDi0AAEENRw0AIAAoAgQhASAAQQA2AgQCQCAAIAEgDhCxgICAACIBDQAgDkEBaiEBDHULIABBLDYCHCAAIAE2AgwgACAOQQFqNgIUQQAhEAzdAQsgAC0ALUEBcUUNAUHEASEQDMMBCwJAIA4gAkcNAEEtIRAM3AELAkACQANAAkAgDi0AAEF2ag4EAgAAAwALIA5BAWoiDiACRw0AC0EtIRAM3QELIAAoAgQhASAAQQA2AgQCQCAAIAEgDhCxgICAACIBDQAgDiEBDHQLIABBLDYCHCAAIA42AhQgACABNgIMQQAhEAzcAQsgACgCBCEBIABBADYCBAJAIAAgASAOELGAgIAAIgENACAOQQFqIQEMcwsgAEEsNgIcIAAgATYCDCAAIA5BAWo2AhRBACEQDNsBCyAAKAIEIQQgAEEANgIEIAAgBCAOELGAgIAAIgQNoAEgDiEBDM4BCyAQQSxHDQEgAUEBaiEQQQEhAQJAAkACQAJAAkAgAC0ALEF7ag4EAwECBAALIBAhAQwEC0ECIQEMAQtBBCEBCyAAQQE6ACwgACAALwEwIAFyOwEwIBAhAQwBCyAAIAAvATBBCHI7ATAgECEBC0E5IRAMvwELIABBADoALCABIQELQTQhEAy9AQsgACAALwEwQSByOwEwIAEhAQwCCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQsYCAgAAiBA0AIAEhAQzHAQsgAEE3NgIcIAAgATYCFCAAIAQ2AgxBACEQDNQBCyAAQQg6ACwgASEBC0EwIRAMuQELAkAgAC0AKEEBRg0AIAEhAQwECyAALQAtQQhxRQ2TASABIQEMAwsgAC0AMEEgcQ2UAUHFASEQDLcBCwJAIA8gAkYNAAJAA0ACQCAPLQAAQVBqIgFB/wFxQQpJDQAgDyEBQTUhEAy6AQsgACkDICIRQpmz5syZs+bMGVYNASAAIBFCCn4iETcDICARIAGtQv8BgyISQn+FVg0BIAAgESASfDcDICAPQQFqIg8gAkcNAAtBOSEQDNEBCyAAKAIEIQIgAEEANgIEIAAgAiAPQQFqIgQQsYCAgAAiAg2VASAEIQEMwwELQTkhEAzPAQsCQCAALwEwIgFBCHFFDQAgAC0AKEEBRw0AIAAtAC1BCHFFDZABCyAAIAFB9/sDcUGABHI7ATAgDyEBC0E3IRAMtAELIAAgAC8BMEEQcjsBMAyrAQsgEEEVRg2LASAAQQA2AhwgACABNgIUIABB8I6AgAA2AhAgAEEcNgIMQQAhEAzLAQsgAEHDADYCHCAAIAE2AgwgACANQQFqNgIUQQAhEAzKAQsCQCABLQAAQTpHDQAgACgCBCEQIABBADYCBAJAIAAgECABEK+AgIAAIhANACABQQFqIQEMYwsgAEHDADYCHCAAIBA2AgwgACABQQFqNgIUQQAhEAzKAQsgAEEANgIcIAAgATYCFCAAQbGRgIAANgIQIABBCjYCDEEAIRAMyQELIABBADYCHCAAIAE2AhQgAEGgmYCAADYCECAAQR42AgxBACEQDMgBCyAAQQA2AgALIABBgBI7ASogACAXQQFqIgEgAhCogICAACIQDQEgASEBC0HHACEQDKwBCyAQQRVHDYMBIABB0QA2AhwgACABNgIUIABB45eAgAA2AhAgAEEVNgIMQQAhEAzEAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMXgsgAEHSADYCHCAAIAE2AhQgACAQNgIMQQAhEAzDAQsgAEEANgIcIAAgFDYCFCAAQcGogIAANgIQIABBBzYCDCAAQQA2AgBBACEQDMIBCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxdCyAAQdMANgIcIAAgATYCFCAAIBA2AgxBACEQDMEBC0EAIRAgAEEANgIcIAAgATYCFCAAQYCRgIAANgIQIABBCTYCDAzAAQsgEEEVRg19IABBADYCHCAAIAE2AhQgAEGUjYCAADYCECAAQSE2AgxBACEQDL8BC0EBIRZBACEXQQAhFEEBIRALIAAgEDoAKyABQQFqIQECQAJAIAAtAC1BEHENAAJAAkACQCAALQAqDgMBAAIECyAWRQ0DDAILIBQNAQwCCyAXRQ0BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQrYCAgAAiEA0AIAEhAQxcCyAAQdgANgIcIAAgATYCFCAAIBA2AgxBACEQDL4BCyAAKAIEIQQgAEEANgIEAkAgACAEIAEQrYCAgAAiBA0AIAEhAQytAQsgAEHZADYCHCAAIAE2AhQgACAENgIMQQAhEAy9AQsgACgCBCEEIABBADYCBAJAIAAgBCABEK2AgIAAIgQNACABIQEMqwELIABB2gA2AhwgACABNgIUIAAgBDYCDEEAIRAMvAELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARCtgICAACIEDQAgASEBDKkBCyAAQdwANgIcIAAgATYCFCAAIAQ2AgxBACEQDLsBCwJAIAEtAABBUGoiEEH/AXFBCk8NACAAIBA6ACogAUEBaiEBQc8AIRAMogELIAAoAgQhBCAAQQA2AgQCQCAAIAQgARCtgICAACIEDQAgASEBDKcBCyAAQd4ANgIcIAAgATYCFCAAIAQ2AgxBACEQDLoBCyAAQQA2AgAgF0EBaiEBAkAgAC0AKUEjTw0AIAEhAQxZCyAAQQA2AhwgACABNgIUIABB04mAgAA2AhAgAEEINgIMQQAhEAy5AQsgAEEANgIAC0EAIRAgAEEANgIcIAAgATYCFCAAQZCzgIAANgIQIABBCDYCDAy3AQsgAEEANgIAIBdBAWohAQJAIAAtAClBIUcNACABIQEMVgsgAEEANgIcIAAgATYCFCAAQZuKgIAANgIQIABBCDYCDEEAIRAMtgELIABBADYCACAXQQFqIQECQCAALQApIhBBXWpBC08NACABIQEMVQsCQCAQQQZLDQBBASAQdEHKAHFFDQAgASEBDFULQQAhECAAQQA2AhwgACABNgIUIABB94mAgAA2AhAgAEEINgIMDLUBCyAQQRVGDXEgAEEANgIcIAAgATYCFCAAQbmNgIAANgIQIABBGjYCDEEAIRAMtAELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDFQLIABB5QA2AhwgACABNgIUIAAgEDYCDEEAIRAMswELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDE0LIABB0gA2AhwgACABNgIUIAAgEDYCDEEAIRAMsgELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDE0LIABB0wA2AhwgACABNgIUIAAgEDYCDEEAIRAMsQELIAAoAgQhECAAQQA2AgQCQCAAIBAgARCngICAACIQDQAgASEBDFELIABB5QA2AhwgACABNgIUIAAgEDYCDEEAIRAMsAELIABBADYCHCAAIAE2AhQgAEHGioCAADYCECAAQQc2AgxBACEQDK8BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxJCyAAQdIANgIcIAAgATYCFCAAIBA2AgxBACEQDK4BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxJCyAAQdMANgIcIAAgATYCFCAAIBA2AgxBACEQDK0BCyAAKAIEIRAgAEEANgIEAkAgACAQIAEQp4CAgAAiEA0AIAEhAQxNCyAAQeUANgIcIAAgATYCFCAAIBA2AgxBACEQDKwBCyAAQQA2AhwgACABNgIUIABB3IiAgAA2AhAgAEEHNgIMQQAhEAyrAQsgEEE/Rw0BIAFBAWohAQtBBSEQDJABC0EAIRAgAEEANgIcIAAgATYCFCAAQf2SgIAANgIQIABBBzYCDAyoAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMQgsgAEHSADYCHCAAIAE2AhQgACAQNgIMQQAhEAynAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMQgsgAEHTADYCHCAAIAE2AhQgACAQNgIMQQAhEAymAQsgACgCBCEQIABBADYCBAJAIAAgECABEKeAgIAAIhANACABIQEMRgsgAEHlADYCHCAAIAE2AhQgACAQNgIMQQAhEAylAQsgACgCBCEBIABBADYCBAJAIAAgASAUEKeAgIAAIgENACAUIQEMPwsgAEHSADYCHCAAIBQ2AhQgACABNgIMQQAhEAykAQsgACgCBCEBIABBADYCBAJAIAAgASAUEKeAgIAAIgENACAUIQEMPwsgAEHTADYCHCAAIBQ2AhQgACABNgIMQQAhEAyjAQsgACgCBCEBIABBADYCBAJAIAAgASAUEKeAgIAAIgENACAUIQEMQwsgAEHlADYCHCAAIBQ2AhQgACABNgIMQQAhEAyiAQsgAEEANgIcIAAgFDYCFCAAQcOPgIAANgIQIABBBzYCDEEAIRAMoQELIABBADYCHCAAIAE2AhQgAEHDj4CAADYCECAAQQc2AgxBACEQDKABC0EAIRAgAEEANgIcIAAgFDYCFCAAQYycgIAANgIQIABBBzYCDAyfAQsgAEEANgIcIAAgFDYCFCAAQYycgIAANgIQIABBBzYCDEEAIRAMngELIABBADYCHCAAIBQ2AhQgAEH+kYCAADYCECAAQQc2AgxBACEQDJ0BCyAAQQA2AhwgACABNgIUIABBjpuAgAA2AhAgAEEGNgIMQQAhEAycAQsgEEEVRg1XIABBADYCHCAAIAE2AhQgAEHMjoCAADYCECAAQSA2AgxBACEQDJsBCyAAQQA2AgAgEEEBaiEBQSQhEAsgACAQOgApIAAoAgQhECAAQQA2AgQgACAQIAEQq4CAgAAiEA1UIAEhAQw+CyAAQQA2AgALQQAhECAAQQA2AhwgACAENgIUIABB8ZuAgAA2AhAgAEEGNgIMDJcBCyABQRVGDVAgAEEANgIcIAAgBTYCFCAAQfCMgIAANgIQIABBGzYCDEEAIRAMlgELIAAoAgQhBSAAQQA2AgQgACAFIBAQqYCAgAAiBQ0BIBBBAWohBQtBrQEhEAx7CyAAQcEBNgIcIAAgBTYCDCAAIBBBAWo2AhRBACEQDJMBCyAAKAIEIQYgAEEANgIEIAAgBiAQEKmAgIAAIgYNASAQQQFqIQYLQa4BIRAMeAsgAEHCATYCHCAAIAY2AgwgACAQQQFqNgIUQQAhEAyQAQsgAEEANgIcIAAgBzYCFCAAQZeLgIAANgIQIABBDTYCDEEAIRAMjwELIABBADYCHCAAIAg2AhQgAEHjkICAADYCECAAQQk2AgxBACEQDI4BCyAAQQA2AhwgACAINgIUIABBlI2AgAA2AhAgAEEhNgIMQQAhEAyNAQtBASEWQQAhF0EAIRRBASEQCyAAIBA6ACsgCUEBaiEIAkACQCAALQAtQRBxDQACQAJAAkAgAC0AKg4DAQACBAsgFkUNAwwCCyAUDQEMAgsgF0UNAQsgACgCBCEQIABBADYCBCAAIBAgCBCtgICAACIQRQ09IABByQE2AhwgACAINgIUIAAgEDYCDEEAIRAMjAELIAAoAgQhBCAAQQA2AgQgACAEIAgQrYCAgAAiBEUNdiAAQcoBNgIcIAAgCDYCFCAAIAQ2AgxBACEQDIsBCyAAKAIEIQQgAEEANgIEIAAgBCAJEK2AgIAAIgRFDXQgAEHLATYCHCAAIAk2AhQgACAENgIMQQAhEAyKAQsgACgCBCEEIABBADYCBCAAIAQgChCtgICAACIERQ1yIABBzQE2AhwgACAKNgIUIAAgBDYCDEEAIRAMiQELAkAgCy0AAEFQaiIQQf8BcUEKTw0AIAAgEDoAKiALQQFqIQpBtgEhEAxwCyAAKAIEIQQgAEEANgIEIAAgBCALEK2AgIAAIgRFDXAgAEHPATYCHCAAIAs2AhQgACAENgIMQQAhEAyIAQsgAEEANgIcIAAgBDYCFCAAQZCzgIAANgIQIABBCDYCDCAAQQA2AgBBACEQDIcBCyABQRVGDT8gAEEANgIcIAAgDDYCFCAAQcyOgIAANgIQIABBIDYCDEEAIRAMhgELIABBgQQ7ASggACgCBCEQIABCADcDACAAIBAgDEEBaiIMEKuAgIAAIhBFDTggAEHTATYCHCAAIAw2AhQgACAQNgIMQQAhEAyFAQsgAEEANgIAC0EAIRAgAEEANgIcIAAgBDYCFCAAQdibgIAANgIQIABBCDYCDAyDAQsgACgCBCEQIABCADcDACAAIBAgC0EBaiILEKuAgIAAIhANAUHGASEQDGkLIABBAjoAKAxVCyAAQdUBNgIcIAAgCzYCFCAAIBA2AgxBACEQDIABCyAQQRVGDTcgAEEANgIcIAAgBDYCFCAAQaSMgIAANgIQIABBEDYCDEEAIRAMfwsgAC0ANEEBRw00IAAgBCACELyAgIAAIhBFDTQgEEEVRw01IABB3AE2AhwgACAENgIUIABB1ZaAgAA2AhAgAEEVNgIMQQAhEAx+C0EAIRAgAEEANgIcIABBr4uAgAA2AhAgAEECNgIMIAAgFEEBajYCFAx9C0EAIRAMYwtBAiEQDGILQQ0hEAxhC0EPIRAMYAtBJSEQDF8LQRMhEAxeC0EVIRAMXQtBFiEQDFwLQRchEAxbC0EYIRAMWgtBGSEQDFkLQRohEAxYC0EbIRAMVwtBHCEQDFYLQR0hEAxVC0EfIRAMVAtBISEQDFMLQSMhEAxSC0HGACEQDFELQS4hEAxQC0EvIRAMTwtBOyEQDE4LQT0hEAxNC0HIACEQDEwLQckAIRAMSwtBywAhEAxKC0HMACEQDEkLQc4AIRAMSAtB0QAhEAxHC0HVACEQDEYLQdgAIRAMRQtB2QAhEAxEC0HbACEQDEMLQeQAIRAMQgtB5QAhEAxBC0HxACEQDEALQfQAIRAMPwtBjQEhEAw+C0GXASEQDD0LQakBIRAMPAtBrAEhEAw7C0HAASEQDDoLQbkBIRAMOQtBrwEhEAw4C0GxASEQDDcLQbIBIRAMNgtBtAEhEAw1C0G1ASEQDDQLQboBIRAMMwtBvQEhEAwyC0G/ASEQDDELQcEBIRAMMAsgAEEANgIcIAAgBDYCFCAAQemLgIAANgIQIABBHzYCDEEAIRAMSAsgAEHbATYCHCAAIAQ2AhQgAEH6loCAADYCECAAQRU2AgxBACEQDEcLIABB+AA2AhwgACAMNgIUIABBypiAgAA2AhAgAEEVNgIMQQAhEAxGCyAAQdEANgIcIAAgBTYCFCAAQbCXgIAANgIQIABBFTYCDEEAIRAMRQsgAEH5ADYCHCAAIAE2AhQgACAQNgIMQQAhEAxECyAAQfgANgIcIAAgATYCFCAAQcqYgIAANgIQIABBFTYCDEEAIRAMQwsgAEHkADYCHCAAIAE2AhQgAEHjl4CAADYCECAAQRU2AgxBACEQDEILIABB1wA2AhwgACABNgIUIABByZeAgAA2AhAgAEEVNgIMQQAhEAxBCyAAQQA2AhwgACABNgIUIABBuY2AgAA2AhAgAEEaNgIMQQAhEAxACyAAQcIANgIcIAAgATYCFCAAQeOYgIAANgIQIABBFTYCDEEAIRAMPwsgAEEANgIEIAAgDyAPELGAgIAAIgRFDQEgAEE6NgIcIAAgBDYCDCAAIA9BAWo2AhRBACEQDD4LIAAoAgQhBCAAQQA2AgQCQCAAIAQgARCxgICAACIERQ0AIABBOzYCHCAAIAQ2AgwgACABQQFqNgIUQQAhEAw+CyABQQFqIQEMLQsgD0EBaiEBDC0LIABBADYCHCAAIA82AhQgAEHkkoCAADYCECAAQQQ2AgxBACEQDDsLIABBNjYCHCAAIAQ2AhQgACACNgIMQQAhEAw6CyAAQS42AhwgACAONgIUIAAgBDYCDEEAIRAMOQsgAEHQADYCHCAAIAE2AhQgAEGRmICAADYCECAAQRU2AgxBACEQDDgLIA1BAWohAQwsCyAAQRU2AhwgACABNgIUIABBgpmAgAA2AhAgAEEVNgIMQQAhEAw2CyAAQRs2AhwgACABNgIUIABBkZeAgAA2AhAgAEEVNgIMQQAhEAw1CyAAQQ82AhwgACABNgIUIABBkZeAgAA2AhAgAEEVNgIMQQAhEAw0CyAAQQs2AhwgACABNgIUIABBkZeAgAA2AhAgAEEVNgIMQQAhEAwzCyAAQRo2AhwgACABNgIUIABBgpmAgAA2AhAgAEEVNgIMQQAhEAwyCyAAQQs2AhwgACABNgIUIABBgpmAgAA2AhAgAEEVNgIMQQAhEAwxCyAAQQo2AhwgACABNgIUIABB5JaAgAA2AhAgAEEVNgIMQQAhEAwwCyAAQR42AhwgACABNgIUIABB+ZeAgAA2AhAgAEEVNgIMQQAhEAwvCyAAQQA2AhwgACAQNgIUIABB2o2AgAA2AhAgAEEUNgIMQQAhEAwuCyAAQQQ2AhwgACABNgIUIABBsJiAgAA2AhAgAEEVNgIMQQAhEAwtCyAAQQA2AgAgC0EBaiELC0G4ASEQDBILIABBADYCACAQQQFqIQFB9QAhEAwRCyABIQECQCAALQApQQVHDQBB4wAhEAwRC0HiACEQDBALQQAhECAAQQA2AhwgAEHkkYCAADYCECAAQQc2AgwgACAUQQFqNgIUDCgLIABBADYCACAXQQFqIQFBwAAhEAwOC0EBIQELIAAgAToALCAAQQA2AgAgF0EBaiEBC0EoIRAMCwsgASEBC0E4IRAMCQsCQCABIg8gAkYNAANAAkAgDy0AAEGAvoCAAGotAAAiAUEBRg0AIAFBAkcNAyAPQQFqIQEMBAsgD0EBaiIPIAJHDQALQT4hEAwiC0E+IRAMIQsgAEEAOgAsIA8hAQwBC0ELIRAMBgtBOiEQDAULIAFBAWohAUEtIRAMBAsgACABOgAsIABBADYCACAWQQFqIQFBDCEQDAMLIABBADYCACAXQQFqIQFBCiEQDAILIABBADYCAAsgAEEAOgAsIA0hAUEJIRAMAAsLQQAhECAAQQA2AhwgACALNgIUIABBzZCAgAA2AhAgAEEJNgIMDBcLQQAhECAAQQA2AhwgACAKNgIUIABB6YqAgAA2AhAgAEEJNgIMDBYLQQAhECAAQQA2AhwgACAJNgIUIABBt5CAgAA2AhAgAEEJNgIMDBULQQAhECAAQQA2AhwgACAINgIUIABBnJGAgAA2AhAgAEEJNgIMDBQLQQAhECAAQQA2AhwgACABNgIUIABBzZCAgAA2AhAgAEEJNgIMDBMLQQAhECAAQQA2AhwgACABNgIUIABB6YqAgAA2AhAgAEEJNgIMDBILQQAhECAAQQA2AhwgACABNgIUIABBt5CAgAA2AhAgAEEJNgIMDBELQQAhECAAQQA2AhwgACABNgIUIABBnJGAgAA2AhAgAEEJNgIMDBALQQAhECAAQQA2AhwgACABNgIUIABBl5WAgAA2AhAgAEEPNgIMDA8LQQAhECAAQQA2AhwgACABNgIUIABBl5WAgAA2AhAgAEEPNgIMDA4LQQAhECAAQQA2AhwgACABNgIUIABBwJKAgAA2AhAgAEELNgIMDA0LQQAhECAAQQA2AhwgACABNgIUIABBlYmAgAA2AhAgAEELNgIMDAwLQQAhECAAQQA2AhwgACABNgIUIABB4Y+AgAA2AhAgAEEKNgIMDAsLQQAhECAAQQA2AhwgACABNgIUIABB+4+AgAA2AhAgAEEKNgIMDAoLQQAhECAAQQA2AhwgACABNgIUIABB8ZmAgAA2AhAgAEECNgIMDAkLQQAhECAAQQA2AhwgACABNgIUIABBxJSAgAA2AhAgAEECNgIMDAgLQQAhECAAQQA2AhwgACABNgIUIABB8pWAgAA2AhAgAEECNgIMDAcLIABBAjYCHCAAIAE2AhQgAEGcmoCAADYCECAAQRY2AgxBACEQDAYLQQEhEAwFC0HUACEQIAEiBCACRg0EIANBCGogACAEIAJB2MKAgABBChDFgICAACADKAIMIQQgAygCCA4DAQQCAAsQyoCAgAAACyAAQQA2AhwgAEG1moCAADYCECAAQRc2AgwgACAEQQFqNgIUQQAhEAwCCyAAQQA2AhwgACAENgIUIABBypqAgAA2AhAgAEEJNgIMQQAhEAwBCwJAIAEiBCACRw0AQSIhEAwBCyAAQYmAgIAANgIIIAAgBDYCBEEhIRALIANBEGokgICAgAAgEAuvAQECfyABKAIAIQYCQAJAIAIgA0YNACAEIAZqIQQgBiADaiACayEHIAIgBkF/cyAFaiIGaiEFA0ACQCACLQAAIAQtAABGDQBBAiEEDAMLAkAgBg0AQQAhBCAFIQIMAwsgBkF/aiEGIARBAWohBCACQQFqIgIgA0cNAAsgByEGIAMhAgsgAEEBNgIAIAEgBjYCACAAIAI2AgQPCyABQQA2AgAgACAENgIAIAAgAjYCBAsKACAAEMeAgIAAC/I2AQt/I4CAgIAAQRBrIgEkgICAgAACQEEAKAKg0ICAAA0AQQAQy4CAgABBgNSEgABrIgJB2QBJDQBBACEDAkBBACgC4NOAgAAiBA0AQQBCfzcC7NOAgABBAEKAgISAgIDAADcC5NOAgABBACABQQhqQXBxQdiq1aoFcyIENgLg04CAAEEAQQA2AvTTgIAAQQBBADYCxNOAgAALQQAgAjYCzNOAgABBAEGA1ISAADYCyNOAgABBAEGA1ISAADYCmNCAgABBACAENgKs0ICAAEEAQX82AqjQgIAAA0AgA0HE0ICAAGogA0G40ICAAGoiBDYCACAEIANBsNCAgABqIgU2AgAgA0G80ICAAGogBTYCACADQczQgIAAaiADQcDQgIAAaiIFNgIAIAUgBDYCACADQdTQgIAAaiADQcjQgIAAaiIENgIAIAQgBTYCACADQdDQgIAAaiAENgIAIANBIGoiA0GAAkcNAAtBgNSEgABBeEGA1ISAAGtBD3FBAEGA1ISAAEEIakEPcRsiA2oiBEEEaiACQUhqIgUgA2siA0EBcjYCAEEAQQAoAvDTgIAANgKk0ICAAEEAIAM2ApTQgIAAQQAgBDYCoNCAgABBgNSEgAAgBWpBODYCBAsCQAJAAkACQAJAAkACQAJAAkACQAJAAkAgAEHsAUsNAAJAQQAoAojQgIAAIgZBECAAQRNqQXBxIABBC0kbIgJBA3YiBHYiA0EDcUUNAAJAAkAgA0EBcSAEckEBcyIFQQN0IgRBsNCAgABqIgMgBEG40ICAAGooAgAiBCgCCCICRw0AQQAgBkF+IAV3cTYCiNCAgAAMAQsgAyACNgIIIAIgAzYCDAsgBEEIaiEDIAQgBUEDdCIFQQNyNgIEIAQgBWoiBCAEKAIEQQFyNgIEDAwLIAJBACgCkNCAgAAiB00NAQJAIANFDQACQAJAIAMgBHRBAiAEdCIDQQAgA2tycSIDQQAgA2txQX9qIgMgA0EMdkEQcSIDdiIEQQV2QQhxIgUgA3IgBCAFdiIDQQJ2QQRxIgRyIAMgBHYiA0EBdkECcSIEciADIAR2IgNBAXZBAXEiBHIgAyAEdmoiBEEDdCIDQbDQgIAAaiIFIANBuNCAgABqKAIAIgMoAggiAEcNAEEAIAZBfiAEd3EiBjYCiNCAgAAMAQsgBSAANgIIIAAgBTYCDAsgAyACQQNyNgIEIAMgBEEDdCIEaiAEIAJrIgU2AgAgAyACaiIAIAVBAXI2AgQCQCAHRQ0AIAdBeHFBsNCAgABqIQJBACgCnNCAgAAhBAJAAkAgBkEBIAdBA3Z0IghxDQBBACAGIAhyNgKI0ICAACACIQgMAQsgAigCCCEICyAIIAQ2AgwgAiAENgIIIAQgAjYCDCAEIAg2AggLIANBCGohA0EAIAA2ApzQgIAAQQAgBTYCkNCAgAAMDAtBACgCjNCAgAAiCUUNASAJQQAgCWtxQX9qIgMgA0EMdkEQcSIDdiIEQQV2QQhxIgUgA3IgBCAFdiIDQQJ2QQRxIgRyIAMgBHYiA0EBdkECcSIEciADIAR2IgNBAXZBAXEiBHIgAyAEdmpBAnRBuNKAgABqKAIAIgAoAgRBeHEgAmshBCAAIQUCQANAAkAgBSgCECIDDQAgBUEUaigCACIDRQ0CCyADKAIEQXhxIAJrIgUgBCAFIARJIgUbIQQgAyAAIAUbIQAgAyEFDAALCyAAKAIYIQoCQCAAKAIMIgggAEYNACAAKAIIIgNBACgCmNCAgABJGiAIIAM2AgggAyAINgIMDAsLAkAgAEEUaiIFKAIAIgMNACAAKAIQIgNFDQMgAEEQaiEFCwNAIAUhCyADIghBFGoiBSgCACIDDQAgCEEQaiEFIAgoAhAiAw0ACyALQQA2AgAMCgtBfyECIABBv39LDQAgAEETaiIDQXBxIQJBACgCjNCAgAAiB0UNAEEAIQsCQCACQYACSQ0AQR8hCyACQf///wdLDQAgA0EIdiIDIANBgP4/akEQdkEIcSIDdCIEIARBgOAfakEQdkEEcSIEdCIFIAVBgIAPakEQdkECcSIFdEEPdiADIARyIAVyayIDQQF0IAIgA0EVanZBAXFyQRxqIQsLQQAgAmshBAJAAkACQAJAIAtBAnRBuNKAgABqKAIAIgUNAEEAIQNBACEIDAELQQAhAyACQQBBGSALQQF2ayALQR9GG3QhAEEAIQgDQAJAIAUoAgRBeHEgAmsiBiAETw0AIAYhBCAFIQggBg0AQQAhBCAFIQggBSEDDAMLIAMgBUEUaigCACIGIAYgBSAAQR12QQRxakEQaigCACIFRhsgAyAGGyEDIABBAXQhACAFDQALCwJAIAMgCHINAEEAIQhBAiALdCIDQQAgA2tyIAdxIgNFDQMgA0EAIANrcUF/aiIDIANBDHZBEHEiA3YiBUEFdkEIcSIAIANyIAUgAHYiA0ECdkEEcSIFciADIAV2IgNBAXZBAnEiBXIgAyAFdiIDQQF2QQFxIgVyIAMgBXZqQQJ0QbjSgIAAaigCACEDCyADRQ0BCwNAIAMoAgRBeHEgAmsiBiAESSEAAkAgAygCECIFDQAgA0EUaigCACEFCyAGIAQgABshBCADIAggABshCCAFIQMgBQ0ACwsgCEUNACAEQQAoApDQgIAAIAJrTw0AIAgoAhghCwJAIAgoAgwiACAIRg0AIAgoAggiA0EAKAKY0ICAAEkaIAAgAzYCCCADIAA2AgwMCQsCQCAIQRRqIgUoAgAiAw0AIAgoAhAiA0UNAyAIQRBqIQULA0AgBSEGIAMiAEEUaiIFKAIAIgMNACAAQRBqIQUgACgCECIDDQALIAZBADYCAAwICwJAQQAoApDQgIAAIgMgAkkNAEEAKAKc0ICAACEEAkACQCADIAJrIgVBEEkNACAEIAJqIgAgBUEBcjYCBEEAIAU2ApDQgIAAQQAgADYCnNCAgAAgBCADaiAFNgIAIAQgAkEDcjYCBAwBCyAEIANBA3I2AgQgBCADaiIDIAMoAgRBAXI2AgRBAEEANgKc0ICAAEEAQQA2ApDQgIAACyAEQQhqIQMMCgsCQEEAKAKU0ICAACIAIAJNDQBBACgCoNCAgAAiAyACaiIEIAAgAmsiBUEBcjYCBEEAIAU2ApTQgIAAQQAgBDYCoNCAgAAgAyACQQNyNgIEIANBCGohAwwKCwJAAkBBACgC4NOAgABFDQBBACgC6NOAgAAhBAwBC0EAQn83AuzTgIAAQQBCgICEgICAwAA3AuTTgIAAQQAgAUEMakFwcUHYqtWqBXM2AuDTgIAAQQBBADYC9NOAgABBAEEANgLE04CAAEGAgAQhBAtBACEDAkAgBCACQccAaiIHaiIGQQAgBGsiC3EiCCACSw0AQQBBMDYC+NOAgAAMCgsCQEEAKALA04CAACIDRQ0AAkBBACgCuNOAgAAiBCAIaiIFIARNDQAgBSADTQ0BC0EAIQNBAEEwNgL404CAAAwKC0EALQDE04CAAEEEcQ0EAkACQAJAQQAoAqDQgIAAIgRFDQBByNOAgAAhAwNAAkAgAygCACIFIARLDQAgBSADKAIEaiAESw0DCyADKAIIIgMNAAsLQQAQy4CAgAAiAEF/Rg0FIAghBgJAQQAoAuTTgIAAIgNBf2oiBCAAcUUNACAIIABrIAQgAGpBACADa3FqIQYLIAYgAk0NBSAGQf7///8HSw0FAkBBACgCwNOAgAAiA0UNAEEAKAK404CAACIEIAZqIgUgBE0NBiAFIANLDQYLIAYQy4CAgAAiAyAARw0BDAcLIAYgAGsgC3EiBkH+////B0sNBCAGEMuAgIAAIgAgAygCACADKAIEakYNAyAAIQMLAkAgA0F/Rg0AIAJByABqIAZNDQACQCAHIAZrQQAoAujTgIAAIgRqQQAgBGtxIgRB/v///wdNDQAgAyEADAcLAkAgBBDLgICAAEF/Rg0AIAQgBmohBiADIQAMBwtBACAGaxDLgICAABoMBAsgAyEAIANBf0cNBQwDC0EAIQgMBwtBACEADAULIABBf0cNAgtBAEEAKALE04CAAEEEcjYCxNOAgAALIAhB/v///wdLDQEgCBDLgICAACEAQQAQy4CAgAAhAyAAQX9GDQEgA0F/Rg0BIAAgA08NASADIABrIgYgAkE4ak0NAQtBAEEAKAK404CAACAGaiIDNgK404CAAAJAIANBACgCvNOAgABNDQBBACADNgK804CAAAsCQAJAAkACQEEAKAKg0ICAACIERQ0AQcjTgIAAIQMDQCAAIAMoAgAiBSADKAIEIghqRg0CIAMoAggiAw0ADAMLCwJAAkBBACgCmNCAgAAiA0UNACAAIANPDQELQQAgADYCmNCAgAALQQAhA0EAIAY2AszTgIAAQQAgADYCyNOAgABBAEF/NgKo0ICAAEEAQQAoAuDTgIAANgKs0ICAAEEAQQA2AtTTgIAAA0AgA0HE0ICAAGogA0G40ICAAGoiBDYCACAEIANBsNCAgABqIgU2AgAgA0G80ICAAGogBTYCACADQczQgIAAaiADQcDQgIAAaiIFNgIAIAUgBDYCACADQdTQgIAAaiADQcjQgIAAaiIENgIAIAQgBTYCACADQdDQgIAAaiAENgIAIANBIGoiA0GAAkcNAAsgAEF4IABrQQ9xQQAgAEEIakEPcRsiA2oiBCAGQUhqIgUgA2siA0EBcjYCBEEAQQAoAvDTgIAANgKk0ICAAEEAIAM2ApTQgIAAQQAgBDYCoNCAgAAgACAFakE4NgIEDAILIAMtAAxBCHENACAEIAVJDQAgBCAATw0AIARBeCAEa0EPcUEAIARBCGpBD3EbIgVqIgBBACgClNCAgAAgBmoiCyAFayIFQQFyNgIEIAMgCCAGajYCBEEAQQAoAvDTgIAANgKk0ICAAEEAIAU2ApTQgIAAQQAgADYCoNCAgAAgBCALakE4NgIEDAELAkAgAEEAKAKY0ICAACIITw0AQQAgADYCmNCAgAAgACEICyAAIAZqIQVByNOAgAAhAwJAAkACQAJAAkACQAJAA0AgAygCACAFRg0BIAMoAggiAw0ADAILCyADLQAMQQhxRQ0BC0HI04CAACEDA0ACQCADKAIAIgUgBEsNACAFIAMoAgRqIgUgBEsNAwsgAygCCCEDDAALCyADIAA2AgAgAyADKAIEIAZqNgIEIABBeCAAa0EPcUEAIABBCGpBD3EbaiILIAJBA3I2AgQgBUF4IAVrQQ9xQQAgBUEIakEPcRtqIgYgCyACaiICayEDAkAgBiAERw0AQQAgAjYCoNCAgABBAEEAKAKU0ICAACADaiIDNgKU0ICAACACIANBAXI2AgQMAwsCQCAGQQAoApzQgIAARw0AQQAgAjYCnNCAgABBAEEAKAKQ0ICAACADaiIDNgKQ0ICAACACIANBAXI2AgQgAiADaiADNgIADAMLAkAgBigCBCIEQQNxQQFHDQAgBEF4cSEHAkACQCAEQf8BSw0AIAYoAggiBSAEQQN2IghBA3RBsNCAgABqIgBGGgJAIAYoAgwiBCAFRw0AQQBBACgCiNCAgABBfiAId3E2AojQgIAADAILIAQgAEYaIAQgBTYCCCAFIAQ2AgwMAQsgBigCGCEJAkACQCAGKAIMIgAgBkYNACAGKAIIIgQgCEkaIAAgBDYCCCAEIAA2AgwMAQsCQCAGQRRqIgQoAgAiBQ0AIAZBEGoiBCgCACIFDQBBACEADAELA0AgBCEIIAUiAEEUaiIEKAIAIgUNACAAQRBqIQQgACgCECIFDQALIAhBADYCAAsgCUUNAAJAAkAgBiAGKAIcIgVBAnRBuNKAgABqIgQoAgBHDQAgBCAANgIAIAANAUEAQQAoAozQgIAAQX4gBXdxNgKM0ICAAAwCCyAJQRBBFCAJKAIQIAZGG2ogADYCACAARQ0BCyAAIAk2AhgCQCAGKAIQIgRFDQAgACAENgIQIAQgADYCGAsgBigCFCIERQ0AIABBFGogBDYCACAEIAA2AhgLIAcgA2ohAyAGIAdqIgYoAgQhBAsgBiAEQX5xNgIEIAIgA2ogAzYCACACIANBAXI2AgQCQCADQf8BSw0AIANBeHFBsNCAgABqIQQCQAJAQQAoAojQgIAAIgVBASADQQN2dCIDcQ0AQQAgBSADcjYCiNCAgAAgBCEDDAELIAQoAgghAwsgAyACNgIMIAQgAjYCCCACIAQ2AgwgAiADNgIIDAMLQR8hBAJAIANB////B0sNACADQQh2IgQgBEGA/j9qQRB2QQhxIgR0IgUgBUGA4B9qQRB2QQRxIgV0IgAgAEGAgA9qQRB2QQJxIgB0QQ92IAQgBXIgAHJrIgRBAXQgAyAEQRVqdkEBcXJBHGohBAsgAiAENgIcIAJCADcCECAEQQJ0QbjSgIAAaiEFAkBBACgCjNCAgAAiAEEBIAR0IghxDQAgBSACNgIAQQAgACAIcjYCjNCAgAAgAiAFNgIYIAIgAjYCCCACIAI2AgwMAwsgA0EAQRkgBEEBdmsgBEEfRht0IQQgBSgCACEAA0AgACIFKAIEQXhxIANGDQIgBEEddiEAIARBAXQhBCAFIABBBHFqQRBqIggoAgAiAA0ACyAIIAI2AgAgAiAFNgIYIAIgAjYCDCACIAI2AggMAgsgAEF4IABrQQ9xQQAgAEEIakEPcRsiA2oiCyAGQUhqIgggA2siA0EBcjYCBCAAIAhqQTg2AgQgBCAFQTcgBWtBD3FBACAFQUlqQQ9xG2pBQWoiCCAIIARBEGpJGyIIQSM2AgRBAEEAKALw04CAADYCpNCAgABBACADNgKU0ICAAEEAIAs2AqDQgIAAIAhBEGpBACkC0NOAgAA3AgAgCEEAKQLI04CAADcCCEEAIAhBCGo2AtDTgIAAQQAgBjYCzNOAgABBACAANgLI04CAAEEAQQA2AtTTgIAAIAhBJGohAwNAIANBBzYCACADQQRqIgMgBUkNAAsgCCAERg0DIAggCCgCBEF+cTYCBCAIIAggBGsiADYCACAEIABBAXI2AgQCQCAAQf8BSw0AIABBeHFBsNCAgABqIQMCQAJAQQAoAojQgIAAIgVBASAAQQN2dCIAcQ0AQQAgBSAAcjYCiNCAgAAgAyEFDAELIAMoAgghBQsgBSAENgIMIAMgBDYCCCAEIAM2AgwgBCAFNgIIDAQLQR8hAwJAIABB////B0sNACAAQQh2IgMgA0GA/j9qQRB2QQhxIgN0IgUgBUGA4B9qQRB2QQRxIgV0IgggCEGAgA9qQRB2QQJxIgh0QQ92IAMgBXIgCHJrIgNBAXQgACADQRVqdkEBcXJBHGohAwsgBCADNgIcIARCADcCECADQQJ0QbjSgIAAaiEFAkBBACgCjNCAgAAiCEEBIAN0IgZxDQAgBSAENgIAQQAgCCAGcjYCjNCAgAAgBCAFNgIYIAQgBDYCCCAEIAQ2AgwMBAsgAEEAQRkgA0EBdmsgA0EfRht0IQMgBSgCACEIA0AgCCIFKAIEQXhxIABGDQMgA0EddiEIIANBAXQhAyAFIAhBBHFqQRBqIgYoAgAiCA0ACyAGIAQ2AgAgBCAFNgIYIAQgBDYCDCAEIAQ2AggMAwsgBSgCCCIDIAI2AgwgBSACNgIIIAJBADYCGCACIAU2AgwgAiADNgIICyALQQhqIQMMBQsgBSgCCCIDIAQ2AgwgBSAENgIIIARBADYCGCAEIAU2AgwgBCADNgIIC0EAKAKU0ICAACIDIAJNDQBBACgCoNCAgAAiBCACaiIFIAMgAmsiA0EBcjYCBEEAIAM2ApTQgIAAQQAgBTYCoNCAgAAgBCACQQNyNgIEIARBCGohAwwDC0EAIQNBAEEwNgL404CAAAwCCwJAIAtFDQACQAJAIAggCCgCHCIFQQJ0QbjSgIAAaiIDKAIARw0AIAMgADYCACAADQFBACAHQX4gBXdxIgc2AozQgIAADAILIAtBEEEUIAsoAhAgCEYbaiAANgIAIABFDQELIAAgCzYCGAJAIAgoAhAiA0UNACAAIAM2AhAgAyAANgIYCyAIQRRqKAIAIgNFDQAgAEEUaiADNgIAIAMgADYCGAsCQAJAIARBD0sNACAIIAQgAmoiA0EDcjYCBCAIIANqIgMgAygCBEEBcjYCBAwBCyAIIAJqIgAgBEEBcjYCBCAIIAJBA3I2AgQgACAEaiAENgIAAkAgBEH/AUsNACAEQXhxQbDQgIAAaiEDAkACQEEAKAKI0ICAACIFQQEgBEEDdnQiBHENAEEAIAUgBHI2AojQgIAAIAMhBAwBCyADKAIIIQQLIAQgADYCDCADIAA2AgggACADNgIMIAAgBDYCCAwBC0EfIQMCQCAEQf///wdLDQAgBEEIdiIDIANBgP4/akEQdkEIcSIDdCIFIAVBgOAfakEQdkEEcSIFdCICIAJBgIAPakEQdkECcSICdEEPdiADIAVyIAJyayIDQQF0IAQgA0EVanZBAXFyQRxqIQMLIAAgAzYCHCAAQgA3AhAgA0ECdEG40oCAAGohBQJAIAdBASADdCICcQ0AIAUgADYCAEEAIAcgAnI2AozQgIAAIAAgBTYCGCAAIAA2AgggACAANgIMDAELIARBAEEZIANBAXZrIANBH0YbdCEDIAUoAgAhAgJAA0AgAiIFKAIEQXhxIARGDQEgA0EddiECIANBAXQhAyAFIAJBBHFqQRBqIgYoAgAiAg0ACyAGIAA2AgAgACAFNgIYIAAgADYCDCAAIAA2AggMAQsgBSgCCCIDIAA2AgwgBSAANgIIIABBADYCGCAAIAU2AgwgACADNgIICyAIQQhqIQMMAQsCQCAKRQ0AAkACQCAAIAAoAhwiBUECdEG40oCAAGoiAygCAEcNACADIAg2AgAgCA0BQQAgCUF+IAV3cTYCjNCAgAAMAgsgCkEQQRQgCigCECAARhtqIAg2AgAgCEUNAQsgCCAKNgIYAkAgACgCECIDRQ0AIAggAzYCECADIAg2AhgLIABBFGooAgAiA0UNACAIQRRqIAM2AgAgAyAINgIYCwJAAkAgBEEPSw0AIAAgBCACaiIDQQNyNgIEIAAgA2oiAyADKAIEQQFyNgIEDAELIAAgAmoiBSAEQQFyNgIEIAAgAkEDcjYCBCAFIARqIAQ2AgACQCAHRQ0AIAdBeHFBsNCAgABqIQJBACgCnNCAgAAhAwJAAkBBASAHQQN2dCIIIAZxDQBBACAIIAZyNgKI0ICAACACIQgMAQsgAigCCCEICyAIIAM2AgwgAiADNgIIIAMgAjYCDCADIAg2AggLQQAgBTYCnNCAgABBACAENgKQ0ICAAAsgAEEIaiEDCyABQRBqJICAgIAAIAMLCgAgABDJgICAAAviDQEHfwJAIABFDQAgAEF4aiIBIABBfGooAgAiAkF4cSIAaiEDAkAgAkEBcQ0AIAJBA3FFDQEgASABKAIAIgJrIgFBACgCmNCAgAAiBEkNASACIABqIQACQCABQQAoApzQgIAARg0AAkAgAkH/AUsNACABKAIIIgQgAkEDdiIFQQN0QbDQgIAAaiIGRhoCQCABKAIMIgIgBEcNAEEAQQAoAojQgIAAQX4gBXdxNgKI0ICAAAwDCyACIAZGGiACIAQ2AgggBCACNgIMDAILIAEoAhghBwJAAkAgASgCDCIGIAFGDQAgASgCCCICIARJGiAGIAI2AgggAiAGNgIMDAELAkAgAUEUaiICKAIAIgQNACABQRBqIgIoAgAiBA0AQQAhBgwBCwNAIAIhBSAEIgZBFGoiAigCACIEDQAgBkEQaiECIAYoAhAiBA0ACyAFQQA2AgALIAdFDQECQAJAIAEgASgCHCIEQQJ0QbjSgIAAaiICKAIARw0AIAIgBjYCACAGDQFBAEEAKAKM0ICAAEF+IAR3cTYCjNCAgAAMAwsgB0EQQRQgBygCECABRhtqIAY2AgAgBkUNAgsgBiAHNgIYAkAgASgCECICRQ0AIAYgAjYCECACIAY2AhgLIAEoAhQiAkUNASAGQRRqIAI2AgAgAiAGNgIYDAELIAMoAgQiAkEDcUEDRw0AIAMgAkF+cTYCBEEAIAA2ApDQgIAAIAEgAGogADYCACABIABBAXI2AgQPCyABIANPDQAgAygCBCICQQFxRQ0AAkACQCACQQJxDQACQCADQQAoAqDQgIAARw0AQQAgATYCoNCAgABBAEEAKAKU0ICAACAAaiIANgKU0ICAACABIABBAXI2AgQgAUEAKAKc0ICAAEcNA0EAQQA2ApDQgIAAQQBBADYCnNCAgAAPCwJAIANBACgCnNCAgABHDQBBACABNgKc0ICAAEEAQQAoApDQgIAAIABqIgA2ApDQgIAAIAEgAEEBcjYCBCABIABqIAA2AgAPCyACQXhxIABqIQACQAJAIAJB/wFLDQAgAygCCCIEIAJBA3YiBUEDdEGw0ICAAGoiBkYaAkAgAygCDCICIARHDQBBAEEAKAKI0ICAAEF+IAV3cTYCiNCAgAAMAgsgAiAGRhogAiAENgIIIAQgAjYCDAwBCyADKAIYIQcCQAJAIAMoAgwiBiADRg0AIAMoAggiAkEAKAKY0ICAAEkaIAYgAjYCCCACIAY2AgwMAQsCQCADQRRqIgIoAgAiBA0AIANBEGoiAigCACIEDQBBACEGDAELA0AgAiEFIAQiBkEUaiICKAIAIgQNACAGQRBqIQIgBigCECIEDQALIAVBADYCAAsgB0UNAAJAAkAgAyADKAIcIgRBAnRBuNKAgABqIgIoAgBHDQAgAiAGNgIAIAYNAUEAQQAoAozQgIAAQX4gBHdxNgKM0ICAAAwCCyAHQRBBFCAHKAIQIANGG2ogBjYCACAGRQ0BCyAGIAc2AhgCQCADKAIQIgJFDQAgBiACNgIQIAIgBjYCGAsgAygCFCICRQ0AIAZBFGogAjYCACACIAY2AhgLIAEgAGogADYCACABIABBAXI2AgQgAUEAKAKc0ICAAEcNAUEAIAA2ApDQgIAADwsgAyACQX5xNgIEIAEgAGogADYCACABIABBAXI2AgQLAkAgAEH/AUsNACAAQXhxQbDQgIAAaiECAkACQEEAKAKI0ICAACIEQQEgAEEDdnQiAHENAEEAIAQgAHI2AojQgIAAIAIhAAwBCyACKAIIIQALIAAgATYCDCACIAE2AgggASACNgIMIAEgADYCCA8LQR8hAgJAIABB////B0sNACAAQQh2IgIgAkGA/j9qQRB2QQhxIgJ0IgQgBEGA4B9qQRB2QQRxIgR0IgYgBkGAgA9qQRB2QQJxIgZ0QQ92IAIgBHIgBnJrIgJBAXQgACACQRVqdkEBcXJBHGohAgsgASACNgIcIAFCADcCECACQQJ0QbjSgIAAaiEEAkACQEEAKAKM0ICAACIGQQEgAnQiA3ENACAEIAE2AgBBACAGIANyNgKM0ICAACABIAQ2AhggASABNgIIIAEgATYCDAwBCyAAQQBBGSACQQF2ayACQR9GG3QhAiAEKAIAIQYCQANAIAYiBCgCBEF4cSAARg0BIAJBHXYhBiACQQF0IQIgBCAGQQRxakEQaiIDKAIAIgYNAAsgAyABNgIAIAEgBDYCGCABIAE2AgwgASABNgIIDAELIAQoAggiACABNgIMIAQgATYCCCABQQA2AhggASAENgIMIAEgADYCCAtBAEEAKAKo0ICAAEF/aiIBQX8gARs2AqjQgIAACwsEAAAAC04AAkAgAA0APwBBEHQPCwJAIABB//8DcQ0AIABBf0wNAAJAIABBEHZAACIAQX9HDQBBAEEwNgL404CAAEF/DwsgAEEQdA8LEMqAgIAAAAvyAgIDfwF+AkAgAkUNACAAIAE6AAAgAiAAaiIDQX9qIAE6AAAgAkEDSQ0AIAAgAToAAiAAIAE6AAEgA0F9aiABOgAAIANBfmogAToAACACQQdJDQAgACABOgADIANBfGogAToAACACQQlJDQAgAEEAIABrQQNxIgRqIgMgAUH/AXFBgYKECGwiATYCACADIAIgBGtBfHEiBGoiAkF8aiABNgIAIARBCUkNACADIAE2AgggAyABNgIEIAJBeGogATYCACACQXRqIAE2AgAgBEEZSQ0AIAMgATYCGCADIAE2AhQgAyABNgIQIAMgATYCDCACQXBqIAE2AgAgAkFsaiABNgIAIAJBaGogATYCACACQWRqIAE2AgAgBCADQQRxQRhyIgVrIgJBIEkNACABrUKBgICAEH4hBiADIAVqIQEDQCABIAY3AxggASAGNwMQIAEgBjcDCCABIAY3AwAgAUEgaiEBIAJBYGoiAkEfSw0ACwsgAAsLjkgBAEGACAuGSAEAAAACAAAAAwAAAAAAAAAAAAAABAAAAAUAAAAAAAAAAAAAAAYAAAAHAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASW52YWxpZCBjaGFyIGluIHVybCBxdWVyeQBTcGFuIGNhbGxiYWNrIGVycm9yIGluIG9uX2JvZHkAQ29udGVudC1MZW5ndGggb3ZlcmZsb3cAQ2h1bmsgc2l6ZSBvdmVyZmxvdwBSZXNwb25zZSBvdmVyZmxvdwBJbnZhbGlkIG1ldGhvZCBmb3IgSFRUUC94LnggcmVxdWVzdABJbnZhbGlkIG1ldGhvZCBmb3IgUlRTUC94LnggcmVxdWVzdABFeHBlY3RlZCBTT1VSQ0UgbWV0aG9kIGZvciBJQ0UveC54IHJlcXVlc3QASW52YWxpZCBjaGFyIGluIHVybCBmcmFnbWVudCBzdGFydABFeHBlY3RlZCBkb3QAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9zdGF0dXMASW52YWxpZCByZXNwb25zZSBzdGF0dXMASW52YWxpZCBjaGFyYWN0ZXIgaW4gY2h1bmsgZXh0ZW5zaW9ucwBVc2VyIGNhbGxiYWNrIGVycm9yAGBvbl9yZXNldGAgY2FsbGJhY2sgZXJyb3IAYG9uX2NodW5rX2hlYWRlcmAgY2FsbGJhY2sgZXJyb3IAYG9uX21lc3NhZ2VfYmVnaW5gIGNhbGxiYWNrIGVycm9yAGBvbl9jaHVua19leHRlbnNpb25fdmFsdWVgIGNhbGxiYWNrIGVycm9yAGBvbl9zdGF0dXNfY29tcGxldGVgIGNhbGxiYWNrIGVycm9yAGBvbl92ZXJzaW9uX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fdXJsX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fY2h1bmtfY29tcGxldGVgIGNhbGxiYWNrIGVycm9yAGBvbl9oZWFkZXJfdmFsdWVfY29tcGxldGVgIGNhbGxiYWNrIGVycm9yAGBvbl9tZXNzYWdlX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fbWV0aG9kX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25faGVhZGVyX2ZpZWxkX2NvbXBsZXRlYCBjYWxsYmFjayBlcnJvcgBgb25fY2h1bmtfZXh0ZW5zaW9uX25hbWVgIGNhbGxiYWNrIGVycm9yAFVuZXhwZWN0ZWQgY2hhciBpbiB1cmwgc2VydmVyAEludmFsaWQgaGVhZGVyIHZhbHVlIGNoYXIASW52YWxpZCBoZWFkZXIgZmllbGQgY2hhcgBTcGFuIGNhbGxiYWNrIGVycm9yIGluIG9uX3ZlcnNpb24ASW52YWxpZCBtaW5vciB2ZXJzaW9uAEludmFsaWQgbWFqb3IgdmVyc2lvbgBFeHBlY3RlZCBzcGFjZSBhZnRlciB2ZXJzaW9uAEV4cGVjdGVkIENSTEYgYWZ0ZXIgdmVyc2lvbgBJbnZhbGlkIEhUVFAgdmVyc2lvbgBJbnZhbGlkIGhlYWRlciB0b2tlbgBTcGFuIGNhbGxiYWNrIGVycm9yIGluIG9uX3VybABJbnZhbGlkIGNoYXJhY3RlcnMgaW4gdXJsAFVuZXhwZWN0ZWQgc3RhcnQgY2hhciBpbiB1cmwARG91YmxlIEAgaW4gdXJsAEVtcHR5IENvbnRlbnQtTGVuZ3RoAEludmFsaWQgY2hhcmFjdGVyIGluIENvbnRlbnQtTGVuZ3RoAER1cGxpY2F0ZSBDb250ZW50LUxlbmd0aABJbnZhbGlkIGNoYXIgaW4gdXJsIHBhdGgAQ29udGVudC1MZW5ndGggY2FuJ3QgYmUgcHJlc2VudCB3aXRoIFRyYW5zZmVyLUVuY29kaW5nAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIHNpemUAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9oZWFkZXJfdmFsdWUAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9jaHVua19leHRlbnNpb25fdmFsdWUASW52YWxpZCBjaGFyYWN0ZXIgaW4gY2h1bmsgZXh0ZW5zaW9ucyB2YWx1ZQBNaXNzaW5nIGV4cGVjdGVkIExGIGFmdGVyIGhlYWRlciB2YWx1ZQBJbnZhbGlkIGBUcmFuc2Zlci1FbmNvZGluZ2AgaGVhZGVyIHZhbHVlAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIGV4dGVuc2lvbnMgcXVvdGUgdmFsdWUASW52YWxpZCBjaGFyYWN0ZXIgaW4gY2h1bmsgZXh0ZW5zaW9ucyBxdW90ZWQgdmFsdWUAUGF1c2VkIGJ5IG9uX2hlYWRlcnNfY29tcGxldGUASW52YWxpZCBFT0Ygc3RhdGUAb25fcmVzZXQgcGF1c2UAb25fY2h1bmtfaGVhZGVyIHBhdXNlAG9uX21lc3NhZ2VfYmVnaW4gcGF1c2UAb25fY2h1bmtfZXh0ZW5zaW9uX3ZhbHVlIHBhdXNlAG9uX3N0YXR1c19jb21wbGV0ZSBwYXVzZQBvbl92ZXJzaW9uX2NvbXBsZXRlIHBhdXNlAG9uX3VybF9jb21wbGV0ZSBwYXVzZQBvbl9jaHVua19jb21wbGV0ZSBwYXVzZQBvbl9oZWFkZXJfdmFsdWVfY29tcGxldGUgcGF1c2UAb25fbWVzc2FnZV9jb21wbGV0ZSBwYXVzZQBvbl9tZXRob2RfY29tcGxldGUgcGF1c2UAb25faGVhZGVyX2ZpZWxkX2NvbXBsZXRlIHBhdXNlAG9uX2NodW5rX2V4dGVuc2lvbl9uYW1lIHBhdXNlAFVuZXhwZWN0ZWQgc3BhY2UgYWZ0ZXIgc3RhcnQgbGluZQBTcGFuIGNhbGxiYWNrIGVycm9yIGluIG9uX2NodW5rX2V4dGVuc2lvbl9uYW1lAEludmFsaWQgY2hhcmFjdGVyIGluIGNodW5rIGV4dGVuc2lvbnMgbmFtZQBQYXVzZSBvbiBDT05ORUNUL1VwZ3JhZGUAUGF1c2Ugb24gUFJJL1VwZ3JhZGUARXhwZWN0ZWQgSFRUUC8yIENvbm5lY3Rpb24gUHJlZmFjZQBTcGFuIGNhbGxiYWNrIGVycm9yIGluIG9uX21ldGhvZABFeHBlY3RlZCBzcGFjZSBhZnRlciBtZXRob2QAU3BhbiBjYWxsYmFjayBlcnJvciBpbiBvbl9oZWFkZXJfZmllbGQAUGF1c2VkAEludmFsaWQgd29yZCBlbmNvdW50ZXJlZABJbnZhbGlkIG1ldGhvZCBlbmNvdW50ZXJlZABVbmV4cGVjdGVkIGNoYXIgaW4gdXJsIHNjaGVtYQBSZXF1ZXN0IGhhcyBpbnZhbGlkIGBUcmFuc2Zlci1FbmNvZGluZ2AAU1dJVENIX1BST1hZAFVTRV9QUk9YWQBNS0FDVElWSVRZAFVOUFJPQ0VTU0FCTEVfRU5USVRZAENPUFkATU9WRURfUEVSTUFORU5UTFkAVE9PX0VBUkxZAE5PVElGWQBGQUlMRURfREVQRU5ERU5DWQBCQURfR0FURVdBWQBQTEFZAFBVVABDSEVDS09VVABHQVRFV0FZX1RJTUVPVVQAUkVRVUVTVF9USU1FT1VUAE5FVFdPUktfQ09OTkVDVF9USU1FT1VUAENPTk5FQ1RJT05fVElNRU9VVABMT0dJTl9USU1FT1VUAE5FVFdPUktfUkVBRF9USU1FT1VUAFBPU1QATUlTRElSRUNURURfUkVRVUVTVABDTElFTlRfQ0xPU0VEX1JFUVVFU1QAQ0xJRU5UX0NMT1NFRF9MT0FEX0JBTEFOQ0VEX1JFUVVFU1QAQkFEX1JFUVVFU1QASFRUUF9SRVFVRVNUX1NFTlRfVE9fSFRUUFNfUE9SVABSRVBPUlQASU1fQV9URUFQT1QAUkVTRVRfQ09OVEVOVABOT19DT05URU5UAFBBUlRJQUxfQ09OVEVOVABIUEVfSU5WQUxJRF9DT05TVEFOVABIUEVfQ0JfUkVTRVQAR0VUAEhQRV9TVFJJQ1QAQ09ORkxJQ1QAVEVNUE9SQVJZX1JFRElSRUNUAFBFUk1BTkVOVF9SRURJUkVDVABDT05ORUNUAE1VTFRJX1NUQVRVUwBIUEVfSU5WQUxJRF9TVEFUVVMAVE9PX01BTllfUkVRVUVTVFMARUFSTFlfSElOVFMAVU5BVkFJTEFCTEVfRk9SX0xFR0FMX1JFQVNPTlMAT1BUSU9OUwBTV0lUQ0hJTkdfUFJPVE9DT0xTAFZBUklBTlRfQUxTT19ORUdPVElBVEVTAE1VTFRJUExFX0NIT0lDRVMASU5URVJOQUxfU0VSVkVSX0VSUk9SAFdFQl9TRVJWRVJfVU5LTk9XTl9FUlJPUgBSQUlMR1VOX0VSUk9SAElERU5USVRZX1BST1ZJREVSX0FVVEhFTlRJQ0FUSU9OX0VSUk9SAFNTTF9DRVJUSUZJQ0FURV9FUlJPUgBJTlZBTElEX1hfRk9SV0FSREVEX0ZPUgBTRVRfUEFSQU1FVEVSAEdFVF9QQVJBTUVURVIASFBFX1VTRVIAU0VFX09USEVSAEhQRV9DQl9DSFVOS19IRUFERVIATUtDQUxFTkRBUgBTRVRVUABXRUJfU0VSVkVSX0lTX0RPV04AVEVBUkRPV04ASFBFX0NMT1NFRF9DT05ORUNUSU9OAEhFVVJJU1RJQ19FWFBJUkFUSU9OAERJU0NPTk5FQ1RFRF9PUEVSQVRJT04ATk9OX0FVVEhPUklUQVRJVkVfSU5GT1JNQVRJT04ASFBFX0lOVkFMSURfVkVSU0lPTgBIUEVfQ0JfTUVTU0FHRV9CRUdJTgBTSVRFX0lTX0ZST1pFTgBIUEVfSU5WQUxJRF9IRUFERVJfVE9LRU4ASU5WQUxJRF9UT0tFTgBGT1JCSURERU4ARU5IQU5DRV9ZT1VSX0NBTE0ASFBFX0lOVkFMSURfVVJMAEJMT0NLRURfQllfUEFSRU5UQUxfQ09OVFJPTABNS0NPTABBQ0wASFBFX0lOVEVSTkFMAFJFUVVFU1RfSEVBREVSX0ZJRUxEU19UT09fTEFSR0VfVU5PRkZJQ0lBTABIUEVfT0sAVU5MSU5LAFVOTE9DSwBQUkkAUkVUUllfV0lUSABIUEVfSU5WQUxJRF9DT05URU5UX0xFTkdUSABIUEVfVU5FWFBFQ1RFRF9DT05URU5UX0xFTkdUSABGTFVTSABQUk9QUEFUQ0gATS1TRUFSQ0gAVVJJX1RPT19MT05HAFBST0NFU1NJTkcATUlTQ0VMTEFORU9VU19QRVJTSVNURU5UX1dBUk5JTkcATUlTQ0VMTEFORU9VU19XQVJOSU5HAEhQRV9JTlZBTElEX1RSQU5TRkVSX0VOQ09ESU5HAEV4cGVjdGVkIENSTEYASFBFX0lOVkFMSURfQ0hVTktfU0laRQBNT1ZFAENPTlRJTlVFAEhQRV9DQl9TVEFUVVNfQ09NUExFVEUASFBFX0NCX0hFQURFUlNfQ09NUExFVEUASFBFX0NCX1ZFUlNJT05fQ09NUExFVEUASFBFX0NCX1VSTF9DT01QTEVURQBIUEVfQ0JfQ0hVTktfQ09NUExFVEUASFBFX0NCX0hFQURFUl9WQUxVRV9DT01QTEVURQBIUEVfQ0JfQ0hVTktfRVhURU5TSU9OX1ZBTFVFX0NPTVBMRVRFAEhQRV9DQl9DSFVOS19FWFRFTlNJT05fTkFNRV9DT01QTEVURQBIUEVfQ0JfTUVTU0FHRV9DT01QTEVURQBIUEVfQ0JfTUVUSE9EX0NPTVBMRVRFAEhQRV9DQl9IRUFERVJfRklFTERfQ09NUExFVEUAREVMRVRFAEhQRV9JTlZBTElEX0VPRl9TVEFURQBJTlZBTElEX1NTTF9DRVJUSUZJQ0FURQBQQVVTRQBOT19SRVNQT05TRQBVTlNVUFBPUlRFRF9NRURJQV9UWVBFAEdPTkUATk9UX0FDQ0VQVEFCTEUAU0VSVklDRV9VTkFWQUlMQUJMRQBSQU5HRV9OT1RfU0FUSVNGSUFCTEUAT1JJR0lOX0lTX1VOUkVBQ0hBQkxFAFJFU1BPTlNFX0lTX1NUQUxFAFBVUkdFAE1FUkdFAFJFUVVFU1RfSEVBREVSX0ZJRUxEU19UT09fTEFSR0UAUkVRVUVTVF9IRUFERVJfVE9PX0xBUkdFAFBBWUxPQURfVE9PX0xBUkdFAElOU1VGRklDSUVOVF9TVE9SQUdFAEhQRV9QQVVTRURfVVBHUkFERQBIUEVfUEFVU0VEX0gyX1VQR1JBREUAU09VUkNFAEFOTk9VTkNFAFRSQUNFAEhQRV9VTkVYUEVDVEVEX1NQQUNFAERFU0NSSUJFAFVOU1VCU0NSSUJFAFJFQ09SRABIUEVfSU5WQUxJRF9NRVRIT0QATk9UX0ZPVU5EAFBST1BGSU5EAFVOQklORABSRUJJTkQAVU5BVVRIT1JJWkVEAE1FVEhPRF9OT1RfQUxMT1dFRABIVFRQX1ZFUlNJT05fTk9UX1NVUFBPUlRFRABBTFJFQURZX1JFUE9SVEVEAEFDQ0VQVEVEAE5PVF9JTVBMRU1FTlRFRABMT09QX0RFVEVDVEVEAEhQRV9DUl9FWFBFQ1RFRABIUEVfTEZfRVhQRUNURUQAQ1JFQVRFRABJTV9VU0VEAEhQRV9QQVVTRUQAVElNRU9VVF9PQ0NVUkVEAFBBWU1FTlRfUkVRVUlSRUQAUFJFQ09ORElUSU9OX1JFUVVJUkVEAFBST1hZX0FVVEhFTlRJQ0FUSU9OX1JFUVVJUkVEAE5FVFdPUktfQVVUSEVOVElDQVRJT05fUkVRVUlSRUQATEVOR1RIX1JFUVVJUkVEAFNTTF9DRVJUSUZJQ0FURV9SRVFVSVJFRABVUEdSQURFX1JFUVVJUkVEAFBBR0VfRVhQSVJFRABQUkVDT05ESVRJT05fRkFJTEVEAEVYUEVDVEFUSU9OX0ZBSUxFRABSRVZBTElEQVRJT05fRkFJTEVEAFNTTF9IQU5EU0hBS0VfRkFJTEVEAExPQ0tFRABUUkFOU0ZPUk1BVElPTl9BUFBMSUVEAE5PVF9NT0RJRklFRABOT1RfRVhURU5ERUQAQkFORFdJRFRIX0xJTUlUX0VYQ0VFREVEAFNJVEVfSVNfT1ZFUkxPQURFRABIRUFEAEV4cGVjdGVkIEhUVFAvAABeEwAAJhMAADAQAADwFwAAnRMAABUSAAA5FwAA8BIAAAoQAAB1EgAArRIAAIITAABPFAAAfxAAAKAVAAAjFAAAiRIAAIsUAABNFQAA1BEAAM8UAAAQGAAAyRYAANwWAADBEQAA4BcAALsUAAB0FAAAfBUAAOUUAAAIFwAAHxAAAGUVAACjFAAAKBUAAAIVAACZFQAALBAAAIsZAABPDwAA1A4AAGoQAADOEAAAAhcAAIkOAABuEwAAHBMAAGYUAABWFwAAwRMAAM0TAABsEwAAaBcAAGYXAABfFwAAIhMAAM4PAABpDgAA2A4AAGMWAADLEwAAqg4AACgXAAAmFwAAxRMAAF0WAADoEQAAZxMAAGUTAADyFgAAcxMAAB0XAAD5FgAA8xEAAM8OAADOFQAADBIAALMRAAClEQAAYRAAADIXAAC7EwAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAgEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAgMCAgICAgAAAgIAAgIAAgICAgICAgICAgAEAAAAAAACAgICAgICAgICAgICAgICAgICAgICAgICAgAAAAICAgICAgICAgICAgICAgICAgICAgICAgICAgICAAIAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAIAAgICAgIAAAICAAICAAICAgICAgICAgIAAwAEAAAAAgICAgICAgICAgICAgICAgICAgICAgICAgIAAAACAgICAgICAgICAgICAgICAgICAgICAgICAgICAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsb3NlZWVwLWFsaXZlAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAgEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQFjaHVua2VkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQABAQEBAQAAAQEAAQEAAQEBAQEBAQEBAQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGVjdGlvbmVudC1sZW5ndGhvbnJveHktY29ubmVjdGlvbgAAAAAAAAAAAAAAAAAAAHJhbnNmZXItZW5jb2RpbmdwZ3JhZGUNCg0KDQpTTQ0KDQpUVFAvQ0UvVFNQLwAAAAAAAAAAAAAAAAECAAEDAAAAAAAAAAAAAAAAAAAAAAAABAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAABAgABAwAAAAAAAAAAAAAAAAAAAAAAAAQBAQUBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAAAAQAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAABAAACAAAAAAAAAAAAAAAAAAAAAAAAAwQAAAQEBAQEBAQEBAQEBQQEBAQEBAQEBAQEBAAEAAYHBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAQABAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAQAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAAAAAAAAAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAEAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAgAAAAACAAAAAAAAAAAAAAAAAAAAAAADAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwAAAAAAAAMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5PVU5DRUVDS09VVE5FQ1RFVEVDUklCRUxVU0hFVEVBRFNFQVJDSFJHRUNUSVZJVFlMRU5EQVJWRU9USUZZUFRJT05TQ0hTRUFZU1RBVENIR0VPUkRJUkVDVE9SVFJDSFBBUkFNRVRFUlVSQ0VCU0NSSUJFQVJET1dOQUNFSU5ETktDS1VCU0NSSUJFSFRUUC9BRFRQLw==' + + +/***/ }), + +/***/ 172: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.enumToMap = void 0; +function enumToMap(obj) { + const res = {}; + Object.keys(obj).forEach((key) => { + const value = obj[key]; + if (typeof value === 'number') { + res[key] = value; + } + }); + return res; +} +exports.enumToMap = enumToMap; +//# sourceMappingURL=utils.js.map + +/***/ }), + +/***/ 7501: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { kClients } = __nccwpck_require__(6443) +const Agent = __nccwpck_require__(9965) +const { + kAgent, + kMockAgentSet, + kMockAgentGet, + kDispatches, + kIsMockActive, + kNetConnect, + kGetNetConnect, + kOptions, + kFactory +} = __nccwpck_require__(1117) +const MockClient = __nccwpck_require__(7365) +const MockPool = __nccwpck_require__(4004) +const { matchValue, buildMockOptions } = __nccwpck_require__(3397) +const { InvalidArgumentError, UndiciError } = __nccwpck_require__(8707) +const Dispatcher = __nccwpck_require__(992) +const Pluralizer = __nccwpck_require__(1529) +const PendingInterceptorsFormatter = __nccwpck_require__(6142) + +class FakeWeakRef { + constructor (value) { + this.value = value + } + + deref () { + return this.value + } +} + +class MockAgent extends Dispatcher { + constructor (opts) { + super(opts) + + this[kNetConnect] = true + this[kIsMockActive] = true + + // Instantiate Agent and encapsulate + if ((opts && opts.agent && typeof opts.agent.dispatch !== 'function')) { + throw new InvalidArgumentError('Argument opts.agent must implement Agent') + } + const agent = opts && opts.agent ? opts.agent : new Agent(opts) + this[kAgent] = agent + + this[kClients] = agent[kClients] + this[kOptions] = buildMockOptions(opts) + } + + get (origin) { + let dispatcher = this[kMockAgentGet](origin) + + if (!dispatcher) { + dispatcher = this[kFactory](origin) + this[kMockAgentSet](origin, dispatcher) + } + return dispatcher + } + + dispatch (opts, handler) { + // Call MockAgent.get to perform additional setup before dispatching as normal + this.get(opts.origin) + return this[kAgent].dispatch(opts, handler) + } + + async close () { + await this[kAgent].close() + this[kClients].clear() + } + + deactivate () { + this[kIsMockActive] = false + } + + activate () { + this[kIsMockActive] = true + } + + enableNetConnect (matcher) { + if (typeof matcher === 'string' || typeof matcher === 'function' || matcher instanceof RegExp) { + if (Array.isArray(this[kNetConnect])) { + this[kNetConnect].push(matcher) + } else { + this[kNetConnect] = [matcher] + } + } else if (typeof matcher === 'undefined') { + this[kNetConnect] = true + } else { + throw new InvalidArgumentError('Unsupported matcher. Must be one of String|Function|RegExp.') + } + } + + disableNetConnect () { + this[kNetConnect] = false + } + + // This is required to bypass issues caused by using global symbols - see: + // https://github.com/nodejs/undici/issues/1447 + get isMockActive () { + return this[kIsMockActive] + } + + [kMockAgentSet] (origin, dispatcher) { + this[kClients].set(origin, new FakeWeakRef(dispatcher)) + } + + [kFactory] (origin) { + const mockOptions = Object.assign({ agent: this }, this[kOptions]) + return this[kOptions] && this[kOptions].connections === 1 + ? new MockClient(origin, mockOptions) + : new MockPool(origin, mockOptions) + } + + [kMockAgentGet] (origin) { + // First check if we can immediately find it + const ref = this[kClients].get(origin) + if (ref) { + return ref.deref() + } + + // If the origin is not a string create a dummy parent pool and return to user + if (typeof origin !== 'string') { + const dispatcher = this[kFactory]('http://localhost:9999') + this[kMockAgentSet](origin, dispatcher) + return dispatcher + } + + // If we match, create a pool and assign the same dispatches + for (const [keyMatcher, nonExplicitRef] of Array.from(this[kClients])) { + const nonExplicitDispatcher = nonExplicitRef.deref() + if (nonExplicitDispatcher && typeof keyMatcher !== 'string' && matchValue(keyMatcher, origin)) { + const dispatcher = this[kFactory](origin) + this[kMockAgentSet](origin, dispatcher) + dispatcher[kDispatches] = nonExplicitDispatcher[kDispatches] + return dispatcher + } + } + } + + [kGetNetConnect] () { + return this[kNetConnect] + } + + pendingInterceptors () { + const mockAgentClients = this[kClients] + + return Array.from(mockAgentClients.entries()) + .flatMap(([origin, scope]) => scope.deref()[kDispatches].map(dispatch => ({ ...dispatch, origin }))) + .filter(({ pending }) => pending) + } + + assertNoPendingInterceptors ({ pendingInterceptorsFormatter = new PendingInterceptorsFormatter() } = {}) { + const pending = this.pendingInterceptors() + + if (pending.length === 0) { + return + } + + const pluralizer = new Pluralizer('interceptor', 'interceptors').pluralize(pending.length) + + throw new UndiciError(` +${pluralizer.count} ${pluralizer.noun} ${pluralizer.is} pending: + +${pendingInterceptorsFormatter.format(pending)} +`.trim()) + } +} + +module.exports = MockAgent + + +/***/ }), + +/***/ 7365: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { promisify } = __nccwpck_require__(9023) +const Client = __nccwpck_require__(6197) +const { buildMockDispatch } = __nccwpck_require__(3397) +const { + kDispatches, + kMockAgent, + kClose, + kOriginalClose, + kOrigin, + kOriginalDispatch, + kConnected +} = __nccwpck_require__(1117) +const { MockInterceptor } = __nccwpck_require__(1511) +const Symbols = __nccwpck_require__(6443) +const { InvalidArgumentError } = __nccwpck_require__(8707) + +/** + * MockClient provides an API that extends the Client to influence the mockDispatches. + */ +class MockClient extends Client { + constructor (origin, opts) { + super(origin, opts) + + if (!opts || !opts.agent || typeof opts.agent.dispatch !== 'function') { + throw new InvalidArgumentError('Argument opts.agent must implement Agent') + } + + this[kMockAgent] = opts.agent + this[kOrigin] = origin + this[kDispatches] = [] + this[kConnected] = 1 + this[kOriginalDispatch] = this.dispatch + this[kOriginalClose] = this.close.bind(this) + + this.dispatch = buildMockDispatch.call(this) + this.close = this[kClose] + } + + get [Symbols.kConnected] () { + return this[kConnected] + } + + /** + * Sets up the base interceptor for mocking replies from undici. + */ + intercept (opts) { + return new MockInterceptor(opts, this[kDispatches]) + } + + async [kClose] () { + await promisify(this[kOriginalClose])() + this[kConnected] = 0 + this[kMockAgent][Symbols.kClients].delete(this[kOrigin]) + } +} + +module.exports = MockClient + + +/***/ }), + +/***/ 2429: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { UndiciError } = __nccwpck_require__(8707) + +class MockNotMatchedError extends UndiciError { + constructor (message) { + super(message) + Error.captureStackTrace(this, MockNotMatchedError) + this.name = 'MockNotMatchedError' + this.message = message || 'The request does not match any registered mock dispatches' + this.code = 'UND_MOCK_ERR_MOCK_NOT_MATCHED' + } +} + +module.exports = { + MockNotMatchedError +} + + +/***/ }), + +/***/ 1511: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { getResponseData, buildKey, addMockDispatch } = __nccwpck_require__(3397) +const { + kDispatches, + kDispatchKey, + kDefaultHeaders, + kDefaultTrailers, + kContentLength, + kMockDispatch +} = __nccwpck_require__(1117) +const { InvalidArgumentError } = __nccwpck_require__(8707) +const { buildURL } = __nccwpck_require__(3440) + +/** + * Defines the scope API for an interceptor reply + */ +class MockScope { + constructor (mockDispatch) { + this[kMockDispatch] = mockDispatch + } + + /** + * Delay a reply by a set amount in ms. + */ + delay (waitInMs) { + if (typeof waitInMs !== 'number' || !Number.isInteger(waitInMs) || waitInMs <= 0) { + throw new InvalidArgumentError('waitInMs must be a valid integer > 0') + } + + this[kMockDispatch].delay = waitInMs + return this + } + + /** + * For a defined reply, never mark as consumed. + */ + persist () { + this[kMockDispatch].persist = true + return this + } + + /** + * Allow one to define a reply for a set amount of matching requests. + */ + times (repeatTimes) { + if (typeof repeatTimes !== 'number' || !Number.isInteger(repeatTimes) || repeatTimes <= 0) { + throw new InvalidArgumentError('repeatTimes must be a valid integer > 0') + } + + this[kMockDispatch].times = repeatTimes + return this + } +} + +/** + * Defines an interceptor for a Mock + */ +class MockInterceptor { + constructor (opts, mockDispatches) { + if (typeof opts !== 'object') { + throw new InvalidArgumentError('opts must be an object') + } + if (typeof opts.path === 'undefined') { + throw new InvalidArgumentError('opts.path must be defined') + } + if (typeof opts.method === 'undefined') { + opts.method = 'GET' + } + // See https://github.com/nodejs/undici/issues/1245 + // As per RFC 3986, clients are not supposed to send URI + // fragments to servers when they retrieve a document, + if (typeof opts.path === 'string') { + if (opts.query) { + opts.path = buildURL(opts.path, opts.query) + } else { + // Matches https://github.com/nodejs/undici/blob/main/lib/fetch/index.js#L1811 + const parsedURL = new URL(opts.path, 'data://') + opts.path = parsedURL.pathname + parsedURL.search + } + } + if (typeof opts.method === 'string') { + opts.method = opts.method.toUpperCase() + } + + this[kDispatchKey] = buildKey(opts) + this[kDispatches] = mockDispatches + this[kDefaultHeaders] = {} + this[kDefaultTrailers] = {} + this[kContentLength] = false + } + + createMockScopeDispatchData (statusCode, data, responseOptions = {}) { + const responseData = getResponseData(data) + const contentLength = this[kContentLength] ? { 'content-length': responseData.length } : {} + const headers = { ...this[kDefaultHeaders], ...contentLength, ...responseOptions.headers } + const trailers = { ...this[kDefaultTrailers], ...responseOptions.trailers } + + return { statusCode, data, headers, trailers } + } + + validateReplyParameters (statusCode, data, responseOptions) { + if (typeof statusCode === 'undefined') { + throw new InvalidArgumentError('statusCode must be defined') + } + if (typeof data === 'undefined') { + throw new InvalidArgumentError('data must be defined') + } + if (typeof responseOptions !== 'object') { + throw new InvalidArgumentError('responseOptions must be an object') + } + } + + /** + * Mock an undici request with a defined reply. + */ + reply (replyData) { + // Values of reply aren't available right now as they + // can only be available when the reply callback is invoked. + if (typeof replyData === 'function') { + // We'll first wrap the provided callback in another function, + // this function will properly resolve the data from the callback + // when invoked. + const wrappedDefaultsCallback = (opts) => { + // Our reply options callback contains the parameter for statusCode, data and options. + const resolvedData = replyData(opts) + + // Check if it is in the right format + if (typeof resolvedData !== 'object') { + throw new InvalidArgumentError('reply options callback must return an object') + } + + const { statusCode, data = '', responseOptions = {} } = resolvedData + this.validateReplyParameters(statusCode, data, responseOptions) + // Since the values can be obtained immediately we return them + // from this higher order function that will be resolved later. + return { + ...this.createMockScopeDispatchData(statusCode, data, responseOptions) + } + } + + // Add usual dispatch data, but this time set the data parameter to function that will eventually provide data. + const newMockDispatch = addMockDispatch(this[kDispatches], this[kDispatchKey], wrappedDefaultsCallback) + return new MockScope(newMockDispatch) + } + + // We can have either one or three parameters, if we get here, + // we should have 1-3 parameters. So we spread the arguments of + // this function to obtain the parameters, since replyData will always + // just be the statusCode. + const [statusCode, data = '', responseOptions = {}] = [...arguments] + this.validateReplyParameters(statusCode, data, responseOptions) + + // Send in-already provided data like usual + const dispatchData = this.createMockScopeDispatchData(statusCode, data, responseOptions) + const newMockDispatch = addMockDispatch(this[kDispatches], this[kDispatchKey], dispatchData) + return new MockScope(newMockDispatch) + } + + /** + * Mock an undici request with a defined error. + */ + replyWithError (error) { + if (typeof error === 'undefined') { + throw new InvalidArgumentError('error must be defined') + } + + const newMockDispatch = addMockDispatch(this[kDispatches], this[kDispatchKey], { error }) + return new MockScope(newMockDispatch) + } + + /** + * Set default reply headers on the interceptor for subsequent replies + */ + defaultReplyHeaders (headers) { + if (typeof headers === 'undefined') { + throw new InvalidArgumentError('headers must be defined') + } + + this[kDefaultHeaders] = headers + return this + } + + /** + * Set default reply trailers on the interceptor for subsequent replies + */ + defaultReplyTrailers (trailers) { + if (typeof trailers === 'undefined') { + throw new InvalidArgumentError('trailers must be defined') + } + + this[kDefaultTrailers] = trailers + return this + } + + /** + * Set reply content length header for replies on the interceptor + */ + replyContentLength () { + this[kContentLength] = true + return this + } +} + +module.exports.MockInterceptor = MockInterceptor +module.exports.MockScope = MockScope + + +/***/ }), + +/***/ 4004: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { promisify } = __nccwpck_require__(9023) +const Pool = __nccwpck_require__(5076) +const { buildMockDispatch } = __nccwpck_require__(3397) +const { + kDispatches, + kMockAgent, + kClose, + kOriginalClose, + kOrigin, + kOriginalDispatch, + kConnected +} = __nccwpck_require__(1117) +const { MockInterceptor } = __nccwpck_require__(1511) +const Symbols = __nccwpck_require__(6443) +const { InvalidArgumentError } = __nccwpck_require__(8707) + +/** + * MockPool provides an API that extends the Pool to influence the mockDispatches. + */ +class MockPool extends Pool { + constructor (origin, opts) { + super(origin, opts) + + if (!opts || !opts.agent || typeof opts.agent.dispatch !== 'function') { + throw new InvalidArgumentError('Argument opts.agent must implement Agent') + } + + this[kMockAgent] = opts.agent + this[kOrigin] = origin + this[kDispatches] = [] + this[kConnected] = 1 + this[kOriginalDispatch] = this.dispatch + this[kOriginalClose] = this.close.bind(this) + + this.dispatch = buildMockDispatch.call(this) + this.close = this[kClose] + } + + get [Symbols.kConnected] () { + return this[kConnected] + } + + /** + * Sets up the base interceptor for mocking replies from undici. + */ + intercept (opts) { + return new MockInterceptor(opts, this[kDispatches]) + } + + async [kClose] () { + await promisify(this[kOriginalClose])() + this[kConnected] = 0 + this[kMockAgent][Symbols.kClients].delete(this[kOrigin]) + } +} + +module.exports = MockPool + + +/***/ }), + +/***/ 1117: +/***/ ((module) => { + +"use strict"; + + +module.exports = { + kAgent: Symbol('agent'), + kOptions: Symbol('options'), + kFactory: Symbol('factory'), + kDispatches: Symbol('dispatches'), + kDispatchKey: Symbol('dispatch key'), + kDefaultHeaders: Symbol('default headers'), + kDefaultTrailers: Symbol('default trailers'), + kContentLength: Symbol('content length'), + kMockAgent: Symbol('mock agent'), + kMockAgentSet: Symbol('mock agent set'), + kMockAgentGet: Symbol('mock agent get'), + kMockDispatch: Symbol('mock dispatch'), + kClose: Symbol('close'), + kOriginalClose: Symbol('original agent close'), + kOrigin: Symbol('origin'), + kIsMockActive: Symbol('is mock active'), + kNetConnect: Symbol('net connect'), + kGetNetConnect: Symbol('get net connect'), + kConnected: Symbol('connected') +} + + +/***/ }), + +/***/ 3397: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { MockNotMatchedError } = __nccwpck_require__(2429) +const { + kDispatches, + kMockAgent, + kOriginalDispatch, + kOrigin, + kGetNetConnect +} = __nccwpck_require__(1117) +const { buildURL, nop } = __nccwpck_require__(3440) +const { STATUS_CODES } = __nccwpck_require__(8611) +const { + types: { + isPromise + } +} = __nccwpck_require__(9023) + +function matchValue (match, value) { + if (typeof match === 'string') { + return match === value + } + if (match instanceof RegExp) { + return match.test(value) + } + if (typeof match === 'function') { + return match(value) === true + } + return false +} + +function lowerCaseEntries (headers) { + return Object.fromEntries( + Object.entries(headers).map(([headerName, headerValue]) => { + return [headerName.toLocaleLowerCase(), headerValue] + }) + ) +} + +/** + * @param {import('../../index').Headers|string[]|Record} headers + * @param {string} key + */ +function getHeaderByName (headers, key) { + if (Array.isArray(headers)) { + for (let i = 0; i < headers.length; i += 2) { + if (headers[i].toLocaleLowerCase() === key.toLocaleLowerCase()) { + return headers[i + 1] + } + } + + return undefined + } else if (typeof headers.get === 'function') { + return headers.get(key) + } else { + return lowerCaseEntries(headers)[key.toLocaleLowerCase()] + } +} + +/** @param {string[]} headers */ +function buildHeadersFromArray (headers) { // fetch HeadersList + const clone = headers.slice() + const entries = [] + for (let index = 0; index < clone.length; index += 2) { + entries.push([clone[index], clone[index + 1]]) + } + return Object.fromEntries(entries) +} + +function matchHeaders (mockDispatch, headers) { + if (typeof mockDispatch.headers === 'function') { + if (Array.isArray(headers)) { // fetch HeadersList + headers = buildHeadersFromArray(headers) + } + return mockDispatch.headers(headers ? lowerCaseEntries(headers) : {}) + } + if (typeof mockDispatch.headers === 'undefined') { + return true + } + if (typeof headers !== 'object' || typeof mockDispatch.headers !== 'object') { + return false + } + + for (const [matchHeaderName, matchHeaderValue] of Object.entries(mockDispatch.headers)) { + const headerValue = getHeaderByName(headers, matchHeaderName) + + if (!matchValue(matchHeaderValue, headerValue)) { + return false + } + } + return true +} + +function safeUrl (path) { + if (typeof path !== 'string') { + return path + } + + const pathSegments = path.split('?') + + if (pathSegments.length !== 2) { + return path + } + + const qp = new URLSearchParams(pathSegments.pop()) + qp.sort() + return [...pathSegments, qp.toString()].join('?') +} + +function matchKey (mockDispatch, { path, method, body, headers }) { + const pathMatch = matchValue(mockDispatch.path, path) + const methodMatch = matchValue(mockDispatch.method, method) + const bodyMatch = typeof mockDispatch.body !== 'undefined' ? matchValue(mockDispatch.body, body) : true + const headersMatch = matchHeaders(mockDispatch, headers) + return pathMatch && methodMatch && bodyMatch && headersMatch +} + +function getResponseData (data) { + if (Buffer.isBuffer(data)) { + return data + } else if (typeof data === 'object') { + return JSON.stringify(data) + } else { + return data.toString() + } +} + +function getMockDispatch (mockDispatches, key) { + const basePath = key.query ? buildURL(key.path, key.query) : key.path + const resolvedPath = typeof basePath === 'string' ? safeUrl(basePath) : basePath + + // Match path + let matchedMockDispatches = mockDispatches.filter(({ consumed }) => !consumed).filter(({ path }) => matchValue(safeUrl(path), resolvedPath)) + if (matchedMockDispatches.length === 0) { + throw new MockNotMatchedError(`Mock dispatch not matched for path '${resolvedPath}'`) + } + + // Match method + matchedMockDispatches = matchedMockDispatches.filter(({ method }) => matchValue(method, key.method)) + if (matchedMockDispatches.length === 0) { + throw new MockNotMatchedError(`Mock dispatch not matched for method '${key.method}'`) + } + + // Match body + matchedMockDispatches = matchedMockDispatches.filter(({ body }) => typeof body !== 'undefined' ? matchValue(body, key.body) : true) + if (matchedMockDispatches.length === 0) { + throw new MockNotMatchedError(`Mock dispatch not matched for body '${key.body}'`) + } + + // Match headers + matchedMockDispatches = matchedMockDispatches.filter((mockDispatch) => matchHeaders(mockDispatch, key.headers)) + if (matchedMockDispatches.length === 0) { + throw new MockNotMatchedError(`Mock dispatch not matched for headers '${typeof key.headers === 'object' ? JSON.stringify(key.headers) : key.headers}'`) + } + + return matchedMockDispatches[0] +} + +function addMockDispatch (mockDispatches, key, data) { + const baseData = { timesInvoked: 0, times: 1, persist: false, consumed: false } + const replyData = typeof data === 'function' ? { callback: data } : { ...data } + const newMockDispatch = { ...baseData, ...key, pending: true, data: { error: null, ...replyData } } + mockDispatches.push(newMockDispatch) + return newMockDispatch +} + +function deleteMockDispatch (mockDispatches, key) { + const index = mockDispatches.findIndex(dispatch => { + if (!dispatch.consumed) { + return false + } + return matchKey(dispatch, key) + }) + if (index !== -1) { + mockDispatches.splice(index, 1) + } +} + +function buildKey (opts) { + const { path, method, body, headers, query } = opts + return { + path, + method, + body, + headers, + query + } +} + +function generateKeyValues (data) { + return Object.entries(data).reduce((keyValuePairs, [key, value]) => [ + ...keyValuePairs, + Buffer.from(`${key}`), + Array.isArray(value) ? value.map(x => Buffer.from(`${x}`)) : Buffer.from(`${value}`) + ], []) +} + +/** + * @see https://developer.mozilla.org/en-US/docs/Web/HTTP/Status + * @param {number} statusCode + */ +function getStatusText (statusCode) { + return STATUS_CODES[statusCode] || 'unknown' +} + +async function getResponse (body) { + const buffers = [] + for await (const data of body) { + buffers.push(data) + } + return Buffer.concat(buffers).toString('utf8') +} + +/** + * Mock dispatch function used to simulate undici dispatches + */ +function mockDispatch (opts, handler) { + // Get mock dispatch from built key + const key = buildKey(opts) + const mockDispatch = getMockDispatch(this[kDispatches], key) + + mockDispatch.timesInvoked++ + + // Here's where we resolve a callback if a callback is present for the dispatch data. + if (mockDispatch.data.callback) { + mockDispatch.data = { ...mockDispatch.data, ...mockDispatch.data.callback(opts) } + } + + // Parse mockDispatch data + const { data: { statusCode, data, headers, trailers, error }, delay, persist } = mockDispatch + const { timesInvoked, times } = mockDispatch + + // If it's used up and not persistent, mark as consumed + mockDispatch.consumed = !persist && timesInvoked >= times + mockDispatch.pending = timesInvoked < times + + // If specified, trigger dispatch error + if (error !== null) { + deleteMockDispatch(this[kDispatches], key) + handler.onError(error) + return true + } + + // Handle the request with a delay if necessary + if (typeof delay === 'number' && delay > 0) { + setTimeout(() => { + handleReply(this[kDispatches]) + }, delay) + } else { + handleReply(this[kDispatches]) + } + + function handleReply (mockDispatches, _data = data) { + // fetch's HeadersList is a 1D string array + const optsHeaders = Array.isArray(opts.headers) + ? buildHeadersFromArray(opts.headers) + : opts.headers + const body = typeof _data === 'function' + ? _data({ ...opts, headers: optsHeaders }) + : _data + + // util.types.isPromise is likely needed for jest. + if (isPromise(body)) { + // If handleReply is asynchronous, throwing an error + // in the callback will reject the promise, rather than + // synchronously throw the error, which breaks some tests. + // Rather, we wait for the callback to resolve if it is a + // promise, and then re-run handleReply with the new body. + body.then((newData) => handleReply(mockDispatches, newData)) + return + } + + const responseData = getResponseData(body) + const responseHeaders = generateKeyValues(headers) + const responseTrailers = generateKeyValues(trailers) + + handler.abort = nop + handler.onHeaders(statusCode, responseHeaders, resume, getStatusText(statusCode)) + handler.onData(Buffer.from(responseData)) + handler.onComplete(responseTrailers) + deleteMockDispatch(mockDispatches, key) + } + + function resume () {} + + return true +} + +function buildMockDispatch () { + const agent = this[kMockAgent] + const origin = this[kOrigin] + const originalDispatch = this[kOriginalDispatch] + + return function dispatch (opts, handler) { + if (agent.isMockActive) { + try { + mockDispatch.call(this, opts, handler) + } catch (error) { + if (error instanceof MockNotMatchedError) { + const netConnect = agent[kGetNetConnect]() + if (netConnect === false) { + throw new MockNotMatchedError(`${error.message}: subsequent request to origin ${origin} was not allowed (net.connect disabled)`) + } + if (checkNetConnect(netConnect, origin)) { + originalDispatch.call(this, opts, handler) + } else { + throw new MockNotMatchedError(`${error.message}: subsequent request to origin ${origin} was not allowed (net.connect is not enabled for this origin)`) + } + } else { + throw error + } + } + } else { + originalDispatch.call(this, opts, handler) + } + } +} + +function checkNetConnect (netConnect, origin) { + const url = new URL(origin) + if (netConnect === true) { + return true + } else if (Array.isArray(netConnect) && netConnect.some((matcher) => matchValue(matcher, url.host))) { + return true + } + return false +} + +function buildMockOptions (opts) { + if (opts) { + const { agent, ...mockOptions } = opts + return mockOptions + } +} + +module.exports = { + getResponseData, + getMockDispatch, + addMockDispatch, + deleteMockDispatch, + buildKey, + generateKeyValues, + matchValue, + getResponse, + getStatusText, + mockDispatch, + buildMockDispatch, + checkNetConnect, + buildMockOptions, + getHeaderByName +} + + +/***/ }), + +/***/ 6142: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { Transform } = __nccwpck_require__(2203) +const { Console } = __nccwpck_require__(4236) + +/** + * Gets the output of `console.table(…)` as a string. + */ +module.exports = class PendingInterceptorsFormatter { + constructor ({ disableColors } = {}) { + this.transform = new Transform({ + transform (chunk, _enc, cb) { + cb(null, chunk) + } + }) + + this.logger = new Console({ + stdout: this.transform, + inspectOptions: { + colors: !disableColors && !process.env.CI + } + }) + } + + format (pendingInterceptors) { + const withPrettyHeaders = pendingInterceptors.map( + ({ method, path, data: { statusCode }, persist, times, timesInvoked, origin }) => ({ + Method: method, + Origin: origin, + Path: path, + 'Status code': statusCode, + Persistent: persist ? '✅' : '❌', + Invocations: timesInvoked, + Remaining: persist ? Infinity : times - timesInvoked + })) + + this.logger.table(withPrettyHeaders) + return this.transform.read().toString() + } +} + + +/***/ }), + +/***/ 1529: +/***/ ((module) => { + +"use strict"; + + +const singulars = { + pronoun: 'it', + is: 'is', + was: 'was', + this: 'this' +} + +const plurals = { + pronoun: 'they', + is: 'are', + was: 'were', + this: 'these' +} + +module.exports = class Pluralizer { + constructor (singular, plural) { + this.singular = singular + this.plural = plural + } + + pluralize (count) { + const one = count === 1 + const keys = one ? singulars : plurals + const noun = one ? this.singular : this.plural + return { ...keys, count, noun } + } +} + + +/***/ }), + +/***/ 4869: +/***/ ((module) => { + +"use strict"; +/* eslint-disable */ + + + +// Extracted from node/lib/internal/fixed_queue.js + +// Currently optimal queue size, tested on V8 6.0 - 6.6. Must be power of two. +const kSize = 2048; +const kMask = kSize - 1; + +// The FixedQueue is implemented as a singly-linked list of fixed-size +// circular buffers. It looks something like this: +// +// head tail +// | | +// v v +// +-----------+ <-----\ +-----------+ <------\ +-----------+ +// | [null] | \----- | next | \------- | next | +// +-----------+ +-----------+ +-----------+ +// | item | <-- bottom | item | <-- bottom | [empty] | +// | item | | item | | [empty] | +// | item | | item | | [empty] | +// | item | | item | | [empty] | +// | item | | item | bottom --> | item | +// | item | | item | | item | +// | ... | | ... | | ... | +// | item | | item | | item | +// | item | | item | | item | +// | [empty] | <-- top | item | | item | +// | [empty] | | item | | item | +// | [empty] | | [empty] | <-- top top --> | [empty] | +// +-----------+ +-----------+ +-----------+ +// +// Or, if there is only one circular buffer, it looks something +// like either of these: +// +// head tail head tail +// | | | | +// v v v v +// +-----------+ +-----------+ +// | [null] | | [null] | +// +-----------+ +-----------+ +// | [empty] | | item | +// | [empty] | | item | +// | item | <-- bottom top --> | [empty] | +// | item | | [empty] | +// | [empty] | <-- top bottom --> | item | +// | [empty] | | item | +// +-----------+ +-----------+ +// +// Adding a value means moving `top` forward by one, removing means +// moving `bottom` forward by one. After reaching the end, the queue +// wraps around. +// +// When `top === bottom` the current queue is empty and when +// `top + 1 === bottom` it's full. This wastes a single space of storage +// but allows much quicker checks. + +class FixedCircularBuffer { + constructor() { + this.bottom = 0; + this.top = 0; + this.list = new Array(kSize); + this.next = null; + } + + isEmpty() { + return this.top === this.bottom; + } + + isFull() { + return ((this.top + 1) & kMask) === this.bottom; + } + + push(data) { + this.list[this.top] = data; + this.top = (this.top + 1) & kMask; + } + + shift() { + const nextItem = this.list[this.bottom]; + if (nextItem === undefined) + return null; + this.list[this.bottom] = undefined; + this.bottom = (this.bottom + 1) & kMask; + return nextItem; + } +} + +module.exports = class FixedQueue { + constructor() { + this.head = this.tail = new FixedCircularBuffer(); + } + + isEmpty() { + return this.head.isEmpty(); + } + + push(data) { + if (this.head.isFull()) { + // Head is full: Creates a new queue, sets the old queue's `.next` to it, + // and sets it as the new main queue. + this.head = this.head.next = new FixedCircularBuffer(); + } + this.head.push(data); + } + + shift() { + const tail = this.tail; + const next = tail.shift(); + if (tail.isEmpty() && tail.next !== null) { + // If there is another queue, it forms the new tail. + this.tail = tail.next; + } + return next; + } +}; + + +/***/ }), + +/***/ 8640: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const DispatcherBase = __nccwpck_require__(1) +const FixedQueue = __nccwpck_require__(4869) +const { kConnected, kSize, kRunning, kPending, kQueued, kBusy, kFree, kUrl, kClose, kDestroy, kDispatch } = __nccwpck_require__(6443) +const PoolStats = __nccwpck_require__(4622) + +const kClients = Symbol('clients') +const kNeedDrain = Symbol('needDrain') +const kQueue = Symbol('queue') +const kClosedResolve = Symbol('closed resolve') +const kOnDrain = Symbol('onDrain') +const kOnConnect = Symbol('onConnect') +const kOnDisconnect = Symbol('onDisconnect') +const kOnConnectionError = Symbol('onConnectionError') +const kGetDispatcher = Symbol('get dispatcher') +const kAddClient = Symbol('add client') +const kRemoveClient = Symbol('remove client') +const kStats = Symbol('stats') + +class PoolBase extends DispatcherBase { + constructor () { + super() + + this[kQueue] = new FixedQueue() + this[kClients] = [] + this[kQueued] = 0 + + const pool = this + + this[kOnDrain] = function onDrain (origin, targets) { + const queue = pool[kQueue] + + let needDrain = false + + while (!needDrain) { + const item = queue.shift() + if (!item) { + break + } + pool[kQueued]-- + needDrain = !this.dispatch(item.opts, item.handler) + } + + this[kNeedDrain] = needDrain + + if (!this[kNeedDrain] && pool[kNeedDrain]) { + pool[kNeedDrain] = false + pool.emit('drain', origin, [pool, ...targets]) + } + + if (pool[kClosedResolve] && queue.isEmpty()) { + Promise + .all(pool[kClients].map(c => c.close())) + .then(pool[kClosedResolve]) + } + } + + this[kOnConnect] = (origin, targets) => { + pool.emit('connect', origin, [pool, ...targets]) + } + + this[kOnDisconnect] = (origin, targets, err) => { + pool.emit('disconnect', origin, [pool, ...targets], err) + } + + this[kOnConnectionError] = (origin, targets, err) => { + pool.emit('connectionError', origin, [pool, ...targets], err) + } + + this[kStats] = new PoolStats(this) + } + + get [kBusy] () { + return this[kNeedDrain] + } + + get [kConnected] () { + return this[kClients].filter(client => client[kConnected]).length + } + + get [kFree] () { + return this[kClients].filter(client => client[kConnected] && !client[kNeedDrain]).length + } + + get [kPending] () { + let ret = this[kQueued] + for (const { [kPending]: pending } of this[kClients]) { + ret += pending + } + return ret + } + + get [kRunning] () { + let ret = 0 + for (const { [kRunning]: running } of this[kClients]) { + ret += running + } + return ret + } + + get [kSize] () { + let ret = this[kQueued] + for (const { [kSize]: size } of this[kClients]) { + ret += size + } + return ret + } + + get stats () { + return this[kStats] + } + + async [kClose] () { + if (this[kQueue].isEmpty()) { + return Promise.all(this[kClients].map(c => c.close())) + } else { + return new Promise((resolve) => { + this[kClosedResolve] = resolve + }) + } + } + + async [kDestroy] (err) { + while (true) { + const item = this[kQueue].shift() + if (!item) { + break + } + item.handler.onError(err) + } + + return Promise.all(this[kClients].map(c => c.destroy(err))) + } + + [kDispatch] (opts, handler) { + const dispatcher = this[kGetDispatcher]() + + if (!dispatcher) { + this[kNeedDrain] = true + this[kQueue].push({ opts, handler }) + this[kQueued]++ + } else if (!dispatcher.dispatch(opts, handler)) { + dispatcher[kNeedDrain] = true + this[kNeedDrain] = !this[kGetDispatcher]() + } + + return !this[kNeedDrain] + } + + [kAddClient] (client) { + client + .on('drain', this[kOnDrain]) + .on('connect', this[kOnConnect]) + .on('disconnect', this[kOnDisconnect]) + .on('connectionError', this[kOnConnectionError]) + + this[kClients].push(client) + + if (this[kNeedDrain]) { + process.nextTick(() => { + if (this[kNeedDrain]) { + this[kOnDrain](client[kUrl], [this, client]) + } + }) + } + + return this + } + + [kRemoveClient] (client) { + client.close(() => { + const idx = this[kClients].indexOf(client) + if (idx !== -1) { + this[kClients].splice(idx, 1) + } + }) + + this[kNeedDrain] = this[kClients].some(dispatcher => ( + !dispatcher[kNeedDrain] && + dispatcher.closed !== true && + dispatcher.destroyed !== true + )) + } +} + +module.exports = { + PoolBase, + kClients, + kNeedDrain, + kAddClient, + kRemoveClient, + kGetDispatcher +} + + +/***/ }), + +/***/ 4622: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +const { kFree, kConnected, kPending, kQueued, kRunning, kSize } = __nccwpck_require__(6443) +const kPool = Symbol('pool') + +class PoolStats { + constructor (pool) { + this[kPool] = pool + } + + get connected () { + return this[kPool][kConnected] + } + + get free () { + return this[kPool][kFree] + } + + get pending () { + return this[kPool][kPending] + } + + get queued () { + return this[kPool][kQueued] + } + + get running () { + return this[kPool][kRunning] + } + + get size () { + return this[kPool][kSize] + } +} + +module.exports = PoolStats + + +/***/ }), + +/***/ 5076: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { + PoolBase, + kClients, + kNeedDrain, + kAddClient, + kGetDispatcher +} = __nccwpck_require__(8640) +const Client = __nccwpck_require__(6197) +const { + InvalidArgumentError +} = __nccwpck_require__(8707) +const util = __nccwpck_require__(3440) +const { kUrl, kInterceptors } = __nccwpck_require__(6443) +const buildConnector = __nccwpck_require__(9136) + +const kOptions = Symbol('options') +const kConnections = Symbol('connections') +const kFactory = Symbol('factory') + +function defaultFactory (origin, opts) { + return new Client(origin, opts) +} + +class Pool extends PoolBase { + constructor (origin, { + connections, + factory = defaultFactory, + connect, + connectTimeout, + tls, + maxCachedSessions, + socketPath, + autoSelectFamily, + autoSelectFamilyAttemptTimeout, + allowH2, + ...options + } = {}) { + super() + + if (connections != null && (!Number.isFinite(connections) || connections < 0)) { + throw new InvalidArgumentError('invalid connections') + } + + if (typeof factory !== 'function') { + throw new InvalidArgumentError('factory must be a function.') + } + + if (connect != null && typeof connect !== 'function' && typeof connect !== 'object') { + throw new InvalidArgumentError('connect must be a function or an object') + } + + if (typeof connect !== 'function') { + connect = buildConnector({ + ...tls, + maxCachedSessions, + allowH2, + socketPath, + timeout: connectTimeout, + ...(util.nodeHasAutoSelectFamily && autoSelectFamily ? { autoSelectFamily, autoSelectFamilyAttemptTimeout } : undefined), + ...connect + }) + } + + this[kInterceptors] = options.interceptors && options.interceptors.Pool && Array.isArray(options.interceptors.Pool) + ? options.interceptors.Pool + : [] + this[kConnections] = connections || null + this[kUrl] = util.parseOrigin(origin) + this[kOptions] = { ...util.deepClone(options), connect, allowH2 } + this[kOptions].interceptors = options.interceptors + ? { ...options.interceptors } + : undefined + this[kFactory] = factory + } + + [kGetDispatcher] () { + let dispatcher = this[kClients].find(dispatcher => !dispatcher[kNeedDrain]) + + if (dispatcher) { + return dispatcher + } + + if (!this[kConnections] || this[kClients].length < this[kConnections]) { + dispatcher = this[kFactory](this[kUrl], this[kOptions]) + this[kAddClient](dispatcher) + } + + return dispatcher + } +} + +module.exports = Pool + + +/***/ }), + +/***/ 2720: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { kProxy, kClose, kDestroy, kInterceptors } = __nccwpck_require__(6443) +const { URL } = __nccwpck_require__(7016) +const Agent = __nccwpck_require__(9965) +const Pool = __nccwpck_require__(5076) +const DispatcherBase = __nccwpck_require__(1) +const { InvalidArgumentError, RequestAbortedError } = __nccwpck_require__(8707) +const buildConnector = __nccwpck_require__(9136) + +const kAgent = Symbol('proxy agent') +const kClient = Symbol('proxy client') +const kProxyHeaders = Symbol('proxy headers') +const kRequestTls = Symbol('request tls settings') +const kProxyTls = Symbol('proxy tls settings') +const kConnectEndpoint = Symbol('connect endpoint function') + +function defaultProtocolPort (protocol) { + return protocol === 'https:' ? 443 : 80 +} + +function buildProxyOptions (opts) { + if (typeof opts === 'string') { + opts = { uri: opts } + } + + if (!opts || !opts.uri) { + throw new InvalidArgumentError('Proxy opts.uri is mandatory') + } + + return { + uri: opts.uri, + protocol: opts.protocol || 'https' + } +} + +function defaultFactory (origin, opts) { + return new Pool(origin, opts) +} + +class ProxyAgent extends DispatcherBase { + constructor (opts) { + super(opts) + this[kProxy] = buildProxyOptions(opts) + this[kAgent] = new Agent(opts) + this[kInterceptors] = opts.interceptors && opts.interceptors.ProxyAgent && Array.isArray(opts.interceptors.ProxyAgent) + ? opts.interceptors.ProxyAgent + : [] + + if (typeof opts === 'string') { + opts = { uri: opts } + } + + if (!opts || !opts.uri) { + throw new InvalidArgumentError('Proxy opts.uri is mandatory') + } + + const { clientFactory = defaultFactory } = opts + + if (typeof clientFactory !== 'function') { + throw new InvalidArgumentError('Proxy opts.clientFactory must be a function.') + } + + this[kRequestTls] = opts.requestTls + this[kProxyTls] = opts.proxyTls + this[kProxyHeaders] = opts.headers || {} + + const resolvedUrl = new URL(opts.uri) + const { origin, port, host, username, password } = resolvedUrl + + if (opts.auth && opts.token) { + throw new InvalidArgumentError('opts.auth cannot be used in combination with opts.token') + } else if (opts.auth) { + /* @deprecated in favour of opts.token */ + this[kProxyHeaders]['proxy-authorization'] = `Basic ${opts.auth}` + } else if (opts.token) { + this[kProxyHeaders]['proxy-authorization'] = opts.token + } else if (username && password) { + this[kProxyHeaders]['proxy-authorization'] = `Basic ${Buffer.from(`${decodeURIComponent(username)}:${decodeURIComponent(password)}`).toString('base64')}` + } + + const connect = buildConnector({ ...opts.proxyTls }) + this[kConnectEndpoint] = buildConnector({ ...opts.requestTls }) + this[kClient] = clientFactory(resolvedUrl, { connect }) + this[kAgent] = new Agent({ + ...opts, + connect: async (opts, callback) => { + let requestedHost = opts.host + if (!opts.port) { + requestedHost += `:${defaultProtocolPort(opts.protocol)}` + } + try { + const { socket, statusCode } = await this[kClient].connect({ + origin, + port, + path: requestedHost, + signal: opts.signal, + headers: { + ...this[kProxyHeaders], + host + } + }) + if (statusCode !== 200) { + socket.on('error', () => {}).destroy() + callback(new RequestAbortedError(`Proxy response (${statusCode}) !== 200 when HTTP Tunneling`)) + } + if (opts.protocol !== 'https:') { + callback(null, socket) + return + } + let servername + if (this[kRequestTls]) { + servername = this[kRequestTls].servername + } else { + servername = opts.servername + } + this[kConnectEndpoint]({ ...opts, servername, httpSocket: socket }, callback) + } catch (err) { + callback(err) + } + } + }) + } + + dispatch (opts, handler) { + const { host } = new URL(opts.origin) + const headers = buildHeaders(opts.headers) + throwIfProxyAuthIsSent(headers) + return this[kAgent].dispatch( + { + ...opts, + headers: { + ...headers, + host + } + }, + handler + ) + } + + async [kClose] () { + await this[kAgent].close() + await this[kClient].close() + } + + async [kDestroy] () { + await this[kAgent].destroy() + await this[kClient].destroy() + } +} + +/** + * @param {string[] | Record} headers + * @returns {Record} + */ +function buildHeaders (headers) { + // When using undici.fetch, the headers list is stored + // as an array. + if (Array.isArray(headers)) { + /** @type {Record} */ + const headersPair = {} + + for (let i = 0; i < headers.length; i += 2) { + headersPair[headers[i]] = headers[i + 1] + } + + return headersPair + } + + return headers +} + +/** + * @param {Record} headers + * + * Previous versions of ProxyAgent suggests the Proxy-Authorization in request headers + * Nevertheless, it was changed and to avoid a security vulnerability by end users + * this check was created. + * It should be removed in the next major version for performance reasons + */ +function throwIfProxyAuthIsSent (headers) { + const existProxyAuth = headers && Object.keys(headers) + .find((key) => key.toLowerCase() === 'proxy-authorization') + if (existProxyAuth) { + throw new InvalidArgumentError('Proxy-Authorization should be sent in ProxyAgent constructor') + } +} + +module.exports = ProxyAgent + + +/***/ }), + +/***/ 8804: +/***/ ((module) => { + +"use strict"; + + +let fastNow = Date.now() +let fastNowTimeout + +const fastTimers = [] + +function onTimeout () { + fastNow = Date.now() + + let len = fastTimers.length + let idx = 0 + while (idx < len) { + const timer = fastTimers[idx] + + if (timer.state === 0) { + timer.state = fastNow + timer.delay + } else if (timer.state > 0 && fastNow >= timer.state) { + timer.state = -1 + timer.callback(timer.opaque) + } + + if (timer.state === -1) { + timer.state = -2 + if (idx !== len - 1) { + fastTimers[idx] = fastTimers.pop() + } else { + fastTimers.pop() + } + len -= 1 + } else { + idx += 1 + } + } + + if (fastTimers.length > 0) { + refreshTimeout() + } +} + +function refreshTimeout () { + if (fastNowTimeout && fastNowTimeout.refresh) { + fastNowTimeout.refresh() + } else { + clearTimeout(fastNowTimeout) + fastNowTimeout = setTimeout(onTimeout, 1e3) + if (fastNowTimeout.unref) { + fastNowTimeout.unref() + } + } +} + +class Timeout { + constructor (callback, delay, opaque) { + this.callback = callback + this.delay = delay + this.opaque = opaque + + // -2 not in timer list + // -1 in timer list but inactive + // 0 in timer list waiting for time + // > 0 in timer list waiting for time to expire + this.state = -2 + + this.refresh() + } + + refresh () { + if (this.state === -2) { + fastTimers.push(this) + if (!fastNowTimeout || fastTimers.length === 1) { + refreshTimeout() + } + } + + this.state = 0 + } + + clear () { + this.state = -1 + } +} + +module.exports = { + setTimeout (callback, delay, opaque) { + return delay < 1e3 + ? setTimeout(callback, delay, opaque) + : new Timeout(callback, delay, opaque) + }, + clearTimeout (timeout) { + if (timeout instanceof Timeout) { + timeout.clear() + } else { + clearTimeout(timeout) + } + } +} + + +/***/ }), + +/***/ 8550: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const diagnosticsChannel = __nccwpck_require__(1637) +const { uid, states } = __nccwpck_require__(5913) +const { + kReadyState, + kSentClose, + kByteParser, + kReceivedClose +} = __nccwpck_require__(2933) +const { fireEvent, failWebsocketConnection } = __nccwpck_require__(3574) +const { CloseEvent } = __nccwpck_require__(6255) +const { makeRequest } = __nccwpck_require__(5194) +const { fetching } = __nccwpck_require__(2315) +const { Headers } = __nccwpck_require__(6349) +const { getGlobalDispatcher } = __nccwpck_require__(2581) +const { kHeadersList } = __nccwpck_require__(6443) + +const channels = {} +channels.open = diagnosticsChannel.channel('undici:websocket:open') +channels.close = diagnosticsChannel.channel('undici:websocket:close') +channels.socketError = diagnosticsChannel.channel('undici:websocket:socket_error') + +/** @type {import('crypto')} */ +let crypto +try { + crypto = __nccwpck_require__(6982) +} catch { + +} + +/** + * @see https://websockets.spec.whatwg.org/#concept-websocket-establish + * @param {URL} url + * @param {string|string[]} protocols + * @param {import('./websocket').WebSocket} ws + * @param {(response: any) => void} onEstablish + * @param {Partial} options + */ +function establishWebSocketConnection (url, protocols, ws, onEstablish, options) { + // 1. Let requestURL be a copy of url, with its scheme set to "http", if url’s + // scheme is "ws", and to "https" otherwise. + const requestURL = url + + requestURL.protocol = url.protocol === 'ws:' ? 'http:' : 'https:' + + // 2. Let request be a new request, whose URL is requestURL, client is client, + // service-workers mode is "none", referrer is "no-referrer", mode is + // "websocket", credentials mode is "include", cache mode is "no-store" , + // and redirect mode is "error". + const request = makeRequest({ + urlList: [requestURL], + serviceWorkers: 'none', + referrer: 'no-referrer', + mode: 'websocket', + credentials: 'include', + cache: 'no-store', + redirect: 'error' + }) + + // Note: undici extension, allow setting custom headers. + if (options.headers) { + const headersList = new Headers(options.headers)[kHeadersList] + + request.headersList = headersList + } + + // 3. Append (`Upgrade`, `websocket`) to request’s header list. + // 4. Append (`Connection`, `Upgrade`) to request’s header list. + // Note: both of these are handled by undici currently. + // https://github.com/nodejs/undici/blob/68c269c4144c446f3f1220951338daef4a6b5ec4/lib/client.js#L1397 + + // 5. Let keyValue be a nonce consisting of a randomly selected + // 16-byte value that has been forgiving-base64-encoded and + // isomorphic encoded. + const keyValue = crypto.randomBytes(16).toString('base64') + + // 6. Append (`Sec-WebSocket-Key`, keyValue) to request’s + // header list. + request.headersList.append('sec-websocket-key', keyValue) + + // 7. Append (`Sec-WebSocket-Version`, `13`) to request’s + // header list. + request.headersList.append('sec-websocket-version', '13') + + // 8. For each protocol in protocols, combine + // (`Sec-WebSocket-Protocol`, protocol) in request’s header + // list. + for (const protocol of protocols) { + request.headersList.append('sec-websocket-protocol', protocol) + } + + // 9. Let permessageDeflate be a user-agent defined + // "permessage-deflate" extension header value. + // https://github.com/mozilla/gecko-dev/blob/ce78234f5e653a5d3916813ff990f053510227bc/netwerk/protocol/websocket/WebSocketChannel.cpp#L2673 + // TODO: enable once permessage-deflate is supported + const permessageDeflate = '' // 'permessage-deflate; 15' + + // 10. Append (`Sec-WebSocket-Extensions`, permessageDeflate) to + // request’s header list. + // request.headersList.append('sec-websocket-extensions', permessageDeflate) + + // 11. Fetch request with useParallelQueue set to true, and + // processResponse given response being these steps: + const controller = fetching({ + request, + useParallelQueue: true, + dispatcher: options.dispatcher ?? getGlobalDispatcher(), + processResponse (response) { + // 1. If response is a network error or its status is not 101, + // fail the WebSocket connection. + if (response.type === 'error' || response.status !== 101) { + failWebsocketConnection(ws, 'Received network error or non-101 status code.') + return + } + + // 2. If protocols is not the empty list and extracting header + // list values given `Sec-WebSocket-Protocol` and response’s + // header list results in null, failure, or the empty byte + // sequence, then fail the WebSocket connection. + if (protocols.length !== 0 && !response.headersList.get('Sec-WebSocket-Protocol')) { + failWebsocketConnection(ws, 'Server did not respond with sent protocols.') + return + } + + // 3. Follow the requirements stated step 2 to step 6, inclusive, + // of the last set of steps in section 4.1 of The WebSocket + // Protocol to validate response. This either results in fail + // the WebSocket connection or the WebSocket connection is + // established. + + // 2. If the response lacks an |Upgrade| header field or the |Upgrade| + // header field contains a value that is not an ASCII case- + // insensitive match for the value "websocket", the client MUST + // _Fail the WebSocket Connection_. + if (response.headersList.get('Upgrade')?.toLowerCase() !== 'websocket') { + failWebsocketConnection(ws, 'Server did not set Upgrade header to "websocket".') + return + } + + // 3. If the response lacks a |Connection| header field or the + // |Connection| header field doesn't contain a token that is an + // ASCII case-insensitive match for the value "Upgrade", the client + // MUST _Fail the WebSocket Connection_. + if (response.headersList.get('Connection')?.toLowerCase() !== 'upgrade') { + failWebsocketConnection(ws, 'Server did not set Connection header to "upgrade".') + return + } + + // 4. If the response lacks a |Sec-WebSocket-Accept| header field or + // the |Sec-WebSocket-Accept| contains a value other than the + // base64-encoded SHA-1 of the concatenation of the |Sec-WebSocket- + // Key| (as a string, not base64-decoded) with the string "258EAFA5- + // E914-47DA-95CA-C5AB0DC85B11" but ignoring any leading and + // trailing whitespace, the client MUST _Fail the WebSocket + // Connection_. + const secWSAccept = response.headersList.get('Sec-WebSocket-Accept') + const digest = crypto.createHash('sha1').update(keyValue + uid).digest('base64') + if (secWSAccept !== digest) { + failWebsocketConnection(ws, 'Incorrect hash received in Sec-WebSocket-Accept header.') + return + } + + // 5. If the response includes a |Sec-WebSocket-Extensions| header + // field and this header field indicates the use of an extension + // that was not present in the client's handshake (the server has + // indicated an extension not requested by the client), the client + // MUST _Fail the WebSocket Connection_. (The parsing of this + // header field to determine which extensions are requested is + // discussed in Section 9.1.) + const secExtension = response.headersList.get('Sec-WebSocket-Extensions') + + if (secExtension !== null && secExtension !== permessageDeflate) { + failWebsocketConnection(ws, 'Received different permessage-deflate than the one set.') + return + } + + // 6. If the response includes a |Sec-WebSocket-Protocol| header field + // and this header field indicates the use of a subprotocol that was + // not present in the client's handshake (the server has indicated a + // subprotocol not requested by the client), the client MUST _Fail + // the WebSocket Connection_. + const secProtocol = response.headersList.get('Sec-WebSocket-Protocol') + + if (secProtocol !== null && secProtocol !== request.headersList.get('Sec-WebSocket-Protocol')) { + failWebsocketConnection(ws, 'Protocol was not set in the opening handshake.') + return + } + + response.socket.on('data', onSocketData) + response.socket.on('close', onSocketClose) + response.socket.on('error', onSocketError) + + if (channels.open.hasSubscribers) { + channels.open.publish({ + address: response.socket.address(), + protocol: secProtocol, + extensions: secExtension + }) + } + + onEstablish(response) + } + }) + + return controller +} + +/** + * @param {Buffer} chunk + */ +function onSocketData (chunk) { + if (!this.ws[kByteParser].write(chunk)) { + this.pause() + } +} + +/** + * @see https://websockets.spec.whatwg.org/#feedback-from-the-protocol + * @see https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.4 + */ +function onSocketClose () { + const { ws } = this + + // If the TCP connection was closed after the + // WebSocket closing handshake was completed, the WebSocket connection + // is said to have been closed _cleanly_. + const wasClean = ws[kSentClose] && ws[kReceivedClose] + + let code = 1005 + let reason = '' + + const result = ws[kByteParser].closingInfo + + if (result) { + code = result.code ?? 1005 + reason = result.reason + } else if (!ws[kSentClose]) { + // If _The WebSocket + // Connection is Closed_ and no Close control frame was received by the + // endpoint (such as could occur if the underlying transport connection + // is lost), _The WebSocket Connection Close Code_ is considered to be + // 1006. + code = 1006 + } + + // 1. Change the ready state to CLOSED (3). + ws[kReadyState] = states.CLOSED + + // 2. If the user agent was required to fail the WebSocket + // connection, or if the WebSocket connection was closed + // after being flagged as full, fire an event named error + // at the WebSocket object. + // TODO + + // 3. Fire an event named close at the WebSocket object, + // using CloseEvent, with the wasClean attribute + // initialized to true if the connection closed cleanly + // and false otherwise, the code attribute initialized to + // the WebSocket connection close code, and the reason + // attribute initialized to the result of applying UTF-8 + // decode without BOM to the WebSocket connection close + // reason. + fireEvent('close', ws, CloseEvent, { + wasClean, code, reason + }) + + if (channels.close.hasSubscribers) { + channels.close.publish({ + websocket: ws, + code, + reason + }) + } +} + +function onSocketError (error) { + const { ws } = this + + ws[kReadyState] = states.CLOSING + + if (channels.socketError.hasSubscribers) { + channels.socketError.publish(error) + } + + this.destroy() +} + +module.exports = { + establishWebSocketConnection +} + + +/***/ }), + +/***/ 5913: +/***/ ((module) => { + +"use strict"; + + +// This is a Globally Unique Identifier unique used +// to validate that the endpoint accepts websocket +// connections. +// See https://www.rfc-editor.org/rfc/rfc6455.html#section-1.3 +const uid = '258EAFA5-E914-47DA-95CA-C5AB0DC85B11' + +/** @type {PropertyDescriptor} */ +const staticPropertyDescriptors = { + enumerable: true, + writable: false, + configurable: false +} + +const states = { + CONNECTING: 0, + OPEN: 1, + CLOSING: 2, + CLOSED: 3 +} + +const opcodes = { + CONTINUATION: 0x0, + TEXT: 0x1, + BINARY: 0x2, + CLOSE: 0x8, + PING: 0x9, + PONG: 0xA +} + +const maxUnsigned16Bit = 2 ** 16 - 1 // 65535 + +const parserStates = { + INFO: 0, + PAYLOADLENGTH_16: 2, + PAYLOADLENGTH_64: 3, + READ_DATA: 4 +} + +const emptyBuffer = Buffer.allocUnsafe(0) + +module.exports = { + uid, + staticPropertyDescriptors, + states, + opcodes, + maxUnsigned16Bit, + parserStates, + emptyBuffer +} + + +/***/ }), + +/***/ 6255: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { webidl } = __nccwpck_require__(4222) +const { kEnumerableProperty } = __nccwpck_require__(3440) +const { MessagePort } = __nccwpck_require__(8167) + +/** + * @see https://html.spec.whatwg.org/multipage/comms.html#messageevent + */ +class MessageEvent extends Event { + #eventInit + + constructor (type, eventInitDict = {}) { + webidl.argumentLengthCheck(arguments, 1, { header: 'MessageEvent constructor' }) + + type = webidl.converters.DOMString(type) + eventInitDict = webidl.converters.MessageEventInit(eventInitDict) + + super(type, eventInitDict) + + this.#eventInit = eventInitDict + } + + get data () { + webidl.brandCheck(this, MessageEvent) + + return this.#eventInit.data + } + + get origin () { + webidl.brandCheck(this, MessageEvent) + + return this.#eventInit.origin + } + + get lastEventId () { + webidl.brandCheck(this, MessageEvent) + + return this.#eventInit.lastEventId + } + + get source () { + webidl.brandCheck(this, MessageEvent) + + return this.#eventInit.source + } + + get ports () { + webidl.brandCheck(this, MessageEvent) + + if (!Object.isFrozen(this.#eventInit.ports)) { + Object.freeze(this.#eventInit.ports) + } + + return this.#eventInit.ports + } + + initMessageEvent ( + type, + bubbles = false, + cancelable = false, + data = null, + origin = '', + lastEventId = '', + source = null, + ports = [] + ) { + webidl.brandCheck(this, MessageEvent) + + webidl.argumentLengthCheck(arguments, 1, { header: 'MessageEvent.initMessageEvent' }) + + return new MessageEvent(type, { + bubbles, cancelable, data, origin, lastEventId, source, ports + }) + } +} + +/** + * @see https://websockets.spec.whatwg.org/#the-closeevent-interface + */ +class CloseEvent extends Event { + #eventInit + + constructor (type, eventInitDict = {}) { + webidl.argumentLengthCheck(arguments, 1, { header: 'CloseEvent constructor' }) + + type = webidl.converters.DOMString(type) + eventInitDict = webidl.converters.CloseEventInit(eventInitDict) + + super(type, eventInitDict) + + this.#eventInit = eventInitDict + } + + get wasClean () { + webidl.brandCheck(this, CloseEvent) + + return this.#eventInit.wasClean + } + + get code () { + webidl.brandCheck(this, CloseEvent) + + return this.#eventInit.code + } + + get reason () { + webidl.brandCheck(this, CloseEvent) + + return this.#eventInit.reason + } +} + +// https://html.spec.whatwg.org/multipage/webappapis.html#the-errorevent-interface +class ErrorEvent extends Event { + #eventInit + + constructor (type, eventInitDict) { + webidl.argumentLengthCheck(arguments, 1, { header: 'ErrorEvent constructor' }) + + super(type, eventInitDict) + + type = webidl.converters.DOMString(type) + eventInitDict = webidl.converters.ErrorEventInit(eventInitDict ?? {}) + + this.#eventInit = eventInitDict + } + + get message () { + webidl.brandCheck(this, ErrorEvent) + + return this.#eventInit.message + } + + get filename () { + webidl.brandCheck(this, ErrorEvent) + + return this.#eventInit.filename + } + + get lineno () { + webidl.brandCheck(this, ErrorEvent) + + return this.#eventInit.lineno + } + + get colno () { + webidl.brandCheck(this, ErrorEvent) + + return this.#eventInit.colno + } + + get error () { + webidl.brandCheck(this, ErrorEvent) + + return this.#eventInit.error + } +} + +Object.defineProperties(MessageEvent.prototype, { + [Symbol.toStringTag]: { + value: 'MessageEvent', + configurable: true + }, + data: kEnumerableProperty, + origin: kEnumerableProperty, + lastEventId: kEnumerableProperty, + source: kEnumerableProperty, + ports: kEnumerableProperty, + initMessageEvent: kEnumerableProperty +}) + +Object.defineProperties(CloseEvent.prototype, { + [Symbol.toStringTag]: { + value: 'CloseEvent', + configurable: true + }, + reason: kEnumerableProperty, + code: kEnumerableProperty, + wasClean: kEnumerableProperty +}) + +Object.defineProperties(ErrorEvent.prototype, { + [Symbol.toStringTag]: { + value: 'ErrorEvent', + configurable: true + }, + message: kEnumerableProperty, + filename: kEnumerableProperty, + lineno: kEnumerableProperty, + colno: kEnumerableProperty, + error: kEnumerableProperty +}) + +webidl.converters.MessagePort = webidl.interfaceConverter(MessagePort) + +webidl.converters['sequence'] = webidl.sequenceConverter( + webidl.converters.MessagePort +) + +const eventInit = [ + { + key: 'bubbles', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'cancelable', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'composed', + converter: webidl.converters.boolean, + defaultValue: false + } +] + +webidl.converters.MessageEventInit = webidl.dictionaryConverter([ + ...eventInit, + { + key: 'data', + converter: webidl.converters.any, + defaultValue: null + }, + { + key: 'origin', + converter: webidl.converters.USVString, + defaultValue: '' + }, + { + key: 'lastEventId', + converter: webidl.converters.DOMString, + defaultValue: '' + }, + { + key: 'source', + // Node doesn't implement WindowProxy or ServiceWorker, so the only + // valid value for source is a MessagePort. + converter: webidl.nullableConverter(webidl.converters.MessagePort), + defaultValue: null + }, + { + key: 'ports', + converter: webidl.converters['sequence'], + get defaultValue () { + return [] + } + } +]) + +webidl.converters.CloseEventInit = webidl.dictionaryConverter([ + ...eventInit, + { + key: 'wasClean', + converter: webidl.converters.boolean, + defaultValue: false + }, + { + key: 'code', + converter: webidl.converters['unsigned short'], + defaultValue: 0 + }, + { + key: 'reason', + converter: webidl.converters.USVString, + defaultValue: '' + } +]) + +webidl.converters.ErrorEventInit = webidl.dictionaryConverter([ + ...eventInit, + { + key: 'message', + converter: webidl.converters.DOMString, + defaultValue: '' + }, + { + key: 'filename', + converter: webidl.converters.USVString, + defaultValue: '' + }, + { + key: 'lineno', + converter: webidl.converters['unsigned long'], + defaultValue: 0 + }, + { + key: 'colno', + converter: webidl.converters['unsigned long'], + defaultValue: 0 + }, + { + key: 'error', + converter: webidl.converters.any + } +]) + +module.exports = { + MessageEvent, + CloseEvent, + ErrorEvent +} + + +/***/ }), + +/***/ 1237: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { maxUnsigned16Bit } = __nccwpck_require__(5913) + +/** @type {import('crypto')} */ +let crypto +try { + crypto = __nccwpck_require__(6982) +} catch { + +} + +class WebsocketFrameSend { + /** + * @param {Buffer|undefined} data + */ + constructor (data) { + this.frameData = data + this.maskKey = crypto.randomBytes(4) + } + + createFrame (opcode) { + const bodyLength = this.frameData?.byteLength ?? 0 + + /** @type {number} */ + let payloadLength = bodyLength // 0-125 + let offset = 6 + + if (bodyLength > maxUnsigned16Bit) { + offset += 8 // payload length is next 8 bytes + payloadLength = 127 + } else if (bodyLength > 125) { + offset += 2 // payload length is next 2 bytes + payloadLength = 126 + } + + const buffer = Buffer.allocUnsafe(bodyLength + offset) + + // Clear first 2 bytes, everything else is overwritten + buffer[0] = buffer[1] = 0 + buffer[0] |= 0x80 // FIN + buffer[0] = (buffer[0] & 0xF0) + opcode // opcode + + /*! ws. MIT License. Einar Otto Stangvik */ + buffer[offset - 4] = this.maskKey[0] + buffer[offset - 3] = this.maskKey[1] + buffer[offset - 2] = this.maskKey[2] + buffer[offset - 1] = this.maskKey[3] + + buffer[1] = payloadLength + + if (payloadLength === 126) { + buffer.writeUInt16BE(bodyLength, 2) + } else if (payloadLength === 127) { + // Clear extended payload length + buffer[2] = buffer[3] = 0 + buffer.writeUIntBE(bodyLength, 4, 6) + } + + buffer[1] |= 0x80 // MASK + + // mask body + for (let i = 0; i < bodyLength; i++) { + buffer[offset + i] = this.frameData[i] ^ this.maskKey[i % 4] + } + + return buffer + } +} + +module.exports = { + WebsocketFrameSend +} + + +/***/ }), + +/***/ 3171: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { Writable } = __nccwpck_require__(2203) +const diagnosticsChannel = __nccwpck_require__(1637) +const { parserStates, opcodes, states, emptyBuffer } = __nccwpck_require__(5913) +const { kReadyState, kSentClose, kResponse, kReceivedClose } = __nccwpck_require__(2933) +const { isValidStatusCode, failWebsocketConnection, websocketMessageReceived } = __nccwpck_require__(3574) +const { WebsocketFrameSend } = __nccwpck_require__(1237) + +// This code was influenced by ws released under the MIT license. +// Copyright (c) 2011 Einar Otto Stangvik +// Copyright (c) 2013 Arnout Kazemier and contributors +// Copyright (c) 2016 Luigi Pinca and contributors + +const channels = {} +channels.ping = diagnosticsChannel.channel('undici:websocket:ping') +channels.pong = diagnosticsChannel.channel('undici:websocket:pong') + +class ByteParser extends Writable { + #buffers = [] + #byteOffset = 0 + + #state = parserStates.INFO + + #info = {} + #fragments = [] + + constructor (ws) { + super() + + this.ws = ws + } + + /** + * @param {Buffer} chunk + * @param {() => void} callback + */ + _write (chunk, _, callback) { + this.#buffers.push(chunk) + this.#byteOffset += chunk.length + + this.run(callback) + } + + /** + * Runs whenever a new chunk is received. + * Callback is called whenever there are no more chunks buffering, + * or not enough bytes are buffered to parse. + */ + run (callback) { + while (true) { + if (this.#state === parserStates.INFO) { + // If there aren't enough bytes to parse the payload length, etc. + if (this.#byteOffset < 2) { + return callback() + } + + const buffer = this.consume(2) + + this.#info.fin = (buffer[0] & 0x80) !== 0 + this.#info.opcode = buffer[0] & 0x0F + + // If we receive a fragmented message, we use the type of the first + // frame to parse the full message as binary/text, when it's terminated + this.#info.originalOpcode ??= this.#info.opcode + + this.#info.fragmented = !this.#info.fin && this.#info.opcode !== opcodes.CONTINUATION + + if (this.#info.fragmented && this.#info.opcode !== opcodes.BINARY && this.#info.opcode !== opcodes.TEXT) { + // Only text and binary frames can be fragmented + failWebsocketConnection(this.ws, 'Invalid frame type was fragmented.') + return + } + + const payloadLength = buffer[1] & 0x7F + + if (payloadLength <= 125) { + this.#info.payloadLength = payloadLength + this.#state = parserStates.READ_DATA + } else if (payloadLength === 126) { + this.#state = parserStates.PAYLOADLENGTH_16 + } else if (payloadLength === 127) { + this.#state = parserStates.PAYLOADLENGTH_64 + } + + if (this.#info.fragmented && payloadLength > 125) { + // A fragmented frame can't be fragmented itself + failWebsocketConnection(this.ws, 'Fragmented frame exceeded 125 bytes.') + return + } else if ( + (this.#info.opcode === opcodes.PING || + this.#info.opcode === opcodes.PONG || + this.#info.opcode === opcodes.CLOSE) && + payloadLength > 125 + ) { + // Control frames can have a payload length of 125 bytes MAX + failWebsocketConnection(this.ws, 'Payload length for control frame exceeded 125 bytes.') + return + } else if (this.#info.opcode === opcodes.CLOSE) { + if (payloadLength === 1) { + failWebsocketConnection(this.ws, 'Received close frame with a 1-byte body.') + return + } + + const body = this.consume(payloadLength) + + this.#info.closeInfo = this.parseCloseBody(false, body) + + if (!this.ws[kSentClose]) { + // If an endpoint receives a Close frame and did not previously send a + // Close frame, the endpoint MUST send a Close frame in response. (When + // sending a Close frame in response, the endpoint typically echos the + // status code it received.) + const body = Buffer.allocUnsafe(2) + body.writeUInt16BE(this.#info.closeInfo.code, 0) + const closeFrame = new WebsocketFrameSend(body) + + this.ws[kResponse].socket.write( + closeFrame.createFrame(opcodes.CLOSE), + (err) => { + if (!err) { + this.ws[kSentClose] = true + } + } + ) + } + + // Upon either sending or receiving a Close control frame, it is said + // that _The WebSocket Closing Handshake is Started_ and that the + // WebSocket connection is in the CLOSING state. + this.ws[kReadyState] = states.CLOSING + this.ws[kReceivedClose] = true + + this.end() + + return + } else if (this.#info.opcode === opcodes.PING) { + // Upon receipt of a Ping frame, an endpoint MUST send a Pong frame in + // response, unless it already received a Close frame. + // A Pong frame sent in response to a Ping frame must have identical + // "Application data" + + const body = this.consume(payloadLength) + + if (!this.ws[kReceivedClose]) { + const frame = new WebsocketFrameSend(body) + + this.ws[kResponse].socket.write(frame.createFrame(opcodes.PONG)) + + if (channels.ping.hasSubscribers) { + channels.ping.publish({ + payload: body + }) + } + } + + this.#state = parserStates.INFO + + if (this.#byteOffset > 0) { + continue + } else { + callback() + return + } + } else if (this.#info.opcode === opcodes.PONG) { + // A Pong frame MAY be sent unsolicited. This serves as a + // unidirectional heartbeat. A response to an unsolicited Pong frame is + // not expected. + + const body = this.consume(payloadLength) + + if (channels.pong.hasSubscribers) { + channels.pong.publish({ + payload: body + }) + } + + if (this.#byteOffset > 0) { + continue + } else { + callback() + return + } + } + } else if (this.#state === parserStates.PAYLOADLENGTH_16) { + if (this.#byteOffset < 2) { + return callback() + } + + const buffer = this.consume(2) + + this.#info.payloadLength = buffer.readUInt16BE(0) + this.#state = parserStates.READ_DATA + } else if (this.#state === parserStates.PAYLOADLENGTH_64) { + if (this.#byteOffset < 8) { + return callback() + } + + const buffer = this.consume(8) + const upper = buffer.readUInt32BE(0) + + // 2^31 is the maxinimum bytes an arraybuffer can contain + // on 32-bit systems. Although, on 64-bit systems, this is + // 2^53-1 bytes. + // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Invalid_array_length + // https://source.chromium.org/chromium/chromium/src/+/main:v8/src/common/globals.h;drc=1946212ac0100668f14eb9e2843bdd846e510a1e;bpv=1;bpt=1;l=1275 + // https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/js-array-buffer.h;l=34;drc=1946212ac0100668f14eb9e2843bdd846e510a1e + if (upper > 2 ** 31 - 1) { + failWebsocketConnection(this.ws, 'Received payload length > 2^31 bytes.') + return + } + + const lower = buffer.readUInt32BE(4) + + this.#info.payloadLength = (upper << 8) + lower + this.#state = parserStates.READ_DATA + } else if (this.#state === parserStates.READ_DATA) { + if (this.#byteOffset < this.#info.payloadLength) { + // If there is still more data in this chunk that needs to be read + return callback() + } else if (this.#byteOffset >= this.#info.payloadLength) { + // If the server sent multiple frames in a single chunk + + const body = this.consume(this.#info.payloadLength) + + this.#fragments.push(body) + + // If the frame is unfragmented, or a fragmented frame was terminated, + // a message was received + if (!this.#info.fragmented || (this.#info.fin && this.#info.opcode === opcodes.CONTINUATION)) { + const fullMessage = Buffer.concat(this.#fragments) + + websocketMessageReceived(this.ws, this.#info.originalOpcode, fullMessage) + + this.#info = {} + this.#fragments.length = 0 + } + + this.#state = parserStates.INFO + } + } + + if (this.#byteOffset > 0) { + continue + } else { + callback() + break + } + } + } + + /** + * Take n bytes from the buffered Buffers + * @param {number} n + * @returns {Buffer|null} + */ + consume (n) { + if (n > this.#byteOffset) { + return null + } else if (n === 0) { + return emptyBuffer + } + + if (this.#buffers[0].length === n) { + this.#byteOffset -= this.#buffers[0].length + return this.#buffers.shift() + } + + const buffer = Buffer.allocUnsafe(n) + let offset = 0 + + while (offset !== n) { + const next = this.#buffers[0] + const { length } = next + + if (length + offset === n) { + buffer.set(this.#buffers.shift(), offset) + break + } else if (length + offset > n) { + buffer.set(next.subarray(0, n - offset), offset) + this.#buffers[0] = next.subarray(n - offset) + break + } else { + buffer.set(this.#buffers.shift(), offset) + offset += next.length + } + } + + this.#byteOffset -= n + + return buffer + } + + parseCloseBody (onlyCode, data) { + // https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.5 + /** @type {number|undefined} */ + let code + + if (data.length >= 2) { + // _The WebSocket Connection Close Code_ is + // defined as the status code (Section 7.4) contained in the first Close + // control frame received by the application + code = data.readUInt16BE(0) + } + + if (onlyCode) { + if (!isValidStatusCode(code)) { + return null + } + + return { code } + } + + // https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.6 + /** @type {Buffer} */ + let reason = data.subarray(2) + + // Remove BOM + if (reason[0] === 0xEF && reason[1] === 0xBB && reason[2] === 0xBF) { + reason = reason.subarray(3) + } + + if (code !== undefined && !isValidStatusCode(code)) { + return null + } + + try { + // TODO: optimize this + reason = new TextDecoder('utf-8', { fatal: true }).decode(reason) + } catch { + return null + } + + return { code, reason } + } + + get closingInfo () { + return this.#info.closeInfo + } +} + +module.exports = { + ByteParser +} + + +/***/ }), + +/***/ 2933: +/***/ ((module) => { + +"use strict"; + + +module.exports = { + kWebSocketURL: Symbol('url'), + kReadyState: Symbol('ready state'), + kController: Symbol('controller'), + kResponse: Symbol('response'), + kBinaryType: Symbol('binary type'), + kSentClose: Symbol('sent close'), + kReceivedClose: Symbol('received close'), + kByteParser: Symbol('byte parser') +} + + +/***/ }), + +/***/ 3574: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { kReadyState, kController, kResponse, kBinaryType, kWebSocketURL } = __nccwpck_require__(2933) +const { states, opcodes } = __nccwpck_require__(5913) +const { MessageEvent, ErrorEvent } = __nccwpck_require__(6255) + +/* globals Blob */ + +/** + * @param {import('./websocket').WebSocket} ws + */ +function isEstablished (ws) { + // If the server's response is validated as provided for above, it is + // said that _The WebSocket Connection is Established_ and that the + // WebSocket Connection is in the OPEN state. + return ws[kReadyState] === states.OPEN +} + +/** + * @param {import('./websocket').WebSocket} ws + */ +function isClosing (ws) { + // Upon either sending or receiving a Close control frame, it is said + // that _The WebSocket Closing Handshake is Started_ and that the + // WebSocket connection is in the CLOSING state. + return ws[kReadyState] === states.CLOSING +} + +/** + * @param {import('./websocket').WebSocket} ws + */ +function isClosed (ws) { + return ws[kReadyState] === states.CLOSED +} + +/** + * @see https://dom.spec.whatwg.org/#concept-event-fire + * @param {string} e + * @param {EventTarget} target + * @param {EventInit | undefined} eventInitDict + */ +function fireEvent (e, target, eventConstructor = Event, eventInitDict) { + // 1. If eventConstructor is not given, then let eventConstructor be Event. + + // 2. Let event be the result of creating an event given eventConstructor, + // in the relevant realm of target. + // 3. Initialize event’s type attribute to e. + const event = new eventConstructor(e, eventInitDict) // eslint-disable-line new-cap + + // 4. Initialize any other IDL attributes of event as described in the + // invocation of this algorithm. + + // 5. Return the result of dispatching event at target, with legacy target + // override flag set if set. + target.dispatchEvent(event) +} + +/** + * @see https://websockets.spec.whatwg.org/#feedback-from-the-protocol + * @param {import('./websocket').WebSocket} ws + * @param {number} type Opcode + * @param {Buffer} data application data + */ +function websocketMessageReceived (ws, type, data) { + // 1. If ready state is not OPEN (1), then return. + if (ws[kReadyState] !== states.OPEN) { + return + } + + // 2. Let dataForEvent be determined by switching on type and binary type: + let dataForEvent + + if (type === opcodes.TEXT) { + // -> type indicates that the data is Text + // a new DOMString containing data + try { + dataForEvent = new TextDecoder('utf-8', { fatal: true }).decode(data) + } catch { + failWebsocketConnection(ws, 'Received invalid UTF-8 in text frame.') + return + } + } else if (type === opcodes.BINARY) { + if (ws[kBinaryType] === 'blob') { + // -> type indicates that the data is Binary and binary type is "blob" + // a new Blob object, created in the relevant Realm of the WebSocket + // object, that represents data as its raw data + dataForEvent = new Blob([data]) + } else { + // -> type indicates that the data is Binary and binary type is "arraybuffer" + // a new ArrayBuffer object, created in the relevant Realm of the + // WebSocket object, whose contents are data + dataForEvent = new Uint8Array(data).buffer + } + } + + // 3. Fire an event named message at the WebSocket object, using MessageEvent, + // with the origin attribute initialized to the serialization of the WebSocket + // object’s url's origin, and the data attribute initialized to dataForEvent. + fireEvent('message', ws, MessageEvent, { + origin: ws[kWebSocketURL].origin, + data: dataForEvent + }) +} + +/** + * @see https://datatracker.ietf.org/doc/html/rfc6455 + * @see https://datatracker.ietf.org/doc/html/rfc2616 + * @see https://bugs.chromium.org/p/chromium/issues/detail?id=398407 + * @param {string} protocol + */ +function isValidSubprotocol (protocol) { + // If present, this value indicates one + // or more comma-separated subprotocol the client wishes to speak, + // ordered by preference. The elements that comprise this value + // MUST be non-empty strings with characters in the range U+0021 to + // U+007E not including separator characters as defined in + // [RFC2616] and MUST all be unique strings. + if (protocol.length === 0) { + return false + } + + for (const char of protocol) { + const code = char.charCodeAt(0) + + if ( + code < 0x21 || + code > 0x7E || + char === '(' || + char === ')' || + char === '<' || + char === '>' || + char === '@' || + char === ',' || + char === ';' || + char === ':' || + char === '\\' || + char === '"' || + char === '/' || + char === '[' || + char === ']' || + char === '?' || + char === '=' || + char === '{' || + char === '}' || + code === 32 || // SP + code === 9 // HT + ) { + return false + } + } + + return true +} + +/** + * @see https://datatracker.ietf.org/doc/html/rfc6455#section-7-4 + * @param {number} code + */ +function isValidStatusCode (code) { + if (code >= 1000 && code < 1015) { + return ( + code !== 1004 && // reserved + code !== 1005 && // "MUST NOT be set as a status code" + code !== 1006 // "MUST NOT be set as a status code" + ) + } + + return code >= 3000 && code <= 4999 +} + +/** + * @param {import('./websocket').WebSocket} ws + * @param {string|undefined} reason + */ +function failWebsocketConnection (ws, reason) { + const { [kController]: controller, [kResponse]: response } = ws + + controller.abort() + + if (response?.socket && !response.socket.destroyed) { + response.socket.destroy() + } + + if (reason) { + fireEvent('error', ws, ErrorEvent, { + error: new Error(reason) + }) + } +} + +module.exports = { + isEstablished, + isClosing, + isClosed, + fireEvent, + isValidSubprotocol, + isValidStatusCode, + failWebsocketConnection, + websocketMessageReceived +} + + +/***/ }), + +/***/ 5171: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const { webidl } = __nccwpck_require__(4222) +const { DOMException } = __nccwpck_require__(7326) +const { URLSerializer } = __nccwpck_require__(4322) +const { getGlobalOrigin } = __nccwpck_require__(5628) +const { staticPropertyDescriptors, states, opcodes, emptyBuffer } = __nccwpck_require__(5913) +const { + kWebSocketURL, + kReadyState, + kController, + kBinaryType, + kResponse, + kSentClose, + kByteParser +} = __nccwpck_require__(2933) +const { isEstablished, isClosing, isValidSubprotocol, failWebsocketConnection, fireEvent } = __nccwpck_require__(3574) +const { establishWebSocketConnection } = __nccwpck_require__(8550) +const { WebsocketFrameSend } = __nccwpck_require__(1237) +const { ByteParser } = __nccwpck_require__(3171) +const { kEnumerableProperty, isBlobLike } = __nccwpck_require__(3440) +const { getGlobalDispatcher } = __nccwpck_require__(2581) +const { types } = __nccwpck_require__(9023) + +let experimentalWarned = false + +// https://websockets.spec.whatwg.org/#interface-definition +class WebSocket extends EventTarget { + #events = { + open: null, + error: null, + close: null, + message: null + } + + #bufferedAmount = 0 + #protocol = '' + #extensions = '' + + /** + * @param {string} url + * @param {string|string[]} protocols + */ + constructor (url, protocols = []) { + super() + + webidl.argumentLengthCheck(arguments, 1, { header: 'WebSocket constructor' }) + + if (!experimentalWarned) { + experimentalWarned = true + process.emitWarning('WebSockets are experimental, expect them to change at any time.', { + code: 'UNDICI-WS' + }) + } + + const options = webidl.converters['DOMString or sequence or WebSocketInit'](protocols) + + url = webidl.converters.USVString(url) + protocols = options.protocols + + // 1. Let baseURL be this's relevant settings object's API base URL. + const baseURL = getGlobalOrigin() + + // 1. Let urlRecord be the result of applying the URL parser to url with baseURL. + let urlRecord + + try { + urlRecord = new URL(url, baseURL) + } catch (e) { + // 3. If urlRecord is failure, then throw a "SyntaxError" DOMException. + throw new DOMException(e, 'SyntaxError') + } + + // 4. If urlRecord’s scheme is "http", then set urlRecord’s scheme to "ws". + if (urlRecord.protocol === 'http:') { + urlRecord.protocol = 'ws:' + } else if (urlRecord.protocol === 'https:') { + // 5. Otherwise, if urlRecord’s scheme is "https", set urlRecord’s scheme to "wss". + urlRecord.protocol = 'wss:' + } + + // 6. If urlRecord’s scheme is not "ws" or "wss", then throw a "SyntaxError" DOMException. + if (urlRecord.protocol !== 'ws:' && urlRecord.protocol !== 'wss:') { + throw new DOMException( + `Expected a ws: or wss: protocol, got ${urlRecord.protocol}`, + 'SyntaxError' + ) + } + + // 7. If urlRecord’s fragment is non-null, then throw a "SyntaxError" + // DOMException. + if (urlRecord.hash || urlRecord.href.endsWith('#')) { + throw new DOMException('Got fragment', 'SyntaxError') + } + + // 8. If protocols is a string, set protocols to a sequence consisting + // of just that string. + if (typeof protocols === 'string') { + protocols = [protocols] + } + + // 9. If any of the values in protocols occur more than once or otherwise + // fail to match the requirements for elements that comprise the value + // of `Sec-WebSocket-Protocol` fields as defined by The WebSocket + // protocol, then throw a "SyntaxError" DOMException. + if (protocols.length !== new Set(protocols.map(p => p.toLowerCase())).size) { + throw new DOMException('Invalid Sec-WebSocket-Protocol value', 'SyntaxError') + } + + if (protocols.length > 0 && !protocols.every(p => isValidSubprotocol(p))) { + throw new DOMException('Invalid Sec-WebSocket-Protocol value', 'SyntaxError') + } + + // 10. Set this's url to urlRecord. + this[kWebSocketURL] = new URL(urlRecord.href) + + // 11. Let client be this's relevant settings object. + + // 12. Run this step in parallel: + + // 1. Establish a WebSocket connection given urlRecord, protocols, + // and client. + this[kController] = establishWebSocketConnection( + urlRecord, + protocols, + this, + (response) => this.#onConnectionEstablished(response), + options + ) + + // Each WebSocket object has an associated ready state, which is a + // number representing the state of the connection. Initially it must + // be CONNECTING (0). + this[kReadyState] = WebSocket.CONNECTING + + // The extensions attribute must initially return the empty string. + + // The protocol attribute must initially return the empty string. + + // Each WebSocket object has an associated binary type, which is a + // BinaryType. Initially it must be "blob". + this[kBinaryType] = 'blob' + } + + /** + * @see https://websockets.spec.whatwg.org/#dom-websocket-close + * @param {number|undefined} code + * @param {string|undefined} reason + */ + close (code = undefined, reason = undefined) { + webidl.brandCheck(this, WebSocket) + + if (code !== undefined) { + code = webidl.converters['unsigned short'](code, { clamp: true }) + } + + if (reason !== undefined) { + reason = webidl.converters.USVString(reason) + } + + // 1. If code is present, but is neither an integer equal to 1000 nor an + // integer in the range 3000 to 4999, inclusive, throw an + // "InvalidAccessError" DOMException. + if (code !== undefined) { + if (code !== 1000 && (code < 3000 || code > 4999)) { + throw new DOMException('invalid code', 'InvalidAccessError') + } + } + + let reasonByteLength = 0 + + // 2. If reason is present, then run these substeps: + if (reason !== undefined) { + // 1. Let reasonBytes be the result of encoding reason. + // 2. If reasonBytes is longer than 123 bytes, then throw a + // "SyntaxError" DOMException. + reasonByteLength = Buffer.byteLength(reason) + + if (reasonByteLength > 123) { + throw new DOMException( + `Reason must be less than 123 bytes; received ${reasonByteLength}`, + 'SyntaxError' + ) + } + } + + // 3. Run the first matching steps from the following list: + if (this[kReadyState] === WebSocket.CLOSING || this[kReadyState] === WebSocket.CLOSED) { + // If this's ready state is CLOSING (2) or CLOSED (3) + // Do nothing. + } else if (!isEstablished(this)) { + // If the WebSocket connection is not yet established + // Fail the WebSocket connection and set this's ready state + // to CLOSING (2). + failWebsocketConnection(this, 'Connection was closed before it was established.') + this[kReadyState] = WebSocket.CLOSING + } else if (!isClosing(this)) { + // If the WebSocket closing handshake has not yet been started + // Start the WebSocket closing handshake and set this's ready + // state to CLOSING (2). + // - If neither code nor reason is present, the WebSocket Close + // message must not have a body. + // - If code is present, then the status code to use in the + // WebSocket Close message must be the integer given by code. + // - If reason is also present, then reasonBytes must be + // provided in the Close message after the status code. + + const frame = new WebsocketFrameSend() + + // If neither code nor reason is present, the WebSocket Close + // message must not have a body. + + // If code is present, then the status code to use in the + // WebSocket Close message must be the integer given by code. + if (code !== undefined && reason === undefined) { + frame.frameData = Buffer.allocUnsafe(2) + frame.frameData.writeUInt16BE(code, 0) + } else if (code !== undefined && reason !== undefined) { + // If reason is also present, then reasonBytes must be + // provided in the Close message after the status code. + frame.frameData = Buffer.allocUnsafe(2 + reasonByteLength) + frame.frameData.writeUInt16BE(code, 0) + // the body MAY contain UTF-8-encoded data with value /reason/ + frame.frameData.write(reason, 2, 'utf-8') + } else { + frame.frameData = emptyBuffer + } + + /** @type {import('stream').Duplex} */ + const socket = this[kResponse].socket + + socket.write(frame.createFrame(opcodes.CLOSE), (err) => { + if (!err) { + this[kSentClose] = true + } + }) + + // Upon either sending or receiving a Close control frame, it is said + // that _The WebSocket Closing Handshake is Started_ and that the + // WebSocket connection is in the CLOSING state. + this[kReadyState] = states.CLOSING + } else { + // Otherwise + // Set this's ready state to CLOSING (2). + this[kReadyState] = WebSocket.CLOSING + } + } + + /** + * @see https://websockets.spec.whatwg.org/#dom-websocket-send + * @param {NodeJS.TypedArray|ArrayBuffer|Blob|string} data + */ + send (data) { + webidl.brandCheck(this, WebSocket) + + webidl.argumentLengthCheck(arguments, 1, { header: 'WebSocket.send' }) + + data = webidl.converters.WebSocketSendData(data) + + // 1. If this's ready state is CONNECTING, then throw an + // "InvalidStateError" DOMException. + if (this[kReadyState] === WebSocket.CONNECTING) { + throw new DOMException('Sent before connected.', 'InvalidStateError') + } + + // 2. Run the appropriate set of steps from the following list: + // https://datatracker.ietf.org/doc/html/rfc6455#section-6.1 + // https://datatracker.ietf.org/doc/html/rfc6455#section-5.2 + + if (!isEstablished(this) || isClosing(this)) { + return + } + + /** @type {import('stream').Duplex} */ + const socket = this[kResponse].socket + + // If data is a string + if (typeof data === 'string') { + // If the WebSocket connection is established and the WebSocket + // closing handshake has not yet started, then the user agent + // must send a WebSocket Message comprised of the data argument + // using a text frame opcode; if the data cannot be sent, e.g. + // because it would need to be buffered but the buffer is full, + // the user agent must flag the WebSocket as full and then close + // the WebSocket connection. Any invocation of this method with a + // string argument that does not throw an exception must increase + // the bufferedAmount attribute by the number of bytes needed to + // express the argument as UTF-8. + + const value = Buffer.from(data) + const frame = new WebsocketFrameSend(value) + const buffer = frame.createFrame(opcodes.TEXT) + + this.#bufferedAmount += value.byteLength + socket.write(buffer, () => { + this.#bufferedAmount -= value.byteLength + }) + } else if (types.isArrayBuffer(data)) { + // If the WebSocket connection is established, and the WebSocket + // closing handshake has not yet started, then the user agent must + // send a WebSocket Message comprised of data using a binary frame + // opcode; if the data cannot be sent, e.g. because it would need + // to be buffered but the buffer is full, the user agent must flag + // the WebSocket as full and then close the WebSocket connection. + // The data to be sent is the data stored in the buffer described + // by the ArrayBuffer object. Any invocation of this method with an + // ArrayBuffer argument that does not throw an exception must + // increase the bufferedAmount attribute by the length of the + // ArrayBuffer in bytes. + + const value = Buffer.from(data) + const frame = new WebsocketFrameSend(value) + const buffer = frame.createFrame(opcodes.BINARY) + + this.#bufferedAmount += value.byteLength + socket.write(buffer, () => { + this.#bufferedAmount -= value.byteLength + }) + } else if (ArrayBuffer.isView(data)) { + // If the WebSocket connection is established, and the WebSocket + // closing handshake has not yet started, then the user agent must + // send a WebSocket Message comprised of data using a binary frame + // opcode; if the data cannot be sent, e.g. because it would need to + // be buffered but the buffer is full, the user agent must flag the + // WebSocket as full and then close the WebSocket connection. The + // data to be sent is the data stored in the section of the buffer + // described by the ArrayBuffer object that data references. Any + // invocation of this method with this kind of argument that does + // not throw an exception must increase the bufferedAmount attribute + // by the length of data’s buffer in bytes. + + const ab = Buffer.from(data, data.byteOffset, data.byteLength) + + const frame = new WebsocketFrameSend(ab) + const buffer = frame.createFrame(opcodes.BINARY) + + this.#bufferedAmount += ab.byteLength + socket.write(buffer, () => { + this.#bufferedAmount -= ab.byteLength + }) + } else if (isBlobLike(data)) { + // If the WebSocket connection is established, and the WebSocket + // closing handshake has not yet started, then the user agent must + // send a WebSocket Message comprised of data using a binary frame + // opcode; if the data cannot be sent, e.g. because it would need to + // be buffered but the buffer is full, the user agent must flag the + // WebSocket as full and then close the WebSocket connection. The data + // to be sent is the raw data represented by the Blob object. Any + // invocation of this method with a Blob argument that does not throw + // an exception must increase the bufferedAmount attribute by the size + // of the Blob object’s raw data, in bytes. + + const frame = new WebsocketFrameSend() + + data.arrayBuffer().then((ab) => { + const value = Buffer.from(ab) + frame.frameData = value + const buffer = frame.createFrame(opcodes.BINARY) + + this.#bufferedAmount += value.byteLength + socket.write(buffer, () => { + this.#bufferedAmount -= value.byteLength + }) + }) + } + } + + get readyState () { + webidl.brandCheck(this, WebSocket) + + // The readyState getter steps are to return this's ready state. + return this[kReadyState] + } + + get bufferedAmount () { + webidl.brandCheck(this, WebSocket) + + return this.#bufferedAmount + } + + get url () { + webidl.brandCheck(this, WebSocket) + + // The url getter steps are to return this's url, serialized. + return URLSerializer(this[kWebSocketURL]) + } + + get extensions () { + webidl.brandCheck(this, WebSocket) + + return this.#extensions + } + + get protocol () { + webidl.brandCheck(this, WebSocket) + + return this.#protocol + } + + get onopen () { + webidl.brandCheck(this, WebSocket) + + return this.#events.open + } + + set onopen (fn) { + webidl.brandCheck(this, WebSocket) + + if (this.#events.open) { + this.removeEventListener('open', this.#events.open) + } + + if (typeof fn === 'function') { + this.#events.open = fn + this.addEventListener('open', fn) + } else { + this.#events.open = null + } + } + + get onerror () { + webidl.brandCheck(this, WebSocket) + + return this.#events.error + } + + set onerror (fn) { + webidl.brandCheck(this, WebSocket) + + if (this.#events.error) { + this.removeEventListener('error', this.#events.error) + } + + if (typeof fn === 'function') { + this.#events.error = fn + this.addEventListener('error', fn) + } else { + this.#events.error = null + } + } + + get onclose () { + webidl.brandCheck(this, WebSocket) + + return this.#events.close + } + + set onclose (fn) { + webidl.brandCheck(this, WebSocket) + + if (this.#events.close) { + this.removeEventListener('close', this.#events.close) + } + + if (typeof fn === 'function') { + this.#events.close = fn + this.addEventListener('close', fn) + } else { + this.#events.close = null + } + } + + get onmessage () { + webidl.brandCheck(this, WebSocket) + + return this.#events.message + } + + set onmessage (fn) { + webidl.brandCheck(this, WebSocket) + + if (this.#events.message) { + this.removeEventListener('message', this.#events.message) + } + + if (typeof fn === 'function') { + this.#events.message = fn + this.addEventListener('message', fn) + } else { + this.#events.message = null + } + } + + get binaryType () { + webidl.brandCheck(this, WebSocket) + + return this[kBinaryType] + } + + set binaryType (type) { + webidl.brandCheck(this, WebSocket) + + if (type !== 'blob' && type !== 'arraybuffer') { + this[kBinaryType] = 'blob' + } else { + this[kBinaryType] = type + } + } + + /** + * @see https://websockets.spec.whatwg.org/#feedback-from-the-protocol + */ + #onConnectionEstablished (response) { + // processResponse is called when the "response’s header list has been received and initialized." + // once this happens, the connection is open + this[kResponse] = response + + const parser = new ByteParser(this) + parser.on('drain', function onParserDrain () { + this.ws[kResponse].socket.resume() + }) + + response.socket.ws = this + this[kByteParser] = parser + + // 1. Change the ready state to OPEN (1). + this[kReadyState] = states.OPEN + + // 2. Change the extensions attribute’s value to the extensions in use, if + // it is not the null value. + // https://datatracker.ietf.org/doc/html/rfc6455#section-9.1 + const extensions = response.headersList.get('sec-websocket-extensions') + + if (extensions !== null) { + this.#extensions = extensions + } + + // 3. Change the protocol attribute’s value to the subprotocol in use, if + // it is not the null value. + // https://datatracker.ietf.org/doc/html/rfc6455#section-1.9 + const protocol = response.headersList.get('sec-websocket-protocol') + + if (protocol !== null) { + this.#protocol = protocol + } + + // 4. Fire an event named open at the WebSocket object. + fireEvent('open', this) + } +} + +// https://websockets.spec.whatwg.org/#dom-websocket-connecting +WebSocket.CONNECTING = WebSocket.prototype.CONNECTING = states.CONNECTING +// https://websockets.spec.whatwg.org/#dom-websocket-open +WebSocket.OPEN = WebSocket.prototype.OPEN = states.OPEN +// https://websockets.spec.whatwg.org/#dom-websocket-closing +WebSocket.CLOSING = WebSocket.prototype.CLOSING = states.CLOSING +// https://websockets.spec.whatwg.org/#dom-websocket-closed +WebSocket.CLOSED = WebSocket.prototype.CLOSED = states.CLOSED + +Object.defineProperties(WebSocket.prototype, { + CONNECTING: staticPropertyDescriptors, + OPEN: staticPropertyDescriptors, + CLOSING: staticPropertyDescriptors, + CLOSED: staticPropertyDescriptors, + url: kEnumerableProperty, + readyState: kEnumerableProperty, + bufferedAmount: kEnumerableProperty, + onopen: kEnumerableProperty, + onerror: kEnumerableProperty, + onclose: kEnumerableProperty, + close: kEnumerableProperty, + onmessage: kEnumerableProperty, + binaryType: kEnumerableProperty, + send: kEnumerableProperty, + extensions: kEnumerableProperty, + protocol: kEnumerableProperty, + [Symbol.toStringTag]: { + value: 'WebSocket', + writable: false, + enumerable: false, + configurable: true + } +}) + +Object.defineProperties(WebSocket, { + CONNECTING: staticPropertyDescriptors, + OPEN: staticPropertyDescriptors, + CLOSING: staticPropertyDescriptors, + CLOSED: staticPropertyDescriptors +}) + +webidl.converters['sequence'] = webidl.sequenceConverter( + webidl.converters.DOMString +) + +webidl.converters['DOMString or sequence'] = function (V) { + if (webidl.util.Type(V) === 'Object' && Symbol.iterator in V) { + return webidl.converters['sequence'](V) + } + + return webidl.converters.DOMString(V) +} + +// This implements the propsal made in https://github.com/whatwg/websockets/issues/42 +webidl.converters.WebSocketInit = webidl.dictionaryConverter([ + { + key: 'protocols', + converter: webidl.converters['DOMString or sequence'], + get defaultValue () { + return [] + } + }, + { + key: 'dispatcher', + converter: (V) => V, + get defaultValue () { + return getGlobalDispatcher() + } + }, + { + key: 'headers', + converter: webidl.nullableConverter(webidl.converters.HeadersInit) + } +]) + +webidl.converters['DOMString or sequence or WebSocketInit'] = function (V) { + if (webidl.util.Type(V) === 'Object' && !(Symbol.iterator in V)) { + return webidl.converters.WebSocketInit(V) + } + + return { protocols: webidl.converters['DOMString or sequence'](V) } +} + +webidl.converters.WebSocketSendData = function (V) { + if (webidl.util.Type(V) === 'Object') { + if (isBlobLike(V)) { + return webidl.converters.Blob(V, { strict: false }) + } + + if (ArrayBuffer.isView(V) || types.isAnyArrayBuffer(V)) { + return webidl.converters.BufferSource(V) + } + } + + return webidl.converters.USVString(V) +} + +module.exports = { + WebSocket +} + + +/***/ }), + +/***/ 2613: +/***/ ((module) => { + +"use strict"; +module.exports = require("assert"); + +/***/ }), + +/***/ 290: +/***/ ((module) => { + +"use strict"; +module.exports = require("async_hooks"); + +/***/ }), + +/***/ 181: +/***/ ((module) => { + +"use strict"; +module.exports = require("buffer"); + +/***/ }), + +/***/ 5317: +/***/ ((module) => { + +"use strict"; +module.exports = require("child_process"); + +/***/ }), + +/***/ 4236: +/***/ ((module) => { + +"use strict"; +module.exports = require("console"); + +/***/ }), + +/***/ 6982: +/***/ ((module) => { + +"use strict"; +module.exports = require("crypto"); + +/***/ }), + +/***/ 1637: +/***/ ((module) => { + +"use strict"; +module.exports = require("diagnostics_channel"); + +/***/ }), + +/***/ 4434: +/***/ ((module) => { + +"use strict"; +module.exports = require("events"); + +/***/ }), + +/***/ 9896: +/***/ ((module) => { + +"use strict"; +module.exports = require("fs"); + +/***/ }), + +/***/ 8611: +/***/ ((module) => { + +"use strict"; +module.exports = require("http"); + +/***/ }), + +/***/ 5675: +/***/ ((module) => { + +"use strict"; +module.exports = require("http2"); + +/***/ }), + +/***/ 5692: +/***/ ((module) => { + +"use strict"; +module.exports = require("https"); + +/***/ }), + +/***/ 9278: +/***/ ((module) => { + +"use strict"; +module.exports = require("net"); + +/***/ }), + +/***/ 8474: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:events"); + +/***/ }), + +/***/ 3024: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:fs"); + +/***/ }), + +/***/ 1455: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:fs/promises"); + +/***/ }), + +/***/ 6760: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:path"); + +/***/ }), + +/***/ 7075: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:stream"); + +/***/ }), + +/***/ 6193: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:string_decoder"); + +/***/ }), + +/***/ 3136: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:url"); + +/***/ }), + +/***/ 7975: +/***/ ((module) => { + +"use strict"; +module.exports = require("node:util"); + +/***/ }), + +/***/ 857: +/***/ ((module) => { + +"use strict"; +module.exports = require("os"); + +/***/ }), + +/***/ 6928: +/***/ ((module) => { + +"use strict"; +module.exports = require("path"); + +/***/ }), + +/***/ 2987: +/***/ ((module) => { + +"use strict"; +module.exports = require("perf_hooks"); + +/***/ }), + +/***/ 3480: +/***/ ((module) => { + +"use strict"; +module.exports = require("querystring"); + +/***/ }), + +/***/ 2203: +/***/ ((module) => { + +"use strict"; +module.exports = require("stream"); + +/***/ }), + +/***/ 3774: +/***/ ((module) => { + +"use strict"; +module.exports = require("stream/web"); + +/***/ }), + +/***/ 3193: +/***/ ((module) => { + +"use strict"; +module.exports = require("string_decoder"); + +/***/ }), + +/***/ 3557: +/***/ ((module) => { + +"use strict"; +module.exports = require("timers"); + +/***/ }), + +/***/ 4756: +/***/ ((module) => { + +"use strict"; +module.exports = require("tls"); + +/***/ }), + +/***/ 7016: +/***/ ((module) => { + +"use strict"; +module.exports = require("url"); + +/***/ }), + +/***/ 9023: +/***/ ((module) => { + +"use strict"; +module.exports = require("util"); + +/***/ }), + +/***/ 8253: +/***/ ((module) => { + +"use strict"; +module.exports = require("util/types"); + +/***/ }), + +/***/ 8167: +/***/ ((module) => { + +"use strict"; +module.exports = require("worker_threads"); + +/***/ }), + +/***/ 3106: +/***/ ((module) => { + +"use strict"; +module.exports = require("zlib"); + +/***/ }), + +/***/ 7182: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const WritableStream = (__nccwpck_require__(7075).Writable) +const inherits = (__nccwpck_require__(7975).inherits) + +const StreamSearch = __nccwpck_require__(4136) + +const PartStream = __nccwpck_require__(612) +const HeaderParser = __nccwpck_require__(2271) + +const DASH = 45 +const B_ONEDASH = Buffer.from('-') +const B_CRLF = Buffer.from('\r\n') +const EMPTY_FN = function () {} + +function Dicer (cfg) { + if (!(this instanceof Dicer)) { return new Dicer(cfg) } + WritableStream.call(this, cfg) + + if (!cfg || (!cfg.headerFirst && typeof cfg.boundary !== 'string')) { throw new TypeError('Boundary required') } + + if (typeof cfg.boundary === 'string') { this.setBoundary(cfg.boundary) } else { this._bparser = undefined } + + this._headerFirst = cfg.headerFirst + + this._dashes = 0 + this._parts = 0 + this._finished = false + this._realFinish = false + this._isPreamble = true + this._justMatched = false + this._firstWrite = true + this._inHeader = true + this._part = undefined + this._cb = undefined + this._ignoreData = false + this._partOpts = { highWaterMark: cfg.partHwm } + this._pause = false + + const self = this + this._hparser = new HeaderParser(cfg) + this._hparser.on('header', function (header) { + self._inHeader = false + self._part.emit('header', header) + }) +} +inherits(Dicer, WritableStream) + +Dicer.prototype.emit = function (ev) { + if (ev === 'finish' && !this._realFinish) { + if (!this._finished) { + const self = this + process.nextTick(function () { + self.emit('error', new Error('Unexpected end of multipart data')) + if (self._part && !self._ignoreData) { + const type = (self._isPreamble ? 'Preamble' : 'Part') + self._part.emit('error', new Error(type + ' terminated early due to unexpected end of multipart data')) + self._part.push(null) + process.nextTick(function () { + self._realFinish = true + self.emit('finish') + self._realFinish = false + }) + return + } + self._realFinish = true + self.emit('finish') + self._realFinish = false + }) + } + } else { WritableStream.prototype.emit.apply(this, arguments) } +} + +Dicer.prototype._write = function (data, encoding, cb) { + // ignore unexpected data (e.g. extra trailer data after finished) + if (!this._hparser && !this._bparser) { return cb() } + + if (this._headerFirst && this._isPreamble) { + if (!this._part) { + this._part = new PartStream(this._partOpts) + if (this.listenerCount('preamble') !== 0) { this.emit('preamble', this._part) } else { this._ignore() } + } + const r = this._hparser.push(data) + if (!this._inHeader && r !== undefined && r < data.length) { data = data.slice(r) } else { return cb() } + } + + // allows for "easier" testing + if (this._firstWrite) { + this._bparser.push(B_CRLF) + this._firstWrite = false + } + + this._bparser.push(data) + + if (this._pause) { this._cb = cb } else { cb() } +} + +Dicer.prototype.reset = function () { + this._part = undefined + this._bparser = undefined + this._hparser = undefined +} + +Dicer.prototype.setBoundary = function (boundary) { + const self = this + this._bparser = new StreamSearch('\r\n--' + boundary) + this._bparser.on('info', function (isMatch, data, start, end) { + self._oninfo(isMatch, data, start, end) + }) +} + +Dicer.prototype._ignore = function () { + if (this._part && !this._ignoreData) { + this._ignoreData = true + this._part.on('error', EMPTY_FN) + // we must perform some kind of read on the stream even though we are + // ignoring the data, otherwise node's Readable stream will not emit 'end' + // after pushing null to the stream + this._part.resume() + } +} + +Dicer.prototype._oninfo = function (isMatch, data, start, end) { + let buf; const self = this; let i = 0; let r; let shouldWriteMore = true + + if (!this._part && this._justMatched && data) { + while (this._dashes < 2 && (start + i) < end) { + if (data[start + i] === DASH) { + ++i + ++this._dashes + } else { + if (this._dashes) { buf = B_ONEDASH } + this._dashes = 0 + break + } + } + if (this._dashes === 2) { + if ((start + i) < end && this.listenerCount('trailer') !== 0) { this.emit('trailer', data.slice(start + i, end)) } + this.reset() + this._finished = true + // no more parts will be added + if (self._parts === 0) { + self._realFinish = true + self.emit('finish') + self._realFinish = false + } + } + if (this._dashes) { return } + } + if (this._justMatched) { this._justMatched = false } + if (!this._part) { + this._part = new PartStream(this._partOpts) + this._part._read = function (n) { + self._unpause() + } + if (this._isPreamble && this.listenerCount('preamble') !== 0) { + this.emit('preamble', this._part) + } else if (this._isPreamble !== true && this.listenerCount('part') !== 0) { + this.emit('part', this._part) + } else { + this._ignore() + } + if (!this._isPreamble) { this._inHeader = true } + } + if (data && start < end && !this._ignoreData) { + if (this._isPreamble || !this._inHeader) { + if (buf) { shouldWriteMore = this._part.push(buf) } + shouldWriteMore = this._part.push(data.slice(start, end)) + if (!shouldWriteMore) { this._pause = true } + } else if (!this._isPreamble && this._inHeader) { + if (buf) { this._hparser.push(buf) } + r = this._hparser.push(data.slice(start, end)) + if (!this._inHeader && r !== undefined && r < end) { this._oninfo(false, data, start + r, end) } + } + } + if (isMatch) { + this._hparser.reset() + if (this._isPreamble) { this._isPreamble = false } else { + if (start !== end) { + ++this._parts + this._part.on('end', function () { + if (--self._parts === 0) { + if (self._finished) { + self._realFinish = true + self.emit('finish') + self._realFinish = false + } else { + self._unpause() + } + } + }) + } + } + this._part.push(null) + this._part = undefined + this._ignoreData = false + this._justMatched = true + this._dashes = 0 + } +} + +Dicer.prototype._unpause = function () { + if (!this._pause) { return } + + this._pause = false + if (this._cb) { + const cb = this._cb + this._cb = undefined + cb() + } +} + +module.exports = Dicer + + +/***/ }), + +/***/ 2271: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const EventEmitter = (__nccwpck_require__(8474).EventEmitter) +const inherits = (__nccwpck_require__(7975).inherits) +const getLimit = __nccwpck_require__(2393) + +const StreamSearch = __nccwpck_require__(4136) + +const B_DCRLF = Buffer.from('\r\n\r\n') +const RE_CRLF = /\r\n/g +const RE_HDR = /^([^:]+):[ \t]?([\x00-\xFF]+)?$/ // eslint-disable-line no-control-regex + +function HeaderParser (cfg) { + EventEmitter.call(this) + + cfg = cfg || {} + const self = this + this.nread = 0 + this.maxed = false + this.npairs = 0 + this.maxHeaderPairs = getLimit(cfg, 'maxHeaderPairs', 2000) + this.maxHeaderSize = getLimit(cfg, 'maxHeaderSize', 80 * 1024) + this.buffer = '' + this.header = {} + this.finished = false + this.ss = new StreamSearch(B_DCRLF) + this.ss.on('info', function (isMatch, data, start, end) { + if (data && !self.maxed) { + if (self.nread + end - start >= self.maxHeaderSize) { + end = self.maxHeaderSize - self.nread + start + self.nread = self.maxHeaderSize + self.maxed = true + } else { self.nread += (end - start) } + + self.buffer += data.toString('binary', start, end) + } + if (isMatch) { self._finish() } + }) +} +inherits(HeaderParser, EventEmitter) + +HeaderParser.prototype.push = function (data) { + const r = this.ss.push(data) + if (this.finished) { return r } +} + +HeaderParser.prototype.reset = function () { + this.finished = false + this.buffer = '' + this.header = {} + this.ss.reset() +} + +HeaderParser.prototype._finish = function () { + if (this.buffer) { this._parseHeader() } + this.ss.matches = this.ss.maxMatches + const header = this.header + this.header = {} + this.buffer = '' + this.finished = true + this.nread = this.npairs = 0 + this.maxed = false + this.emit('header', header) +} + +HeaderParser.prototype._parseHeader = function () { + if (this.npairs === this.maxHeaderPairs) { return } + + const lines = this.buffer.split(RE_CRLF) + const len = lines.length + let m, h + + for (var i = 0; i < len; ++i) { // eslint-disable-line no-var + if (lines[i].length === 0) { continue } + if (lines[i][0] === '\t' || lines[i][0] === ' ') { + // folded header content + // RFC2822 says to just remove the CRLF and not the whitespace following + // it, so we follow the RFC and include the leading whitespace ... + if (h) { + this.header[h][this.header[h].length - 1] += lines[i] + continue + } + } + + const posColon = lines[i].indexOf(':') + if ( + posColon === -1 || + posColon === 0 + ) { + return + } + m = RE_HDR.exec(lines[i]) + h = m[1].toLowerCase() + this.header[h] = this.header[h] || [] + this.header[h].push((m[2] || '')) + if (++this.npairs === this.maxHeaderPairs) { break } + } +} + +module.exports = HeaderParser + + +/***/ }), + +/***/ 612: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const inherits = (__nccwpck_require__(7975).inherits) +const ReadableStream = (__nccwpck_require__(7075).Readable) + +function PartStream (opts) { + ReadableStream.call(this, opts) +} +inherits(PartStream, ReadableStream) + +PartStream.prototype._read = function (n) {} + +module.exports = PartStream + + +/***/ }), + +/***/ 4136: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +/** + * Copyright Brian White. All rights reserved. + * + * @see https://github.com/mscdex/streamsearch + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Based heavily on the Streaming Boyer-Moore-Horspool C++ implementation + * by Hongli Lai at: https://github.com/FooBarWidget/boyer-moore-horspool + */ +const EventEmitter = (__nccwpck_require__(8474).EventEmitter) +const inherits = (__nccwpck_require__(7975).inherits) + +function SBMH (needle) { + if (typeof needle === 'string') { + needle = Buffer.from(needle) + } + + if (!Buffer.isBuffer(needle)) { + throw new TypeError('The needle has to be a String or a Buffer.') + } + + const needleLength = needle.length + + if (needleLength === 0) { + throw new Error('The needle cannot be an empty String/Buffer.') + } + + if (needleLength > 256) { + throw new Error('The needle cannot have a length bigger than 256.') + } + + this.maxMatches = Infinity + this.matches = 0 + + this._occ = new Array(256) + .fill(needleLength) // Initialize occurrence table. + this._lookbehind_size = 0 + this._needle = needle + this._bufpos = 0 + + this._lookbehind = Buffer.alloc(needleLength) + + // Populate occurrence table with analysis of the needle, + // ignoring last letter. + for (var i = 0; i < needleLength - 1; ++i) { // eslint-disable-line no-var + this._occ[needle[i]] = needleLength - 1 - i + } +} +inherits(SBMH, EventEmitter) + +SBMH.prototype.reset = function () { + this._lookbehind_size = 0 + this.matches = 0 + this._bufpos = 0 +} + +SBMH.prototype.push = function (chunk, pos) { + if (!Buffer.isBuffer(chunk)) { + chunk = Buffer.from(chunk, 'binary') + } + const chlen = chunk.length + this._bufpos = pos || 0 + let r + while (r !== chlen && this.matches < this.maxMatches) { r = this._sbmh_feed(chunk) } + return r +} + +SBMH.prototype._sbmh_feed = function (data) { + const len = data.length + const needle = this._needle + const needleLength = needle.length + const lastNeedleChar = needle[needleLength - 1] + + // Positive: points to a position in `data` + // pos == 3 points to data[3] + // Negative: points to a position in the lookbehind buffer + // pos == -2 points to lookbehind[lookbehind_size - 2] + let pos = -this._lookbehind_size + let ch + + if (pos < 0) { + // Lookbehind buffer is not empty. Perform Boyer-Moore-Horspool + // search with character lookup code that considers both the + // lookbehind buffer and the current round's haystack data. + // + // Loop until + // there is a match. + // or until + // we've moved past the position that requires the + // lookbehind buffer. In this case we switch to the + // optimized loop. + // or until + // the character to look at lies outside the haystack. + while (pos < 0 && pos <= len - needleLength) { + ch = this._sbmh_lookup_char(data, pos + needleLength - 1) + + if ( + ch === lastNeedleChar && + this._sbmh_memcmp(data, pos, needleLength - 1) + ) { + this._lookbehind_size = 0 + ++this.matches + this.emit('info', true) + + return (this._bufpos = pos + needleLength) + } + pos += this._occ[ch] + } + + // No match. + + if (pos < 0) { + // There's too few data for Boyer-Moore-Horspool to run, + // so let's use a different algorithm to skip as much as + // we can. + // Forward pos until + // the trailing part of lookbehind + data + // looks like the beginning of the needle + // or until + // pos == 0 + while (pos < 0 && !this._sbmh_memcmp(data, pos, len - pos)) { ++pos } + } + + if (pos >= 0) { + // Discard lookbehind buffer. + this.emit('info', false, this._lookbehind, 0, this._lookbehind_size) + this._lookbehind_size = 0 + } else { + // Cut off part of the lookbehind buffer that has + // been processed and append the entire haystack + // into it. + const bytesToCutOff = this._lookbehind_size + pos + if (bytesToCutOff > 0) { + // The cut off data is guaranteed not to contain the needle. + this.emit('info', false, this._lookbehind, 0, bytesToCutOff) + } + + this._lookbehind.copy(this._lookbehind, 0, bytesToCutOff, + this._lookbehind_size - bytesToCutOff) + this._lookbehind_size -= bytesToCutOff + + data.copy(this._lookbehind, this._lookbehind_size) + this._lookbehind_size += len + + this._bufpos = len + return len + } + } + + pos += (pos >= 0) * this._bufpos + + // Lookbehind buffer is now empty. We only need to check if the + // needle is in the haystack. + if (data.indexOf(needle, pos) !== -1) { + pos = data.indexOf(needle, pos) + ++this.matches + if (pos > 0) { this.emit('info', true, data, this._bufpos, pos) } else { this.emit('info', true) } + + return (this._bufpos = pos + needleLength) + } else { + pos = len - needleLength + } + + // There was no match. If there's trailing haystack data that we cannot + // match yet using the Boyer-Moore-Horspool algorithm (because the trailing + // data is less than the needle size) then match using a modified + // algorithm that starts matching from the beginning instead of the end. + // Whatever trailing data is left after running this algorithm is added to + // the lookbehind buffer. + while ( + pos < len && + ( + data[pos] !== needle[0] || + ( + (Buffer.compare( + data.subarray(pos, pos + len - pos), + needle.subarray(0, len - pos) + ) !== 0) + ) + ) + ) { + ++pos + } + if (pos < len) { + data.copy(this._lookbehind, 0, pos, pos + (len - pos)) + this._lookbehind_size = len - pos + } + + // Everything until pos is guaranteed not to contain needle data. + if (pos > 0) { this.emit('info', false, data, this._bufpos, pos < len ? pos : len) } + + this._bufpos = len + return len +} + +SBMH.prototype._sbmh_lookup_char = function (data, pos) { + return (pos < 0) + ? this._lookbehind[this._lookbehind_size + pos] + : data[pos] +} + +SBMH.prototype._sbmh_memcmp = function (data, pos, len) { + for (var i = 0; i < len; ++i) { // eslint-disable-line no-var + if (this._sbmh_lookup_char(data, pos + i) !== this._needle[i]) { return false } + } + return true +} + +module.exports = SBMH + + +/***/ }), + +/***/ 9581: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const WritableStream = (__nccwpck_require__(7075).Writable) +const { inherits } = __nccwpck_require__(7975) +const Dicer = __nccwpck_require__(7182) + +const MultipartParser = __nccwpck_require__(1192) +const UrlencodedParser = __nccwpck_require__(855) +const parseParams = __nccwpck_require__(8929) + +function Busboy (opts) { + if (!(this instanceof Busboy)) { return new Busboy(opts) } + + if (typeof opts !== 'object') { + throw new TypeError('Busboy expected an options-Object.') + } + if (typeof opts.headers !== 'object') { + throw new TypeError('Busboy expected an options-Object with headers-attribute.') + } + if (typeof opts.headers['content-type'] !== 'string') { + throw new TypeError('Missing Content-Type-header.') + } + + const { + headers, + ...streamOptions + } = opts + + this.opts = { + autoDestroy: false, + ...streamOptions + } + WritableStream.call(this, this.opts) + + this._done = false + this._parser = this.getParserByHeaders(headers) + this._finished = false +} +inherits(Busboy, WritableStream) + +Busboy.prototype.emit = function (ev) { + if (ev === 'finish') { + if (!this._done) { + this._parser?.end() + return + } else if (this._finished) { + return + } + this._finished = true + } + WritableStream.prototype.emit.apply(this, arguments) +} + +Busboy.prototype.getParserByHeaders = function (headers) { + const parsed = parseParams(headers['content-type']) + + const cfg = { + defCharset: this.opts.defCharset, + fileHwm: this.opts.fileHwm, + headers, + highWaterMark: this.opts.highWaterMark, + isPartAFile: this.opts.isPartAFile, + limits: this.opts.limits, + parsedConType: parsed, + preservePath: this.opts.preservePath + } + + if (MultipartParser.detect.test(parsed[0])) { + return new MultipartParser(this, cfg) + } + if (UrlencodedParser.detect.test(parsed[0])) { + return new UrlencodedParser(this, cfg) + } + throw new Error('Unsupported Content-Type.') +} + +Busboy.prototype._write = function (chunk, encoding, cb) { + this._parser.write(chunk, cb) +} + +module.exports = Busboy +module.exports["default"] = Busboy +module.exports.Busboy = Busboy + +module.exports.Dicer = Dicer + + +/***/ }), + +/***/ 1192: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +// TODO: +// * support 1 nested multipart level +// (see second multipart example here: +// http://www.w3.org/TR/html401/interact/forms.html#didx-multipartform-data) +// * support limits.fieldNameSize +// -- this will require modifications to utils.parseParams + +const { Readable } = __nccwpck_require__(7075) +const { inherits } = __nccwpck_require__(7975) + +const Dicer = __nccwpck_require__(7182) + +const parseParams = __nccwpck_require__(8929) +const decodeText = __nccwpck_require__(2747) +const basename = __nccwpck_require__(692) +const getLimit = __nccwpck_require__(2393) + +const RE_BOUNDARY = /^boundary$/i +const RE_FIELD = /^form-data$/i +const RE_CHARSET = /^charset$/i +const RE_FILENAME = /^filename$/i +const RE_NAME = /^name$/i + +Multipart.detect = /^multipart\/form-data/i +function Multipart (boy, cfg) { + let i + let len + const self = this + let boundary + const limits = cfg.limits + const isPartAFile = cfg.isPartAFile || ((fieldName, contentType, fileName) => (contentType === 'application/octet-stream' || fileName !== undefined)) + const parsedConType = cfg.parsedConType || [] + const defCharset = cfg.defCharset || 'utf8' + const preservePath = cfg.preservePath + const fileOpts = { highWaterMark: cfg.fileHwm } + + for (i = 0, len = parsedConType.length; i < len; ++i) { + if (Array.isArray(parsedConType[i]) && + RE_BOUNDARY.test(parsedConType[i][0])) { + boundary = parsedConType[i][1] + break + } + } + + function checkFinished () { + if (nends === 0 && finished && !boy._done) { + finished = false + self.end() + } + } + + if (typeof boundary !== 'string') { throw new Error('Multipart: Boundary not found') } + + const fieldSizeLimit = getLimit(limits, 'fieldSize', 1 * 1024 * 1024) + const fileSizeLimit = getLimit(limits, 'fileSize', Infinity) + const filesLimit = getLimit(limits, 'files', Infinity) + const fieldsLimit = getLimit(limits, 'fields', Infinity) + const partsLimit = getLimit(limits, 'parts', Infinity) + const headerPairsLimit = getLimit(limits, 'headerPairs', 2000) + const headerSizeLimit = getLimit(limits, 'headerSize', 80 * 1024) + + let nfiles = 0 + let nfields = 0 + let nends = 0 + let curFile + let curField + let finished = false + + this._needDrain = false + this._pause = false + this._cb = undefined + this._nparts = 0 + this._boy = boy + + const parserCfg = { + boundary, + maxHeaderPairs: headerPairsLimit, + maxHeaderSize: headerSizeLimit, + partHwm: fileOpts.highWaterMark, + highWaterMark: cfg.highWaterMark + } + + this.parser = new Dicer(parserCfg) + this.parser.on('drain', function () { + self._needDrain = false + if (self._cb && !self._pause) { + const cb = self._cb + self._cb = undefined + cb() + } + }).on('part', function onPart (part) { + if (++self._nparts > partsLimit) { + self.parser.removeListener('part', onPart) + self.parser.on('part', skipPart) + boy.hitPartsLimit = true + boy.emit('partsLimit') + return skipPart(part) + } + + // hack because streams2 _always_ doesn't emit 'end' until nextTick, so let + // us emit 'end' early since we know the part has ended if we are already + // seeing the next part + if (curField) { + const field = curField + field.emit('end') + field.removeAllListeners('end') + } + + part.on('header', function (header) { + let contype + let fieldname + let parsed + let charset + let encoding + let filename + let nsize = 0 + + if (header['content-type']) { + parsed = parseParams(header['content-type'][0]) + if (parsed[0]) { + contype = parsed[0].toLowerCase() + for (i = 0, len = parsed.length; i < len; ++i) { + if (RE_CHARSET.test(parsed[i][0])) { + charset = parsed[i][1].toLowerCase() + break + } + } + } + } + + if (contype === undefined) { contype = 'text/plain' } + if (charset === undefined) { charset = defCharset } + + if (header['content-disposition']) { + parsed = parseParams(header['content-disposition'][0]) + if (!RE_FIELD.test(parsed[0])) { return skipPart(part) } + for (i = 0, len = parsed.length; i < len; ++i) { + if (RE_NAME.test(parsed[i][0])) { + fieldname = parsed[i][1] + } else if (RE_FILENAME.test(parsed[i][0])) { + filename = parsed[i][1] + if (!preservePath) { filename = basename(filename) } + } + } + } else { return skipPart(part) } + + if (header['content-transfer-encoding']) { encoding = header['content-transfer-encoding'][0].toLowerCase() } else { encoding = '7bit' } + + let onData, + onEnd + + if (isPartAFile(fieldname, contype, filename)) { + // file/binary field + if (nfiles === filesLimit) { + if (!boy.hitFilesLimit) { + boy.hitFilesLimit = true + boy.emit('filesLimit') + } + return skipPart(part) + } + + ++nfiles + + if (boy.listenerCount('file') === 0) { + self.parser._ignore() + return + } + + ++nends + const file = new FileStream(fileOpts) + curFile = file + file.on('end', function () { + --nends + self._pause = false + checkFinished() + if (self._cb && !self._needDrain) { + const cb = self._cb + self._cb = undefined + cb() + } + }) + file._read = function (n) { + if (!self._pause) { return } + self._pause = false + if (self._cb && !self._needDrain) { + const cb = self._cb + self._cb = undefined + cb() + } + } + boy.emit('file', fieldname, file, filename, encoding, contype) + + onData = function (data) { + if ((nsize += data.length) > fileSizeLimit) { + const extralen = fileSizeLimit - nsize + data.length + if (extralen > 0) { file.push(data.slice(0, extralen)) } + file.truncated = true + file.bytesRead = fileSizeLimit + part.removeAllListeners('data') + file.emit('limit') + return + } else if (!file.push(data)) { self._pause = true } + + file.bytesRead = nsize + } + + onEnd = function () { + curFile = undefined + file.push(null) + } + } else { + // non-file field + if (nfields === fieldsLimit) { + if (!boy.hitFieldsLimit) { + boy.hitFieldsLimit = true + boy.emit('fieldsLimit') + } + return skipPart(part) + } + + ++nfields + ++nends + let buffer = '' + let truncated = false + curField = part + + onData = function (data) { + if ((nsize += data.length) > fieldSizeLimit) { + const extralen = (fieldSizeLimit - (nsize - data.length)) + buffer += data.toString('binary', 0, extralen) + truncated = true + part.removeAllListeners('data') + } else { buffer += data.toString('binary') } + } + + onEnd = function () { + curField = undefined + if (buffer.length) { buffer = decodeText(buffer, 'binary', charset) } + boy.emit('field', fieldname, buffer, false, truncated, encoding, contype) + --nends + checkFinished() + } + } + + /* As of node@2efe4ab761666 (v0.10.29+/v0.11.14+), busboy had become + broken. Streams2/streams3 is a huge black box of confusion, but + somehow overriding the sync state seems to fix things again (and still + seems to work for previous node versions). + */ + part._readableState.sync = false + + part.on('data', onData) + part.on('end', onEnd) + }).on('error', function (err) { + if (curFile) { curFile.emit('error', err) } + }) + }).on('error', function (err) { + boy.emit('error', err) + }).on('finish', function () { + finished = true + checkFinished() + }) +} + +Multipart.prototype.write = function (chunk, cb) { + const r = this.parser.write(chunk) + if (r && !this._pause) { + cb() + } else { + this._needDrain = !r + this._cb = cb + } +} + +Multipart.prototype.end = function () { + const self = this + + if (self.parser.writable) { + self.parser.end() + } else if (!self._boy._done) { + process.nextTick(function () { + self._boy._done = true + self._boy.emit('finish') + }) + } +} + +function skipPart (part) { + part.resume() +} + +function FileStream (opts) { + Readable.call(this, opts) + + this.bytesRead = 0 + + this.truncated = false +} + +inherits(FileStream, Readable) + +FileStream.prototype._read = function (n) {} + +module.exports = Multipart + + +/***/ }), + +/***/ 855: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; + + +const Decoder = __nccwpck_require__(1496) +const decodeText = __nccwpck_require__(2747) +const getLimit = __nccwpck_require__(2393) + +const RE_CHARSET = /^charset$/i + +UrlEncoded.detect = /^application\/x-www-form-urlencoded/i +function UrlEncoded (boy, cfg) { + const limits = cfg.limits + const parsedConType = cfg.parsedConType + this.boy = boy + + this.fieldSizeLimit = getLimit(limits, 'fieldSize', 1 * 1024 * 1024) + this.fieldNameSizeLimit = getLimit(limits, 'fieldNameSize', 100) + this.fieldsLimit = getLimit(limits, 'fields', Infinity) + + let charset + for (var i = 0, len = parsedConType.length; i < len; ++i) { // eslint-disable-line no-var + if (Array.isArray(parsedConType[i]) && + RE_CHARSET.test(parsedConType[i][0])) { + charset = parsedConType[i][1].toLowerCase() + break + } + } + + if (charset === undefined) { charset = cfg.defCharset || 'utf8' } + + this.decoder = new Decoder() + this.charset = charset + this._fields = 0 + this._state = 'key' + this._checkingBytes = true + this._bytesKey = 0 + this._bytesVal = 0 + this._key = '' + this._val = '' + this._keyTrunc = false + this._valTrunc = false + this._hitLimit = false +} + +UrlEncoded.prototype.write = function (data, cb) { + if (this._fields === this.fieldsLimit) { + if (!this.boy.hitFieldsLimit) { + this.boy.hitFieldsLimit = true + this.boy.emit('fieldsLimit') + } + return cb() + } + + let idxeq; let idxamp; let i; let p = 0; const len = data.length + + while (p < len) { + if (this._state === 'key') { + idxeq = idxamp = undefined + for (i = p; i < len; ++i) { + if (!this._checkingBytes) { ++p } + if (data[i] === 0x3D/* = */) { + idxeq = i + break + } else if (data[i] === 0x26/* & */) { + idxamp = i + break + } + if (this._checkingBytes && this._bytesKey === this.fieldNameSizeLimit) { + this._hitLimit = true + break + } else if (this._checkingBytes) { ++this._bytesKey } + } + + if (idxeq !== undefined) { + // key with assignment + if (idxeq > p) { this._key += this.decoder.write(data.toString('binary', p, idxeq)) } + this._state = 'val' + + this._hitLimit = false + this._checkingBytes = true + this._val = '' + this._bytesVal = 0 + this._valTrunc = false + this.decoder.reset() + + p = idxeq + 1 + } else if (idxamp !== undefined) { + // key with no assignment + ++this._fields + let key; const keyTrunc = this._keyTrunc + if (idxamp > p) { key = (this._key += this.decoder.write(data.toString('binary', p, idxamp))) } else { key = this._key } + + this._hitLimit = false + this._checkingBytes = true + this._key = '' + this._bytesKey = 0 + this._keyTrunc = false + this.decoder.reset() + + if (key.length) { + this.boy.emit('field', decodeText(key, 'binary', this.charset), + '', + keyTrunc, + false) + } + + p = idxamp + 1 + if (this._fields === this.fieldsLimit) { return cb() } + } else if (this._hitLimit) { + // we may not have hit the actual limit if there are encoded bytes... + if (i > p) { this._key += this.decoder.write(data.toString('binary', p, i)) } + p = i + if ((this._bytesKey = this._key.length) === this.fieldNameSizeLimit) { + // yep, we actually did hit the limit + this._checkingBytes = false + this._keyTrunc = true + } + } else { + if (p < len) { this._key += this.decoder.write(data.toString('binary', p)) } + p = len + } + } else { + idxamp = undefined + for (i = p; i < len; ++i) { + if (!this._checkingBytes) { ++p } + if (data[i] === 0x26/* & */) { + idxamp = i + break + } + if (this._checkingBytes && this._bytesVal === this.fieldSizeLimit) { + this._hitLimit = true + break + } else if (this._checkingBytes) { ++this._bytesVal } + } + + if (idxamp !== undefined) { + ++this._fields + if (idxamp > p) { this._val += this.decoder.write(data.toString('binary', p, idxamp)) } + this.boy.emit('field', decodeText(this._key, 'binary', this.charset), + decodeText(this._val, 'binary', this.charset), + this._keyTrunc, + this._valTrunc) + this._state = 'key' + + this._hitLimit = false + this._checkingBytes = true + this._key = '' + this._bytesKey = 0 + this._keyTrunc = false + this.decoder.reset() + + p = idxamp + 1 + if (this._fields === this.fieldsLimit) { return cb() } + } else if (this._hitLimit) { + // we may not have hit the actual limit if there are encoded bytes... + if (i > p) { this._val += this.decoder.write(data.toString('binary', p, i)) } + p = i + if ((this._val === '' && this.fieldSizeLimit === 0) || + (this._bytesVal = this._val.length) === this.fieldSizeLimit) { + // yep, we actually did hit the limit + this._checkingBytes = false + this._valTrunc = true + } + } else { + if (p < len) { this._val += this.decoder.write(data.toString('binary', p)) } + p = len + } + } + } + cb() +} + +UrlEncoded.prototype.end = function () { + if (this.boy._done) { return } + + if (this._state === 'key' && this._key.length > 0) { + this.boy.emit('field', decodeText(this._key, 'binary', this.charset), + '', + this._keyTrunc, + false) + } else if (this._state === 'val') { + this.boy.emit('field', decodeText(this._key, 'binary', this.charset), + decodeText(this._val, 'binary', this.charset), + this._keyTrunc, + this._valTrunc) + } + this.boy._done = true + this.boy.emit('finish') +} + +module.exports = UrlEncoded + + +/***/ }), + +/***/ 1496: +/***/ ((module) => { + +"use strict"; + + +const RE_PLUS = /\+/g + +const HEX = [ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, + 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +] + +function Decoder () { + this.buffer = undefined +} +Decoder.prototype.write = function (str) { + // Replace '+' with ' ' before decoding + str = str.replace(RE_PLUS, ' ') + let res = '' + let i = 0; let p = 0; const len = str.length + for (; i < len; ++i) { + if (this.buffer !== undefined) { + if (!HEX[str.charCodeAt(i)]) { + res += '%' + this.buffer + this.buffer = undefined + --i // retry character + } else { + this.buffer += str[i] + ++p + if (this.buffer.length === 2) { + res += String.fromCharCode(parseInt(this.buffer, 16)) + this.buffer = undefined + } + } + } else if (str[i] === '%') { + if (i > p) { + res += str.substring(p, i) + p = i + } + this.buffer = '' + ++p + } + } + if (p < len && this.buffer === undefined) { res += str.substring(p) } + return res +} +Decoder.prototype.reset = function () { + this.buffer = undefined +} + +module.exports = Decoder + + +/***/ }), + +/***/ 692: +/***/ ((module) => { + +"use strict"; + + +module.exports = function basename (path) { + if (typeof path !== 'string') { return '' } + for (var i = path.length - 1; i >= 0; --i) { // eslint-disable-line no-var + switch (path.charCodeAt(i)) { + case 0x2F: // '/' + case 0x5C: // '\' + path = path.slice(i + 1) + return (path === '..' || path === '.' ? '' : path) + } + } + return (path === '..' || path === '.' ? '' : path) +} + + +/***/ }), + +/***/ 2747: +/***/ (function(module) { + +"use strict"; + + +// Node has always utf-8 +const utf8Decoder = new TextDecoder('utf-8') +const textDecoders = new Map([ + ['utf-8', utf8Decoder], + ['utf8', utf8Decoder] +]) + +function getDecoder (charset) { + let lc + while (true) { + switch (charset) { + case 'utf-8': + case 'utf8': + return decoders.utf8 + case 'latin1': + case 'ascii': // TODO: Make these a separate, strict decoder? + case 'us-ascii': + case 'iso-8859-1': + case 'iso8859-1': + case 'iso88591': + case 'iso_8859-1': + case 'windows-1252': + case 'iso_8859-1:1987': + case 'cp1252': + case 'x-cp1252': + return decoders.latin1 + case 'utf16le': + case 'utf-16le': + case 'ucs2': + case 'ucs-2': + return decoders.utf16le + case 'base64': + return decoders.base64 + default: + if (lc === undefined) { + lc = true + charset = charset.toLowerCase() + continue + } + return decoders.other.bind(charset) + } + } +} + +const decoders = { + utf8: (data, sourceEncoding) => { + if (data.length === 0) { + return '' + } + if (typeof data === 'string') { + data = Buffer.from(data, sourceEncoding) + } + return data.utf8Slice(0, data.length) + }, + + latin1: (data, sourceEncoding) => { + if (data.length === 0) { + return '' + } + if (typeof data === 'string') { + return data + } + return data.latin1Slice(0, data.length) + }, + + utf16le: (data, sourceEncoding) => { + if (data.length === 0) { + return '' + } + if (typeof data === 'string') { + data = Buffer.from(data, sourceEncoding) + } + return data.ucs2Slice(0, data.length) + }, + + base64: (data, sourceEncoding) => { + if (data.length === 0) { + return '' + } + if (typeof data === 'string') { + data = Buffer.from(data, sourceEncoding) + } + return data.base64Slice(0, data.length) + }, + + other: (data, sourceEncoding) => { + if (data.length === 0) { + return '' + } + if (typeof data === 'string') { + data = Buffer.from(data, sourceEncoding) + } + + if (textDecoders.has(this.toString())) { + try { + return textDecoders.get(this).decode(data) + } catch {} + } + return typeof data === 'string' + ? data + : data.toString() + } +} + +function decodeText (text, sourceEncoding, destEncoding) { + if (text) { + return getDecoder(destEncoding)(text, sourceEncoding) + } + return text +} + +module.exports = decodeText + + +/***/ }), + +/***/ 2393: +/***/ ((module) => { + +"use strict"; + + +module.exports = function getLimit (limits, name, defaultLimit) { + if ( + !limits || + limits[name] === undefined || + limits[name] === null + ) { return defaultLimit } + + if ( + typeof limits[name] !== 'number' || + isNaN(limits[name]) + ) { throw new TypeError('Limit ' + name + ' is not a valid number') } + + return limits[name] +} + + +/***/ }), + +/***/ 8929: +/***/ ((module, __unused_webpack_exports, __nccwpck_require__) => { + +"use strict"; +/* eslint-disable object-property-newline */ + + +const decodeText = __nccwpck_require__(2747) + +const RE_ENCODED = /%[a-fA-F0-9][a-fA-F0-9]/g + +const EncodedLookup = { + '%00': '\x00', '%01': '\x01', '%02': '\x02', '%03': '\x03', '%04': '\x04', + '%05': '\x05', '%06': '\x06', '%07': '\x07', '%08': '\x08', '%09': '\x09', + '%0a': '\x0a', '%0A': '\x0a', '%0b': '\x0b', '%0B': '\x0b', '%0c': '\x0c', + '%0C': '\x0c', '%0d': '\x0d', '%0D': '\x0d', '%0e': '\x0e', '%0E': '\x0e', + '%0f': '\x0f', '%0F': '\x0f', '%10': '\x10', '%11': '\x11', '%12': '\x12', + '%13': '\x13', '%14': '\x14', '%15': '\x15', '%16': '\x16', '%17': '\x17', + '%18': '\x18', '%19': '\x19', '%1a': '\x1a', '%1A': '\x1a', '%1b': '\x1b', + '%1B': '\x1b', '%1c': '\x1c', '%1C': '\x1c', '%1d': '\x1d', '%1D': '\x1d', + '%1e': '\x1e', '%1E': '\x1e', '%1f': '\x1f', '%1F': '\x1f', '%20': '\x20', + '%21': '\x21', '%22': '\x22', '%23': '\x23', '%24': '\x24', '%25': '\x25', + '%26': '\x26', '%27': '\x27', '%28': '\x28', '%29': '\x29', '%2a': '\x2a', + '%2A': '\x2a', '%2b': '\x2b', '%2B': '\x2b', '%2c': '\x2c', '%2C': '\x2c', + '%2d': '\x2d', '%2D': '\x2d', '%2e': '\x2e', '%2E': '\x2e', '%2f': '\x2f', + '%2F': '\x2f', '%30': '\x30', '%31': '\x31', '%32': '\x32', '%33': '\x33', + '%34': '\x34', '%35': '\x35', '%36': '\x36', '%37': '\x37', '%38': '\x38', + '%39': '\x39', '%3a': '\x3a', '%3A': '\x3a', '%3b': '\x3b', '%3B': '\x3b', + '%3c': '\x3c', '%3C': '\x3c', '%3d': '\x3d', '%3D': '\x3d', '%3e': '\x3e', + '%3E': '\x3e', '%3f': '\x3f', '%3F': '\x3f', '%40': '\x40', '%41': '\x41', + '%42': '\x42', '%43': '\x43', '%44': '\x44', '%45': '\x45', '%46': '\x46', + '%47': '\x47', '%48': '\x48', '%49': '\x49', '%4a': '\x4a', '%4A': '\x4a', + '%4b': '\x4b', '%4B': '\x4b', '%4c': '\x4c', '%4C': '\x4c', '%4d': '\x4d', + '%4D': '\x4d', '%4e': '\x4e', '%4E': '\x4e', '%4f': '\x4f', '%4F': '\x4f', + '%50': '\x50', '%51': '\x51', '%52': '\x52', '%53': '\x53', '%54': '\x54', + '%55': '\x55', '%56': '\x56', '%57': '\x57', '%58': '\x58', '%59': '\x59', + '%5a': '\x5a', '%5A': '\x5a', '%5b': '\x5b', '%5B': '\x5b', '%5c': '\x5c', + '%5C': '\x5c', '%5d': '\x5d', '%5D': '\x5d', '%5e': '\x5e', '%5E': '\x5e', + '%5f': '\x5f', '%5F': '\x5f', '%60': '\x60', '%61': '\x61', '%62': '\x62', + '%63': '\x63', '%64': '\x64', '%65': '\x65', '%66': '\x66', '%67': '\x67', + '%68': '\x68', '%69': '\x69', '%6a': '\x6a', '%6A': '\x6a', '%6b': '\x6b', + '%6B': '\x6b', '%6c': '\x6c', '%6C': '\x6c', '%6d': '\x6d', '%6D': '\x6d', + '%6e': '\x6e', '%6E': '\x6e', '%6f': '\x6f', '%6F': '\x6f', '%70': '\x70', + '%71': '\x71', '%72': '\x72', '%73': '\x73', '%74': '\x74', '%75': '\x75', + '%76': '\x76', '%77': '\x77', '%78': '\x78', '%79': '\x79', '%7a': '\x7a', + '%7A': '\x7a', '%7b': '\x7b', '%7B': '\x7b', '%7c': '\x7c', '%7C': '\x7c', + '%7d': '\x7d', '%7D': '\x7d', '%7e': '\x7e', '%7E': '\x7e', '%7f': '\x7f', + '%7F': '\x7f', '%80': '\x80', '%81': '\x81', '%82': '\x82', '%83': '\x83', + '%84': '\x84', '%85': '\x85', '%86': '\x86', '%87': '\x87', '%88': '\x88', + '%89': '\x89', '%8a': '\x8a', '%8A': '\x8a', '%8b': '\x8b', '%8B': '\x8b', + '%8c': '\x8c', '%8C': '\x8c', '%8d': '\x8d', '%8D': '\x8d', '%8e': '\x8e', + '%8E': '\x8e', '%8f': '\x8f', '%8F': '\x8f', '%90': '\x90', '%91': '\x91', + '%92': '\x92', '%93': '\x93', '%94': '\x94', '%95': '\x95', '%96': '\x96', + '%97': '\x97', '%98': '\x98', '%99': '\x99', '%9a': '\x9a', '%9A': '\x9a', + '%9b': '\x9b', '%9B': '\x9b', '%9c': '\x9c', '%9C': '\x9c', '%9d': '\x9d', + '%9D': '\x9d', '%9e': '\x9e', '%9E': '\x9e', '%9f': '\x9f', '%9F': '\x9f', + '%a0': '\xa0', '%A0': '\xa0', '%a1': '\xa1', '%A1': '\xa1', '%a2': '\xa2', + '%A2': '\xa2', '%a3': '\xa3', '%A3': '\xa3', '%a4': '\xa4', '%A4': '\xa4', + '%a5': '\xa5', '%A5': '\xa5', '%a6': '\xa6', '%A6': '\xa6', '%a7': '\xa7', + '%A7': '\xa7', '%a8': '\xa8', '%A8': '\xa8', '%a9': '\xa9', '%A9': '\xa9', + '%aa': '\xaa', '%Aa': '\xaa', '%aA': '\xaa', '%AA': '\xaa', '%ab': '\xab', + '%Ab': '\xab', '%aB': '\xab', '%AB': '\xab', '%ac': '\xac', '%Ac': '\xac', + '%aC': '\xac', '%AC': '\xac', '%ad': '\xad', '%Ad': '\xad', '%aD': '\xad', + '%AD': '\xad', '%ae': '\xae', '%Ae': '\xae', '%aE': '\xae', '%AE': '\xae', + '%af': '\xaf', '%Af': '\xaf', '%aF': '\xaf', '%AF': '\xaf', '%b0': '\xb0', + '%B0': '\xb0', '%b1': '\xb1', '%B1': '\xb1', '%b2': '\xb2', '%B2': '\xb2', + '%b3': '\xb3', '%B3': '\xb3', '%b4': '\xb4', '%B4': '\xb4', '%b5': '\xb5', + '%B5': '\xb5', '%b6': '\xb6', '%B6': '\xb6', '%b7': '\xb7', '%B7': '\xb7', + '%b8': '\xb8', '%B8': '\xb8', '%b9': '\xb9', '%B9': '\xb9', '%ba': '\xba', + '%Ba': '\xba', '%bA': '\xba', '%BA': '\xba', '%bb': '\xbb', '%Bb': '\xbb', + '%bB': '\xbb', '%BB': '\xbb', '%bc': '\xbc', '%Bc': '\xbc', '%bC': '\xbc', + '%BC': '\xbc', '%bd': '\xbd', '%Bd': '\xbd', '%bD': '\xbd', '%BD': '\xbd', + '%be': '\xbe', '%Be': '\xbe', '%bE': '\xbe', '%BE': '\xbe', '%bf': '\xbf', + '%Bf': '\xbf', '%bF': '\xbf', '%BF': '\xbf', '%c0': '\xc0', '%C0': '\xc0', + '%c1': '\xc1', '%C1': '\xc1', '%c2': '\xc2', '%C2': '\xc2', '%c3': '\xc3', + '%C3': '\xc3', '%c4': '\xc4', '%C4': '\xc4', '%c5': '\xc5', '%C5': '\xc5', + '%c6': '\xc6', '%C6': '\xc6', '%c7': '\xc7', '%C7': '\xc7', '%c8': '\xc8', + '%C8': '\xc8', '%c9': '\xc9', '%C9': '\xc9', '%ca': '\xca', '%Ca': '\xca', + '%cA': '\xca', '%CA': '\xca', '%cb': '\xcb', '%Cb': '\xcb', '%cB': '\xcb', + '%CB': '\xcb', '%cc': '\xcc', '%Cc': '\xcc', '%cC': '\xcc', '%CC': '\xcc', + '%cd': '\xcd', '%Cd': '\xcd', '%cD': '\xcd', '%CD': '\xcd', '%ce': '\xce', + '%Ce': '\xce', '%cE': '\xce', '%CE': '\xce', '%cf': '\xcf', '%Cf': '\xcf', + '%cF': '\xcf', '%CF': '\xcf', '%d0': '\xd0', '%D0': '\xd0', '%d1': '\xd1', + '%D1': '\xd1', '%d2': '\xd2', '%D2': '\xd2', '%d3': '\xd3', '%D3': '\xd3', + '%d4': '\xd4', '%D4': '\xd4', '%d5': '\xd5', '%D5': '\xd5', '%d6': '\xd6', + '%D6': '\xd6', '%d7': '\xd7', '%D7': '\xd7', '%d8': '\xd8', '%D8': '\xd8', + '%d9': '\xd9', '%D9': '\xd9', '%da': '\xda', '%Da': '\xda', '%dA': '\xda', + '%DA': '\xda', '%db': '\xdb', '%Db': '\xdb', '%dB': '\xdb', '%DB': '\xdb', + '%dc': '\xdc', '%Dc': '\xdc', '%dC': '\xdc', '%DC': '\xdc', '%dd': '\xdd', + '%Dd': '\xdd', '%dD': '\xdd', '%DD': '\xdd', '%de': '\xde', '%De': '\xde', + '%dE': '\xde', '%DE': '\xde', '%df': '\xdf', '%Df': '\xdf', '%dF': '\xdf', + '%DF': '\xdf', '%e0': '\xe0', '%E0': '\xe0', '%e1': '\xe1', '%E1': '\xe1', + '%e2': '\xe2', '%E2': '\xe2', '%e3': '\xe3', '%E3': '\xe3', '%e4': '\xe4', + '%E4': '\xe4', '%e5': '\xe5', '%E5': '\xe5', '%e6': '\xe6', '%E6': '\xe6', + '%e7': '\xe7', '%E7': '\xe7', '%e8': '\xe8', '%E8': '\xe8', '%e9': '\xe9', + '%E9': '\xe9', '%ea': '\xea', '%Ea': '\xea', '%eA': '\xea', '%EA': '\xea', + '%eb': '\xeb', '%Eb': '\xeb', '%eB': '\xeb', '%EB': '\xeb', '%ec': '\xec', + '%Ec': '\xec', '%eC': '\xec', '%EC': '\xec', '%ed': '\xed', '%Ed': '\xed', + '%eD': '\xed', '%ED': '\xed', '%ee': '\xee', '%Ee': '\xee', '%eE': '\xee', + '%EE': '\xee', '%ef': '\xef', '%Ef': '\xef', '%eF': '\xef', '%EF': '\xef', + '%f0': '\xf0', '%F0': '\xf0', '%f1': '\xf1', '%F1': '\xf1', '%f2': '\xf2', + '%F2': '\xf2', '%f3': '\xf3', '%F3': '\xf3', '%f4': '\xf4', '%F4': '\xf4', + '%f5': '\xf5', '%F5': '\xf5', '%f6': '\xf6', '%F6': '\xf6', '%f7': '\xf7', + '%F7': '\xf7', '%f8': '\xf8', '%F8': '\xf8', '%f9': '\xf9', '%F9': '\xf9', + '%fa': '\xfa', '%Fa': '\xfa', '%fA': '\xfa', '%FA': '\xfa', '%fb': '\xfb', + '%Fb': '\xfb', '%fB': '\xfb', '%FB': '\xfb', '%fc': '\xfc', '%Fc': '\xfc', + '%fC': '\xfc', '%FC': '\xfc', '%fd': '\xfd', '%Fd': '\xfd', '%fD': '\xfd', + '%FD': '\xfd', '%fe': '\xfe', '%Fe': '\xfe', '%fE': '\xfe', '%FE': '\xfe', + '%ff': '\xff', '%Ff': '\xff', '%fF': '\xff', '%FF': '\xff' +} + +function encodedReplacer (match) { + return EncodedLookup[match] +} + +const STATE_KEY = 0 +const STATE_VALUE = 1 +const STATE_CHARSET = 2 +const STATE_LANG = 3 + +function parseParams (str) { + const res = [] + let state = STATE_KEY + let charset = '' + let inquote = false + let escaping = false + let p = 0 + let tmp = '' + const len = str.length + + for (var i = 0; i < len; ++i) { // eslint-disable-line no-var + const char = str[i] + if (char === '\\' && inquote) { + if (escaping) { escaping = false } else { + escaping = true + continue + } + } else if (char === '"') { + if (!escaping) { + if (inquote) { + inquote = false + state = STATE_KEY + } else { inquote = true } + continue + } else { escaping = false } + } else { + if (escaping && inquote) { tmp += '\\' } + escaping = false + if ((state === STATE_CHARSET || state === STATE_LANG) && char === "'") { + if (state === STATE_CHARSET) { + state = STATE_LANG + charset = tmp.substring(1) + } else { state = STATE_VALUE } + tmp = '' + continue + } else if (state === STATE_KEY && + (char === '*' || char === '=') && + res.length) { + state = char === '*' + ? STATE_CHARSET + : STATE_VALUE + res[p] = [tmp, undefined] + tmp = '' + continue + } else if (!inquote && char === ';') { + state = STATE_KEY + if (charset) { + if (tmp.length) { + tmp = decodeText(tmp.replace(RE_ENCODED, encodedReplacer), + 'binary', + charset) + } + charset = '' + } else if (tmp.length) { + tmp = decodeText(tmp, 'binary', 'utf8') + } + if (res[p] === undefined) { res[p] = tmp } else { res[p][1] = tmp } + tmp = '' + ++p + continue + } else if (!inquote && (char === ' ' || char === '\t')) { continue } + } + tmp += char + } + if (charset && tmp.length) { + tmp = decodeText(tmp.replace(RE_ENCODED, encodedReplacer), + 'binary', + charset) + } else if (tmp) { + tmp = decodeText(tmp, 'binary', 'utf8') + } + + if (res[p] === undefined) { + if (tmp) { res[p] = tmp } + } else { res[p][1] = tmp } + + return res +} + +module.exports = parseParams + + +/***/ }), + +/***/ 2981: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.Glob = void 0; +const minimatch_1 = __nccwpck_require__(6507); +const node_url_1 = __nccwpck_require__(3136); +const path_scurry_1 = __nccwpck_require__(6577); +const pattern_js_1 = __nccwpck_require__(7813); +const walker_js_1 = __nccwpck_require__(1157); +// if no process global, just call it linux. +// so we default to case-sensitive, / separators +const defaultPlatform = (typeof process === 'object' && + process && + typeof process.platform === 'string') ? + process.platform + : 'linux'; +/** + * An object that can perform glob pattern traversals. + */ +class Glob { + absolute; + cwd; + root; + dot; + dotRelative; + follow; + ignore; + magicalBraces; + mark; + matchBase; + maxDepth; + nobrace; + nocase; + nodir; + noext; + noglobstar; + pattern; + platform; + realpath; + scurry; + stat; + signal; + windowsPathsNoEscape; + withFileTypes; + includeChildMatches; + /** + * The options provided to the constructor. + */ + opts; + /** + * An array of parsed immutable {@link Pattern} objects. + */ + patterns; + /** + * All options are stored as properties on the `Glob` object. + * + * See {@link GlobOptions} for full options descriptions. + * + * Note that a previous `Glob` object can be passed as the + * `GlobOptions` to another `Glob` instantiation to re-use settings + * and caches with a new pattern. + * + * Traversal functions can be called multiple times to run the walk + * again. + */ + constructor(pattern, opts) { + /* c8 ignore start */ + if (!opts) + throw new TypeError('glob options required'); + /* c8 ignore stop */ + this.withFileTypes = !!opts.withFileTypes; + this.signal = opts.signal; + this.follow = !!opts.follow; + this.dot = !!opts.dot; + this.dotRelative = !!opts.dotRelative; + this.nodir = !!opts.nodir; + this.mark = !!opts.mark; + if (!opts.cwd) { + this.cwd = ''; + } + else if (opts.cwd instanceof URL || opts.cwd.startsWith('file://')) { + opts.cwd = (0, node_url_1.fileURLToPath)(opts.cwd); + } + this.cwd = opts.cwd || ''; + this.root = opts.root; + this.magicalBraces = !!opts.magicalBraces; + this.nobrace = !!opts.nobrace; + this.noext = !!opts.noext; + this.realpath = !!opts.realpath; + this.absolute = opts.absolute; + this.includeChildMatches = opts.includeChildMatches !== false; + this.noglobstar = !!opts.noglobstar; + this.matchBase = !!opts.matchBase; + this.maxDepth = + typeof opts.maxDepth === 'number' ? opts.maxDepth : Infinity; + this.stat = !!opts.stat; + this.ignore = opts.ignore; + if (this.withFileTypes && this.absolute !== undefined) { + throw new Error('cannot set absolute and withFileTypes:true'); + } + if (typeof pattern === 'string') { + pattern = [pattern]; + } + this.windowsPathsNoEscape = + !!opts.windowsPathsNoEscape || + opts.allowWindowsEscape === + false; + if (this.windowsPathsNoEscape) { + pattern = pattern.map(p => p.replace(/\\/g, '/')); + } + if (this.matchBase) { + if (opts.noglobstar) { + throw new TypeError('base matching requires globstar'); + } + pattern = pattern.map(p => (p.includes('/') ? p : `./**/${p}`)); + } + this.pattern = pattern; + this.platform = opts.platform || defaultPlatform; + this.opts = { ...opts, platform: this.platform }; + if (opts.scurry) { + this.scurry = opts.scurry; + if (opts.nocase !== undefined && + opts.nocase !== opts.scurry.nocase) { + throw new Error('nocase option contradicts provided scurry option'); + } + } + else { + const Scurry = opts.platform === 'win32' ? path_scurry_1.PathScurryWin32 + : opts.platform === 'darwin' ? path_scurry_1.PathScurryDarwin + : opts.platform ? path_scurry_1.PathScurryPosix + : path_scurry_1.PathScurry; + this.scurry = new Scurry(this.cwd, { + nocase: opts.nocase, + fs: opts.fs, + }); + } + this.nocase = this.scurry.nocase; + // If you do nocase:true on a case-sensitive file system, then + // we need to use regexps instead of strings for non-magic + // path portions, because statting `aBc` won't return results + // for the file `AbC` for example. + const nocaseMagicOnly = this.platform === 'darwin' || this.platform === 'win32'; + const mmo = { + // default nocase based on platform + ...opts, + dot: this.dot, + matchBase: this.matchBase, + nobrace: this.nobrace, + nocase: this.nocase, + nocaseMagicOnly, + nocomment: true, + noext: this.noext, + nonegate: true, + optimizationLevel: 2, + platform: this.platform, + windowsPathsNoEscape: this.windowsPathsNoEscape, + debug: !!this.opts.debug, + }; + const mms = this.pattern.map(p => new minimatch_1.Minimatch(p, mmo)); + const [matchSet, globParts] = mms.reduce((set, m) => { + set[0].push(...m.set); + set[1].push(...m.globParts); + return set; + }, [[], []]); + this.patterns = matchSet.map((set, i) => { + const g = globParts[i]; + /* c8 ignore start */ + if (!g) + throw new Error('invalid pattern object'); + /* c8 ignore stop */ + return new pattern_js_1.Pattern(set, g, 0, this.platform); + }); + } + async walk() { + // Walkers always return array of Path objects, so we just have to + // coerce them into the right shape. It will have already called + // realpath() if the option was set to do so, so we know that's cached. + // start out knowing the cwd, at least + return [ + ...(await new walker_js_1.GlobWalker(this.patterns, this.scurry.cwd, { + ...this.opts, + maxDepth: this.maxDepth !== Infinity ? + this.maxDepth + this.scurry.cwd.depth() + : Infinity, + platform: this.platform, + nocase: this.nocase, + includeChildMatches: this.includeChildMatches, + }).walk()), + ]; + } + walkSync() { + return [ + ...new walker_js_1.GlobWalker(this.patterns, this.scurry.cwd, { + ...this.opts, + maxDepth: this.maxDepth !== Infinity ? + this.maxDepth + this.scurry.cwd.depth() + : Infinity, + platform: this.platform, + nocase: this.nocase, + includeChildMatches: this.includeChildMatches, + }).walkSync(), + ]; + } + stream() { + return new walker_js_1.GlobStream(this.patterns, this.scurry.cwd, { + ...this.opts, + maxDepth: this.maxDepth !== Infinity ? + this.maxDepth + this.scurry.cwd.depth() + : Infinity, + platform: this.platform, + nocase: this.nocase, + includeChildMatches: this.includeChildMatches, + }).stream(); + } + streamSync() { + return new walker_js_1.GlobStream(this.patterns, this.scurry.cwd, { + ...this.opts, + maxDepth: this.maxDepth !== Infinity ? + this.maxDepth + this.scurry.cwd.depth() + : Infinity, + platform: this.platform, + nocase: this.nocase, + includeChildMatches: this.includeChildMatches, + }).streamSync(); + } + /** + * Default sync iteration function. Returns a Generator that + * iterates over the results. + */ + iterateSync() { + return this.streamSync()[Symbol.iterator](); + } + [Symbol.iterator]() { + return this.iterateSync(); + } + /** + * Default async iteration function. Returns an AsyncGenerator that + * iterates over the results. + */ + iterate() { + return this.stream()[Symbol.asyncIterator](); + } + [Symbol.asyncIterator]() { + return this.iterate(); + } +} +exports.Glob = Glob; +//# sourceMappingURL=glob.js.map + +/***/ }), + +/***/ 5197: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.hasMagic = void 0; +const minimatch_1 = __nccwpck_require__(6507); +/** + * Return true if the patterns provided contain any magic glob characters, + * given the options provided. + * + * Brace expansion is not considered "magic" unless the `magicalBraces` option + * is set, as brace expansion just turns one string into an array of strings. + * So a pattern like `'x{a,b}y'` would return `false`, because `'xay'` and + * `'xby'` both do not contain any magic glob characters, and it's treated the + * same as if you had called it on `['xay', 'xby']`. When `magicalBraces:true` + * is in the options, brace expansion _is_ treated as a pattern having magic. + */ +const hasMagic = (pattern, options = {}) => { + if (!Array.isArray(pattern)) { + pattern = [pattern]; + } + for (const p of pattern) { + if (new minimatch_1.Minimatch(p, options).hasMagic()) + return true; + } + return false; +}; +exports.hasMagic = hasMagic; +//# sourceMappingURL=has-magic.js.map + +/***/ }), + +/***/ 5637: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +// give it a pattern, and it'll be able to tell you if +// a given path should be ignored. +// Ignoring a path ignores its children if the pattern ends in /** +// Ignores are always parsed in dot:true mode +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.Ignore = void 0; +const minimatch_1 = __nccwpck_require__(6507); +const pattern_js_1 = __nccwpck_require__(7813); +const defaultPlatform = (typeof process === 'object' && + process && + typeof process.platform === 'string') ? + process.platform + : 'linux'; +/** + * Class used to process ignored patterns + */ +class Ignore { + relative; + relativeChildren; + absolute; + absoluteChildren; + platform; + mmopts; + constructor(ignored, { nobrace, nocase, noext, noglobstar, platform = defaultPlatform, }) { + this.relative = []; + this.absolute = []; + this.relativeChildren = []; + this.absoluteChildren = []; + this.platform = platform; + this.mmopts = { + dot: true, + nobrace, + nocase, + noext, + noglobstar, + optimizationLevel: 2, + platform, + nocomment: true, + nonegate: true, + }; + for (const ign of ignored) + this.add(ign); + } + add(ign) { + // this is a little weird, but it gives us a clean set of optimized + // minimatch matchers, without getting tripped up if one of them + // ends in /** inside a brace section, and it's only inefficient at + // the start of the walk, not along it. + // It'd be nice if the Pattern class just had a .test() method, but + // handling globstars is a bit of a pita, and that code already lives + // in minimatch anyway. + // Another way would be if maybe Minimatch could take its set/globParts + // as an option, and then we could at least just use Pattern to test + // for absolute-ness. + // Yet another way, Minimatch could take an array of glob strings, and + // a cwd option, and do the right thing. + const mm = new minimatch_1.Minimatch(ign, this.mmopts); + for (let i = 0; i < mm.set.length; i++) { + const parsed = mm.set[i]; + const globParts = mm.globParts[i]; + /* c8 ignore start */ + if (!parsed || !globParts) { + throw new Error('invalid pattern object'); + } + // strip off leading ./ portions + // https://github.com/isaacs/node-glob/issues/570 + while (parsed[0] === '.' && globParts[0] === '.') { + parsed.shift(); + globParts.shift(); + } + /* c8 ignore stop */ + const p = new pattern_js_1.Pattern(parsed, globParts, 0, this.platform); + const m = new minimatch_1.Minimatch(p.globString(), this.mmopts); + const children = globParts[globParts.length - 1] === '**'; + const absolute = p.isAbsolute(); + if (absolute) + this.absolute.push(m); + else + this.relative.push(m); + if (children) { + if (absolute) + this.absoluteChildren.push(m); + else + this.relativeChildren.push(m); + } + } + } + ignored(p) { + const fullpath = p.fullpath(); + const fullpaths = `${fullpath}/`; + const relative = p.relative() || '.'; + const relatives = `${relative}/`; + for (const m of this.relative) { + if (m.match(relative) || m.match(relatives)) + return true; + } + for (const m of this.absolute) { + if (m.match(fullpath) || m.match(fullpaths)) + return true; + } + return false; + } + childrenIgnored(p) { + const fullpath = p.fullpath() + '/'; + const relative = (p.relative() || '.') + '/'; + for (const m of this.relativeChildren) { + if (m.match(relative)) + return true; + } + for (const m of this.absoluteChildren) { + if (m.match(fullpath)) + return true; + } + return false; + } +} +exports.Ignore = Ignore; +//# sourceMappingURL=ignore.js.map + +/***/ }), + +/***/ 1363: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.glob = exports.sync = exports.iterate = exports.iterateSync = exports.stream = exports.streamSync = exports.Ignore = exports.hasMagic = exports.Glob = exports.unescape = exports.escape = void 0; +exports.globStreamSync = globStreamSync; +exports.globStream = globStream; +exports.globSync = globSync; +exports.globIterateSync = globIterateSync; +exports.globIterate = globIterate; +const minimatch_1 = __nccwpck_require__(6507); +const glob_js_1 = __nccwpck_require__(2981); +const has_magic_js_1 = __nccwpck_require__(5197); +var minimatch_2 = __nccwpck_require__(6507); +Object.defineProperty(exports, "escape", ({ enumerable: true, get: function () { return minimatch_2.escape; } })); +Object.defineProperty(exports, "unescape", ({ enumerable: true, get: function () { return minimatch_2.unescape; } })); +var glob_js_2 = __nccwpck_require__(2981); +Object.defineProperty(exports, "Glob", ({ enumerable: true, get: function () { return glob_js_2.Glob; } })); +var has_magic_js_2 = __nccwpck_require__(5197); +Object.defineProperty(exports, "hasMagic", ({ enumerable: true, get: function () { return has_magic_js_2.hasMagic; } })); +var ignore_js_1 = __nccwpck_require__(5637); +Object.defineProperty(exports, "Ignore", ({ enumerable: true, get: function () { return ignore_js_1.Ignore; } })); +function globStreamSync(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).streamSync(); +} +function globStream(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).stream(); +} +function globSync(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).walkSync(); +} +async function glob_(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).walk(); +} +function globIterateSync(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).iterateSync(); +} +function globIterate(pattern, options = {}) { + return new glob_js_1.Glob(pattern, options).iterate(); +} +// aliases: glob.sync.stream() glob.stream.sync() glob.sync() etc +exports.streamSync = globStreamSync; +exports.stream = Object.assign(globStream, { sync: globStreamSync }); +exports.iterateSync = globIterateSync; +exports.iterate = Object.assign(globIterate, { + sync: globIterateSync, +}); +exports.sync = Object.assign(globSync, { + stream: globStreamSync, + iterate: globIterateSync, +}); +exports.glob = Object.assign(glob_, { + glob: glob_, + globSync, + sync: exports.sync, + globStream, + stream: exports.stream, + globStreamSync, + streamSync: exports.streamSync, + globIterate, + iterate: exports.iterate, + globIterateSync, + iterateSync: exports.iterateSync, + Glob: glob_js_1.Glob, + hasMagic: has_magic_js_1.hasMagic, + escape: minimatch_1.escape, + unescape: minimatch_1.unescape, +}); +exports.glob.glob = exports.glob; +//# sourceMappingURL=index.js.map + +/***/ }), + +/***/ 7813: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +// this is just a very light wrapper around 2 arrays with an offset index +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.Pattern = void 0; +const minimatch_1 = __nccwpck_require__(6507); +const isPatternList = (pl) => pl.length >= 1; +const isGlobList = (gl) => gl.length >= 1; +/** + * An immutable-ish view on an array of glob parts and their parsed + * results + */ +class Pattern { + #patternList; + #globList; + #index; + length; + #platform; + #rest; + #globString; + #isDrive; + #isUNC; + #isAbsolute; + #followGlobstar = true; + constructor(patternList, globList, index, platform) { + if (!isPatternList(patternList)) { + throw new TypeError('empty pattern list'); + } + if (!isGlobList(globList)) { + throw new TypeError('empty glob list'); + } + if (globList.length !== patternList.length) { + throw new TypeError('mismatched pattern list and glob list lengths'); + } + this.length = patternList.length; + if (index < 0 || index >= this.length) { + throw new TypeError('index out of range'); + } + this.#patternList = patternList; + this.#globList = globList; + this.#index = index; + this.#platform = platform; + // normalize root entries of absolute patterns on initial creation. + if (this.#index === 0) { + // c: => ['c:/'] + // C:/ => ['C:/'] + // C:/x => ['C:/', 'x'] + // //host/share => ['//host/share/'] + // //host/share/ => ['//host/share/'] + // //host/share/x => ['//host/share/', 'x'] + // /etc => ['/', 'etc'] + // / => ['/'] + if (this.isUNC()) { + // '' / '' / 'host' / 'share' + const [p0, p1, p2, p3, ...prest] = this.#patternList; + const [g0, g1, g2, g3, ...grest] = this.#globList; + if (prest[0] === '') { + // ends in / + prest.shift(); + grest.shift(); + } + const p = [p0, p1, p2, p3, ''].join('/'); + const g = [g0, g1, g2, g3, ''].join('/'); + this.#patternList = [p, ...prest]; + this.#globList = [g, ...grest]; + this.length = this.#patternList.length; + } + else if (this.isDrive() || this.isAbsolute()) { + const [p1, ...prest] = this.#patternList; + const [g1, ...grest] = this.#globList; + if (prest[0] === '') { + // ends in / + prest.shift(); + grest.shift(); + } + const p = p1 + '/'; + const g = g1 + '/'; + this.#patternList = [p, ...prest]; + this.#globList = [g, ...grest]; + this.length = this.#patternList.length; + } + } + } + /** + * The first entry in the parsed list of patterns + */ + pattern() { + return this.#patternList[this.#index]; + } + /** + * true of if pattern() returns a string + */ + isString() { + return typeof this.#patternList[this.#index] === 'string'; + } + /** + * true of if pattern() returns GLOBSTAR + */ + isGlobstar() { + return this.#patternList[this.#index] === minimatch_1.GLOBSTAR; + } + /** + * true if pattern() returns a regexp + */ + isRegExp() { + return this.#patternList[this.#index] instanceof RegExp; + } + /** + * The /-joined set of glob parts that make up this pattern + */ + globString() { + return (this.#globString = + this.#globString || + (this.#index === 0 ? + this.isAbsolute() ? + this.#globList[0] + this.#globList.slice(1).join('/') + : this.#globList.join('/') + : this.#globList.slice(this.#index).join('/'))); + } + /** + * true if there are more pattern parts after this one + */ + hasMore() { + return this.length > this.#index + 1; + } + /** + * The rest of the pattern after this part, or null if this is the end + */ + rest() { + if (this.#rest !== undefined) + return this.#rest; + if (!this.hasMore()) + return (this.#rest = null); + this.#rest = new Pattern(this.#patternList, this.#globList, this.#index + 1, this.#platform); + this.#rest.#isAbsolute = this.#isAbsolute; + this.#rest.#isUNC = this.#isUNC; + this.#rest.#isDrive = this.#isDrive; + return this.#rest; + } + /** + * true if the pattern represents a //unc/path/ on windows + */ + isUNC() { + const pl = this.#patternList; + return this.#isUNC !== undefined ? + this.#isUNC + : (this.#isUNC = + this.#platform === 'win32' && + this.#index === 0 && + pl[0] === '' && + pl[1] === '' && + typeof pl[2] === 'string' && + !!pl[2] && + typeof pl[3] === 'string' && + !!pl[3]); + } + // pattern like C:/... + // split = ['C:', ...] + // XXX: would be nice to handle patterns like `c:*` to test the cwd + // in c: for *, but I don't know of a way to even figure out what that + // cwd is without actually chdir'ing into it? + /** + * True if the pattern starts with a drive letter on Windows + */ + isDrive() { + const pl = this.#patternList; + return this.#isDrive !== undefined ? + this.#isDrive + : (this.#isDrive = + this.#platform === 'win32' && + this.#index === 0 && + this.length > 1 && + typeof pl[0] === 'string' && + /^[a-z]:$/i.test(pl[0])); + } + // pattern = '/' or '/...' or '/x/...' + // split = ['', ''] or ['', ...] or ['', 'x', ...] + // Drive and UNC both considered absolute on windows + /** + * True if the pattern is rooted on an absolute path + */ + isAbsolute() { + const pl = this.#patternList; + return this.#isAbsolute !== undefined ? + this.#isAbsolute + : (this.#isAbsolute = + (pl[0] === '' && pl.length > 1) || + this.isDrive() || + this.isUNC()); + } + /** + * consume the root of the pattern, and return it + */ + root() { + const p = this.#patternList[0]; + return (typeof p === 'string' && this.isAbsolute() && this.#index === 0) ? + p + : ''; + } + /** + * Check to see if the current globstar pattern is allowed to follow + * a symbolic link. + */ + checkFollowGlobstar() { + return !(this.#index === 0 || + !this.isGlobstar() || + !this.#followGlobstar); + } + /** + * Mark that the current globstar pattern is following a symbolic link + */ + markFollowGlobstar() { + if (this.#index === 0 || !this.isGlobstar() || !this.#followGlobstar) + return false; + this.#followGlobstar = false; + return true; + } +} +exports.Pattern = Pattern; +//# sourceMappingURL=pattern.js.map + +/***/ }), + +/***/ 7843: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +// synchronous utility for filtering entries and calculating subwalks +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.Processor = exports.SubWalks = exports.MatchRecord = exports.HasWalkedCache = void 0; +const minimatch_1 = __nccwpck_require__(6507); +/** + * A cache of which patterns have been processed for a given Path + */ +class HasWalkedCache { + store; + constructor(store = new Map()) { + this.store = store; + } + copy() { + return new HasWalkedCache(new Map(this.store)); + } + hasWalked(target, pattern) { + return this.store.get(target.fullpath())?.has(pattern.globString()); + } + storeWalked(target, pattern) { + const fullpath = target.fullpath(); + const cached = this.store.get(fullpath); + if (cached) + cached.add(pattern.globString()); + else + this.store.set(fullpath, new Set([pattern.globString()])); + } +} +exports.HasWalkedCache = HasWalkedCache; +/** + * A record of which paths have been matched in a given walk step, + * and whether they only are considered a match if they are a directory, + * and whether their absolute or relative path should be returned. + */ +class MatchRecord { + store = new Map(); + add(target, absolute, ifDir) { + const n = (absolute ? 2 : 0) | (ifDir ? 1 : 0); + const current = this.store.get(target); + this.store.set(target, current === undefined ? n : n & current); + } + // match, absolute, ifdir + entries() { + return [...this.store.entries()].map(([path, n]) => [ + path, + !!(n & 2), + !!(n & 1), + ]); + } +} +exports.MatchRecord = MatchRecord; +/** + * A collection of patterns that must be processed in a subsequent step + * for a given path. + */ +class SubWalks { + store = new Map(); + add(target, pattern) { + if (!target.canReaddir()) { + return; + } + const subs = this.store.get(target); + if (subs) { + if (!subs.find(p => p.globString() === pattern.globString())) { + subs.push(pattern); + } + } + else + this.store.set(target, [pattern]); + } + get(target) { + const subs = this.store.get(target); + /* c8 ignore start */ + if (!subs) { + throw new Error('attempting to walk unknown path'); + } + /* c8 ignore stop */ + return subs; + } + entries() { + return this.keys().map(k => [k, this.store.get(k)]); + } + keys() { + return [...this.store.keys()].filter(t => t.canReaddir()); + } +} +exports.SubWalks = SubWalks; +/** + * The class that processes patterns for a given path. + * + * Handles child entry filtering, and determining whether a path's + * directory contents must be read. + */ +class Processor { + hasWalkedCache; + matches = new MatchRecord(); + subwalks = new SubWalks(); + patterns; + follow; + dot; + opts; + constructor(opts, hasWalkedCache) { + this.opts = opts; + this.follow = !!opts.follow; + this.dot = !!opts.dot; + this.hasWalkedCache = + hasWalkedCache ? hasWalkedCache.copy() : new HasWalkedCache(); + } + processPatterns(target, patterns) { + this.patterns = patterns; + const processingSet = patterns.map(p => [target, p]); + // map of paths to the magic-starting subwalks they need to walk + // first item in patterns is the filter + for (let [t, pattern] of processingSet) { + this.hasWalkedCache.storeWalked(t, pattern); + const root = pattern.root(); + const absolute = pattern.isAbsolute() && this.opts.absolute !== false; + // start absolute patterns at root + if (root) { + t = t.resolve(root === '/' && this.opts.root !== undefined ? + this.opts.root + : root); + const rest = pattern.rest(); + if (!rest) { + this.matches.add(t, true, false); + continue; + } + else { + pattern = rest; + } + } + if (t.isENOENT()) + continue; + let p; + let rest; + let changed = false; + while (typeof (p = pattern.pattern()) === 'string' && + (rest = pattern.rest())) { + const c = t.resolve(p); + t = c; + pattern = rest; + changed = true; + } + p = pattern.pattern(); + rest = pattern.rest(); + if (changed) { + if (this.hasWalkedCache.hasWalked(t, pattern)) + continue; + this.hasWalkedCache.storeWalked(t, pattern); + } + // now we have either a final string for a known entry, + // more strings for an unknown entry, + // or a pattern starting with magic, mounted on t. + if (typeof p === 'string') { + // must not be final entry, otherwise we would have + // concatenated it earlier. + const ifDir = p === '..' || p === '' || p === '.'; + this.matches.add(t.resolve(p), absolute, ifDir); + continue; + } + else if (p === minimatch_1.GLOBSTAR) { + // if no rest, match and subwalk pattern + // if rest, process rest and subwalk pattern + // if it's a symlink, but we didn't get here by way of a + // globstar match (meaning it's the first time THIS globstar + // has traversed a symlink), then we follow it. Otherwise, stop. + if (!t.isSymbolicLink() || + this.follow || + pattern.checkFollowGlobstar()) { + this.subwalks.add(t, pattern); + } + const rp = rest?.pattern(); + const rrest = rest?.rest(); + if (!rest || ((rp === '' || rp === '.') && !rrest)) { + // only HAS to be a dir if it ends in **/ or **/. + // but ending in ** will match files as well. + this.matches.add(t, absolute, rp === '' || rp === '.'); + } + else { + if (rp === '..') { + // this would mean you're matching **/.. at the fs root, + // and no thanks, I'm not gonna test that specific case. + /* c8 ignore start */ + const tp = t.parent || t; + /* c8 ignore stop */ + if (!rrest) + this.matches.add(tp, absolute, true); + else if (!this.hasWalkedCache.hasWalked(tp, rrest)) { + this.subwalks.add(tp, rrest); + } + } + } + } + else if (p instanceof RegExp) { + this.subwalks.add(t, pattern); + } + } + return this; + } + subwalkTargets() { + return this.subwalks.keys(); + } + child() { + return new Processor(this.opts, this.hasWalkedCache); + } + // return a new Processor containing the subwalks for each + // child entry, and a set of matches, and + // a hasWalkedCache that's a copy of this one + // then we're going to call + filterEntries(parent, entries) { + const patterns = this.subwalks.get(parent); + // put matches and entry walks into the results processor + const results = this.child(); + for (const e of entries) { + for (const pattern of patterns) { + const absolute = pattern.isAbsolute(); + const p = pattern.pattern(); + const rest = pattern.rest(); + if (p === minimatch_1.GLOBSTAR) { + results.testGlobstar(e, pattern, rest, absolute); + } + else if (p instanceof RegExp) { + results.testRegExp(e, p, rest, absolute); + } + else { + results.testString(e, p, rest, absolute); + } + } + } + return results; + } + testGlobstar(e, pattern, rest, absolute) { + if (this.dot || !e.name.startsWith('.')) { + if (!pattern.hasMore()) { + this.matches.add(e, absolute, false); + } + if (e.canReaddir()) { + // if we're in follow mode or it's not a symlink, just keep + // testing the same pattern. If there's more after the globstar, + // then this symlink consumes the globstar. If not, then we can + // follow at most ONE symlink along the way, so we mark it, which + // also checks to ensure that it wasn't already marked. + if (this.follow || !e.isSymbolicLink()) { + this.subwalks.add(e, pattern); + } + else if (e.isSymbolicLink()) { + if (rest && pattern.checkFollowGlobstar()) { + this.subwalks.add(e, rest); + } + else if (pattern.markFollowGlobstar()) { + this.subwalks.add(e, pattern); + } + } + } + } + // if the NEXT thing matches this entry, then also add + // the rest. + if (rest) { + const rp = rest.pattern(); + if (typeof rp === 'string' && + // dots and empty were handled already + rp !== '..' && + rp !== '' && + rp !== '.') { + this.testString(e, rp, rest.rest(), absolute); + } + else if (rp === '..') { + /* c8 ignore start */ + const ep = e.parent || e; + /* c8 ignore stop */ + this.subwalks.add(ep, rest); + } + else if (rp instanceof RegExp) { + this.testRegExp(e, rp, rest.rest(), absolute); + } + } + } + testRegExp(e, p, rest, absolute) { + if (!p.test(e.name)) + return; + if (!rest) { + this.matches.add(e, absolute, false); + } + else { + this.subwalks.add(e, rest); + } + } + testString(e, p, rest, absolute) { + // should never happen? + if (!e.isNamed(p)) + return; + if (!rest) { + this.matches.add(e, absolute, false); + } + else { + this.subwalks.add(e, rest); + } + } +} +exports.Processor = Processor; +//# sourceMappingURL=processor.js.map + +/***/ }), + +/***/ 1157: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.GlobStream = exports.GlobWalker = exports.GlobUtil = void 0; +/** + * Single-use utility classes to provide functionality to the {@link Glob} + * methods. + * + * @module + */ +const minipass_1 = __nccwpck_require__(8275); +const ignore_js_1 = __nccwpck_require__(5637); +const processor_js_1 = __nccwpck_require__(7843); +const makeIgnore = (ignore, opts) => typeof ignore === 'string' ? new ignore_js_1.Ignore([ignore], opts) + : Array.isArray(ignore) ? new ignore_js_1.Ignore(ignore, opts) + : ignore; +/** + * basic walking utilities that all the glob walker types use + */ +class GlobUtil { + path; + patterns; + opts; + seen = new Set(); + paused = false; + aborted = false; + #onResume = []; + #ignore; + #sep; + signal; + maxDepth; + includeChildMatches; + constructor(patterns, path, opts) { + this.patterns = patterns; + this.path = path; + this.opts = opts; + this.#sep = !opts.posix && opts.platform === 'win32' ? '\\' : '/'; + this.includeChildMatches = opts.includeChildMatches !== false; + if (opts.ignore || !this.includeChildMatches) { + this.#ignore = makeIgnore(opts.ignore ?? [], opts); + if (!this.includeChildMatches && + typeof this.#ignore.add !== 'function') { + const m = 'cannot ignore child matches, ignore lacks add() method.'; + throw new Error(m); + } + } + // ignore, always set with maxDepth, but it's optional on the + // GlobOptions type + /* c8 ignore start */ + this.maxDepth = opts.maxDepth || Infinity; + /* c8 ignore stop */ + if (opts.signal) { + this.signal = opts.signal; + this.signal.addEventListener('abort', () => { + this.#onResume.length = 0; + }); + } + } + #ignored(path) { + return this.seen.has(path) || !!this.#ignore?.ignored?.(path); + } + #childrenIgnored(path) { + return !!this.#ignore?.childrenIgnored?.(path); + } + // backpressure mechanism + pause() { + this.paused = true; + } + resume() { + /* c8 ignore start */ + if (this.signal?.aborted) + return; + /* c8 ignore stop */ + this.paused = false; + let fn = undefined; + while (!this.paused && (fn = this.#onResume.shift())) { + fn(); + } + } + onResume(fn) { + if (this.signal?.aborted) + return; + /* c8 ignore start */ + if (!this.paused) { + fn(); + } + else { + /* c8 ignore stop */ + this.#onResume.push(fn); + } + } + // do the requisite realpath/stat checking, and return the path + // to add or undefined to filter it out. + async matchCheck(e, ifDir) { + if (ifDir && this.opts.nodir) + return undefined; + let rpc; + if (this.opts.realpath) { + rpc = e.realpathCached() || (await e.realpath()); + if (!rpc) + return undefined; + e = rpc; + } + const needStat = e.isUnknown() || this.opts.stat; + const s = needStat ? await e.lstat() : e; + if (this.opts.follow && this.opts.nodir && s?.isSymbolicLink()) { + const target = await s.realpath(); + /* c8 ignore start */ + if (target && (target.isUnknown() || this.opts.stat)) { + await target.lstat(); + } + /* c8 ignore stop */ + } + return this.matchCheckTest(s, ifDir); + } + matchCheckTest(e, ifDir) { + return (e && + (this.maxDepth === Infinity || e.depth() <= this.maxDepth) && + (!ifDir || e.canReaddir()) && + (!this.opts.nodir || !e.isDirectory()) && + (!this.opts.nodir || + !this.opts.follow || + !e.isSymbolicLink() || + !e.realpathCached()?.isDirectory()) && + !this.#ignored(e)) ? + e + : undefined; + } + matchCheckSync(e, ifDir) { + if (ifDir && this.opts.nodir) + return undefined; + let rpc; + if (this.opts.realpath) { + rpc = e.realpathCached() || e.realpathSync(); + if (!rpc) + return undefined; + e = rpc; + } + const needStat = e.isUnknown() || this.opts.stat; + const s = needStat ? e.lstatSync() : e; + if (this.opts.follow && this.opts.nodir && s?.isSymbolicLink()) { + const target = s.realpathSync(); + if (target && (target?.isUnknown() || this.opts.stat)) { + target.lstatSync(); + } + } + return this.matchCheckTest(s, ifDir); + } + matchFinish(e, absolute) { + if (this.#ignored(e)) + return; + // we know we have an ignore if this is false, but TS doesn't + if (!this.includeChildMatches && this.#ignore?.add) { + const ign = `${e.relativePosix()}/**`; + this.#ignore.add(ign); + } + const abs = this.opts.absolute === undefined ? absolute : this.opts.absolute; + this.seen.add(e); + const mark = this.opts.mark && e.isDirectory() ? this.#sep : ''; + // ok, we have what we need! + if (this.opts.withFileTypes) { + this.matchEmit(e); + } + else if (abs) { + const abs = this.opts.posix ? e.fullpathPosix() : e.fullpath(); + this.matchEmit(abs + mark); + } + else { + const rel = this.opts.posix ? e.relativePosix() : e.relative(); + const pre = this.opts.dotRelative && !rel.startsWith('..' + this.#sep) ? + '.' + this.#sep + : ''; + this.matchEmit(!rel ? '.' + mark : pre + rel + mark); + } + } + async match(e, absolute, ifDir) { + const p = await this.matchCheck(e, ifDir); + if (p) + this.matchFinish(p, absolute); + } + matchSync(e, absolute, ifDir) { + const p = this.matchCheckSync(e, ifDir); + if (p) + this.matchFinish(p, absolute); + } + walkCB(target, patterns, cb) { + /* c8 ignore start */ + if (this.signal?.aborted) + cb(); + /* c8 ignore stop */ + this.walkCB2(target, patterns, new processor_js_1.Processor(this.opts), cb); + } + walkCB2(target, patterns, processor, cb) { + if (this.#childrenIgnored(target)) + return cb(); + if (this.signal?.aborted) + cb(); + if (this.paused) { + this.onResume(() => this.walkCB2(target, patterns, processor, cb)); + return; + } + processor.processPatterns(target, patterns); + // done processing. all of the above is sync, can be abstracted out. + // subwalks is a map of paths to the entry filters they need + // matches is a map of paths to [absolute, ifDir] tuples. + let tasks = 1; + const next = () => { + if (--tasks === 0) + cb(); + }; + for (const [m, absolute, ifDir] of processor.matches.entries()) { + if (this.#ignored(m)) + continue; + tasks++; + this.match(m, absolute, ifDir).then(() => next()); + } + for (const t of processor.subwalkTargets()) { + if (this.maxDepth !== Infinity && t.depth() >= this.maxDepth) { + continue; + } + tasks++; + const childrenCached = t.readdirCached(); + if (t.calledReaddir()) + this.walkCB3(t, childrenCached, processor, next); + else { + t.readdirCB((_, entries) => this.walkCB3(t, entries, processor, next), true); + } + } + next(); + } + walkCB3(target, entries, processor, cb) { + processor = processor.filterEntries(target, entries); + let tasks = 1; + const next = () => { + if (--tasks === 0) + cb(); + }; + for (const [m, absolute, ifDir] of processor.matches.entries()) { + if (this.#ignored(m)) + continue; + tasks++; + this.match(m, absolute, ifDir).then(() => next()); + } + for (const [target, patterns] of processor.subwalks.entries()) { + tasks++; + this.walkCB2(target, patterns, processor.child(), next); + } + next(); + } + walkCBSync(target, patterns, cb) { + /* c8 ignore start */ + if (this.signal?.aborted) + cb(); + /* c8 ignore stop */ + this.walkCB2Sync(target, patterns, new processor_js_1.Processor(this.opts), cb); + } + walkCB2Sync(target, patterns, processor, cb) { + if (this.#childrenIgnored(target)) + return cb(); + if (this.signal?.aborted) + cb(); + if (this.paused) { + this.onResume(() => this.walkCB2Sync(target, patterns, processor, cb)); + return; + } + processor.processPatterns(target, patterns); + // done processing. all of the above is sync, can be abstracted out. + // subwalks is a map of paths to the entry filters they need + // matches is a map of paths to [absolute, ifDir] tuples. + let tasks = 1; + const next = () => { + if (--tasks === 0) + cb(); + }; + for (const [m, absolute, ifDir] of processor.matches.entries()) { + if (this.#ignored(m)) + continue; + this.matchSync(m, absolute, ifDir); + } + for (const t of processor.subwalkTargets()) { + if (this.maxDepth !== Infinity && t.depth() >= this.maxDepth) { + continue; + } + tasks++; + const children = t.readdirSync(); + this.walkCB3Sync(t, children, processor, next); + } + next(); + } + walkCB3Sync(target, entries, processor, cb) { + processor = processor.filterEntries(target, entries); + let tasks = 1; + const next = () => { + if (--tasks === 0) + cb(); + }; + for (const [m, absolute, ifDir] of processor.matches.entries()) { + if (this.#ignored(m)) + continue; + this.matchSync(m, absolute, ifDir); + } + for (const [target, patterns] of processor.subwalks.entries()) { + tasks++; + this.walkCB2Sync(target, patterns, processor.child(), next); + } + next(); + } +} +exports.GlobUtil = GlobUtil; +class GlobWalker extends GlobUtil { + matches = new Set(); + constructor(patterns, path, opts) { + super(patterns, path, opts); + } + matchEmit(e) { + this.matches.add(e); + } + async walk() { + if (this.signal?.aborted) + throw this.signal.reason; + if (this.path.isUnknown()) { + await this.path.lstat(); + } + await new Promise((res, rej) => { + this.walkCB(this.path, this.patterns, () => { + if (this.signal?.aborted) { + rej(this.signal.reason); + } + else { + res(this.matches); + } + }); + }); + return this.matches; + } + walkSync() { + if (this.signal?.aborted) + throw this.signal.reason; + if (this.path.isUnknown()) { + this.path.lstatSync(); + } + // nothing for the callback to do, because this never pauses + this.walkCBSync(this.path, this.patterns, () => { + if (this.signal?.aborted) + throw this.signal.reason; + }); + return this.matches; + } +} +exports.GlobWalker = GlobWalker; +class GlobStream extends GlobUtil { + results; + constructor(patterns, path, opts) { + super(patterns, path, opts); + this.results = new minipass_1.Minipass({ + signal: this.signal, + objectMode: true, + }); + this.results.on('drain', () => this.resume()); + this.results.on('resume', () => this.resume()); + } + matchEmit(e) { + this.results.write(e); + if (!this.results.flowing) + this.pause(); + } + stream() { + const target = this.path; + if (target.isUnknown()) { + target.lstat().then(() => { + this.walkCB(target, this.patterns, () => this.results.end()); + }); + } + else { + this.walkCB(target, this.patterns, () => this.results.end()); + } + return this.results; + } + streamSync() { + if (this.path.isUnknown()) { + this.path.lstatSync(); + } + this.walkCBSync(this.path, this.patterns, () => this.results.end()); + return this.results; + } +} +exports.GlobStream = GlobStream; +//# sourceMappingURL=walker.js.map + +/***/ }), + +/***/ 2477: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +/** + * @module LRUCache + */ +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.LRUCache = void 0; +const perf = typeof performance === 'object' && + performance && + typeof performance.now === 'function' + ? performance + : Date; +const warned = new Set(); +/* c8 ignore start */ +const PROCESS = (typeof process === 'object' && !!process ? process : {}); +/* c8 ignore start */ +const emitWarning = (msg, type, code, fn) => { + typeof PROCESS.emitWarning === 'function' + ? PROCESS.emitWarning(msg, type, code, fn) + : console.error(`[${code}] ${type}: ${msg}`); +}; +let AC = globalThis.AbortController; +let AS = globalThis.AbortSignal; +/* c8 ignore start */ +if (typeof AC === 'undefined') { + //@ts-ignore + AS = class AbortSignal { + onabort; + _onabort = []; + reason; + aborted = false; + addEventListener(_, fn) { + this._onabort.push(fn); + } + }; + //@ts-ignore + AC = class AbortController { + constructor() { + warnACPolyfill(); + } + signal = new AS(); + abort(reason) { + if (this.signal.aborted) + return; + //@ts-ignore + this.signal.reason = reason; + //@ts-ignore + this.signal.aborted = true; + //@ts-ignore + for (const fn of this.signal._onabort) { + fn(reason); + } + this.signal.onabort?.(reason); + } + }; + let printACPolyfillWarning = PROCESS.env?.LRU_CACHE_IGNORE_AC_WARNING !== '1'; + const warnACPolyfill = () => { + if (!printACPolyfillWarning) + return; + printACPolyfillWarning = false; + emitWarning('AbortController is not defined. If using lru-cache in ' + + 'node 14, load an AbortController polyfill from the ' + + '`node-abort-controller` package. A minimal polyfill is ' + + 'provided for use by LRUCache.fetch(), but it should not be ' + + 'relied upon in other contexts (eg, passing it to other APIs that ' + + 'use AbortController/AbortSignal might have undesirable effects). ' + + 'You may disable this with LRU_CACHE_IGNORE_AC_WARNING=1 in the env.', 'NO_ABORT_CONTROLLER', 'ENOTSUP', warnACPolyfill); + }; +} +/* c8 ignore stop */ +const shouldWarn = (code) => !warned.has(code); +const TYPE = Symbol('type'); +const isPosInt = (n) => n && n === Math.floor(n) && n > 0 && isFinite(n); +/* c8 ignore start */ +// This is a little bit ridiculous, tbh. +// The maximum array length is 2^32-1 or thereabouts on most JS impls. +// And well before that point, you're caching the entire world, I mean, +// that's ~32GB of just integers for the next/prev links, plus whatever +// else to hold that many keys and values. Just filling the memory with +// zeroes at init time is brutal when you get that big. +// But why not be complete? +// Maybe in the future, these limits will have expanded. +const getUintArray = (max) => !isPosInt(max) + ? null + : max <= Math.pow(2, 8) + ? Uint8Array + : max <= Math.pow(2, 16) + ? Uint16Array + : max <= Math.pow(2, 32) + ? Uint32Array + : max <= Number.MAX_SAFE_INTEGER + ? ZeroArray + : null; +/* c8 ignore stop */ +class ZeroArray extends Array { + constructor(size) { + super(size); + this.fill(0); + } +} +class Stack { + heap; + length; + // private constructor + static #constructing = false; + static create(max) { + const HeapCls = getUintArray(max); + if (!HeapCls) + return []; + Stack.#constructing = true; + const s = new Stack(max, HeapCls); + Stack.#constructing = false; + return s; + } + constructor(max, HeapCls) { + /* c8 ignore start */ + if (!Stack.#constructing) { + throw new TypeError('instantiate Stack using Stack.create(n)'); + } + /* c8 ignore stop */ + this.heap = new HeapCls(max); + this.length = 0; + } + push(n) { + this.heap[this.length++] = n; + } + pop() { + return this.heap[--this.length]; + } +} +/** + * Default export, the thing you're using this module to get. + * + * The `K` and `V` types define the key and value types, respectively. The + * optional `FC` type defines the type of the `context` object passed to + * `cache.fetch()` and `cache.memo()`. + * + * Keys and values **must not** be `null` or `undefined`. + * + * All properties from the options object (with the exception of `max`, + * `maxSize`, `fetchMethod`, `memoMethod`, `dispose` and `disposeAfter`) are + * added as normal public members. (The listed options are read-only getters.) + * + * Changing any of these will alter the defaults for subsequent method calls. + */ +class LRUCache { + // options that cannot be changed without disaster + #max; + #maxSize; + #dispose; + #disposeAfter; + #fetchMethod; + #memoMethod; + /** + * {@link LRUCache.OptionsBase.ttl} + */ + ttl; + /** + * {@link LRUCache.OptionsBase.ttlResolution} + */ + ttlResolution; + /** + * {@link LRUCache.OptionsBase.ttlAutopurge} + */ + ttlAutopurge; + /** + * {@link LRUCache.OptionsBase.updateAgeOnGet} + */ + updateAgeOnGet; + /** + * {@link LRUCache.OptionsBase.updateAgeOnHas} + */ + updateAgeOnHas; + /** + * {@link LRUCache.OptionsBase.allowStale} + */ + allowStale; + /** + * {@link LRUCache.OptionsBase.noDisposeOnSet} + */ + noDisposeOnSet; + /** + * {@link LRUCache.OptionsBase.noUpdateTTL} + */ + noUpdateTTL; + /** + * {@link LRUCache.OptionsBase.maxEntrySize} + */ + maxEntrySize; + /** + * {@link LRUCache.OptionsBase.sizeCalculation} + */ + sizeCalculation; + /** + * {@link LRUCache.OptionsBase.noDeleteOnFetchRejection} + */ + noDeleteOnFetchRejection; + /** + * {@link LRUCache.OptionsBase.noDeleteOnStaleGet} + */ + noDeleteOnStaleGet; + /** + * {@link LRUCache.OptionsBase.allowStaleOnFetchAbort} + */ + allowStaleOnFetchAbort; + /** + * {@link LRUCache.OptionsBase.allowStaleOnFetchRejection} + */ + allowStaleOnFetchRejection; + /** + * {@link LRUCache.OptionsBase.ignoreFetchAbort} + */ + ignoreFetchAbort; + // computed properties + #size; + #calculatedSize; + #keyMap; + #keyList; + #valList; + #next; + #prev; + #head; + #tail; + #free; + #disposed; + #sizes; + #starts; + #ttls; + #hasDispose; + #hasFetchMethod; + #hasDisposeAfter; + /** + * Do not call this method unless you need to inspect the + * inner workings of the cache. If anything returned by this + * object is modified in any way, strange breakage may occur. + * + * These fields are private for a reason! + * + * @internal + */ + static unsafeExposeInternals(c) { + return { + // properties + starts: c.#starts, + ttls: c.#ttls, + sizes: c.#sizes, + keyMap: c.#keyMap, + keyList: c.#keyList, + valList: c.#valList, + next: c.#next, + prev: c.#prev, + get head() { + return c.#head; + }, + get tail() { + return c.#tail; + }, + free: c.#free, + // methods + isBackgroundFetch: (p) => c.#isBackgroundFetch(p), + backgroundFetch: (k, index, options, context) => c.#backgroundFetch(k, index, options, context), + moveToTail: (index) => c.#moveToTail(index), + indexes: (options) => c.#indexes(options), + rindexes: (options) => c.#rindexes(options), + isStale: (index) => c.#isStale(index), + }; + } + // Protected read-only members + /** + * {@link LRUCache.OptionsBase.max} (read-only) + */ + get max() { + return this.#max; + } + /** + * {@link LRUCache.OptionsBase.maxSize} (read-only) + */ + get maxSize() { + return this.#maxSize; + } + /** + * The total computed size of items in the cache (read-only) + */ + get calculatedSize() { + return this.#calculatedSize; + } + /** + * The number of items stored in the cache (read-only) + */ + get size() { + return this.#size; + } + /** + * {@link LRUCache.OptionsBase.fetchMethod} (read-only) + */ + get fetchMethod() { + return this.#fetchMethod; + } + get memoMethod() { + return this.#memoMethod; + } + /** + * {@link LRUCache.OptionsBase.dispose} (read-only) + */ + get dispose() { + return this.#dispose; + } + /** + * {@link LRUCache.OptionsBase.disposeAfter} (read-only) + */ + get disposeAfter() { + return this.#disposeAfter; + } + constructor(options) { + const { max = 0, ttl, ttlResolution = 1, ttlAutopurge, updateAgeOnGet, updateAgeOnHas, allowStale, dispose, disposeAfter, noDisposeOnSet, noUpdateTTL, maxSize = 0, maxEntrySize = 0, sizeCalculation, fetchMethod, memoMethod, noDeleteOnFetchRejection, noDeleteOnStaleGet, allowStaleOnFetchRejection, allowStaleOnFetchAbort, ignoreFetchAbort, } = options; + if (max !== 0 && !isPosInt(max)) { + throw new TypeError('max option must be a nonnegative integer'); + } + const UintArray = max ? getUintArray(max) : Array; + if (!UintArray) { + throw new Error('invalid max value: ' + max); + } + this.#max = max; + this.#maxSize = maxSize; + this.maxEntrySize = maxEntrySize || this.#maxSize; + this.sizeCalculation = sizeCalculation; + if (this.sizeCalculation) { + if (!this.#maxSize && !this.maxEntrySize) { + throw new TypeError('cannot set sizeCalculation without setting maxSize or maxEntrySize'); + } + if (typeof this.sizeCalculation !== 'function') { + throw new TypeError('sizeCalculation set to non-function'); + } + } + if (memoMethod !== undefined && + typeof memoMethod !== 'function') { + throw new TypeError('memoMethod must be a function if defined'); + } + this.#memoMethod = memoMethod; + if (fetchMethod !== undefined && + typeof fetchMethod !== 'function') { + throw new TypeError('fetchMethod must be a function if specified'); + } + this.#fetchMethod = fetchMethod; + this.#hasFetchMethod = !!fetchMethod; + this.#keyMap = new Map(); + this.#keyList = new Array(max).fill(undefined); + this.#valList = new Array(max).fill(undefined); + this.#next = new UintArray(max); + this.#prev = new UintArray(max); + this.#head = 0; + this.#tail = 0; + this.#free = Stack.create(max); + this.#size = 0; + this.#calculatedSize = 0; + if (typeof dispose === 'function') { + this.#dispose = dispose; + } + if (typeof disposeAfter === 'function') { + this.#disposeAfter = disposeAfter; + this.#disposed = []; + } + else { + this.#disposeAfter = undefined; + this.#disposed = undefined; + } + this.#hasDispose = !!this.#dispose; + this.#hasDisposeAfter = !!this.#disposeAfter; + this.noDisposeOnSet = !!noDisposeOnSet; + this.noUpdateTTL = !!noUpdateTTL; + this.noDeleteOnFetchRejection = !!noDeleteOnFetchRejection; + this.allowStaleOnFetchRejection = !!allowStaleOnFetchRejection; + this.allowStaleOnFetchAbort = !!allowStaleOnFetchAbort; + this.ignoreFetchAbort = !!ignoreFetchAbort; + // NB: maxEntrySize is set to maxSize if it's set + if (this.maxEntrySize !== 0) { + if (this.#maxSize !== 0) { + if (!isPosInt(this.#maxSize)) { + throw new TypeError('maxSize must be a positive integer if specified'); + } + } + if (!isPosInt(this.maxEntrySize)) { + throw new TypeError('maxEntrySize must be a positive integer if specified'); + } + this.#initializeSizeTracking(); + } + this.allowStale = !!allowStale; + this.noDeleteOnStaleGet = !!noDeleteOnStaleGet; + this.updateAgeOnGet = !!updateAgeOnGet; + this.updateAgeOnHas = !!updateAgeOnHas; + this.ttlResolution = + isPosInt(ttlResolution) || ttlResolution === 0 + ? ttlResolution + : 1; + this.ttlAutopurge = !!ttlAutopurge; + this.ttl = ttl || 0; + if (this.ttl) { + if (!isPosInt(this.ttl)) { + throw new TypeError('ttl must be a positive integer if specified'); + } + this.#initializeTTLTracking(); + } + // do not allow completely unbounded caches + if (this.#max === 0 && this.ttl === 0 && this.#maxSize === 0) { + throw new TypeError('At least one of max, maxSize, or ttl is required'); + } + if (!this.ttlAutopurge && !this.#max && !this.#maxSize) { + const code = 'LRU_CACHE_UNBOUNDED'; + if (shouldWarn(code)) { + warned.add(code); + const msg = 'TTL caching without ttlAutopurge, max, or maxSize can ' + + 'result in unbounded memory consumption.'; + emitWarning(msg, 'UnboundedCacheWarning', code, LRUCache); + } + } + } + /** + * Return the number of ms left in the item's TTL. If item is not in cache, + * returns `0`. Returns `Infinity` if item is in cache without a defined TTL. + */ + getRemainingTTL(key) { + return this.#keyMap.has(key) ? Infinity : 0; + } + #initializeTTLTracking() { + const ttls = new ZeroArray(this.#max); + const starts = new ZeroArray(this.#max); + this.#ttls = ttls; + this.#starts = starts; + this.#setItemTTL = (index, ttl, start = perf.now()) => { + starts[index] = ttl !== 0 ? start : 0; + ttls[index] = ttl; + if (ttl !== 0 && this.ttlAutopurge) { + const t = setTimeout(() => { + if (this.#isStale(index)) { + this.#delete(this.#keyList[index], 'expire'); + } + }, ttl + 1); + // unref() not supported on all platforms + /* c8 ignore start */ + if (t.unref) { + t.unref(); + } + /* c8 ignore stop */ + } + }; + this.#updateItemAge = index => { + starts[index] = ttls[index] !== 0 ? perf.now() : 0; + }; + this.#statusTTL = (status, index) => { + if (ttls[index]) { + const ttl = ttls[index]; + const start = starts[index]; + /* c8 ignore next */ + if (!ttl || !start) + return; + status.ttl = ttl; + status.start = start; + status.now = cachedNow || getNow(); + const age = status.now - start; + status.remainingTTL = ttl - age; + } + }; + // debounce calls to perf.now() to 1s so we're not hitting + // that costly call repeatedly. + let cachedNow = 0; + const getNow = () => { + const n = perf.now(); + if (this.ttlResolution > 0) { + cachedNow = n; + const t = setTimeout(() => (cachedNow = 0), this.ttlResolution); + // not available on all platforms + /* c8 ignore start */ + if (t.unref) { + t.unref(); + } + /* c8 ignore stop */ + } + return n; + }; + this.getRemainingTTL = key => { + const index = this.#keyMap.get(key); + if (index === undefined) { + return 0; + } + const ttl = ttls[index]; + const start = starts[index]; + if (!ttl || !start) { + return Infinity; + } + const age = (cachedNow || getNow()) - start; + return ttl - age; + }; + this.#isStale = index => { + const s = starts[index]; + const t = ttls[index]; + return !!t && !!s && (cachedNow || getNow()) - s > t; + }; + } + // conditionally set private methods related to TTL + #updateItemAge = () => { }; + #statusTTL = () => { }; + #setItemTTL = () => { }; + /* c8 ignore stop */ + #isStale = () => false; + #initializeSizeTracking() { + const sizes = new ZeroArray(this.#max); + this.#calculatedSize = 0; + this.#sizes = sizes; + this.#removeItemSize = index => { + this.#calculatedSize -= sizes[index]; + sizes[index] = 0; + }; + this.#requireSize = (k, v, size, sizeCalculation) => { + // provisionally accept background fetches. + // actual value size will be checked when they return. + if (this.#isBackgroundFetch(v)) { + return 0; + } + if (!isPosInt(size)) { + if (sizeCalculation) { + if (typeof sizeCalculation !== 'function') { + throw new TypeError('sizeCalculation must be a function'); + } + size = sizeCalculation(v, k); + if (!isPosInt(size)) { + throw new TypeError('sizeCalculation return invalid (expect positive integer)'); + } + } + else { + throw new TypeError('invalid size value (must be positive integer). ' + + 'When maxSize or maxEntrySize is used, sizeCalculation ' + + 'or size must be set.'); + } + } + return size; + }; + this.#addItemSize = (index, size, status) => { + sizes[index] = size; + if (this.#maxSize) { + const maxSize = this.#maxSize - sizes[index]; + while (this.#calculatedSize > maxSize) { + this.#evict(true); + } + } + this.#calculatedSize += sizes[index]; + if (status) { + status.entrySize = size; + status.totalCalculatedSize = this.#calculatedSize; + } + }; + } + #removeItemSize = _i => { }; + #addItemSize = (_i, _s, _st) => { }; + #requireSize = (_k, _v, size, sizeCalculation) => { + if (size || sizeCalculation) { + throw new TypeError('cannot set size without setting maxSize or maxEntrySize on cache'); + } + return 0; + }; + *#indexes({ allowStale = this.allowStale } = {}) { + if (this.#size) { + for (let i = this.#tail; true;) { + if (!this.#isValidIndex(i)) { + break; + } + if (allowStale || !this.#isStale(i)) { + yield i; + } + if (i === this.#head) { + break; + } + else { + i = this.#prev[i]; + } + } + } + } + *#rindexes({ allowStale = this.allowStale } = {}) { + if (this.#size) { + for (let i = this.#head; true;) { + if (!this.#isValidIndex(i)) { + break; + } + if (allowStale || !this.#isStale(i)) { + yield i; + } + if (i === this.#tail) { + break; + } + else { + i = this.#next[i]; + } + } + } + } + #isValidIndex(index) { + return (index !== undefined && + this.#keyMap.get(this.#keyList[index]) === index); + } + /** + * Return a generator yielding `[key, value]` pairs, + * in order from most recently used to least recently used. + */ + *entries() { + for (const i of this.#indexes()) { + if (this.#valList[i] !== undefined && + this.#keyList[i] !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield [this.#keyList[i], this.#valList[i]]; + } + } + } + /** + * Inverse order version of {@link LRUCache.entries} + * + * Return a generator yielding `[key, value]` pairs, + * in order from least recently used to most recently used. + */ + *rentries() { + for (const i of this.#rindexes()) { + if (this.#valList[i] !== undefined && + this.#keyList[i] !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield [this.#keyList[i], this.#valList[i]]; + } + } + } + /** + * Return a generator yielding the keys in the cache, + * in order from most recently used to least recently used. + */ + *keys() { + for (const i of this.#indexes()) { + const k = this.#keyList[i]; + if (k !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield k; + } + } + } + /** + * Inverse order version of {@link LRUCache.keys} + * + * Return a generator yielding the keys in the cache, + * in order from least recently used to most recently used. + */ + *rkeys() { + for (const i of this.#rindexes()) { + const k = this.#keyList[i]; + if (k !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield k; + } + } + } + /** + * Return a generator yielding the values in the cache, + * in order from most recently used to least recently used. + */ + *values() { + for (const i of this.#indexes()) { + const v = this.#valList[i]; + if (v !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield this.#valList[i]; + } + } + } + /** + * Inverse order version of {@link LRUCache.values} + * + * Return a generator yielding the values in the cache, + * in order from least recently used to most recently used. + */ + *rvalues() { + for (const i of this.#rindexes()) { + const v = this.#valList[i]; + if (v !== undefined && + !this.#isBackgroundFetch(this.#valList[i])) { + yield this.#valList[i]; + } + } + } + /** + * Iterating over the cache itself yields the same results as + * {@link LRUCache.entries} + */ + [Symbol.iterator]() { + return this.entries(); + } + /** + * A String value that is used in the creation of the default string + * description of an object. Called by the built-in method + * `Object.prototype.toString`. + */ + [Symbol.toStringTag] = 'LRUCache'; + /** + * Find a value for which the supplied fn method returns a truthy value, + * similar to `Array.find()`. fn is called as `fn(value, key, cache)`. + */ + find(fn, getOptions = {}) { + for (const i of this.#indexes()) { + const v = this.#valList[i]; + const value = this.#isBackgroundFetch(v) + ? v.__staleWhileFetching + : v; + if (value === undefined) + continue; + if (fn(value, this.#keyList[i], this)) { + return this.get(this.#keyList[i], getOptions); + } + } + } + /** + * Call the supplied function on each item in the cache, in order from most + * recently used to least recently used. + * + * `fn` is called as `fn(value, key, cache)`. + * + * If `thisp` is provided, function will be called in the `this`-context of + * the provided object, or the cache if no `thisp` object is provided. + * + * Does not update age or recenty of use, or iterate over stale values. + */ + forEach(fn, thisp = this) { + for (const i of this.#indexes()) { + const v = this.#valList[i]; + const value = this.#isBackgroundFetch(v) + ? v.__staleWhileFetching + : v; + if (value === undefined) + continue; + fn.call(thisp, value, this.#keyList[i], this); + } + } + /** + * The same as {@link LRUCache.forEach} but items are iterated over in + * reverse order. (ie, less recently used items are iterated over first.) + */ + rforEach(fn, thisp = this) { + for (const i of this.#rindexes()) { + const v = this.#valList[i]; + const value = this.#isBackgroundFetch(v) + ? v.__staleWhileFetching + : v; + if (value === undefined) + continue; + fn.call(thisp, value, this.#keyList[i], this); + } + } + /** + * Delete any stale entries. Returns true if anything was removed, + * false otherwise. + */ + purgeStale() { + let deleted = false; + for (const i of this.#rindexes({ allowStale: true })) { + if (this.#isStale(i)) { + this.#delete(this.#keyList[i], 'expire'); + deleted = true; + } + } + return deleted; + } + /** + * Get the extended info about a given entry, to get its value, size, and + * TTL info simultaneously. Returns `undefined` if the key is not present. + * + * Unlike {@link LRUCache#dump}, which is designed to be portable and survive + * serialization, the `start` value is always the current timestamp, and the + * `ttl` is a calculated remaining time to live (negative if expired). + * + * Always returns stale values, if their info is found in the cache, so be + * sure to check for expirations (ie, a negative {@link LRUCache.Entry#ttl}) + * if relevant. + */ + info(key) { + const i = this.#keyMap.get(key); + if (i === undefined) + return undefined; + const v = this.#valList[i]; + const value = this.#isBackgroundFetch(v) + ? v.__staleWhileFetching + : v; + if (value === undefined) + return undefined; + const entry = { value }; + if (this.#ttls && this.#starts) { + const ttl = this.#ttls[i]; + const start = this.#starts[i]; + if (ttl && start) { + const remain = ttl - (perf.now() - start); + entry.ttl = remain; + entry.start = Date.now(); + } + } + if (this.#sizes) { + entry.size = this.#sizes[i]; + } + return entry; + } + /** + * Return an array of [key, {@link LRUCache.Entry}] tuples which can be + * passed to {@link LRLUCache#load}. + * + * The `start` fields are calculated relative to a portable `Date.now()` + * timestamp, even if `performance.now()` is available. + * + * Stale entries are always included in the `dump`, even if + * {@link LRUCache.OptionsBase.allowStale} is false. + * + * Note: this returns an actual array, not a generator, so it can be more + * easily passed around. + */ + dump() { + const arr = []; + for (const i of this.#indexes({ allowStale: true })) { + const key = this.#keyList[i]; + const v = this.#valList[i]; + const value = this.#isBackgroundFetch(v) + ? v.__staleWhileFetching + : v; + if (value === undefined || key === undefined) + continue; + const entry = { value }; + if (this.#ttls && this.#starts) { + entry.ttl = this.#ttls[i]; + // always dump the start relative to a portable timestamp + // it's ok for this to be a bit slow, it's a rare operation. + const age = perf.now() - this.#starts[i]; + entry.start = Math.floor(Date.now() - age); + } + if (this.#sizes) { + entry.size = this.#sizes[i]; + } + arr.unshift([key, entry]); + } + return arr; + } + /** + * Reset the cache and load in the items in entries in the order listed. + * + * The shape of the resulting cache may be different if the same options are + * not used in both caches. + * + * The `start` fields are assumed to be calculated relative to a portable + * `Date.now()` timestamp, even if `performance.now()` is available. + */ + load(arr) { + this.clear(); + for (const [key, entry] of arr) { + if (entry.start) { + // entry.start is a portable timestamp, but we may be using + // node's performance.now(), so calculate the offset, so that + // we get the intended remaining TTL, no matter how long it's + // been on ice. + // + // it's ok for this to be a bit slow, it's a rare operation. + const age = Date.now() - entry.start; + entry.start = perf.now() - age; + } + this.set(key, entry.value, entry); + } + } + /** + * Add a value to the cache. + * + * Note: if `undefined` is specified as a value, this is an alias for + * {@link LRUCache#delete} + * + * Fields on the {@link LRUCache.SetOptions} options param will override + * their corresponding values in the constructor options for the scope + * of this single `set()` operation. + * + * If `start` is provided, then that will set the effective start + * time for the TTL calculation. Note that this must be a previous + * value of `performance.now()` if supported, or a previous value of + * `Date.now()` if not. + * + * Options object may also include `size`, which will prevent + * calling the `sizeCalculation` function and just use the specified + * number if it is a positive integer, and `noDisposeOnSet` which + * will prevent calling a `dispose` function in the case of + * overwrites. + * + * If the `size` (or return value of `sizeCalculation`) for a given + * entry is greater than `maxEntrySize`, then the item will not be + * added to the cache. + * + * Will update the recency of the entry. + * + * If the value is `undefined`, then this is an alias for + * `cache.delete(key)`. `undefined` is never stored in the cache. + */ + set(k, v, setOptions = {}) { + if (v === undefined) { + this.delete(k); + return this; + } + const { ttl = this.ttl, start, noDisposeOnSet = this.noDisposeOnSet, sizeCalculation = this.sizeCalculation, status, } = setOptions; + let { noUpdateTTL = this.noUpdateTTL } = setOptions; + const size = this.#requireSize(k, v, setOptions.size || 0, sizeCalculation); + // if the item doesn't fit, don't do anything + // NB: maxEntrySize set to maxSize by default + if (this.maxEntrySize && size > this.maxEntrySize) { + if (status) { + status.set = 'miss'; + status.maxEntrySizeExceeded = true; + } + // have to delete, in case something is there already. + this.#delete(k, 'set'); + return this; + } + let index = this.#size === 0 ? undefined : this.#keyMap.get(k); + if (index === undefined) { + // addition + index = (this.#size === 0 + ? this.#tail + : this.#free.length !== 0 + ? this.#free.pop() + : this.#size === this.#max + ? this.#evict(false) + : this.#size); + this.#keyList[index] = k; + this.#valList[index] = v; + this.#keyMap.set(k, index); + this.#next[this.#tail] = index; + this.#prev[index] = this.#tail; + this.#tail = index; + this.#size++; + this.#addItemSize(index, size, status); + if (status) + status.set = 'add'; + noUpdateTTL = false; + } + else { + // update + this.#moveToTail(index); + const oldVal = this.#valList[index]; + if (v !== oldVal) { + if (this.#hasFetchMethod && this.#isBackgroundFetch(oldVal)) { + oldVal.__abortController.abort(new Error('replaced')); + const { __staleWhileFetching: s } = oldVal; + if (s !== undefined && !noDisposeOnSet) { + if (this.#hasDispose) { + this.#dispose?.(s, k, 'set'); + } + if (this.#hasDisposeAfter) { + this.#disposed?.push([s, k, 'set']); + } + } + } + else if (!noDisposeOnSet) { + if (this.#hasDispose) { + this.#dispose?.(oldVal, k, 'set'); + } + if (this.#hasDisposeAfter) { + this.#disposed?.push([oldVal, k, 'set']); + } + } + this.#removeItemSize(index); + this.#addItemSize(index, size, status); + this.#valList[index] = v; + if (status) { + status.set = 'replace'; + const oldValue = oldVal && this.#isBackgroundFetch(oldVal) + ? oldVal.__staleWhileFetching + : oldVal; + if (oldValue !== undefined) + status.oldValue = oldValue; + } + } + else if (status) { + status.set = 'update'; + } + } + if (ttl !== 0 && !this.#ttls) { + this.#initializeTTLTracking(); + } + if (this.#ttls) { + if (!noUpdateTTL) { + this.#setItemTTL(index, ttl, start); + } + if (status) + this.#statusTTL(status, index); + } + if (!noDisposeOnSet && this.#hasDisposeAfter && this.#disposed) { + const dt = this.#disposed; + let task; + while ((task = dt?.shift())) { + this.#disposeAfter?.(...task); + } + } + return this; + } + /** + * Evict the least recently used item, returning its value or + * `undefined` if cache is empty. + */ + pop() { + try { + while (this.#size) { + const val = this.#valList[this.#head]; + this.#evict(true); + if (this.#isBackgroundFetch(val)) { + if (val.__staleWhileFetching) { + return val.__staleWhileFetching; + } + } + else if (val !== undefined) { + return val; + } + } + } + finally { + if (this.#hasDisposeAfter && this.#disposed) { + const dt = this.#disposed; + let task; + while ((task = dt?.shift())) { + this.#disposeAfter?.(...task); + } + } + } + } + #evict(free) { + const head = this.#head; + const k = this.#keyList[head]; + const v = this.#valList[head]; + if (this.#hasFetchMethod && this.#isBackgroundFetch(v)) { + v.__abortController.abort(new Error('evicted')); + } + else if (this.#hasDispose || this.#hasDisposeAfter) { + if (this.#hasDispose) { + this.#dispose?.(v, k, 'evict'); + } + if (this.#hasDisposeAfter) { + this.#disposed?.push([v, k, 'evict']); + } + } + this.#removeItemSize(head); + // if we aren't about to use the index, then null these out + if (free) { + this.#keyList[head] = undefined; + this.#valList[head] = undefined; + this.#free.push(head); + } + if (this.#size === 1) { + this.#head = this.#tail = 0; + this.#free.length = 0; + } + else { + this.#head = this.#next[head]; + } + this.#keyMap.delete(k); + this.#size--; + return head; + } + /** + * Check if a key is in the cache, without updating the recency of use. + * Will return false if the item is stale, even though it is technically + * in the cache. + * + * Check if a key is in the cache, without updating the recency of + * use. Age is updated if {@link LRUCache.OptionsBase.updateAgeOnHas} is set + * to `true` in either the options or the constructor. + * + * Will return `false` if the item is stale, even though it is technically in + * the cache. The difference can be determined (if it matters) by using a + * `status` argument, and inspecting the `has` field. + * + * Will not update item age unless + * {@link LRUCache.OptionsBase.updateAgeOnHas} is set. + */ + has(k, hasOptions = {}) { + const { updateAgeOnHas = this.updateAgeOnHas, status } = hasOptions; + const index = this.#keyMap.get(k); + if (index !== undefined) { + const v = this.#valList[index]; + if (this.#isBackgroundFetch(v) && + v.__staleWhileFetching === undefined) { + return false; + } + if (!this.#isStale(index)) { + if (updateAgeOnHas) { + this.#updateItemAge(index); + } + if (status) { + status.has = 'hit'; + this.#statusTTL(status, index); + } + return true; + } + else if (status) { + status.has = 'stale'; + this.#statusTTL(status, index); + } + } + else if (status) { + status.has = 'miss'; + } + return false; + } + /** + * Like {@link LRUCache#get} but doesn't update recency or delete stale + * items. + * + * Returns `undefined` if the item is stale, unless + * {@link LRUCache.OptionsBase.allowStale} is set. + */ + peek(k, peekOptions = {}) { + const { allowStale = this.allowStale } = peekOptions; + const index = this.#keyMap.get(k); + if (index === undefined || + (!allowStale && this.#isStale(index))) { + return; + } + const v = this.#valList[index]; + // either stale and allowed, or forcing a refresh of non-stale value + return this.#isBackgroundFetch(v) ? v.__staleWhileFetching : v; + } + #backgroundFetch(k, index, options, context) { + const v = index === undefined ? undefined : this.#valList[index]; + if (this.#isBackgroundFetch(v)) { + return v; + } + const ac = new AC(); + const { signal } = options; + // when/if our AC signals, then stop listening to theirs. + signal?.addEventListener('abort', () => ac.abort(signal.reason), { + signal: ac.signal, + }); + const fetchOpts = { + signal: ac.signal, + options, + context, + }; + const cb = (v, updateCache = false) => { + const { aborted } = ac.signal; + const ignoreAbort = options.ignoreFetchAbort && v !== undefined; + if (options.status) { + if (aborted && !updateCache) { + options.status.fetchAborted = true; + options.status.fetchError = ac.signal.reason; + if (ignoreAbort) + options.status.fetchAbortIgnored = true; + } + else { + options.status.fetchResolved = true; + } + } + if (aborted && !ignoreAbort && !updateCache) { + return fetchFail(ac.signal.reason); + } + // either we didn't abort, and are still here, or we did, and ignored + const bf = p; + if (this.#valList[index] === p) { + if (v === undefined) { + if (bf.__staleWhileFetching) { + this.#valList[index] = bf.__staleWhileFetching; + } + else { + this.#delete(k, 'fetch'); + } + } + else { + if (options.status) + options.status.fetchUpdated = true; + this.set(k, v, fetchOpts.options); + } + } + return v; + }; + const eb = (er) => { + if (options.status) { + options.status.fetchRejected = true; + options.status.fetchError = er; + } + return fetchFail(er); + }; + const fetchFail = (er) => { + const { aborted } = ac.signal; + const allowStaleAborted = aborted && options.allowStaleOnFetchAbort; + const allowStale = allowStaleAborted || options.allowStaleOnFetchRejection; + const noDelete = allowStale || options.noDeleteOnFetchRejection; + const bf = p; + if (this.#valList[index] === p) { + // if we allow stale on fetch rejections, then we need to ensure that + // the stale value is not removed from the cache when the fetch fails. + const del = !noDelete || bf.__staleWhileFetching === undefined; + if (del) { + this.#delete(k, 'fetch'); + } + else if (!allowStaleAborted) { + // still replace the *promise* with the stale value, + // since we are done with the promise at this point. + // leave it untouched if we're still waiting for an + // aborted background fetch that hasn't yet returned. + this.#valList[index] = bf.__staleWhileFetching; + } + } + if (allowStale) { + if (options.status && bf.__staleWhileFetching !== undefined) { + options.status.returnedStale = true; + } + return bf.__staleWhileFetching; + } + else if (bf.__returned === bf) { + throw er; + } + }; + const pcall = (res, rej) => { + const fmp = this.#fetchMethod?.(k, v, fetchOpts); + if (fmp && fmp instanceof Promise) { + fmp.then(v => res(v === undefined ? undefined : v), rej); + } + // ignored, we go until we finish, regardless. + // defer check until we are actually aborting, + // so fetchMethod can override. + ac.signal.addEventListener('abort', () => { + if (!options.ignoreFetchAbort || + options.allowStaleOnFetchAbort) { + res(undefined); + // when it eventually resolves, update the cache. + if (options.allowStaleOnFetchAbort) { + res = v => cb(v, true); + } + } + }); + }; + if (options.status) + options.status.fetchDispatched = true; + const p = new Promise(pcall).then(cb, eb); + const bf = Object.assign(p, { + __abortController: ac, + __staleWhileFetching: v, + __returned: undefined, + }); + if (index === undefined) { + // internal, don't expose status. + this.set(k, bf, { ...fetchOpts.options, status: undefined }); + index = this.#keyMap.get(k); + } + else { + this.#valList[index] = bf; + } + return bf; + } + #isBackgroundFetch(p) { + if (!this.#hasFetchMethod) + return false; + const b = p; + return (!!b && + b instanceof Promise && + b.hasOwnProperty('__staleWhileFetching') && + b.__abortController instanceof AC); + } + async fetch(k, fetchOptions = {}) { + const { + // get options + allowStale = this.allowStale, updateAgeOnGet = this.updateAgeOnGet, noDeleteOnStaleGet = this.noDeleteOnStaleGet, + // set options + ttl = this.ttl, noDisposeOnSet = this.noDisposeOnSet, size = 0, sizeCalculation = this.sizeCalculation, noUpdateTTL = this.noUpdateTTL, + // fetch exclusive options + noDeleteOnFetchRejection = this.noDeleteOnFetchRejection, allowStaleOnFetchRejection = this.allowStaleOnFetchRejection, ignoreFetchAbort = this.ignoreFetchAbort, allowStaleOnFetchAbort = this.allowStaleOnFetchAbort, context, forceRefresh = false, status, signal, } = fetchOptions; + if (!this.#hasFetchMethod) { + if (status) + status.fetch = 'get'; + return this.get(k, { + allowStale, + updateAgeOnGet, + noDeleteOnStaleGet, + status, + }); + } + const options = { + allowStale, + updateAgeOnGet, + noDeleteOnStaleGet, + ttl, + noDisposeOnSet, + size, + sizeCalculation, + noUpdateTTL, + noDeleteOnFetchRejection, + allowStaleOnFetchRejection, + allowStaleOnFetchAbort, + ignoreFetchAbort, + status, + signal, + }; + let index = this.#keyMap.get(k); + if (index === undefined) { + if (status) + status.fetch = 'miss'; + const p = this.#backgroundFetch(k, index, options, context); + return (p.__returned = p); + } + else { + // in cache, maybe already fetching + const v = this.#valList[index]; + if (this.#isBackgroundFetch(v)) { + const stale = allowStale && v.__staleWhileFetching !== undefined; + if (status) { + status.fetch = 'inflight'; + if (stale) + status.returnedStale = true; + } + return stale ? v.__staleWhileFetching : (v.__returned = v); + } + // if we force a refresh, that means do NOT serve the cached value, + // unless we are already in the process of refreshing the cache. + const isStale = this.#isStale(index); + if (!forceRefresh && !isStale) { + if (status) + status.fetch = 'hit'; + this.#moveToTail(index); + if (updateAgeOnGet) { + this.#updateItemAge(index); + } + if (status) + this.#statusTTL(status, index); + return v; + } + // ok, it is stale or a forced refresh, and not already fetching. + // refresh the cache. + const p = this.#backgroundFetch(k, index, options, context); + const hasStale = p.__staleWhileFetching !== undefined; + const staleVal = hasStale && allowStale; + if (status) { + status.fetch = isStale ? 'stale' : 'refresh'; + if (staleVal && isStale) + status.returnedStale = true; + } + return staleVal ? p.__staleWhileFetching : (p.__returned = p); + } + } + async forceFetch(k, fetchOptions = {}) { + const v = await this.fetch(k, fetchOptions); + if (v === undefined) + throw new Error('fetch() returned undefined'); + return v; + } + memo(k, memoOptions = {}) { + const memoMethod = this.#memoMethod; + if (!memoMethod) { + throw new Error('no memoMethod provided to constructor'); + } + const { context, forceRefresh, ...options } = memoOptions; + const v = this.get(k, options); + if (!forceRefresh && v !== undefined) + return v; + const vv = memoMethod(k, v, { + options, + context, + }); + this.set(k, vv, options); + return vv; + } + /** + * Return a value from the cache. Will update the recency of the cache + * entry found. + * + * If the key is not found, get() will return `undefined`. + */ + get(k, getOptions = {}) { + const { allowStale = this.allowStale, updateAgeOnGet = this.updateAgeOnGet, noDeleteOnStaleGet = this.noDeleteOnStaleGet, status, } = getOptions; + const index = this.#keyMap.get(k); + if (index !== undefined) { + const value = this.#valList[index]; + const fetching = this.#isBackgroundFetch(value); + if (status) + this.#statusTTL(status, index); + if (this.#isStale(index)) { + if (status) + status.get = 'stale'; + // delete only if not an in-flight background fetch + if (!fetching) { + if (!noDeleteOnStaleGet) { + this.#delete(k, 'expire'); + } + if (status && allowStale) + status.returnedStale = true; + return allowStale ? value : undefined; + } + else { + if (status && + allowStale && + value.__staleWhileFetching !== undefined) { + status.returnedStale = true; + } + return allowStale ? value.__staleWhileFetching : undefined; + } + } + else { + if (status) + status.get = 'hit'; + // if we're currently fetching it, we don't actually have it yet + // it's not stale, which means this isn't a staleWhileRefetching. + // If it's not stale, and fetching, AND has a __staleWhileFetching + // value, then that means the user fetched with {forceRefresh:true}, + // so it's safe to return that value. + if (fetching) { + return value.__staleWhileFetching; + } + this.#moveToTail(index); + if (updateAgeOnGet) { + this.#updateItemAge(index); + } + return value; + } + } + else if (status) { + status.get = 'miss'; + } + } + #connect(p, n) { + this.#prev[n] = p; + this.#next[p] = n; + } + #moveToTail(index) { + // if tail already, nothing to do + // if head, move head to next[index] + // else + // move next[prev[index]] to next[index] (head has no prev) + // move prev[next[index]] to prev[index] + // prev[index] = tail + // next[tail] = index + // tail = index + if (index !== this.#tail) { + if (index === this.#head) { + this.#head = this.#next[index]; + } + else { + this.#connect(this.#prev[index], this.#next[index]); + } + this.#connect(this.#tail, index); + this.#tail = index; + } + } + /** + * Deletes a key out of the cache. + * + * Returns true if the key was deleted, false otherwise. + */ + delete(k) { + return this.#delete(k, 'delete'); + } + #delete(k, reason) { + let deleted = false; + if (this.#size !== 0) { + const index = this.#keyMap.get(k); + if (index !== undefined) { + deleted = true; + if (this.#size === 1) { + this.#clear(reason); + } + else { + this.#removeItemSize(index); + const v = this.#valList[index]; + if (this.#isBackgroundFetch(v)) { + v.__abortController.abort(new Error('deleted')); + } + else if (this.#hasDispose || this.#hasDisposeAfter) { + if (this.#hasDispose) { + this.#dispose?.(v, k, reason); + } + if (this.#hasDisposeAfter) { + this.#disposed?.push([v, k, reason]); + } + } + this.#keyMap.delete(k); + this.#keyList[index] = undefined; + this.#valList[index] = undefined; + if (index === this.#tail) { + this.#tail = this.#prev[index]; + } + else if (index === this.#head) { + this.#head = this.#next[index]; + } + else { + const pi = this.#prev[index]; + this.#next[pi] = this.#next[index]; + const ni = this.#next[index]; + this.#prev[ni] = this.#prev[index]; + } + this.#size--; + this.#free.push(index); + } + } + } + if (this.#hasDisposeAfter && this.#disposed?.length) { + const dt = this.#disposed; + let task; + while ((task = dt?.shift())) { + this.#disposeAfter?.(...task); + } + } + return deleted; + } + /** + * Clear the cache entirely, throwing away all values. + */ + clear() { + return this.#clear('delete'); + } + #clear(reason) { + for (const index of this.#rindexes({ allowStale: true })) { + const v = this.#valList[index]; + if (this.#isBackgroundFetch(v)) { + v.__abortController.abort(new Error('deleted')); + } + else { + const k = this.#keyList[index]; + if (this.#hasDispose) { + this.#dispose?.(v, k, reason); + } + if (this.#hasDisposeAfter) { + this.#disposed?.push([v, k, reason]); + } + } + } + this.#keyMap.clear(); + this.#valList.fill(undefined); + this.#keyList.fill(undefined); + if (this.#ttls && this.#starts) { + this.#ttls.fill(0); + this.#starts.fill(0); + } + if (this.#sizes) { + this.#sizes.fill(0); + } + this.#head = 0; + this.#tail = 0; + this.#free.length = 0; + this.#calculatedSize = 0; + this.#size = 0; + if (this.#hasDisposeAfter && this.#disposed) { + const dt = this.#disposed; + let task; + while ((task = dt?.shift())) { + this.#disposeAfter?.(...task); + } + } + } +} +exports.LRUCache = LRUCache; +//# sourceMappingURL=index.js.map + +/***/ }), + +/***/ 7305: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.assertValidPattern = void 0; +const MAX_PATTERN_LENGTH = 1024 * 64; +const assertValidPattern = (pattern) => { + if (typeof pattern !== 'string') { + throw new TypeError('invalid pattern'); + } + if (pattern.length > MAX_PATTERN_LENGTH) { + throw new TypeError('pattern is too long'); + } +}; +exports.assertValidPattern = assertValidPattern; +//# sourceMappingURL=assert-valid-pattern.js.map + +/***/ }), + +/***/ 1803: +/***/ ((__unused_webpack_module, exports, __nccwpck_require__) => { + +"use strict"; + +// parse a single path portion +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.AST = void 0; +const brace_expressions_js_1 = __nccwpck_require__(1090); +const unescape_js_1 = __nccwpck_require__(851); +const types = new Set(['!', '?', '+', '*', '@']); +const isExtglobType = (c) => types.has(c); +// Patterns that get prepended to bind to the start of either the +// entire string, or just a single path portion, to prevent dots +// and/or traversal patterns, when needed. +// Exts don't need the ^ or / bit, because the root binds that already. +const startNoTraversal = '(?!(?:^|/)\\.\\.?(?:$|/))'; +const startNoDot = '(?!\\.)'; +// characters that indicate a start of pattern needs the "no dots" bit, +// because a dot *might* be matched. ( is not in the list, because in +// the case of a child extglob, it will handle the prevention itself. +const addPatternStart = new Set(['[', '.']); +// cases where traversal is A-OK, no dot prevention needed +const justDots = new Set(['..', '.']); +const reSpecials = new Set('().*{}+?[]^$\\!'); +const regExpEscape = (s) => s.replace(/[-[\]{}()*+?.,\\^$|#\s]/g, '\\$&'); +// any single thing other than / +const qmark = '[^/]'; +// * => any number of characters +const star = qmark + '*?'; +// use + when we need to ensure that *something* matches, because the * is +// the only thing in the path portion. +const starNoEmpty = qmark + '+?'; +// remove the \ chars that we added if we end up doing a nonmagic compare +// const deslash = (s: string) => s.replace(/\\(.)/g, '$1') +class AST { + type; + #root; + #hasMagic; + #uflag = false; + #parts = []; + #parent; + #parentIndex; + #negs; + #filledNegs = false; + #options; + #toString; + // set to true if it's an extglob with no children + // (which really means one child of '') + #emptyExt = false; + constructor(type, parent, options = {}) { + this.type = type; + // extglobs are inherently magical + if (type) + this.#hasMagic = true; + this.#parent = parent; + this.#root = this.#parent ? this.#parent.#root : this; + this.#options = this.#root === this ? options : this.#root.#options; + this.#negs = this.#root === this ? [] : this.#root.#negs; + if (type === '!' && !this.#root.#filledNegs) + this.#negs.push(this); + this.#parentIndex = this.#parent ? this.#parent.#parts.length : 0; + } + get hasMagic() { + /* c8 ignore start */ + if (this.#hasMagic !== undefined) + return this.#hasMagic; + /* c8 ignore stop */ + for (const p of this.#parts) { + if (typeof p === 'string') + continue; + if (p.type || p.hasMagic) + return (this.#hasMagic = true); + } + // note: will be undefined until we generate the regexp src and find out + return this.#hasMagic; + } + // reconstructs the pattern + toString() { + if (this.#toString !== undefined) + return this.#toString; + if (!this.type) { + return (this.#toString = this.#parts.map(p => String(p)).join('')); + } + else { + return (this.#toString = + this.type + '(' + this.#parts.map(p => String(p)).join('|') + ')'); + } + } + #fillNegs() { + /* c8 ignore start */ + if (this !== this.#root) + throw new Error('should only call on root'); + if (this.#filledNegs) + return this; + /* c8 ignore stop */ + // call toString() once to fill this out + this.toString(); + this.#filledNegs = true; + let n; + while ((n = this.#negs.pop())) { + if (n.type !== '!') + continue; + // walk up the tree, appending everthing that comes AFTER parentIndex + let p = n; + let pp = p.#parent; + while (pp) { + for (let i = p.#parentIndex + 1; !pp.type && i < pp.#parts.length; i++) { + for (const part of n.#parts) { + /* c8 ignore start */ + if (typeof part === 'string') { + throw new Error('string part in extglob AST??'); + } + /* c8 ignore stop */ + part.copyIn(pp.#parts[i]); + } + } + p = pp; + pp = p.#parent; + } + } + return this; + } + push(...parts) { + for (const p of parts) { + if (p === '') + continue; + /* c8 ignore start */ + if (typeof p !== 'string' && !(p instanceof AST && p.#parent === this)) { + throw new Error('invalid part: ' + p); + } + /* c8 ignore stop */ + this.#parts.push(p); + } + } + toJSON() { + const ret = this.type === null + ? this.#parts.slice().map(p => (typeof p === 'string' ? p : p.toJSON())) + : [this.type, ...this.#parts.map(p => p.toJSON())]; + if (this.isStart() && !this.type) + ret.unshift([]); + if (this.isEnd() && + (this === this.#root || + (this.#root.#filledNegs && this.#parent?.type === '!'))) { + ret.push({}); + } + return ret; + } + isStart() { + if (this.#root === this) + return true; + // if (this.type) return !!this.#parent?.isStart() + if (!this.#parent?.isStart()) + return false; + if (this.#parentIndex === 0) + return true; + // if everything AHEAD of this is a negation, then it's still the "start" + const p = this.#parent; + for (let i = 0; i < this.#parentIndex; i++) { + const pp = p.#parts[i]; + if (!(pp instanceof AST && pp.type === '!')) { + return false; + } + } + return true; + } + isEnd() { + if (this.#root === this) + return true; + if (this.#parent?.type === '!') + return true; + if (!this.#parent?.isEnd()) + return false; + if (!this.type) + return this.#parent?.isEnd(); + // if not root, it'll always have a parent + /* c8 ignore start */ + const pl = this.#parent ? this.#parent.#parts.length : 0; + /* c8 ignore stop */ + return this.#parentIndex === pl - 1; + } + copyIn(part) { + if (typeof part === 'string') + this.push(part); + else + this.push(part.clone(this)); + } + clone(parent) { + const c = new AST(this.type, parent); + for (const p of this.#parts) { + c.copyIn(p); + } + return c; + } + static #parseAST(str, ast, pos, opt) { + let escaping = false; + let inBrace = false; + let braceStart = -1; + let braceNeg = false; + if (ast.type === null) { + // outside of a extglob, append until we find a start + let i = pos; + let acc = ''; + while (i < str.length) { + const c = str.charAt(i++); + // still accumulate escapes at this point, but we do ignore + // starts that are escaped + if (escaping || c === '\\') { + escaping = !escaping; + acc += c; + continue; + } + if (inBrace) { + if (i === braceStart + 1) { + if (c === '^' || c === '!') { + braceNeg = true; + } + } + else if (c === ']' && !(i === braceStart + 2 && braceNeg)) { + inBrace = false; + } + acc += c; + continue; + } + else if (c === '[') { + inBrace = true; + braceStart = i; + braceNeg = false; + acc += c; + continue; + } + if (!opt.noext && isExtglobType(c) && str.charAt(i) === '(') { + ast.push(acc); + acc = ''; + const ext = new AST(c, ast); + i = AST.#parseAST(str, ext, i, opt); + ast.push(ext); + continue; + } + acc += c; + } + ast.push(acc); + return i; + } + // some kind of extglob, pos is at the ( + // find the next | or ) + let i = pos + 1; + let part = new AST(null, ast); + const parts = []; + let acc = ''; + while (i < str.length) { + const c = str.charAt(i++); + // still accumulate escapes at this point, but we do ignore + // starts that are escaped + if (escaping || c === '\\') { + escaping = !escaping; + acc += c; + continue; + } + if (inBrace) { + if (i === braceStart + 1) { + if (c === '^' || c === '!') { + braceNeg = true; + } + } + else if (c === ']' && !(i === braceStart + 2 && braceNeg)) { + inBrace = false; + } + acc += c; + continue; + } + else if (c === '[') { + inBrace = true; + braceStart = i; + braceNeg = false; + acc += c; + continue; + } + if (isExtglobType(c) && str.charAt(i) === '(') { + part.push(acc); + acc = ''; + const ext = new AST(c, part); + part.push(ext); + i = AST.#parseAST(str, ext, i, opt); + continue; + } + if (c === '|') { + part.push(acc); + acc = ''; + parts.push(part); + part = new AST(null, ast); + continue; + } + if (c === ')') { + if (acc === '' && ast.#parts.length === 0) { + ast.#emptyExt = true; + } + part.push(acc); + acc = ''; + ast.push(...parts, part); + return i; + } + acc += c; + } + // unfinished extglob + // if we got here, it was a malformed extglob! not an extglob, but + // maybe something else in there. + ast.type = null; + ast.#hasMagic = undefined; + ast.#parts = [str.substring(pos - 1)]; + return i; + } + static fromGlob(pattern, options = {}) { + const ast = new AST(null, undefined, options); + AST.#parseAST(pattern, ast, 0, options); + return ast; + } + // returns the regular expression if there's magic, or the unescaped + // string if not. + toMMPattern() { + // should only be called on root + /* c8 ignore start */ + if (this !== this.#root) + return this.#root.toMMPattern(); + /* c8 ignore stop */ + const glob = this.toString(); + const [re, body, hasMagic, uflag] = this.toRegExpSource(); + // if we're in nocase mode, and not nocaseMagicOnly, then we do + // still need a regular expression if we have to case-insensitively + // match capital/lowercase characters. + const anyMagic = hasMagic || + this.#hasMagic || + (this.#options.nocase && + !this.#options.nocaseMagicOnly && + glob.toUpperCase() !== glob.toLowerCase()); + if (!anyMagic) { + return body; + } + const flags = (this.#options.nocase ? 'i' : '') + (uflag ? 'u' : ''); + return Object.assign(new RegExp(`^${re}$`, flags), { + _src: re, + _glob: glob, + }); + } + get options() { + return this.#options; + } + // returns the string match, the regexp source, whether there's magic + // in the regexp (so a regular expression is required) and whether or + // not the uflag is needed for the regular expression (for posix classes) + // TODO: instead of injecting the start/end at this point, just return + // the BODY of the regexp, along with the start/end portions suitable + // for binding the start/end in either a joined full-path makeRe context + // (where we bind to (^|/), or a standalone matchPart context (where + // we bind to ^, and not /). Otherwise slashes get duped! + // + // In part-matching mode, the start is: + // - if not isStart: nothing + // - if traversal possible, but not allowed: ^(?!\.\.?$) + // - if dots allowed or not possible: ^ + // - if dots possible and not allowed: ^(?!\.) + // end is: + // - if not isEnd(): nothing + // - else: $ + // + // In full-path matching mode, we put the slash at the START of the + // pattern, so start is: + // - if first pattern: same as part-matching mode + // - if not isStart(): nothing + // - if traversal possible, but not allowed: /(?!\.\.?(?:$|/)) + // - if dots allowed or not possible: / + // - if dots possible and not allowed: /(?!\.) + // end is: + // - if last pattern, same as part-matching mode + // - else nothing + // + // Always put the (?:$|/) on negated tails, though, because that has to be + // there to bind the end of the negated pattern portion, and it's easier to + // just stick it in now rather than try to inject it later in the middle of + // the pattern. + // + // We can just always return the same end, and leave it up to the caller + // to know whether it's going to be used joined or in parts. + // And, if the start is adjusted slightly, can do the same there: + // - if not isStart: nothing + // - if traversal possible, but not allowed: (?:/|^)(?!\.\.?$) + // - if dots allowed or not possible: (?:/|^) + // - if dots possible and not allowed: (?:/|^)(?!\.) + // + // But it's better to have a simpler binding without a conditional, for + // performance, so probably better to return both start options. + // + // Then the caller just ignores the end if it's not the first pattern, + // and the start always gets applied. + // + // But that's always going to be $ if it's the ending pattern, or nothing, + // so the caller can just attach $ at the end of the pattern when building. + // + // So the todo is: + // - better detect what kind of start is needed + // - return both flavors of starting pattern + // - attach $ at the end of the pattern when creating the actual RegExp + // + // Ah, but wait, no, that all only applies to the root when the first pattern + // is not an extglob. If the first pattern IS an extglob, then we need all + // that dot prevention biz to live in the extglob portions, because eg + // +(*|.x*) can match .xy but not .yx. + // + // So, return the two flavors if it's #root and the first child is not an + // AST, otherwise leave it to the child AST to handle it, and there, + // use the (?:^|/) style of start binding. + // + // Even simplified further: + // - Since the start for a join is eg /(?!\.) and the start for a part + // is ^(?!\.), we can just prepend (?!\.) to the pattern (either root + // or start or whatever) and prepend ^ or / at the Regexp construction. + toRegExpSource(allowDot) { + const dot = allowDot ?? !!this.#options.dot; + if (this.#root === this) + this.#fillNegs(); + if (!this.type) { + const noEmpty = this.isStart() && this.isEnd(); + const src = this.#parts + .map(p => { + const [re, _, hasMagic, uflag] = typeof p === 'string' + ? AST.#parseGlob(p, this.#hasMagic, noEmpty) + : p.toRegExpSource(allowDot); + this.#hasMagic = this.#hasMagic || hasMagic; + this.#uflag = this.#uflag || uflag; + return re; + }) + .join(''); + let start = ''; + if (this.isStart()) { + if (typeof this.#parts[0] === 'string') { + // this is the string that will match the start of the pattern, + // so we need to protect against dots and such. + // '.' and '..' cannot match unless the pattern is that exactly, + // even if it starts with . or dot:true is set. + const dotTravAllowed = this.#parts.length === 1 && justDots.has(this.#parts[0]); + if (!dotTravAllowed) { + const aps = addPatternStart; + // check if we have a possibility of matching . or .., + // and prevent that. + const needNoTrav = + // dots are allowed, and the pattern starts with [ or . + (dot && aps.has(src.charAt(0))) || + // the pattern starts with \., and then [ or . + (src.startsWith('\\.') && aps.has(src.charAt(2))) || + // the pattern starts with \.\., and then [ or . + (src.startsWith('\\.\\.') && aps.has(src.charAt(4))); + // no need to prevent dots if it can't match a dot, or if a + // sub-pattern will be preventing it anyway. + const needNoDot = !dot && !allowDot && aps.has(src.charAt(0)); + start = needNoTrav ? startNoTraversal : needNoDot ? startNoDot : ''; + } + } + } + // append the "end of path portion" pattern to negation tails + let end = ''; + if (this.isEnd() && + this.#root.#filledNegs && + this.#parent?.type === '!') { + end = '(?:$|\\/)'; + } + const final = start + src + end; + return [ + final, + (0, unescape_js_1.unescape)(src), + (this.#hasMagic = !!this.#hasMagic), + this.#uflag, + ]; + } + // We need to calculate the body *twice* if it's a repeat pattern + // at the start, once in nodot mode, then again in dot mode, so a + // pattern like *(?) can match 'x.y' + const repeated = this.type === '*' || this.type === '+'; + // some kind of extglob + const start = this.type === '!' ? '(?:(?!(?:' : '(?:'; + let body = this.#partsToRegExp(dot); + if (this.isStart() && this.isEnd() && !body && this.type !== '!') { + // invalid extglob, has to at least be *something* present, if it's + // the entire path portion. + const s = this.toString(); + this.#parts = [s]; + this.type = null; + this.#hasMagic = undefined; + return [s, (0, unescape_js_1.unescape)(this.toString()), false, false]; + } + // XXX abstract out this map method + let bodyDotAllowed = !repeated || allowDot || dot || !startNoDot + ? '' + : this.#partsToRegExp(true); + if (bodyDotAllowed === body) { + bodyDotAllowed = ''; + } + if (bodyDotAllowed) { + body = `(?:${body})(?:${bodyDotAllowed})*?`; + } + // an empty !() is exactly equivalent to a starNoEmpty + let final = ''; + if (this.type === '!' && this.#emptyExt) { + final = (this.isStart() && !dot ? startNoDot : '') + starNoEmpty; + } + else { + const close = this.type === '!' + ? // !() must match something,but !(x) can match '' + '))' + + (this.isStart() && !dot && !allowDot ? startNoDot : '') + + star + + ')' + : this.type === '@' + ? ')' + : this.type === '?' + ? ')?' + : this.type === '+' && bodyDotAllowed + ? ')' + : this.type === '*' && bodyDotAllowed + ? `)?` + : `)${this.type}`; + final = start + body + close; + } + return [ + final, + (0, unescape_js_1.unescape)(body), + (this.#hasMagic = !!this.#hasMagic), + this.#uflag, + ]; + } + #partsToRegExp(dot) { + return this.#parts + .map(p => { + // extglob ASTs should only contain parent ASTs + /* c8 ignore start */ + if (typeof p === 'string') { + throw new Error('string type in extglob ast??'); + } + /* c8 ignore stop */ + // can ignore hasMagic, because extglobs are already always magic + const [re, _, _hasMagic, uflag] = p.toRegExpSource(dot); + this.#uflag = this.#uflag || uflag; + return re; + }) + .filter(p => !(this.isStart() && this.isEnd()) || !!p) + .join('|'); + } + static #parseGlob(glob, hasMagic, noEmpty = false) { + let escaping = false; + let re = ''; + let uflag = false; + for (let i = 0; i < glob.length; i++) { + const c = glob.charAt(i); + if (escaping) { + escaping = false; + re += (reSpecials.has(c) ? '\\' : '') + c; + continue; + } + if (c === '\\') { + if (i === glob.length - 1) { + re += '\\\\'; + } + else { + escaping = true; + } + continue; + } + if (c === '[') { + const [src, needUflag, consumed, magic] = (0, brace_expressions_js_1.parseClass)(glob, i); + if (consumed) { + re += src; + uflag = uflag || needUflag; + i += consumed - 1; + hasMagic = hasMagic || magic; + continue; + } + } + if (c === '*') { + if (noEmpty && glob === '*') + re += starNoEmpty; + else + re += star; + hasMagic = true; + continue; + } + if (c === '?') { + re += qmark; + hasMagic = true; + continue; + } + re += regExpEscape(c); + } + return [re, (0, unescape_js_1.unescape)(glob), !!hasMagic, uflag]; + } +} +exports.AST = AST; +//# sourceMappingURL=ast.js.map + +/***/ }), + +/***/ 1090: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +// translate the various posix character classes into unicode properties +// this works across all unicode locales +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.parseClass = void 0; +// { : [, /u flag required, negated] +const posixClasses = { + '[:alnum:]': ['\\p{L}\\p{Nl}\\p{Nd}', true], + '[:alpha:]': ['\\p{L}\\p{Nl}', true], + '[:ascii:]': ['\\x' + '00-\\x' + '7f', false], + '[:blank:]': ['\\p{Zs}\\t', true], + '[:cntrl:]': ['\\p{Cc}', true], + '[:digit:]': ['\\p{Nd}', true], + '[:graph:]': ['\\p{Z}\\p{C}', true, true], + '[:lower:]': ['\\p{Ll}', true], + '[:print:]': ['\\p{C}', true], + '[:punct:]': ['\\p{P}', true], + '[:space:]': ['\\p{Z}\\t\\r\\n\\v\\f', true], + '[:upper:]': ['\\p{Lu}', true], + '[:word:]': ['\\p{L}\\p{Nl}\\p{Nd}\\p{Pc}', true], + '[:xdigit:]': ['A-Fa-f0-9', false], +}; +// only need to escape a few things inside of brace expressions +// escapes: [ \ ] - +const braceEscape = (s) => s.replace(/[[\]\\-]/g, '\\$&'); +// escape all regexp magic characters +const regexpEscape = (s) => s.replace(/[-[\]{}()*+?.,\\^$|#\s]/g, '\\$&'); +// everything has already been escaped, we just have to join +const rangesToString = (ranges) => ranges.join(''); +// takes a glob string at a posix brace expression, and returns +// an equivalent regular expression source, and boolean indicating +// whether the /u flag needs to be applied, and the number of chars +// consumed to parse the character class. +// This also removes out of order ranges, and returns ($.) if the +// entire class just no good. +const parseClass = (glob, position) => { + const pos = position; + /* c8 ignore start */ + if (glob.charAt(pos) !== '[') { + throw new Error('not in a brace expression'); + } + /* c8 ignore stop */ + const ranges = []; + const negs = []; + let i = pos + 1; + let sawStart = false; + let uflag = false; + let escaping = false; + let negate = false; + let endPos = pos; + let rangeStart = ''; + WHILE: while (i < glob.length) { + const c = glob.charAt(i); + if ((c === '!' || c === '^') && i === pos + 1) { + negate = true; + i++; + continue; + } + if (c === ']' && sawStart && !escaping) { + endPos = i + 1; + break; + } + sawStart = true; + if (c === '\\') { + if (!escaping) { + escaping = true; + i++; + continue; + } + // escaped \ char, fall through and treat like normal char + } + if (c === '[' && !escaping) { + // either a posix class, a collation equivalent, or just a [ + for (const [cls, [unip, u, neg]] of Object.entries(posixClasses)) { + if (glob.startsWith(cls, i)) { + // invalid, [a-[] is fine, but not [a-[:alpha]] + if (rangeStart) { + return ['$.', false, glob.length - pos, true]; + } + i += cls.length; + if (neg) + negs.push(unip); + else + ranges.push(unip); + uflag = uflag || u; + continue WHILE; + } + } + } + // now it's just a normal character, effectively + escaping = false; + if (rangeStart) { + // throw this range away if it's not valid, but others + // can still match. + if (c > rangeStart) { + ranges.push(braceEscape(rangeStart) + '-' + braceEscape(c)); + } + else if (c === rangeStart) { + ranges.push(braceEscape(c)); + } + rangeStart = ''; + i++; + continue; + } + // now might be the start of a range. + // can be either c-d or c-] or c] or c] at this point + if (glob.startsWith('-]', i + 1)) { + ranges.push(braceEscape(c + '-')); + i += 2; + continue; + } + if (glob.startsWith('-', i + 1)) { + rangeStart = c; + i += 2; + continue; + } + // not the start of a range, just a single character + ranges.push(braceEscape(c)); + i++; + } + if (endPos < i) { + // didn't see the end of the class, not a valid class, + // but might still be valid as a literal match. + return ['', false, 0, false]; + } + // if we got no ranges and no negates, then we have a range that + // cannot possibly match anything, and that poisons the whole glob + if (!ranges.length && !negs.length) { + return ['$.', false, glob.length - pos, true]; + } + // if we got one positive range, and it's a single character, then that's + // not actually a magic pattern, it's just that one literal character. + // we should not treat that as "magic", we should just return the literal + // character. [_] is a perfectly valid way to escape glob magic chars. + if (negs.length === 0 && + ranges.length === 1 && + /^\\?.$/.test(ranges[0]) && + !negate) { + const r = ranges[0].length === 2 ? ranges[0].slice(-1) : ranges[0]; + return [regexpEscape(r), false, endPos - pos, false]; + } + const sranges = '[' + (negate ? '^' : '') + rangesToString(ranges) + ']'; + const snegs = '[' + (negate ? '' : '^') + rangesToString(negs) + ']'; + const comb = ranges.length && negs.length + ? '(' + sranges + '|' + snegs + ')' + : ranges.length + ? sranges + : snegs; + return [comb, uflag, endPos - pos, true]; +}; +exports.parseClass = parseClass; +//# sourceMappingURL=brace-expressions.js.map + +/***/ }), + +/***/ 800: +/***/ ((__unused_webpack_module, exports) => { + +"use strict"; + +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.escape = void 0; +/** + * Escape all magic characters in a glob pattern. + * + * If the {@link windowsPathsNoEscape | GlobOptions.windowsPathsNoEscape} + * option is used, then characters are escaped by wrapping in `[]`, because + * a magic character wrapped in a character class can only be satisfied by + * that exact character. In this mode, `\` is _not_ escaped, because it is + * not interpreted as a magic character, but instead as a path separator. + */ +const escape = (s, { windowsPathsNoEscape = false, } = {}) => { + // don't need to escape +@! because we escape the parens + // that make those magic, and escaping ! as [!] isn't valid, + // because [!]] is a valid glob class meaning not ']'. + return windowsPathsNoEscape + ? s.replace(/[?*()[\]]/g, '[$&]') + : s.replace(/[?*()[\]\\]/g, '\\$&'); +}; +exports.escape = escape; +//# sourceMappingURL=escape.js.map + +/***/ }), + +/***/ 6507: +/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) { + +"use strict"; + +var __importDefault = (this && this.__importDefault) || function (mod) { + return (mod && mod.__esModule) ? mod : { "default": mod }; +}; +Object.defineProperty(exports, "__esModule", ({ value: true })); +exports.unescape = exports.escape = exports.AST = exports.Minimatch = exports.match = exports.makeRe = exports.braceExpand = exports.defaults = exports.filter = exports.GLOBSTAR = exports.sep = exports.minimatch = void 0; +const brace_expansion_1 = __importDefault(__nccwpck_require__(4691)); +const assert_valid_pattern_js_1 = __nccwpck_require__(7305); +const ast_js_1 = __nccwpck_require__(1803); +const escape_js_1 = __nccwpck_require__(800); +const unescape_js_1 = __nccwpck_require__(851); +const minimatch = (p, pattern, options = {}) => { + (0, assert_valid_pattern_js_1.assertValidPattern)(pattern); + // shortcut: comments match nothing. + if (!options.nocomment && pattern.charAt(0) === '#') { + return false; + } + return new Minimatch(pattern, options).match(p); +}; +exports.minimatch = minimatch; +// Optimized checking for the most common glob patterns. +const starDotExtRE = /^\*+([^+@!?\*\[\(]*)$/; +const starDotExtTest = (ext) => (f) => !f.startsWith('.') && f.endsWith(ext); +const starDotExtTestDot = (ext) => (f) => f.endsWith(ext); +const starDotExtTestNocase = (ext) => { + ext = ext.toLowerCase(); + return (f) => !f.startsWith('.') && f.toLowerCase().endsWith(ext); +}; +const starDotExtTestNocaseDot = (ext) => { + ext = ext.toLowerCase(); + return (f) => f.toLowerCase().endsWith(ext); +}; +const starDotStarRE = /^\*+\.\*+$/; +const starDotStarTest = (f) => !f.startsWith('.') && f.includes('.'); +const starDotStarTestDot = (f) => f !== '.' && f !== '..' && f.includes('.'); +const dotStarRE = /^\.\*+$/; +const dotStarTest = (f) => f !== '.' && f !== '..' && f.startsWith('.'); +const starRE = /^\*+$/; +const starTest = (f) => f.length !== 0 && !f.startsWith('.'); +const starTestDot = (f) => f.length !== 0 && f !== '.' && f !== '..'; +const qmarksRE = /^\?+([^+@!?\*\[\(]*)?$/; +const qmarksTestNocase = ([$0, ext = '']) => { + const noext = qmarksTestNoExt([$0]); + if (!ext) + return noext; + ext = ext.toLowerCase(); + return (f) => noext(f) && f.toLowerCase().endsWith(ext); +}; +const qmarksTestNocaseDot = ([$0, ext = '']) => { + const noext = qmarksTestNoExtDot([$0]); + if (!ext) + return noext; + ext = ext.toLowerCase(); + return (f) => noext(f) && f.toLowerCase().endsWith(ext); +}; +const qmarksTestDot = ([$0, ext = '']) => { + const noext = qmarksTestNoExtDot([$0]); + return !ext ? noext : (f) => noext(f) && f.endsWith(ext); +}; +const qmarksTest = ([$0, ext = '']) => { + const noext = qmarksTestNoExt([$0]); + return !ext ? noext : (f) => noext(f) && f.endsWith(ext); +}; +const qmarksTestNoExt = ([$0]) => { + const len = $0.length; + return (f) => f.length === len && !f.startsWith('.'); +}; +const qmarksTestNoExtDot = ([$0]) => { + const len = $0.length; + return (f) => f.length === len && f !== '.' && f !== '..'; +}; +/* c8 ignore start */ +const defaultPlatform = (typeof process === 'object' && process + ? (typeof process.env === 'object' && + process.env && + process.env.__MINIMATCH_TESTING_PLATFORM__) || + process.platform + : 'posix'); +const path = { + win32: { sep: '\\' }, + posix: { sep: '/' }, +}; +/* c8 ignore stop */ +exports.sep = defaultPlatform === 'win32' ? path.win32.sep : path.posix.sep; +exports.minimatch.sep = exports.sep; +exports.GLOBSTAR = Symbol('globstar **'); +exports.minimatch.GLOBSTAR = exports.GLOBSTAR; +// any single thing other than / +// don't need to escape / when using new RegExp() +const qmark = '[^/]'; +// * => any number of characters +const star = qmark + '*?'; +// ** when dots are allowed. Anything goes, except .. and . +// not (^ or / followed by one or two dots followed by $ or /), +// followed by anything, any number of times. +const twoStarDot = '(?:(?!(?:\\/|^)(?:\\.{1,2})($|\\/)).)*?'; +// not a ^ or / followed by a dot, +// followed by anything, any number of times. +const twoStarNoDot = '(?:(?!(?:\\/|^)\\.).)*?'; +const filter = (pattern, options = {}) => (p) => (0, exports.minimatch)(p, pattern, options); +exports.filter = filter; +exports.minimatch.filter = exports.filter; +const ext = (a, b = {}) => Object.assign({}, a, b); +const defaults = (def) => { + if (!def || typeof def !== 'object' || !Object.keys(def).length) { + return exports.minimatch; + } + const orig = exports.minimatch; + const m = (p, pattern, options = {}) => orig(p, pattern, ext(def, options)); + return Object.assign(m, { + Minimatch: class Minimatch extends orig.Minimatch { + constructor(pattern, options = {}) { + super(pattern, ext(def, options)); + } + static defaults(options) { + return orig.defaults(ext(def, options)).Minimatch; + } + }, + AST: class AST extends orig.AST { + /* c8 ignore start */ + constructor(type, parent, options = {}) { + super(type, parent, ext(def, options)); + } + /* c8 ignore stop */ + static fromGlob(pattern, options = {}) { + return orig.AST.fromGlob(pattern, ext(def, options)); + } + }, + unescape: (s, options = {}) => orig.unescape(s, ext(def, options)), + escape: (s, options = {}) => orig.escape(s, ext(def, options)), + filter: (pattern, options = {}) => orig.filter(pattern, ext(def, options)), + defaults: (options) => orig.defaults(ext(def, options)), + makeRe: (pattern, options = {}) => orig.makeRe(pattern, ext(def, options)), + braceExpand: (pattern, options = {}) => orig.braceExpand(pattern, ext(def, options)), + match: (list, pattern, options = {}) => orig.match(list, pattern, ext(def, options)), + sep: orig.sep, + GLOBSTAR: exports.GLOBSTAR, + }); +}; +exports.defaults = defaults; +exports.minimatch.defaults = exports.defaults; +// Brace expansion: +// a{b,c}d -> abd acd +// a{b,}c -> abc ac +// a{0..3}d -> a0d a1d a2d a3d +// a{b,c{d,e}f}g -> abg acdfg acefg +// a{b,c}d{e,f}g -> abdeg acdeg abdeg abdfg +// +// Invalid sets are not expanded. +// a{2..}b -> a{2..}b +// a{b}c -> a{b}c +const braceExpand = (pattern, options = {}) => { + (0, assert_valid_pattern_js_1.assertValidPattern)(pattern); + // Thanks to Yeting Li for + // improving this regexp to avoid a ReDOS vulnerability. + if (options.nobrace || !/\{(?:(?!\{).)*\}/.test(pattern)) { + // shortcut. no need to expand. + return [pattern]; + } + return (0, brace_expansion_1.default)(pattern); +}; +exports.braceExpand = braceExpand; +exports.minimatch.braceExpand = exports.braceExpand; +// parse a component of the expanded set. +// At this point, no pattern may contain "/" in it +// so we're going to return a 2d array, where each entry is the full +// pattern, split on '/', and then turned into a regular expression. +// A regexp is made at the end which joins each array with an +// escaped /, and another full one which joins each regexp with |. +// +// Following the lead of Bash 4.1, note that "**" only has special meaning +// when it is the *only* thing in a path portion. Otherwise, any series +// of * is equivalent to a single *. Globstar behavior is enabled by +// default, and can be disabled by setting options.noglobstar. +const makeRe = (pattern, options = {}) => new Minimatch(pattern, options).makeRe(); +exports.makeRe = makeRe; +exports.minimatch.makeRe = exports.makeRe; +const match = (list, pattern, options = {}) => { + const mm = new Minimatch(pattern, options); + list = list.filter(f => mm.match(f)); + if (mm.options.nonull && !list.length) { + list.push(pattern); + } + return list; +}; +exports.match = match; +exports.minimatch.match = exports.match; +// replace stuff like \* with * +const globMagic = /[?*]|[+@!]\(.*?\)|\[|\]/; +const regExpEscape = (s) => s.replace(/[-[\]{}()*+?.,\\^$|#\s]/g, '\\$&'); +class Minimatch { + options; + set; + pattern; + windowsPathsNoEscape; + nonegate; + negate; + comment; + empty; + preserveMultipleSlashes; + partial; + globSet; + globParts; + nocase; + isWindows; + platform; + windowsNoMagicRoot; + regexp; + constructor(pattern, options = {}) { + (0, assert_valid_pattern_js_1.assertValidPattern)(pattern); + options = options || {}; + this.options = options; + this.pattern = pattern; + this.platform = options.platform || defaultPlatform; + this.isWindows = this.platform === 'win32'; + this.windowsPathsNoEscape = + !!options.windowsPathsNoEscape || options.allowWindowsEscape === false; + if (this.windowsPathsNoEscape) { + this.pattern = this.pattern.replace(/\\/g, '/'); + } + this.preserveMultipleSlashes = !!options.preserveMultipleSlashes; + this.regexp = null; + this.negate = false; + this.nonegate = !!options.nonegate; + this.comment = false; + this.empty = false; + this.partial = !!options.partial; + this.nocase = !!this.options.nocase; + this.windowsNoMagicRoot = + options.windowsNoMagicRoot !== undefined + ? options.windowsNoMagicRoot + : !!(this.isWindows && this.nocase); + this.globSet = []; + this.globParts = []; + this.set = []; + // make the set of regexps etc. + this.make(); + } + hasMagic() { + if (this.options.magicalBraces && this.set.length > 1) { + return true; + } + for (const pattern of this.set) { + for (const part of pattern) { + if (typeof part !== 'string') + return true; + } + } + return false; + } + debug(..._) { } + make() { + const pattern = this.pattern; + const options = this.options; + // empty patterns and comments match nothing. + if (!options.nocomment && pattern.charAt(0) === '#') { + this.comment = true; + return; + } + if (!pattern) { + this.empty = true; + return; + } + // step 1: figure out negation, etc. + this.parseNegate(); + // step 2: expand braces + this.globSet = [...new Set(this.braceExpand())]; + if (options.debug) { + this.debug = (...args) => console.error(...args); + } + this.debug(this.pattern, this.globSet); + // step 3: now we have a set, so turn each one into a series of + // path-portion matching patterns. + // These will be regexps, except in the case of "**", which is + // set to the GLOBSTAR object for globstar behavior, + // and will not contain any / characters + // + // First, we preprocess to make the glob pattern sets a bit simpler + // and deduped. There are some perf-killing patterns that can cause + // problems with a glob walk, but we can simplify them down a bit. + const rawGlobParts = this.globSet.map(s => this.slashSplit(s)); + this.globParts = this.preprocess(rawGlobParts); + this.debug(this.pattern, this.globParts); + // glob --> regexps + let set = this.globParts.map((s, _, __) => { + if (this.isWindows && this.windowsNoMagicRoot) { + // check if it's a drive or unc path. + const isUNC = s[0] === '' && + s[1] === '' && + (s[2] === '?' || !globMagic.test(s[2])) && + !globMagic.test(s[3]); + const isDrive = /^[a-z]:/i.test(s[0]); + if (isUNC) { + return [...s.slice(0, 4), ...s.slice(4).map(ss => this.parse(ss))]; + } + else if (isDrive) { + return [s[0], ...s.slice(1).map(ss => this.parse(ss))]; + } + } + return s.map(ss => this.parse(ss)); + }); + this.debug(this.pattern, set); + // filter out everything that didn't compile properly. + this.set = set.filter(s => s.indexOf(false) === -1); + // do not treat the ? in UNC paths as magic + if (this.isWindows) { + for (let i = 0; i < this.set.length; i++) { + const p = this.set[i]; + if (p[0] === '' && + p[1] === '' && + this.globParts[i][2] === '?' && + typeof p[3] === 'string' && + /^[a-z]:$/i.test(p[3])) { + p[2] = '?'; + } + } + } + this.debug(this.pattern, this.set); + } + // various transforms to equivalent pattern sets that are + // faster to process in a filesystem walk. The goal is to + // eliminate what we can, and push all ** patterns as far + // to the right as possible, even if it increases the number + // of patterns that we have to process. + preprocess(globParts) { + // if we're not in globstar mode, then turn all ** into * + if (this.options.noglobstar) { + for (let i = 0; i < globParts.length; i++) { + for (let j = 0; j < globParts[i].length; j++) { + if (globParts[i][j] === '**') { + globParts[i][j] = '*'; + } + } + } + } + const { optimizationLevel = 1 } = this.options; + if (optimizationLevel >= 2) { + // aggressive optimization for the purpose of fs walking + globParts = this.firstPhasePreProcess(globParts); + globParts = this.secondPhasePreProcess(globParts); + } + else if (optimizationLevel >= 1) { + // just basic optimizations to remove some .. parts + globParts = this.levelOneOptimize(globParts); + } + else { + // just collapse multiple ** portions into one + globParts = this.adjascentGlobstarOptimize(globParts); + } + return globParts; + } + // just get rid of adjascent ** portions + adjascentGlobstarOptimize(globParts) { + return globParts.map(parts => { + let gs = -1; + while (-1 !== (gs = parts.indexOf('**', gs + 1))) { + let i = gs; + while (parts[i + 1] === '**') { + i++; + } + if (i !== gs) { + parts.splice(gs, i - gs); + } + } + return parts; + }); + } + // get rid of adjascent ** and resolve .. portions + levelOneOptimize(globParts) { + return globParts.map(parts => { + parts = parts.reduce((set, part) => { + const prev = set[set.length - 1]; + if (part === '**' && prev === '**') { + return set; + } + if (part === '..') { + if (prev && prev !== '..' && prev !== '.' && prev !== '**') { + set.pop(); + return set; + } + } + set.push(part); + return set; + }, []); + return parts.length === 0 ? [''] : parts; + }); + } + levelTwoFileOptimize(parts) { + if (!Array.isArray(parts)) { + parts = this.slashSplit(parts); + } + let didSomething = false; + do { + didSomething = false; + //
// -> 
/
+            if (!this.preserveMultipleSlashes) {
+                for (let i = 1; i < parts.length - 1; i++) {
+                    const p = parts[i];
+                    // don't squeeze out UNC patterns
+                    if (i === 1 && p === '' && parts[0] === '')
+                        continue;
+                    if (p === '.' || p === '') {
+                        didSomething = true;
+                        parts.splice(i, 1);
+                        i--;
+                    }
+                }
+                if (parts[0] === '.' &&
+                    parts.length === 2 &&
+                    (parts[1] === '.' || parts[1] === '')) {
+                    didSomething = true;
+                    parts.pop();
+                }
+            }
+            // 
/

/../ ->

/
+            let dd = 0;
+            while (-1 !== (dd = parts.indexOf('..', dd + 1))) {
+                const p = parts[dd - 1];
+                if (p && p !== '.' && p !== '..' && p !== '**') {
+                    didSomething = true;
+                    parts.splice(dd - 1, 2);
+                    dd -= 2;
+                }
+            }
+        } while (didSomething);
+        return parts.length === 0 ? [''] : parts;
+    }
+    // First phase: single-pattern processing
+    // 
 is 1 or more portions
+    //  is 1 or more portions
+    // 

is any portion other than ., .., '', or ** + // is . or '' + // + // **/.. is *brutal* for filesystem walking performance, because + // it effectively resets the recursive walk each time it occurs, + // and ** cannot be reduced out by a .. pattern part like a regexp + // or most strings (other than .., ., and '') can be. + // + //

/**/../

/

/ -> {

/../

/

/,

/**/

/

/} + //

// -> 
/
+    // 
/

/../ ->

/
+    // **/**/ -> **/
+    //
+    // **/*/ -> */**/ <== not valid because ** doesn't follow
+    // this WOULD be allowed if ** did follow symlinks, or * didn't
+    firstPhasePreProcess(globParts) {
+        let didSomething = false;
+        do {
+            didSomething = false;
+            // 
/**/../

/

/ -> {

/../

/

/,

/**/

/

/} + for (let parts of globParts) { + let gs = -1; + while (-1 !== (gs = parts.indexOf('**', gs + 1))) { + let gss = gs; + while (parts[gss + 1] === '**') { + //

/**/**/ -> 
/**/
+                        gss++;
+                    }
+                    // eg, if gs is 2 and gss is 4, that means we have 3 **
+                    // parts, and can remove 2 of them.
+                    if (gss > gs) {
+                        parts.splice(gs + 1, gss - gs);
+                    }
+                    let next = parts[gs + 1];
+                    const p = parts[gs + 2];
+                    const p2 = parts[gs + 3];
+                    if (next !== '..')
+                        continue;
+                    if (!p ||
+                        p === '.' ||
+                        p === '..' ||
+                        !p2 ||
+                        p2 === '.' ||
+                        p2 === '..') {
+                        continue;
+                    }
+                    didSomething = true;
+                    // edit parts in place, and push the new one
+                    parts.splice(gs, 1);
+                    const other = parts.slice(0);
+                    other[gs] = '**';
+                    globParts.push(other);
+                    gs--;
+                }
+                // 
// -> 
/
+                if (!this.preserveMultipleSlashes) {
+                    for (let i = 1; i < parts.length - 1; i++) {
+                        const p = parts[i];
+                        // don't squeeze out UNC patterns
+                        if (i === 1 && p === '' && parts[0] === '')
+                            continue;
+                        if (p === '.' || p === '') {
+                            didSomething = true;
+                            parts.splice(i, 1);
+                            i--;
+                        }
+                    }
+                    if (parts[0] === '.' &&
+                        parts.length === 2 &&
+                        (parts[1] === '.' || parts[1] === '')) {
+                        didSomething = true;
+                        parts.pop();
+                    }
+                }
+                // 
/

/../ ->

/
+                let dd = 0;
+                while (-1 !== (dd = parts.indexOf('..', dd + 1))) {
+                    const p = parts[dd - 1];
+                    if (p && p !== '.' && p !== '..' && p !== '**') {
+                        didSomething = true;
+                        const needDot = dd === 1 && parts[dd + 1] === '**';
+                        const splin = needDot ? ['.'] : [];
+                        parts.splice(dd - 1, 2, ...splin);
+                        if (parts.length === 0)
+                            parts.push('');
+                        dd -= 2;
+                    }
+                }
+            }
+        } while (didSomething);
+        return globParts;
+    }
+    // second phase: multi-pattern dedupes
+    // {
/*/,
/

/} ->

/*/
+    // {
/,
/} -> 
/
+    // {
/**/,
/} -> 
/**/
+    //
+    // {
/**/,
/**/

/} ->

/**/
+    // ^-- not valid because ** doens't follow symlinks
+    secondPhasePreProcess(globParts) {
+        for (let i = 0; i < globParts.length - 1; i++) {
+            for (let j = i + 1; j < globParts.length; j++) {
+                const matched = this.partsMatch(globParts[i], globParts[j], !this.preserveMultipleSlashes);
+                if (matched) {
+                    globParts[i] = [];
+                    globParts[j] = matched;
+                    break;
+                }
+            }
+        }
+        return globParts.filter(gs => gs.length);
+    }
+    partsMatch(a, b, emptyGSMatch = false) {
+        let ai = 0;
+        let bi = 0;
+        let result = [];
+        let which = '';
+        while (ai < a.length && bi < b.length) {
+            if (a[ai] === b[bi]) {
+                result.push(which === 'b' ? b[bi] : a[ai]);
+                ai++;
+                bi++;
+            }
+            else if (emptyGSMatch && a[ai] === '**' && b[bi] === a[ai + 1]) {
+                result.push(a[ai]);
+                ai++;
+            }
+            else if (emptyGSMatch && b[bi] === '**' && a[ai] === b[bi + 1]) {
+                result.push(b[bi]);
+                bi++;
+            }
+            else if (a[ai] === '*' &&
+                b[bi] &&
+                (this.options.dot || !b[bi].startsWith('.')) &&
+                b[bi] !== '**') {
+                if (which === 'b')
+                    return false;
+                which = 'a';
+                result.push(a[ai]);
+                ai++;
+                bi++;
+            }
+            else if (b[bi] === '*' &&
+                a[ai] &&
+                (this.options.dot || !a[ai].startsWith('.')) &&
+                a[ai] !== '**') {
+                if (which === 'a')
+                    return false;
+                which = 'b';
+                result.push(b[bi]);
+                ai++;
+                bi++;
+            }
+            else {
+                return false;
+            }
+        }
+        // if we fall out of the loop, it means they two are identical
+        // as long as their lengths match
+        return a.length === b.length && result;
+    }
+    parseNegate() {
+        if (this.nonegate)
+            return;
+        const pattern = this.pattern;
+        let negate = false;
+        let negateOffset = 0;
+        for (let i = 0; i < pattern.length && pattern.charAt(i) === '!'; i++) {
+            negate = !negate;
+            negateOffset++;
+        }
+        if (negateOffset)
+            this.pattern = pattern.slice(negateOffset);
+        this.negate = negate;
+    }
+    // set partial to true to test if, for example,
+    // "/a/b" matches the start of "/*/b/*/d"
+    // Partial means, if you run out of file before you run
+    // out of pattern, then that's fine, as long as all
+    // the parts match.
+    matchOne(file, pattern, partial = false) {
+        const options = this.options;
+        // UNC paths like //?/X:/... can match X:/... and vice versa
+        // Drive letters in absolute drive or unc paths are always compared
+        // case-insensitively.
+        if (this.isWindows) {
+            const fileDrive = typeof file[0] === 'string' && /^[a-z]:$/i.test(file[0]);
+            const fileUNC = !fileDrive &&
+                file[0] === '' &&
+                file[1] === '' &&
+                file[2] === '?' &&
+                /^[a-z]:$/i.test(file[3]);
+            const patternDrive = typeof pattern[0] === 'string' && /^[a-z]:$/i.test(pattern[0]);
+            const patternUNC = !patternDrive &&
+                pattern[0] === '' &&
+                pattern[1] === '' &&
+                pattern[2] === '?' &&
+                typeof pattern[3] === 'string' &&
+                /^[a-z]:$/i.test(pattern[3]);
+            const fdi = fileUNC ? 3 : fileDrive ? 0 : undefined;
+            const pdi = patternUNC ? 3 : patternDrive ? 0 : undefined;
+            if (typeof fdi === 'number' && typeof pdi === 'number') {
+                const [fd, pd] = [file[fdi], pattern[pdi]];
+                if (fd.toLowerCase() === pd.toLowerCase()) {
+                    pattern[pdi] = fd;
+                    if (pdi > fdi) {
+                        pattern = pattern.slice(pdi);
+                    }
+                    else if (fdi > pdi) {
+                        file = file.slice(fdi);
+                    }
+                }
+            }
+        }
+        // resolve and reduce . and .. portions in the file as well.
+        // dont' need to do the second phase, because it's only one string[]
+        const { optimizationLevel = 1 } = this.options;
+        if (optimizationLevel >= 2) {
+            file = this.levelTwoFileOptimize(file);
+        }
+        this.debug('matchOne', this, { file, pattern });
+        this.debug('matchOne', file.length, pattern.length);
+        for (var fi = 0, pi = 0, fl = file.length, pl = pattern.length; fi < fl && pi < pl; fi++, pi++) {
+            this.debug('matchOne loop');
+            var p = pattern[pi];
+            var f = file[fi];
+            this.debug(pattern, p, f);
+            // should be impossible.
+            // some invalid regexp stuff in the set.
+            /* c8 ignore start */
+            if (p === false) {
+                return false;
+            }
+            /* c8 ignore stop */
+            if (p === exports.GLOBSTAR) {
+                this.debug('GLOBSTAR', [pattern, p, f]);
+                // "**"
+                // a/**/b/**/c would match the following:
+                // a/b/x/y/z/c
+                // a/x/y/z/b/c
+                // a/b/x/b/x/c
+                // a/b/c
+                // To do this, take the rest of the pattern after
+                // the **, and see if it would match the file remainder.
+                // If so, return success.
+                // If not, the ** "swallows" a segment, and try again.
+                // This is recursively awful.
+                //
+                // a/**/b/**/c matching a/b/x/y/z/c
+                // - a matches a
+                // - doublestar
+                //   - matchOne(b/x/y/z/c, b/**/c)
+                //     - b matches b
+                //     - doublestar
+                //       - matchOne(x/y/z/c, c) -> no
+                //       - matchOne(y/z/c, c) -> no
+                //       - matchOne(z/c, c) -> no
+                //       - matchOne(c, c) yes, hit
+                var fr = fi;
+                var pr = pi + 1;
+                if (pr === pl) {
+                    this.debug('** at the end');
+                    // a ** at the end will just swallow the rest.
+                    // We have found a match.
+                    // however, it will not swallow /.x, unless
+                    // options.dot is set.
+                    // . and .. are *never* matched by **, for explosively
+                    // exponential reasons.
+                    for (; fi < fl; fi++) {
+                        if (file[fi] === '.' ||
+                            file[fi] === '..' ||
+                            (!options.dot && file[fi].charAt(0) === '.'))
+                            return false;
+                    }
+                    return true;
+                }
+                // ok, let's see if we can swallow whatever we can.
+                while (fr < fl) {
+                    var swallowee = file[fr];
+                    this.debug('\nglobstar while', file, fr, pattern, pr, swallowee);
+                    // XXX remove this slice.  Just pass the start index.
+                    if (this.matchOne(file.slice(fr), pattern.slice(pr), partial)) {
+                        this.debug('globstar found match!', fr, fl, swallowee);
+                        // found a match.
+                        return true;
+                    }
+                    else {
+                        // can't swallow "." or ".." ever.
+                        // can only swallow ".foo" when explicitly asked.
+                        if (swallowee === '.' ||
+                            swallowee === '..' ||
+                            (!options.dot && swallowee.charAt(0) === '.')) {
+                            this.debug('dot detected!', file, fr, pattern, pr);
+                            break;
+                        }
+                        // ** swallows a segment, and continue.
+                        this.debug('globstar swallow a segment, and continue');
+                        fr++;
+                    }
+                }
+                // no match was found.
+                // However, in partial mode, we can't say this is necessarily over.
+                /* c8 ignore start */
+                if (partial) {
+                    // ran out of file
+                    this.debug('\n>>> no match, partial?', file, fr, pattern, pr);
+                    if (fr === fl) {
+                        return true;
+                    }
+                }
+                /* c8 ignore stop */
+                return false;
+            }
+            // something other than **
+            // non-magic patterns just have to match exactly
+            // patterns with magic have been turned into regexps.
+            let hit;
+            if (typeof p === 'string') {
+                hit = f === p;
+                this.debug('string match', p, f, hit);
+            }
+            else {
+                hit = p.test(f);
+                this.debug('pattern match', p, f, hit);
+            }
+            if (!hit)
+                return false;
+        }
+        // Note: ending in / means that we'll get a final ""
+        // at the end of the pattern.  This can only match a
+        // corresponding "" at the end of the file.
+        // If the file ends in /, then it can only match a
+        // a pattern that ends in /, unless the pattern just
+        // doesn't have any more for it. But, a/b/ should *not*
+        // match "a/b/*", even though "" matches against the
+        // [^/]*? pattern, except in partial mode, where it might
+        // simply not be reached yet.
+        // However, a/b/ should still satisfy a/*
+        // now either we fell off the end of the pattern, or we're done.
+        if (fi === fl && pi === pl) {
+            // ran out of pattern and filename at the same time.
+            // an exact hit!
+            return true;
+        }
+        else if (fi === fl) {
+            // ran out of file, but still had pattern left.
+            // this is ok if we're doing the match as part of
+            // a glob fs traversal.
+            return partial;
+        }
+        else if (pi === pl) {
+            // ran out of pattern, still have file left.
+            // this is only acceptable if we're on the very last
+            // empty segment of a file with a trailing slash.
+            // a/* should match a/b/
+            return fi === fl - 1 && file[fi] === '';
+            /* c8 ignore start */
+        }
+        else {
+            // should be unreachable.
+            throw new Error('wtf?');
+        }
+        /* c8 ignore stop */
+    }
+    braceExpand() {
+        return (0, exports.braceExpand)(this.pattern, this.options);
+    }
+    parse(pattern) {
+        (0, assert_valid_pattern_js_1.assertValidPattern)(pattern);
+        const options = this.options;
+        // shortcuts
+        if (pattern === '**')
+            return exports.GLOBSTAR;
+        if (pattern === '')
+            return '';
+        // far and away, the most common glob pattern parts are
+        // *, *.*, and *.  Add a fast check method for those.
+        let m;
+        let fastTest = null;
+        if ((m = pattern.match(starRE))) {
+            fastTest = options.dot ? starTestDot : starTest;
+        }
+        else if ((m = pattern.match(starDotExtRE))) {
+            fastTest = (options.nocase
+                ? options.dot
+                    ? starDotExtTestNocaseDot
+                    : starDotExtTestNocase
+                : options.dot
+                    ? starDotExtTestDot
+                    : starDotExtTest)(m[1]);
+        }
+        else if ((m = pattern.match(qmarksRE))) {
+            fastTest = (options.nocase
+                ? options.dot
+                    ? qmarksTestNocaseDot
+                    : qmarksTestNocase
+                : options.dot
+                    ? qmarksTestDot
+                    : qmarksTest)(m);
+        }
+        else if ((m = pattern.match(starDotStarRE))) {
+            fastTest = options.dot ? starDotStarTestDot : starDotStarTest;
+        }
+        else if ((m = pattern.match(dotStarRE))) {
+            fastTest = dotStarTest;
+        }
+        const re = ast_js_1.AST.fromGlob(pattern, this.options).toMMPattern();
+        if (fastTest && typeof re === 'object') {
+            // Avoids overriding in frozen environments
+            Reflect.defineProperty(re, 'test', { value: fastTest });
+        }
+        return re;
+    }
+    makeRe() {
+        if (this.regexp || this.regexp === false)
+            return this.regexp;
+        // at this point, this.set is a 2d array of partial
+        // pattern strings, or "**".
+        //
+        // It's better to use .match().  This function shouldn't
+        // be used, really, but it's pretty convenient sometimes,
+        // when you just want to work with a regex.
+        const set = this.set;
+        if (!set.length) {
+            this.regexp = false;
+            return this.regexp;
+        }
+        const options = this.options;
+        const twoStar = options.noglobstar
+            ? star
+            : options.dot
+                ? twoStarDot
+                : twoStarNoDot;
+        const flags = new Set(options.nocase ? ['i'] : []);
+        // regexpify non-globstar patterns
+        // if ** is only item, then we just do one twoStar
+        // if ** is first, and there are more, prepend (\/|twoStar\/)? to next
+        // if ** is last, append (\/twoStar|) to previous
+        // if ** is in the middle, append (\/|\/twoStar\/) to previous
+        // then filter out GLOBSTAR symbols
+        let re = set
+            .map(pattern => {
+            const pp = pattern.map(p => {
+                if (p instanceof RegExp) {
+                    for (const f of p.flags.split(''))
+                        flags.add(f);
+                }
+                return typeof p === 'string'
+                    ? regExpEscape(p)
+                    : p === exports.GLOBSTAR
+                        ? exports.GLOBSTAR
+                        : p._src;
+            });
+            pp.forEach((p, i) => {
+                const next = pp[i + 1];
+                const prev = pp[i - 1];
+                if (p !== exports.GLOBSTAR || prev === exports.GLOBSTAR) {
+                    return;
+                }
+                if (prev === undefined) {
+                    if (next !== undefined && next !== exports.GLOBSTAR) {
+                        pp[i + 1] = '(?:\\/|' + twoStar + '\\/)?' + next;
+                    }
+                    else {
+                        pp[i] = twoStar;
+                    }
+                }
+                else if (next === undefined) {
+                    pp[i - 1] = prev + '(?:\\/|' + twoStar + ')?';
+                }
+                else if (next !== exports.GLOBSTAR) {
+                    pp[i - 1] = prev + '(?:\\/|\\/' + twoStar + '\\/)' + next;
+                    pp[i + 1] = exports.GLOBSTAR;
+                }
+            });
+            return pp.filter(p => p !== exports.GLOBSTAR).join('/');
+        })
+            .join('|');
+        // need to wrap in parens if we had more than one thing with |,
+        // otherwise only the first will be anchored to ^ and the last to $
+        const [open, close] = set.length > 1 ? ['(?:', ')'] : ['', ''];
+        // must match entire pattern
+        // ending in a * or ** will make it less strict.
+        re = '^' + open + re + close + '$';
+        // can match anything, as long as it's not this.
+        if (this.negate)
+            re = '^(?!' + re + ').+$';
+        try {
+            this.regexp = new RegExp(re, [...flags].join(''));
+            /* c8 ignore start */
+        }
+        catch (ex) {
+            // should be impossible
+            this.regexp = false;
+        }
+        /* c8 ignore stop */
+        return this.regexp;
+    }
+    slashSplit(p) {
+        // if p starts with // on windows, we preserve that
+        // so that UNC paths aren't broken.  Otherwise, any number of
+        // / characters are coalesced into one, unless
+        // preserveMultipleSlashes is set to true.
+        if (this.preserveMultipleSlashes) {
+            return p.split('/');
+        }
+        else if (this.isWindows && /^\/\/[^\/]+/.test(p)) {
+            // add an extra '' for the one we lose
+            return ['', ...p.split(/\/+/)];
+        }
+        else {
+            return p.split(/\/+/);
+        }
+    }
+    match(f, partial = this.partial) {
+        this.debug('match', f, this.pattern);
+        // short-circuit in the case of busted things.
+        // comments, etc.
+        if (this.comment) {
+            return false;
+        }
+        if (this.empty) {
+            return f === '';
+        }
+        if (f === '/' && partial) {
+            return true;
+        }
+        const options = this.options;
+        // windows: need to use /, not \
+        if (this.isWindows) {
+            f = f.split('\\').join('/');
+        }
+        // treat the test path as a set of pathparts.
+        const ff = this.slashSplit(f);
+        this.debug(this.pattern, 'split', ff);
+        // just ONE of the pattern sets in this.set needs to match
+        // in order for it to be valid.  If negating, then just one
+        // match means that we have failed.
+        // Either way, return on the first hit.
+        const set = this.set;
+        this.debug(this.pattern, 'set', set);
+        // Find the basename of the path by looking for the last non-empty segment
+        let filename = ff[ff.length - 1];
+        if (!filename) {
+            for (let i = ff.length - 2; !filename && i >= 0; i--) {
+                filename = ff[i];
+            }
+        }
+        for (let i = 0; i < set.length; i++) {
+            const pattern = set[i];
+            let file = ff;
+            if (options.matchBase && pattern.length === 1) {
+                file = [filename];
+            }
+            const hit = this.matchOne(file, pattern, partial);
+            if (hit) {
+                if (options.flipNegate) {
+                    return true;
+                }
+                return !this.negate;
+            }
+        }
+        // didn't get any hits.  this is success if it's a negative
+        // pattern, failure otherwise.
+        if (options.flipNegate) {
+            return false;
+        }
+        return this.negate;
+    }
+    static defaults(def) {
+        return exports.minimatch.defaults(def).Minimatch;
+    }
+}
+exports.Minimatch = Minimatch;
+/* c8 ignore start */
+var ast_js_2 = __nccwpck_require__(1803);
+Object.defineProperty(exports, "AST", ({ enumerable: true, get: function () { return ast_js_2.AST; } }));
+var escape_js_2 = __nccwpck_require__(800);
+Object.defineProperty(exports, "escape", ({ enumerable: true, get: function () { return escape_js_2.escape; } }));
+var unescape_js_2 = __nccwpck_require__(851);
+Object.defineProperty(exports, "unescape", ({ enumerable: true, get: function () { return unescape_js_2.unescape; } }));
+/* c8 ignore stop */
+exports.minimatch.AST = ast_js_1.AST;
+exports.minimatch.Minimatch = Minimatch;
+exports.minimatch.escape = escape_js_1.escape;
+exports.minimatch.unescape = unescape_js_1.unescape;
+//# sourceMappingURL=index.js.map
+
+/***/ }),
+
+/***/ 851:
+/***/ ((__unused_webpack_module, exports) => {
+
+"use strict";
+
+Object.defineProperty(exports, "__esModule", ({ value: true }));
+exports.unescape = void 0;
+/**
+ * Un-escape a string that has been escaped with {@link escape}.
+ *
+ * If the {@link windowsPathsNoEscape} option is used, then square-brace
+ * escapes are removed, but not backslash escapes.  For example, it will turn
+ * the string `'[*]'` into `*`, but it will not turn `'\\*'` into `'*'`,
+ * becuase `\` is a path separator in `windowsPathsNoEscape` mode.
+ *
+ * When `windowsPathsNoEscape` is not set, then both brace escapes and
+ * backslash escapes are removed.
+ *
+ * Slashes (and backslashes in `windowsPathsNoEscape` mode) cannot be escaped
+ * or unescaped.
+ */
+const unescape = (s, { windowsPathsNoEscape = false, } = {}) => {
+    return windowsPathsNoEscape
+        ? s.replace(/\[([^\/\\])\]/g, '$1')
+        : s.replace(/((?!\\).|^)\[([^\/\\])\]/g, '$1$2').replace(/\\([^\/])/g, '$1');
+};
+exports.unescape = unescape;
+//# sourceMappingURL=unescape.js.map
+
+/***/ }),
+
+/***/ 8275:
+/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) {
+
+"use strict";
+
+var __importDefault = (this && this.__importDefault) || function (mod) {
+    return (mod && mod.__esModule) ? mod : { "default": mod };
+};
+Object.defineProperty(exports, "__esModule", ({ value: true }));
+exports.Minipass = exports.isWritable = exports.isReadable = exports.isStream = void 0;
+const proc = typeof process === 'object' && process
+    ? process
+    : {
+        stdout: null,
+        stderr: null,
+    };
+const node_events_1 = __nccwpck_require__(8474);
+const node_stream_1 = __importDefault(__nccwpck_require__(7075));
+const node_string_decoder_1 = __nccwpck_require__(6193);
+/**
+ * Return true if the argument is a Minipass stream, Node stream, or something
+ * else that Minipass can interact with.
+ */
+const isStream = (s) => !!s &&
+    typeof s === 'object' &&
+    (s instanceof Minipass ||
+        s instanceof node_stream_1.default ||
+        (0, exports.isReadable)(s) ||
+        (0, exports.isWritable)(s));
+exports.isStream = isStream;
+/**
+ * Return true if the argument is a valid {@link Minipass.Readable}
+ */
+const isReadable = (s) => !!s &&
+    typeof s === 'object' &&
+    s instanceof node_events_1.EventEmitter &&
+    typeof s.pipe === 'function' &&
+    // node core Writable streams have a pipe() method, but it throws
+    s.pipe !== node_stream_1.default.Writable.prototype.pipe;
+exports.isReadable = isReadable;
+/**
+ * Return true if the argument is a valid {@link Minipass.Writable}
+ */
+const isWritable = (s) => !!s &&
+    typeof s === 'object' &&
+    s instanceof node_events_1.EventEmitter &&
+    typeof s.write === 'function' &&
+    typeof s.end === 'function';
+exports.isWritable = isWritable;
+const EOF = Symbol('EOF');
+const MAYBE_EMIT_END = Symbol('maybeEmitEnd');
+const EMITTED_END = Symbol('emittedEnd');
+const EMITTING_END = Symbol('emittingEnd');
+const EMITTED_ERROR = Symbol('emittedError');
+const CLOSED = Symbol('closed');
+const READ = Symbol('read');
+const FLUSH = Symbol('flush');
+const FLUSHCHUNK = Symbol('flushChunk');
+const ENCODING = Symbol('encoding');
+const DECODER = Symbol('decoder');
+const FLOWING = Symbol('flowing');
+const PAUSED = Symbol('paused');
+const RESUME = Symbol('resume');
+const BUFFER = Symbol('buffer');
+const PIPES = Symbol('pipes');
+const BUFFERLENGTH = Symbol('bufferLength');
+const BUFFERPUSH = Symbol('bufferPush');
+const BUFFERSHIFT = Symbol('bufferShift');
+const OBJECTMODE = Symbol('objectMode');
+// internal event when stream is destroyed
+const DESTROYED = Symbol('destroyed');
+// internal event when stream has an error
+const ERROR = Symbol('error');
+const EMITDATA = Symbol('emitData');
+const EMITEND = Symbol('emitEnd');
+const EMITEND2 = Symbol('emitEnd2');
+const ASYNC = Symbol('async');
+const ABORT = Symbol('abort');
+const ABORTED = Symbol('aborted');
+const SIGNAL = Symbol('signal');
+const DATALISTENERS = Symbol('dataListeners');
+const DISCARDED = Symbol('discarded');
+const defer = (fn) => Promise.resolve().then(fn);
+const nodefer = (fn) => fn();
+const isEndish = (ev) => ev === 'end' || ev === 'finish' || ev === 'prefinish';
+const isArrayBufferLike = (b) => b instanceof ArrayBuffer ||
+    (!!b &&
+        typeof b === 'object' &&
+        b.constructor &&
+        b.constructor.name === 'ArrayBuffer' &&
+        b.byteLength >= 0);
+const isArrayBufferView = (b) => !Buffer.isBuffer(b) && ArrayBuffer.isView(b);
+/**
+ * Internal class representing a pipe to a destination stream.
+ *
+ * @internal
+ */
+class Pipe {
+    src;
+    dest;
+    opts;
+    ondrain;
+    constructor(src, dest, opts) {
+        this.src = src;
+        this.dest = dest;
+        this.opts = opts;
+        this.ondrain = () => src[RESUME]();
+        this.dest.on('drain', this.ondrain);
+    }
+    unpipe() {
+        this.dest.removeListener('drain', this.ondrain);
+    }
+    // only here for the prototype
+    /* c8 ignore start */
+    proxyErrors(_er) { }
+    /* c8 ignore stop */
+    end() {
+        this.unpipe();
+        if (this.opts.end)
+            this.dest.end();
+    }
+}
+/**
+ * Internal class representing a pipe to a destination stream where
+ * errors are proxied.
+ *
+ * @internal
+ */
+class PipeProxyErrors extends Pipe {
+    unpipe() {
+        this.src.removeListener('error', this.proxyErrors);
+        super.unpipe();
+    }
+    constructor(src, dest, opts) {
+        super(src, dest, opts);
+        this.proxyErrors = er => dest.emit('error', er);
+        src.on('error', this.proxyErrors);
+    }
+}
+const isObjectModeOptions = (o) => !!o.objectMode;
+const isEncodingOptions = (o) => !o.objectMode && !!o.encoding && o.encoding !== 'buffer';
+/**
+ * Main export, the Minipass class
+ *
+ * `RType` is the type of data emitted, defaults to Buffer
+ *
+ * `WType` is the type of data to be written, if RType is buffer or string,
+ * then any {@link Minipass.ContiguousData} is allowed.
+ *
+ * `Events` is the set of event handler signatures that this object
+ * will emit, see {@link Minipass.Events}
+ */
+class Minipass extends node_events_1.EventEmitter {
+    [FLOWING] = false;
+    [PAUSED] = false;
+    [PIPES] = [];
+    [BUFFER] = [];
+    [OBJECTMODE];
+    [ENCODING];
+    [ASYNC];
+    [DECODER];
+    [EOF] = false;
+    [EMITTED_END] = false;
+    [EMITTING_END] = false;
+    [CLOSED] = false;
+    [EMITTED_ERROR] = null;
+    [BUFFERLENGTH] = 0;
+    [DESTROYED] = false;
+    [SIGNAL];
+    [ABORTED] = false;
+    [DATALISTENERS] = 0;
+    [DISCARDED] = false;
+    /**
+     * true if the stream can be written
+     */
+    writable = true;
+    /**
+     * true if the stream can be read
+     */
+    readable = true;
+    /**
+     * If `RType` is Buffer, then options do not need to be provided.
+     * Otherwise, an options object must be provided to specify either
+     * {@link Minipass.SharedOptions.objectMode} or
+     * {@link Minipass.SharedOptions.encoding}, as appropriate.
+     */
+    constructor(...args) {
+        const options = (args[0] ||
+            {});
+        super();
+        if (options.objectMode && typeof options.encoding === 'string') {
+            throw new TypeError('Encoding and objectMode may not be used together');
+        }
+        if (isObjectModeOptions(options)) {
+            this[OBJECTMODE] = true;
+            this[ENCODING] = null;
+        }
+        else if (isEncodingOptions(options)) {
+            this[ENCODING] = options.encoding;
+            this[OBJECTMODE] = false;
+        }
+        else {
+            this[OBJECTMODE] = false;
+            this[ENCODING] = null;
+        }
+        this[ASYNC] = !!options.async;
+        this[DECODER] = this[ENCODING]
+            ? new node_string_decoder_1.StringDecoder(this[ENCODING])
+            : null;
+        //@ts-ignore - private option for debugging and testing
+        if (options && options.debugExposeBuffer === true) {
+            Object.defineProperty(this, 'buffer', { get: () => this[BUFFER] });
+        }
+        //@ts-ignore - private option for debugging and testing
+        if (options && options.debugExposePipes === true) {
+            Object.defineProperty(this, 'pipes', { get: () => this[PIPES] });
+        }
+        const { signal } = options;
+        if (signal) {
+            this[SIGNAL] = signal;
+            if (signal.aborted) {
+                this[ABORT]();
+            }
+            else {
+                signal.addEventListener('abort', () => this[ABORT]());
+            }
+        }
+    }
+    /**
+     * The amount of data stored in the buffer waiting to be read.
+     *
+     * For Buffer strings, this will be the total byte length.
+     * For string encoding streams, this will be the string character length,
+     * according to JavaScript's `string.length` logic.
+     * For objectMode streams, this is a count of the items waiting to be
+     * emitted.
+     */
+    get bufferLength() {
+        return this[BUFFERLENGTH];
+    }
+    /**
+     * The `BufferEncoding` currently in use, or `null`
+     */
+    get encoding() {
+        return this[ENCODING];
+    }
+    /**
+     * @deprecated - This is a read only property
+     */
+    set encoding(_enc) {
+        throw new Error('Encoding must be set at instantiation time');
+    }
+    /**
+     * @deprecated - Encoding may only be set at instantiation time
+     */
+    setEncoding(_enc) {
+        throw new Error('Encoding must be set at instantiation time');
+    }
+    /**
+     * True if this is an objectMode stream
+     */
+    get objectMode() {
+        return this[OBJECTMODE];
+    }
+    /**
+     * @deprecated - This is a read-only property
+     */
+    set objectMode(_om) {
+        throw new Error('objectMode must be set at instantiation time');
+    }
+    /**
+     * true if this is an async stream
+     */
+    get ['async']() {
+        return this[ASYNC];
+    }
+    /**
+     * Set to true to make this stream async.
+     *
+     * Once set, it cannot be unset, as this would potentially cause incorrect
+     * behavior.  Ie, a sync stream can be made async, but an async stream
+     * cannot be safely made sync.
+     */
+    set ['async'](a) {
+        this[ASYNC] = this[ASYNC] || !!a;
+    }
+    // drop everything and get out of the flow completely
+    [ABORT]() {
+        this[ABORTED] = true;
+        this.emit('abort', this[SIGNAL]?.reason);
+        this.destroy(this[SIGNAL]?.reason);
+    }
+    /**
+     * True if the stream has been aborted.
+     */
+    get aborted() {
+        return this[ABORTED];
+    }
+    /**
+     * No-op setter. Stream aborted status is set via the AbortSignal provided
+     * in the constructor options.
+     */
+    set aborted(_) { }
+    write(chunk, encoding, cb) {
+        if (this[ABORTED])
+            return false;
+        if (this[EOF])
+            throw new Error('write after end');
+        if (this[DESTROYED]) {
+            this.emit('error', Object.assign(new Error('Cannot call write after a stream was destroyed'), { code: 'ERR_STREAM_DESTROYED' }));
+            return true;
+        }
+        if (typeof encoding === 'function') {
+            cb = encoding;
+            encoding = 'utf8';
+        }
+        if (!encoding)
+            encoding = 'utf8';
+        const fn = this[ASYNC] ? defer : nodefer;
+        // convert array buffers and typed array views into buffers
+        // at some point in the future, we may want to do the opposite!
+        // leave strings and buffers as-is
+        // anything is only allowed if in object mode, so throw
+        if (!this[OBJECTMODE] && !Buffer.isBuffer(chunk)) {
+            if (isArrayBufferView(chunk)) {
+                //@ts-ignore - sinful unsafe type changing
+                chunk = Buffer.from(chunk.buffer, chunk.byteOffset, chunk.byteLength);
+            }
+            else if (isArrayBufferLike(chunk)) {
+                //@ts-ignore - sinful unsafe type changing
+                chunk = Buffer.from(chunk);
+            }
+            else if (typeof chunk !== 'string') {
+                throw new Error('Non-contiguous data written to non-objectMode stream');
+            }
+        }
+        // handle object mode up front, since it's simpler
+        // this yields better performance, fewer checks later.
+        if (this[OBJECTMODE]) {
+            // maybe impossible?
+            /* c8 ignore start */
+            if (this[FLOWING] && this[BUFFERLENGTH] !== 0)
+                this[FLUSH](true);
+            /* c8 ignore stop */
+            if (this[FLOWING])
+                this.emit('data', chunk);
+            else
+                this[BUFFERPUSH](chunk);
+            if (this[BUFFERLENGTH] !== 0)
+                this.emit('readable');
+            if (cb)
+                fn(cb);
+            return this[FLOWING];
+        }
+        // at this point the chunk is a buffer or string
+        // don't buffer it up or send it to the decoder
+        if (!chunk.length) {
+            if (this[BUFFERLENGTH] !== 0)
+                this.emit('readable');
+            if (cb)
+                fn(cb);
+            return this[FLOWING];
+        }
+        // fast-path writing strings of same encoding to a stream with
+        // an empty buffer, skipping the buffer/decoder dance
+        if (typeof chunk === 'string' &&
+            // unless it is a string already ready for us to use
+            !(encoding === this[ENCODING] && !this[DECODER]?.lastNeed)) {
+            //@ts-ignore - sinful unsafe type change
+            chunk = Buffer.from(chunk, encoding);
+        }
+        if (Buffer.isBuffer(chunk) && this[ENCODING]) {
+            //@ts-ignore - sinful unsafe type change
+            chunk = this[DECODER].write(chunk);
+        }
+        // Note: flushing CAN potentially switch us into not-flowing mode
+        if (this[FLOWING] && this[BUFFERLENGTH] !== 0)
+            this[FLUSH](true);
+        if (this[FLOWING])
+            this.emit('data', chunk);
+        else
+            this[BUFFERPUSH](chunk);
+        if (this[BUFFERLENGTH] !== 0)
+            this.emit('readable');
+        if (cb)
+            fn(cb);
+        return this[FLOWING];
+    }
+    /**
+     * Low-level explicit read method.
+     *
+     * In objectMode, the argument is ignored, and one item is returned if
+     * available.
+     *
+     * `n` is the number of bytes (or in the case of encoding streams,
+     * characters) to consume. If `n` is not provided, then the entire buffer
+     * is returned, or `null` is returned if no data is available.
+     *
+     * If `n` is greater that the amount of data in the internal buffer,
+     * then `null` is returned.
+     */
+    read(n) {
+        if (this[DESTROYED])
+            return null;
+        this[DISCARDED] = false;
+        if (this[BUFFERLENGTH] === 0 ||
+            n === 0 ||
+            (n && n > this[BUFFERLENGTH])) {
+            this[MAYBE_EMIT_END]();
+            return null;
+        }
+        if (this[OBJECTMODE])
+            n = null;
+        if (this[BUFFER].length > 1 && !this[OBJECTMODE]) {
+            // not object mode, so if we have an encoding, then RType is string
+            // otherwise, must be Buffer
+            this[BUFFER] = [
+                (this[ENCODING]
+                    ? this[BUFFER].join('')
+                    : Buffer.concat(this[BUFFER], this[BUFFERLENGTH])),
+            ];
+        }
+        const ret = this[READ](n || null, this[BUFFER][0]);
+        this[MAYBE_EMIT_END]();
+        return ret;
+    }
+    [READ](n, chunk) {
+        if (this[OBJECTMODE])
+            this[BUFFERSHIFT]();
+        else {
+            const c = chunk;
+            if (n === c.length || n === null)
+                this[BUFFERSHIFT]();
+            else if (typeof c === 'string') {
+                this[BUFFER][0] = c.slice(n);
+                chunk = c.slice(0, n);
+                this[BUFFERLENGTH] -= n;
+            }
+            else {
+                this[BUFFER][0] = c.subarray(n);
+                chunk = c.subarray(0, n);
+                this[BUFFERLENGTH] -= n;
+            }
+        }
+        this.emit('data', chunk);
+        if (!this[BUFFER].length && !this[EOF])
+            this.emit('drain');
+        return chunk;
+    }
+    end(chunk, encoding, cb) {
+        if (typeof chunk === 'function') {
+            cb = chunk;
+            chunk = undefined;
+        }
+        if (typeof encoding === 'function') {
+            cb = encoding;
+            encoding = 'utf8';
+        }
+        if (chunk !== undefined)
+            this.write(chunk, encoding);
+        if (cb)
+            this.once('end', cb);
+        this[EOF] = true;
+        this.writable = false;
+        // if we haven't written anything, then go ahead and emit,
+        // even if we're not reading.
+        // we'll re-emit if a new 'end' listener is added anyway.
+        // This makes MP more suitable to write-only use cases.
+        if (this[FLOWING] || !this[PAUSED])
+            this[MAYBE_EMIT_END]();
+        return this;
+    }
+    // don't let the internal resume be overwritten
+    [RESUME]() {
+        if (this[DESTROYED])
+            return;
+        if (!this[DATALISTENERS] && !this[PIPES].length) {
+            this[DISCARDED] = true;
+        }
+        this[PAUSED] = false;
+        this[FLOWING] = true;
+        this.emit('resume');
+        if (this[BUFFER].length)
+            this[FLUSH]();
+        else if (this[EOF])
+            this[MAYBE_EMIT_END]();
+        else
+            this.emit('drain');
+    }
+    /**
+     * Resume the stream if it is currently in a paused state
+     *
+     * If called when there are no pipe destinations or `data` event listeners,
+     * this will place the stream in a "discarded" state, where all data will
+     * be thrown away. The discarded state is removed if a pipe destination or
+     * data handler is added, if pause() is called, or if any synchronous or
+     * asynchronous iteration is started.
+     */
+    resume() {
+        return this[RESUME]();
+    }
+    /**
+     * Pause the stream
+     */
+    pause() {
+        this[FLOWING] = false;
+        this[PAUSED] = true;
+        this[DISCARDED] = false;
+    }
+    /**
+     * true if the stream has been forcibly destroyed
+     */
+    get destroyed() {
+        return this[DESTROYED];
+    }
+    /**
+     * true if the stream is currently in a flowing state, meaning that
+     * any writes will be immediately emitted.
+     */
+    get flowing() {
+        return this[FLOWING];
+    }
+    /**
+     * true if the stream is currently in a paused state
+     */
+    get paused() {
+        return this[PAUSED];
+    }
+    [BUFFERPUSH](chunk) {
+        if (this[OBJECTMODE])
+            this[BUFFERLENGTH] += 1;
+        else
+            this[BUFFERLENGTH] += chunk.length;
+        this[BUFFER].push(chunk);
+    }
+    [BUFFERSHIFT]() {
+        if (this[OBJECTMODE])
+            this[BUFFERLENGTH] -= 1;
+        else
+            this[BUFFERLENGTH] -= this[BUFFER][0].length;
+        return this[BUFFER].shift();
+    }
+    [FLUSH](noDrain = false) {
+        do { } while (this[FLUSHCHUNK](this[BUFFERSHIFT]()) &&
+            this[BUFFER].length);
+        if (!noDrain && !this[BUFFER].length && !this[EOF])
+            this.emit('drain');
+    }
+    [FLUSHCHUNK](chunk) {
+        this.emit('data', chunk);
+        return this[FLOWING];
+    }
+    /**
+     * Pipe all data emitted by this stream into the destination provided.
+     *
+     * Triggers the flow of data.
+     */
+    pipe(dest, opts) {
+        if (this[DESTROYED])
+            return dest;
+        this[DISCARDED] = false;
+        const ended = this[EMITTED_END];
+        opts = opts || {};
+        if (dest === proc.stdout || dest === proc.stderr)
+            opts.end = false;
+        else
+            opts.end = opts.end !== false;
+        opts.proxyErrors = !!opts.proxyErrors;
+        // piping an ended stream ends immediately
+        if (ended) {
+            if (opts.end)
+                dest.end();
+        }
+        else {
+            // "as" here just ignores the WType, which pipes don't care about,
+            // since they're only consuming from us, and writing to the dest
+            this[PIPES].push(!opts.proxyErrors
+                ? new Pipe(this, dest, opts)
+                : new PipeProxyErrors(this, dest, opts));
+            if (this[ASYNC])
+                defer(() => this[RESUME]());
+            else
+                this[RESUME]();
+        }
+        return dest;
+    }
+    /**
+     * Fully unhook a piped destination stream.
+     *
+     * If the destination stream was the only consumer of this stream (ie,
+     * there are no other piped destinations or `'data'` event listeners)
+     * then the flow of data will stop until there is another consumer or
+     * {@link Minipass#resume} is explicitly called.
+     */
+    unpipe(dest) {
+        const p = this[PIPES].find(p => p.dest === dest);
+        if (p) {
+            if (this[PIPES].length === 1) {
+                if (this[FLOWING] && this[DATALISTENERS] === 0) {
+                    this[FLOWING] = false;
+                }
+                this[PIPES] = [];
+            }
+            else
+                this[PIPES].splice(this[PIPES].indexOf(p), 1);
+            p.unpipe();
+        }
+    }
+    /**
+     * Alias for {@link Minipass#on}
+     */
+    addListener(ev, handler) {
+        return this.on(ev, handler);
+    }
+    /**
+     * Mostly identical to `EventEmitter.on`, with the following
+     * behavior differences to prevent data loss and unnecessary hangs:
+     *
+     * - Adding a 'data' event handler will trigger the flow of data
+     *
+     * - Adding a 'readable' event handler when there is data waiting to be read
+     *   will cause 'readable' to be emitted immediately.
+     *
+     * - Adding an 'endish' event handler ('end', 'finish', etc.) which has
+     *   already passed will cause the event to be emitted immediately and all
+     *   handlers removed.
+     *
+     * - Adding an 'error' event handler after an error has been emitted will
+     *   cause the event to be re-emitted immediately with the error previously
+     *   raised.
+     */
+    on(ev, handler) {
+        const ret = super.on(ev, handler);
+        if (ev === 'data') {
+            this[DISCARDED] = false;
+            this[DATALISTENERS]++;
+            if (!this[PIPES].length && !this[FLOWING]) {
+                this[RESUME]();
+            }
+        }
+        else if (ev === 'readable' && this[BUFFERLENGTH] !== 0) {
+            super.emit('readable');
+        }
+        else if (isEndish(ev) && this[EMITTED_END]) {
+            super.emit(ev);
+            this.removeAllListeners(ev);
+        }
+        else if (ev === 'error' && this[EMITTED_ERROR]) {
+            const h = handler;
+            if (this[ASYNC])
+                defer(() => h.call(this, this[EMITTED_ERROR]));
+            else
+                h.call(this, this[EMITTED_ERROR]);
+        }
+        return ret;
+    }
+    /**
+     * Alias for {@link Minipass#off}
+     */
+    removeListener(ev, handler) {
+        return this.off(ev, handler);
+    }
+    /**
+     * Mostly identical to `EventEmitter.off`
+     *
+     * If a 'data' event handler is removed, and it was the last consumer
+     * (ie, there are no pipe destinations or other 'data' event listeners),
+     * then the flow of data will stop until there is another consumer or
+     * {@link Minipass#resume} is explicitly called.
+     */
+    off(ev, handler) {
+        const ret = super.off(ev, handler);
+        // if we previously had listeners, and now we don't, and we don't
+        // have any pipes, then stop the flow, unless it's been explicitly
+        // put in a discarded flowing state via stream.resume().
+        if (ev === 'data') {
+            this[DATALISTENERS] = this.listeners('data').length;
+            if (this[DATALISTENERS] === 0 &&
+                !this[DISCARDED] &&
+                !this[PIPES].length) {
+                this[FLOWING] = false;
+            }
+        }
+        return ret;
+    }
+    /**
+     * Mostly identical to `EventEmitter.removeAllListeners`
+     *
+     * If all 'data' event handlers are removed, and they were the last consumer
+     * (ie, there are no pipe destinations), then the flow of data will stop
+     * until there is another consumer or {@link Minipass#resume} is explicitly
+     * called.
+     */
+    removeAllListeners(ev) {
+        const ret = super.removeAllListeners(ev);
+        if (ev === 'data' || ev === undefined) {
+            this[DATALISTENERS] = 0;
+            if (!this[DISCARDED] && !this[PIPES].length) {
+                this[FLOWING] = false;
+            }
+        }
+        return ret;
+    }
+    /**
+     * true if the 'end' event has been emitted
+     */
+    get emittedEnd() {
+        return this[EMITTED_END];
+    }
+    [MAYBE_EMIT_END]() {
+        if (!this[EMITTING_END] &&
+            !this[EMITTED_END] &&
+            !this[DESTROYED] &&
+            this[BUFFER].length === 0 &&
+            this[EOF]) {
+            this[EMITTING_END] = true;
+            this.emit('end');
+            this.emit('prefinish');
+            this.emit('finish');
+            if (this[CLOSED])
+                this.emit('close');
+            this[EMITTING_END] = false;
+        }
+    }
+    /**
+     * Mostly identical to `EventEmitter.emit`, with the following
+     * behavior differences to prevent data loss and unnecessary hangs:
+     *
+     * If the stream has been destroyed, and the event is something other
+     * than 'close' or 'error', then `false` is returned and no handlers
+     * are called.
+     *
+     * If the event is 'end', and has already been emitted, then the event
+     * is ignored. If the stream is in a paused or non-flowing state, then
+     * the event will be deferred until data flow resumes. If the stream is
+     * async, then handlers will be called on the next tick rather than
+     * immediately.
+     *
+     * If the event is 'close', and 'end' has not yet been emitted, then
+     * the event will be deferred until after 'end' is emitted.
+     *
+     * If the event is 'error', and an AbortSignal was provided for the stream,
+     * and there are no listeners, then the event is ignored, matching the
+     * behavior of node core streams in the presense of an AbortSignal.
+     *
+     * If the event is 'finish' or 'prefinish', then all listeners will be
+     * removed after emitting the event, to prevent double-firing.
+     */
+    emit(ev, ...args) {
+        const data = args[0];
+        // error and close are only events allowed after calling destroy()
+        if (ev !== 'error' &&
+            ev !== 'close' &&
+            ev !== DESTROYED &&
+            this[DESTROYED]) {
+            return false;
+        }
+        else if (ev === 'data') {
+            return !this[OBJECTMODE] && !data
+                ? false
+                : this[ASYNC]
+                    ? (defer(() => this[EMITDATA](data)), true)
+                    : this[EMITDATA](data);
+        }
+        else if (ev === 'end') {
+            return this[EMITEND]();
+        }
+        else if (ev === 'close') {
+            this[CLOSED] = true;
+            // don't emit close before 'end' and 'finish'
+            if (!this[EMITTED_END] && !this[DESTROYED])
+                return false;
+            const ret = super.emit('close');
+            this.removeAllListeners('close');
+            return ret;
+        }
+        else if (ev === 'error') {
+            this[EMITTED_ERROR] = data;
+            super.emit(ERROR, data);
+            const ret = !this[SIGNAL] || this.listeners('error').length
+                ? super.emit('error', data)
+                : false;
+            this[MAYBE_EMIT_END]();
+            return ret;
+        }
+        else if (ev === 'resume') {
+            const ret = super.emit('resume');
+            this[MAYBE_EMIT_END]();
+            return ret;
+        }
+        else if (ev === 'finish' || ev === 'prefinish') {
+            const ret = super.emit(ev);
+            this.removeAllListeners(ev);
+            return ret;
+        }
+        // Some other unknown event
+        const ret = super.emit(ev, ...args);
+        this[MAYBE_EMIT_END]();
+        return ret;
+    }
+    [EMITDATA](data) {
+        for (const p of this[PIPES]) {
+            if (p.dest.write(data) === false)
+                this.pause();
+        }
+        const ret = this[DISCARDED] ? false : super.emit('data', data);
+        this[MAYBE_EMIT_END]();
+        return ret;
+    }
+    [EMITEND]() {
+        if (this[EMITTED_END])
+            return false;
+        this[EMITTED_END] = true;
+        this.readable = false;
+        return this[ASYNC]
+            ? (defer(() => this[EMITEND2]()), true)
+            : this[EMITEND2]();
+    }
+    [EMITEND2]() {
+        if (this[DECODER]) {
+            const data = this[DECODER].end();
+            if (data) {
+                for (const p of this[PIPES]) {
+                    p.dest.write(data);
+                }
+                if (!this[DISCARDED])
+                    super.emit('data', data);
+            }
+        }
+        for (const p of this[PIPES]) {
+            p.end();
+        }
+        const ret = super.emit('end');
+        this.removeAllListeners('end');
+        return ret;
+    }
+    /**
+     * Return a Promise that resolves to an array of all emitted data once
+     * the stream ends.
+     */
+    async collect() {
+        const buf = Object.assign([], {
+            dataLength: 0,
+        });
+        if (!this[OBJECTMODE])
+            buf.dataLength = 0;
+        // set the promise first, in case an error is raised
+        // by triggering the flow here.
+        const p = this.promise();
+        this.on('data', c => {
+            buf.push(c);
+            if (!this[OBJECTMODE])
+                buf.dataLength += c.length;
+        });
+        await p;
+        return buf;
+    }
+    /**
+     * Return a Promise that resolves to the concatenation of all emitted data
+     * once the stream ends.
+     *
+     * Not allowed on objectMode streams.
+     */
+    async concat() {
+        if (this[OBJECTMODE]) {
+            throw new Error('cannot concat in objectMode');
+        }
+        const buf = await this.collect();
+        return (this[ENCODING]
+            ? buf.join('')
+            : Buffer.concat(buf, buf.dataLength));
+    }
+    /**
+     * Return a void Promise that resolves once the stream ends.
+     */
+    async promise() {
+        return new Promise((resolve, reject) => {
+            this.on(DESTROYED, () => reject(new Error('stream destroyed')));
+            this.on('error', er => reject(er));
+            this.on('end', () => resolve());
+        });
+    }
+    /**
+     * Asynchronous `for await of` iteration.
+     *
+     * This will continue emitting all chunks until the stream terminates.
+     */
+    [Symbol.asyncIterator]() {
+        // set this up front, in case the consumer doesn't call next()
+        // right away.
+        this[DISCARDED] = false;
+        let stopped = false;
+        const stop = async () => {
+            this.pause();
+            stopped = true;
+            return { value: undefined, done: true };
+        };
+        const next = () => {
+            if (stopped)
+                return stop();
+            const res = this.read();
+            if (res !== null)
+                return Promise.resolve({ done: false, value: res });
+            if (this[EOF])
+                return stop();
+            let resolve;
+            let reject;
+            const onerr = (er) => {
+                this.off('data', ondata);
+                this.off('end', onend);
+                this.off(DESTROYED, ondestroy);
+                stop();
+                reject(er);
+            };
+            const ondata = (value) => {
+                this.off('error', onerr);
+                this.off('end', onend);
+                this.off(DESTROYED, ondestroy);
+                this.pause();
+                resolve({ value, done: !!this[EOF] });
+            };
+            const onend = () => {
+                this.off('error', onerr);
+                this.off('data', ondata);
+                this.off(DESTROYED, ondestroy);
+                stop();
+                resolve({ done: true, value: undefined });
+            };
+            const ondestroy = () => onerr(new Error('stream destroyed'));
+            return new Promise((res, rej) => {
+                reject = rej;
+                resolve = res;
+                this.once(DESTROYED, ondestroy);
+                this.once('error', onerr);
+                this.once('end', onend);
+                this.once('data', ondata);
+            });
+        };
+        return {
+            next,
+            throw: stop,
+            return: stop,
+            [Symbol.asyncIterator]() {
+                return this;
+            },
+        };
+    }
+    /**
+     * Synchronous `for of` iteration.
+     *
+     * The iteration will terminate when the internal buffer runs out, even
+     * if the stream has not yet terminated.
+     */
+    [Symbol.iterator]() {
+        // set this up front, in case the consumer doesn't call next()
+        // right away.
+        this[DISCARDED] = false;
+        let stopped = false;
+        const stop = () => {
+            this.pause();
+            this.off(ERROR, stop);
+            this.off(DESTROYED, stop);
+            this.off('end', stop);
+            stopped = true;
+            return { done: true, value: undefined };
+        };
+        const next = () => {
+            if (stopped)
+                return stop();
+            const value = this.read();
+            return value === null ? stop() : { done: false, value };
+        };
+        this.once('end', stop);
+        this.once(ERROR, stop);
+        this.once(DESTROYED, stop);
+        return {
+            next,
+            throw: stop,
+            return: stop,
+            [Symbol.iterator]() {
+                return this;
+            },
+        };
+    }
+    /**
+     * Destroy a stream, preventing it from being used for any further purpose.
+     *
+     * If the stream has a `close()` method, then it will be called on
+     * destruction.
+     *
+     * After destruction, any attempt to write data, read data, or emit most
+     * events will be ignored.
+     *
+     * If an error argument is provided, then it will be emitted in an
+     * 'error' event.
+     */
+    destroy(er) {
+        if (this[DESTROYED]) {
+            if (er)
+                this.emit('error', er);
+            else
+                this.emit(DESTROYED);
+            return this;
+        }
+        this[DESTROYED] = true;
+        this[DISCARDED] = true;
+        // throw away all buffered data, it's never coming out
+        this[BUFFER].length = 0;
+        this[BUFFERLENGTH] = 0;
+        const wc = this;
+        if (typeof wc.close === 'function' && !this[CLOSED])
+            wc.close();
+        if (er)
+            this.emit('error', er);
+        // if no error to emit, still reject pending promises
+        else
+            this.emit(DESTROYED);
+        return this;
+    }
+    /**
+     * Alias for {@link isStream}
+     *
+     * Former export location, maintained for backwards compatibility.
+     *
+     * @deprecated
+     */
+    static get isStream() {
+        return exports.isStream;
+    }
+}
+exports.Minipass = Minipass;
+//# sourceMappingURL=index.js.map
+
+/***/ }),
+
+/***/ 6577:
+/***/ (function(__unused_webpack_module, exports, __nccwpck_require__) {
+
+"use strict";
+
+var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
+    if (k2 === undefined) k2 = k;
+    var desc = Object.getOwnPropertyDescriptor(m, k);
+    if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
+      desc = { enumerable: true, get: function() { return m[k]; } };
+    }
+    Object.defineProperty(o, k2, desc);
+}) : (function(o, m, k, k2) {
+    if (k2 === undefined) k2 = k;
+    o[k2] = m[k];
+}));
+var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
+    Object.defineProperty(o, "default", { enumerable: true, value: v });
+}) : function(o, v) {
+    o["default"] = v;
+});
+var __importStar = (this && this.__importStar) || function (mod) {
+    if (mod && mod.__esModule) return mod;
+    var result = {};
+    if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
+    __setModuleDefault(result, mod);
+    return result;
+};
+Object.defineProperty(exports, "__esModule", ({ value: true }));
+exports.PathScurry = exports.Path = exports.PathScurryDarwin = exports.PathScurryPosix = exports.PathScurryWin32 = exports.PathScurryBase = exports.PathPosix = exports.PathWin32 = exports.PathBase = exports.ChildrenCache = exports.ResolveCache = void 0;
+const lru_cache_1 = __nccwpck_require__(2477);
+const node_path_1 = __nccwpck_require__(6760);
+const node_url_1 = __nccwpck_require__(3136);
+const fs_1 = __nccwpck_require__(9896);
+const actualFS = __importStar(__nccwpck_require__(3024));
+const realpathSync = fs_1.realpathSync.native;
+// TODO: test perf of fs/promises realpath vs realpathCB,
+// since the promises one uses realpath.native
+const promises_1 = __nccwpck_require__(1455);
+const minipass_1 = __nccwpck_require__(8275);
+const defaultFS = {
+    lstatSync: fs_1.lstatSync,
+    readdir: fs_1.readdir,
+    readdirSync: fs_1.readdirSync,
+    readlinkSync: fs_1.readlinkSync,
+    realpathSync,
+    promises: {
+        lstat: promises_1.lstat,
+        readdir: promises_1.readdir,
+        readlink: promises_1.readlink,
+        realpath: promises_1.realpath,
+    },
+};
+// if they just gave us require('fs') then use our default
+const fsFromOption = (fsOption) => !fsOption || fsOption === defaultFS || fsOption === actualFS ?
+    defaultFS
+    : {
+        ...defaultFS,
+        ...fsOption,
+        promises: {
+            ...defaultFS.promises,
+            ...(fsOption.promises || {}),
+        },
+    };
+// turn something like //?/c:/ into c:\
+const uncDriveRegexp = /^\\\\\?\\([a-z]:)\\?$/i;
+const uncToDrive = (rootPath) => rootPath.replace(/\//g, '\\').replace(uncDriveRegexp, '$1\\');
+// windows paths are separated by either / or \
+const eitherSep = /[\\\/]/;
+const UNKNOWN = 0; // may not even exist, for all we know
+const IFIFO = 0b0001;
+const IFCHR = 0b0010;
+const IFDIR = 0b0100;
+const IFBLK = 0b0110;
+const IFREG = 0b1000;
+const IFLNK = 0b1010;
+const IFSOCK = 0b1100;
+const IFMT = 0b1111;
+// mask to unset low 4 bits
+const IFMT_UNKNOWN = ~IFMT;
+// set after successfully calling readdir() and getting entries.
+const READDIR_CALLED = 0b0000_0001_0000;
+// set after a successful lstat()
+const LSTAT_CALLED = 0b0000_0010_0000;
+// set if an entry (or one of its parents) is definitely not a dir
+const ENOTDIR = 0b0000_0100_0000;
+// set if an entry (or one of its parents) does not exist
+// (can also be set on lstat errors like EACCES or ENAMETOOLONG)
+const ENOENT = 0b0000_1000_0000;
+// cannot have child entries -- also verify &IFMT is either IFDIR or IFLNK
+// set if we fail to readlink
+const ENOREADLINK = 0b0001_0000_0000;
+// set if we know realpath() will fail
+const ENOREALPATH = 0b0010_0000_0000;
+const ENOCHILD = ENOTDIR | ENOENT | ENOREALPATH;
+const TYPEMASK = 0b0011_1111_1111;
+const entToType = (s) => s.isFile() ? IFREG
+    : s.isDirectory() ? IFDIR
+        : s.isSymbolicLink() ? IFLNK
+            : s.isCharacterDevice() ? IFCHR
+                : s.isBlockDevice() ? IFBLK
+                    : s.isSocket() ? IFSOCK
+                        : s.isFIFO() ? IFIFO
+                            : UNKNOWN;
+// normalize unicode path names
+const normalizeCache = new Map();
+const normalize = (s) => {
+    const c = normalizeCache.get(s);
+    if (c)
+        return c;
+    const n = s.normalize('NFKD');
+    normalizeCache.set(s, n);
+    return n;
+};
+const normalizeNocaseCache = new Map();
+const normalizeNocase = (s) => {
+    const c = normalizeNocaseCache.get(s);
+    if (c)
+        return c;
+    const n = normalize(s.toLowerCase());
+    normalizeNocaseCache.set(s, n);
+    return n;
+};
+/**
+ * An LRUCache for storing resolved path strings or Path objects.
+ * @internal
+ */
+class ResolveCache extends lru_cache_1.LRUCache {
+    constructor() {
+        super({ max: 256 });
+    }
+}
+exports.ResolveCache = ResolveCache;
+// In order to prevent blowing out the js heap by allocating hundreds of
+// thousands of Path entries when walking extremely large trees, the "children"
+// in this tree are represented by storing an array of Path entries in an
+// LRUCache, indexed by the parent.  At any time, Path.children() may return an
+// empty array, indicating that it doesn't know about any of its children, and
+// thus has to rebuild that cache.  This is fine, it just means that we don't
+// benefit as much from having the cached entries, but huge directory walks
+// don't blow out the stack, and smaller ones are still as fast as possible.
+//
+//It does impose some complexity when building up the readdir data, because we
+//need to pass a reference to the children array that we started with.
+/**
+ * an LRUCache for storing child entries.
+ * @internal
+ */
+class ChildrenCache extends lru_cache_1.LRUCache {
+    constructor(maxSize = 16 * 1024) {
+        super({
+            maxSize,
+            // parent + children
+            sizeCalculation: a => a.length + 1,
+        });
+    }
+}
+exports.ChildrenCache = ChildrenCache;
+const setAsCwd = Symbol('PathScurry setAsCwd');
+/**
+ * Path objects are sort of like a super-powered
+ * {@link https://nodejs.org/docs/latest/api/fs.html#class-fsdirent fs.Dirent}
+ *
+ * Each one represents a single filesystem entry on disk, which may or may not
+ * exist. It includes methods for reading various types of information via
+ * lstat, readlink, and readdir, and caches all information to the greatest
+ * degree possible.
+ *
+ * Note that fs operations that would normally throw will instead return an
+ * "empty" value. This is in order to prevent excessive overhead from error
+ * stack traces.
+ */
+class PathBase {
+    /**
+     * the basename of this path
+     *
+     * **Important**: *always* test the path name against any test string
+     * usingthe {@link isNamed} method, and not by directly comparing this
+     * string. Otherwise, unicode path strings that the system sees as identical
+     * will not be properly treated as the same path, leading to incorrect
+     * behavior and possible security issues.
+     */
+    name;
+    /**
+     * the Path entry corresponding to the path root.
+     *
+     * @internal
+     */
+    root;
+    /**
+     * All roots found within the current PathScurry family
+     *
+     * @internal
+     */
+    roots;
+    /**
+     * a reference to the parent path, or undefined in the case of root entries
+     *
+     * @internal
+     */
+    parent;
+    /**
+     * boolean indicating whether paths are compared case-insensitively
+     * @internal
+     */
+    nocase;
+    /**
+     * boolean indicating that this path is the current working directory
+     * of the PathScurry collection that contains it.
+     */
+    isCWD = false;
+    // potential default fs override
+    #fs;
+    // Stats fields
+    #dev;
+    get dev() {
+        return this.#dev;
+    }
+    #mode;
+    get mode() {
+        return this.#mode;
+    }
+    #nlink;
+    get nlink() {
+        return this.#nlink;
+    }
+    #uid;
+    get uid() {
+        return this.#uid;
+    }
+    #gid;
+    get gid() {
+        return this.#gid;
+    }
+    #rdev;
+    get rdev() {
+        return this.#rdev;
+    }
+    #blksize;
+    get blksize() {
+        return this.#blksize;
+    }
+    #ino;
+    get ino() {
+        return this.#ino;
+    }
+    #size;
+    get size() {
+        return this.#size;
+    }
+    #blocks;
+    get blocks() {
+        return this.#blocks;
+    }
+    #atimeMs;
+    get atimeMs() {
+        return this.#atimeMs;
+    }
+    #mtimeMs;
+    get mtimeMs() {
+        return this.#mtimeMs;
+    }
+    #ctimeMs;
+    get ctimeMs() {
+        return this.#ctimeMs;
+    }
+    #birthtimeMs;
+    get birthtimeMs() {
+        return this.#birthtimeMs;
+    }
+    #atime;
+    get atime() {
+        return this.#atime;
+    }
+    #mtime;
+    get mtime() {
+        return this.#mtime;
+    }
+    #ctime;
+    get ctime() {
+        return this.#ctime;
+    }
+    #birthtime;
+    get birthtime() {
+        return this.#birthtime;
+    }
+    #matchName;
+    #depth;
+    #fullpath;
+    #fullpathPosix;
+    #relative;
+    #relativePosix;
+    #type;
+    #children;
+    #linkTarget;
+    #realpath;
+    /**
+     * This property is for compatibility with the Dirent class as of
+     * Node v20, where Dirent['parentPath'] refers to the path of the
+     * directory that was passed to readdir. For root entries, it's the path
+     * to the entry itself.
+     */
+    get parentPath() {
+        return (this.parent || this).fullpath();
+    }
+    /**
+     * Deprecated alias for Dirent['parentPath'] Somewhat counterintuitively,
+     * this property refers to the *parent* path, not the path object itself.
+     */
+    get path() {
+        return this.parentPath;
+    }
+    /**
+     * Do not create new Path objects directly.  They should always be accessed
+     * via the PathScurry class or other methods on the Path class.
+     *
+     * @internal
+     */
+    constructor(name, type = UNKNOWN, root, roots, nocase, children, opts) {
+        this.name = name;
+        this.#matchName = nocase ? normalizeNocase(name) : normalize(name);
+        this.#type = type & TYPEMASK;
+        this.nocase = nocase;
+        this.roots = roots;
+        this.root = root || this;
+        this.#children = children;
+        this.#fullpath = opts.fullpath;
+        this.#relative = opts.relative;
+        this.#relativePosix = opts.relativePosix;
+        this.parent = opts.parent;
+        if (this.parent) {
+            this.#fs = this.parent.#fs;
+        }
+        else {
+            this.#fs = fsFromOption(opts.fs);
+        }
+    }
+    /**
+     * Returns the depth of the Path object from its root.
+     *
+     * For example, a path at `/foo/bar` would have a depth of 2.
+     */
+    depth() {
+        if (this.#depth !== undefined)
+            return this.#depth;
+        if (!this.parent)
+            return (this.#depth = 0);
+        return (this.#depth = this.parent.depth() + 1);
+    }
+    /**
+     * @internal
+     */
+    childrenCache() {
+        return this.#children;
+    }
+    /**
+     * Get the Path object referenced by the string path, resolved from this Path
+     */
+    resolve(path) {
+        if (!path) {
+            return this;
+        }
+        const rootPath = this.getRootString(path);
+        const dir = path.substring(rootPath.length);
+        const dirParts = dir.split(this.splitSep);
+        const result = rootPath ?
+            this.getRoot(rootPath).#resolveParts(dirParts)
+            : this.#resolveParts(dirParts);
+        return result;
+    }
+    #resolveParts(dirParts) {
+        let p = this;
+        for (const part of dirParts) {
+            p = p.child(part);
+        }
+        return p;
+    }
+    /**
+     * Returns the cached children Path objects, if still available.  If they
+     * have fallen out of the cache, then returns an empty array, and resets the
+     * READDIR_CALLED bit, so that future calls to readdir() will require an fs
+     * lookup.
+     *
+     * @internal
+     */
+    children() {
+        const cached = this.#children.get(this);
+        if (cached) {
+            return cached;
+        }
+        const children = Object.assign([], { provisional: 0 });
+        this.#children.set(this, children);
+        this.#type &= ~READDIR_CALLED;
+        return children;
+    }
+    /**
+     * Resolves a path portion and returns or creates the child Path.
+     *
+     * Returns `this` if pathPart is `''` or `'.'`, or `parent` if pathPart is
+     * `'..'`.
+     *
+     * This should not be called directly.  If `pathPart` contains any path
+     * separators, it will lead to unsafe undefined behavior.
+     *
+     * Use `Path.resolve()` instead.
+     *
+     * @internal
+     */
+    child(pathPart, opts) {
+        if (pathPart === '' || pathPart === '.') {
+            return this;
+        }
+        if (pathPart === '..') {
+            return this.parent || this;
+        }
+        // find the child
+        const children = this.children();
+        const name = this.nocase ? normalizeNocase(pathPart) : normalize(pathPart);
+        for (const p of children) {
+            if (p.#matchName === name) {
+                return p;
+            }
+        }
+        // didn't find it, create provisional child, since it might not
+        // actually exist.  If we know the parent isn't a dir, then
+        // in fact it CAN'T exist.
+        const s = this.parent ? this.sep : '';
+        const fullpath = this.#fullpath ? this.#fullpath + s + pathPart : undefined;
+        const pchild = this.newChild(pathPart, UNKNOWN, {
+            ...opts,
+            parent: this,
+            fullpath,
+        });
+        if (!this.canReaddir()) {
+            pchild.#type |= ENOENT;
+        }
+        // don't have to update provisional, because if we have real children,
+        // then provisional is set to children.length, otherwise a lower number
+        children.push(pchild);
+        return pchild;
+    }
+    /**
+     * The relative path from the cwd. If it does not share an ancestor with
+     * the cwd, then this ends up being equivalent to the fullpath()
+     */
+    relative() {
+        if (this.isCWD)
+            return '';
+        if (this.#relative !== undefined) {
+            return this.#relative;
+        }
+        const name = this.name;
+        const p = this.parent;
+        if (!p) {
+            return (this.#relative = this.name);
+        }
+        const pv = p.relative();
+        return pv + (!pv || !p.parent ? '' : this.sep) + name;
+    }
+    /**
+     * The relative path from the cwd, using / as the path separator.
+     * If it does not share an ancestor with
+     * the cwd, then this ends up being equivalent to the fullpathPosix()
+     * On posix systems, this is identical to relative().
+     */
+    relativePosix() {
+        if (this.sep === '/')
+            return this.relative();
+        if (this.isCWD)
+            return '';
+        if (this.#relativePosix !== undefined)
+            return this.#relativePosix;
+        const name = this.name;
+        const p = this.parent;
+        if (!p) {
+            return (this.#relativePosix = this.fullpathPosix());
+        }
+        const pv = p.relativePosix();
+        return pv + (!pv || !p.parent ? '' : '/') + name;
+    }
+    /**
+     * The fully resolved path string for this Path entry
+     */
+    fullpath() {
+        if (this.#fullpath !== undefined) {
+            return this.#fullpath;
+        }
+        const name = this.name;
+        const p = this.parent;
+        if (!p) {
+            return (this.#fullpath = this.name);
+        }
+        const pv = p.fullpath();
+        const fp = pv + (!p.parent ? '' : this.sep) + name;
+        return (this.#fullpath = fp);
+    }
+    /**
+     * On platforms other than windows, this is identical to fullpath.
+     *
+     * On windows, this is overridden to return the forward-slash form of the
+     * full UNC path.
+     */
+    fullpathPosix() {
+        if (this.#fullpathPosix !== undefined)
+            return this.#fullpathPosix;
+        if (this.sep === '/')
+            return (this.#fullpathPosix = this.fullpath());
+        if (!this.parent) {
+            const p = this.fullpath().replace(/\\/g, '/');
+            if (/^[a-z]:\//i.test(p)) {
+                return (this.#fullpathPosix = `//?/${p}`);
+            }
+            else {
+                return (this.#fullpathPosix = p);
+            }
+        }
+        const p = this.parent;
+        const pfpp = p.fullpathPosix();
+        const fpp = pfpp + (!pfpp || !p.parent ? '' : '/') + this.name;
+        return (this.#fullpathPosix = fpp);
+    }
+    /**
+     * Is the Path of an unknown type?
+     *
+     * Note that we might know *something* about it if there has been a previous
+     * filesystem operation, for example that it does not exist, or is not a
+     * link, or whether it has child entries.
+     */
+    isUnknown() {
+        return (this.#type & IFMT) === UNKNOWN;
+    }
+    isType(type) {
+        return this[`is${type}`]();
+    }
+    getType() {
+        return (this.isUnknown() ? 'Unknown'
+            : this.isDirectory() ? 'Directory'
+                : this.isFile() ? 'File'
+                    : this.isSymbolicLink() ? 'SymbolicLink'
+                        : this.isFIFO() ? 'FIFO'
+                            : this.isCharacterDevice() ? 'CharacterDevice'
+                                : this.isBlockDevice() ? 'BlockDevice'
+                                    : /* c8 ignore start */ this.isSocket() ? 'Socket'
+                                        : 'Unknown');
+        /* c8 ignore stop */
+    }
+    /**
+     * Is the Path a regular file?
+     */
+    isFile() {
+        return (this.#type & IFMT) === IFREG;
+    }
+    /**
+     * Is the Path a directory?
+     */
+    isDirectory() {
+        return (this.#type & IFMT) === IFDIR;
+    }
+    /**
+     * Is the path a character device?
+     */
+    isCharacterDevice() {
+        return (this.#type & IFMT) === IFCHR;
+    }
+    /**
+     * Is the path a block device?
+     */
+    isBlockDevice() {
+        return (this.#type & IFMT) === IFBLK;
+    }
+    /**
+     * Is the path a FIFO pipe?
+     */
+    isFIFO() {
+        return (this.#type & IFMT) === IFIFO;
+    }
+    /**
+     * Is the path a socket?
+     */
+    isSocket() {
+        return (this.#type & IFMT) === IFSOCK;
+    }
+    /**
+     * Is the path a symbolic link?
+     */
+    isSymbolicLink() {
+        return (this.#type & IFLNK) === IFLNK;
+    }
+    /**
+     * Return the entry if it has been subject of a successful lstat, or
+     * undefined otherwise.
+     *
+     * Does not read the filesystem, so an undefined result *could* simply
+     * mean that we haven't called lstat on it.
+     */
+    lstatCached() {
+        return this.#type & LSTAT_CALLED ? this : undefined;
+    }
+    /**
+     * Return the cached link target if the entry has been the subject of a
+     * successful readlink, or undefined otherwise.
+     *
+     * Does not read the filesystem, so an undefined result *could* just mean we
+     * don't have any cached data. Only use it if you are very sure that a
+     * readlink() has been called at some point.
+     */
+    readlinkCached() {
+        return this.#linkTarget;
+    }
+    /**
+     * Returns the cached realpath target if the entry has been the subject
+     * of a successful realpath, or undefined otherwise.
+     *
+     * Does not read the filesystem, so an undefined result *could* just mean we
+     * don't have any cached data. Only use it if you are very sure that a
+     * realpath() has been called at some point.
+     */
+    realpathCached() {
+        return this.#realpath;
+    }
+    /**
+     * Returns the cached child Path entries array if the entry has been the
+     * subject of a successful readdir(), or [] otherwise.
+     *
+     * Does not read the filesystem, so an empty array *could* just mean we
+     * don't have any cached data. Only use it if you are very sure that a
+     * readdir() has been called recently enough to still be valid.
+     */
+    readdirCached() {
+        const children = this.children();
+        return children.slice(0, children.provisional);
+    }
+    /**
+     * Return true if it's worth trying to readlink.  Ie, we don't (yet) have
+     * any indication that readlink will definitely fail.
+     *
+     * Returns false if the path is known to not be a symlink, if a previous
+     * readlink failed, or if the entry does not exist.
+     */
+    canReadlink() {
+        if (this.#linkTarget)
+            return true;
+        if (!this.parent)
+            return false;
+        // cases where it cannot possibly succeed
+        const ifmt = this.#type & IFMT;
+        return !((ifmt !== UNKNOWN && ifmt !== IFLNK) ||
+            this.#type & ENOREADLINK ||
+            this.#type & ENOENT);
+    }
+    /**
+     * Return true if readdir has previously been successfully called on this
+     * path, indicating that cachedReaddir() is likely valid.
+     */
+    calledReaddir() {
+        return !!(this.#type & READDIR_CALLED);
+    }
+    /**
+     * Returns true if the path is known to not exist. That is, a previous lstat
+     * or readdir failed to verify its existence when that would have been
+     * expected, or a parent entry was marked either enoent or enotdir.
+     */
+    isENOENT() {
+        return !!(this.#type & ENOENT);
+    }
+    /**
+     * Return true if the path is a match for the given path name.  This handles
+     * case sensitivity and unicode normalization.
+     *
+     * Note: even on case-sensitive systems, it is **not** safe to test the
+     * equality of the `.name` property to determine whether a given pathname
+     * matches, due to unicode normalization mismatches.
+     *
+     * Always use this method instead of testing the `path.name` property
+     * directly.
+     */
+    isNamed(n) {
+        return !this.nocase ?
+            this.#matchName === normalize(n)
+            : this.#matchName === normalizeNocase(n);
+    }
+    /**
+     * Return the Path object corresponding to the target of a symbolic link.
+     *
+     * If the Path is not a symbolic link, or if the readlink call fails for any
+     * reason, `undefined` is returned.
+     *
+     * Result is cached, and thus may be outdated if the filesystem is mutated.
+     */
+    async readlink() {
+        const target = this.#linkTarget;
+        if (target) {
+            return target;
+        }
+        if (!this.canReadlink()) {
+            return undefined;
+        }
+        /* c8 ignore start */
+        // already covered by the canReadlink test, here for ts grumples
+        if (!this.parent) {
+            return undefined;
+        }
+        /* c8 ignore stop */
+        try {
+            const read = await this.#fs.promises.readlink(this.fullpath());
+            const linkTarget = (await this.parent.realpath())?.resolve(read);
+            if (linkTarget) {
+                return (this.#linkTarget = linkTarget);
+            }
+        }
+        catch (er) {
+            this.#readlinkFail(er.code);
+            return undefined;
+        }
+    }
+    /**
+     * Synchronous {@link PathBase.readlink}
+     */
+    readlinkSync() {
+        const target = this.#linkTarget;
+        if (target) {
+            return target;
+        }
+        if (!this.canReadlink()) {
+            return undefined;
+        }
+        /* c8 ignore start */
+        // already covered by the canReadlink test, here for ts grumples
+        if (!this.parent) {
+            return undefined;
+        }
+        /* c8 ignore stop */
+        try {
+            const read = this.#fs.readlinkSync(this.fullpath());
+            const linkTarget = this.parent.realpathSync()?.resolve(read);
+            if (linkTarget) {
+                return (this.#linkTarget = linkTarget);
+            }
+        }
+        catch (er) {
+            this.#readlinkFail(er.code);
+            return undefined;
+        }
+    }
+    #readdirSuccess(children) {
+        // succeeded, mark readdir called bit
+        this.#type |= READDIR_CALLED;
+        // mark all remaining provisional children as ENOENT
+        for (let p = children.provisional; p < children.length; p++) {
+            const c = children[p];
+            if (c)
+                c.#markENOENT();
+        }
+    }
+    #markENOENT() {
+        // mark as UNKNOWN and ENOENT
+        if (this.#type & ENOENT)
+            return;
+        this.#type = (this.#type | ENOENT) & IFMT_UNKNOWN;
+        this.#markChildrenENOENT();
+    }
+    #markChildrenENOENT() {
+        // all children are provisional and do not exist
+        const children = this.children();
+        children.provisional = 0;
+        for (const p of children) {
+            p.#markENOENT();
+        }
+    }
+    #markENOREALPATH() {
+        this.#type |= ENOREALPATH;
+        this.#markENOTDIR();
+    }
+    // save the information when we know the entry is not a dir
+    #markENOTDIR() {
+        // entry is not a directory, so any children can't exist.
+        // this *should* be impossible, since any children created
+        // after it's been marked ENOTDIR should be marked ENOENT,
+        // so it won't even get to this point.
+        /* c8 ignore start */
+        if (this.#type & ENOTDIR)
+            return;
+        /* c8 ignore stop */
+        let t = this.#type;
+        // this could happen if we stat a dir, then delete it,
+        // then try to read it or one of its children.
+        if ((t & IFMT) === IFDIR)
+            t &= IFMT_UNKNOWN;
+        this.#type = t | ENOTDIR;
+        this.#markChildrenENOENT();
+    }
+    #readdirFail(code = '') {
+        // markENOTDIR and markENOENT also set provisional=0
+        if (code === 'ENOTDIR' || code === 'EPERM') {
+            this.#markENOTDIR();
+        }
+        else if (code === 'ENOENT') {
+            this.#markENOENT();
+        }
+        else {
+            this.children().provisional = 0;
+        }
+    }
+    #lstatFail(code = '') {
+        // Windows just raises ENOENT in this case, disable for win CI
+        /* c8 ignore start */
+        if (code === 'ENOTDIR') {
+            // already know it has a parent by this point
+            const p = this.parent;
+            p.#markENOTDIR();
+        }
+        else if (code === 'ENOENT') {
+            /* c8 ignore stop */
+            this.#markENOENT();
+        }
+    }
+    #readlinkFail(code = '') {
+        let ter = this.#type;
+        ter |= ENOREADLINK;
+        if (code === 'ENOENT')
+            ter |= ENOENT;
+        // windows gets a weird error when you try to readlink a file
+        if (code === 'EINVAL' || code === 'UNKNOWN') {
+            // exists, but not a symlink, we don't know WHAT it is, so remove
+            // all IFMT bits.
+            ter &= IFMT_UNKNOWN;
+        }
+        this.#type = ter;
+        // windows just gets ENOENT in this case.  We do cover the case,
+        // just disabled because it's impossible on Windows CI
+        /* c8 ignore start */
+        if (code === 'ENOTDIR' && this.parent) {
+            this.parent.#markENOTDIR();
+        }
+        /* c8 ignore stop */
+    }
+    #readdirAddChild(e, c) {
+        return (this.#readdirMaybePromoteChild(e, c) ||
+            this.#readdirAddNewChild(e, c));
+    }
+    #readdirAddNewChild(e, c) {
+        // alloc new entry at head, so it's never provisional
+        const type = entToType(e);
+        const child = this.newChild(e.name, type, { parent: this });
+        const ifmt = child.#type & IFMT;
+        if (ifmt !== IFDIR && ifmt !== IFLNK && ifmt !== UNKNOWN) {
+            child.#type |= ENOTDIR;
+        }
+        c.unshift(child);
+        c.provisional++;
+        return child;
+    }
+    #readdirMaybePromoteChild(e, c) {
+        for (let p = c.provisional; p < c.length; p++) {
+            const pchild = c[p];
+            const name = this.nocase ? normalizeNocase(e.name) : normalize(e.name);
+            if (name !== pchild.#matchName) {
+                continue;
+            }
+            return this.#readdirPromoteChild(e, pchild, p, c);
+        }
+    }
+    #readdirPromoteChild(e, p, index, c) {
+        const v = p.name;
+        // retain any other flags, but set ifmt from dirent
+        p.#type = (p.#type & IFMT_UNKNOWN) | entToType(e);
+        // case sensitivity fixing when we learn the true name.
+        if (v !== e.name)
+            p.name = e.name;
+        // just advance provisional index (potentially off the list),
+        // otherwise we have to splice/pop it out and re-insert at head
+        if (index !== c.provisional) {
+            if (index === c.length - 1)
+                c.pop();
+            else
+                c.splice(index, 1);
+            c.unshift(p);
+        }
+        c.provisional++;
+        return p;
+    }
+    /**
+     * Call lstat() on this Path, and update all known information that can be
+     * determined.
+     *
+     * Note that unlike `fs.lstat()`, the returned value does not contain some
+     * information, such as `mode`, `dev`, `nlink`, and `ino`.  If that
+     * information is required, you will need to call `fs.lstat` yourself.
+     *
+     * If the Path refers to a nonexistent file, or if the lstat call fails for
+     * any reason, `undefined` is returned.  Otherwise the updated Path object is
+     * returned.
+     *
+     * Results are cached, and thus may be out of date if the filesystem is
+     * mutated.
+     */
+    async lstat() {
+        if ((this.#type & ENOENT) === 0) {
+            try {
+                this.#applyStat(await this.#fs.promises.lstat(this.fullpath()));
+                return this;
+            }
+            catch (er) {
+                this.#lstatFail(er.code);
+            }
+        }
+    }
+    /**
+     * synchronous {@link PathBase.lstat}
+     */
+    lstatSync() {
+        if ((this.#type & ENOENT) === 0) {
+            try {
+                this.#applyStat(this.#fs.lstatSync(this.fullpath()));
+                return this;
+            }
+            catch (er) {
+                this.#lstatFail(er.code);
+            }
+        }
+    }
+    #applyStat(st) {
+        const { atime, atimeMs, birthtime, birthtimeMs, blksize, blocks, ctime, ctimeMs, dev, gid, ino, mode, mtime, mtimeMs, nlink, rdev, size, uid, } = st;
+        this.#atime = atime;
+        this.#atimeMs = atimeMs;
+        this.#birthtime = birthtime;
+        this.#birthtimeMs = birthtimeMs;
+        this.#blksize = blksize;
+        this.#blocks = blocks;
+        this.#ctime = ctime;
+        this.#ctimeMs = ctimeMs;
+        this.#dev = dev;
+        this.#gid = gid;
+        this.#ino = ino;
+        this.#mode = mode;
+        this.#mtime = mtime;
+        this.#mtimeMs = mtimeMs;
+        this.#nlink = nlink;
+        this.#rdev = rdev;
+        this.#size = size;
+        this.#uid = uid;
+        const ifmt = entToType(st);
+        // retain any other flags, but set the ifmt
+        this.#type = (this.#type & IFMT_UNKNOWN) | ifmt | LSTAT_CALLED;
+        if (ifmt !== UNKNOWN && ifmt !== IFDIR && ifmt !== IFLNK) {
+            this.#type |= ENOTDIR;
+        }
+    }
+    #onReaddirCB = [];
+    #readdirCBInFlight = false;
+    #callOnReaddirCB(children) {
+        this.#readdirCBInFlight = false;
+        const cbs = this.#onReaddirCB.slice();
+        this.#onReaddirCB.length = 0;
+        cbs.forEach(cb => cb(null, children));
+    }
+    /**
+     * Standard node-style callback interface to get list of directory entries.
+     *
+     * If the Path cannot or does not contain any children, then an empty array
+     * is returned.
+     *
+     * Results are cached, and thus may be out of date if the filesystem is
+     * mutated.
+     *
+     * @param cb The callback called with (er, entries).  Note that the `er`
+     * param is somewhat extraneous, as all readdir() errors are handled and
+     * simply result in an empty set of entries being returned.
+     * @param allowZalgo Boolean indicating that immediately known results should
+     * *not* be deferred with `queueMicrotask`. Defaults to `false`. Release
+     * zalgo at your peril, the dark pony lord is devious and unforgiving.
+     */
+    readdirCB(cb, allowZalgo = false) {
+        if (!this.canReaddir()) {
+            if (allowZalgo)
+                cb(null, []);
+            else
+                queueMicrotask(() => cb(null, []));
+            return;
+        }
+        const children = this.children();
+        if (this.calledReaddir()) {
+            const c = children.slice(0, children.provisional);
+            if (allowZalgo)
+                cb(null, c);
+            else
+                queueMicrotask(() => cb(null, c));
+            return;
+        }
+        // don't have to worry about zalgo at this point.
+        this.#onReaddirCB.push(cb);
+        if (this.#readdirCBInFlight) {
+            return;
+        }
+        this.#readdirCBInFlight = true;
+        // else read the directory, fill up children
+        // de-provisionalize any provisional children.
+        const fullpath = this.fullpath();
+        this.#fs.readdir(fullpath, { withFileTypes: true }, (er, entries) => {
+            if (er) {
+                this.#readdirFail(er.code);
+                children.provisional = 0;
+            }
+            else {
+                // if we didn't get an error, we always get entries.
+                //@ts-ignore
+                for (const e of entries) {
+                    this.#readdirAddChild(e, children);
+                }
+                this.#readdirSuccess(children);
+            }
+            this.#callOnReaddirCB(children.slice(0, children.provisional));
+            return;
+        });
+    }
+    #asyncReaddirInFlight;
+    /**
+     * Return an array of known child entries.
+     *
+     * If the Path cannot or does not contain any children, then an empty array
+     * is returned.
+     *
+     * Results are cached, and thus may be out of date if the filesystem is
+     * mutated.
+     */
+    async readdir() {
+        if (!this.canReaddir()) {
+            return [];
+        }
+        const children = this.children();
+        if (this.calledReaddir()) {
+            return children.slice(0, children.provisional);
+        }
+        // else read the directory, fill up children
+        // de-provisionalize any provisional children.
+        const fullpath = this.fullpath();
+        if (this.#asyncReaddirInFlight) {
+            await this.#asyncReaddirInFlight;
+        }
+        else {
+            /* c8 ignore start */
+            let resolve = () => { };
+            /* c8 ignore stop */
+            this.#asyncReaddirInFlight = new Promise(res => (resolve = res));
+            try {
+                for (const e of await this.#fs.promises.readdir(fullpath, {
+                    withFileTypes: true,
+                })) {
+                    this.#readdirAddChild(e, children);
+                }
+                this.#readdirSuccess(children);
+            }
+            catch (er) {
+                this.#readdirFail(er.code);
+                children.provisional = 0;
+            }
+            this.#asyncReaddirInFlight = undefined;
+            resolve();
+        }
+        return children.slice(0, children.provisional);
+    }
+    /**
+     * synchronous {@link PathBase.readdir}
+     */
+    readdirSync() {
+        if (!this.canReaddir()) {
+            return [];
+        }
+        const children = this.children();
+        if (this.calledReaddir()) {
+            return children.slice(0, children.provisional);
+        }
+        // else read the directory, fill up children
+        // de-provisionalize any provisional children.
+        const fullpath = this.fullpath();
+        try {
+            for (const e of this.#fs.readdirSync(fullpath, {
+                withFileTypes: true,
+            })) {
+                this.#readdirAddChild(e, children);
+            }
+            this.#readdirSuccess(children);
+        }
+        catch (er) {
+            this.#readdirFail(er.code);
+            children.provisional = 0;
+        }
+        return children.slice(0, children.provisional);
+    }
+    canReaddir() {
+        if (this.#type & ENOCHILD)
+            return false;
+        const ifmt = IFMT & this.#type;
+        // we always set ENOTDIR when setting IFMT, so should be impossible
+        /* c8 ignore start */
+        if (!(ifmt === UNKNOWN || ifmt === IFDIR || ifmt === IFLNK)) {
+            return false;
+        }
+        /* c8 ignore stop */
+        return true;
+    }
+    shouldWalk(dirs, walkFilter) {
+        return ((this.#type & IFDIR) === IFDIR &&
+            !(this.#type & ENOCHILD) &&
+            !dirs.has(this) &&
+            (!walkFilter || walkFilter(this)));
+    }
+    /**
+     * Return the Path object corresponding to path as resolved
+     * by realpath(3).
+     *
+     * If the realpath call fails for any reason, `undefined` is returned.
+     *
+     * Result is cached, and thus may be outdated if the filesystem is mutated.
+     * On success, returns a Path object.
+     */
+    async realpath() {
+        if (this.#realpath)
+            return this.#realpath;
+        if ((ENOREALPATH | ENOREADLINK | ENOENT) & this.#type)
+            return undefined;
+        try {
+            const rp = await this.#fs.promises.realpath(this.fullpath());
+            return (this.#realpath = this.resolve(rp));
+        }
+        catch (_) {
+            this.#markENOREALPATH();
+        }
+    }
+    /**
+     * Synchronous {@link realpath}
+     */
+    realpathSync() {
+        if (this.#realpath)
+            return this.#realpath;
+        if ((ENOREALPATH | ENOREADLINK | ENOENT) & this.#type)
+            return undefined;
+        try {
+            const rp = this.#fs.realpathSync(this.fullpath());
+            return (this.#realpath = this.resolve(rp));
+        }
+        catch (_) {
+            this.#markENOREALPATH();
+        }
+    }
+    /**
+     * Internal method to mark this Path object as the scurry cwd,
+     * called by {@link PathScurry#chdir}
+     *
+     * @internal
+     */
+    [setAsCwd](oldCwd) {
+        if (oldCwd === this)
+            return;
+        oldCwd.isCWD = false;
+        this.isCWD = true;
+        const changed = new Set([]);
+        let rp = [];
+        let p = this;
+        while (p && p.parent) {
+            changed.add(p);
+            p.#relative = rp.join(this.sep);
+            p.#relativePosix = rp.join('/');
+            p = p.parent;
+            rp.push('..');
+        }
+        // now un-memoize parents of old cwd
+        p = oldCwd;
+        while (p && p.parent && !changed.has(p)) {
+            p.#relative = undefined;
+            p.#relativePosix = undefined;
+            p = p.parent;
+        }
+    }
+}
+exports.PathBase = PathBase;
+/**
+ * Path class used on win32 systems
+ *
+ * Uses `'\\'` as the path separator for returned paths, either `'\\'` or `'/'`
+ * as the path separator for parsing paths.
+ */
+class PathWin32 extends PathBase {
+    /**
+     * Separator for generating path strings.
+     */
+    sep = '\\';
+    /**
+     * Separator for parsing path strings.
+     */
+    splitSep = eitherSep;
+    /**
+     * Do not create new Path objects directly.  They should always be accessed
+     * via the PathScurry class or other methods on the Path class.
+     *
+     * @internal
+     */
+    constructor(name, type = UNKNOWN, root, roots, nocase, children, opts) {
+        super(name, type, root, roots, nocase, children, opts);
+    }
+    /**
+     * @internal
+     */
+    newChild(name, type = UNKNOWN, opts = {}) {
+        return new PathWin32(name, type, this.root, this.roots, this.nocase, this.childrenCache(), opts);
+    }
+    /**
+     * @internal
+     */
+    getRootString(path) {
+        return node_path_1.win32.parse(path).root;
+    }
+    /**
+     * @internal
+     */
+    getRoot(rootPath) {
+        rootPath = uncToDrive(rootPath.toUpperCase());
+        if (rootPath === this.root.name) {
+            return this.root;
+        }
+        // ok, not that one, check if it matches another we know about
+        for (const [compare, root] of Object.entries(this.roots)) {
+            if (this.sameRoot(rootPath, compare)) {
+                return (this.roots[rootPath] = root);
+            }
+        }
+        // otherwise, have to create a new one.
+        return (this.roots[rootPath] = new PathScurryWin32(rootPath, this).root);
+    }
+    /**
+     * @internal
+     */
+    sameRoot(rootPath, compare = this.root.name) {
+        // windows can (rarely) have case-sensitive filesystem, but
+        // UNC and drive letters are always case-insensitive, and canonically
+        // represented uppercase.
+        rootPath = rootPath
+            .toUpperCase()
+            .replace(/\//g, '\\')
+            .replace(uncDriveRegexp, '$1\\');
+        return rootPath === compare;
+    }
+}
+exports.PathWin32 = PathWin32;
+/**
+ * Path class used on all posix systems.
+ *
+ * Uses `'/'` as the path separator.
+ */
+class PathPosix extends PathBase {
+    /**
+     * separator for parsing path strings
+     */
+    splitSep = '/';
+    /**
+     * separator for generating path strings
+     */
+    sep = '/';
+    /**
+     * Do not create new Path objects directly.  They should always be accessed
+     * via the PathScurry class or other methods on the Path class.
+     *
+     * @internal
+     */
+    constructor(name, type = UNKNOWN, root, roots, nocase, children, opts) {
+        super(name, type, root, roots, nocase, children, opts);
+    }
+    /**
+     * @internal
+     */
+    getRootString(path) {
+        return path.startsWith('/') ? '/' : '';
+    }
+    /**
+     * @internal
+     */
+    getRoot(_rootPath) {
+        return this.root;
+    }
+    /**
+     * @internal
+     */
+    newChild(name, type = UNKNOWN, opts = {}) {
+        return new PathPosix(name, type, this.root, this.roots, this.nocase, this.childrenCache(), opts);
+    }
+}
+exports.PathPosix = PathPosix;
+/**
+ * The base class for all PathScurry classes, providing the interface for path
+ * resolution and filesystem operations.
+ *
+ * Typically, you should *not* instantiate this class directly, but rather one
+ * of the platform-specific classes, or the exported {@link PathScurry} which
+ * defaults to the current platform.
+ */
+class PathScurryBase {
+    /**
+     * The root Path entry for the current working directory of this Scurry
+     */
+    root;
+    /**
+     * The string path for the root of this Scurry's current working directory
+     */
+    rootPath;
+    /**
+     * A collection of all roots encountered, referenced by rootPath
+     */
+    roots;
+    /**
+     * The Path entry corresponding to this PathScurry's current working directory.
+     */
+    cwd;
+    #resolveCache;
+    #resolvePosixCache;
+    #children;
+    /**
+     * Perform path comparisons case-insensitively.
+     *
+     * Defaults true on Darwin and Windows systems, false elsewhere.
+     */
+    nocase;
+    #fs;
+    /**
+     * This class should not be instantiated directly.
+     *
+     * Use PathScurryWin32, PathScurryDarwin, PathScurryPosix, or PathScurry
+     *
+     * @internal
+     */
+    constructor(cwd = process.cwd(), pathImpl, sep, { nocase, childrenCacheSize = 16 * 1024, fs = defaultFS, } = {}) {
+        this.#fs = fsFromOption(fs);
+        if (cwd instanceof URL || cwd.startsWith('file://')) {
+            cwd = (0, node_url_1.fileURLToPath)(cwd);
+        }
+        // resolve and split root, and then add to the store.
+        // this is the only time we call path.resolve()
+        const cwdPath = pathImpl.resolve(cwd);
+        this.roots = Object.create(null);
+        this.rootPath = this.parseRootPath(cwdPath);
+        this.#resolveCache = new ResolveCache();
+        this.#resolvePosixCache = new ResolveCache();
+        this.#children = new ChildrenCache(childrenCacheSize);
+        const split = cwdPath.substring(this.rootPath.length).split(sep);
+        // resolve('/') leaves '', splits to [''], we don't want that.
+        if (split.length === 1 && !split[0]) {
+            split.pop();
+        }
+        /* c8 ignore start */
+        if (nocase === undefined) {
+            throw new TypeError('must provide nocase setting to PathScurryBase ctor');
+        }
+        /* c8 ignore stop */
+        this.nocase = nocase;
+        this.root = this.newRoot(this.#fs);
+        this.roots[this.rootPath] = this.root;
+        let prev = this.root;
+        let len = split.length - 1;
+        const joinSep = pathImpl.sep;
+        let abs = this.rootPath;
+        let sawFirst = false;
+        for (const part of split) {
+            const l = len--;
+            prev = prev.child(part, {
+                relative: new Array(l).fill('..').join(joinSep),
+                relativePosix: new Array(l).fill('..').join('/'),
+                fullpath: (abs += (sawFirst ? '' : joinSep) + part),
+            });
+            sawFirst = true;
+        }
+        this.cwd = prev;
+    }
+    /**
+     * Get the depth of a provided path, string, or the cwd
+     */
+    depth(path = this.cwd) {
+        if (typeof path === 'string') {
+            path = this.cwd.resolve(path);
+        }
+        return path.depth();
+    }
+    /**
+     * Return the cache of child entries.  Exposed so subclasses can create
+     * child Path objects in a platform-specific way.
+     *
+     * @internal
+     */
+    childrenCache() {
+        return this.#children;
+    }
+    /**
+     * Resolve one or more path strings to a resolved string
+     *
+     * Same interface as require('path').resolve.
+     *
+     * Much faster than path.resolve() when called multiple times for the same
+     * path, because the resolved Path objects are cached.  Much slower
+     * otherwise.
+     */
+    resolve(...paths) {
+        // first figure out the minimum number of paths we have to test
+        // we always start at cwd, but any absolutes will bump the start
+        let r = '';
+        for (let i = paths.length - 1; i >= 0; i--) {
+            const p = paths[i];
+            if (!p || p === '.')
+                continue;
+            r = r ? `${p}/${r}` : p;
+            if (this.isAbsolute(p)) {
+                break;
+            }
+        }
+        const cached = this.#resolveCache.get(r);
+        if (cached !== undefined) {
+            return cached;
+        }
+        const result = this.cwd.resolve(r).fullpath();
+        this.#resolveCache.set(r, result);
+        return result;
+    }
+    /**
+     * Resolve one or more path strings to a resolved string, returning
+     * the posix path.  Identical to .resolve() on posix systems, but on
+     * windows will return a forward-slash separated UNC path.
+     *
+     * Same interface as require('path').resolve.
+     *
+     * Much faster than path.resolve() when called multiple times for the same
+     * path, because the resolved Path objects are cached.  Much slower
+     * otherwise.
+     */
+    resolvePosix(...paths) {
+        // first figure out the minimum number of paths we have to test
+        // we always start at cwd, but any absolutes will bump the start
+        let r = '';
+        for (let i = paths.length - 1; i >= 0; i--) {
+            const p = paths[i];
+            if (!p || p === '.')
+                continue;
+            r = r ? `${p}/${r}` : p;
+            if (this.isAbsolute(p)) {
+                break;
+            }
+        }
+        const cached = this.#resolvePosixCache.get(r);
+        if (cached !== undefined) {
+            return cached;
+        }
+        const result = this.cwd.resolve(r).fullpathPosix();
+        this.#resolvePosixCache.set(r, result);
+        return result;
+    }
+    /**
+     * find the relative path from the cwd to the supplied path string or entry
+     */
+    relative(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return entry.relative();
+    }
+    /**
+     * find the relative path from the cwd to the supplied path string or
+     * entry, using / as the path delimiter, even on Windows.
+     */
+    relativePosix(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return entry.relativePosix();
+    }
+    /**
+     * Return the basename for the provided string or Path object
+     */
+    basename(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return entry.name;
+    }
+    /**
+     * Return the dirname for the provided string or Path object
+     */
+    dirname(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return (entry.parent || entry).fullpath();
+    }
+    async readdir(entry = this.cwd, opts = {
+        withFileTypes: true,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes } = opts;
+        if (!entry.canReaddir()) {
+            return [];
+        }
+        else {
+            const p = await entry.readdir();
+            return withFileTypes ? p : p.map(e => e.name);
+        }
+    }
+    readdirSync(entry = this.cwd, opts = {
+        withFileTypes: true,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true } = opts;
+        if (!entry.canReaddir()) {
+            return [];
+        }
+        else if (withFileTypes) {
+            return entry.readdirSync();
+        }
+        else {
+            return entry.readdirSync().map(e => e.name);
+        }
+    }
+    /**
+     * Call lstat() on the string or Path object, and update all known
+     * information that can be determined.
+     *
+     * Note that unlike `fs.lstat()`, the returned value does not contain some
+     * information, such as `mode`, `dev`, `nlink`, and `ino`.  If that
+     * information is required, you will need to call `fs.lstat` yourself.
+     *
+     * If the Path refers to a nonexistent file, or if the lstat call fails for
+     * any reason, `undefined` is returned.  Otherwise the updated Path object is
+     * returned.
+     *
+     * Results are cached, and thus may be out of date if the filesystem is
+     * mutated.
+     */
+    async lstat(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return entry.lstat();
+    }
+    /**
+     * synchronous {@link PathScurryBase.lstat}
+     */
+    lstatSync(entry = this.cwd) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        return entry.lstatSync();
+    }
+    async readlink(entry = this.cwd, { withFileTypes } = {
+        withFileTypes: false,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            withFileTypes = entry.withFileTypes;
+            entry = this.cwd;
+        }
+        const e = await entry.readlink();
+        return withFileTypes ? e : e?.fullpath();
+    }
+    readlinkSync(entry = this.cwd, { withFileTypes } = {
+        withFileTypes: false,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            withFileTypes = entry.withFileTypes;
+            entry = this.cwd;
+        }
+        const e = entry.readlinkSync();
+        return withFileTypes ? e : e?.fullpath();
+    }
+    async realpath(entry = this.cwd, { withFileTypes } = {
+        withFileTypes: false,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            withFileTypes = entry.withFileTypes;
+            entry = this.cwd;
+        }
+        const e = await entry.realpath();
+        return withFileTypes ? e : e?.fullpath();
+    }
+    realpathSync(entry = this.cwd, { withFileTypes } = {
+        withFileTypes: false,
+    }) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            withFileTypes = entry.withFileTypes;
+            entry = this.cwd;
+        }
+        const e = entry.realpathSync();
+        return withFileTypes ? e : e?.fullpath();
+    }
+    async walk(entry = this.cwd, opts = {}) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true, follow = false, filter, walkFilter, } = opts;
+        const results = [];
+        if (!filter || filter(entry)) {
+            results.push(withFileTypes ? entry : entry.fullpath());
+        }
+        const dirs = new Set();
+        const walk = (dir, cb) => {
+            dirs.add(dir);
+            dir.readdirCB((er, entries) => {
+                /* c8 ignore start */
+                if (er) {
+                    return cb(er);
+                }
+                /* c8 ignore stop */
+                let len = entries.length;
+                if (!len)
+                    return cb();
+                const next = () => {
+                    if (--len === 0) {
+                        cb();
+                    }
+                };
+                for (const e of entries) {
+                    if (!filter || filter(e)) {
+                        results.push(withFileTypes ? e : e.fullpath());
+                    }
+                    if (follow && e.isSymbolicLink()) {
+                        e.realpath()
+                            .then(r => (r?.isUnknown() ? r.lstat() : r))
+                            .then(r => r?.shouldWalk(dirs, walkFilter) ? walk(r, next) : next());
+                    }
+                    else {
+                        if (e.shouldWalk(dirs, walkFilter)) {
+                            walk(e, next);
+                        }
+                        else {
+                            next();
+                        }
+                    }
+                }
+            }, true); // zalgooooooo
+        };
+        const start = entry;
+        return new Promise((res, rej) => {
+            walk(start, er => {
+                /* c8 ignore start */
+                if (er)
+                    return rej(er);
+                /* c8 ignore stop */
+                res(results);
+            });
+        });
+    }
+    walkSync(entry = this.cwd, opts = {}) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true, follow = false, filter, walkFilter, } = opts;
+        const results = [];
+        if (!filter || filter(entry)) {
+            results.push(withFileTypes ? entry : entry.fullpath());
+        }
+        const dirs = new Set([entry]);
+        for (const dir of dirs) {
+            const entries = dir.readdirSync();
+            for (const e of entries) {
+                if (!filter || filter(e)) {
+                    results.push(withFileTypes ? e : e.fullpath());
+                }
+                let r = e;
+                if (e.isSymbolicLink()) {
+                    if (!(follow && (r = e.realpathSync())))
+                        continue;
+                    if (r.isUnknown())
+                        r.lstatSync();
+                }
+                if (r.shouldWalk(dirs, walkFilter)) {
+                    dirs.add(r);
+                }
+            }
+        }
+        return results;
+    }
+    /**
+     * Support for `for await`
+     *
+     * Alias for {@link PathScurryBase.iterate}
+     *
+     * Note: As of Node 19, this is very slow, compared to other methods of
+     * walking.  Consider using {@link PathScurryBase.stream} if memory overhead
+     * and backpressure are concerns, or {@link PathScurryBase.walk} if not.
+     */
+    [Symbol.asyncIterator]() {
+        return this.iterate();
+    }
+    iterate(entry = this.cwd, options = {}) {
+        // iterating async over the stream is significantly more performant,
+        // especially in the warm-cache scenario, because it buffers up directory
+        // entries in the background instead of waiting for a yield for each one.
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            options = entry;
+            entry = this.cwd;
+        }
+        return this.stream(entry, options)[Symbol.asyncIterator]();
+    }
+    /**
+     * Iterating over a PathScurry performs a synchronous walk.
+     *
+     * Alias for {@link PathScurryBase.iterateSync}
+     */
+    [Symbol.iterator]() {
+        return this.iterateSync();
+    }
+    *iterateSync(entry = this.cwd, opts = {}) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true, follow = false, filter, walkFilter, } = opts;
+        if (!filter || filter(entry)) {
+            yield withFileTypes ? entry : entry.fullpath();
+        }
+        const dirs = new Set([entry]);
+        for (const dir of dirs) {
+            const entries = dir.readdirSync();
+            for (const e of entries) {
+                if (!filter || filter(e)) {
+                    yield withFileTypes ? e : e.fullpath();
+                }
+                let r = e;
+                if (e.isSymbolicLink()) {
+                    if (!(follow && (r = e.realpathSync())))
+                        continue;
+                    if (r.isUnknown())
+                        r.lstatSync();
+                }
+                if (r.shouldWalk(dirs, walkFilter)) {
+                    dirs.add(r);
+                }
+            }
+        }
+    }
+    stream(entry = this.cwd, opts = {}) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true, follow = false, filter, walkFilter, } = opts;
+        const results = new minipass_1.Minipass({ objectMode: true });
+        if (!filter || filter(entry)) {
+            results.write(withFileTypes ? entry : entry.fullpath());
+        }
+        const dirs = new Set();
+        const queue = [entry];
+        let processing = 0;
+        const process = () => {
+            let paused = false;
+            while (!paused) {
+                const dir = queue.shift();
+                if (!dir) {
+                    if (processing === 0)
+                        results.end();
+                    return;
+                }
+                processing++;
+                dirs.add(dir);
+                const onReaddir = (er, entries, didRealpaths = false) => {
+                    /* c8 ignore start */
+                    if (er)
+                        return results.emit('error', er);
+                    /* c8 ignore stop */
+                    if (follow && !didRealpaths) {
+                        const promises = [];
+                        for (const e of entries) {
+                            if (e.isSymbolicLink()) {
+                                promises.push(e
+                                    .realpath()
+                                    .then((r) => r?.isUnknown() ? r.lstat() : r));
+                            }
+                        }
+                        if (promises.length) {
+                            Promise.all(promises).then(() => onReaddir(null, entries, true));
+                            return;
+                        }
+                    }
+                    for (const e of entries) {
+                        if (e && (!filter || filter(e))) {
+                            if (!results.write(withFileTypes ? e : e.fullpath())) {
+                                paused = true;
+                            }
+                        }
+                    }
+                    processing--;
+                    for (const e of entries) {
+                        const r = e.realpathCached() || e;
+                        if (r.shouldWalk(dirs, walkFilter)) {
+                            queue.push(r);
+                        }
+                    }
+                    if (paused && !results.flowing) {
+                        results.once('drain', process);
+                    }
+                    else if (!sync) {
+                        process();
+                    }
+                };
+                // zalgo containment
+                let sync = true;
+                dir.readdirCB(onReaddir, true);
+                sync = false;
+            }
+        };
+        process();
+        return results;
+    }
+    streamSync(entry = this.cwd, opts = {}) {
+        if (typeof entry === 'string') {
+            entry = this.cwd.resolve(entry);
+        }
+        else if (!(entry instanceof PathBase)) {
+            opts = entry;
+            entry = this.cwd;
+        }
+        const { withFileTypes = true, follow = false, filter, walkFilter, } = opts;
+        const results = new minipass_1.Minipass({ objectMode: true });
+        const dirs = new Set();
+        if (!filter || filter(entry)) {
+            results.write(withFileTypes ? entry : entry.fullpath());
+        }
+        const queue = [entry];
+        let processing = 0;
+        const process = () => {
+            let paused = false;
+            while (!paused) {
+                const dir = queue.shift();
+                if (!dir) {
+                    if (processing === 0)
+                        results.end();
+                    return;
+                }
+                processing++;
+                dirs.add(dir);
+                const entries = dir.readdirSync();
+                for (const e of entries) {
+                    if (!filter || filter(e)) {
+                        if (!results.write(withFileTypes ? e : e.fullpath())) {
+                            paused = true;
+                        }
+                    }
+                }
+                processing--;
+                for (const e of entries) {
+                    let r = e;
+                    if (e.isSymbolicLink()) {
+                        if (!(follow && (r = e.realpathSync())))
+                            continue;
+                        if (r.isUnknown())
+                            r.lstatSync();
+                    }
+                    if (r.shouldWalk(dirs, walkFilter)) {
+                        queue.push(r);
+                    }
+                }
+            }
+            if (paused && !results.flowing)
+                results.once('drain', process);
+        };
+        process();
+        return results;
+    }
+    chdir(path = this.cwd) {
+        const oldCwd = this.cwd;
+        this.cwd = typeof path === 'string' ? this.cwd.resolve(path) : path;
+        this.cwd[setAsCwd](oldCwd);
+    }
+}
+exports.PathScurryBase = PathScurryBase;
+/**
+ * Windows implementation of {@link PathScurryBase}
+ *
+ * Defaults to case insensitve, uses `'\\'` to generate path strings.  Uses
+ * {@link PathWin32} for Path objects.
+ */
+class PathScurryWin32 extends PathScurryBase {
+    /**
+     * separator for generating path strings
+     */
+    sep = '\\';
+    constructor(cwd = process.cwd(), opts = {}) {
+        const { nocase = true } = opts;
+        super(cwd, node_path_1.win32, '\\', { ...opts, nocase });
+        this.nocase = nocase;
+        for (let p = this.cwd; p; p = p.parent) {
+            p.nocase = this.nocase;
+        }
+    }
+    /**
+     * @internal
+     */
+    parseRootPath(dir) {
+        // if the path starts with a single separator, it's not a UNC, and we'll
+        // just get separator as the root, and driveFromUNC will return \
+        // In that case, mount \ on the root from the cwd.
+        return node_path_1.win32.parse(dir).root.toUpperCase();
+    }
+    /**
+     * @internal
+     */
+    newRoot(fs) {
+        return new PathWin32(this.rootPath, IFDIR, undefined, this.roots, this.nocase, this.childrenCache(), { fs });
+    }
+    /**
+     * Return true if the provided path string is an absolute path
+     */
+    isAbsolute(p) {
+        return (p.startsWith('/') || p.startsWith('\\') || /^[a-z]:(\/|\\)/i.test(p));
+    }
+}
+exports.PathScurryWin32 = PathScurryWin32;
+/**
+ * {@link PathScurryBase} implementation for all posix systems other than Darwin.
+ *
+ * Defaults to case-sensitive matching, uses `'/'` to generate path strings.
+ *
+ * Uses {@link PathPosix} for Path objects.
+ */
+class PathScurryPosix extends PathScurryBase {
+    /**
+     * separator for generating path strings
+     */
+    sep = '/';
+    constructor(cwd = process.cwd(), opts = {}) {
+        const { nocase = false } = opts;
+        super(cwd, node_path_1.posix, '/', { ...opts, nocase });
+        this.nocase = nocase;
+    }
+    /**
+     * @internal
+     */
+    parseRootPath(_dir) {
+        return '/';
+    }
+    /**
+     * @internal
+     */
+    newRoot(fs) {
+        return new PathPosix(this.rootPath, IFDIR, undefined, this.roots, this.nocase, this.childrenCache(), { fs });
+    }
+    /**
+     * Return true if the provided path string is an absolute path
+     */
+    isAbsolute(p) {
+        return p.startsWith('/');
+    }
+}
+exports.PathScurryPosix = PathScurryPosix;
+/**
+ * {@link PathScurryBase} implementation for Darwin (macOS) systems.
+ *
+ * Defaults to case-insensitive matching, uses `'/'` for generating path
+ * strings.
+ *
+ * Uses {@link PathPosix} for Path objects.
+ */
+class PathScurryDarwin extends PathScurryPosix {
+    constructor(cwd = process.cwd(), opts = {}) {
+        const { nocase = true } = opts;
+        super(cwd, { ...opts, nocase });
+    }
+}
+exports.PathScurryDarwin = PathScurryDarwin;
+/**
+ * Default {@link PathBase} implementation for the current platform.
+ *
+ * {@link PathWin32} on Windows systems, {@link PathPosix} on all others.
+ */
+exports.Path = process.platform === 'win32' ? PathWin32 : PathPosix;
+/**
+ * Default {@link PathScurryBase} implementation for the current platform.
+ *
+ * {@link PathScurryWin32} on Windows systems, {@link PathScurryDarwin} on
+ * Darwin (macOS) systems, {@link PathScurryPosix} on all others.
+ */
+exports.PathScurry = process.platform === 'win32' ? PathScurryWin32
+    : process.platform === 'darwin' ? PathScurryDarwin
+        : PathScurryPosix;
+//# sourceMappingURL=index.js.map
+
+/***/ })
+
+/******/ 	});
+/************************************************************************/
+/******/ 	// The module cache
+/******/ 	var __webpack_module_cache__ = {};
+/******/ 	
+/******/ 	// The require function
+/******/ 	function __nccwpck_require__(moduleId) {
+/******/ 		// Check if module is in cache
+/******/ 		var cachedModule = __webpack_module_cache__[moduleId];
+/******/ 		if (cachedModule !== undefined) {
+/******/ 			return cachedModule.exports;
+/******/ 		}
+/******/ 		// Create a new module (and put it into the cache)
+/******/ 		var module = __webpack_module_cache__[moduleId] = {
+/******/ 			// no module.id needed
+/******/ 			// no module.loaded needed
+/******/ 			exports: {}
+/******/ 		};
+/******/ 	
+/******/ 		// Execute the module function
+/******/ 		var threw = true;
+/******/ 		try {
+/******/ 			__webpack_modules__[moduleId].call(module.exports, module, module.exports, __nccwpck_require__);
+/******/ 			threw = false;
+/******/ 		} finally {
+/******/ 			if(threw) delete __webpack_module_cache__[moduleId];
+/******/ 		}
+/******/ 	
+/******/ 		// Return the exports of the module
+/******/ 		return module.exports;
+/******/ 	}
+/******/ 	
+/************************************************************************/
+/******/ 	/* webpack/runtime/compat */
+/******/ 	
+/******/ 	if (typeof __nccwpck_require__ !== 'undefined') __nccwpck_require__.ab = __dirname + "/";
+/******/ 	
+/************************************************************************/
+var __webpack_exports__ = {};
+const core = __nccwpck_require__(7484);
+const glob = __nccwpck_require__(1363);
+const path = __nccwpck_require__(6928);
+const { exec } = __nccwpck_require__(5317);
+const util = __nccwpck_require__(9023);
+
+const execAsync = util.promisify(exec);
+
+async function installPackages(packages, localWheelDir, requirementsFiles) {
+  // Resolve local wheels
+  const localWheels = {};
+  if (localWheelDir) {
+    const wheels = glob.sync(path.join(localWheelDir, '*.whl'));
+    for (const whl of wheels) {
+      const packageName = path.basename(whl).split('-')[0];
+      localWheels[packageName] = whl;
+    }
+  }
+
+  // Collect wheel paths
+  const wheelPaths = [];
+  for (const pkg of packages) {
+    const packageName = pkg.split('[')[0];
+    if (localWheels[packageName]) {
+      const wheelPath = localWheels[packageName];
+      wheelPaths.push(`"${wheelPath}${pkg.slice(packageName.length)}"`);
+    } else {
+      core.setFailed(`Package ${pkg} not found locally.`);
+      return;
+    }
+  }
+
+  // Collect requirements files
+  const requirementsArgs = requirementsFiles.map(reqFile => `-r ${reqFile}`);
+
+  // Install all wheels and requirements in one command
+  const installArgs = [...wheelPaths, ...requirementsArgs];
+  if (installArgs.length > 0) {
+    console.log(`Installing packages: ${installArgs.join(' ')}`);
+    const { stdout, stderr } = await execAsync(
+      `pip install ${installArgs.join(' ')}`,
+      {
+        stdio: 'inherit'
+      }
+    );
+    console.log('stdout:', stdout);
+    console.error('stderr:', stderr);
+  }
+}
+
+async function run() {
+  try {
+    const packagesInput = core.getInput('packages');
+    const localWheelDir = core.getInput('local_wheel_dir') || null;
+    const requirementsInput = core.getInput('requirements_files') || '';
+    const packages = packagesInput.split(';');
+    const requirementsFiles = requirementsInput.split(';').filter(Boolean);
+    await installPackages(packages, localWheelDir, requirementsFiles);
+  } catch (error) {
+    core.setFailed(error.message);
+  }
+}
+
+run();
+
+module.exports = __webpack_exports__;
+/******/ })()
+;
\ No newline at end of file
diff --git a/.github/actions/install_wheel/linters/.eslintrc.yml b/.github/actions/install_wheel/linters/.eslintrc.yml
new file mode 100644
index 0000000000..e0732ba83f
--- /dev/null
+++ b/.github/actions/install_wheel/linters/.eslintrc.yml
@@ -0,0 +1,50 @@
+env:
+  commonjs: true
+  es6: true
+  jest: true
+  node: true
+
+globals:
+  Atomics: readonly
+  SharedArrayBuffer: readonly
+
+ignorePatterns:
+  - '!.*'
+  - '**/node_modules/.*'
+  - '**/dist/.*'
+  - '**/coverage/.*'
+  - '*.json'
+
+parser: '@babel/eslint-parser'
+
+parserOptions:
+  ecmaVersion: 2023
+  sourceType: module
+  requireConfigFile: false
+  babelOptions:
+    babelrc: false
+    configFile: false
+    presets:
+      - jest
+
+plugins:
+  - jest
+
+extends:
+  - eslint:recommended
+  - plugin:github/recommended
+  - plugin:jest/recommended
+
+rules:
+  {
+    'camelcase': 'warn',
+    'eslint-comments/no-use': 'off',
+    'eslint-comments/no-unused-disable': 'off',
+    'i18n-text/no-en': 'off',
+    'import/no-commonjs': 'off',
+    'import/no-namespace': 'off',
+    'no-console': 'off',
+    'no-unused-vars': 'warn',
+    'prettier/prettier': 'error',
+    'semi': 'error'
+  }
diff --git a/.github/actions/install_wheel/linters/.markdown-lint.yml b/.github/actions/install_wheel/linters/.markdown-lint.yml
new file mode 100644
index 0000000000..cb5883f5a5
--- /dev/null
+++ b/.github/actions/install_wheel/linters/.markdown-lint.yml
@@ -0,0 +1,18 @@
+# Unordered list style
+MD004:
+  style: dash
+
+# Ordered list item prefix
+MD029:
+  style: one
+
+# Spaces after list markers
+MD030:
+  ul_single: 1
+  ol_single: 1
+  ul_multi: 1
+  ol_multi: 1
+
+# Code block style
+MD046:
+  style: fenced
diff --git a/.github/actions/install_wheel/linters/.yaml-lint.yml b/.github/actions/install_wheel/linters/.yaml-lint.yml
new file mode 100644
index 0000000000..c975a332ac
--- /dev/null
+++ b/.github/actions/install_wheel/linters/.yaml-lint.yml
@@ -0,0 +1,10 @@
+rules:
+  document-end: disable
+  document-start:
+    level: warning
+    present: false
+  line-length:
+    level: warning
+    max: 80
+    allow-non-breakable-words: true
+    allow-non-breakable-inline-mappings: true
diff --git a/.github/actions/install_wheel/src/install_packages.js b/.github/actions/install_wheel/src/install_packages.js
new file mode 100644
index 0000000000..ebac3bb013
--- /dev/null
+++ b/.github/actions/install_wheel/src/install_packages.js
@@ -0,0 +1,64 @@
+const core = require('@actions/core');
+const glob = require('glob');
+const path = require('path');
+const { exec } = require('child_process');
+const util = require('util');
+
+const execAsync = util.promisify(exec);
+
+async function installPackages(packages, localWheelDir, requirementsFiles) {
+  // Resolve local wheels
+  const localWheels = {};
+  if (localWheelDir) {
+    const wheels = glob.sync(path.join(localWheelDir, '*.whl'));
+    for (const whl of wheels) {
+      const packageName = path.basename(whl).split('-')[0];
+      localWheels[packageName] = whl;
+    }
+  }
+
+  // Collect wheel paths
+  const wheelPaths = [];
+  for (const pkg of packages) {
+    const packageName = pkg.split('[')[0];
+    if (localWheels[packageName]) {
+      const wheelPath = localWheels[packageName];
+      wheelPaths.push(`"${wheelPath}${pkg.slice(packageName.length)}"`);
+    } else {
+      core.setFailed(`Package ${pkg} not found locally.`);
+      return;
+    }
+  }
+
+  // Collect requirements files
+  const requirementsArgs = requirementsFiles.map(reqFile => `-r ${reqFile}`);
+
+  // Install all wheels and requirements in one command
+  const installArgs = [...wheelPaths, ...requirementsArgs];
+  if (installArgs.length > 0) {
+    console.log(`Installing packages: ${installArgs.join(' ')}`);
+    const { stdout, stderr } = await execAsync(
+      `pip install ${installArgs.join(' ')}`,
+      {
+        stdio: 'inherit'
+      }
+    );
+    console.log('stdout:', stdout);
+    console.error('stderr:', stderr);
+  }
+}
+
+async function run() {
+  try {
+    const packagesInput = core.getInput('packages');
+    const localWheelDir = core.getInput('local_wheel_dir') || null;
+    const requirementsInput = core.getInput('requirements_files') || '';
+    const packages = packagesInput.split(';');
+    const requirementsFiles = requirementsInput.split(';').filter(Boolean);
+    await installPackages(packages, localWheelDir, requirementsFiles);
+  } catch (error) {
+    core.setFailed(error.message);
+  }
+}
+
+run();
diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml
index 2916c340bf..0d1dc9f948 100644
--- a/.github/workflows/linux.yml
+++ b/.github/workflows/linux.yml
@@ -1,4 +1,4 @@
-name: Linux (Ubuntu 20.04, Python 3.9)
+name: Linux (Ubuntu 22.04, Python 3.11)
 on:
   workflow_dispatch:
   pull_request:
@@ -16,476 +16,395 @@ concurrency:
   cancel-in-progress: true
 
 env:
-  PYTHON_VERSION: '3.9'
-  OV_BRANCH: 0080d90974ca84f9a6d359da3388a2a18a93b753
-  OV_TARBALL: ''
+  PYTHON_VERSION: '3.11'
+  OV_BRANCH: ${{ github.base_ref || github.event.merge_group.base_ref || github.ref }}
+  CMAKE_CXX_COMPILER_LAUNCHER: sccache
+  CMAKE_C_COMPILER_LAUNCHER: sccache
+  SCCACHE_IGNORE_SERVER_IO_ERROR: 1
+  SCCACHE_SERVER_PORT: 35555
+  SCCACHE_CACHE_SIZE: 30G
+  SCCACHE_AZURE_KEY_PREFIX: genai/ubuntu/22_04/x64
+  GENAI_ARCHIVE_NAME: genai.tar.gz
+  GENAI_SAMPLES_NAME: genai_samples.tar.gz
 
 jobs:
   openvino_download:
-    name: Download OpenVINO package
+    name: Download OpenVINO
     outputs:
       status: ${{ steps.openvino_download.outcome }}
+      ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }}
+      ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }}
+      ov_version: ${{ steps.openvino_download.outputs.ov_version }}
+      docker_tag: ${{ steps.get_docker_tag.outputs.docker_tag }}
     timeout-minutes: 10
     defaults:
       run:
         shell: bash
-    runs-on: ubuntu-20.04
+    runs-on: aks-linux-2-cores-8gb
+    container:
+      image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0'
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
 
     steps:
-      - name: Download OpenVINO build
-        id: openvino_download
-        run: |
-          wget ${{ env.OV_TARBALL}} --progress=bar:force:noscroll -O openvino_package.tar.gz
-          tar -tvf openvino_package.tar.gz
-        continue-on-error: true
-
-      #
-      # Upload to artifacts
-      #
-
-      - name: Upload openvino package
-        if: steps.openvino_download.outcome == 'success'
-        uses: actions/upload-artifact@v4
-        with:
-          name: openvino_package
-          path: openvino_package.tar.gz
-          if-no-files-found: 'error'
-
-  openvino_build:
-    name: Build OpenVINO package
-    needs: [openvino_download]
-    if: needs.openvino_download.outputs.status != 'success'
-    timeout-minutes: 150
+    - uses: openvinotoolkit/openvino/.github/actions/openvino_provider@master
+      id: openvino_download
+      with:
+        platform: ubuntu22
+        commit_packages_to_provide: wheels
+        revision: latest_available_commit
+
+    - name: Clone docker tag from OpenVINO repo
+      uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
+      with:
+        repository: 'openvinotoolkit/openvino'
+        path: 'openvino'
+        ref: ${{ env.OV_BRANCH }}
+        sparse-checkout: |
+          .github/dockerfiles/docker_tag
+
+    - name: Save docker tag to output
+      id: get_docker_tag
+      run: |
+        docker_tag=$(cat openvino/.github/dockerfiles/docker_tag)
+        echo "docker_tag=$docker_tag" >> $GITHUB_OUTPUT
+
+  genai_build_cmake:
+    name: Build Archive - ${{ matrix.build-type }}
+    strategy:
+      fail-fast: false
+      matrix:
+        build-type: [Release]
+    needs: [ openvino_download ]
+    timeout-minutes: 20
     defaults:
       run:
         shell: bash
-    runs-on: ubuntu-20.04-16-cores
+    runs-on: aks-linux-4-cores-16gb
+    container:
+      image: openvinogithubactions.azurecr.io/ov_build/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
+      volumes:
+        - /mount:/mount
+      options: -e SCCACHE_AZURE_BLOB_CONTAINER -e SCCACHE_AZURE_CONNECTION_STRING -v ${{ github.workspace }}:${{ github.workspace }}
     env:
-      DEBIAN_FRONTEND: noninteractive # to prevent apt-get from waiting user input
-      CMAKE_BUILD_TYPE: 'Release'
-      CMAKE_GENERATOR: 'Ninja Multi-Config'
-      CMAKE_CXX_COMPILER_LAUNCHER: ccache
-      CMAKE_C_COMPILER_LAUNCHER: ccache
-      OPENVINO_REPO: ${{ github.workspace }}/openvino
-      INSTALL_DIR: ${{ github.workspace }}/openvino/install
-      BUILD_DIR: ${{ github.workspace }}/openvino/build
-      CCACHE_DIR: ${{ github.workspace }}/ccache
-      CCACHE_MAXSIZE: 2000Mi
+      CMAKE_GENERATOR: Unix Makefiles
+      OV_INSTALL_DIR: ${{ github.workspace }}/ov
+      INSTALL_DIR: ${{ github.workspace }}/install
+      INSTALL_SAMPLES_DIR: ${{ github.workspace }}/samples
+      BUILD_DIR: ${{ github.workspace }}/build
+      SRC_DIR: ${{ github.workspace }}/src
 
     steps:
-      - name: Set apt
-        run: |
-          echo 'Acquire::Retries "10";' | sudo tee -a /etc/apt/apt.conf.d/80-retries > /dev/null
-          echo 'APT::Get::Assume-Yes "true";' | sudo tee -a /etc/apt/apt.conf.d/81-assume-yes > /dev/null
-          echo 'APT::Get::Fix-Broken "true";' | sudo tee -a /etc/apt/apt.conf.d/82-fix-broken > /dev/null
-          echo 'APT::Get::no-install-recommends "true";' | sudo tee -a /etc/apt/apt.conf.d/83-no-recommends > /dev/null
-
-      - name: Clone OpenVINO
-        uses: actions/checkout@v4
-        with:
-          repository: 'openvinotoolkit/openvino'
-          path: ${{ env.OPENVINO_REPO }}
-          submodules: 'true'
-          ref: ${{ env.OV_BRANCH}}
-
-      #
-      # Dependencies
-      #
-
-      - name: Install build dependencies
-        run: |
-          sudo -E ${OPENVINO_REPO}/install_build_dependencies.sh
-          sudo apt-get install ccache
-
-      - name: Setup Python ${{ env.PYTHON_VERSION }}
-        uses: actions/setup-python@v5
+      - name: Clone openvino.genai
+        uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
         with:
-          python-version: ${{ env.PYTHON_VERSION }}
-          cache: 'pip'
-
-      - name: Install python dependencies
-        run: |
-          # For Python API: build and wheel packaging
-          python3 -m pip install -r ${OPENVINO_REPO}/src/bindings/python/wheel/requirements-dev.txt
-
-      #
-      # Build
-      #
+          path: ${{ env.SRC_DIR }}
+          submodules: recursive
 
-      - name: Setup ccache
-        uses: actions/cache@v4
+      - name: Download OpenVINO package
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
         with:
-          # Should save cache only if run in the master branch of the base repo
-          # github.ref_name is 'ref/PR_#' in case of the PR, and 'branch_name' when executed on push
-          save-always: ${{ github.ref_name == 'master' && 'true' || 'false'  }}
-          path: ${{ env.CCACHE_DIR }}
-          key: ${{ runner.os }}-${{ runner.arch }}-ccache-ov-${{ github.sha }}
-          restore-keys: |
-            ${{ runner.os }}-${{ runner.arch }}-ccache-ov
-
-      - name: CMake configure - OpenVINO
-        run: |
-          cmake \
-            -G "${{ env.CMAKE_GENERATOR }}" \
-            -DENABLE_CPPLINT=OFF \
-            -DENABLE_NCC_STYLE=OFF \
-            -DENABLE_TESTS=OFF \
-            -DENABLE_STRICT_DEPENDENCIES=OFF \
-            -DENABLE_SYSTEM_OPENCL=ON \
-            -DCMAKE_VERBOSE_MAKEFILE=ON \
-            -DCPACK_GENERATOR=TGZ \
-            -DENABLE_JS=OFF \
-            -DENABLE_SAMPLES=ON \
-            -DENABLE_OV_ONNX_FRONTEND=OFF \
-            -DENABLE_OV_PADDLE_FRONTEND=OFF \
-            -DENABLE_OV_PYTORCH_FRONTEND=ON \
-            -DENABLE_OV_TF_FRONTEND=ON \
-            -DENABLE_OV_TF_LITE_FRONTEND=OFF \
-            -DENABLE_INTEL_GPU=OFF \
-            -DENABLE_INTEL_NPU=ON \
-            -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-            -DCMAKE_C_COMPILER_LAUNCHER=ccache \
-            -DENABLE_PYTHON=ON \
-            -DENABLE_WHEEL=ON \
-            -S ${OPENVINO_REPO} \
-            -B ${BUILD_DIR}
-
-      - name: Clean ccache stats
-        run: ccache --zero-stats --show-config
-
-      - name: Cmake build - OpenVINO
-        run: cmake --build ${BUILD_DIR} --parallel --config ${{ env.CMAKE_BUILD_TYPE }}
-
-      - name: Show ccache stats
-        run: ccache --show-stats
-
-      - name: Cmake install - OpenVINO
-        run: |
-          cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}/openvino_package -P ${BUILD_DIR}/cmake_install.cmake
-          cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}/openvino_package -DCOMPONENT=python_wheels -P ${BUILD_DIR}/cmake_install.cmake
-
+          name: ${{ needs.openvino_download.outputs.ov_artifact_name }}
+          path: ${{ env.OV_INSTALL_DIR }}
+          merge-multiple: true
+
+      - name: CMake Build
+        run: |    
+          source ${{ env.OV_INSTALL_DIR }}/setupvars.sh
+          cmake -DCMAKE_BUILD_TYPE=${{ matrix.build-type }} -S ${{ env.SRC_DIR}} -B ${{ env.BUILD_DIR }}
+          cmake --build ${{ env.BUILD_DIR}} --config ${{ matrix.build-type }} --parallel $(nproc)
+          cmake --install ${{ env.BUILD_DIR }} --config ${{ matrix.build-type }} --prefix ${{ env.INSTALL_DIR }}
+      
       - name: Pack Artifacts
-        run: |
-          pushd ${INSTALL_DIR}
-            tar -czvf ${BUILD_DIR}/openvino_package.tar.gz *
-          popd
-
-      #
-      # Upload build artifacts and logs
-      #
-
-      - name: Upload openvino package
+        run: tar -cvf - * | pigz > ${{ env.BUILD_DIR }}/${{ env.GENAI_ARCHIVE_NAME }}
+        working-directory: ${{ env.INSTALL_DIR }}
+          
+      - name: Upload Archive Distribution Package
         if: ${{ always() }}
-        uses: actions/upload-artifact@v4
+        uses: actions/upload-artifact@b4b15b8c7c6ac21ea08fcf65892d2ee8f75cf882 # v4.4.3
         with:
-          name: openvino_package
-          path: ${{ env.BUILD_DIR }}/openvino_package.tar.gz
+          name: genai_archive_${{ matrix.build-type }}
+          path: ${{ env.BUILD_DIR }}/${{ env.GENAI_ARCHIVE_NAME }}
           if-no-files-found: 'error'
 
-  genai_python_lib:
-    name: OpenVINO genai extension (cmake + wheel)
-    needs: [ openvino_download, openvino_build ]
-    if: |
-      always() &&
-      (needs.openvino_download.outputs.status == 'success' || needs.openvino_build.result == 'success')
-    timeout-minutes: 120
+  genai_build_wheel:
+    name: Build Wheel
+    needs: [ openvino_download ]
+    timeout-minutes: 20
     defaults:
       run:
         shell: bash
-    runs-on: ubuntu-20.04-16-cores
+    runs-on: aks-linux-4-cores-16gb
+    container:
+      image: openvinogithubactions.azurecr.io/ov_build/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
+      options: -e SCCACHE_AZURE_BLOB_CONTAINER -e SCCACHE_AZURE_CONNECTION_STRING
     env:
       CMAKE_GENERATOR: Unix Makefiles
-      CMAKE_BUILD_PARALLEL_LEVEL: null
       OV_INSTALL_DIR: ${{ github.workspace }}/ov
-      CCACHE_DIR: ${{ github.workspace }}/ccache
-      CCACHE_MAXSIZE: 500Mi
-      CMAKE_CXX_COMPILER_LAUNCHER: ccache
-      CMAKE_C_COMPILER_LAUNCHER: ccache
+      INSTALL_DIR: ${{ github.workspace }}/install
+      WHEELS_DIR: ${{ github.workspace }}/install/wheels
+      BUILD_DIR: ${{ github.workspace }}/build
+      SRC_DIR: ${{ github.workspace }}/src
 
     steps:
       - name: Clone openvino.genai
-        uses: actions/checkout@v4
+        uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
         with:
+          path: ${{ env.SRC_DIR }}
           submodules: recursive
 
-      - name: Setup Python ${{ env.PYTHON_VERSION }}
-        uses: actions/setup-python@v5
-        with:
-          python-version: ${{ env.PYTHON_VERSION }}
-          cache: 'pip'
-
       - name: Download OpenVINO package
-        uses: actions/download-artifact@v4
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
         with:
-          name: openvino_package
+          name: ${{ needs.openvino_download.outputs.ov_artifact_name }}
           path: ${{ env.OV_INSTALL_DIR }}
-
-      - name: Extract OpenVINO packages
+          merge-multiple: true
+          
+      - name: Build Tokenizers Wheel
         run: |
-          pushd ${OV_INSTALL_DIR}
-            tar -xzf openvino_package.tar.gz -C ${OV_INSTALL_DIR} --strip-components=1
-          popd
-
-      - name: Set apt
+          python -m pip wheel -v --no-deps --wheel-dir ${{ env.WHEELS_DIR }} \
+              --config-settings=override=cross.arch="manylinux_2_31_x86_64" \
+              ${{ needs.openvino_download.outputs.ov_wheel_source }} \
+              ${{ env.SRC_DIR }}/thirdparty/openvino_tokenizers
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+              
+      - name: Build GenAI Wheel
         run: |
-          echo 'Acquire::Retries "10";' | sudo tee -a /etc/apt/apt.conf.d/80-retries > /dev/null
-          echo 'APT::Get::Assume-Yes "true";' | sudo tee -a /etc/apt/apt.conf.d/81-assume-yes > /dev/null
-          echo 'APT::Get::Fix-Broken "true";' | sudo tee -a /etc/apt/apt.conf.d/82-fix-broken > /dev/null
-          echo 'APT::Get::no-install-recommends "true";' | sudo tee -a /etc/apt/apt.conf.d/83-no-recommends > /dev/null
-
-      - name: Install build dependencies
-        run: |
-          sudo ${OV_INSTALL_DIR}/install_dependencies/install_openvino_dependencies.sh
-          sudo apt-get install ccache
-
-      - name: Setup ccache
-        uses: actions/cache@v4
+          python -m pip wheel -v --no-deps --wheel-dir ${{ env.WHEELS_DIR }} \
+              --config-settings=override=cross.arch="manylinux_2_31_x86_64" \
+              ${{ needs.openvino_download.outputs.ov_wheel_source }} \
+              ${{ env.SRC_DIR }}
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+        
+      - name: Build WWB Wheel
+        run: python -m pip wheel -v --no-deps --wheel-dir ${{ env.WHEELS_DIR }} ${{ env.SRC_DIR }}/tools/who_what_benchmark
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+            
+      - name: Upload Wheels
+        if: ${{ always() }}
+        uses: actions/upload-artifact@b4b15b8c7c6ac21ea08fcf65892d2ee8f75cf882 # v4.4.3
         with:
-          # Should save cache only if run in the master branch of the base repo
-          # github.ref_name is 'ref/PR_#' in case of the PR, and 'branch_name' when executed on push
-          save-always: ${{ github.ref_name == 'master' && 'true' || 'false'  }}
-          path: ${{ env.CCACHE_DIR }}
-          key: ${{ runner.os }}-${{ runner.arch }}-ccache-genai-release-${{ github.sha }}
-          restore-keys: |
-            ${{ runner.os }}-${{ runner.arch }}-ccache-genai-release
-
-      - name: Build genai
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/
-          cmake --build ./build/ --config Release -j
-
-      - name: Test bindings
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pytest -v ./tests/python_tests/test_chat_generate_api.py::test_set_chat_template
-        env:
-          PYTHONPATH: "./build/:$PYTHONPATH"
-
-      - name: Test bindings (wheel)
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pytest -v ./tests/python_tests --ignore ./tests/python_tests/test_whisper_generate_api.py --ignore ./tests/python_tests/test_vlm_api.py -k "not test_set_chat_template"
-
-      - run: >
-            source ${OV_INSTALL_DIR}/setupvars.sh
-            && python -m pytest -v ./tests/python_tests/test_vlm_api.py
-
-  genai_python_lib_whisper:
-    name: OpenVINO genai extension whisper tests (cmake + wheel)
-    needs: [ openvino_download, openvino_build ]
-    if: |
-      always() &&
-      (needs.openvino_download.outputs.status == 'success' || needs.openvino_build.result == 'success')
-    timeout-minutes: 90
+          name: genai_wheels
+          path: ${{ env.INSTALL_DIR }}
+          if-no-files-found: 'error'
+          
+  genai_build_samples:
+    name: Build Samples - ${{ matrix.build-type }}
+    strategy:
+      fail-fast: false
+      matrix:
+        build-type: [Release]
+    needs: [ openvino_download, genai_build_cmake ]
+    timeout-minutes: 10
     defaults:
       run:
         shell: bash
-    runs-on: ubuntu-20.04-16-cores
+    runs-on: aks-linux-2-cores-8gb
+    container:
+      image: openvinogithubactions.azurecr.io/ov_build/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
+      options: -e SCCACHE_AZURE_BLOB_CONTAINER -e SCCACHE_AZURE_CONNECTION_STRING
     env:
       CMAKE_GENERATOR: Unix Makefiles
-      CMAKE_BUILD_PARALLEL_LEVEL: null
       OV_INSTALL_DIR: ${{ github.workspace }}/ov
-      CCACHE_DIR: ${{ github.workspace }}/ccache
-      CCACHE_MAXSIZE: 500Mi
-      CMAKE_CXX_COMPILER_LAUNCHER: ccache
-      CMAKE_C_COMPILER_LAUNCHER: ccache
+      INSTALL_DIR: ${{ github.workspace }}/install
+      BUILD_DIR: ${{ github.workspace }}/build
+      SRC_DIR: ${{ github.workspace }}/src
 
     steps:
       - name: Clone openvino.genai
-        uses: actions/checkout@v4
+        uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
         with:
+          path: ${{ env.SRC_DIR }}
           submodules: recursive
 
-      - name: Setup Python ${{ env.PYTHON_VERSION }}
-        uses: actions/setup-python@v5
-        with:
-          python-version: ${{ env.PYTHON_VERSION }}
-          cache: 'pip'
-
-      - name: Download OpenVINO package
-        uses: actions/download-artifact@v4
+      - name: Download Build Artifacts
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
         with:
-          name: openvino_package
+          pattern: "{${{ needs.openvino_download.outputs.ov_artifact_name }},genai_archive_${{ matrix.build-type }}}"
           path: ${{ env.OV_INSTALL_DIR }}
-
-      - name: Extract OpenVINO packages
-        run: |
-          pushd ${OV_INSTALL_DIR}
-            tar -xzf openvino_package.tar.gz -C ${OV_INSTALL_DIR} --strip-components=1
-          popd
-
-      - name: Set apt
+          merge-multiple: true
+          
+      - name: Extract Artifacts
+        run: pigz -dc ${{ env.GENAI_ARCHIVE_NAME }} | tar -xf - -C ${{ env.OV_INSTALL_DIR }}
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+        
+      - name: Build Samples (Release)
+        if: ${{ 'Release' == matrix.build-type }}
         run: |
-          echo 'Acquire::Retries "10";' | sudo tee -a /etc/apt/apt.conf.d/80-retries > /dev/null
-          echo 'APT::Get::Assume-Yes "true";' | sudo tee -a /etc/apt/apt.conf.d/81-assume-yes > /dev/null
-          echo 'APT::Get::Fix-Broken "true";' | sudo tee -a /etc/apt/apt.conf.d/82-fix-broken > /dev/null
-          echo 'APT::Get::no-install-recommends "true";' | sudo tee -a /etc/apt/apt.conf.d/83-no-recommends > /dev/null
-
-      - name: Install build dependencies
+          chmod +x ${{ env.OV_INSTALL_DIR }}/samples/cpp/build_samples.sh
+          ${{ env.OV_INSTALL_DIR }}/samples/cpp/build_samples.sh -i ${{ env.INSTALL_DIR }}
+  
+      - name: Build Samples (${{ matrix.build-type }})
+        if: ${{ 'Release' != matrix.build-type }}
         run: |
-          sudo ${OV_INSTALL_DIR}/install_dependencies/install_openvino_dependencies.sh
-          sudo apt-get install ccache
+          source ${{ env.OV_INSTALL_DIR }}/setupvars.sh
+          cmake -DCMAKE_BUILD_TYPE=${{ matrix.build-type }} -S ${{ env.OV_INSTALL_DIR }}/samples/cpp/ -B ${{ env.BUILD_DIR }}
+          cmake --build ${{ env.BUILD_DIR }} --config ${{ matrix.build-type }} --parallel $(nproc)
+          cmake --install ${{ env.BUILD_DIR }} --config ${{ matrix.build-type }} --component samples_bin --prefix ${{ env.INSTALL_DIR }}
+        
+      - name: Pack Artifacts
+        run: tar -cvf - * | pigz > ${{ env.INSTALL_DIR }}/${{ env.GENAI_SAMPLES_NAME }}
+        working-directory: ${{ env.INSTALL_DIR }}
 
-      - name: Setup ccache
-        uses: actions/cache@v4
+      - name: Upload Samples Build Package
+        if: ${{ always() }}
+        uses: actions/upload-artifact@b4b15b8c7c6ac21ea08fcf65892d2ee8f75cf882 # v4.4.3
         with:
-          # Should save cache only if run in the master branch of the base repo
-          # github.ref_name is 'ref/PR_#' in case of the PR, and 'branch_name' when executed on push
-          save-always: ${{ github.ref_name == 'master' && 'true' || 'false'  }}
-          path: ${{ env.CCACHE_DIR }}
-          key: ${{ runner.os }}-${{ runner.arch }}-ccache-genai-release-${{ github.sha }}
-          restore-keys: |
-            ${{ runner.os }}-${{ runner.arch }}-ccache-genai-release
-
-      - name: Build genai
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          cmake -DCMAKE_BUILD_TYPE=Release -S ./ -B ./build/
-          cmake --build ./build/ --config Release --target py_openvino_genai -j
-
-      - name: Test bindings
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          python -m pip install ./thirdparty/openvino_tokenizers/[transformers] -r ./tests/python_tests/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k test_smoke
-        env:
-          PYTHONPATH: "./build/:$PYTHONPATH"
-
-      - name: Test bindings (wheel)
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          python -m pip install . --verbose --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pip install ./tools/who_what_benchmark --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pytest -v ./tests/python_tests/test_whisper_generate_api.py -k "not test_smoke"
-
-  genai_package:
-    name: OpenVINO genai extension (install to OpenVINO package)
+          name: genai_samples_${{ matrix.build-type }}
+          path: ${{ env.INSTALL_DIR }}/*.tar.gz
+          if-no-files-found: 'error'
+        
+  genai_tests_wheel:
+    name: Python (${{ matrix.test.name}}) Tests (wheel)
+    needs: [ openvino_download, genai_build_wheel ]
+    timeout-minutes: 60
     strategy:
+      fail-fast: false
       matrix:
-        build-type: [Release, Debug]
-    needs: [ openvino_download, openvino_build ]
-    if: |
-      always() &&
-      (needs.openvino_download.outputs.status == 'success' || needs.openvino_build.result == 'success')
-    timeout-minutes: 60
+        test:
+          - name: 'Whisper'
+            cmd: 'tests/python_tests/test_whisper_generate_api.py'
+            runner: aks-linux-8-cores-32gb
+          - name: 'LLM & VLM'
+            cmd: 'tests/python_tests --ignore tests/python_tests/test_whisper_generate_api.py -k "not Qwen2-0.5B-Instruct"' # Skip failed tests Qwen2-0.5B-Instruct
+            runner: aks-linux-4-cores-16gb
     defaults:
       run:
         shell: bash
-    runs-on: ubuntu-20.04
-    env:
-      CMAKE_BUILD_PARALLEL_LEVEL: null
-      OV_INSTALL_DIR: ${{ github.workspace }}/ov
-      CCACHE_DIR: ${{ github.workspace }}/ccache
-      CCACHE_MAXSIZE: 500Mi
-      CMAKE_CXX_COMPILER_LAUNCHER: ccache
-      CMAKE_C_COMPILER_LAUNCHER: ccache
+    runs-on: ${{ matrix.test.runner }}
+    container:
+      image: openvinogithubactions.azurecr.io/ov_test/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
 
+    env:
+      INSTALL_DIR: ${{ github.workspace }}/install
+      SRC_DIR: ${{ github.workspace }}/src
+      BUILD_DIR: ${{ github.workspace }}/build
+      TRANSFORMERS_CACHE: ${{ github.workspace }}/models  # Hugging Face transformers cache
+      HF_HOME: ${{ github.workspace }}/datasets           # Hugging Face datasets cache
+        
     steps:
       - name: Clone openvino.genai
-        uses: actions/checkout@v4
+        uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
         with:
+          path: ${{ env.SRC_DIR }}
           submodules: recursive
-
-      - name: Setup Python ${{ env.PYTHON_VERSION }}
-        uses: actions/setup-python@v5
+          
+      - name: Download Build Artifacts
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
         with:
-          python-version: ${{ env.PYTHON_VERSION }}
-          cache: 'pip'
-
-      - name: Download OpenVINO package
-        uses: actions/download-artifact@v4
+          pattern: "{${{ needs.openvino_download.outputs.ov_artifact_name }},genai_wheels}"
+          path: ${{ env.INSTALL_DIR }}
+          merge-multiple: true
+                     
+      - name: Install GenAI Wheels
+        uses: ./src/.github/actions/install_wheel
         with:
-          name: openvino_package
-          path: ${{ env.OV_INSTALL_DIR }}
-
-      - name: Extract OpenVINO packages
-        run: |
-          pushd ${OV_INSTALL_DIR}
-            tar -xzf openvino_package.tar.gz -C ${OV_INSTALL_DIR} --strip-components=1
-          popd
-
-      - name: Set apt
-        run: |
-          echo 'Acquire::Retries "10";' | sudo tee -a /etc/apt/apt.conf.d/80-retries > /dev/null
-          echo 'APT::Get::Assume-Yes "true";' | sudo tee -a /etc/apt/apt.conf.d/81-assume-yes > /dev/null
-          echo 'APT::Get::Fix-Broken "true";' | sudo tee -a /etc/apt/apt.conf.d/82-fix-broken > /dev/null
-          echo 'APT::Get::no-install-recommends "true";' | sudo tee -a /etc/apt/apt.conf.d/83-no-recommends > /dev/null
-
-      - name: Install build dependencies
-        run: |
-          sudo ${OV_INSTALL_DIR}/install_dependencies/install_openvino_dependencies.sh
-          sudo apt-get install ccache
+          packages: "openvino;openvino_tokenizers[transformers];openvino_genai;whowhatbench"
+          requirements_files: "${{ env.SRC_DIR }}/tests/python_tests/requirements.txt"
+          local_wheel_dir: ${{ env.INSTALL_DIR }}/wheels
+    
+      - name: Tests
+        run: python -m pytest -v ./${{ matrix.test.cmd }}
+        working-directory: ${{ env.SRC_DIR }}
+        
+  genai_samples_tests:
+    name: Samples Tests - ${{ matrix.build-type }}
+    strategy:
+      fail-fast: false
+      matrix:
+        build-type: [Release]
+    needs: [ openvino_download, genai_build_cmake, genai_build_wheel, genai_build_samples ] 
+    timeout-minutes: 45
+    defaults:
+      run:
+        shell: bash
+    runs-on: aks-linux-2-cores-8gb
+    container:
+      image: openvinogithubactions.azurecr.io/ov_test/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
 
-      - name: Setup ccache
-        uses: actions/cache@v4
+    env:
+      INSTALL_DIR: ${{ github.workspace }}/ov
+      SRC_DIR: ${{ github.workspace }}/src
+      BUILD_DIR: ${{ github.workspace }}/build
+      MODELS_DIR: ${{ github.workspace }}/models
+        
+    steps:
+      - name: Clone openvino.genai
+        uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
         with:
-          save-always: true
-          path: ${{ env.CCACHE_DIR }}
-          key: ${{ runner.os }}-${{ runner.arch }}-ccache-genai-${{ matrix.build-type }}-${{ github.sha }}
-          restore-keys: |
-            ${{ runner.os }}-${{ runner.arch }}-ccache-genai-${{ matrix.build-type }}
-
-      - name: Build genai
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          cmake -DCMAKE_BUILD_TYPE=${{ matrix.build-type }} -S ./ -B ./build/
-          cmake --build ./build/ --config ${{ matrix.build-type }} --target package -j
-
-      - name: Build and Install dependencies
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --find-links ${OV_INSTALL_DIR}/wheels
-          python -m pip install -r ./samples/requirements.txt --find-links ${OV_INSTALL_DIR}/wheels
-          optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0
-          optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny whisper-tiny
-
-      - name: Install samples
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          cmake --install ./build/ --config ${{ matrix.build-type }} --prefix ${OV_INSTALL_DIR}
-
-      - name: Build samples (Release)
-        if: ${{ 'Release' == matrix.build-type }} # build_samples enforces Release build
-        run: |
-          ${OV_INSTALL_DIR}/samples/cpp/build_samples.sh -i ${{ github.workspace }}/s\ pace
-
-      - name: Build samples (Debug)
-        if: ${{ 'Release' != matrix.build-type }}
-        run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          cmake -DCMAKE_BUILD_TYPE=${{ matrix.build-type }} -S ${OV_INSTALL_DIR}/samples/cpp/ -B ./samples\ build/ && cmake --build ./samples\ build/ --config ${{ matrix.build-type }} -j
-          cmake --install ./samples\ build/ --config ${{ matrix.build-type }} --component samples_bin --prefix s\ pace
-
-      - name: Test C++ samples (greedy_causal_lm)
+          path: ${{ env.SRC_DIR }}
+          submodules: recursive
+          
+      - name: Download Build Artifacts
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
+        with:
+          pattern: "{${{ needs.openvino_download.outputs.ov_artifact_name }},genai_archive_${{ matrix.build-type }},genai_samples_${{ matrix.build-type }},genai_wheels}"
+          path: ${{ env.INSTALL_DIR }}
+          merge-multiple: true
+      
+      - name: Extract Artifacts
         run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          timeout 25s ${{ github.workspace }}/s\ pace/samples_bin/greedy_causal_lm ./TinyLlama-1.1B-Chat-v1.0/ ""
-
-      - name: Test C++ samples (whisper_speech_recognition)
+          pigz -dc ${{ env.GENAI_ARCHIVE_NAME }} | tar -xf - -C ${{ env.INSTALL_DIR }}
+          pigz -dc ${{ env.GENAI_SAMPLES_NAME }} | tar -xf - -C ${{ env.INSTALL_DIR }}
+        working-directory: ${{ env.INSTALL_DIR }}
+        
+      - name: Install Wheels
+        uses: ./src/.github/actions/install_wheel
+        with:
+          packages: "openvino;openvino_tokenizers[transformers];openvino_genai"
+          requirements_files: "${{ env.SRC_DIR }}/samples/requirements.txt"
+          local_wheel_dir: ${{ env.INSTALL_DIR }}/wheels
+     
+      - name: Download & convert Models and data
         run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          wget https://storage.openvinotoolkit.org/models_contrib/speech/2021.2/librispeech_s5/how_are_you_doing_today.wav
-          timeout 25s ${{ github.workspace }}/s\ pace/samples_bin/whisper_speech_recognition ./whisper-tiny/ how_are_you_doing_today.wav
+          mkdir -p ${{ env.MODELS_DIR }}
+          optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 ${{ env.MODELS_DIR }}/TinyLlama-1.1B-Chat-v1.0
+          optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ${{ env.MODELS_DIR }}/whisper-tiny
+          wget https://storage.openvinotoolkit.org/models_contrib/speech/2021.2/librispeech_s5/how_are_you_doing_today.wav -O ${{ env.MODELS_DIR }}/how_are_you_doing_today.wav
+        
+      - name: Test multinomial_causal_lm.py
+        if: ${{ 'Release' == matrix.build-type }} # Python bindings can be built in Release only
+        timeout-minutes: 1
+        run: ${{ env.INSTALL_DIR }}/samples/python/multinomial_causal_lm/multinomial_causal_lm.py ./TinyLlama-1.1B-Chat-v1.0/ 0
+        working-directory: ${{ env.MODELS_DIR }}
 
-      - name: Test python samples (multinomial_causal_lm)
+      - name: Test whisper_speech_recognition.py
         if: ${{ 'Release' == matrix.build-type }} # Python bindings can be built in Release only
+        timeout-minutes: 1
+        run: ${{ env.INSTALL_DIR }}/samples/python/whisper_speech_recognition/whisper_speech_recognition.py ./whisper-tiny/ how_are_you_doing_today.wav
+        working-directory: ${{ env.MODELS_DIR }}
+      
+      - name: C++ Tests Prerequisites
+        run: python -m pip uninstall openvino openvino-tokenizers openvino-genai -y
+        
+      - name: Test greedy_causal_lm
         run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          timeout 25s ${OV_INSTALL_DIR}/samples/python/multinomial_causal_lm/multinomial_causal_lm.py ./TinyLlama-1.1B-Chat-v1.0/ 0
+          source ${{ env.INSTALL_DIR }}/setupvars.sh
+          ${{ env.INSTALL_DIR }}/samples_bin/greedy_causal_lm ./TinyLlama-1.1B-Chat-v1.0/ ""
+        working-directory: ${{ env.MODELS_DIR }}
 
-      - name: Test python samples (whisper_speech_recognition)
-        if: ${{ 'Release' == matrix.build-type }} # Python bindings can be built in Release only
+      - name: Test whisper_speech_recognition
         run: |
-          source ${OV_INSTALL_DIR}/setupvars.sh
-          timeout 25s ${OV_INSTALL_DIR}/samples/python/whisper_speech_recognition/whisper_speech_recognition.py ./whisper-tiny/ how_are_you_doing_today.wav
+          source ${{ env.INSTALL_DIR }}/setupvars.sh
+          ${{ env.INSTALL_DIR }}/samples_bin/whisper_speech_recognition ./whisper-tiny/ how_are_you_doing_today.wav
+        working-directory: ${{ env.MODELS_DIR }}
 
   Overall_Status:
     name: ci/gha_overall_status_linux
-    needs: [openvino_download, openvino_build, genai_python_lib, genai_package, genai_python_lib_whisper]
+    needs: [openvino_download, genai_build_cmake, genai_build_wheel, genai_build_samples, genai_tests_wheel, genai_samples_tests]
     if: ${{ always() }}
     runs-on: ubuntu-latest
     steps:

From 9f6257676d85042ae20e1bc6a153308d7417ba0e Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Thu, 12 Dec 2024 12:44:21 +0400
Subject: [PATCH 066/113] Update OpenVINO tokenizers (#1369)

To catch up
https://github.com/openvinotoolkit/openvino_tokenizers/pull/350
---
 thirdparty/openvino_tokenizers | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers
index 78946fa8c3..1da0d2c705 160000
--- a/thirdparty/openvino_tokenizers
+++ b/thirdparty/openvino_tokenizers
@@ -1 +1 @@
-Subproject commit 78946fa8c385fdc26d978019ecbcb1a55b39eb18
+Subproject commit 1da0d2c705016ad3f04c160ac9338f06505a07c1

From 63e26211486b4e97ebca7d8d7939945cef560811 Mon Sep 17 00:00:00 2001
From: Irina Efode 
Date: Thu, 12 Dec 2024 13:15:41 +0400
Subject: [PATCH 067/113] LLM Bench fix (#1359)

Co-authored-by: Ilya Lavrenov 
---
 .../speculative_decoding_lm.cpp                    |  2 +-
 src/cpp/src/sampler.cpp                            | 14 +++++++++++---
 2 files changed, 12 insertions(+), 4 deletions(-)

diff --git a/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp b/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp
index b34157a07f..dc6761879c 100644
--- a/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp
+++ b/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp
@@ -16,7 +16,7 @@ int main(int argc, char* argv[]) try {
     // add parameter to enable speculative decoding to generate `num_assistant_tokens` candidates by draft_model per iteration
     config.num_assistant_tokens = 5;
     // add parameter to enable speculative decoding to generate candidates by draft_model while candidate probability is higher than `assistant_confidence_threshold`
-    // config.assistant_confidence_threshold = 0.4
+    // config.assistant_confidence_threshold = 0.4;
 
     std::string main_model_path = argv[1];
     std::string draft_model_path = argv[2];
diff --git a/src/cpp/src/sampler.cpp b/src/cpp/src/sampler.cpp
index 3febadf112..f77463d767 100644
--- a/src/cpp/src/sampler.cpp
+++ b/src/cpp/src/sampler.cpp
@@ -599,7 +599,8 @@ void register_new_token(const Token& sampled_token,
         running_sequence->append_token(sampled_token.m_index, sampled_token.m_log_prob);
     }
     if (!is_validation_mode_enabled &&
-        std::fabs(std::exp(sampled_token.m_log_prob)) < logit_processor.get_assistant_confidence_threshold()) {
+        logit_processor.get_assistant_confidence_threshold() > 0 &&
+        (std::fabs(std::exp(sampled_token.m_log_prob)) < logit_processor.get_assistant_confidence_threshold() || sampled_token.m_log_prob == 0)) {
         auto sequence_group = running_sequence->get_sequence_group_ptr();
         sequence_group->pause_generation(true);
     }
@@ -764,13 +765,17 @@ SamplerOutput Sampler::sample(std::vector & sequence_groups,
             m_logit_processors.insert({request_id, LogitProcessor(sampling_params, sequence_group->get_prompt_ids())});
         }
         auto& logit_processor = m_logit_processors.at(request_id);
-
         const void * sequence_group_logits_data = logits_data + vocab_size * currently_processed_tokens;
         ov::Tensor sequence_group_logits(ov::element::f32, ov::Shape{num_running_sequences, actual_seq_len, vocab_size}, (void *)sequence_group_logits_data);
-        size_t max_removed_tokens_per_request = 0, min_generated_len = std::numeric_limits::max();
+        size_t max_removed_tokens_per_request = 0, min_generated_len = std::numeric_limits::max(), updated_validation_len = 0;
         if (sequence_group->requires_sampling()) {
             // get number of token to be validated
             auto num_tokens_to_process = sequence_group->get_num_tokens_to_validate();
+            if (num_tokens_to_process > actual_seq_len - 1) {
+                auto delta = num_tokens_to_process - (actual_seq_len - 1);
+                updated_validation_len = std::max(updated_validation_len, delta);
+                num_tokens_to_process -= delta;
+            }
             if (sampling_params.is_greedy_decoding() || sampling_params.is_multinomial()) {
                 std::vector running_sequences = sequence_group->get_running_sequences();
                 if (sampling_params.is_greedy_decoding()) {
@@ -897,6 +902,9 @@ SamplerOutput Sampler::sample(std::vector & sequence_groups,
             sequence_group->update_processed_tokens_num(min_processed_tokens);
             logit_processor.update_generated_len(min_processed_tokens);
         }
+        if (updated_validation_len) {
+            sequence_group->set_num_validated_tokens(updated_validation_len);
+        }
 
         // accumulate a number of processed tokens
         currently_processed_tokens += padded_amount_of_processed_tokens * num_running_sequences;

From b955ea6e778c51394c18e3917c52725554d71c04 Mon Sep 17 00:00:00 2001
From: Mikhail Ryzhov 
Date: Thu, 12 Dec 2024 13:46:16 +0100
Subject: [PATCH 068/113] [GHA] Minimize memory consumption during tests
 (#1371)

This is a workaround to minimize memory consumption during tests and
allow the use of less powerful CI runners

---------

Co-authored-by: Alexander Suvorov 
---
 .github/workflows/linux.yml                     | 4 +---
 tests/python_tests/test_whisper_generate_api.py | 9 +++++++++
 2 files changed, 10 insertions(+), 3 deletions(-)

diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml
index 0d1dc9f948..96848e947c 100644
--- a/.github/workflows/linux.yml
+++ b/.github/workflows/linux.yml
@@ -271,14 +271,12 @@ jobs:
         test:
           - name: 'Whisper'
             cmd: 'tests/python_tests/test_whisper_generate_api.py'
-            runner: aks-linux-8-cores-32gb
           - name: 'LLM & VLM'
             cmd: 'tests/python_tests --ignore tests/python_tests/test_whisper_generate_api.py -k "not Qwen2-0.5B-Instruct"' # Skip failed tests Qwen2-0.5B-Instruct
-            runner: aks-linux-4-cores-16gb
     defaults:
       run:
         shell: bash
-    runs-on: ${{ matrix.test.runner }}
+    runs-on: aks-linux-4-cores-16gb
     container:
       image: openvinogithubactions.azurecr.io/ov_test/ubuntu_22_04_x64:${{ needs.openvino_download.outputs.docker_tag }}
       volumes: 
diff --git a/tests/python_tests/test_whisper_generate_api.py b/tests/python_tests/test_whisper_generate_api.py
index bcbe2890bd..5a68dd98b6 100644
--- a/tests/python_tests/test_whisper_generate_api.py
+++ b/tests/python_tests/test_whisper_generate_api.py
@@ -10,11 +10,20 @@
 import datasets
 from transformers import WhisperProcessor, pipeline, AutoTokenizer
 from optimum.intel.openvino import OVModelForSpeechSeq2Seq
+import gc
 import json
 import time
 import typing
 import numpy as np
 
+@pytest.fixture(scope="class", autouse=True)
+def run_gc_after_test():
+    """
+    Fixture to run garbage collection after each test class.
+    This is a workaround to minimize memory consumption during tests and allow the use of less powerful CI runners.
+    """
+    yield
+    gc.collect()
 
 @functools.lru_cache(1)
 def read_whisper_model(params, **tokenizer_kwargs):

From d17f7168f278ef98acfdc7ba1ac93e4c759a6402 Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Fri, 13 Dec 2024 08:03:11 +0400
Subject: [PATCH 069/113] [Image generation] Added num_steps to callback
 (#1372)

With image to image and inpainting, an user passed `num_inference_steps`
is scaled based on `strength` parameter.
So, we need to report actual number of steps within `callback`

CC @RyanMetcalfeInt8
---
 samples/cpp/image_generation/README.md        |  6 ++---
 samples/python/image_generation/README.md     |  6 ++---
 .../image_generation/generation_config.hpp    |  4 ++--
 .../src/image_generation/flux_pipeline.hpp    | 22 ++++++-------------
 .../stable_diffusion_3_pipeline.hpp           | 21 ++++++++----------
 .../stable_diffusion_pipeline.hpp             | 13 +++++------
 src/python/py_utils.cpp                       |  2 +-
 tools/llm_bench/llm_bench_utils/ov_utils.py   |  2 +-
 8 files changed, 31 insertions(+), 45 deletions(-)

diff --git a/samples/cpp/image_generation/README.md b/samples/cpp/image_generation/README.md
index 795bea8999..8a5cc5aa19 100644
--- a/samples/cpp/image_generation/README.md
+++ b/samples/cpp/image_generation/README.md
@@ -52,9 +52,9 @@ Please find the template of the callback usage below.
 ```cpp
 ov::genai::Text2ImagePipeline pipe(models_path, device);
 
-auto callback = [&](size_t step, ov::Tensor& intermediate_res) -> bool {
-   std::cout << "Image generation step: " << step << std::endl;
-   ov::Tensor img = pipe.decode(intermediate_res); // get intermediate image tensor
+auto callback = [&](size_t step, size_t num_steps, ov::Tensor& latent) -> bool {
+   std::cout << "Image generation step: " << step << " / " << num_steps << std::endl;
+   ov::Tensor img = pipe.decode(latent); // get intermediate image tensor
    if (your_condition) // return true if you want to interrupt image generation
       return true;
    return false;
diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md
index 4abe45b2b4..321f3f6d05 100644
--- a/samples/python/image_generation/README.md
+++ b/samples/python/image_generation/README.md
@@ -52,9 +52,9 @@ Please find the template of the callback usage below.
 ```python
 pipe = openvino_genai.Text2ImagePipeline(model_dir, device)
 
-def callback(step, intermediate_res):
-   print("Image generation step: ", step)
-   image_tensor = pipe.decode(intermediate_res) # get intermediate image tensor
+def callback(step, num_steps, latent):
+   print(f"Image generation step: {step} / {num_steps}")
+   image_tensor = pipe.decode(latent) # get intermediate image tensor
    if your_condition: # return True if you want to interrupt image generation
       return True
    return False
diff --git a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp
index 0b749ecd83..50e576466d 100644
--- a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp
+++ b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp
@@ -216,11 +216,11 @@ static constexpr ov::Property max_sequence_length{"max_sequence_length"};
 
 /**
  * User callback for image generation pipelines, which is called within a pipeline with the following arguments:
- * - Total number of inference steps. Note, that in case of 'strength' parameter, the number of inference steps is reduced linearly
  * - Current inference step
+ * - Total number of inference steps. Note, that in case of 'strength' parameter, the number of inference steps is reduced linearly
  * - Tensor representing current latent. Such latent can be converted to human-readable representation via image generation pipeline 'decode()' method
  */
-static constexpr ov::Property> callback{"callback"};
+static constexpr ov::Property> callback{"callback"};
 
 /**
  * Function to pass 'ImageGenerationConfig' as property to 'generate()' call.
diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp
index 4cdac5bb1a..ac82bd0cab 100644
--- a/src/cpp/src/image_generation/flux_pipeline.hpp
+++ b/src/cpp/src/image_generation/flux_pipeline.hpp
@@ -326,9 +326,11 @@ class FluxPipeline : public DiffusionPipeline {
             m_custom_generation_config.strength = 1.0f;
         }
 
-        if (!initial_image) {
-            // in case of typical text to image generation, we need to ignore 'strength'
-            m_custom_generation_config.strength = 1.0f;
+        // Use callback if defined
+        std::function callback = nullptr;
+        auto callback_iter = properties.find(ov::genai::callback.name());
+        if (callback_iter != properties.end()) {
+            callback = callback_iter->second.as>();
         }
 
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
@@ -355,14 +357,6 @@ class FluxPipeline : public DiffusionPipeline {
         m_scheduler->set_timesteps_with_sigma(sigmas, mu);
         std::vector timesteps = m_scheduler->get_float_timesteps();
 
-        // Use callback if defined
-        std::function callback;
-        auto callback_iter = properties.find(ov::genai::callback.name());
-        bool do_callback = callback_iter != properties.end();
-        if (do_callback) {
-            callback = callback_iter->second.as>();
-        }
-
         // 6. Denoising loop
         ov::Tensor timestep(ov::element::f32, {1});
         float* timestep_data = timestep.data();
@@ -375,10 +369,8 @@ class FluxPipeline : public DiffusionPipeline {
             auto scheduler_step_result = m_scheduler->step(noise_pred_tensor, latents, inference_step, m_custom_generation_config.generator);
             latents = scheduler_step_result["latent"];
 
-            if (do_callback) {
-                if (callback(inference_step, latents)) {
-                    return ov::Tensor(ov::element::u8, {});
-                }
+            if (callback && callback(inference_step, timesteps.size(), latents)) {
+                return ov::Tensor(ov::element::u8, {});
             }
         }
 
diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
index 4e9a70ec2d..3cdaa409d1 100644
--- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
+++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
@@ -431,6 +431,13 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
             generation_config.strength = 1.0f;
         }
 
+        // Use callback if defined
+        std::function callback = nullptr;
+        auto callback_iter = properties.find(ov::genai::callback.name());
+        if (callback_iter != properties.end()) {
+            callback = callback_iter->second.as>();
+        }
+
         const auto& transformer_config = m_transformer->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
         const size_t batch_size_multiplier = do_classifier_free_guidance(generation_config.guidance_scale)
@@ -467,14 +474,6 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
         // 6. Denoising loop
         ov::Tensor noisy_residual_tensor(ov::element::f32, {});
 
-        // Use callback if defined
-        std::function callback;
-        auto callback_iter = properties.find(ov::genai::callback.name());
-        bool do_callback = callback_iter != properties.end();
-        if (do_callback) {
-            callback = callback_iter->second.as>();
-        }
-
         for (size_t inference_step = 0; inference_step < timesteps.size(); ++inference_step) {
             // concat the same latent twice along a batch dimension in case of CFG
             if (batch_size_multiplier > 1) {
@@ -510,10 +509,8 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
             auto scheduler_step_result = m_scheduler->step(noisy_residual_tensor, latent, inference_step, generation_config.generator);
             latent = scheduler_step_result["latent"];
 
-            if (do_callback) {
-                if (callback(inference_step, latent)) {
-                    return ov::Tensor(ov::element::u8, {});
-                }
+            if (callback && callback(inference_step, timesteps.size(), latent)) {
+                return ov::Tensor(ov::element::u8, {});
             }
         }
 
diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
index 9dbdbac088..c53c9b7d25 100644
--- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
+++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
@@ -306,11 +306,10 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         }
 
         // use callback if defined
-        std::function callback;
+        std::function callback = nullptr;
         auto callback_iter = properties.find(ov::genai::callback.name());
-        bool do_callback = callback_iter != properties.end();
-        if (do_callback) {
-            callback = callback_iter->second.as>();
+        if (callback_iter != properties.end()) {
+            callback = callback_iter->second.as>();
         }
 
         // Stable Diffusion pipeline
@@ -400,10 +399,8 @@ class StableDiffusionPipeline : public DiffusionPipeline {
             const auto it = scheduler_step_result.find("denoised");
             denoised = it != scheduler_step_result.end() ? it->second : latent;
 
-            if (do_callback) {
-                if (callback(inference_step, denoised)) {
-                    return ov::Tensor(ov::element::u8, {});
-                }
+            if (callback && callback(inference_step, timesteps.size(), denoised)) {
+                return ov::Tensor(ov::element::u8, {});
             }
         }
 
diff --git a/src/python/py_utils.cpp b/src/python/py_utils.cpp
index 9d33318f0a..45a0c46174 100644
--- a/src/python/py_utils.cpp
+++ b/src/python/py_utils.cpp
@@ -280,7 +280,7 @@ ov::Any py_object_to_any(const py::object& py_obj, std::string property_name) {
     } else if (py::isinstance(py_obj)) {
         return py::cast>(py_obj);
     } else if (py::isinstance(py_obj) && property_name == "callback") {
-        return py::cast>(py_obj);
+        return py::cast>(py_obj);
     } else if ((py::isinstance(py_obj) || py::isinstance(py_obj) || py::isinstance(py_obj)) && property_name == "streamer") {
         auto streamer = py::cast(py_obj);
         return ov::genai::streamer(pystreamer_to_streamer(streamer)).second;
diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py
index c5fa422824..8a28fbe355 100644
--- a/tools/llm_bench/llm_bench_utils/ov_utils.py
+++ b/tools/llm_bench/llm_bench_utils/ov_utils.py
@@ -366,7 +366,7 @@ def __init__(self) -> types.NoneType:
             self.start_time = time.perf_counter()
             self.duration = -1
 
-        def __call__(self, step, latents):
+        def __call__(self, step, num_steps, latents):
             self.iteration_time.append(time.perf_counter() - self.start_time)
             self.start_time = time.perf_counter()
             return False

From d189eb7541a61a41581dd21361db3aa3884d211b Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Fri, 13 Dec 2024 15:46:38 +0400
Subject: [PATCH 070/113] GHA: use preconverted LCM model (#1380)

---
 .github/workflows/lcm_dreamshaper_cpp.yml | 24 +++++++++++------------
 1 file changed, 12 insertions(+), 12 deletions(-)

diff --git a/.github/workflows/lcm_dreamshaper_cpp.yml b/.github/workflows/lcm_dreamshaper_cpp.yml
index b3a36761e1..258184e9e4 100644
--- a/.github/workflows/lcm_dreamshaper_cpp.yml
+++ b/.github/workflows/lcm_dreamshaper_cpp.yml
@@ -62,35 +62,35 @@ jobs:
           python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
           python -m pip install -r ./samples/requirements.txt
 
-      - name: Download and convert models and tokenizer
+      - name: Download models
         run: |
           source openvino_lcm_cpp/bin/activate
-          optimum-cli export openvino --model SimianLuo/LCM_Dreamshaper_v7 --task stable-diffusion --weight-format fp16 models/lcm_dreamshaper_v7/FP16
+          huggingface-cli download OpenVINO/LCM_Dreamshaper_v7-int8-ov --local-dir models/lcm_dreamshaper_v7
           wget -O ./image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png
           wget -O ./mask_image.png https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png
 
       - name: Run heterogeneous_stable_diffusion
         run: |
           source ${{ env.OV_INSTALL_DIR }}/setupvars.sh
-          ${{ env.build_dir }}/samples/cpp/image_generation/heterogeneous_stable_diffusion ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York  with tall buildings at dusk golden hour cinematic lighting"
+          ${{ env.build_dir }}/samples/cpp/image_generation/heterogeneous_stable_diffusion ./models/lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York  with tall buildings at dusk golden hour cinematic lighting"
 
       - name: Run heterogeneous_stable_diffusion.py
         run: |
           source openvino_lcm_cpp/bin/activate
           source ./ov/setupvars.sh
-          python ./samples/python/image_generation/heterogeneous_stable_diffusion.py ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
+          python ./samples/python/image_generation/heterogeneous_stable_diffusion.py ./models/lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
         env:
           PYTHONPATH: ${{ env.build_dir }}
 
       - name: Run image2image
         run: |
           source ./ov/setupvars.sh
-          ${{ env.build_dir }}/samples/cpp/image_generation/image2image ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png
+          ${{ env.build_dir }}/samples/cpp/image_generation/image2image ./models/lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png
 
       - name: Run inpainting
         run: |
           source ./ov/setupvars.sh
-          ${{ env.build_dir }}/samples/cpp/image_generation/inpainting ./models/lcm_dreamshaper_v7/FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png ./mask_image.png
+          ${{ env.build_dir }}/samples/cpp/image_generation/inpainting ./models/lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" ./image.png ./mask_image.png
 
   lcm_dreamshaper_v7_cpp-windows:
     runs-on: windows-2019
@@ -134,24 +134,24 @@ jobs:
           python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
           python -m pip install -r ./samples/requirements.txt
 
-      - name: Download and convert models and tokenizer
+      - name: Download models
         run: |
           . "./openvino_lcm_cpp/Scripts/Activate.ps1"
-          optimum-cli export openvino --model SimianLuo/LCM_Dreamshaper_v7 --task stable-diffusion --weight-format fp16 models/lcm_dreamshaper_v7/FP16
+          huggingface-cli download OpenVINO/LCM_Dreamshaper_v7-int8-ov --local-dir models/lcm_dreamshaper_v7
           Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png' -OutFile 'image.png'
           Invoke-WebRequest -Uri 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png' -OutFile 'mask_image.png'
 
       - name: Run heterogeneous_stable_diffusion
         run: >
           . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1"
-          & "${{ env.build_dir }}/samples/cpp/image_generation/Release/heterogeneous_stable_diffusion.exe ./models/lcm_dreamshaper_v7/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'"
+          & "${{ env.build_dir }}/samples/cpp/image_generation/Release/heterogeneous_stable_diffusion.exe ./models/lcm_dreamshaper_v7 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting'"
 
       - name: Run heterogeneous_stable_diffusion.py
         run: |
           . "./openvino_lcm_cpp/Scripts/Activate.ps1"
           . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1"
           $env:Path += "${{ env.build_dir }}\openvino_genai"
-          python .\samples\python\image_generation\heterogeneous_stable_diffusion.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
+          python .\samples\python\image_generation\heterogeneous_stable_diffusion.py .\models\lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
         env:
           PYTHONPATH: ${{ env.build_dir }}
 
@@ -160,7 +160,7 @@ jobs:
           . "./openvino_lcm_cpp/Scripts/Activate.ps1"
           . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1"
           $env:Path += "${{ env.build_dir }}\openvino_genai"
-          python .\samples\python\image_generation\image2image.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png
+          python .\samples\python\image_generation\image2image.py .\models\lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png
         env:
           PYTHONPATH: ${{ env.build_dir }}
 
@@ -169,7 +169,7 @@ jobs:
           . "./openvino_lcm_cpp/Scripts/Activate.ps1"
           . "${{ env.OV_INSTALL_DIR }}/setupvars.ps1"
           $env:Path += "${{ env.build_dir }}\openvino_genai"
-          python .\samples\python\image_generation\inpainting.py .\models\lcm_dreamshaper_v7\FP16 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png .\mask_image.png
+          python .\samples\python\image_generation\inpainting.py .\models\lcm_dreamshaper_v7 "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting" .\image.png .\mask_image.png
         env:
           PYTHONPATH: ${{ env.build_dir }}
 

From 1b7a9e58433c8e78467db55549df8a1ab65b11b5 Mon Sep 17 00:00:00 2001
From: Mikhail Ryzhov 
Date: Fri, 13 Dec 2024 19:26:27 +0100
Subject: [PATCH 071/113] [GHA] Use the latest stable ov commit (#1385)

Temporary freeze OV commit until regression caused by
https://github.com/openvinotoolkit/openvino/commit/f1cba31319c3a2b150a801ea969bfe463041d5fc
is fixed
---
 .github/workflows/linux.yml | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml
index 96848e947c..18107aa203 100644
--- a/.github/workflows/linux.yml
+++ b/.github/workflows/linux.yml
@@ -53,7 +53,7 @@ jobs:
       with:
         platform: ubuntu22
         commit_packages_to_provide: wheels
-        revision: latest_available_commit
+        revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868
 
     - name: Clone docker tag from OpenVINO repo
       uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

From 1e9e2c09a7698fb84fea6984e7588ea8a718c842 Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Sat, 14 Dec 2024 00:47:09 +0400
Subject: [PATCH 072/113] [Image generation] Added conversion between pipelines
 (#1375)

Created constructors for image generation pipelines to share models
between pipelines, but generation configs are initialized as default
(because, text2image and image2image have different default values for
some parameters and cannot be shared as is)
---
 .../image_generation/image2image_pipeline.hpp | 25 +++------
 .../image_generation/inpainting_pipeline.hpp  | 11 ++++
 .../image_generation/text2image_pipeline.hpp  | 47 ++++++++--------
 .../src/image_generation/flux_pipeline.hpp    | 56 +++++++++++++------
 .../image_generation/image2image_pipeline.cpp | 10 ++++
 .../image_generation/inpainting_pipeline.cpp  | 17 +++++-
 .../image_generation/schedulers/scheduler.cpp |  1 -
 .../stable_diffusion_3_pipeline.hpp           | 54 ++++++++++++++----
 .../stable_diffusion_pipeline.hpp             | 39 ++++++++-----
 .../stable_diffusion_xl_pipeline.hpp          | 18 +++++-
 .../image_generation/text2image_pipeline.cpp  | 28 ++++++++++
 .../openvino_genai/py_openvino_genai.pyi      | 12 ++++
 src/python/py_image_generation_pipelines.cpp  | 40 ++++++++-----
 13 files changed, 256 insertions(+), 102 deletions(-)

diff --git a/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp
index a859b29c2e..ea02969c5e 100644
--- a/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp
+++ b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp
@@ -3,28 +3,11 @@
 
 #pragma once
 
-#include 
-#include 
-#include 
-#include 
-
-#include "openvino/core/any.hpp"
-#include "openvino/runtime/tensor.hpp"
-
-#include "openvino/genai/image_generation/scheduler.hpp"
-#include "openvino/genai/image_generation/generation_config.hpp"
-
-#include "openvino/genai/image_generation/clip_text_model.hpp"
-#include "openvino/genai/image_generation/clip_text_model_with_projection.hpp"
-#include "openvino/genai/image_generation/unet2d_condition_model.hpp"
-#include "openvino/genai/image_generation/autoencoder_kl.hpp"
+#include "openvino/genai/image_generation/inpainting_pipeline.hpp"
 
 namespace ov {
 namespace genai {
 
-// forward declaration
-class DiffusionPipeline;
-
 //
 // Image to image pipeline
 //
@@ -42,6 +25,8 @@ class OPENVINO_GENAI_EXPORTS Image2ImagePipeline {
                         Properties&&... properties)
         : Image2ImagePipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { }
 
+    Image2ImagePipeline(const InpaintingPipeline& pipe);
+
     // creates either LCM or SD pipeline from building blocks
     static Image2ImagePipeline stable_diffusion(
         const std::shared_ptr& scheduler_type,
@@ -99,6 +84,10 @@ class OPENVINO_GENAI_EXPORTS Image2ImagePipeline {
     std::shared_ptr m_impl;
 
     explicit Image2ImagePipeline(const std::shared_ptr& impl);
+
+    // to create other pipelines from image to image
+    friend class Text2ImagePipeline;
+    friend class InpaintingPipeline;
 };
 
 } // namespace genai
diff --git a/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp
index c970fa0e23..6eead673e4 100644
--- a/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp
+++ b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp
@@ -18,12 +18,17 @@
 #include "openvino/genai/image_generation/clip_text_model_with_projection.hpp"
 #include "openvino/genai/image_generation/unet2d_condition_model.hpp"
 #include "openvino/genai/image_generation/autoencoder_kl.hpp"
+#include "openvino/genai/image_generation/t5_encoder_model.hpp"
+#include "openvino/genai/image_generation/sd3_transformer_2d_model.hpp"
+#include "openvino/genai/image_generation/flux_transformer_2d_model.hpp"
 
 namespace ov {
 namespace genai {
 
 // forward declaration
 class DiffusionPipeline;
+class Text2ImagePipeline;
+class Image2ImagePipeline;
 
 //
 // Inpainting pipeline
@@ -42,6 +47,8 @@ class OPENVINO_GENAI_EXPORTS InpaintingPipeline {
                        Properties&&... properties)
         : InpaintingPipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { }
 
+    InpaintingPipeline(const Image2ImagePipeline& pipe);
+
     // creates either LCM or SD pipeline from building blocks
     static InpaintingPipeline stable_diffusion(
         const std::shared_ptr& scheduler_type,
@@ -100,6 +107,10 @@ class OPENVINO_GENAI_EXPORTS InpaintingPipeline {
     std::shared_ptr m_impl;
 
     explicit InpaintingPipeline(const std::shared_ptr& impl);
+
+    // to create other pipelines from inpainting
+    friend class Text2ImagePipeline;
+    friend class Image2ImagePipeline;
 };
 
 } // namespace genai
diff --git a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp
index b66ced748b..34b9d6e341 100644
--- a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp
+++ b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp
@@ -3,31 +3,11 @@
 
 #pragma once
 
-#include 
-#include 
-#include 
-#include 
-
-#include "openvino/core/any.hpp"
-#include "openvino/runtime/tensor.hpp"
-
-#include "openvino/genai/image_generation/scheduler.hpp"
-#include "openvino/genai/image_generation/generation_config.hpp"
-
-#include "openvino/genai/image_generation/clip_text_model.hpp"
-#include "openvino/genai/image_generation/clip_text_model_with_projection.hpp"
-#include "openvino/genai/image_generation/unet2d_condition_model.hpp"
-#include "openvino/genai/image_generation/sd3_transformer_2d_model.hpp"
-#include "openvino/genai/image_generation/autoencoder_kl.hpp"
-#include "openvino/genai/image_generation/t5_encoder_model.hpp"
-#include "openvino/genai/image_generation/flux_transformer_2d_model.hpp"
+#include "openvino/genai/image_generation/image2image_pipeline.hpp"
 
 namespace ov {
 namespace genai {
 
-// forward declaration
-class DiffusionPipeline;
-
 /**
  * Text to image pipelines which provides unified API to all supported models types.
  * Models specific aspects are hidden in image generation config, which includes multiple prompts support or
@@ -63,6 +43,20 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline {
                        Properties&&... properties)
         : Text2ImagePipeline(models_path, device, ov::AnyMap{std::forward(properties)...}) { }
 
+    /**
+     * Creates text to image pipeline based on image to image pipeline and shares models
+     * @param pipe Image to image pipeline to share models with
+     * @note Generation config is not shared with image to image pipeline and default one is created
+     */
+    Text2ImagePipeline(const Image2ImagePipeline& pipe);
+
+    /**
+     * Creates text to image pipeline based on inpainting pipeline and shares models
+     * @param pipe Inpainting pipeline to share models with
+     * @note Generation config is not shared with image to image pipeline and default one is created
+     */
+    Text2ImagePipeline(const InpaintingPipeline& pipe);
+
     /**
      * Creates Stable Diffusion pipeline from individual models
      * @param scheduler A scheduler used to denoise final image
@@ -178,6 +172,15 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline {
      * @param guidance_scale A guidance scale. Note, that it's important whether guidance_scale > 1, which affects whether negative prompts
      * are used or not. For example, all values > 1 are the same for reshape perspective and may vary in subsequent 'generate()' calls.
      * @note If pipeline has been already compiled, it cannot be reshaped and an exception is thrown.
+     * 
+     * Example how to reshape SD3 or Flux models for specific max sequence length:
+     * @code
+     *  ov::genai::Text2ImagePipeline pipe("/path");
+     *  ov::genai::ImageGenerationConfig default_config = pipe.get_generation_config();
+     *  default_config.max_sequence_length = 30;
+     *  pipe.set_generation_config(default_config);
+     *  pipe.reshape(1, 512, 512, default_config.guidance_scale); // reshape will bypass `max_sequence_length` to T5 encoder model
+     * @endcode
      */
     void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale);
 
@@ -200,7 +203,7 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline {
      * Generates image(s) based on prompt and other image generarion parameters
      * @param positive_prompt Prompt to generate image(s) from
      * @param properties Image generation parameters specified as properties. Values in 'properties' override default value for generation parameters.
-     * @return A tensor which has dimensions [num_images_per_prompt, height, width, 3]
+     * @returns A tensor which has dimensions [num_images_per_prompt, height, width, 3]
      */
     ov::Tensor generate(const std::string& positive_prompt, const ov::AnyMap& properties = {});
 
diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp
index ac82bd0cab..716ba6b61b 100644
--- a/src/cpp/src/image_generation/flux_pipeline.hpp
+++ b/src/cpp/src/image_generation/flux_pipeline.hpp
@@ -225,6 +225,15 @@ class FluxPipeline : public DiffusionPipeline {
         initialize_generation_config("FluxPipeline");
     }
 
+    FluxPipeline(PipelineType pipeline_type, const FluxPipeline& pipe) :
+        FluxPipeline(pipe) {
+        OPENVINO_ASSERT(!pipe.is_inpainting_model(), "Cannot create ",
+            pipeline_type == PipelineType::TEXT_2_IMAGE ? "'Text2ImagePipeline'" : "'Image2ImagePipeline'", " from InpaintingPipeline with inpainting model");
+
+        m_pipeline_type = pipeline_type;
+        initialize_generation_config("FluxPipeline");
+    }
+
     void reshape(const int num_images_per_prompt,
                  const int height,
                  const int width,
@@ -232,13 +241,6 @@ class FluxPipeline : public DiffusionPipeline {
         check_image_size(height, width);
 
         m_clip_text_encoder->reshape(1);
-
-        // TODO: max_sequence_length cannot be specified easily outside, only via:
-        //   Text2ImagePipeline pipe("/path");
-        //   ImageGenerationConfig default_config = pipe.get_generation_config();
-        //   default_config.max_sequence_length = 30;
-        //   pipe.set_generation_config(default_config);
-        //   pipe.reshape(1, 512, 512, default_config.guidance_scale);
         m_t5_text_encoder->reshape(1, m_generation_config.max_sequence_length);
         m_transformer->reshape(num_images_per_prompt, height, width, m_generation_config.max_sequence_length);
 
@@ -321,11 +323,6 @@ class FluxPipeline : public DiffusionPipeline {
         m_custom_generation_config = m_generation_config;
         m_custom_generation_config.update_generation_config(properties);
 
-        if (!initial_image) {
-            // in case of typical text to image generation, we need to ignore 'strength'
-            m_custom_generation_config.strength = 1.0f;
-        }
-
         // Use callback if defined
         std::function callback = nullptr;
         auto callback_iter = properties.find(ov::genai::callback.name());
@@ -337,9 +334,9 @@ class FluxPipeline : public DiffusionPipeline {
         const auto& transformer_config = m_transformer->get_config();
 
         if (m_custom_generation_config.height < 0)
-            m_custom_generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor;
+            compute_dim(m_custom_generation_config.height, initial_image, 1 /* assume NHWC */);
         if (m_custom_generation_config.width < 0)
-            m_custom_generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor;
+            compute_dim(m_custom_generation_config.width, initial_image, 2 /* assume NHWC */);
 
         check_inputs(m_custom_generation_config, initial_image);
 
@@ -387,6 +384,29 @@ class FluxPipeline : public DiffusionPipeline {
     }
 
 private:
+    bool is_inpainting_model() const {
+        assert(m_transformer != nullptr);
+        assert(m_vae != nullptr);
+        return m_transformer->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1);
+    }
+
+    void compute_dim(int64_t & generation_config_value, ov::Tensor initial_image, int dim_idx) {
+        const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
+        const auto& transformer_config = m_transformer->get_config();
+
+        // in case of image to image generation_config_value is just ignored and computed based on initial image
+        if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) {
+            OPENVINO_ASSERT(initial_image, "Initial image is empty for image to image pipeline");
+            ov::Shape shape = initial_image.get_shape();
+            int64_t dim_val = shape[dim_idx];
+
+            generation_config_value = dim_val - (dim_val % vae_scale_factor);
+        }
+
+        if (generation_config_value < 0)
+            generation_config_value = transformer_config.m_default_sample_size * vae_scale_factor;
+    }
+
     void initialize_generation_config(const std::string& class_name) override {
         assert(m_transformer != nullptr);
         assert(m_vae != nullptr);
@@ -394,8 +414,12 @@ class FluxPipeline : public DiffusionPipeline {
         const auto& transformer_config = m_transformer->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
 
-        m_generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor;
-        m_generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor;
+        m_generation_config = ImageGenerationConfig();
+
+        if (m_pipeline_type != PipelineType::IMAGE_2_IMAGE) {
+            m_generation_config.height = transformer_config.m_default_sample_size * vae_scale_factor;
+            m_generation_config.width = transformer_config.m_default_sample_size * vae_scale_factor;
+        }
 
         if (class_name == "FluxPipeline" || class_name == "FluxImg2ImgPipeline" || class_name == "FluxInpaintPipeline" ) {
             if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) {
diff --git a/src/cpp/src/image_generation/image2image_pipeline.cpp b/src/cpp/src/image_generation/image2image_pipeline.cpp
index 527b532b71..38ff5a0a4c 100644
--- a/src/cpp/src/image_generation/image2image_pipeline.cpp
+++ b/src/cpp/src/image_generation/image2image_pipeline.cpp
@@ -39,6 +39,16 @@ Image2ImagePipeline::Image2ImagePipeline(const std::filesystem::path& root_dir,
     }
 }
 
+Image2ImagePipeline::Image2ImagePipeline(const InpaintingPipeline& pipe) {
+    if (auto stable_diffusion_xl = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_xl != nullptr) {
+        m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, *stable_diffusion_xl);
+    } else if (auto stable_diffusion = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion != nullptr) {
+        m_impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, *stable_diffusion);
+    } else {
+        OPENVINO_ASSERT("Cannot convert specified InpaintingPipeline to Image2ImagePipeline");
+    }
+}
+
 Image2ImagePipeline::Image2ImagePipeline(const std::shared_ptr& impl)
     : m_impl(impl) {
     assert(m_impl != nullptr);
diff --git a/src/cpp/src/image_generation/inpainting_pipeline.cpp b/src/cpp/src/image_generation/inpainting_pipeline.cpp
index d3612c4964..a510be0a57 100644
--- a/src/cpp/src/image_generation/inpainting_pipeline.cpp
+++ b/src/cpp/src/image_generation/inpainting_pipeline.cpp
@@ -6,6 +6,7 @@
 #include 
 
 #include "openvino/genai/image_generation/inpainting_pipeline.hpp"
+#include "openvino/genai/image_generation/image2image_pipeline.hpp"
 
 #include "image_generation/stable_diffusion_pipeline.hpp"
 #include "image_generation/stable_diffusion_xl_pipeline.hpp"
@@ -43,6 +44,16 @@ InpaintingPipeline::InpaintingPipeline(const std::filesystem::path& root_dir, co
     }
 }
 
+InpaintingPipeline::InpaintingPipeline(const Image2ImagePipeline& pipe) {
+    if (auto stable_diffusion_xl = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_xl != nullptr) {
+        m_impl = std::make_shared(PipelineType::INPAINTING, *stable_diffusion_xl);
+    } else if (auto stable_diffusion = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion != nullptr) {
+        m_impl = std::make_shared(PipelineType::INPAINTING, *stable_diffusion);
+    } else {
+        OPENVINO_ASSERT("Cannot convert specified Image2ImagePipeline to InpaintingPipeline");
+    }
+}
+
 InpaintingPipeline::InpaintingPipeline(const std::shared_ptr& impl)
     : m_impl(impl) {
     assert(m_impl != nullptr);
@@ -53,7 +64,7 @@ InpaintingPipeline InpaintingPipeline::stable_diffusion(
     const CLIPTextModel& clip_text_model,
     const UNet2DConditionModel& unet,
     const AutoencoderKL& vae) {
-    auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae);
+    auto impl = std::make_shared(PipelineType::INPAINTING, clip_text_model, unet, vae);
 
     assert(scheduler != nullptr);
     impl->set_scheduler(scheduler);
@@ -66,7 +77,7 @@ InpaintingPipeline InpaintingPipeline::latent_consistency_model(
     const CLIPTextModel& clip_text_model,
     const UNet2DConditionModel& unet,
     const AutoencoderKL& vae) {
-    auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, unet, vae);
+    auto impl = std::make_shared(PipelineType::INPAINTING, clip_text_model, unet, vae);
 
     assert(scheduler != nullptr);
     impl->set_scheduler(scheduler);
@@ -80,7 +91,7 @@ InpaintingPipeline InpaintingPipeline::stable_diffusion_xl(
     const CLIPTextModelWithProjection& clip_text_model_with_projection,
     const UNet2DConditionModel& unet,
     const AutoencoderKL& vae) {
-    auto impl = std::make_shared(PipelineType::IMAGE_2_IMAGE, clip_text_model, clip_text_model_with_projection, unet, vae);
+    auto impl = std::make_shared(PipelineType::INPAINTING, clip_text_model, clip_text_model_with_projection, unet, vae);
 
     assert(scheduler != nullptr);
     impl->set_scheduler(scheduler);
diff --git a/src/cpp/src/image_generation/schedulers/scheduler.cpp b/src/cpp/src/image_generation/schedulers/scheduler.cpp
index 6ec31bbf6c..3a7556b6d9 100644
--- a/src/cpp/src/image_generation/schedulers/scheduler.cpp
+++ b/src/cpp/src/image_generation/schedulers/scheduler.cpp
@@ -29,7 +29,6 @@ std::shared_ptr Scheduler::from_config(const std::filesystem::path& s
 
     std::shared_ptr scheduler = nullptr;
     if (scheduler_type == Scheduler::Type::LCM) {
-        // TODO: do we need to pass RNG generator somehow to LCM?
         scheduler = std::make_shared(scheduler_config_path);
     } else if (scheduler_type == Scheduler::Type::LMS_DISCRETE) {
         scheduler = std::make_shared(scheduler_config_path);
diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
index 3cdaa409d1..18a3e0346f 100644
--- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
+++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp
@@ -218,6 +218,15 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
         initialize_generation_config("StableDiffusion3Pipeline");
     }
 
+    StableDiffusion3Pipeline(PipelineType pipeline_type, const StableDiffusion3Pipeline& pipe) :
+        StableDiffusion3Pipeline(pipe) {
+        OPENVINO_ASSERT(!pipe.is_inpainting_model(), "Cannot create ",
+            pipeline_type == PipelineType::TEXT_2_IMAGE ? "'Text2ImagePipeline'" : "'Image2ImagePipeline'", " from InpaintingPipeline with inpainting model");
+
+        m_pipeline_type = pipeline_type;
+        initialize_generation_config("StableDiffusion3Pipeline");
+    }
+
     void reshape(const int num_images_per_prompt,
                  const int height,
                  const int width,
@@ -426,11 +435,6 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
         ImageGenerationConfig generation_config = m_generation_config;
         generation_config.update_generation_config(properties);
 
-        if (!initial_image) {
-            // in case of typical text to image generation, we need to ignore 'strength'
-            generation_config.strength = 1.0f;
-        }
-
         // Use callback if defined
         std::function callback = nullptr;
         auto callback_iter = properties.find(ov::genai::callback.name());
@@ -440,14 +444,12 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
 
         const auto& transformer_config = m_transformer->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
-        const size_t batch_size_multiplier = do_classifier_free_guidance(generation_config.guidance_scale)
-                                                 ? 2
-                                                 : 1;  // Transformer accepts 2x batch in case of CFG
+        const size_t batch_size_multiplier = do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1;  // Transformer accepts 2x batch in case of CFG
 
         if (generation_config.height < 0)
-            generation_config.height = transformer_config.sample_size * vae_scale_factor;
+            compute_dim(generation_config.height, initial_image, 1 /* assume NHWC */);
         if (generation_config.width < 0)
-            generation_config.width = transformer_config.sample_size * vae_scale_factor;
+            compute_dim(generation_config.width, initial_image, 2 /* assume NHWC */);
 
         check_inputs(generation_config, initial_image);
 
@@ -522,6 +524,29 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
     }
 
 private:
+    bool is_inpainting_model() const {
+        assert(m_transformer != nullptr);
+        assert(m_vae != nullptr);
+        return m_transformer->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1);
+    }
+
+    void compute_dim(int64_t & generation_config_value, ov::Tensor initial_image, int dim_idx) {
+        const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
+        const auto& transformer_config = m_transformer->get_config();
+
+        // in case of image to image generation_config_value is just ignored and computed based on initial image
+        if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE) {
+            OPENVINO_ASSERT(initial_image, "Initial image is empty for image to image pipeline");
+            ov::Shape shape = initial_image.get_shape();
+            int64_t dim_val = shape[dim_idx];
+
+            generation_config_value = dim_val - (dim_val % vae_scale_factor);
+        }
+
+        if (generation_config_value < 0)
+            generation_config_value = transformer_config.sample_size * vae_scale_factor;
+    }
+
     bool do_classifier_free_guidance(float guidance_scale) const {
         return guidance_scale > 1.0;
     }
@@ -533,8 +558,13 @@ class StableDiffusion3Pipeline : public DiffusionPipeline {
         const auto& transformer_config = m_transformer->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
 
-        m_generation_config.height = transformer_config.sample_size * vae_scale_factor;
-        m_generation_config.width = transformer_config.sample_size * vae_scale_factor;
+        m_generation_config = ImageGenerationConfig();
+
+        // in case of image to image, the shape is computed based on initial image
+        if (m_pipeline_type != PipelineType::IMAGE_2_IMAGE) {
+            m_generation_config.height = transformer_config.sample_size * vae_scale_factor;
+            m_generation_config.width = transformer_config.sample_size * vae_scale_factor;
+        }
 
         if (class_name == "StableDiffusion3Pipeline" || class_name == "StableDiffusion3Img2ImgPipeline" || class_name == "StableDiffusion3InpaintPipeline") {
             m_generation_config.guidance_scale = 7.0f;
diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
index c53c9b7d25..4afbd3ac78 100644
--- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
+++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp
@@ -147,6 +147,18 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         initialize_generation_config(pipeline_name);
     }
 
+    StableDiffusionPipeline(PipelineType pipeline_type, const StableDiffusionPipeline& pipe) :
+        StableDiffusionPipeline(pipe) {
+        OPENVINO_ASSERT(!pipe.is_inpainting_model(), "Cannot create ",
+            pipeline_type == PipelineType::TEXT_2_IMAGE ? "'Text2ImagePipeline'" : "'Image2ImagePipeline'", " from InpaintingPipeline with inpainting model");
+
+        m_pipeline_type = pipeline_type;
+
+        const bool is_lcm = m_unet->get_config().time_cond_proj_dim > 0;
+        const char * const pipeline_name = is_lcm ? "LatentConsistencyModelPipeline" : "StableDiffusionPipeline";
+        initialize_generation_config(pipeline_name);
+    }
+
     void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale) override {
         check_image_size(height, width);
 
@@ -206,8 +218,7 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
         const bool is_inpainting = m_pipeline_type == PipelineType::INPAINTING,
             is_strength_max = is_inpainting && generation_config.strength == 1.0f,
-            is_inpainting_model = is_inpainting && m_unet->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1),
-            return_image_latent = is_inpainting && !is_inpainting_model;
+            return_image_latent = is_inpainting && !is_inpainting_model();
 
         ov::Shape latent_shape{generation_config.num_images_per_prompt, m_vae->get_config().latent_channels,
                                generation_config.height / vae_scale_factor, generation_config.width / vae_scale_factor};
@@ -254,7 +265,6 @@ class StableDiffusionPipeline : public DiffusionPipeline {
 
         const size_t batch_size_multiplier = m_unet->do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1;  // Unet accepts 2x batch in case of CFG
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
-        const bool is_inpainting_model = m_unet->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1);
         ov::Shape target_shape = processed_image.get_shape();
 
         ov::Tensor mask_condition = m_image_resizer->execute(mask_image, target_shape[2], target_shape[3]);
@@ -266,7 +276,7 @@ class StableDiffusionPipeline : public DiffusionPipeline {
 
         ov::Tensor masked_image_latent;
 
-        if (is_inpainting_model) {
+        if (is_inpainting_model()) {
             // create masked image
             ov::Tensor masked_image(ov::element::f32, processed_image.get_shape());
             const float * mask_condition_data = mask_condition.data();
@@ -300,11 +310,6 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         ImageGenerationConfig generation_config = m_generation_config;
         generation_config.update_generation_config(properties);
 
-        if (!initial_image) {
-            // in case of typical text to image generation, we need to ignore 'strength'
-            generation_config.strength = 1.0f;
-        }
-
         // use callback if defined
         std::function callback = nullptr;
         auto callback_iter = properties.find(ov::genai::callback.name());
@@ -318,12 +323,12 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         const auto& unet_config = m_unet->get_config();
         const size_t batch_size_multiplier = m_unet->do_classifier_free_guidance(generation_config.guidance_scale) ? 2 : 1;  // Unet accepts 2x batch in case of CFG
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
-        const bool is_inpainting_model = unet_config.in_channels == (m_vae->get_config().latent_channels * 2 + 1);
 
         if (generation_config.height < 0)
             compute_dim(generation_config.height, initial_image, 1 /* assume NHWC */);
         if (generation_config.width < 0)
             compute_dim(generation_config.width, initial_image, 2 /* assume NHWC */);
+
         check_inputs(generation_config, initial_image);
 
         set_lora_adapters(generation_config.adapters);
@@ -364,7 +369,7 @@ class StableDiffusionPipeline : public DiffusionPipeline {
 
             m_scheduler->scale_model_input(latent_cfg, inference_step);
 
-            ov::Tensor latent_model_input = is_inpainting_model ? numpy_utils::concat(numpy_utils::concat(latent_cfg, mask, 1), masked_image_latent, 1) : latent_cfg;
+            ov::Tensor latent_model_input = is_inpainting_model() ? numpy_utils::concat(numpy_utils::concat(latent_cfg, mask, 1), masked_image_latent, 1) : latent_cfg;
             ov::Tensor timestep(ov::element::i64, {1}, ×teps[inference_step]);
             ov::Tensor noise_pred_tensor = m_unet->infer(latent_model_input, timestep);
 
@@ -391,7 +396,7 @@ class StableDiffusionPipeline : public DiffusionPipeline {
             latent = scheduler_step_result["latent"];
 
             // in case of non-specialized inpainting model, we need manually mask current denoised latent and initial image latent
-            if (m_pipeline_type == PipelineType::INPAINTING && !is_inpainting_model) {
+            if (m_pipeline_type == PipelineType::INPAINTING && !is_inpainting_model()) {
                 blend_latents(image_latent, noise, mask, latent, inference_step);
             }
 
@@ -412,6 +417,12 @@ class StableDiffusionPipeline : public DiffusionPipeline {
     }
 
 protected:
+    bool is_inpainting_model() const {
+        assert(m_unet != nullptr);
+        assert(m_vae != nullptr);
+        return m_unet->get_config().in_channels == (m_vae->get_config().latent_channels * 2 + 1);
+    }
+
     void compute_dim(int64_t & generation_config_value, ov::Tensor initial_image, int dim_idx) {
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
         const auto& unet_config = m_unet->get_config();
@@ -435,13 +446,15 @@ class StableDiffusionPipeline : public DiffusionPipeline {
         const auto& unet_config = m_unet->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
 
+        m_generation_config = ImageGenerationConfig();
+
         // in case of image to image, the shape is computed based on initial image
         if (m_pipeline_type != PipelineType::IMAGE_2_IMAGE) {
             m_generation_config.height = unet_config.sample_size * vae_scale_factor;
             m_generation_config.width = unet_config.sample_size * vae_scale_factor;
         }
 
-        if (class_name == "StableDiffusionPipeline" || class_name == "StableDiffusionInpaintPipeline" || class_name == "StableDiffusionInpaintPipeline") {
+        if (class_name == "StableDiffusionPipeline" || class_name == "StableDiffusionImg2ImgPipeline" || class_name == "StableDiffusionInpaintPipeline") {
             m_generation_config.guidance_scale = 7.5f;
             m_generation_config.num_inference_steps = 50;
             m_generation_config.strength = m_pipeline_type == PipelineType::IMAGE_2_IMAGE ? 0.8f : 1.0f;
diff --git a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp
index 6913d901df..15f15219c2 100644
--- a/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp
+++ b/src/cpp/src/image_generation/stable_diffusion_xl_pipeline.hpp
@@ -116,6 +116,15 @@ class StableDiffusionXLPipeline : public StableDiffusionPipeline {
         m_force_zeros_for_empty_prompt = true;
     }
 
+    StableDiffusionXLPipeline(PipelineType pipeline_type, const StableDiffusionXLPipeline& pipe) :
+        StableDiffusionXLPipeline(pipe) {
+        OPENVINO_ASSERT(!pipe.is_inpainting_model(), "Cannot create ",
+            pipeline_type == PipelineType::TEXT_2_IMAGE ? "'Text2ImagePipeline'" : "'Image2ImagePipeline'", " from InpaintingPipeline with inpainting model");
+
+        m_pipeline_type = pipeline_type;
+        initialize_generation_config("StableDiffusionXLPipeline");
+    }
+
     void reshape(const int num_images_per_prompt, const int height, const int width, const float guidance_scale) override {
         check_image_size(height, width);
 
@@ -291,8 +300,13 @@ class StableDiffusionXLPipeline : public StableDiffusionPipeline {
         const auto& unet_config = m_unet->get_config();
         const size_t vae_scale_factor = m_vae->get_vae_scale_factor();
 
-        m_generation_config.height = unet_config.sample_size * vae_scale_factor;
-        m_generation_config.width = unet_config.sample_size * vae_scale_factor;
+        m_generation_config = ImageGenerationConfig();
+
+        // in case of image to image, the shape is computed based on initial image
+        if (m_pipeline_type != PipelineType::IMAGE_2_IMAGE) {
+            m_generation_config.height = unet_config.sample_size * vae_scale_factor;
+            m_generation_config.width = unet_config.sample_size * vae_scale_factor;
+        }
 
         if (class_name == "StableDiffusionXLPipeline" || class_name == "StableDiffusionXLImg2ImgPipeline" || class_name == "StableDiffusionXLInpaintPipeline") {
             if (m_pipeline_type == PipelineType::TEXT_2_IMAGE) {
diff --git a/src/cpp/src/image_generation/text2image_pipeline.cpp b/src/cpp/src/image_generation/text2image_pipeline.cpp
index 6ceb076f85..56b02a2e10 100644
--- a/src/cpp/src/image_generation/text2image_pipeline.cpp
+++ b/src/cpp/src/image_generation/text2image_pipeline.cpp
@@ -51,6 +51,34 @@ Text2ImagePipeline::Text2ImagePipeline(const std::filesystem::path& root_dir, co
     }
 }
 
+Text2ImagePipeline::Text2ImagePipeline(const Image2ImagePipeline& pipe) {
+    if (auto stable_diffusion_xl = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_xl != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion_xl);
+    } else if (auto stable_diffusion = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion);
+    } else if (auto stable_diffusion_3 = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_3 != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion_3);
+    } else if (auto flux = std::dynamic_pointer_cast(pipe.m_impl); flux != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *flux);
+    } else {
+        OPENVINO_ASSERT("Cannot convert specified Image2ImagePipeline to Text2ImagePipeline");
+    }
+}
+
+Text2ImagePipeline::Text2ImagePipeline(const InpaintingPipeline& pipe) {
+    if (auto stable_diffusion_xl = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_xl != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion_xl);
+    } else if (auto stable_diffusion = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion);
+    } else if (auto stable_diffusion_3 = std::dynamic_pointer_cast(pipe.m_impl); stable_diffusion_3 != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *stable_diffusion_3);
+    } else if (auto flux = std::dynamic_pointer_cast(pipe.m_impl); flux != nullptr) {
+        m_impl = std::make_shared(PipelineType::TEXT_2_IMAGE, *flux);
+    } else {
+        OPENVINO_ASSERT("Cannot convert specified InpaintingPipeline to Text2ImagePipeline");
+    }
+}
+
 Text2ImagePipeline::Text2ImagePipeline(const std::shared_ptr& impl)
     : m_impl(impl) {
     assert(m_impl != nullptr);
diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi
index 8ab0407ea7..829d4844e8 100644
--- a/src/python/openvino_genai/py_openvino_genai.pyi
+++ b/src/python/openvino_genai/py_openvino_genai.pyi
@@ -772,6 +772,9 @@ class Image2ImagePipeline:
                     device (str): Device to run the model on (e.g., CPU, GPU).
                     kwargs: Image2ImagePipeline properties
         """
+    @typing.overload
+    def __init__(self, pipe: InpaintingPipeline) -> None:
+        ...
     def compile(self, device: str, **kwargs) -> None:
         """
                         Compiles the model.
@@ -868,6 +871,9 @@ class InpaintingPipeline:
                     device (str): Device to run the model on (e.g., CPU, GPU).
                     kwargs: InpaintingPipeline properties
         """
+    @typing.overload
+    def __init__(self, pipe: Image2ImagePipeline) -> None:
+        ...
     def compile(self, device: str, **kwargs) -> None:
         """
                         Compiles the model.
@@ -1535,6 +1541,12 @@ class Text2ImagePipeline:
                     device (str): Device to run the model on (e.g., CPU, GPU).
                     kwargs: Text2ImagePipeline properties
         """
+    @typing.overload
+    def __init__(self, pipe: Image2ImagePipeline) -> None:
+        ...
+    @typing.overload
+    def __init__(self, pipe: InpaintingPipeline) -> None:
+        ...
     def compile(self, device: str, **kwargs) -> None:
         """
                         Compiles the model.
diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp
index 7739b88ff9..55be1708c1 100644
--- a/src/python/py_image_generation_pipelines.cpp
+++ b/src/python/py_image_generation_pipelines.cpp
@@ -85,9 +85,7 @@ void init_image_generation_pipelines(py::module_& m) {
         .def(py::init<>());
 
     py::class_>(m, "CppStdGenerator", "This class wraps std::mt19937 pseudo-random generator.")
-        .def(py::init([](
-            uint32_t seed
-        ) {
+        .def(py::init([](uint32_t seed) {
             return std::make_unique(seed);
         }), 
         py::arg("seed"))
@@ -140,9 +138,7 @@ void init_image_generation_pipelines(py::module_& m) {
         });
 
     auto text2image_pipeline = py::class_(m, "Text2ImagePipeline", "This class is used for generation with text-to-image models.")
-        .def(py::init([](
-            const std::filesystem::path& models_path
-        ) {
+        .def(py::init([](const std::filesystem::path& models_path) {
             ScopedVar env_manager(pyutils::ov_tokenizers_module_path());
             return std::make_unique(models_path);
         }),
@@ -151,7 +147,6 @@ void init_image_generation_pipelines(py::module_& m) {
             Text2ImagePipeline class constructor.
             models_path (os.PathLike): Path to the folder with exported model files.
         )")
-
         .def(py::init([](
             const std::filesystem::path& models_path,
             const std::string& device,
@@ -211,9 +206,7 @@ void init_image_generation_pipelines(py::module_& m) {
 
 
     auto image2image_pipeline = py::class_(m, "Image2ImagePipeline", "This class is used for generation with image-to-image models.")
-        .def(py::init([](
-            const std::filesystem::path& models_path
-        ) {
+        .def(py::init([](const std::filesystem::path& models_path) {
             ScopedVar env_manager(pyutils::ov_tokenizers_module_path());
             return std::make_unique(models_path);
         }),
@@ -222,7 +215,6 @@ void init_image_generation_pipelines(py::module_& m) {
             Image2ImagePipeline class constructor.
             models_path (os.PathLike): Path to the folder with exported model files.
         )")
-
         .def(py::init([](
             const std::filesystem::path& models_path,
             const std::string& device,
@@ -277,9 +269,7 @@ void init_image_generation_pipelines(py::module_& m) {
 
 
     auto inpainting_pipeline = py::class_(m, "InpaintingPipeline", "This class is used for generation with inpainting models.")
-        .def(py::init([](
-            const std::filesystem::path& models_path
-        ) {
+        .def(py::init([](const std::filesystem::path& models_path) {
             ScopedVar env_manager(pyutils::ov_tokenizers_module_path());
             return std::make_unique(models_path);
         }),
@@ -288,7 +278,6 @@ void init_image_generation_pipelines(py::module_& m) {
             InpaintingPipeline class constructor.
             models_path (os.PathLike): Path to the folder with exported model files.
         )")
-
         .def(py::init([](
             const std::filesystem::path& models_path,
             const std::string& device,
@@ -342,4 +331,25 @@ void init_image_generation_pipelines(py::module_& m) {
             py::arg("mask_image"), "Mask image",
             (text2image_generate_docstring + std::string(" \n ")).c_str())
         .def("decode", &ov::genai::InpaintingPipeline::decode, py::arg("latent"));
+
+    // define constructors to create one pipeline from another
+    // NOTE: needs to be defined once all pipelines are created
+
+    text2image_pipeline
+        .def(py::init([](const ov::genai::Image2ImagePipeline& pipe) {
+            return std::make_unique(pipe);
+        }), py::arg("pipe"))
+        .def(py::init([](const ov::genai::InpaintingPipeline& pipe) {
+            return std::make_unique(pipe);
+        }), py::arg("pipe"));
+
+    image2image_pipeline
+        .def(py::init([](const ov::genai::InpaintingPipeline& pipe) {
+            return std::make_unique(pipe);
+        }), py::arg("pipe"));
+
+    inpainting_pipeline
+        .def(py::init([](const ov::genai::Image2ImagePipeline& pipe) {
+            return std::make_unique(pipe);
+        }), py::arg("pipe"));
 }

From 095840028c8f412ac7ed6e7c51c2f5b1fbf65853 Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Sat, 14 Dec 2024 00:48:08 +0400
Subject: [PATCH 073/113] Fixed typo in image generation readme (#1384)

Sync with C++ readme

https://github.com/openvinotoolkit/openvino.genai/blob/d189eb7541a61a41581dd21361db3aa3884d211b/samples/cpp/image_generation/README.md?plain=1#L121-L125
---
 samples/python/image_generation/README.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md
index 321f3f6d05..33da6bd43a 100644
--- a/samples/python/image_generation/README.md
+++ b/samples/python/image_generation/README.md
@@ -112,7 +112,7 @@ To run the sample, download initial image first:
 
 And then run the sample:
 
-`python image2mage.py ./dreamlike_anime_1_0_ov/FP16 'cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting' small_city.bmp`
+`python image2mage.py ./dreamlike_anime_1_0_ov/FP16 'cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k' cat.png`
 
 The resuling image is:
 

From 8045cf0d6340312aebaeb73cd927f9375079a8ee Mon Sep 17 00:00:00 2001
From: Ilya Lavrenov 
Date: Sat, 14 Dec 2024 00:50:55 +0400
Subject: [PATCH 074/113] GHA: use OpenVINO GenAI from PR in LLM bench / WWB
 tests (#1376)

- Install OpenVINO GenAI from source code in LLM bench pipeline
- Use OpenVINO provider to ensure OpenVINO GenAI is built on the same
platform as OpenVINO
- Changed `dreamlike-anime` to `OpenVINO/LCM_Dreamshaper_v7-int8-ov` to
save conversion time
---
 .github/workflows/linux.yml            |   2 -
 .github/workflows/llm_bench-python.yml | 265 +++++++++++++++++--------
 2 files changed, 180 insertions(+), 87 deletions(-)

diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml
index 18107aa203..8d596aed56 100644
--- a/.github/workflows/linux.yml
+++ b/.github/workflows/linux.yml
@@ -34,7 +34,6 @@ jobs:
       status: ${{ steps.openvino_download.outcome }}
       ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }}
       ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }}
-      ov_version: ${{ steps.openvino_download.outputs.ov_version }}
       docker_tag: ${{ steps.get_docker_tag.outputs.docker_tag }}
     timeout-minutes: 10
     defaults:
@@ -147,7 +146,6 @@ jobs:
       OV_INSTALL_DIR: ${{ github.workspace }}/ov
       INSTALL_DIR: ${{ github.workspace }}/install
       WHEELS_DIR: ${{ github.workspace }}/install/wheels
-      BUILD_DIR: ${{ github.workspace }}/build
       SRC_DIR: ${{ github.workspace }}/src
 
     steps:
diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml
index 2c8f6a358a..f0df824efa 100644
--- a/.github/workflows/llm_bench-python.yml
+++ b/.github/workflows/llm_bench-python.yml
@@ -19,105 +19,200 @@ concurrency:
   group: ${{ github.event_name == 'push' && github.run_id || github.ref }}-llm-bench-python
   cancel-in-progress: true
 
-env:
-  LLM_BENCH_PYPATH: tools/llm_bench
-  WWB_PATH: tools/who_what_benchmark
-
 jobs:
+  openvino_download:
+    name: Download OpenVINO
+    outputs:
+      status: ${{ steps.openvino_download.outcome }}
+      ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }}
+      ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }}
+      ov_version: ${{ steps.openvino_download.outputs.ov_version }}
+      docker_tag: ${{ steps.get_docker_tag.outputs.docker_tag }}
+    timeout-minutes: 10
+    defaults:
+      run:
+        shell: bash
+    runs-on: aks-linux-2-cores-8gb
+    container:
+      image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0'
+      volumes: 
+        - /mount:/mount
+        - ${{ github.workspace }}:${{ github.workspace }}
+
+    steps:
+    - uses: openvinotoolkit/openvino/.github/actions/openvino_provider@master
+      id: openvino_download
+      with:
+        platform: ubuntu22
+        commit_packages_to_provide: wheels
+        revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868
+
+    - name: Clone docker tag from OpenVINO repo
+      uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
+      with:
+        repository: 'openvinotoolkit/openvino'
+        path: 'openvino'
+        ref: ${{ env.OV_BRANCH }}
+        sparse-checkout: |
+          .github/dockerfiles/docker_tag
+
+    - name: Save docker tag to output
+      id: get_docker_tag
+      run: |
+        docker_tag=$(cat openvino/.github/dockerfiles/docker_tag)
+        echo "docker_tag=$docker_tag" >> $GITHUB_OUTPUT
+
   build:
-    runs-on: ubuntu-latest
+    defaults:
+      run:
+        shell: bash
+    runs-on: ubuntu-22.04
     strategy:
       fail-fast: false
       matrix:
-        python-version: ["3.10"]
+        python-version: ["3.11"]
+    needs: [ openvino_download ]
+    env:
+      OV_INSTALL_DIR: ${{ github.workspace }}/ov
+      SRC_DIR: ${{ github.workspace }}
+      LLM_BENCH_PYPATH: ${{ github.workspace }}/tools/llm_bench
+      WWB_PATH: ${{ github.workspace }}/tools/who_what_benchmark
+
     steps:
-    - uses: actions/checkout@v4
-    - name: Set up Python ${{ matrix.python-version }}
-      uses: actions/setup-python@v3
-      with:
-        python-version: ${{ matrix.python-version }}
-    - name: Install dependencies
-      run: |
-        python -m pip install --upgrade pip
-        python -m pip install flake8 pytest black
-        GIT_CLONE_PROTECTION_ACTIVE=false pip install -r ${{ env.LLM_BENCH_PYPATH }}/requirements.txt
-        python -m pip install -U --pre openvino openvino-tokenizers openvino-genai --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
-    - name: Lint with flake8
-      run: |
-        # stop the build if there are Python syntax errors or undefined names
-        python -m flake8 ${{ env.LLM_BENCH_PYPATH }} --config=${{ env.LLM_BENCH_PYPATH }}/setup.cfg
-        python -m flake8 ${{ env.WWB_PATH }} --config=${{ env.WWB_PATH }}/setup.cfg
-    - name: Create code style diff for samples
-      if: failure()
-      run: |
-        python -m black -l 160 -S ${{ env.LLM_BENCH_PYPATH }}/
-        git diff > llm.bench_diff.diff
-    - uses: actions/upload-artifact@v3
-      if: failure()
-      with:
-        name: llm.bench_diff
-        path: llm.bench_diff.diff
-    - name: Test native pytorch model on Linux
-      run: |
-        git clone --depth 1 https://huggingface.co/katuni4ka/tiny-random-qwen
-        python ./tools/llm_bench/benchmark.py -m tiny-random-qwen -d cpu -n 1 -f pt
-      env:
-        GIT_LFS_SKIP_SMUDGE: 0
-    - name: Test tiny-random-baichuan2 on Linux Optimum Intel
-      run: |
-        optimum-cli export openvino --model katuni4ka/tiny-random-baichuan2 --trust-remote-code --weight-format fp16 ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 --optimum
-    - name: Test tiny-stable-diffusion on Linux Optimum Intel
-      run: |
-        optimum-cli export openvino --model segmind/tiny-sd --trust-remote-code --weight-format fp16 ./ov_models/tiny-sd/pytorch/dldt/FP16/
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-sd/pytorch/dldt/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --optimum
-    - name: Test dreamlike-anime on Linux with GenAI
-      run: |
-        optimum-cli export openvino --model dreamlike-art/dreamlike-anime-1.0 --task stable-diffusion --weight-format fp16 ov_models/dreamlike-art-dreamlike-anime-1.0/FP16
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1
-    - name: Test dreamlike-anime on Linux with GenAI and LoRA
-      run: |
-        wget -O ./ov_models/soulcard.safetensors https://civitai.com/api/download/models/72591
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7
-    - name: Test TinyLlama-1.1B-Chat-v1.0 in Speculative Deconding mode on Linux
-      run: |
-        optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format fp16 ov_models/TinyLlama-1.1B-Chat-v1.0/FP16
-        optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format int8 ov_models/TinyLlama-1.1B-Chat-v1.0/INT8
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1  --assistant_confidence_threshold 0.4
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1  --num_assistant_tokens 5
-    - name: Test whisper-tiny on Linux
-      run: |
-        GIT_LFS_SKIP_SMUDGE=1 git clone --depth 1 --branch main --single-branch https://huggingface.co/datasets/facebook/multilingual_librispeech
-        cd multilingual_librispeech
-        git lfs pull -I /data/mls_polish/train/audio/3283_1447_000.tar.gz
-        mkdir data/mls_polish/train/audio/3283_1447_000
-        tar zxvf data/mls_polish/train/audio/3283_1447_000.tar.gz -C data/mls_polish/train/audio/3283_1447_000/
-        cd ..
-        optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ./ov_models/whisper-tiny
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --optimum
-        python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1
-    - name: WWB Tests
-      run: |
-        pip install git+https://github.com/huggingface/optimum-intel.git
-        GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }}
-        python -m pytest -v ${{ env.WWB_PATH }}/tests
+      - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
+        with:
+          submodules: recursive
+      - name: Set up Python ${{ matrix.python-version }}
+        uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
+        with:
+          python-version: ${{ matrix.python-version }}
+      - name: Download OpenVINO package
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
+        with:
+          name: ${{ needs.openvino_download.outputs.ov_artifact_name }}
+          path: ${{ env.OV_INSTALL_DIR }}
+          merge-multiple: true
+      - name: Install dependencies
+        run: |
+          python -m pip install --upgrade pip
+          python -m pip install flake8 pytest black
+          python -m pip install ${{ env.SRC_DIR }}/thirdparty/openvino_tokenizers -v ${{ needs.openvino_download.outputs.ov_wheel_source }}
+          python -m pip install ${{ env.SRC_DIR }} -v ${{ needs.openvino_download.outputs.ov_wheel_source }}
+          GIT_CLONE_PROTECTION_ACTIVE=false pip install -r ${{ env.LLM_BENCH_PYPATH }}/requirements.txt ${{ needs.openvino_download.outputs.ov_wheel_source }}
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+        env:
+          CMAKE_BUILD_PARALLEL_LEVEL: 4
+      - name: Lint with flake8
+        run: |
+          # stop the build if there are Python syntax errors or undefined names
+          python -m flake8 ${{ env.LLM_BENCH_PYPATH }} --config=${{ env.LLM_BENCH_PYPATH }}/setup.cfg
+          python -m flake8 ${{ env.WWB_PATH }} --config=${{ env.WWB_PATH }}/setup.cfg
+      - name: Create code style diff for samples
+        if: failure()
+        run: |
+          python -m black -l 160 -S ${{ env.LLM_BENCH_PYPATH }}/
+          git diff > llm.bench_diff.diff
+      - uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
+        if: failure()
+        with:
+          name: llm.bench_diff
+          path: llm.bench_diff.diff
+      - name: Test native pytorch model on Linux
+        run: |
+          git clone --depth 1 https://huggingface.co/katuni4ka/tiny-random-qwen
+          python ./tools/llm_bench/benchmark.py -m tiny-random-qwen -d cpu -n 1 -f pt
+        env:
+          GIT_LFS_SKIP_SMUDGE: 0
+      - name: Test tiny-random-baichuan2 on Linux Optimum Intel
+        run: |
+          optimum-cli export openvino --model katuni4ka/tiny-random-baichuan2 --trust-remote-code --weight-format fp16 ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 --optimum
+      - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux Optimum Intel
+        run: |
+          huggingface-cli download OpenVINO/LCM_Dreamshaper_v7-int8-ov --local-dir ov_models/lcm_dreamshaper_v7
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --optimum
+      - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux with GenAI
+        run: |
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1
+      - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux with GenAI and LoRA
+        run: |
+          wget -O ./ov_models/soulcard.safetensors https://civitai.com/api/download/models/72591
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7
+      - name: Test TinyLlama-1.1B-Chat-v1.0 in Speculative Deconding mode on Linux
+        run: |
+          optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format fp16 ov_models/TinyLlama-1.1B-Chat-v1.0/FP16
+          optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format int8 ov_models/TinyLlama-1.1B-Chat-v1.0/INT8
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --assistant_confidence_threshold 0.4
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --num_assistant_tokens 5
+      - name: Test whisper-tiny on Linux
+        run: |
+          GIT_LFS_SKIP_SMUDGE=1 git clone --depth 1 --branch main --single-branch https://huggingface.co/datasets/facebook/multilingual_librispeech
+          cd multilingual_librispeech
+          git lfs pull -I /data/mls_polish/train/audio/3283_1447_000.tar.gz
+          mkdir data/mls_polish/train/audio/3283_1447_000
+          tar zxvf data/mls_polish/train/audio/3283_1447_000.tar.gz -C data/mls_polish/train/audio/3283_1447_000/
+          cd ..
+          optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ./ov_models/whisper-tiny
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --optimum
+          python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1
+      - name: WWB Tests
+        run: |
+          pip install git+https://github.com/huggingface/optimum-intel.git
+          GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }}
+          python -m pytest -v ${{ env.WWB_PATH }}/tests
+
   stateful:
-    runs-on: ubuntu-20.04
+    defaults:
+      run:
+        shell: bash
+    runs-on: ubuntu-22.04
+    needs: [ openvino_download ]
+    env:
+      OV_INSTALL_DIR: ${{ github.workspace }}/ov
+      SRC_DIR: ${{ github.workspace }}
+      LLM_BENCH_PYPATH: ${{ github.workspace }}/tools/llm_bench
+      WWB_PATH: ${{ github.workspace }}/tools/who_what_benchmark
+
     steps:
-      - uses: actions/checkout@v4
-      - uses: actions/setup-python@v4
+      - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
+        with:
+          submodules: recursive
+      - uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
+        with:
+          python-version: "3.11"
+      - name: Download OpenVINO package
+        uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8
         with:
-          python-version: "3.10"
+          name: ${{ needs.openvino_download.outputs.ov_artifact_name }}
+          path: ${{ env.OV_INSTALL_DIR }}
+          merge-multiple: true
       - name: Test stateful
         run: |
-          GIT_CLONE_PROTECTION_ACTIVE=false python -m pip install -r tools/llm_bench/requirements.txt
-          python -m pip uninstall --yes openvino
-          python -m pip install -U --pre openvino openvino-tokenizers openvino-genai --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
-          python tools/llm_bench/convert.py --model_id TinyLlama/TinyLlama-1.1B-Chat-v1.0 --output_dir . --stateful
-          grep beam_idx pytorch/dldt/FP32/openvino_model.xml
+          python -m pip install ${{ env.SRC_DIR }}/thirdparty/openvino_tokenizers -v ${{ needs.openvino_download.outputs.ov_wheel_source }}
+          python -m pip install ${{ env.SRC_DIR }} -v ${{ needs.openvino_download.outputs.ov_wheel_source }}
+          GIT_CLONE_PROTECTION_ACTIVE=false python -m pip install -r ${{ env.LLM_BENCH_PYPATH }}/requirements.txt ${{ needs.openvino_download.outputs.ov_wheel_source }}
+          python ${{ env.LLM_BENCH_PYPATH }}/convert.py --model_id TinyLlama/TinyLlama-1.1B-Chat-v1.0 --output_dir ${{ env.SRC_DIR }} --stateful
+          grep beam_idx ${{ env.SRC_DIR }}/pytorch/dldt/FP32/openvino_model.xml
+        working-directory: ${{ env.OV_INSTALL_DIR }}
+        env:
+          CMAKE_BUILD_PARALLEL_LEVEL: 4
       - name: WWB Tests
         run: |
           pip install pytest
           pip install git+https://github.com/huggingface/optimum-intel.git
           GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }}
           python -m pytest -v ${{ env.WWB_PATH }}/tests
+
+  Overall_Status:
+    name: ci/gha_overall_status_llm_bench
+    needs: [openvino_download, build, stateful]
+    if: ${{ always() }}
+    runs-on: ubuntu-latest
+    steps:
+      - name: Check status of all jobs
+        if: >-
+          ${{
+            contains(needs.*.result, 'failure') ||
+            contains(needs.*.result, 'cancelled')
+          }}
+        run: exit 1

From 669588df2534a3ba96f9589f3645269b4d1f88c9 Mon Sep 17 00:00:00 2001
From: Vladimir Zlobin 
Date: Sat, 14 Dec 2024 00:51:28 +0400
Subject: [PATCH 075/113] LLM Inference Guide -> Generative AI workflow (#1383)

---
 README.md                 | 10 +++++-----
 tools/llm_bench/README.md |  2 +-
 2 files changed, 6 insertions(+), 6 deletions(-)

diff --git a/README.md b/README.md
index c00971a4e3..4892c86f10 100644
--- a/README.md
+++ b/README.md
@@ -58,7 +58,7 @@ Continuous batching functionality is used within OpenVINO Model Server (OVMS) to
 ## Performing text generation 
 
-For more examples check out our [LLM Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) +For more examples check out our [Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) ### Converting and compressing text generation model from Hugging Face library @@ -103,7 +103,7 @@ See [here](https://openvinotoolkit.github.io/openvino_notebooks/?search=Create+a ## Performing visual language text generation
-For more examples check out our [LLM Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) +For more examples check out our [Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) ### Converting and compressing the model from Hugging Face library @@ -173,7 +173,7 @@ See [here](https://openvinotoolkit.github.io/openvino_notebooks/?search=Visual-l
-For more examples check out our [LLM Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) +For more examples check out our [Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) ### Converting and compressing image generation model from Hugging Face library @@ -335,7 +335,7 @@ See [here](https://openvinotoolkit.github.io/openvino_notebooks/?search=Text+to+ ## Speech-to-text processing using Whisper Pipeline
-For more examples check out our [LLM Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) +For more examples check out our [Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) NOTE: Whisper Pipeline requires preprocessing of audio input (to adjust sampling rate and normalize) @@ -397,7 +397,7 @@ See [here](https://openvinotoolkit.github.io/openvino_notebooks/?search=Automati ## Additional materials - [List of supported models](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/docs/SUPPORTED_MODELS.md) (NOTE: models can work, but were not tried yet) -- [OpenVINO LLM inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) +- [OpenVINO Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html) - [Optimum-intel and OpenVINO](https://huggingface.co/docs/optimum/intel/openvino/export) ## License diff --git a/tools/llm_bench/README.md b/tools/llm_bench/README.md index bcb7436189..d0ce53145d 100755 --- a/tools/llm_bench/README.md +++ b/tools/llm_bench/README.md @@ -32,7 +32,7 @@ huggingface-cli login The `optimum-cli` tool simplifies converting Hugging Face models to OpenVINO IR format. - Detailed documentation can be found in the [Optimum-Intel documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/export). - To learn more about weight compression, see the [NNCF Weight Compression Guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). -- For additional guidance on running inference with OpenVINO for LLMs, see the [OpenVINO LLM Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). +- For additional guidance on running inference with OpenVINO for LLMs, see the [OpenVINO Generative AI workflow](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). **Usage:** From c77f7c93f5f82cde4988a8ef1b3ca204d3d6873d Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Sat, 14 Dec 2024 02:38:32 +0400 Subject: [PATCH 076/113] GHA: use OpenVINO provider for SD (#1386) --- .github/workflows/llm_bench-python.yml | 20 ---- .../workflows/stable_diffusion_1_5_cpp.yml | 103 ++++++++++++++---- 2 files changed, 80 insertions(+), 43 deletions(-) diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index f0df824efa..8b022f27e0 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -27,7 +27,6 @@ jobs: ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }} ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }} ov_version: ${{ steps.openvino_download.outputs.ov_version }} - docker_tag: ${{ steps.get_docker_tag.outputs.docker_tag }} timeout-minutes: 10 defaults: run: @@ -47,21 +46,6 @@ jobs: commit_packages_to_provide: wheels revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 - - name: Clone docker tag from OpenVINO repo - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 - with: - repository: 'openvinotoolkit/openvino' - path: 'openvino' - ref: ${{ env.OV_BRANCH }} - sparse-checkout: | - .github/dockerfiles/docker_tag - - - name: Save docker tag to output - id: get_docker_tag - run: | - docker_tag=$(cat openvino/.github/dockerfiles/docker_tag) - echo "docker_tag=$docker_tag" >> $GITHUB_OUTPUT - build: defaults: run: @@ -100,8 +84,6 @@ jobs: python -m pip install ${{ env.SRC_DIR }} -v ${{ needs.openvino_download.outputs.ov_wheel_source }} GIT_CLONE_PROTECTION_ACTIVE=false pip install -r ${{ env.LLM_BENCH_PYPATH }}/requirements.txt ${{ needs.openvino_download.outputs.ov_wheel_source }} working-directory: ${{ env.OV_INSTALL_DIR }} - env: - CMAKE_BUILD_PARALLEL_LEVEL: 4 - name: Lint with flake8 run: | # stop the build if there are Python syntax errors or undefined names @@ -194,8 +176,6 @@ jobs: python ${{ env.LLM_BENCH_PYPATH }}/convert.py --model_id TinyLlama/TinyLlama-1.1B-Chat-v1.0 --output_dir ${{ env.SRC_DIR }} --stateful grep beam_idx ${{ env.SRC_DIR }}/pytorch/dldt/FP32/openvino_model.xml working-directory: ${{ env.OV_INSTALL_DIR }} - env: - CMAKE_BUILD_PARALLEL_LEVEL: 4 - name: WWB Tests run: | pip install pytest diff --git a/.github/workflows/stable_diffusion_1_5_cpp.yml b/.github/workflows/stable_diffusion_1_5_cpp.yml index b355cd4f09..497bfbff3e 100644 --- a/.github/workflows/stable_diffusion_1_5_cpp.yml +++ b/.github/workflows/stable_diffusion_1_5_cpp.yml @@ -17,29 +17,83 @@ concurrency: cancel-in-progress: true env: - PYTHON_VERSION: '3.10' - LINUX_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/l_openvino_toolkit_ubuntu20_2025.0.0.dev20241205_x86_64.tgz - WINDOWS_OV_ARCHIVE_URL: https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/2025.0.0-17539-6abe2e39391/w_openvino_toolkit_windows_2025.0.0.dev20241205_x86_64.zip + PYTHON_VERSION: '3.11' OV_INSTALL_DIR: ${{ github.workspace }}/ov jobs: + openvino_download_linux: + name: Download OpenVINO for Linux + outputs: + status: ${{ steps.openvino_download.outcome }} + ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }} + ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }} + ov_version: ${{ steps.openvino_download.outputs.ov_version }} + timeout-minutes: 10 + defaults: + run: + shell: bash + runs-on: aks-linux-2-cores-8gb + container: + image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0' + volumes: + - /mount:/mount + - ${{ github.workspace }}:${{ github.workspace }} + + steps: + - uses: openvinotoolkit/openvino/.github/actions/openvino_provider@master + id: openvino_download + with: + platform: ubuntu22 + commit_packages_to_provide: wheels + revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + + openvino_download_windows: + name: Download OpenVINO for Windows + outputs: + status: ${{ steps.openvino_download.outcome }} + ov_artifact_name: ${{ steps.openvino_download.outputs.ov_artifact_name }} + ov_wheel_source: ${{ steps.openvino_download.outputs.ov_wheel_source }} + ov_version: ${{ steps.openvino_download.outputs.ov_version }} + timeout-minutes: 10 + defaults: + run: + shell: bash + runs-on: aks-linux-2-cores-8gb + container: + image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0' + volumes: + - /mount:/mount + - ${{ github.workspace }}:${{ github.workspace }} + + steps: + - uses: openvinotoolkit/openvino/.github/actions/openvino_provider@master + id: openvino_download + with: + platform: windows + commit_packages_to_provide: wheels + revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + stable_diffusion_1_5_cpp-linux: - runs-on: ubuntu-20.04-8-cores + runs-on: ubuntu-22.04-8-cores + needs: [ openvino_download_linux ] defaults: run: shell: bash -l {0} env: build_dir: ${{ github.workspace }}//build + SRC_DIR: ${{ github.workspace }} + steps: - uses: actions/checkout@v4 with: submodules: recursive - - name: Download OpenVINO archive - run: | - wget ${{ env.LINUX_OV_ARCHIVE_URL}} --progress=bar:force:noscroll -O openvino_package.tar.gz - mkdir ${{ env.OV_INSTALL_DIR }} - tar -xzf openvino_package.tar.gz -C ${{ env.OV_INSTALL_DIR }} --strip-components=1 + - name: Download OpenVINO package + uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8 + with: + name: ${{ needs.openvino_download_linux.outputs.ov_artifact_name }} + path: ${{ env.OV_INSTALL_DIR }} + merge-multiple: true - name: Setup Python ${{ env.PYTHON_VERSION }} uses: actions/setup-python@v5 @@ -58,9 +112,10 @@ jobs: - name: Install python dependencies run: | - source openvino_sd_cpp/bin/activate - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly - python -m pip install -r ./samples/requirements.txt + source ${{ github.workspace }}/openvino_sd_cpp/bin/activate + python -m pip install ${{ env.SRC_DIR }}/thirdparty/openvino_tokenizers/[transformers] ${{ needs.openvino_download_linux.outputs.ov_wheel_source }} + python -m pip install -r ${{ env.SRC_DIR }}/samples/requirements.txt + working-directory: ${{ env.OV_INSTALL_DIR }} - name: Download and convert models and tokenizer run: | @@ -95,25 +150,26 @@ jobs: PYTHONPATH: ${{ env.build_dir }} stable_diffusion_1_5_cpp-windows: + needs: [ openvino_download_windows ] runs-on: windows-2019 defaults: run: shell: pwsh env: build_dir: ${{ github.workspace }}\build + SRC_DIR: ${{ github.workspace }} + steps: - uses: actions/checkout@v4 with: submodules: recursive - - name: Download OpenVINO archive - run: | - mkdir ${{ env.OV_INSTALL_DIR }} - pushd ${{ env.OV_INSTALL_DIR }} - Invoke-WebRequest "${{ env.WINDOWS_OV_ARCHIVE_URL}}" -OutFile "openvino_package.zip" - Expand-Archive openvino_package.zip -DestinationPath ./tmp - mv ./tmp/*/* . - popd + - name: Download OpenVINO package + uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 # v4.1.8 + with: + name: ${{ needs.openvino_download_windows.outputs.ov_artifact_name }} + path: ${{ env.OV_INSTALL_DIR }} + merge-multiple: true - name: Setup Python ${{ env.PYTHON_VERSION }} uses: actions/setup-python@v5 @@ -132,9 +188,10 @@ jobs: - name: Install python dependencies run: | - . "./openvino_sd_cpp/Scripts/Activate.ps1" - python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly - python -m pip install -r ./samples/requirements.txt + . "${{ github.workspace }}/openvino_sd_cpp/Scripts/Activate.ps1" + python -m pip install ${{ env.SRC_DIR }}/thirdparty/openvino_tokenizers/[transformers] ${{ needs.openvino_download_windows.outputs.ov_wheel_source }} + python -m pip install -r ${{ env.SRC_DIR }}/samples/requirements.txt + working-directory: ${{ env.OV_INSTALL_DIR }} - name: Download and convert models and tokenizer run: | From 4a7374bc1533466a159477760bf1cee1c1b10443 Mon Sep 17 00:00:00 2001 From: Dmitriy Pastushenkov Date: Mon, 16 Dec 2024 11:16:19 +0100 Subject: [PATCH 077/113] fix some typos in image2image sample readme (#1388) fix some typos in image2image sample readme --- samples/python/image_generation/README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md index 33da6bd43a..0ddf57d882 100644 --- a/samples/python/image_generation/README.md +++ b/samples/python/image_generation/README.md @@ -108,11 +108,11 @@ Also, `strength` parameter linearly affects a number of inferenece steps, becaus To run the sample, download initial image first: -`wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png` +`wget -O cat.png https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png` And then run the sample: -`python image2mage.py ./dreamlike_anime_1_0_ov/FP16 'cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k' cat.png` +`python image2image.py ./dreamlike_anime_1_0_ov/FP16 'cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k' cat.png` The resuling image is: From 8ce5eb389179ba82da6523f849944ea3dc8c93e0 Mon Sep 17 00:00:00 2001 From: Irina Efode Date: Mon, 16 Dec 2024 15:49:38 +0400 Subject: [PATCH 078/113] Update streaming in LM Encoding & CB (#1377) --- src/cpp/src/continuous_batching_impl.cpp | 8 +++--- src/cpp/src/lm_encoding.cpp | 25 +++++++++++-------- .../speculative_decoding_impl.cpp | 2 -- 3 files changed, 20 insertions(+), 15 deletions(-) diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index d27e8934dc..1e42f5b2d9 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -285,9 +285,11 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::generate(const std::vectorcan_read()) { std::unordered_map token = generations.at(0).get()->back(); - OPENVINO_ASSERT(1 == token.size()); - OPENVINO_ASSERT(1 == token.begin()->second.generated_ids.size()); - continue_generation = !streamer_ptr->put(token.begin()->second.generated_ids.at(0)); + for (const auto& gen_token : token.begin()->second.generated_ids) { + if (!streamer_ptr->put(gen_token)) { + break; + } + } } } diff --git a/src/cpp/src/lm_encoding.cpp b/src/cpp/src/lm_encoding.cpp index c76d9f7edf..3ab041fa58 100644 --- a/src/cpp/src/lm_encoding.cpp +++ b/src/cpp/src/lm_encoding.cpp @@ -125,6 +125,17 @@ std::pair get_lm_encoded_results( active_sequence_groups.end(), get_active_sequence_groups), active_sequence_groups.end()); + + auto stream_generated_tokens = [&streamer_ptr, &generations]() { + if (streamer_ptr && generations.at(0).get()->can_read()) { + std::unordered_map token = generations.at(0).get()->back(); + for (const auto& gen_token : token.begin()->second.generated_ids) { + if (!streamer_ptr->put(gen_token)) { + break; + } + } + } + }; while (active_sequence_groups.size() > 0) { size_t total_num_tokens = 0; @@ -202,13 +213,7 @@ std::pair get_lm_encoded_results( raw_perf_counters.m_new_token_times.emplace_back(infer_end); raw_perf_counters.m_batch_sizes.emplace_back(batch_size); - if (streamer_ptr) { - // stream data from first sequence - int64_t out_token = sequence_groups.at(0).get()->operator[](0)->get_generated_ids().back(); - if (streamer_ptr->put(out_token)) { - break; - } - } + stream_generated_tokens(); sampler_output = sampler.sample(active_sequence_groups, m_llm.get_tensor("logits")); @@ -218,9 +223,9 @@ std::pair get_lm_encoded_results( active_sequence_groups.end()); } + // to stream last token + stream_generated_tokens(); if (streamer_ptr) { - int64_t out_token = sequence_groups.at(0).get()->operator[](0)->get_generated_ids().back(); - streamer_ptr->put(out_token); streamer_ptr->end(); } @@ -246,4 +251,4 @@ std::pair get_lm_encoded_results( } } // namespace genai -} // namespace ov +} // namespace ov \ No newline at end of file diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index 2be67320a9..e4f3b1ad1f 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -232,8 +232,6 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::generate(const std::vector< continue; } std::unordered_map token = main_generations.at(0).get()->back(); - OPENVINO_ASSERT(1 <= token.size()); - OPENVINO_ASSERT(1 <= token.begin()->second.generated_ids.size()); for (const auto& gen_token : token.begin()->second.generated_ids) { continue_generation = !streamer_ptr->put(gen_token); if (!continue_generation) { From 9e9b409a871ac75fe9d515d6ae6d68d882350b35 Mon Sep 17 00:00:00 2001 From: Sofya Balandina Date: Mon, 16 Dec 2024 13:02:45 +0000 Subject: [PATCH 079/113] Use whole history in case of undetermined tokenization of sequence (#1254) Task: [CVS-157295](https://jira.devtools.intel.com/browse/CVS-157295) - fist commit is cherry-pick from https://github.com/openvinotoolkit/openvino.genai/pull/1268 and https://github.com/openvinotoolkit/openvino.genai/pull/1361 - next commit includes applying comments from https://github.com/openvinotoolkit/openvino.genai/pull/1268 and adding usage of kv cache for LLM --- src/cpp/src/llm_pipeline.cpp | 108 +++++++++++++++--- src/cpp/src/utils.cpp | 75 ++++++++++++ src/cpp/src/utils.hpp | 11 ++ .../src/visual_language/inputs_embedder.cpp | 73 +++++++++--- .../src/visual_language/inputs_embedder.hpp | 7 ++ src/cpp/src/visual_language/pipeline.cpp | 27 ++++- 6 files changed, 264 insertions(+), 37 deletions(-) diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 84f76730eb..f663b27dd9 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -36,13 +36,15 @@ std::pair beam_search( class StatefulLLMPipeline final : public LLMPipelineImplBase { public: ov::InferRequest m_model_runner; - bool is_chat_conversation = false; - bool m_is_cache_empty = true; + bool m_trust_encoded_history = true; std::optional m_selected_beam = std::nullopt; ChatHistory m_history; std::string m_templated_chat_history = {}; - TokenizedInputs m_tokenized_chat_history; + std::vector m_tokenized_chat_history; + ov::genai::utils::GenerationChatInputsType m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; + size_t m_to_remove_from_hist = 0; + size_t m_kv_cache_seq_length_axis = 2; StatefulLLMPipeline( const ov::InferRequest& request, @@ -77,6 +79,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { ov::Core core; auto [core_plugin_config, plugin_config] = ov::genai::utils::split_core_compile_config(config); utils::slice_matmul_statefull_model(model); + m_kv_cache_seq_length_axis = ov::genai::utils::get_seq_len_axis(model); if (auto filtered_plugin_config = extract_adapters_from_properties(plugin_config, &m_generation_config.adapters)) { m_generation_config.adapters->set_tensor_name_prefix("base_model.model.model."); @@ -102,8 +105,20 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { + if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::UNDEF) + m_chat_input_type = ov::genai::utils::GenerationChatInputsType::STRING; + + if (is_chat_conversation) + OPENVINO_ASSERT(m_chat_input_type != ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS, + "Chat doesn't support switching between input types. Please, continue using EncodedInputs or restart the chat."); + auto start_time = std::chrono::steady_clock::now(); GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; + // If eos_token_id was not provided, take value from default m_generation_config + if (config.eos_token_id == -1) + config.set_eos_token_id(m_generation_config.eos_token_id); + config.validate(); + TokenizedInputs encoded_input; if (auto input_vector = std::get_if>(&inputs)) { @@ -127,19 +142,51 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { auto new_templated_chat_history = m_tokenizer.apply_chat_template(m_history, add_generation_prompt); // Do not add special tokens in chat scenario to be aligned with HF. auto new_chat_tokens = m_tokenizer.encode(new_templated_chat_history, ov::genai::add_special_tokens(false)); - if (m_is_cache_empty) { + auto prev_chat_tokens = m_tokenizer.encode(m_templated_chat_history, ov::genai::add_special_tokens(false)); + + // some symbols combinations can be encoded by the tokenizer in different ways + // if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history + // so let's check it out, find the trusted part and use it in on the next step + size_t last_same_hist_token = 0; + if (!m_tokenized_chat_history.empty()) { + std::set stop_tokens = config.stop_token_ids; + last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens); + m_trust_encoded_history = last_same_hist_token == SIZE_MAX; + } + + if (m_tokenized_chat_history.empty()) { encoded_input = new_chat_tokens; + } else if (last_same_hist_token != SIZE_MAX) { + m_to_remove_from_hist = m_tokenized_chat_history.size() - last_same_hist_token; + + ov::Tensor new_tensor = ov::Tensor(new_chat_tokens.input_ids.get_element_type(), + {1, new_chat_tokens.input_ids.get_shape().at(1) - last_same_hist_token}, + new_chat_tokens.input_ids.data() + last_same_hist_token); + + ov::Tensor new_attention_mask(ov::element::i64, new_tensor.get_shape()); + std::fill_n(new_attention_mask.data(), new_tensor.get_shape()[1], 1); + + encoded_input.input_ids = ov::Tensor(new_chat_tokens.input_ids.get_element_type(), + {1, new_chat_tokens.input_ids.get_shape().at(1) - last_same_hist_token}); + new_tensor.copy_to(encoded_input.input_ids); + encoded_input.attention_mask = new_attention_mask; + + m_selected_beam = std::nullopt; } else { - auto prev_chat_tokens = m_tokenizer.encode(m_templated_chat_history, ov::genai::add_special_tokens(false)); encoded_input = utils::subtract_chat_tokenized_inputs(new_chat_tokens, prev_chat_tokens); } m_templated_chat_history = new_templated_chat_history; - m_tokenized_chat_history = new_chat_tokens; + m_tokenized_chat_history.clear(); + m_tokenized_chat_history.reserve(new_chat_tokens.input_ids.get_size()); + std::copy_n(new_chat_tokens.input_ids.data(), new_chat_tokens.input_ids.get_size(), + std::back_inserter(m_tokenized_chat_history)); + // TODO: Forbid LoRA config change if we are in the chat mode, because it requires regenerating the history with LoRA applied } else { encoded_input = m_tokenizer.encode(prompt); } } + auto encode_stop_time = std::chrono::steady_clock::now(); auto encoded_results = generate(encoded_input, config, streamer); @@ -188,6 +235,14 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { + if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::UNDEF) + m_chat_input_type = ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS; + + if (is_chat_conversation) + // if chat was run in StringInputs mode, but it was called EncodedInputs generate, last m_history entry will be with assistant role + OPENVINO_ASSERT(m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS || m_history.back()["role"] == "user", + "Chat doesn't support switching between input types. Please, continue using StringInputs or restart the chat."); + auto start_time = std::chrono::steady_clock::now(); ov::Tensor input_ids; ov::Tensor attention_mask; @@ -199,6 +254,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { attention_mask = data->attention_mask; } + if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS) + std::copy(input_ids.data(), input_ids.data() + input_ids.get_size(), std::back_inserter(m_tokenized_chat_history)); + GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; // If eos_token_id was not provided, take value from default m_generation_config @@ -230,16 +288,17 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { "(input_ids, attention_mask, position_ids, beam_idx) " "but you have '" + std::to_string(num_inputs) + "' inputs"); + ov::genai::utils::trim_kv_cache(m_model_runner, m_to_remove_from_hist, m_kv_cache_seq_length_axis, m_adapter_controller); size_t kv_cache_len = 0; ov::Tensor concatenated_attention_mask; - if (is_chat_conversation && !m_is_cache_empty) { + if (is_chat_conversation && !m_tokenized_chat_history.empty()) { OPENVINO_ASSERT(batch_size == 1, "continuation of generation is possible only for batch 1"); // If history is saved in KV cache, concatenate new attention_mask with the already existing. // Between subsequent runs attention_mask should not be modified. auto atten_mask_history = m_model_runner.get_tensor("attention_mask"); auto prompt_len = attention_mask.get_shape()[1]; - kv_cache_len = atten_mask_history.get_shape()[1]; + kv_cache_len = atten_mask_history.get_shape()[1] - m_to_remove_from_hist; ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, {batch_size, kv_cache_len + prompt_len}}; auto start_atten_hst = atten_mask_history.data() + kv_cache_len * (*m_selected_beam); @@ -263,6 +322,11 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { m_adapter_controller->apply(m_model_runner, config.adapters); } + if (is_chat_conversation && !m_trust_encoded_history) { + m_trust_encoded_history = true; + m_to_remove_from_hist = 0; + } + ov::genai::EncodedResults result; if (config.is_beam_search() && is_chat_conversation) { std::tie(result, m_selected_beam) = beam_search(m_model_runner, input_ids, concatenated_attention_mask, @@ -274,8 +338,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { for (size_t request_id = 0; request_id < batch_size; request_id++) { SequenceGroup::Ptr sequence_group; - if (is_chat_conversation && !m_is_cache_empty) { - sequence_group = std::make_shared(request_id, m_tokenized_chat_history.input_ids, config, block_size, enable_prefix_caching); + if (is_chat_conversation) { + ov::Tensor tokenized_chat_history = ov::Tensor(ov::element::i64, {1, m_tokenized_chat_history.size()}, m_tokenized_chat_history.data()); + sequence_group = std::make_shared(request_id, tokenized_chat_history, config, block_size, enable_prefix_caching); } else { size_t seq_len = input_ids.get_shape().at(1); size_t batch_offset = request_id * seq_len; @@ -294,12 +359,13 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { sampler, requests, position_ids, std::nullopt, m_selected_beam); } - if (!is_chat_conversation) { + if (is_chat_conversation) { + std::copy(result.tokens[0].begin(), result.tokens[0].end(), std::back_inserter(m_tokenized_chat_history)); + } else { reset_kv_state(); m_selected_beam = std::nullopt; - } else { - m_is_cache_empty = false; } + auto stop_time = std::chrono::steady_clock::now(); // If is called without tokenization then that stat will not be reported. @@ -313,12 +379,15 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { void start_chat(const std::string& system_message) override { is_chat_conversation = true; - m_selected_beam = std::nullopt; - if (!m_is_cache_empty) { + m_selected_beam = std::nullopt; + m_trust_encoded_history = true; + m_to_remove_from_hist = 0; + m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; + if (!m_tokenized_chat_history.empty()) { reset_kv_state(); - m_is_cache_empty = true; m_history = {}; m_templated_chat_history = ""; + m_tokenized_chat_history.clear(); } if (system_message.empty()) return; @@ -332,11 +401,14 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { void finish_chat() override { is_chat_conversation = false; m_selected_beam = std::nullopt; - if (!m_is_cache_empty) { + m_trust_encoded_history = true; + m_to_remove_from_hist = 0; + m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; + if (!m_tokenized_chat_history.empty()) { reset_kv_state(); - m_is_cache_empty = true; m_history.clear(); m_templated_chat_history.clear(); + m_tokenized_chat_history.clear(); } } }; diff --git a/src/cpp/src/utils.cpp b/src/cpp/src/utils.cpp index 337b0ab47e..3690920295 100644 --- a/src/cpp/src/utils.cpp +++ b/src/cpp/src/utils.cpp @@ -13,6 +13,8 @@ #include "openvino/op/tanh.hpp" #include "openvino/op/transpose.hpp" +#include "sampler.hpp" + namespace ov { namespace genai { namespace utils { @@ -306,6 +308,79 @@ ov::Core singleton_core() { return core; } +size_t get_first_history_difference(const ov::Tensor& encoded_history, const std::vector tokenized_history, std::set stop_tokens) { + size_t idx = 0; + auto encoded_history_data = encoded_history.data(); + while(idx < encoded_history.get_size() && idx < tokenized_history.size()) { + if (encoded_history_data[idx] != tokenized_history[idx]) + break; + idx++; + } + + // encoded_history after decode of tokenizer could lose one last token (eos/stop token) + if ((idx == tokenized_history.size() && idx == encoded_history.get_size()) || + (encoded_history.get_size() < tokenized_history.size() && idx == tokenized_history.size() - 1 && stop_tokens.find(tokenized_history.back()) != stop_tokens.end())) + return SIZE_MAX; + else + return idx; +} + +size_t get_seq_len_axis(std::shared_ptr model) { + // sequence length axis in key/values tensors, for most cases [BATCH_SIZE, num_kv_heads, seq_len, head_size], + // therefore usually seq_length_axis = 2 + size_t seq_length_axis = 2; + + // "ReadValue" node is KV cache representation in stateful model + std::string kv_node_type_name = std::string(ov::op::v6::ReadValue::get_type_info_static().name); + + for (const auto op : model->get_ops()) { + // check input size, as in LoRA adapters case it could be 0 + if (op->get_type_name() != kv_node_type_name || op->get_input_size() < 1) { + continue; + } + + // Shape example: [-1,4,0,64] + auto shape = op->get_input_partial_shape(0); + + for (size_t i = 0; i < shape.rank().get_length(); i++) { + // Find axis = 0. This would be sequence length axis. + if (shape[i] == 0) { + seq_length_axis = i; + } + } + break; + } + + return seq_length_axis; +} + +void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t seq_length_axis, std::optional adapter_controller) { + // nothing to trim in this case + if (remove_from_end == 0) + return; + + auto states = request.query_state(); + for (auto& state : states) { + if(adapter_controller && adapter_controller->has_state_name(state.get_name())) + continue; + + ov::Tensor old_tensor = state.get_state(); + // [BATCH_SIZE, num_kv_heads, seq_len, head_size] + auto shape = old_tensor.get_shape(); + shape[seq_length_axis] -= remove_from_end; + + ov::Coordinate new_shape_begin{0, 0, 0, 0}; + ov::Coordinate new_shape_end{shape}; + + auto trimmed_tensor = ov::Tensor(old_tensor, new_shape_begin, new_shape_end); + + ov::Tensor new_tensor(old_tensor.get_element_type(), shape); + trimmed_tensor.copy_to(new_tensor); + + state.set_state(new_tensor); + } +} + } // namespace utils } // namespace genai } // namespace ov diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 792987d383..57728cd0dc 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -22,6 +22,11 @@ constexpr bool is_container().begin()), decltype(std::declval().end())>> = true; +enum class GenerationChatInputsType { + UNDEF = 0, // Default value, type of inputs is not defined + STRING = 1, // Type of inputs is StringInputs + ENCODED_INPUTS = 2, // Type of inputs is EncodedInputs +}; Tensor init_attention_mask(const Tensor& position_ids); @@ -93,6 +98,12 @@ ov::Core singleton_core(); template void read_rt_info(std::shared_ptr& model, const char* name, T& value); +size_t get_first_history_difference(const ov::Tensor& encoded_history, const std::vector tokenized_history, std::set stop_tokens); + +size_t get_seq_len_axis(std::shared_ptr model); + +void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t seq_length_axis, std::optional adapter_controller); + } // namespace utils } // namespace genai } // namespace ov diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index ced17a2ebd..dfdb1521ef 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -39,8 +39,11 @@ class InputsEmbedder::IInputsEmbedder { ChatHistory m_history; // Templated chat history std::string m_templated_chat_history; - // Whether we have computed some inputs already - bool m_is_cache_empty = true; + // Tokenized chat history + std::vector m_tokenized_chat_history; + // The number of elements, which need to remove from the end of KV cache + // removed elements will be added to inputs_ids + size_t m_to_remove_from_hist = 0; public: virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) = 0; @@ -53,12 +56,26 @@ class InputsEmbedder::IInputsEmbedder { return m_tokenizer; } + std::vector get_tokenized_chat_history() const { + return m_tokenized_chat_history; + } + + size_t get_amount_to_remove_from_hist() const { + return m_to_remove_from_hist; + } + + void update_tokenized_chat_history(std::vector encoded_result) { + std::copy(encoded_result.begin(), encoded_result.end(), std::back_inserter(m_tokenized_chat_history)); + m_to_remove_from_hist = 0; + } + virtual void start_chat(const std::string& system_message) { m_is_chat_conversation = true; - if (!m_is_cache_empty) { + m_to_remove_from_hist = 0; + if (!m_tokenized_chat_history.empty()) { m_history.clear(); m_templated_chat_history.clear(); - m_is_cache_empty = true; + m_tokenized_chat_history.clear(); } if (system_message.empty()) { return; @@ -77,10 +94,11 @@ class InputsEmbedder::IInputsEmbedder { virtual void finish_chat() { m_is_chat_conversation = false; - m_is_cache_empty = true; + m_to_remove_from_hist = 0; m_history.clear(); m_templated_chat_history.clear(); + m_tokenized_chat_history.clear(); } protected: @@ -92,7 +110,7 @@ class InputsEmbedder::IInputsEmbedder { m_vlm_config{vlm_config}, m_vision_encoder(model_dir, m_vlm_config.model_type, device, device_config), m_embedding(model_dir, m_vlm_config.scale_emb, device, device_config), - m_tokenizer{model_dir.string(), device_config} { } + m_tokenizer{model_dir, device_config} { } IInputsEmbedder( const VLMConfig& vlm_config, @@ -140,15 +158,28 @@ class InputsEmbedder::IInputsEmbedder { new_templated_chat_history = m_tokenizer.apply_chat_template(m_history, add_generation_prompt, chat_template_fallback); } auto start_tokenizer_time = std::chrono::steady_clock::now(); - ov::Tensor new_chat_tokens = m_tokenizer.encode(new_templated_chat_history).input_ids; - if (m_is_cache_empty) { + ov::Tensor new_chat_tokens = m_tokenizer.encode(new_templated_chat_history, ov::genai::add_special_tokens(false)).input_ids; + TokenizedInputs prev_chat_tokens = m_tokenizer.encode(m_templated_chat_history, ov::genai::add_special_tokens(false)); + + // some symbols combinations can be encoded by the tokenizer in different ways + // if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history + // so let's check it out, find the trusted part and use it in on the next step + size_t last_same_hist_token = 0; + if (!m_tokenized_chat_history.empty()) { + std::set stop_tokens = {m_tokenizer.get_eos_token_id()}; + last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens); + } + + if (m_tokenized_chat_history.empty()) { encoded_input_ids = new_chat_tokens; - // after first `get_inputs_embeds` is called, we supposed LLM is inferred and cache is not empty - m_is_cache_empty = false; + } else if (last_same_hist_token != SIZE_MAX) { + m_to_remove_from_hist = m_tokenized_chat_history.size() - last_same_hist_token; + + ov::Tensor new_tensor = ov::Tensor(new_chat_tokens.get_element_type(), + {1, new_chat_tokens.get_shape().at(1) - last_same_hist_token}, + new_chat_tokens.data() + last_same_hist_token); + encoded_input_ids = new_tensor; } else { - TokenizedInputs prev_chat_tokens = m_tokenizer.encode( - m_templated_chat_history - ); encoded_input_ids = utils::subtract_chat_tokenized_inputs( {new_chat_tokens}, prev_chat_tokens ).input_ids; @@ -156,6 +187,9 @@ class InputsEmbedder::IInputsEmbedder { auto end_tokenizer_time = std::chrono::steady_clock::now(); metrics.raw_metrics.tokenization_durations.emplace_back(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); m_templated_chat_history = std::move(new_templated_chat_history); + m_tokenized_chat_history.clear(); + std::copy(new_chat_tokens.data(), new_chat_tokens.data() + new_chat_tokens.get_size(), + std::back_inserter(m_tokenized_chat_history)); } else { auto start_tokenizer_time = std::chrono::steady_clock::now(); encoded_input_ids = m_tokenizer.encode(prompt).input_ids; @@ -639,7 +673,6 @@ class InputsEmbedderLLaVA : public InputsEmbedder::IInputsEmbedder { merged_idx++; } } - return merged_embeds; } }; @@ -1138,6 +1171,18 @@ EmbeddingsModel InputsEmbedder::get_embedding_model() const { return m_impl->get_embedding_model(); } +std::vector InputsEmbedder::get_tokenized_chat_history() const { + return m_impl->get_tokenized_chat_history(); +} + +void InputsEmbedder::update_tokenized_chat_history(std::vector encoded_result) { + return m_impl->update_tokenized_chat_history(encoded_result); +} + +size_t InputsEmbedder::get_amount_to_remove_from_hist() const { + return m_impl->get_amount_to_remove_from_hist(); +} + Tokenizer InputsEmbedder::get_tokenizer() const { return m_impl->get_tokenizer(); } diff --git a/src/cpp/src/visual_language/inputs_embedder.hpp b/src/cpp/src/visual_language/inputs_embedder.hpp index 0e3a3533e2..5c5b9d2b81 100644 --- a/src/cpp/src/visual_language/inputs_embedder.hpp +++ b/src/cpp/src/visual_language/inputs_embedder.hpp @@ -40,6 +40,13 @@ class InputsEmbedder { // returns tokenizer Tokenizer get_tokenizer() const; + // returns tokenized chat history + std::vector get_tokenized_chat_history() const; + // add new results to tokenized chat history + void update_tokenized_chat_history(std::vector encoded_result); + // returns amount of elements, which need to remove from the end of the KV cache + size_t get_amount_to_remove_from_hist() const; + // starts chat and adds optional system_message to chat history void start_chat(const std::string& system_message); // adds currently generated text to chat history diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index f7508acb35..b8e89a8e04 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -64,6 +64,8 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { std::shared_ptr m_inputs_embedder; // Load pipeline time float m_load_time_ms = 0; + // Axis num in kv cache from m_language model, which contains information about history len + size_t m_kv_cache_seq_length_axis = 2; VLMPipelineImpl( const std::filesystem::path& models_dir, @@ -87,9 +89,14 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { m_tokenizer = m_inputs_embedder->get_tokenizer(); m_embedding = m_inputs_embedder->get_embedding_model(); - m_language = utils::singleton_core().compile_model( + auto compiled_language_model = utils::singleton_core().compile_model( models_dir / "openvino_language_model.xml", device, properties - ).create_infer_request(); + ); + + auto language_model = compiled_language_model.get_runtime_model(); + m_kv_cache_seq_length_axis = ov::genai::utils::get_seq_len_axis(language_model); + + m_language = compiled_language_model.create_infer_request(); m_language.get_tensor("attention_mask").set_shape({1, 0}); @@ -153,14 +160,20 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { ov::Tensor inputs_embeds = m_inputs_embedder->get_inputs_embeds(prompt, rgbs, perf_metrics); auto end_get_inputs_embeds = std::chrono::steady_clock::now(); + auto to_remove_from_hist = m_inputs_embedder->get_amount_to_remove_from_hist(); + ov::genai::utils::trim_kv_cache(m_language, to_remove_from_hist, m_kv_cache_seq_length_axis, std::nullopt); + Sampler sampler = Sampler(m_tokenizer); std::vector requests; size_t request_id = 0; size_t block_size = 1; // not used bool enable_prefix_caching = false; - size_t history_size = m_language.get_tensor("attention_mask").get_shape().at(1); + + auto tokenized_chat_history = m_inputs_embedder->get_tokenized_chat_history(); + size_t history_size = m_language.get_tensor("attention_mask").get_shape().at(1) - to_remove_from_hist; size_t inputs_embeds_size = inputs_embeds.get_shape().at(1); + ov::Tensor prompt_ids(ov::element::i64, { history_size + inputs_embeds_size }); std::fill_n(prompt_ids.data(), prompt_ids.get_size(), 0); @@ -185,10 +198,10 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { OPENVINO_ASSERT((generation_config.is_greedy_decoding() || generation_config.is_multinomial() || !streamer_ptr), "Currently streaming is possible only for greedy or multinomial decoding"); - ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, { 1, history_size + inputs_embeds.get_shape()[1] }}; + ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, { 1, history_size + inputs_embeds_size }}; std::fill_n(new_atten_mask.data(), new_atten_mask.get_size(), 1); - ov::Tensor position_ids = ov::Tensor{ov::element::i64, { 1, inputs_embeds.get_shape()[1] }}; + ov::Tensor position_ids = ov::Tensor{ov::element::i64, { 1, inputs_embeds_size }}; std::iota(position_ids.data(), position_ids.data() + position_ids.get_size(), history_size); ov::genai::EncodedResults encoded_result; @@ -211,6 +224,7 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { m_language.reset_state(); m_language.get_tensor("attention_mask").set_shape({1, 0}); } + auto generate_end_time = std::chrono::steady_clock::now(); decoded.perf_metrics = encoded_result.perf_metrics; @@ -228,6 +242,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { // Evaluate statistics decoded.perf_metrics.m_evaluated = false; decoded.perf_metrics.evaluate_statistics(generate_start_time); + + m_inputs_embedder->update_tokenized_chat_history(encoded_result.tokens[0]); + return decoded; } From 7548c4c49c0a91da12c11faf71658bab8a27a3f9 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Mon, 16 Dec 2024 20:11:57 +0400 Subject: [PATCH 080/113] Image generation: added TorchGenerator and rng_seed (#1379) - Added `TorchGenerator` which wraps `torch.Generator`. It throws an exception is `torch` is not available. - Added `rng_seed` parameter to `ImageGenerationConfig` which has lower priority compared with `generator` when they both are specified to `generate()` or `ImageGenerationConfig::update_generation_config` --- README.md | 12 +- samples/cpp/image_generation/README.md | 11 +- .../cpp/image_generation/lora_text2image.cpp | 8 +- samples/python/image_generation/README.md | 8 +- samples/python/image_generation/baseline.bmp | 3 - .../heterogeneous_stable_diffusion.py | 3 +- samples/python/image_generation/lora.bmp | 3 - .../image_generation/lora_text2image.py | 24 +--- .../python/image_generation/text2image.bmp | 3 - samples/python/image_generation/text2image.py | 15 +- .../openvino/genai/generation_config.hpp | 8 +- .../image_generation/generation_config.hpp | 32 ++++- src/cpp/src/generation_config.cpp | 7 +- .../src/image_generation/flux_pipeline.hpp | 1 - .../image_generation/generation_config.cpp | 28 +++- .../stable_diffusion_3_pipeline.hpp | 6 - .../stable_diffusion_pipeline.hpp | 6 - src/python/openvino_genai/__init__.py | 2 +- src/python/openvino_genai/__init__.pyi | 3 +- .../openvino_genai/py_openvino_genai.pyi | 26 +++- src/python/py_image_generation_pipelines.cpp | 134 +++++++++++++++--- .../whowhatbench/text2image_evaluator.py | 13 +- 22 files changed, 223 insertions(+), 133 deletions(-) delete mode 100644 samples/python/image_generation/baseline.bmp delete mode 100644 samples/python/image_generation/lora.bmp delete mode 100644 samples/python/image_generation/text2image.bmp diff --git a/README.md b/README.md index 4892c86f10..680bc9bc65 100644 --- a/README.md +++ b/README.md @@ -194,12 +194,7 @@ import openvino_genai device = 'CPU' # GPU can be used as well pipe = openvino_genai.Text2ImagePipeline("./dreamlike_anime_1_0_ov/INT8", device) -image_tensor = pipe.generate( - "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting", - width=512, - height=512, - num_inference_steps=20 -) +image_tensor = pipe.generate("cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting") image = Image.fromarray(image_tensor.data[0]) image.save("image.bmp") @@ -218,10 +213,7 @@ int main(int argc, char* argv[]) { const std::string device = "CPU"; // GPU can be used as well ov::genai::Text2ImagePipeline pipe(models_path, device); - ov::Tensor image = pipe.generate(prompt, - ov::genai::width(512), - ov::genai::height(512), - ov::genai::num_inference_steps(20)); + ov::Tensor image = pipe.generate(prompt); imwrite("image.bmp", image, true); } diff --git a/samples/cpp/image_generation/README.md b/samples/cpp/image_generation/README.md index 8a5cc5aa19..f8dc21cc39 100644 --- a/samples/cpp/image_generation/README.md +++ b/samples/cpp/image_generation/README.md @@ -20,6 +20,10 @@ Users can change the sample code and play with the following generation paramete - Apply multiple different LoRA adapters and mix them with different blending coefficients - (Image to image and inpainting) Play with `strength` parameter to control how initial image is noised and reduce number of inference steps + +> [!NOTE] +> Image generated with HuggingFace / Optimum Intel is not the same generated by this C++ sample: C++ random generation with MT19937 results differ from `numpy.random.randn()` and `diffusers.utils.randn_tensor` (uses `torch.Generator` inside). So, it's expected that image generated by Diffusers and C++ versions provide different images, because latent images are initialize differently. + ## Download and convert the models and tokenizers The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. @@ -88,13 +92,6 @@ With adapter | Without adapter :---:|:---: ![](./lora.bmp) | ![](./baseline.bmp) - -## Note - -- Image generated with HuggingFace / Optimum Intel is not the same generated by this C++ sample: - -C++ random generation with MT19937 results differ from `numpy.random.randn()` and `diffusers.utils.randn_tensor`. So, it's expected that image generated by Python and C++ versions provide different images, because latent images are initialize differently. Users can implement their own random generator derived from `ov::genai::Generator` and pass it to `Text2ImagePipeline::generate` method. - ## Run text to image with multiple devices The `heterogeneous_stable_diffusion` sample demonstrates how a Text2ImagePipeline object can be created from individual subcomponents - scheduler, text encoder, unet, & vae decoder. This approach gives fine-grained control over the devices used to execute each stage of the stable diffusion pipeline. diff --git a/samples/cpp/image_generation/lora_text2image.cpp b/samples/cpp/image_generation/lora_text2image.cpp index 3fe4b74ff6..c1e6461db9 100644 --- a/samples/cpp/image_generation/lora_text2image.cpp +++ b/samples/cpp/image_generation/lora_text2image.cpp @@ -24,19 +24,19 @@ int32_t main(int32_t argc, char* argv[]) try { std::cout << "Generating image with LoRA adapters applied, resulting image will be in lora.bmp\n"; ov::Tensor image = pipe.generate(prompt, - ov::genai::generator(std::make_shared(42)), ov::genai::width(512), ov::genai::height(896), - ov::genai::num_inference_steps(20)); + ov::genai::num_inference_steps(20), + ov::genai::rng_seed(42)); imwrite("lora.bmp", image, true); std::cout << "Generating image without LoRA adapters applied, resulting image will be in baseline.bmp\n"; image = pipe.generate(prompt, ov::genai::adapters(), // passing adapters in generate overrides adapters set in the constructor; adapters() means no adapters - ov::genai::generator(std::make_shared(42)), ov::genai::width(512), ov::genai::height(896), - ov::genai::num_inference_steps(20)); + ov::genai::num_inference_steps(20), + ov::genai::rng_seed(42)); imwrite("baseline.bmp", image, true); return EXIT_SUCCESS; diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md index 0ddf57d882..3e53f40fc4 100644 --- a/samples/python/image_generation/README.md +++ b/samples/python/image_generation/README.md @@ -20,6 +20,10 @@ Users can change the sample code and play with the following generation paramete - Apply multiple different LoRA adapters and mix them with different blending coefficients - (Image to image and inpainting) Play with `strength` parameter to control how initial image is noised and reduce number of inference steps +> [!NOTE] +> OpenVINO GenAI is written in C++ and uses `CppStdGenerator` random generator in Image Generation pipelines, while Diffusers library uses `torch.Generator` underhood. +> To have the same results with HuggingFace, pass manually created `torch.Generator(device='cpu').manual_seed(seed)` to Diffusers generation pipelines and `openvino_genai.TorchGenerator(seed)` to OpenVINO GenAI pipelines as value for `generator` kwarg. + ## Download and convert the models and tokenizers The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. @@ -41,7 +45,7 @@ Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pi Prompt: `cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting` - ![](./text2image.bmp) + ![](./../../cpp/image_generation/512x512.bmp) ### Run with callback @@ -85,7 +89,7 @@ Check the difference: With adapter | Without adapter :---:|:---: -![](./lora.bmp) | ![](./baseline.bmp) +![](./../../cpp/image_generation/lora.bmp) | ![](./../../cpp/image_generation/baseline.bmp) ## Run text to image with multiple devices diff --git a/samples/python/image_generation/baseline.bmp b/samples/python/image_generation/baseline.bmp deleted file mode 100644 index 1501f5960e..0000000000 --- a/samples/python/image_generation/baseline.bmp +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ea0b60b64c4448448140a3cfb5e8609248ad35abd484ace1467d832e6966c941 -size 1376310 diff --git a/samples/python/image_generation/heterogeneous_stable_diffusion.py b/samples/python/image_generation/heterogeneous_stable_diffusion.py index b1a2f9d5de..18f150816e 100644 --- a/samples/python/image_generation/heterogeneous_stable_diffusion.py +++ b/samples/python/image_generation/heterogeneous_stable_diffusion.py @@ -101,8 +101,7 @@ def main(): height=height, guidance_scale=guidance_scale, num_inference_steps=number_of_inference_steps_per_image, - num_images_per_prompt=1, - generator=openvino_genai.CppStdGenerator(42) + num_images_per_prompt=1 ) image = Image.fromarray(image_tensor.data[0]) diff --git a/samples/python/image_generation/lora.bmp b/samples/python/image_generation/lora.bmp deleted file mode 100644 index a0aaedb930..0000000000 --- a/samples/python/image_generation/lora.bmp +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:804bb8d49f1702422abf57c300af75fe75acbef60a9cf8ad5cfc9262b7532c95 -size 1376310 diff --git a/samples/python/image_generation/lora_text2image.py b/samples/python/image_generation/lora_text2image.py index 95e31ca0ea..6a46099dc2 100644 --- a/samples/python/image_generation/lora_text2image.py +++ b/samples/python/image_generation/lora_text2image.py @@ -6,20 +6,6 @@ import openvino as ov import openvino_genai -import numpy as np -import sys - - -class Generator(openvino_genai.Generator): - def __init__(self, seed, mu=0.0, sigma=1.0): - openvino_genai.Generator.__init__(self) - np.random.seed(seed) - self.mu = mu - self.sigma = sigma - - def next(self): - return np.random.normal(self.mu, self.sigma) - def image_write(path: str, image_tensor: ov.Tensor): from PIL import Image @@ -46,23 +32,23 @@ def main(): # LoRA adapters passed to the constructor will be activated by default in next generates pipe = openvino_genai.Text2ImagePipeline(args.models_path, device, adapters=adapter_config) + print("Generating image with LoRA adapters applied, resulting image will be in lora.bmp") image = pipe.generate(prompt, - generator=Generator(42), width=512, height=896, - num_inference_steps=20) + num_inference_steps=20, + rng_seed=42) image_write("lora.bmp", image) print("Generating image without LoRA adapters applied, resulting image will be in baseline.bmp") image = pipe.generate(prompt, # passing adapters in generate overrides adapters set in the constructor; openvino_genai.AdapterConfig() means no adapters adapters=openvino_genai.AdapterConfig(), - generator=Generator(42), width=512, height=896, - num_inference_steps=20 - ) + num_inference_steps=20, + rng_seed=42) image_write("baseline.bmp", image) diff --git a/samples/python/image_generation/text2image.bmp b/samples/python/image_generation/text2image.bmp deleted file mode 100644 index 54974556a4..0000000000 --- a/samples/python/image_generation/text2image.bmp +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c150896ec84f64d4f0cacd67f8f277e08d3ebb1c9a756d43fc80944db7a2ed4 -size 786486 diff --git a/samples/python/image_generation/text2image.py b/samples/python/image_generation/text2image.py index 95d8c68e82..cba1eefd1d 100644 --- a/samples/python/image_generation/text2image.py +++ b/samples/python/image_generation/text2image.py @@ -6,17 +6,6 @@ import openvino_genai from PIL import Image -import numpy as np - -class Generator(openvino_genai.Generator): - def __init__(self, seed, mu=0.0, sigma=1.0): - openvino_genai.Generator.__init__(self) - np.random.seed(seed) - self.mu = mu - self.sigma = sigma - - def next(self): - return np.random.normal(self.mu, self.sigma) def main(): @@ -33,9 +22,7 @@ def main(): width=512, height=512, num_inference_steps=20, - num_images_per_prompt=1, - generator=Generator(42) # openvino_genai.CppStdGenerator can be used to have same images as C++ sample - ) + num_images_per_prompt=1) image = Image.fromarray(image_tensor.data[0]) image.save("image.bmp") diff --git a/src/cpp/include/openvino/genai/generation_config.hpp b/src/cpp/include/openvino/genai/generation_config.hpp index 2402f57fba..9d79240aa8 100644 --- a/src/cpp/include/openvino/genai/generation_config.hpp +++ b/src/cpp/include/openvino/genai/generation_config.hpp @@ -67,9 +67,9 @@ enum class StopCriteria { EARLY, HEURISTIC, NEVER }; * @param top_k the number of highest probability vocabulary tokens to keep for top-k-filtering. * @param do_sample whether or not to use multinomial random sampling that add up to `top_p` or higher are kept. * @param repetition_penalty the parameter for repetition penalty. 1.0 means no penalty. - * @param presence_penalty reduces absolute log prob if the token was generated at least once. Ignored for non continuous batching. - * @param frequency_penalty reduces absolute log prob as many times as the token was generated. Ignored for non continuous batching. - * @param rng_seed initializes random generator. Ignored for non continuous batching. + * @param presence_penalty reduces absolute log prob if the token was generated at least once. + * @param frequency_penalty reduces absolute log prob as many times as the token was generated. + * @param rng_seed initializes random generator. * * Speculative decoding parameters: * @param assistant_confidence_threshold the lower token probability of candidate to be validated by main model in case of static strategy candidates number update. @@ -174,7 +174,7 @@ static constexpr ov::Property repetition_penalty{"repetition_penalty"}; static constexpr ov::Property eos_token_id{"eos_token_id"}; static constexpr ov::Property presence_penalty{"presence_penalty"}; static constexpr ov::Property frequency_penalty{"frequency_penalty"}; -static constexpr ov::Property rng_seed{"rng_seed"}; +extern OPENVINO_GENAI_EXPORTS ov::Property rng_seed; static constexpr ov::Property assistant_confidence_threshold{"assistant_confidence_threshold"}; static constexpr ov::Property num_assistant_tokens{"num_assistant_tokens"}; diff --git a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp index 50e576466d..bd7073520a 100644 --- a/src/cpp/include/openvino/genai/image_generation/generation_config.hpp +++ b/src/cpp/include/openvino/genai/image_generation/generation_config.hpp @@ -39,6 +39,12 @@ class OPENVINO_GENAI_EXPORTS Generator { */ virtual ov::Tensor randn_tensor(const ov::Shape& shape); + /** + * Sets a new initial seed value to random generator + * @param new_seed A new seed value + */ + virtual void seed(size_t new_seed) = 0; + /** * Default dtor defined to ensure working RTTI. */ @@ -58,9 +64,11 @@ class OPENVINO_GENAI_EXPORTS CppStdGenerator : public Generator { virtual float next() override; + virtual void seed(size_t new_seed) override; + private: - std::mt19937 gen; - std::normal_distribution normal; + std::mt19937 m_gen; + std::normal_distribution m_normal; }; /** @@ -81,9 +89,17 @@ struct OPENVINO_GENAI_EXPORTS ImageGenerationConfig { size_t num_images_per_prompt = 1; /** - * Random generator to initial latents, add noise to initial images in case of image to image / inpainting pipelines + * Random generator to initialize latents, add noise to initial images in case of image to image / inpainting pipelines + * By default, random generator is initialized as `CppStdGenerator(generation_config.rng_seed)` + * @note If `generator` is specified, it has higher priority than `rng_seed` parameter. + */ + std::shared_ptr generator = nullptr; + + /** + * Seed for random generator + * @note If `generator` is specified, it has higher priority than `rng_seed` parameter. */ - std::shared_ptr generator = std::make_shared(42); + size_t rng_seed = 42; float guidance_scale = 7.5f; int64_t height = -1; @@ -91,7 +107,7 @@ struct OPENVINO_GENAI_EXPORTS ImageGenerationConfig { size_t num_inference_steps = 50; /** - * Max sequence lenght for T4 encoder / tokenizer used in SD3 / FLUX models + * Max sequence length for T5 encoder / tokenizer used in SD3 / FLUX models */ int max_sequence_length = -1; @@ -203,6 +219,12 @@ static constexpr ov::Property strength{"strength"}; */ static constexpr ov::Property> generator{"generator"}; +/** + * Seed for random generator + * @note If `generator` is specified, it has higher priority than `rng_seed` parameter. + */ +extern OPENVINO_GENAI_EXPORTS ov::Property rng_seed; + /** * This parameters limits max sequence length for T5 encoder for SD3 and FLUX models. * T5 tokenizer output is padded with pad tokens to 'max_sequence_length' within a pipeline. diff --git a/src/cpp/src/generation_config.cpp b/src/cpp/src/generation_config.cpp index 0829e8376a..189cfeded7 100644 --- a/src/cpp/src/generation_config.cpp +++ b/src/cpp/src/generation_config.cpp @@ -14,6 +14,8 @@ namespace ov { namespace genai { +ov::Property rng_seed{"rng_seed"}; + GenerationConfig::GenerationConfig(const std::filesystem::path& json_path) { using utils::read_json_param; @@ -21,7 +23,7 @@ GenerationConfig::GenerationConfig(const std::filesystem::path& json_path) { OPENVINO_ASSERT(f.is_open(), "Failed to open '", json_path, "' with generation config"); nlohmann::json data = nlohmann::json::parse(f); - + read_json_param(data, "max_new_tokens", max_new_tokens); read_json_param(data, "max_length", max_length); // note that ignore_eos is not present in HF GenerationConfig @@ -103,6 +105,9 @@ void GenerationConfig::update_generation_config(const ov::AnyMap& config_map) { read_anymap_param(config_map, "echo", echo); read_anymap_param(config_map, "logprobs", logprobs); read_anymap_param(config_map, "adapters", adapters); + + // TODO: add support of 'generator' property similar to Image generation + read_anymap_param(config_map, "rng_seed", rng_seed); } size_t GenerationConfig::get_max_new_tokens(size_t prompt_length) const { diff --git a/src/cpp/src/image_generation/flux_pipeline.hpp b/src/cpp/src/image_generation/flux_pipeline.hpp index 716ba6b61b..e74cd441ce 100644 --- a/src/cpp/src/image_generation/flux_pipeline.hpp +++ b/src/cpp/src/image_generation/flux_pipeline.hpp @@ -4,7 +4,6 @@ #pragma once #include -#include #include "image_generation/diffusion_pipeline.hpp" #include "image_generation/numpy_utils.hpp" diff --git a/src/cpp/src/image_generation/generation_config.cpp b/src/cpp/src/image_generation/generation_config.cpp index 938034f628..ab098fabe5 100644 --- a/src/cpp/src/image_generation/generation_config.cpp +++ b/src/cpp/src/image_generation/generation_config.cpp @@ -27,11 +27,15 @@ ov::Tensor Generator::randn_tensor(const ov::Shape& shape) { } CppStdGenerator::CppStdGenerator(uint32_t seed) - : gen(seed), normal(0.0f, 1.0f) { + : m_gen(seed), m_normal(0.0f, 1.0f) { } float CppStdGenerator::next() { - return normal(gen); + return m_normal(m_gen); +} + +void CppStdGenerator::seed(size_t new_seed) { + m_gen.seed(new_seed); } // @@ -55,7 +59,6 @@ void ImageGenerationConfig::update_generation_config(const ov::AnyMap& propertie read_anymap_param(properties, "negative_prompt_2", negative_prompt_2); read_anymap_param(properties, "negative_prompt_3", negative_prompt_3); read_anymap_param(properties, "num_images_per_prompt", num_images_per_prompt); - read_anymap_param(properties, "generator", generator); read_anymap_param(properties, "guidance_scale", guidance_scale); read_anymap_param(properties, "height", height); read_anymap_param(properties, "width", width); @@ -64,6 +67,25 @@ void ImageGenerationConfig::update_generation_config(const ov::AnyMap& propertie read_anymap_param(properties, "adapters", adapters); read_anymap_param(properties, "max_sequence_length", max_sequence_length); + // 'generator' has higher priority than 'seed' parameter + const bool have_generator_param = properties.find(ov::genai::generator.name()) != properties.end(); + if (have_generator_param) { + read_anymap_param(properties, "generator", generator); + } else { + read_anymap_param(properties, "rng_seed", rng_seed); + + // initialize random generator with a given seed value + if (!generator) { + generator = std::make_shared(rng_seed); + } + + const bool have_rng_seed = properties.find(ov::genai::rng_seed.name()) != properties.end(); + if (have_rng_seed) { + // we need to change seed as an user have specified it manually + generator->seed(rng_seed); + } + } + validate(); } diff --git a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp index 18a3e0346f..e3e720109d 100644 --- a/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_3_pipeline.hpp @@ -4,7 +4,6 @@ #pragma once #include -#include #include "image_generation/diffusion_pipeline.hpp" #include "image_generation/numpy_utils.hpp" @@ -453,11 +452,6 @@ class StableDiffusion3Pipeline : public DiffusionPipeline { check_inputs(generation_config, initial_image); - if (generation_config.generator == nullptr) { - uint32_t seed = time(NULL); - generation_config.generator = std::make_shared(seed); - } - // 3. Prepare timesteps m_scheduler->set_timesteps(generation_config.num_inference_steps, generation_config.strength); std::vector timesteps = m_scheduler->get_float_timesteps(); diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp index 4afbd3ac78..7549b67919 100644 --- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp @@ -3,7 +3,6 @@ #pragma once -#include #include #include @@ -333,11 +332,6 @@ class StableDiffusionPipeline : public DiffusionPipeline { set_lora_adapters(generation_config.adapters); - if (generation_config.generator == nullptr) { - uint32_t seed = time(NULL); - generation_config.generator = std::make_shared(seed); - } - m_scheduler->set_timesteps(generation_config.num_inference_steps, generation_config.strength); std::vector timesteps = m_scheduler->get_timesteps(); diff --git a/src/python/openvino_genai/__init__.py b/src/python/openvino_genai/__init__.py index ca7c2c0b32..470ddd0cd8 100644 --- a/src/python/openvino_genai/__init__.py +++ b/src/python/openvino_genai/__init__.py @@ -11,7 +11,6 @@ if hasattr(os, "add_dll_directory"): os.add_dll_directory(os.path.dirname(__file__)) - from .py_openvino_genai import ( DecodedResults, EncodedResults, @@ -75,6 +74,7 @@ ImageGenerationConfig, Generator, CppStdGenerator, + TorchGenerator, ) # Continuous batching diff --git a/src/python/openvino_genai/__init__.pyi b/src/python/openvino_genai/__init__.pyi index 4d74e17588..187e0a0a06 100644 --- a/src/python/openvino_genai/__init__.pyi +++ b/src/python/openvino_genai/__init__.pyi @@ -34,6 +34,7 @@ from openvino_genai.py_openvino_genai import T5EncoderModel from openvino_genai.py_openvino_genai import Text2ImagePipeline from openvino_genai.py_openvino_genai import TokenizedInputs from openvino_genai.py_openvino_genai import Tokenizer +from openvino_genai.py_openvino_genai import TorchGenerator from openvino_genai.py_openvino_genai import UNet2DConditionModel from openvino_genai.py_openvino_genai import VLMPipeline from openvino_genai.py_openvino_genai import WhisperGenerationConfig @@ -43,5 +44,5 @@ from openvino_genai.py_openvino_genai import WhisperRawPerfMetrics from openvino_genai.py_openvino_genai import draft_model import os as os from . import py_openvino_genai -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationResult', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationResult', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'PerfMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'TorchGenerator', 'UNet2DConditionModel', 'VLMPipeline', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model', 'openvino', 'os', 'py_openvino_genai'] __version__: str = '2025.0.0.0' diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 829d4844e8..8b8eb76b12 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -5,7 +5,7 @@ from __future__ import annotations import openvino._pyopenvino import os import typing -__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] +__all__ = ['Adapter', 'AdapterConfig', 'AggregationMode', 'AutoencoderKL', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CacheEvictionConfig', 'ChunkStreamerBase', 'ContinuousBatchingPipeline', 'CppStdGenerator', 'DecodedResults', 'EncodedGenerationResult', 'EncodedResults', 'FluxTransformer2DModel', 'GenerationConfig', 'GenerationFinishReason', 'GenerationHandle', 'GenerationOutput', 'GenerationResult', 'GenerationStatus', 'Generator', 'Image2ImagePipeline', 'ImageGenerationConfig', 'InpaintingPipeline', 'LLMPipeline', 'MeanStdPair', 'PerfMetrics', 'PipelineMetrics', 'RawPerfMetrics', 'SD3Transformer2DModel', 'Scheduler', 'SchedulerConfig', 'StopCriteria', 'StreamerBase', 'T5EncoderModel', 'Text2ImagePipeline', 'TokenizedInputs', 'Tokenizer', 'TorchGenerator', 'UNet2DConditionModel', 'VLMDecodedResults', 'VLMPerfMetrics', 'VLMPipeline', 'VLMRawPerfMetrics', 'WhisperDecodedResultChunk', 'WhisperDecodedResults', 'WhisperGenerationConfig', 'WhisperPerfMetrics', 'WhisperPipeline', 'WhisperRawPerfMetrics', 'draft_model'] class Adapter: """ Immutable LoRA Adapter that carries the adaptation matrices and serves as unique adapter identifier. @@ -398,6 +398,8 @@ class CppStdGenerator(Generator): ... def randn_tensor(self, shape: openvino._pyopenvino.Shape) -> openvino._pyopenvino.Tensor: ... + def seed(self, new_seed: int) -> None: + ... class DecodedResults: """ @@ -804,7 +806,8 @@ class Image2ImagePipeline: height: int - height of resulting images, width: int - width of resulting images, num_inference_steps: int - number of inference steps, - generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + rng_seed: int - a seed for random numbers generator, + generator: openvino_genai.TorchGenerator, openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, adapters: LoRA adapters, strength: strength for image to image generation. 1.0f means initial image is fully noised, max_sequence_length: int - length of t5_encoder_model input @@ -836,6 +839,7 @@ class ImageGenerationConfig: num_inference_steps: int prompt_2: str | None prompt_3: str | None + rng_seed: int strength: float width: int def __init__(self) -> None: @@ -903,7 +907,8 @@ class InpaintingPipeline: height: int - height of resulting images, width: int - width of resulting images, num_inference_steps: int - number of inference steps, - generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + rng_seed: int - a seed for random numbers generator, + generator: openvino_genai.TorchGenerator, openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, adapters: LoRA adapters, strength: strength for image to image generation. 1.0f means initial image is fully noised, max_sequence_length: int - length of t5_encoder_model input @@ -1576,7 +1581,8 @@ class Text2ImagePipeline: height: int - height of resulting images, width: int - width of resulting images, num_inference_steps: int - number of inference steps, - generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + rng_seed: int - a seed for random numbers generator, + generator: openvino_genai.TorchGenerator, openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, adapters: LoRA adapters, strength: strength for image to image generation. 1.0f means initial image is fully noised, max_sequence_length: int - length of t5_encoder_model input @@ -1649,6 +1655,18 @@ class Tokenizer: """ Override a chat_template read from tokenizer_config.json. """ +class TorchGenerator(CppStdGenerator): + """ + This class provides OpenVINO GenAI Generator wrapper for torch.Generator + """ + def __init__(self, seed: int) -> None: + ... + def next(self) -> float: + ... + def randn_tensor(self, shape: openvino._pyopenvino.Shape) -> openvino._pyopenvino.Tensor: + ... + def seed(self, new_seed: int) -> None: + ... class UNet2DConditionModel: """ UNet2DConditionModel class. diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index 55be1708c1..da6ce6d21b 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -8,6 +8,7 @@ #include #include #include +#include #include "openvino/genai/image_generation/text2image_pipeline.hpp" #include "openvino/genai/image_generation/image2image_pipeline.hpp" @@ -19,23 +20,7 @@ namespace py = pybind11; namespace pyutils = ov::genai::pybind::utils; -namespace ov { -namespace genai { - -/// Trampoline class to support inheritance from Generator in Python -class PyGenerator : public ov::genai::Generator { -public: - float next() override { - PYBIND11_OVERRIDE_PURE(float, Generator, next); - } - - ov::Tensor randn_tensor(const ov::Shape& shape) override { - PYBIND11_OVERRIDE(ov::Tensor, Generator, randn_tensor, shape); - } -}; - -} // namespace genai -} // namespace ov +using namespace pybind11::literals; namespace { @@ -59,7 +44,8 @@ auto text2image_generate_docstring = R"( height: int - height of resulting images, width: int - width of resulting images, num_inference_steps: int - number of inference steps, - generator: openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, + rng_seed: int - a seed for random numbers generator, + generator: openvino_genai.TorchGenerator, openvino_genai.CppStdGenerator or class inherited from openvino_genai.Generator - random generator, adapters: LoRA adapters, strength: strength for image to image generation. 1.0f means initial image is fully noised, max_sequence_length: int - length of t5_encoder_model input @@ -68,7 +54,102 @@ auto text2image_generate_docstring = R"( :rtype: ov.Tensor )"; +// Trampoline class to support inheritance from Generator in Python +class PyGenerator : public ov::genai::Generator { +public: + float next() override { + PYBIND11_OVERRIDE_PURE(float, Generator, next); + } + + ov::Tensor randn_tensor(const ov::Shape& shape) override { + PYBIND11_OVERRIDE(ov::Tensor, Generator, randn_tensor, shape); + } + + void seed(size_t new_seed) override { + PYBIND11_OVERRIDE_PURE(void, Generator, seed, new_seed); + } +}; + +py::list to_py_list(const ov::Shape shape) { + py::list py_shape; + for (auto d : shape) + py_shape.append(d); + + return py_shape; +} +class TorchGenerator : public ov::genai::CppStdGenerator { + py::module_ m_torch; + py::object m_torch_generator, m_float32; + + void create_torch_generator(size_t seed) { + m_torch_generator = m_torch.attr("Generator")("device"_a="cpu").attr("manual_seed")(seed); + } +public: + explicit TorchGenerator(uint32_t seed) : CppStdGenerator(seed) { + try { + m_torch = py::module_::import("torch"); + } catch (const py::error_already_set& e) { + if (e.matches(PyExc_ModuleNotFoundError)) { + throw std::runtime_error("The 'torch' package is not installed. Please, call 'pip install torch' or use 'rng_seed' parameter."); + } else { + // Re-throw other exceptions + throw; + } + } + + m_float32 = m_torch.attr("float32"); + create_torch_generator(seed); + } + + float next() override { + return m_torch.attr("randn")(1, "generator"_a=m_torch_generator, "dtype"_a=m_float32).attr("item")().cast(); + } + + ov::Tensor randn_tensor(const ov::Shape& shape) override { + py::object torch_tensor = m_torch.attr("randn")(to_py_list(shape), "generator"_a=m_torch_generator, "dtype"_a=m_float32); + py::object numpy_tensor = torch_tensor.attr("numpy")(); + py::array numpy_array = py::cast(numpy_tensor); + + if (!numpy_array.dtype().is(py::dtype::of())) { + throw std::runtime_error("Expected a NumPy array with dtype float32"); + } + + class TorchTensorAllocator { + size_t m_total_size; + void * m_mutable_data; + py::object m_torch_tensor; // we need to hold torch.Tensor to avoid memory destruction + + public: + TorchTensorAllocator(size_t total_size, void * mutable_data, py::object torch_tensor) : + m_total_size(total_size), m_mutable_data(mutable_data), m_torch_tensor(torch_tensor) { } + + void* allocate(size_t bytes, size_t) const { + if (m_total_size == bytes) { + return m_mutable_data; + } + throw std::runtime_error{"Unexpected number of bytes was requested to allocate."}; + } + + void deallocate(void*, size_t bytes, size_t) { + if (m_total_size != bytes) { + throw std::runtime_error{"Unexpected number of bytes was requested to deallocate."}; + } + } + + bool is_equal(const TorchTensorAllocator& other) const noexcept { + return this == &other; + } + }; + + return ov::Tensor(ov::element::f32, shape, + TorchTensorAllocator(ov::shape_size(shape) * ov::element::f32.size(), numpy_array.mutable_data(), torch_tensor)); + } + + void seed(size_t new_seed) override { + create_torch_generator(new_seed); + } +}; } // namespace @@ -81,16 +162,24 @@ void init_flux_transformer_2d_model(py::module_& m); void init_autoencoder_kl(py::module_& m); void init_image_generation_pipelines(py::module_& m) { - py::class_>(m, "Generator", "This class is used for storing pseudo-random generator.") + py::class_>(m, "Generator", "This class is used for storing pseudo-random generator.") .def(py::init<>()); py::class_>(m, "CppStdGenerator", "This class wraps std::mt19937 pseudo-random generator.") .def(py::init([](uint32_t seed) { return std::make_unique(seed); - }), - py::arg("seed")) + }), py::arg("seed")) .def("next", &ov::genai::CppStdGenerator::next) - .def("randn_tensor", &ov::genai::CppStdGenerator::randn_tensor, py::arg("shape")); + .def("randn_tensor", &ov::genai::CppStdGenerator::randn_tensor, py::arg("shape")) + .def("seed", &ov::genai::CppStdGenerator::seed, py::arg("new_seed")); + + py::class_<::TorchGenerator, ov::genai::CppStdGenerator, std::shared_ptr<::TorchGenerator>>(m, "TorchGenerator", "This class provides OpenVINO GenAI Generator wrapper for torch.Generator") + .def(py::init([](uint32_t seed) { + return std::make_unique<::TorchGenerator>(seed); + }), py::arg("seed")) + .def("next", &::TorchGenerator::next) + .def("randn_tensor", &::TorchGenerator::randn_tensor, py::arg("shape")) + .def("seed", &::TorchGenerator::seed, py::arg("new_seed")); // init image generation models init_clip_text_model(m); @@ -122,6 +211,7 @@ void init_image_generation_pipelines(py::module_& m) { .def_readwrite("negative_prompt_2", &ov::genai::ImageGenerationConfig::negative_prompt_2) .def_readwrite("negative_prompt_3", &ov::genai::ImageGenerationConfig::negative_prompt_3) .def_readwrite("generator", &ov::genai::ImageGenerationConfig::generator) + .def_readwrite("rng_seed", &ov::genai::ImageGenerationConfig::rng_seed) .def_readwrite("guidance_scale", &ov::genai::ImageGenerationConfig::guidance_scale) .def_readwrite("height", &ov::genai::ImageGenerationConfig::height) .def_readwrite("width", &ov::genai::ImageGenerationConfig::width) diff --git a/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py b/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py index 1ff7ff5e21..0cced117e4 100644 --- a/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py +++ b/tools/who_what_benchmark/whowhatbench/text2image_evaluator.py @@ -27,17 +27,6 @@ } -class Generator(openvino_genai.Generator): - def __init__(self, seed, rng, mu=0.0, sigma=1.0): - openvino_genai.Generator.__init__(self) - self.mu = mu - self.sigma = sigma - self.rng = rng - - def next(self): - return torch.randn(1, generator=self.rng, dtype=torch.float32).item() - - @register_evaluator("text-to-image") class Text2ImageEvaluator(BaseEvaluator): def __init__( @@ -171,7 +160,7 @@ def default_gen_image_fn(model, prompt, num_inference_steps, generator=None): model, prompt, self.num_inference_steps, - generator=Generator(self.seed, rng) if self.is_genai else rng + generator=openvino_genai.TorchGenerator(self.seed) if self.is_genai else rng ) image_path = os.path.join(image_dir, f"{i}.png") image.save(image_path) From 2a52e869e16b47a06b17b3f21428207a61c1e8ea Mon Sep 17 00:00:00 2001 From: Pawel Raasz Date: Mon, 16 Dec 2024 17:40:31 +0100 Subject: [PATCH 081/113] Fix test fails after PPP stops move tensor names (#1390) ### Description: - Fix the GENAI test after PPP don't move Node's name and tensor names. ### Related PRs: - openvinotoolkit/openvino_tokenizers#352 - openvinotoolkit/openvino#28069 --------- Signed-off-by: Raasz, Pawel --- .github/workflows/linux.yml | 2 +- .github/workflows/llm_bench-python.yml | 4 ++-- .github/workflows/stable_diffusion_1_5_cpp.yml | 8 ++++---- thirdparty/openvino_tokenizers | 2 +- 4 files changed, 8 insertions(+), 8 deletions(-) diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml index 8d596aed56..0bb0c1af6e 100644 --- a/.github/workflows/linux.yml +++ b/.github/workflows/linux.yml @@ -52,7 +52,7 @@ jobs: with: platform: ubuntu22 commit_packages_to_provide: wheels - revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + revision: latest_available_commit - name: Clone docker tag from OpenVINO repo uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 8b022f27e0..f87cd76126 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -34,7 +34,7 @@ jobs: runs-on: aks-linux-2-cores-8gb container: image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0' - volumes: + volumes: - /mount:/mount - ${{ github.workspace }}:${{ github.workspace }} @@ -44,7 +44,7 @@ jobs: with: platform: ubuntu22 commit_packages_to_provide: wheels - revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + revision: latest_available_commit build: defaults: diff --git a/.github/workflows/stable_diffusion_1_5_cpp.yml b/.github/workflows/stable_diffusion_1_5_cpp.yml index 497bfbff3e..34c5a0f87e 100644 --- a/.github/workflows/stable_diffusion_1_5_cpp.yml +++ b/.github/workflows/stable_diffusion_1_5_cpp.yml @@ -35,7 +35,7 @@ jobs: runs-on: aks-linux-2-cores-8gb container: image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0' - volumes: + volumes: - /mount:/mount - ${{ github.workspace }}:${{ github.workspace }} @@ -45,7 +45,7 @@ jobs: with: platform: ubuntu22 commit_packages_to_provide: wheels - revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + revision: latest_available_commit openvino_download_windows: name: Download OpenVINO for Windows @@ -61,7 +61,7 @@ jobs: runs-on: aks-linux-2-cores-8gb container: image: 'openvinogithubactions.azurecr.io/openvino_provider:0.1.0' - volumes: + volumes: - /mount:/mount - ${{ github.workspace }}:${{ github.workspace }} @@ -71,7 +71,7 @@ jobs: with: platform: windows commit_packages_to_provide: wheels - revision: 747d0e7e105c9f2c9966a37861f95b1c7f886868 + revision: latest_available_commit stable_diffusion_1_5_cpp-linux: runs-on: ubuntu-22.04-8-cores diff --git a/thirdparty/openvino_tokenizers b/thirdparty/openvino_tokenizers index 1da0d2c705..bcfd3eda25 160000 --- a/thirdparty/openvino_tokenizers +++ b/thirdparty/openvino_tokenizers @@ -1 +1 @@ -Subproject commit 1da0d2c705016ad3f04c160ac9338f06505a07c1 +Subproject commit bcfd3eda25ae3ec423502a4074e35c774506c732 From a651292a803f184b9de957a44252c41f364d68ab Mon Sep 17 00:00:00 2001 From: Helena Kloosterman Date: Tue, 17 Dec 2024 04:47:36 +0100 Subject: [PATCH 082/113] Fix optimum-cli command for VLM example in README (#1348) With the existing command users get an error: Channel size 4304 should be divisible by size of group 128. --------- Co-authored-by: Alexander Kozlov Co-authored-by: Nikita Savelyev Co-authored-by: Ilya Lavrenov --- README.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 680bc9bc65..c2509528c3 100644 --- a/README.md +++ b/README.md @@ -107,12 +107,12 @@ For more examples check out our [Generative AI workflow](https://docs.openvino.a ### Converting and compressing the model from Hugging Face library -```sh -#(Basic) download and convert to OpenVINO MiniCPM-V-2_6 model -optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code --weight-format fp16 MiniCPM-V-2_6 +To convert the [OpenGVLab/InternVL2-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) model, `timm` and `einops` are required: `pip install timm einops`. -#(Recommended) Same as above but with compression: language model is compressed to int4, other model components are compressed to int8 -optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code --weight-format int4 MiniCPM-V-2_6 +```sh +# Download and convert the OpenGVLab/InternVL2-1B model to OpenVINO with int4 weight-compression for the language model +# Other components are compressed to int8 +optimum-cli export openvino -m OpenGVLab/InternVL2-1B --trust-remote-code --weight-format int4 InternVL2-1B ``` ### Run generation using VLMPipeline API in Python @@ -132,7 +132,7 @@ import openvino_genai as ov_genai from PIL import Image # Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU -pipe = ov_genai.VLMPipeline("./MiniCPM-V-2_6/", "CPU") +pipe = ov_genai.VLMPipeline("./InternVL2-1B", "CPU") image = Image.open("dog.jpg") image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) From 1d4b1039a95c9f8817f412248656a83d463d3376 Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Tue, 17 Dec 2024 10:48:02 +0400 Subject: [PATCH 083/113] [llm_bench] enable text2img callback only if supported (#1392) CVS-159282 --- tools/llm_bench/task/image_generation.py | 21 +++++++++++++++++---- 1 file changed, 17 insertions(+), 4 deletions(-) diff --git a/tools/llm_bench/task/image_generation.py b/tools/llm_bench/task/image_generation.py index f227898ef6..b870c7ec98 100644 --- a/tools/llm_bench/task/image_generation.py +++ b/tools/llm_bench/task/image_generation.py @@ -25,7 +25,7 @@ stable_diffusion_hook = StableDiffusionHook() -def collects_input_args(image_param, model_type, model_name): +def collects_input_args(image_param, model_type, model_name, callback=None): input_args = {} input_args["width"] = image_param.get('width', DEFAULT_IMAGE_WIDTH) input_args["height"] = image_param.get('height', DEFAULT_IMAGE_HEIGHT) @@ -37,6 +37,19 @@ def collects_input_args(image_param, model_type, model_name): else: if 'turbo' in model_name: input_args["guidance_scale"] = 0.0 + if callback is not None: + from openvino import get_version + from packaging.version import parse + + version = get_version() + # avoid invalid format + if "-" in version: + ov_major_version, dev_info = version.split("-", 1) + commit_id = dev_info.split("-")[0] + version = f"{ov_major_version}-{commit_id}" + is_callback_supported = parse(version) >= parse("2025.0.0") + if is_callback_supported: + input_args["callback"] = callback return input_args @@ -107,7 +120,7 @@ def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption, callback=None): set_seed(args['seed']) input_text = image_param['prompt'] - input_args = collects_input_args(image_param, args['model_type'], args['model_name']) + input_args = collects_input_args(image_param, args['model_type'], args['model_name'], callback) out_str = f"Input params: Batch_size={args['batch_size']}, " \ f"steps={input_args['num_inference_steps']}, width={input_args['width']}, height={input_args['height']}" if 'guidance_scale' in input_args: @@ -127,7 +140,7 @@ def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data llm_bench_utils.output_file.output_image_input_text(in_text, args, image_id, bs_idx, proc_id) callback.reset() start = time.perf_counter() - res = pipe.generate(input_text, **input_args, callback=callback).data + res = pipe.generate(input_text, **input_args).data end = time.perf_counter() callback.duration = end - start if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: @@ -157,7 +170,7 @@ def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, max_uss_mem=max_uss_mem_consumption, - stable_diffusion=callback, + stable_diffusion=callback if "callback" in input_args else None, prompt_idx=image_id ) metrics_print.print_generated(num, warm_up=(num == 0), generated=rslt_img_fn, prompt_idx=image_id) From f177ffc9799ef34a57b257e1811a60c68c167eb2 Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Tue, 17 Dec 2024 09:45:41 +0100 Subject: [PATCH 084/113] [ImageGeneration] PNDMScheduler support (#1393) ![image](https://github.com/user-attachments/assets/3ca9c44b-ec2e-49ae-afba-2e56d5bf51f7) ![image](https://github.com/user-attachments/assets/8999eac8-6acb-41ec-85f1-d6dab910aa44) ![image](https://github.com/user-attachments/assets/ee8e1461-5953-4c64-8c01-340cf6c3916b) ![image](https://github.com/user-attachments/assets/5ad73a32-ef2a-479d-b7ee-37543fd8d235) --- .../genai/image_generation/scheduler.hpp | 3 +- .../src/image_generation/schedulers/pndm.cpp | 277 ++++++++++++++++++ .../src/image_generation/schedulers/pndm.hpp | 67 +++++ .../image_generation/schedulers/scheduler.cpp | 3 + .../src/image_generation/schedulers/types.cpp | 2 + src/docs/SUPPORTED_MODELS.md | 19 ++ 6 files changed, 370 insertions(+), 1 deletion(-) create mode 100644 src/cpp/src/image_generation/schedulers/pndm.cpp create mode 100644 src/cpp/src/image_generation/schedulers/pndm.hpp diff --git a/src/cpp/include/openvino/genai/image_generation/scheduler.hpp b/src/cpp/include/openvino/genai/image_generation/scheduler.hpp index 9b038ccd56..21c266aa50 100644 --- a/src/cpp/include/openvino/genai/image_generation/scheduler.hpp +++ b/src/cpp/include/openvino/genai/image_generation/scheduler.hpp @@ -18,7 +18,8 @@ class OPENVINO_GENAI_EXPORTS Scheduler { LMS_DISCRETE, DDIM, EULER_DISCRETE, - FLOW_MATCH_EULER_DISCRETE + FLOW_MATCH_EULER_DISCRETE, + PNDM }; static std::shared_ptr from_config(const std::filesystem::path& scheduler_config_path, diff --git a/src/cpp/src/image_generation/schedulers/pndm.cpp b/src/cpp/src/image_generation/schedulers/pndm.cpp new file mode 100644 index 0000000000..a760283b97 --- /dev/null +++ b/src/cpp/src/image_generation/schedulers/pndm.cpp @@ -0,0 +1,277 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include +#include +#include +#include + +#include "image_generation/schedulers/pndm.hpp" +#include "image_generation/numpy_utils.hpp" + +namespace ov { +namespace genai { + +PNDMScheduler::Config::Config(const std::filesystem::path& scheduler_config_path) { + std::ifstream file(scheduler_config_path); + OPENVINO_ASSERT(file.is_open(), "Failed to open ", scheduler_config_path); + + nlohmann::json data = nlohmann::json::parse(file); + using utils::read_json_param; + + read_json_param(data, "num_train_timesteps", num_train_timesteps); + read_json_param(data, "beta_start", beta_start); + read_json_param(data, "beta_end", beta_end); + read_json_param(data, "beta_schedule", beta_schedule); + read_json_param(data, "trained_betas", trained_betas); + read_json_param(data, "set_alpha_to_one", set_alpha_to_one); + read_json_param(data, "skip_prk_steps", skip_prk_steps); + read_json_param(data, "steps_offset", steps_offset); + read_json_param(data, "prediction_type", prediction_type); + read_json_param(data, "timestep_spacing", timestep_spacing); +} + +PNDMScheduler::PNDMScheduler(const std::filesystem::path& scheduler_config_path) + : PNDMScheduler(Config(scheduler_config_path)) { +} + +PNDMScheduler::PNDMScheduler(const Config& scheduler_config): m_config(scheduler_config) { + + std::vector alphas, betas; + + using numpy_utils::linspace; + + if (!m_config.trained_betas.empty()) { + betas = m_config.trained_betas; + } else if (m_config.beta_schedule == BetaSchedule::LINEAR) { + betas = linspace(m_config.beta_start, m_config.beta_end, m_config.num_train_timesteps); + } else if (m_config.beta_schedule == BetaSchedule::SCALED_LINEAR) { + float start = std::sqrt(m_config.beta_start); + float end = std::sqrt(m_config.beta_end); + betas = linspace(start, end, m_config.num_train_timesteps); + std::for_each(betas.begin(), betas.end(), [] (float & x) { x *= x; }); + // TODO: elif beta_schedule == "squaredcos_cap_v2": + } else { + OPENVINO_THROW("'beta_schedule' must be one of 'LINEAR' or 'SCALED_LINEAR'. Please, add support of other types"); + } + + std::transform(betas.begin(), betas.end(), std::back_inserter(alphas), [] (float b) { return 1.0f - b; }); + + for (size_t i = 1; i <= alphas.size(); i++) { + float alpha_cumprod = + std::accumulate(std::begin(alphas), std::begin(alphas) + i, 1.0, std::multiplies{}); + m_alphas_cumprod.push_back(alpha_cumprod); + } + + m_final_alpha_cumprod = m_config.set_alpha_to_one ? 1 : m_alphas_cumprod[0]; + + // running values + m_ets = {}; + m_counter = 0; + + // setable values + m_num_inference_steps = -1; + m_prk_timesteps = {}; + m_plms_timesteps = {}; + m_timesteps = {}; +} + +void PNDMScheduler::set_timesteps(size_t num_inference_steps, float strength) { + m_timesteps.clear(), m_prk_timesteps.clear(), m_plms_timesteps.clear(); + + OPENVINO_ASSERT(num_inference_steps <= m_config.num_train_timesteps, + "`num_inference_steps` cannot be larger than `m_config.num_train_timesteps`"); + + m_num_inference_steps = num_inference_steps; + + switch (m_config.timestep_spacing) { + case TimestepSpacing::LINSPACE: + { + using numpy_utils::linspace; + float end = static_cast(m_config.num_train_timesteps - 1); + auto linspaced = linspace(0.0f, end, num_inference_steps, true); + for (float val : linspaced) { + m_timesteps.push_back(static_cast(std::round(val))); + } + break; + } + case TimestepSpacing::LEADING: + { + size_t step_ratio = m_config.num_train_timesteps / m_num_inference_steps; + for (size_t i = 0; i < m_num_inference_steps; ++i) { + m_timesteps.push_back(i * step_ratio + m_config.steps_offset); + } + break; + } + case TimestepSpacing::TRAILING: + { + float step_ratio = static_cast(m_config.num_train_timesteps) / static_cast(m_num_inference_steps); + for (float i = m_config.num_train_timesteps; i > 0; i-=step_ratio){ + m_timesteps.push_back(static_cast(std::round(i)) - 1); + } + std::reverse(m_timesteps.begin(), m_timesteps.end()); + break; + } + default: + OPENVINO_THROW("Unsupported value for 'timestep_spacing'. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."); + } + + if (m_config.skip_prk_steps) { + m_prk_timesteps = {}; + std::copy(m_timesteps.begin(), m_timesteps.end() - 1, std::back_inserter(m_plms_timesteps)); + m_plms_timesteps.push_back(m_timesteps[m_timesteps.size() - 2]); + m_plms_timesteps.push_back(m_timesteps[m_timesteps.size() - 1]); + std::reverse(m_plms_timesteps.begin(), m_plms_timesteps.end()); + } else { + OPENVINO_THROW("'skip_prk_steps=false' case isn't supported. Please, add support."); + } + + m_timesteps = m_prk_timesteps; + m_timesteps.insert(m_timesteps.end(), m_plms_timesteps.begin(), m_plms_timesteps.end()); + + m_ets = {}; + m_counter = 0; + m_cur_sample = ov::Tensor(ov::element::f32, {}); +} + +std::map PNDMScheduler::step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) { + // noise_pred - model_output + // latents - sample + // inference_step + + if (m_counter < m_prk_timesteps.size() && !m_config.skip_prk_steps) { + OPENVINO_THROW("'skip_prk_steps=false' case isn't supported. Please, add support."); + } else { + return step_plms(noise_pred, latents, m_timesteps[inference_step]); + } +} + +std::map PNDMScheduler::step_plms(ov::Tensor model_output, ov::Tensor sample, size_t timestep) { + OPENVINO_ASSERT(m_num_inference_steps != -1, + "Number of inference steps isn't set, you need to run `set_timesteps` after creating the scheduler"); + + int prev_timestep = timestep - m_config.num_train_timesteps / m_num_inference_steps; + + if (m_counter != 1) { + if (m_ets.size() > 3) { + m_ets = std::vector(m_ets.end() - 3, m_ets.end()); + } + ov::Tensor ets_last(model_output.get_element_type(), model_output.get_shape()); + model_output.copy_to(ets_last); + m_ets.push_back(ets_last); + } else { + prev_timestep = timestep; + timestep = timestep + m_config.num_train_timesteps / m_num_inference_steps; + } + + float* model_output_data = model_output.data(); + + size_t m_ets_size = m_ets.size(); + + if (m_ets_size == 1 && m_counter == 0) { + m_cur_sample = ov::Tensor(sample.get_element_type(), sample.get_shape()); + sample.copy_to(m_cur_sample); + } else if (m_ets_size == 1 && m_counter == 1) { + const float* ets_data = m_ets[0].data(); + for (size_t i = 0; i < model_output.get_size(); ++i) { + model_output_data[i] = (model_output_data[i] + ets_data[i]) / 2.0f; + } + sample = ov::Tensor(m_cur_sample.get_element_type(), m_cur_sample.get_shape()); + m_cur_sample.copy_to(sample); + m_cur_sample = ov::Tensor(ov::element::f32, {}); + } else if (m_ets_size == 2) { + const float* ets_data_1 = m_ets[1].data(); + const float* ets_data_2 = m_ets[0].data(); + for (size_t i = 0; i < model_output.get_size(); ++i) { + model_output_data[i] = (3.0f * ets_data_1[i] - ets_data_2[i]) / 2.0f; + } + } else if (m_ets_size == 3) { + const float* ets_data_1 = m_ets[2].data(); + const float* ets_data_2 = m_ets[1].data(); + const float* ets_data_3 = m_ets[0].data(); + for (size_t i = 0; i < model_output.get_size(); ++i) { + model_output_data[i] = (23.0f * ets_data_1[i] - 16.0f * ets_data_2[i] + 5.0f * ets_data_3[i]) / 12.0f; + } + } else if (m_ets_size == 4) { + const float* ets_data_1 = m_ets[3].data(); + const float* ets_data_2 = m_ets[2].data(); + const float* ets_data_3 = m_ets[1].data(); + const float* ets_data_4 = m_ets[0].data(); + + for (size_t i = 0; i < model_output.get_size(); ++i) { + model_output_data[i] = (1.0f / 24.0f) + * (55.0f * ets_data_1[i] - 59.0f * ets_data_2[i] + 37.0f * ets_data_3[i] - 9.0f * ets_data_4[i]); + } + } else { + OPENVINO_THROW("PNDMScheduler: Unsupported step_plms case."); + } + + ov::Tensor prev_sample = get_prev_sample(sample, timestep, prev_timestep, model_output); + m_counter++; + + std::map result{{"latent", prev_sample}}; + return result; +} + +ov::Tensor PNDMScheduler::get_prev_sample(ov::Tensor sample, size_t timestep, int prev_timestep, ov::Tensor model_output) { + float alpha_prod_t = m_alphas_cumprod[timestep]; + float alpha_prod_t_prev = (prev_timestep >= 0) ? m_alphas_cumprod[prev_timestep] : m_final_alpha_cumprod; + float beta_prod_t = 1 - alpha_prod_t; + float beta_prod_t_prev = 1 - alpha_prod_t_prev; + + float sample_coeff = std::sqrt((alpha_prod_t_prev / alpha_prod_t)); + float model_output_denom_coeff = alpha_prod_t * std::sqrt(beta_prod_t_prev) + + std::sqrt((alpha_prod_t * beta_prod_t * alpha_prod_t_prev)); + + float* model_output_data = model_output.data(); + float* sample_data = sample.data(); + + switch (m_config.prediction_type) { + case PredictionType::EPSILON: + break; + case PredictionType::V_PREDICTION: + for (size_t i = 0; i < model_output.get_size(); ++i) { + model_output_data[i] = std::sqrt(alpha_prod_t) * model_output_data[i] + std::sqrt(beta_prod_t) * sample_data[i]; + } + break; + default: + OPENVINO_THROW("Unsupported value for 'PredictionType'"); + } + + ov::Tensor prev_sample = ov::Tensor(model_output.get_element_type(), model_output.get_shape()); + float* prev_sample_data = prev_sample.data(); + + for (size_t i = 0; i < prev_sample.get_size(); ++i) { + prev_sample_data[i] = sample_coeff * sample_data[i] - (alpha_prod_t_prev - alpha_prod_t) * model_output_data[i] / model_output_denom_coeff; + } + + return prev_sample; +} + +void PNDMScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { + float sqrt_alpha_prod = std::sqrt(m_alphas_cumprod[latent_timestep]); + float sqrt_one_minus_alpha_prod = std::sqrt(1.0 - m_alphas_cumprod[latent_timestep]); + + float * init_latent_data = init_latent.data(); + const float * noise_data = noise.data(); + + for (size_t i = 0; i < init_latent.get_size(); ++i) { + init_latent_data[i] = sqrt_alpha_prod * init_latent_data[i] + sqrt_one_minus_alpha_prod * noise_data[i]; + } +} + +std::vector PNDMScheduler::get_timesteps() const { + return m_timesteps; +} + +void PNDMScheduler::scale_model_input(ov::Tensor sample, size_t inference_step) { + return; +} + +float PNDMScheduler::get_init_noise_sigma() const { + return 1.0f; +} + + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/schedulers/pndm.hpp b/src/cpp/src/image_generation/schedulers/pndm.hpp new file mode 100644 index 0000000000..4e346f58b3 --- /dev/null +++ b/src/cpp/src/image_generation/schedulers/pndm.hpp @@ -0,0 +1,67 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include +#include + +#include "image_generation/schedulers/types.hpp" +#include "image_generation/schedulers/ischeduler.hpp" + +namespace ov { +namespace genai { + +class PNDMScheduler : public IScheduler { +public: + struct Config { + int32_t num_train_timesteps = 1000; + float beta_start = 0.0001f, beta_end = 0.02f; + BetaSchedule beta_schedule = BetaSchedule::LINEAR; + std::vector trained_betas = {}; + bool set_alpha_to_one = false, skip_prk_steps = false; + PredictionType prediction_type = PredictionType::EPSILON; + TimestepSpacing timestep_spacing = TimestepSpacing::LEADING; + size_t steps_offset = 0; + + Config() = default; + explicit Config(const std::filesystem::path& scheduler_config_path); + }; + + explicit PNDMScheduler(const std::filesystem::path& scheduler_config_path); + explicit PNDMScheduler(const Config& scheduler_config); + + void set_timesteps(size_t num_inference_steps, float strength) override; + + std::vector get_timesteps() const override; + + float get_init_noise_sigma() const override; + + void scale_model_input(ov::Tensor sample, size_t inference_step) override; + + std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; + + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t timestep) const override; + +private: + Config m_config; + + float m_final_alpha_cumprod; + size_t m_num_inference_steps; + size_t m_counter; + + std::vector m_alphas_cumprod; + std::vector m_timesteps; + std::vector m_prk_timesteps; + std::vector m_plms_timesteps; + std::vector m_ets; + + ov::Tensor m_cur_sample; + + std::map step_plms(ov::Tensor model_output, ov::Tensor sample, size_t timestep); + ov::Tensor get_prev_sample(ov::Tensor sample, size_t timestep, int prev_timestep, ov::Tensor model_output); +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/schedulers/scheduler.cpp b/src/cpp/src/image_generation/schedulers/scheduler.cpp index 3a7556b6d9..f9cd098346 100644 --- a/src/cpp/src/image_generation/schedulers/scheduler.cpp +++ b/src/cpp/src/image_generation/schedulers/scheduler.cpp @@ -10,6 +10,7 @@ #include "image_generation/schedulers/ddim.hpp" #include "image_generation/schedulers/euler_discrete.hpp" #include "image_generation/schedulers/flow_match_euler_discrete.hpp" +#include "image_generation/schedulers/pndm.hpp" namespace ov { namespace genai { @@ -38,6 +39,8 @@ std::shared_ptr Scheduler::from_config(const std::filesystem::path& s scheduler = std::make_shared(scheduler_config_path); } else if (scheduler_type == Scheduler::Type::FLOW_MATCH_EULER_DISCRETE) { scheduler = std::make_shared(scheduler_config_path); + } else if (scheduler_type == Scheduler::Type::PNDM) { + scheduler = std::make_shared(scheduler_config_path); } else { OPENVINO_THROW("Unsupported scheduler type '", scheduler_type, ". Please, manually create scheduler via supported one"); } diff --git a/src/cpp/src/image_generation/schedulers/types.cpp b/src/cpp/src/image_generation/schedulers/types.cpp index f7d21b12af..2f7c6d3f25 100644 --- a/src/cpp/src/image_generation/schedulers/types.cpp +++ b/src/cpp/src/image_generation/schedulers/types.cpp @@ -55,6 +55,8 @@ void read_json_param(const nlohmann::json& data, const std::string& name, Schedu param = Scheduler::EULER_DISCRETE; else if (scheduler_type_str == "FlowMatchEulerDiscreteScheduler") param = Scheduler::FLOW_MATCH_EULER_DISCRETE; + else if (scheduler_type_str == "PNDMScheduler") + param = Scheduler::PNDM; else if (!scheduler_type_str.empty()) { OPENVINO_THROW("Unsupported value for 'scheduler' ", scheduler_type_str); } diff --git a/src/docs/SUPPORTED_MODELS.md b/src/docs/SUPPORTED_MODELS.md index fe13e5848f..8c922ee644 100644 --- a/src/docs/SUPPORTED_MODELS.md +++ b/src/docs/SUPPORTED_MODELS.md @@ -183,10 +183,29 @@ The pipeline can work with other similar topologies produced by `optimum-intel`
From 973b26b2b1fed25b878ea6108b4d7c5ae825dc12 Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Tue, 17 Dec 2024 13:20:32 +0400 Subject: [PATCH 085/113] add VLM support in llm bench (#1318) TO DO: - [x] add test - [x] check correctness of num_input_tokens after https://github.com/openvinotoolkit/openvino.genai/pull/1317 - [x] move unsupported pipelines to optimum --------- Co-authored-by: Andrei Kochin --- .github/workflows/llm_bench-python.yml | 6 +- tools/llm_bench/benchmark.py | 2 + tools/llm_bench/doc/PROMPT.md | 7 +- .../llm_bench/llm_bench_utils/config_class.py | 6 +- .../llm_bench_utils/gen_output_data.py | 2 + .../llm_bench_utils/hook_beam_search.py | 26 +- .../llm_bench/llm_bench_utils/hook_common.py | 2 + .../llm_bench_utils/hook_greedy_search.py | 30 +- .../llm_bench_utils/metrics_print.py | 2 + .../llm_bench/llm_bench_utils/model_utils.py | 74 ++-- tools/llm_bench/llm_bench_utils/ov_utils.py | 81 ++++ .../llm_bench_utils/parse_json_data.py | 17 + .../task/visual_language_generation.py | 366 ++++++++++++++++++ 13 files changed, 586 insertions(+), 35 deletions(-) create mode 100644 tools/llm_bench/task/visual_language_generation.py diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index f87cd76126..3d31649cea 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -137,12 +137,16 @@ jobs: optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ./ov_models/whisper-tiny python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --optimum python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 + - name: Text InternVL2-1B on Linux + run: | + optimum-cli export openvino --model OpenGVLab/InternVL2-1B ./ov_models/internvl2-1B --task image-text-to-text --trust-remote-code + python ./tools/llm_bench/benchmark.py -m ./ov_models/internvl2-1B --media https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11 --prompt "What is unusual on this image?" -ic 20 + python ./tools/llm_bench/benchmark.py -m ./ov_models/internvl2-1B --media https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11 --prompt "What is unusual on this image?" -ic 20 --optimum - name: WWB Tests run: | pip install git+https://github.com/huggingface/optimum-intel.git GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }} python -m pytest -v ${{ env.WWB_PATH }}/tests - stateful: defaults: run: diff --git a/tools/llm_bench/benchmark.py b/tools/llm_bench/benchmark.py index bd5a5716a7..5fa22497c1 100644 --- a/tools/llm_bench/benchmark.py +++ b/tools/llm_bench/benchmark.py @@ -12,6 +12,7 @@ from llm_bench_utils.memory_profile import MemConsumption import llm_bench_utils.output_csv import llm_bench_utils.output_json +import task.visual_language_generation as bench_vlm import task.text_generation as bench_text import task.image_generation as bench_image import task.super_resolution_generation as bench_ldm_sr @@ -167,6 +168,7 @@ def get_argprser(): 'code_gen': bench_text.run_text_generation_benchmark, 'ldm_super_resolution': bench_ldm_sr.run_ldm_super_resolution_benchmark, 'speech2text': bench_speech.run_speech_2_txt_benchmark, + "vlm": bench_vlm.run_visual_language_generation_benchmark } diff --git a/tools/llm_bench/doc/PROMPT.md b/tools/llm_bench/doc/PROMPT.md index 4ee28d47fa..5418bf0bb5 100644 --- a/tools/llm_bench/doc/PROMPT.md +++ b/tools/llm_bench/doc/PROMPT.md @@ -36,4 +36,9 @@ Supported parameters that can be set are: * `timestamp` - timestamp for whisper (default true) Prompt file example: {"media": "./audio/intel_ad_90s_128kbps.mp3", "language": "<|en|>", "timestamp":false} -{"media": "./audio/intel_ad_120s_128kbps.mp3", "language": "<|en|>", "timestamp":true} \ No newline at end of file +{"media": "./audio/intel_ad_120s_128kbps.mp3", "language": "<|en|>", "timestamp":true} + +## 5. Visual Language Models +Supported parameters that can be set are: +* `media` - imge file path +* `prompt`- input text prompt \ No newline at end of file diff --git a/tools/llm_bench/llm_bench_utils/config_class.py b/tools/llm_bench/llm_bench_utils/config_class.py index 12385d2879..7dd27b198b 100644 --- a/tools/llm_bench/llm_bench_utils/config_class.py +++ b/tools/llm_bench/llm_bench_utils/config_class.py @@ -8,7 +8,8 @@ OVModelForCausalLM, OVModelForSeq2SeqLM, OVDiffusionPipeline, - OVModelForSpeechSeq2Seq + OVModelForSpeechSeq2Seq, + OVModelForVisualCausalLM ) from llm_bench_utils.ov_model_classes import OVMPTModel, OVLDMSuperResolutionPipeline, OVChatGLMModel @@ -36,6 +37,7 @@ 'chatglm3': OVModelForCausalLM, 'chatglm': OVChatGLMModel, 'whisper': OVModelForSpeechSeq2Seq, + "vlm": OVModelForVisualCausalLM, } PT_MODEL_CLASSES_MAPPING = { @@ -51,6 +53,7 @@ USE_CASES = { 'image_gen': ['stable-diffusion-', 'ssd-', 'tiny-sd', 'small-sd', 'lcm-', 'sdxl', 'dreamlike', "flux"], + "vlm": ["llava", "llava-next", "qwen2-vl", "llava-qwen2", "internvl-chat", "minicpmv", "phi3-v"], 'speech2text': ['whisper'], 'image_cls': ['vit'], 'code_gen': ['replit', 'codegen2', 'codegen', 'codet5', "stable-code"], @@ -111,4 +114,5 @@ 'speech2text': 'whisper', 'code_gen': 'decoder', 'ldm_super_resolution': 'ldm_super_resolution', + "vlm": "vlm" } diff --git a/tools/llm_bench/llm_bench_utils/gen_output_data.py b/tools/llm_bench/llm_bench_utils/gen_output_data.py index 3b7c668c82..b65e7b5c8c 100644 --- a/tools/llm_bench/llm_bench_utils/gen_output_data.py +++ b/tools/llm_bench/llm_bench_utils/gen_output_data.py @@ -16,6 +16,7 @@ def gen_iterate_data( max_uss_mem='', prompt_idx='', tokenization_time=[], + mm_embeddings_preparation_time='' ): iter_data = {} iter_data['iteration'] = iter_idx @@ -35,4 +36,5 @@ def gen_iterate_data( iter_data['prompt_idx'] = prompt_idx iter_data['tokenization_time'] = tokenization_time[0] if len(tokenization_time) > 0 else '' iter_data['detokenization_time'] = tokenization_time[1] if len(tokenization_time) > 1 else '' + iter_data["mm_embeddings_preparation_time"] = mm_embeddings_preparation_time return iter_data diff --git a/tools/llm_bench/llm_bench_utils/hook_beam_search.py b/tools/llm_bench/llm_bench_utils/hook_beam_search.py index 99b0a9e5c3..d933acc3a5 100644 --- a/tools/llm_bench/llm_bench_utils/hook_beam_search.py +++ b/tools/llm_bench/llm_bench_utils/hook_beam_search.py @@ -5,6 +5,7 @@ import time import torch import warnings +import types import logging as log from torch import nn from typing import Optional, Tuple, Union, List @@ -54,6 +55,7 @@ class GenerateBeamEncoderDecoderOutput(ModelOutput): tm_list = [] tm_infer_list = [] +tm_mm_embeddings = [] # Transformers version: v4.40-release 4fdf58afb72b0754da30037fc800b6044e7d9c99 @@ -455,6 +457,15 @@ def new_beam_search( else: return sequence_outputs["sequences"] +def new_get_multimodal_embeddings( + self, input_ids, pixel_values=None, attention_mask=None, position_ids=None, **kwargs + ): + + start = time.perf_counter() + result = self._orig_get_multimodal_embeddings(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, **kwargs) + end = time.perf_counter() + tm_mm_embeddings.append(end - start) + return result class BeamSearchHook: def __init__(self): @@ -483,6 +494,19 @@ def get_time_infer_list(self): global tm_infer_list return tm_infer_list + def get_mm_embeddings_time_list(self): + global tm_mm_embeddings + return tm_mm_embeddings + + def clear_mm_embeddins_time_list(self): + """Clear the infer time list.""" + global tm_mm_embeddings + tm_mm_embeddings.clear() + def new_forward(self, model): """Define a new beam search function.""" - model._beam_search = new_beam_search.__get__(model, model.__class__) \ No newline at end of file + model._beam_search = new_beam_search.__get__(model, model.__class__) + + def new_get_multimodal_embeddings(self, model): + model._orig_get_multimodal_embeddings = model.get_multimodal_embeddings + model.get_multimodal_embeddings = types.MethodType(new_get_multimodal_embeddings, model) \ No newline at end of file diff --git a/tools/llm_bench/llm_bench_utils/hook_common.py b/tools/llm_bench/llm_bench_utils/hook_common.py index 4751ed7d4d..c805680cee 100644 --- a/tools/llm_bench/llm_bench_utils/hook_common.py +++ b/tools/llm_bench/llm_bench_utils/hook_common.py @@ -21,6 +21,8 @@ def get_bench_hook(num_beams, ov_model): else: bench_hook = llm_bench_utils.hook_greedy_search.GreedySearchHook() bench_hook.new_forward(ov_model) + if hasattr(ov_model, "get_multimodal_embeddings"): + bench_hook.new_get_multimodal_embeddings(ov_model) else: log.warning(f'The minimum version of transformers to get 1st and 2nd tokens latency of {search_type} is: {min_version}') bench_hook = None diff --git a/tools/llm_bench/llm_bench_utils/hook_greedy_search.py b/tools/llm_bench/llm_bench_utils/hook_greedy_search.py index 03bbd55ea4..9039a99e69 100644 --- a/tools/llm_bench/llm_bench_utils/hook_greedy_search.py +++ b/tools/llm_bench/llm_bench_utils/hook_greedy_search.py @@ -4,6 +4,7 @@ # flake8: noqa import time import torch +import types import warnings import logging as log import transformers @@ -50,7 +51,7 @@ class GenerateEncoderDecoderOutput(ModelOutput): tm_list = [] tm_infer_list = [] - +tm_mm_embeddings = [] # Transformers version: v4.40-release 4fdf58afb72b0754da30037fc800b6044e7d9c99 # Copied from https://github.com/huggingface/transformers/blob/4fdf58afb72b0754da30037fc800b6044e7d9c99/src/transformers/generation/utils.py#L2310 # Add the function of collecting latency @@ -328,6 +329,17 @@ def new_greedy_search( return input_ids +def new_get_multimodal_embeddings( + self, input_ids, pixel_values=None, attention_mask=None, position_ids=None, **kwargs + ): + + start = time.perf_counter() + result = self._orig_get_multimodal_embeddings(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, **kwargs) + end = time.perf_counter() + tm_mm_embeddings.append(end - start) + return result + + class GreedySearchHook: def __init__(self): """Clear the time list.""" @@ -355,6 +367,16 @@ def get_time_infer_list(self): global tm_infer_list return tm_infer_list + + def get_mm_embeddings_time_list(self): + global tm_mm_embeddings + return tm_mm_embeddings + + def clear_mm_embeddins_time_list(self): + """Clear the infer time list.""" + global tm_mm_embeddings + tm_mm_embeddings.clear() + def new_forward(self, model): """Define a new greedy search function.""" model._greedy_search = new_greedy_search.__get__(model, model.__class__) @@ -363,4 +385,8 @@ def new_forward(self, model): if trans_version >= version.parse('4.45.0'): model._sample = hook_sample_v45.new_sample.__get__(model, model.__class__) elif trans_version >= version.parse('4.43.0'): - model._sample = hook_sample_v43.new_sample.__get__(model, model.__class__) + model._sample = hook_sample_v43.new_sample.__get__(model, model.__class__) + + def new_get_multimodal_embeddings(self, model): + model._orig_get_multimodal_embeddings = model.get_multimodal_embeddings + model.get_multimodal_embeddings = types.MethodType(new_get_multimodal_embeddings, model) \ No newline at end of file diff --git a/tools/llm_bench/llm_bench_utils/metrics_print.py b/tools/llm_bench/llm_bench_utils/metrics_print.py index 73e83dc672..740d3b9bcc 100644 --- a/tools/llm_bench/llm_bench_utils/metrics_print.py +++ b/tools/llm_bench/llm_bench_utils/metrics_print.py @@ -26,6 +26,8 @@ def print_metrics( output_str += 'Tokenization Time: {:.2f}ms, '.format(tokenization_time[0]) if len(tokenization_time) > 1: output_str += 'Detokenization Time: {:.2f}ms, '.format(tokenization_time[1]) + if iter_data['mm_embeddings_preparation_time'] != '': + output_str += ' Multimodal Embeddings Preparation Time: {:.2f}ms, '.format(iter_data['mm_embeddings_preparation_time']) if iter_data['generation_time'] != '': output_str += 'Generation Time: {:.2f}s, '.format(iter_data['generation_time']) if iter_data['latency'] != '': diff --git a/tools/llm_bench/llm_bench_utils/model_utils.py b/tools/llm_bench/llm_bench_utils/model_utils.py index f72557b6c5..f3e7d21777 100644 --- a/tools/llm_bench/llm_bench_utils/model_utils.py +++ b/tools/llm_bench/llm_bench_utils/model_utils.py @@ -13,38 +13,54 @@ def get_param_from_file(args, input_key): is_json_data = False data_list = [] - if args[input_key] is None and args['prompt_file'] is None: - if args['use_case'] == 'text_gen': - data_list.append('What is OpenVINO?') - elif args['use_case'] == 'code_gen': - data_list.append('def print_hello_world():') - elif args['use_case'] == 'image_gen': - data_list.append('sailing ship in storm by Leonardo da Vinci') - else: - raise RuntimeError(f'== {input_key} and prompt file is empty ==') - elif args[input_key] is not None and args['prompt_file'] is not None: - raise RuntimeError(f'== {input_key} and prompt file should not exist together ==') - else: - if args[input_key] is not None: - if args[input_key] != '': - data_list.append(args[input_key]) + if args['prompt_file'] is None: + if not isinstance(input_key, (list, tuple)): + if args[input_key] is None: + if args['use_case'] == 'text_gen': + data_list.append('What is OpenVINO?') + elif args['use_case'] == 'code_gen': + data_list.append('def print_hello_world():') + elif args['use_case'] == 'image_gen': + data_list.append('sailing ship in storm by Leonardo da Vinci') + else: + raise RuntimeError(f'== {input_key} and prompt file is empty ==') + + elif args[input_key] is not None and args['prompt_file'] is not None: + raise RuntimeError(f'== {input_key} and prompt file should not exist together ==') else: - raise RuntimeError(f'== {input_key} path should not be empty string ==') - else: - input_prompt_list = args['prompt_file'] - is_json_data = True - for input_prompt in input_prompt_list: - if input_prompt.endswith('.jsonl'): - if os.path.exists(input_prompt): - log.info(f'Read prompts from {input_prompt}') - with open(input_prompt, 'r', encoding='utf-8') as f: - for line in f: - data = json.loads(line) - data_list.append(data) + if args[input_key] is not None: + if args[input_key] != '': + data_list.append(args[input_key]) else: - raise RuntimeError(f'== The prompt file:{input_prompt} does not exist ==') + raise RuntimeError(f'== {input_key} path should not be empty string ==') + else: + if args["use_case"] != "vlm": + raise RuntimeError("Multiple sources for benchmarking supported only for Visual Language Models") + data_dict = {} + if args["media"] is None: + log.warn("Input image is not provided. Only text generation part will be evaluated") + else: + data_dict["media"] = args["media"] + if args["prompt"] is None: + data_dict["prompt"] = "What is OpenVINO?" if args["media"] is None else "Describe image" + else: + data_dict["prompt"] = args["prompt"] + data_list.append(data_dict) + else: + input_prompt_list = args['prompt_file'] + is_json_data = True + for input_prompt in input_prompt_list: + if input_prompt.endswith('.jsonl'): + if os.path.exists(input_prompt): + log.info(f'Read prompts from {input_prompt}') + with open(input_prompt, 'r', encoding='utf-8') as f: + for line in f: + data = json.loads(line) + data_list.append(data) else: - raise RuntimeError(f'== The prompt file:{input_prompt} should be ended with .jsonl ==') + raise RuntimeError(f'== The prompt file:{input_prompt} does not exist ==') + else: + raise RuntimeError(f'== The prompt file:{input_prompt} should be ended with .jsonl ==') return data_list, is_json_data diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index 8a28fbe355..427f1c84f3 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -23,6 +23,8 @@ import queue from transformers.generation.streamers import BaseStreamer +GENAI_SUPPORTED_VLM = ["llava", "llava-next", "internvl-chat", "minicpmv"] + def generate_simplified(self, *args, **kwargs): if len(args): @@ -523,6 +525,85 @@ def create_speech_2txt_model(model_path, device, **kwargs): return pipe, processor, from_pretrained_time, False +def get_vlm_processor(model_path): + config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + model_type = config.model_type + if model_type == "llava-qwen2": + processor = AutoProcessor.from_pretrained(config.mm_vision_tower, trust_remote_code=True) + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + preprocessors = {"processor": processor, "tokenizer": tokenizer} + elif model_type == "internvl_chat": + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + preprocessors = {"processor": None, "tokenizer": tokenizer, "config": config} + else: + processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) + preprocessors = {"processor": processor, "tokenizer": processor} + return preprocessors + + +def create_genai_image_text_gen_model(model_path, device, ov_config, **kwargs): + import openvino_genai + + if not (model_path / "openvino_tokenizer.xml").exists() or not (model_path / "openvino_detokenizer.xml").exists(): + convert_ov_tokenizer(model_path) + + processor_config = get_vlm_processor(model_path) + + start = time.perf_counter() + llm_pipe = openvino_genai.VLMPipeline(model_path, device.upper(), **ov_config) + end = time.perf_counter() + log.info(f'Pipeline initialization time: {end - start:.2f}s') + + return llm_pipe, processor_config, end - start, None, True + + +def create_image_text_gen_model(model_path, device, **kwargs): + model_path = Path(model_path) + # specify the model path + if model_path.name.endswith('xml'): + model_path = model_path.parents[2] + + ov_config = kwargs['config'] + + model_path_existed = Path(model_path).exists() + # load model + if not model_path_existed: + raise RuntimeError(f'==Failure ==: model path:{model_path} does not exist') + else: + remote_code = False + try: + model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=False) + except Exception: + model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + remote_code = True + if kwargs.get("genai", True) and is_genai_available(log_msg=True): + if model_config.model_type.replace("_", "-") in GENAI_SUPPORTED_VLM: + log.info("Selected OpenVINO GenAI for benchmarking") + return create_genai_image_text_gen_model(model_path, device, ov_config, **kwargs) + else: + log.warning( + f"Model type `{model_config.model_type}` is not supported by OpenVINO GenAI. " + "Benchmark will be switched to Optimum Intel pipeline realization" + ) + + log.info("Selected Optimum Intel for benchmarking") + model_class = OV_MODEL_CLASSES_MAPPING.get(DEFAULT_MODEL_CLASSES[kwargs['use_case']]) + start = time.perf_counter() + ov_model = model_class.from_pretrained( + model_path, + device=device, + ov_config=ov_config, + config=model_config, + trust_remote_code=remote_code + ) + end = time.perf_counter() + bench_hook = get_bench_hook(kwargs['num_beams'], ov_model) + from_pretrained_time = end - start + log.info(f'From pretrained time: {from_pretrained_time:.2f}s') + processor_config = get_vlm_processor(model_path) + return ov_model, processor_config, from_pretrained_time, bench_hook, False + + def is_genai_available(log_msg=False): import importlib try: diff --git a/tools/llm_bench/llm_bench_utils/parse_json_data.py b/tools/llm_bench/llm_bench_utils/parse_json_data.py index 6e2978d9d6..28fbd298cd 100644 --- a/tools/llm_bench/llm_bench_utils/parse_json_data.py +++ b/tools/llm_bench/llm_bench_utils/parse_json_data.py @@ -16,6 +16,23 @@ def parse_text_json_data(json_data_list): return text_param_list +def parse_vlm_json_data(json_data_list): + text_param_list = [] + for json_data in json_data_list: + prompt_data = {} + if 'prompt' in json_data: + if json_data['prompt'] != '': + prompt_data["prompt"] = json_data['prompt'] + else: + raise RuntimeError('== prompt should not be empty string ==') + else: + raise RuntimeError('== key word "prompt" does not exist ==') + if "media" in json_data_list: + prompt_data["media"] = json_data["media"] + text_param_list.append(prompt_data) + return text_param_list + + def parse_image_json_data(json_data_list): image_param_list = [] for data in json_data_list: diff --git a/tools/llm_bench/task/visual_language_generation.py b/tools/llm_bench/task/visual_language_generation.py new file mode 100644 index 0000000000..c4144366b4 --- /dev/null +++ b/tools/llm_bench/task/visual_language_generation.py @@ -0,0 +1,366 @@ +# -*- coding: utf-8 -*- +# Copyright (C) 2023-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 +import os +import time +import datetime +from pathlib import Path +import logging as log +import llm_bench_utils.ov_utils +import llm_bench_utils.pt_utils +import llm_bench_utils.model_utils as model_utils +import numpy as np +import openvino as ov +import hashlib +import llm_bench_utils.metrics_print as metrics_print +import llm_bench_utils.output_csv +from transformers import set_seed +from transformers.image_utils import load_image +import llm_bench_utils.output_json +import llm_bench_utils.output_file +import llm_bench_utils.gen_output_data as gen_output_data +import llm_bench_utils.parse_json_data as parse_json_data + +FW_UTILS = {'pt': llm_bench_utils.pt_utils, 'ov': llm_bench_utils.ov_utils} + +DEFAULT_OUTPUT_TOKEN_SIZE = 512 + + +def run_visual_language_generation_optimum( + inputs, num, model, processor, args, iter_data_list, md5_list, prompt_index, bench_hook, model_precision, proc_id, mem_consumption +): + set_seed(args['seed']) + if args['batch_size'] != 1: + log.warning("Only batch size 1 available for benchmarking") + args["batch_size"] = 1 + images = [] + prompts = [] + for input_data in inputs: + if "media" in input_data: + images.append(load_image(input_data["media"])) + prompts.append(input_data["prompt"]) + + if args["output_dir"] is not None and num == 0: + for bs_index, in_text in enumerate(prompts): + llm_bench_utils.output_file.output_input_text(in_text, args, model_precision, prompt_index, bs_index, proc_id) + tok_encode_start = time.perf_counter() + input_data = model.preprocess_inputs(text=prompts[0], image=images[0], **processor) + tok_encode_end = time.perf_counter() + tok_encode_time = (tok_encode_end - tok_encode_start) * 1000 + # Remove `token_type_ids` from inputs + input_tokens = input_data['input_ids'] if 'input_ids' in input_data else input_data + input_token_size = input_tokens[0].numel() + if args['batch_size'] > 1: + out_str = '[warm-up]' if num == 0 else '[{}]'.format(num) + out_str += " Batch_size={}, ".format(args['batch_size']) + out_str += 'all input token size after padding: {} * {}, '.format(input_token_size, args['batch_size']) + if args['infer_count'] is not None: + out_str += 'all max_output_token_size: {} * {}'.format(args['infer_count'], args['batch_size']) + log.info(out_str) + + max_rss_mem_consumption = '' + max_uss_mem_consumption = '' + max_shared_mem_consumption = '' + if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: + mem_consumption.start_collect_memory_consumption() + max_gen_tokens = DEFAULT_OUTPUT_TOKEN_SIZE if args['infer_count'] is None else args['infer_count'] + start = time.perf_counter() + if args['infer_count'] is not None and args['end_token_stopping'] is False: + model.generation_config.eos_token_id = None + model.config.eos_token_id = None + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + eos_token_id=None, + do_sample=False + ) + else: + result = model.generate( + **input_data, + max_new_tokens=int(max_gen_tokens), + num_beams=args['num_beams'], + use_cache=True, + do_sample=False + ) + end = time.perf_counter() + if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: + mem_consumption.end_collect_momory_consumption() + max_rss_mem_consumption, max_shared_mem_consumption, max_uss_mem_consumption = mem_consumption.get_max_memory_consumption() + mem_consumption.clear_max_memory_consumption() + + generation_time = end - start + tok_decode_start = time.perf_counter() + generated_text = processor["tokenizer"].batch_decode(result[:, input_data["input_ids"].shape[1]:], skip_special_tokens=True) + tok_decode_end = time.perf_counter() + tok_decode_time = (tok_decode_end - tok_decode_start) * 1000 + # Only text_gen need to minus length of input_data, because generated_text may include input_text + num_tokens = 0 + result_md5_list = [] + for bs_idx in range(args['batch_size']): + generated_token_size = len(result[bs_idx]) - input_data["input_ids"][bs_idx].numel() + num_tokens += generated_token_size + if generated_token_size > max_gen_tokens: + log.error('Output token size is over max output token size!') + result_text = generated_text[bs_idx] + if args["output_dir"] is not None: + llm_bench_utils.output_file.output_gen_text(result_text, args, model_precision, prompt_index, num, bs_idx, proc_id) + result_md5_list.append(hashlib.new("md5", result_text.encode(), usedforsecurity=False).hexdigest()) + if len(md5_list[num]) == 0: + md5_list[num] = {prompt_index : result_md5_list} + else: + md5_list[num][prompt_index] = result_md5_list + per_token_time = "" + if num_tokens > 0: + per_token_time = generation_time * 1000 / (num_tokens / args['batch_size']) + else: + log.warning("No generated tokens") + tm_list = [] + tm_infer_list = [] + tm_mm_embeddings = "" + if bench_hook is not None: + tm_list = bench_hook.get_time_list() + tm_mm_embeddings = np.mean(bench_hook.get_mm_embeddings_time_list()) * 1000 * 1000 + log.debug('latency of all tokens:') + [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] + tm_infer_list = bench_hook.get_time_infer_list() + log.debug('latency of all infers:') + [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_infer_list)] + if args['num_beams'] == 1 and generated_token_size != len(tm_infer_list): + log.warning(f'Output token size({generated_token_size}) is not equal to infer count({len(tm_infer_list)})') + iter_data = gen_output_data.gen_iterate_data( + iter_idx=num, + in_size=input_token_size * args['batch_size'], + infer_count=len(tm_infer_list), + out_size=num_tokens, + gen_time=generation_time, + latency=per_token_time, + res_md5=result_md5_list, + max_rss_mem=max_rss_mem_consumption, + max_shared_mem=max_shared_mem_consumption, + max_uss_mem=max_uss_mem_consumption, + prompt_idx=prompt_index, + tokenization_time=(tok_encode_time, tok_decode_time), + mm_embeddings_preparation_time=tm_mm_embeddings + ) + iter_data_list.append(iter_data) + metrics_print.print_metrics( + num, + iter_data, + tm_list, + tm_infer_list, + warm_up=(num == 0), + max_rss_mem=max_rss_mem_consumption, + max_shared_mem=max_shared_mem_consumption, + max_uss_mem=max_uss_mem_consumption, + tokenization_time=(tok_encode_time, tok_decode_time), + batch_size=args['batch_size'], + prompt_idx=prompt_index + ) + if num > 0: + prev_md5 = md5_list[num - 1][prompt_index] + if result_md5_list != prev_md5: + log.warning(f"[{num}] Prompt[{prompt_index}]'s md5 {result_md5_list} " + f"is different from md5 of the {num - 1} iteration {prev_md5}") + metrics_print.print_generated(num, warm_up=(num == 0), generated=generated_text[0], prompt_idx=prompt_index) + if not args.get("use_cb", False): + if num == 1: + # if the device is CPU, throw exception + if args['devices'].lower().startswith('cpu') is True: + assert (result_md5_list == prev_md5) + else: + # throw exception + assert (result_md5_list == prev_md5) + else: + metrics_print.print_generated(num, warm_up=(num == 0), generated=generated_text[0], prompt_idx=prompt_index) + if bench_hook is not None: + bench_hook.clear_time_list() + bench_hook.clear_time_infer_list() + bench_hook.clear_mm_embeddins_time_list() + + +def load_image_genai(image_path): + pil_image = load_image(image_path) + image_data = np.array(pil_image.getdata()).reshape(1, pil_image.size[1], pil_image.size[0], 3).astype(np.uint8) + return ov.Tensor(image_data) + + +def run_visual_language_generation_genai( + inputs, num, model, processor, args, iter_data_list, md5_list, prompt_index, streamer, model_precision, proc_id, mem_consumption +): + if args['batch_size'] != 1: + log.warning("Only batch size 1 available for benchmarking") + args["batch_size"] = 1 + images = [] + prompts = [] + for input_data in inputs: + if "media" in input_data: + images.append(load_image_genai(input_data["media"])) + prompts.append(input_data["prompt"]) + if args["output_dir"] is not None and num == 0: + for bs_index, in_text in enumerate(prompts): + llm_bench_utils.output_file.output_input_text(in_text, args, model_precision, prompt_index, bs_index, proc_id) + max_rss_mem_consumption = '' + max_uss_mem_consumption = '' + max_shared_mem_consumption = '' + if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: + mem_consumption.start_collect_memory_consumption() + max_gen_tokens = DEFAULT_OUTPUT_TOKEN_SIZE if args['infer_count'] is None else args['infer_count'] + gen_config = model.get_generation_config() + gen_config.max_new_tokens = max_gen_tokens + gen_config.num_beams = args["num_beams"] + gen_config.do_sample = False + start = time.perf_counter() + generation_result = model.generate(prompts[0], images=images[0], generation_config=gen_config) + end = time.perf_counter() + generated_text = generation_result.texts + perf_metrics = generation_result.perf_metrics + if (args['mem_consumption'] == 1 and num == 0) or args['mem_consumption'] == 2: + mem_consumption.end_collect_momory_consumption() + max_rss_mem_consumption, max_shared_mem_consumption, max_uss_mem_consumption = mem_consumption.get_max_memory_consumption() + mem_consumption.clear_max_memory_consumption() + + generation_time = end - start + result_md5_list = [] + generated_text_len = perf_metrics.get_num_generated_tokens() + if generated_text_len > max_gen_tokens: + log.error('Output token size is over max output token size!') + result_text = generated_text[0] + if args["output_dir"] is not None: + llm_bench_utils.output_file.output_gen_text(result_text, args, model_precision, prompt_index, num, 0, proc_id) + result_md5_list.append(hashlib.new("md5", result_text.encode(), usedforsecurity=False).hexdigest()) + if len(md5_list[num]) == 0: + md5_list[num] = {prompt_index : result_md5_list} + else: + md5_list[num][prompt_index] = result_md5_list + per_token_time = "" + if generated_text_len > 0: + per_token_time = generation_time * 1000 / (generated_text_len / args['batch_size']) + else: + log.warning("No generated tokens") + first_token_time = (perf_metrics.get_ttft().mean - perf_metrics.raw_metrics.tokenization_durations[-1] / 1000) * args["batch_size"] + second_tokens_durations = ( + np.array(perf_metrics.raw_metrics.m_new_token_times[1:]) + - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) + ).tolist() + + tm_list = np.array([first_token_time] + second_tokens_durations) / 1000 + log.debug('latency of all tokens:') + [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] + tokenization_time = ( + np.mean(perf_metrics.raw_metrics.tokenization_durations) / 1000, + np.mean(perf_metrics.raw_metrics.detokenization_durations) / 1000 + ) + iter_data = gen_output_data.gen_iterate_data( + iter_idx=num, + in_size=args['batch_size'] * perf_metrics.get_num_input_tokens(), + infer_count=len(tm_list), + out_size=generated_text_len, + gen_time=generation_time, + latency=per_token_time, + res_md5=result_md5_list, + max_rss_mem=max_rss_mem_consumption, + max_shared_mem=max_shared_mem_consumption, + max_uss_mem=max_uss_mem_consumption, + prompt_idx=prompt_index, + tokenization_time=tokenization_time, + mm_embeddings_preparation_time=perf_metrics.get_prepare_embeddings_duration().mean + ) + iter_data_list.append(iter_data) + metrics_print.print_metrics( + num, + iter_data, + tm_list.tolist(), + None, + warm_up=(num == 0), + max_rss_mem=max_rss_mem_consumption, + max_shared_mem=max_shared_mem_consumption, + max_uss_mem=max_uss_mem_consumption, + tokenization_time=tokenization_time, + batch_size=args['batch_size'], + prompt_idx=prompt_index + ) + if num > 0: + prev_md5 = md5_list[num - 1][prompt_index] + if result_md5_list != prev_md5: + log.warning(f"[{num}] Prompt[{prompt_index}]'s md5 {result_md5_list} " + f"is different from md5 of the {num - 1} iteration {prev_md5}") + metrics_print.print_generated(num, warm_up=(num == 0), generated=generated_text[0], prompt_idx=prompt_index) + else: + metrics_print.print_generated(num, warm_up=(num == 0), generated=generated_text[0], prompt_idx=prompt_index) + + +def run_visual_language_generation_benchmark(model_path, framework, device, args, num_iters, mem_consumption): + model, processor, pretrain_time, bench_hook, use_genai = FW_UTILS[framework].create_image_text_gen_model(model_path, device, **args) + model_precision = model_utils.get_model_precision(model_path.parts) + iter_data_list = [] + md5_list = {num : {} for num in range(num_iters + 1)} + input_image_text_list = get_image_text_prompt(args) + if args['prompt_index'] is None: + prompt_idx_list = list(range(0, len(input_image_text_list))) + image_text_list = input_image_text_list + else: + prompt_idx_list = [] + image_text_list = [] + for i in args['prompt_index']: + if 0 <= i < len(input_image_text_list): + image_text_list.append(input_image_text_list[i]) + prompt_idx_list.append(i) + if len(input_image_text_list) == 0: + raise RuntimeError('==Failure prompts is empty ==') + log.info(f"Numbeams: {args['num_beams']}, benchmarking iter nums(exclude warm-up): {num_iters}, " + f'prompt nums: {len(image_text_list)}, prompt idx: {prompt_idx_list}') + + if not use_genai: + gen_fn = run_visual_language_generation_optimum + else: + gen_fn = run_visual_language_generation_genai + + proc_id = os.getpid() + iter_timestamp = model_utils.init_timestamp(num_iters, image_text_list, prompt_idx_list) + if args['subsequent'] is False: + for num in range(num_iters + 1): + for idx, input_text in enumerate(image_text_list): + p_idx = prompt_idx_list[idx] + if num == 0: + log.info(f'[warm-up][P{p_idx}] Input text: {input_text}') + iter_timestamp[num][p_idx]['start'] = datetime.datetime.now().isoformat() + gen_fn( + input_text, num, model, processor, args, iter_data_list, md5_list, + p_idx, bench_hook, model_precision, proc_id, mem_consumption) + iter_timestamp[num][p_idx]['end'] = datetime.datetime.now().isoformat() + prefix = '[warm-up]' if num == 0 else '[{}]'.format(num) + log.info(f"{prefix}[P{p_idx}] start: {iter_timestamp[num][p_idx]['start']}, end: {iter_timestamp[num][p_idx]['end']}") + else: + for idx, input_text in enumerate(image_text_list): + p_idx = prompt_idx_list[idx] + for num in range(num_iters + 1): + if num == 0: + log.info(f'[warm-up][P{p_idx}] Input text: {input_text}') + iter_timestamp[num][p_idx]['start'] = datetime.datetime.now().isoformat() + gen_fn( + input_text, num, model, processor, args, iter_data_list, md5_list, + prompt_idx_list[idx], bench_hook, model_precision, proc_id, mem_consumption) + iter_timestamp[num][p_idx]['end'] = datetime.datetime.now().isoformat() + prefix = '[warm-up]' if num == 0 else '[{}]'.format(num) + log.info(f"{prefix}[P{p_idx}] start: {iter_timestamp[num][p_idx]['start']}, end: {iter_timestamp[num][p_idx]['end']}") + + metrics_print.print_average(iter_data_list, prompt_idx_list, args['batch_size'], True) + return iter_data_list, pretrain_time, iter_timestamp + + +def get_image_text_prompt(args): + vlm_file_list = [] + output_data_list, is_json_data = model_utils.get_param_from_file(args, ['media', "prompt"]) + if is_json_data: + vlm_param_list = parse_json_data.parse_vlm_json_data(output_data_list) + if len(vlm_param_list) > 0: + for vlm_file in vlm_param_list: + if args['prompt_file'] is not None and len(args['prompt_file']) > 0: + vlm_file['media'] = os.path.join(os.path.dirname(args['prompt_file'][0]), vlm_file['media'].replace('./', '')) + vlm_file['media'] = Path(vlm_file['media']) + vlm_file_list.append(vlm_file) + else: + vlm_file_list.append(output_data_list) + return vlm_file_list From f598639fa23530457aece2d0f9a0527f82be0c3f Mon Sep 17 00:00:00 2001 From: tongqiu Date: Tue, 17 Dec 2024 22:52:43 +0800 Subject: [PATCH 086/113] Add workaround for MSVC mutex constructor issue (#1367) This issue is a MSVC compiler bug affecting certain versions of Visual Studio 2022. When using `std::mutex` a null dereference may occur, leading to a silent crash in Release mode, as illustrated in the image below. ![mutex](https://github.com/user-attachments/assets/07331f59-7e6d-47b4-a72a-887e01817fa8) Adding the compiler option `/D"_DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR" `serves as a workaround for this problem. Reference: https://hydrogenaud.io/index.php/topic,126070.0.html https://github.com/microsoft/STL/wiki/Changelog#vs-2022-1710 --- CMakeLists.txt | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index 35ca895abc..fec8df34af 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -79,6 +79,13 @@ if(WIN32 OR APPLE) set(CMAKE_DEBUG_POSTFIX "d") endif() +# Workaround for an MSVC compiler issue in some versions of Visual Studio 2022. +# The issue involves a null dereference to a mutex. For details, refer to link https://github.com/microsoft/STL/wiki/Changelog#vs-2022-1710 +if(MSVC AND MSVC_VERSION GREATER_EQUAL 1930 AND MSVC_VERSION LESS 1941) + add_compile_definitions(_DISABLE_CONSTEXPR_MUTEX_CONSTRUCTOR) +endif() + + add_subdirectory(thirdparty) add_subdirectory(src) if(EXISTS "${OpenVINOGenAI_SOURCE_DIR}/samples") From c6af2f12d7e85f14c5b8260f43d03a7a32508ddc Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Tue, 17 Dec 2024 18:53:13 +0400 Subject: [PATCH 087/113] [Image to image] PNDM support (#1394) Continuation for https://github.com/openvinotoolkit/openvino.genai/pull/1393 CVS-158967 --- samples/cpp/image_generation/README.md | 4 ++++ samples/cpp/image_generation/inpainting.bmp | 3 +++ samples/python/image_generation/README.md | 4 ++++ src/cpp/src/image_generation/schedulers/pndm.cpp | 8 ++++++++ src/python/openvino_genai/py_openvino_genai.pyi | 5 ++++- src/python/py_image_generation_pipelines.cpp | 3 ++- tools/llm_bench/llm_bench_utils/ov_utils.py | 3 ++- 7 files changed, 27 insertions(+), 3 deletions(-) create mode 100644 samples/cpp/image_generation/inpainting.bmp diff --git a/samples/cpp/image_generation/README.md b/samples/cpp/image_generation/README.md index f8dc21cc39..3dcb64b97c 100644 --- a/samples/cpp/image_generation/README.md +++ b/samples/cpp/image_generation/README.md @@ -143,4 +143,8 @@ And run the sample: `./inpainting ./stable-diffusion-2-inpainting 'Face of a yellow cat, high resolution, sitting on a park bench' image.png mask_image.png` +The resuling image is: + + ![](./inpainting.bmp) + Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `InpaintingPipeline`. diff --git a/samples/cpp/image_generation/inpainting.bmp b/samples/cpp/image_generation/inpainting.bmp new file mode 100644 index 0000000000..b93292e075 --- /dev/null +++ b/samples/cpp/image_generation/inpainting.bmp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:527cee8f7d451c7e5004bc58c079d4c853443644eaeb2d84a343016cd25214c1 +size 786486 diff --git a/samples/python/image_generation/README.md b/samples/python/image_generation/README.md index 3e53f40fc4..13b4ea6ee0 100644 --- a/samples/python/image_generation/README.md +++ b/samples/python/image_generation/README.md @@ -142,4 +142,8 @@ And run the sample: `python inpainting.py ./stable-diffusion-2-inpainting 'Face of a yellow cat, high resolution, sitting on a park bench' image.png mask_image.png` +The resuling image is: + + ![](./../../cpp/image_generation/inpainting.bmp) + Note, that LoRA, heterogeneous execution and other features of `Text2ImagePipeline` are applicable for `InpaintingPipeline`. diff --git a/src/cpp/src/image_generation/schedulers/pndm.cpp b/src/cpp/src/image_generation/schedulers/pndm.cpp index a760283b97..4ddc099d0e 100644 --- a/src/cpp/src/image_generation/schedulers/pndm.cpp +++ b/src/cpp/src/image_generation/schedulers/pndm.cpp @@ -132,6 +132,14 @@ void PNDMScheduler::set_timesteps(size_t num_inference_steps, float strength) { m_ets = {}; m_counter = 0; m_cur_sample = ov::Tensor(ov::element::f32, {}); + + // apply 'strength' used in image generation + // in diffusers, it's https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L711 + { + size_t init_timestep = std::min(num_inference_steps * strength, num_inference_steps); + size_t t_start = std::max(num_inference_steps - init_timestep, 0); + m_timesteps = std::vector(m_timesteps.begin() + t_start, m_timesteps.end()); + } } std::map PNDMScheduler::step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) { diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 8b8eb76b12..6135a187eb 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1338,6 +1338,8 @@ class Scheduler: EULER_DISCRETE FLOW_MATCH_EULER_DISCRETE + + PNDM """ AUTO: typing.ClassVar[Scheduler.Type] # value = DDIM: typing.ClassVar[Scheduler.Type] # value = @@ -1345,7 +1347,8 @@ class Scheduler: FLOW_MATCH_EULER_DISCRETE: typing.ClassVar[Scheduler.Type] # value = LCM: typing.ClassVar[Scheduler.Type] # value = LMS_DISCRETE: typing.ClassVar[Scheduler.Type] # value = - __members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': , 'LCM': , 'LMS_DISCRETE': , 'DDIM': , 'EULER_DISCRETE': , 'FLOW_MATCH_EULER_DISCRETE': } + PNDM: typing.ClassVar[Scheduler.Type] # value = + __members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': , 'LCM': , 'LMS_DISCRETE': , 'DDIM': , 'EULER_DISCRETE': , 'FLOW_MATCH_EULER_DISCRETE': , 'PNDM': } def __eq__(self, other: typing.Any) -> bool: ... def __getstate__(self) -> int: diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index da6ce6d21b..f5347c279d 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -197,7 +197,8 @@ void init_image_generation_pipelines(py::module_& m) { .value("LMS_DISCRETE", ov::genai::Scheduler::Type::LMS_DISCRETE) .value("DDIM", ov::genai::Scheduler::Type::DDIM) .value("EULER_DISCRETE", ov::genai::Scheduler::Type::EULER_DISCRETE) - .value("FLOW_MATCH_EULER_DISCRETE", ov::genai::Scheduler::Type::FLOW_MATCH_EULER_DISCRETE); + .value("FLOW_MATCH_EULER_DISCRETE", ov::genai::Scheduler::Type::FLOW_MATCH_EULER_DISCRETE) + .value("PNDM", ov::genai::Scheduler::Type::PNDM); image_generation_scheduler.def_static("from_config", &ov::genai::Scheduler::from_config, py::arg("scheduler_config_path"), diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index 427f1c84f3..c3df84925b 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -420,7 +420,8 @@ def get_vae_decoder_step_count(self): start = time.perf_counter() scheduler_type = data.get("scheduler", ["", ""])[1] - if (scheduler_type not in ["LCMScheduler", "DDIMScheduler", "LMSDiscreteScheduler", "EulerDiscreteScheduler", "FlowMatchEulerDiscreteScheduler"]): + if (scheduler_type not in ["LCMScheduler", "DDIMScheduler", "PNDMScheduler", "LMSDiscreteScheduler", "EulerDiscreteScheduler", + "FlowMatchEulerDiscreteScheduler"]): scheduler = openvino_genai.Scheduler.from_config(model_path / "scheduler/scheduler_config.json", openvino_genai.Scheduler.Type.DDIM) log.warning(f'Type of scheduler {scheduler_type} is unsupported. Please, be aware that it will be replaced to DDIMScheduler') From 79f64a6541558a66e7d55b36990b26dbcf5ebf4b Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Tue, 17 Dec 2024 18:53:50 +0400 Subject: [PATCH 088/113] [Inpainting] Added single channel mask support (#1398) Current PR brings a single channel masks support (both GRAY and BINARY; GRAY is converted in BINARY anyway within mask image processor) Based on passed mask type, we dynamically select proper mask processor and convert all mask images types to BINARY. CVS-159222 --- .../image_generation/image2image_pipeline.hpp | 9 ++++++++- .../image_generation/inpainting_pipeline.hpp | 9 ++++++++- .../image_generation/text2image_pipeline.hpp | 2 +- src/cpp/src/image_generation/image_processor.cpp | 16 ++++++---------- src/cpp/src/image_generation/image_processor.hpp | 4 ++-- .../stable_diffusion_pipeline.hpp | 14 ++++++++------ 6 files changed, 33 insertions(+), 21 deletions(-) diff --git a/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp index ea02969c5e..c6c1f59c88 100644 --- a/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/image2image_pipeline.hpp @@ -67,7 +67,14 @@ class OPENVINO_GENAI_EXPORTS Image2ImagePipeline { return compile(device, ov::AnyMap{std::forward(properties)...}); } - // Returns a tensor with the following dimensions [num_images_per_prompt, height, width, 3] + /** + * Peforms initial image editing conditioned on a text prompt. + * @param positive_prompt Prompt to generate image(s) from + * @param initial_image RGB/BGR image of [1, height, width, 3] shape used to initialize latent image + * @param properties Image generation parameters specified as properties. Values in 'properties' override default value for generation parameters. + * @returns A tensor which has dimensions [num_images_per_prompt, height, width, 3] + * @note Output image size is the same as initial image size, but rounded down to be divisible by VAE scale factor (usually, 8) + */ ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, const ov::AnyMap& properties = {}); template diff --git a/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp index 6eead673e4..03dd9468f7 100644 --- a/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/inpainting_pipeline.hpp @@ -89,7 +89,14 @@ class OPENVINO_GENAI_EXPORTS InpaintingPipeline { return compile(device, ov::AnyMap{std::forward(properties)...}); } - // Returns a tensor with the following dimensions [num_images_per_prompt, height, width, 3] + /** + * Inpaints an initial image within an area defined by mask and conditioned on prompt + * @param positive_prompt Prompt to generate image(s) from + * @param initial_image RGB/BGR image of [1, height, width, 3] shape used to initialize latent image + * @param mask_image RGB/BGR or GRAY/BINARY image of [1, height, width, 3 or 1] shape used as a mask + * @param properties Image generation parameters specified as properties. Values in 'properties' override default value for generation parameters. + * @returns A tensor which has dimensions [num_images_per_prompt, height, width, 3] + */ ov::Tensor generate(const std::string& positive_prompt, ov::Tensor initial_image, ov::Tensor mask_image, const ov::AnyMap& properties = {}); template diff --git a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp index 34b9d6e341..3dc1fc0803 100644 --- a/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp +++ b/src/cpp/include/openvino/genai/image_generation/text2image_pipeline.hpp @@ -200,7 +200,7 @@ class OPENVINO_GENAI_EXPORTS Text2ImagePipeline { } /** - * Generates image(s) based on prompt and other image generarion parameters + * Generates image(s) based on prompt and other image generation parameters * @param positive_prompt Prompt to generate image(s) from * @param properties Image generation parameters specified as properties. Values in 'properties' override default value for generation parameters. * @returns A tensor which has dimensions [num_images_per_prompt, height, width, 3] diff --git a/src/cpp/src/image_generation/image_processor.cpp b/src/cpp/src/image_generation/image_processor.cpp index 8c73ee2da0..1e168da33b 100644 --- a/src/cpp/src/image_generation/image_processor.cpp +++ b/src/cpp/src/image_generation/image_processor.cpp @@ -41,34 +41,30 @@ void IImageProcessor::compile(std::shared_ptr model) { m_request = utils::singleton_core().compile_model(model, m_device).create_infer_request(); } -ImageProcessor::ImageProcessor(const std::string& device, bool do_normalize, bool do_binarize) : +ImageProcessor::ImageProcessor(const std::string& device, bool do_normalize, bool do_binarize, bool gray_scale_source) : IImageProcessor(device) { auto image_processor_model = create_empty_model(); - merge_image_preprocessing(image_processor_model, do_normalize, do_binarize); + merge_image_preprocessing(image_processor_model, do_normalize, do_binarize, gray_scale_source); compile(image_processor_model); } -void ImageProcessor::merge_image_preprocessing(std::shared_ptr model, bool do_normalize, bool do_binarize) { +void ImageProcessor::merge_image_preprocessing(std::shared_ptr model, bool do_normalize, bool do_binarize, bool gray_scale_source) { OPENVINO_ASSERT(do_normalize ^ do_binarize, "Both binarize and normalize are not supported"); // https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L90-L110 ov::preprocess::PrePostProcessor ppp(model); + ov::preprocess::ColorFormat source_color_format = gray_scale_source ? ov::preprocess::ColorFormat::GRAY : ov::preprocess::ColorFormat::RGB; + ppp.input().tensor() .set_layout("NHWC") .set_element_type(ov::element::u8) - .set_color_format(ov::preprocess::ColorFormat::BGR); + .set_color_format(source_color_format); ppp.input().model() .set_layout("NCHW"); if (do_normalize) { - ppp.input().tensor().set_layout("NHWC"); - ppp.input().model().set_layout("NCHW"); - - ppp.input().tensor() - .set_element_type(ov::element::u8); - ppp.input().preprocess() .convert_layout() .convert_element_type(ov::element::f32) diff --git a/src/cpp/src/image_generation/image_processor.hpp b/src/cpp/src/image_generation/image_processor.hpp index d0ef7532aa..8c62742006 100644 --- a/src/cpp/src/image_generation/image_processor.hpp +++ b/src/cpp/src/image_generation/image_processor.hpp @@ -28,9 +28,9 @@ class IImageProcessor { class ImageProcessor : public IImageProcessor { public: - explicit ImageProcessor(const std::string& device, bool do_normalize = true, bool do_binarize = false); + explicit ImageProcessor(const std::string& device, bool do_normalize = true, bool do_binarize = false, bool gray_scale_source = false); - static void merge_image_preprocessing(std::shared_ptr model, bool do_normalize = true, bool do_binarize = false); + static void merge_image_preprocessing(std::shared_ptr model, bool do_normalize = true, bool do_binarize = false, bool gray_scale_source = false); }; class ImageResizer { diff --git a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp index 7549b67919..3801c855fd 100644 --- a/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp +++ b/src/cpp/src/image_generation/stable_diffusion_pipeline.hpp @@ -33,14 +33,15 @@ class StableDiffusionPipeline : public DiffusionPipeline { const std::string device = "CPU"; if (m_pipeline_type == PipelineType::IMAGE_2_IMAGE || m_pipeline_type == PipelineType::INPAINTING) { - const bool do_normalize = true, do_binarize = false; - m_image_processor = std::make_shared(device, do_normalize, do_binarize); + const bool do_normalize = true, do_binarize = false, gray_scale_source = false; + m_image_processor = std::make_shared(device, do_normalize, do_binarize, gray_scale_source); m_image_resizer = std::make_shared(device, ov::element::u8, "NHWC", ov::op::v11::Interpolate::InterpolateMode::BICUBIC_PILLOW); } if (m_pipeline_type == PipelineType::INPAINTING) { - const bool do_normalize = false, do_binarize = true; - m_mask_processor = std::make_shared(device, do_normalize, do_binarize); + bool do_normalize = false, do_binarize = true; + m_mask_processor_rgb = std::make_shared(device, do_normalize, do_binarize, false); + m_mask_processor_gray = std::make_shared(device, do_normalize, do_binarize, true); m_mask_resizer = std::make_shared(device, ov::element::f32, "NCHW", ov::op::v11::Interpolate::InterpolateMode::NEAREST); } } @@ -267,7 +268,8 @@ class StableDiffusionPipeline : public DiffusionPipeline { ov::Shape target_shape = processed_image.get_shape(); ov::Tensor mask_condition = m_image_resizer->execute(mask_image, target_shape[2], target_shape[3]); - mask_condition = m_mask_processor->execute(mask_condition); + std::shared_ptr mask_processor = mask_condition.get_shape()[3] == 1 ? m_mask_processor_gray : m_mask_processor_rgb; + mask_condition = mask_processor->execute(mask_condition); // resize mask to shape of latent space ov::Tensor mask = m_mask_resizer->execute(mask_condition, target_shape[2] / vae_scale_factor, target_shape[3] / vae_scale_factor); @@ -501,7 +503,7 @@ class StableDiffusionPipeline : public DiffusionPipeline { std::shared_ptr m_clip_text_encoder = nullptr; std::shared_ptr m_unet = nullptr; std::shared_ptr m_vae = nullptr; - std::shared_ptr m_image_processor = nullptr, m_mask_processor = nullptr; + std::shared_ptr m_image_processor = nullptr, m_mask_processor_rgb = nullptr, m_mask_processor_gray = nullptr; std::shared_ptr m_image_resizer = nullptr, m_mask_resizer = nullptr; }; From b31b6a152c3771bb92427b85cd85cc5ebd514f36 Mon Sep 17 00:00:00 2001 From: guozhong wang Date: Wed, 18 Dec 2024 01:08:54 +0800 Subject: [PATCH 089/113] Enable print properties of compiled model in genai API (#1289) When setting the environment variable OPENVINO_LOG_LEVEL > ov::log::Level::WARNING, the properties of the compiled model can be printed in genai API. When the device is CPU, the properties of the compiled model are as follows: Model: Stateful LLM model NETWORK_NAME: Model0 OPTIMAL_NUMBER_OF_INFER_REQUESTS: 1 NUM_STREAMS: 1 INFERENCE_NUM_THREADS: 48 PERF_COUNT: NO INFERENCE_PRECISION_HINT: bf16 PERFORMANCE_HINT: LATENCY EXECUTION_MODE_HINT: PERFORMANCE PERFORMANCE_HINT_NUM_REQUESTS: 0 ENABLE_CPU_PINNING: YES SCHEDULING_CORE_TYPE: ANY_CORE MODEL_DISTRIBUTION_POLICY: ENABLE_HYPER_THREADING: NO EXECUTION_DEVICES: CPU CPU_DENORMALS_OPTIMIZATION: NO LOG_LEVEL: LOG_NONE CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1 DYNAMIC_QUANTIZATION_GROUP_SIZE: 32 KV_CACHE_PRECISION: f16 AFFINITY: CORE EXECUTION_DEVICES: CPU: Intel(R) Xeon(R) Platinum 8468 [stable_diffusion_compiled_model_log.txt](https://github.com/user-attachments/files/18120641/stable_diffusion_compiled_model_log.txt) --------- Co-authored-by: Ilya Lavrenov --- .github/workflows/llm_bench-python.yml | 1 + src/README.md | 4 ++ src/cpp/src/continuous_batching_impl.cpp | 4 +- .../models/autoencoder_kl.cpp | 2 + .../models/clip_text_model.cpp | 1 + .../clip_text_model_with_projection.cpp | 1 + .../models/flux_transformer_2d_model.cpp | 1 + .../models/sd3_transformer_2d_model.cpp | 1 + .../models/t5_encoder_model.cpp | 1 + .../models/unet_inference_dynamic.hpp | 1 + .../models/unet_inference_static_bs1.hpp | 1 + src/cpp/src/llm_pipeline.cpp | 8 +++- src/cpp/src/llm_pipeline_static.cpp | 13 +++--- src/cpp/src/lora_adapter.cpp | 4 +- src/cpp/src/tokenizer.cpp | 2 + src/cpp/src/utils.cpp | 37 ++++++++++++++++ src/cpp/src/utils.hpp | 2 + .../src/visual_language/embedding_model.cpp | 1 + .../src/visual_language/inputs_embedder.cpp | 7 +-- src/cpp/src/visual_language/pipeline.cpp | 2 +- .../src/visual_language/vision_encoder.cpp | 10 +++-- src/cpp/src/whisper_pipeline.cpp | 21 +++++---- src/cpp/src/whisper_pipeline_static.cpp | 13 ++++-- src/docs/DEBUG_LOG.md | 43 +++++++++++++++++++ 24 files changed, 152 insertions(+), 29 deletions(-) create mode 100644 src/docs/DEBUG_LOG.md diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 3d31649cea..6903882ca0 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -61,6 +61,7 @@ jobs: SRC_DIR: ${{ github.workspace }} LLM_BENCH_PYPATH: ${{ github.workspace }}/tools/llm_bench WWB_PATH: ${{ github.workspace }}/tools/who_what_benchmark + OPENVINO_LOG_LEVEL: 3 steps: - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 diff --git a/src/README.md b/src/README.md index c90bc8f4e4..6466b431d0 100644 --- a/src/README.md +++ b/src/README.md @@ -403,3 +403,7 @@ For information on how OpenVINO™ GenAI works, refer to the [How It Works Secti ## Supported Models For a list of supported models, refer to the [Supported Models Section](./docs/SUPPORTED_MODELS.md). + +## Debug Log + +For using debug log, refer to [DEBUG Log](./doc/DEBUG_LOG.md). diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index 1e42f5b2d9..bf0c979d39 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -46,7 +46,9 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::init( const ov::AnyMap& properties, const DeviceConfig& device_config, ov::Core& core) { - ov::InferRequest infer_request = core.compile_model(model, device_config.get_device(), properties).create_infer_request(); + auto compiled_model = core.compile_model(model, device_config.get_device(), properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "LLM with Paged Attention"); + ov::InferRequest infer_request = compiled_model.create_infer_request(); // setup KV caches m_cache_manager = std::make_shared(device_config, core); diff --git a/src/cpp/src/image_generation/models/autoencoder_kl.cpp b/src/cpp/src/image_generation/models/autoencoder_kl.cpp index e0d6a44189..d3dd7324ee 100644 --- a/src/cpp/src/image_generation/models/autoencoder_kl.cpp +++ b/src/cpp/src/image_generation/models/autoencoder_kl.cpp @@ -212,12 +212,14 @@ AutoencoderKL& AutoencoderKL::compile(const std::string& device, const ov::AnyMa if (m_encoder_model) { ov::CompiledModel encoder_compiled_model = core.compile_model(m_encoder_model, device, properties); + ov::genai::utils::print_compiled_model_properties(encoder_compiled_model, "Auto encoder KL encoder model"); m_encoder_request = encoder_compiled_model.create_infer_request(); // release the original model m_encoder_model.reset(); } ov::CompiledModel decoder_compiled_model = core.compile_model(m_decoder_model, device, properties); + ov::genai::utils::print_compiled_model_properties(decoder_compiled_model, "Auto encoder KL decoder model"); m_decoder_request = decoder_compiled_model.create_infer_request(); // release the original model m_decoder_model.reset(); diff --git a/src/cpp/src/image_generation/models/clip_text_model.cpp b/src/cpp/src/image_generation/models/clip_text_model.cpp index d2dab30bcf..efbc840d4f 100644 --- a/src/cpp/src/image_generation/models/clip_text_model.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model.cpp @@ -97,6 +97,7 @@ CLIPTextModel& CLIPTextModel::compile(const std::string& device, const ov::AnyMa } else { compiled_model = core.compile_model(m_model, device, properties); } + ov::genai::utils::print_compiled_model_properties(compiled_model, "Clip Text model"); m_request = compiled_model.create_infer_request(); // release the original model m_model.reset(); diff --git a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp index 13c7f5a442..982800a701 100644 --- a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp @@ -88,6 +88,7 @@ CLIPTextModelWithProjection& CLIPTextModelWithProjection::compile(const std::str } else { compiled_model = core.compile_model(m_model, device, properties); } + ov::genai::utils::print_compiled_model_properties(compiled_model, "Clip Text with projection model"); m_request = compiled_model.create_infer_request(); // release the original model m_model.reset(); diff --git a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp index 6b28b116b0..b09f099655 100644 --- a/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/flux_transformer_2d_model.cpp @@ -108,6 +108,7 @@ FluxTransformer2DModel& FluxTransformer2DModel::reshape(int batch_size, FluxTransformer2DModel& FluxTransformer2DModel::compile(const std::string& device, const ov::AnyMap& properties) { OPENVINO_ASSERT(m_model, "Model has been already compiled. Cannot re-compile already compiled model"); ov::CompiledModel compiled_model = utils::singleton_core().compile_model(m_model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "Flux Transformer 2D model"); m_request = compiled_model.create_infer_request(); // release the original model m_model.reset(); diff --git a/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp b/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp index 70dddb0476..33771f2316 100644 --- a/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp +++ b/src/cpp/src/image_generation/models/sd3_transformer_2d_model.cpp @@ -105,6 +105,7 @@ SD3Transformer2DModel& SD3Transformer2DModel::reshape(int batch_size, SD3Transformer2DModel& SD3Transformer2DModel::compile(const std::string& device, const ov::AnyMap& properties) { OPENVINO_ASSERT(m_model, "Model has been already compiled. Cannot re-compile already compiled model"); ov::CompiledModel compiled_model = utils::singleton_core().compile_model(m_model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "SD3 Transformer 2D model"); m_request = compiled_model.create_infer_request(); // release the original model m_model.reset(); diff --git a/src/cpp/src/image_generation/models/t5_encoder_model.cpp b/src/cpp/src/image_generation/models/t5_encoder_model.cpp index 8c6df34667..21df456d46 100644 --- a/src/cpp/src/image_generation/models/t5_encoder_model.cpp +++ b/src/cpp/src/image_generation/models/t5_encoder_model.cpp @@ -63,6 +63,7 @@ T5EncoderModel& T5EncoderModel::compile(const std::string& device, const ov::Any ov::Core core = utils::singleton_core(); ov::CompiledModel compiled_model; compiled_model = core.compile_model(m_model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "T5 encoder model"); m_request = compiled_model.create_infer_request(); // release the original model m_model.reset(); diff --git a/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp b/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp index c8658a1c1a..6dc285f76d 100644 --- a/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp +++ b/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp @@ -20,6 +20,7 @@ class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel:: ov::Core core = utils::singleton_core(); ov::CompiledModel compiled_model = core.compile_model(model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "UNet 2D Condition dynamic model"); m_request = compiled_model.create_infer_request(); } diff --git a/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp b/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp index fcde31e9ee..7aa6f6301c 100644 --- a/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp +++ b/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp @@ -40,6 +40,7 @@ class UNet2DConditionModel::UNetInferenceStaticBS1 : public UNet2DConditionModel ov::Core core = utils::singleton_core(); ov::CompiledModel compiled_model = core.compile_model(model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "UNet 2D Condition batch-1 model"); for (int i = 0; i < m_native_batch_size; i++) { diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index f663b27dd9..6d9aae30fa 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -77,6 +77,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { const ov::genai::GenerationConfig& generation_config ) : LLMPipelineImplBase(tokenizer, generation_config) { ov::Core core; + ov::CompiledModel compiled_model; auto [core_plugin_config, plugin_config] = ov::genai::utils::split_core_compile_config(config); utils::slice_matmul_statefull_model(model); m_kv_cache_seq_length_axis = ov::genai::utils::get_seq_len_axis(model); @@ -84,10 +85,13 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { if (auto filtered_plugin_config = extract_adapters_from_properties(plugin_config, &m_generation_config.adapters)) { m_generation_config.adapters->set_tensor_name_prefix("base_model.model.model."); m_adapter_controller = AdapterController(model, *m_generation_config.adapters, device); // TODO: Make the prefix name configurable - m_model_runner = core.compile_model(model, device, *filtered_plugin_config).create_infer_request(); + compiled_model = core.compile_model(model, device, *filtered_plugin_config); + m_model_runner = compiled_model.create_infer_request(); } else { - m_model_runner = core.compile_model(model, device, plugin_config).create_infer_request(); + compiled_model = core.compile_model(model, device, plugin_config); + m_model_runner = compiled_model.create_infer_request(); } + ov::genai::utils::print_compiled_model_properties(compiled_model, "Stateful LLM model"); // If eos_token_id was not provided, take value if (m_generation_config.eos_token_id == -1) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index cb83209b4b..090aed9650 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -777,12 +777,15 @@ void StaticLLMPipeline::setupAndCompileModels( set_npuw_cache_dir(prefill_config); set_npuw_cache_dir(generate_config); - m_kvcache_request = core.compile_model( + auto kv_compiled_model = core.compile_model( kvcache_model, device, generate_config - ).create_infer_request(); - m_prefill_request = core.compile_model( - prefill_model, device, prefill_config - ).create_infer_request(); + ); + ov::genai::utils::print_compiled_model_properties(kv_compiled_model, "Static LLM kv compiled model"); + m_kvcache_request = kv_compiled_model.create_infer_request(); + + auto prefill_compiled_model = core.compile_model(prefill_model, device, prefill_config); + m_prefill_request = prefill_compiled_model.create_infer_request(); + ov::genai::utils::print_compiled_model_properties(prefill_compiled_model, "Static LLM prefill compiled model"); } void StaticLLMPipeline::setupAndImportModels( diff --git a/src/cpp/src/lora_adapter.cpp b/src/cpp/src/lora_adapter.cpp index 5e8839513e..fd446ef708 100644 --- a/src/cpp/src/lora_adapter.cpp +++ b/src/cpp/src/lora_adapter.cpp @@ -637,7 +637,9 @@ class InferRequestSignatureCache { ov::Core core = ov::genai::utils::singleton_core(); auto model = std::make_shared(request_results, request_parameters); - rwb.request = core.compile_model(model, device).create_infer_request(); + auto compiled_model = core.compile_model(model, device); + ov::genai::utils::print_compiled_model_properties(compiled_model, "Infer Request Signature Cache"); + rwb.request = compiled_model.create_infer_request(); requests.emplace(signature, rwb); } diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index cff25f07f8..642236d32a 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -203,6 +203,7 @@ class Tokenizer::TokenizerImpl { manager.register_pass(); manager.run_passes(ov_tokenizer); m_tokenizer = core.compile_model(ov_tokenizer, device, properties); + ov::genai::utils::print_compiled_model_properties(m_tokenizer, "OV Tokenizer"); m_ireq_queue_tokenizer = std::make_unique>( m_tokenizer.get_property(ov::optimal_number_of_infer_requests), @@ -216,6 +217,7 @@ class Tokenizer::TokenizerImpl { manager_detok.register_pass(); manager_detok.run_passes(ov_detokenizer); m_detokenizer = core.compile_model(ov_detokenizer, device, properties); + ov::genai::utils::print_compiled_model_properties(m_detokenizer, "OV Detokenizer"); m_ireq_queue_detokenizer = std::make_unique>( m_detokenizer.get_property(ov::optimal_number_of_infer_requests), diff --git a/src/cpp/src/utils.cpp b/src/cpp/src/utils.cpp index 3690920295..9fa14b7f9f 100644 --- a/src/cpp/src/utils.cpp +++ b/src/cpp/src/utils.cpp @@ -381,6 +381,43 @@ void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t se } } +void print_compiled_model_properties(ov::CompiledModel& compiled_Model, const char* model_title) { + // Specify the name of the environment variable + const char* env_var_name = "OPENVINO_LOG_LEVEL"; + const char* env_var_value = std::getenv(env_var_name); + + // Check if the environment variable was found + if (env_var_value != nullptr && atoi(env_var_value) > static_cast(ov::log::Level::WARNING)) { + // output of the actual settings that the device selected + auto supported_properties = compiled_Model.get_property(ov::supported_properties); + std::cout << "Model: " << model_title << std::endl; + for (const auto& cfg : supported_properties) { + if (cfg == ov::supported_properties) + continue; + auto prop = compiled_Model.get_property(cfg); + if (cfg == ov::device::properties) { + auto devices_properties = prop.as(); + for (auto& item : devices_properties) { + std::cout << " " << item.first << ": " << std::endl; + for (auto& item2 : item.second.as()) { + std::cout << " " << item2.first << ": " << item2.second.as() << std::endl; + } + } + } else { + std::cout << " " << cfg << ": " << prop.as() << std::endl; + } + } + + ov::Core core; + std::vector exeTargets; + exeTargets = compiled_Model.get_property(ov::execution_devices); + std::cout << "EXECUTION_DEVICES:" << std::endl; + for (const auto& device : exeTargets) { + std::cout << " " << device << ": " << core.get_property(device, ov::device::full_name) << std::endl; + } + } +} + } // namespace utils } // namespace genai } // namespace ov diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 57728cd0dc..5342ac427c 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -104,6 +104,8 @@ size_t get_seq_len_axis(std::shared_ptr model); void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t seq_length_axis, std::optional adapter_controller); +void print_compiled_model_properties(ov::CompiledModel& compiled_Model, const char* model_title); + } // namespace utils } // namespace genai } // namespace ov diff --git a/src/cpp/src/visual_language/embedding_model.cpp b/src/cpp/src/visual_language/embedding_model.cpp index 88ddfc39cd..307bdcebac 100644 --- a/src/cpp/src/visual_language/embedding_model.cpp +++ b/src/cpp/src/visual_language/embedding_model.cpp @@ -26,6 +26,7 @@ EmbeddingsModel::EmbeddingsModel(const std::filesystem::path& model_dir, merge_postprocess(m_model, scale_emb); ov::CompiledModel compiled_model = core.compile_model(m_model, device, properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "text embeddings model"); m_request = compiled_model.create_infer_request(); } diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index dfdb1521ef..cf77dfce3c 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -259,9 +259,10 @@ class InputsEmbedderMiniCPM : public InputsEmbedder::IInputsEmbedder { const std::string& device, const ov::AnyMap device_config) : IInputsEmbedder(vlm_config, model_dir, device, device_config) { - m_resampler = utils::singleton_core().compile_model( - model_dir / "openvino_resampler_model.xml", device, device_config - ).create_infer_request(); + auto compiled_model = + utils::singleton_core().compile_model(model_dir / "openvino_resampler_model.xml", device, device_config); + ov::genai::utils::print_compiled_model_properties(compiled_model, "VLM resampler model"); + m_resampler = compiled_model.create_infer_request(); m_pos_embed_cache = get_2d_sincos_pos_embed(m_vlm_config.hidden_size, {70, 70}); } diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index b8e89a8e04..1ce0cbf210 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -92,7 +92,7 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { auto compiled_language_model = utils::singleton_core().compile_model( models_dir / "openvino_language_model.xml", device, properties ); - + ov::genai::utils::print_compiled_model_properties(compiled_language_model, "VLM language model"); auto language_model = compiled_language_model.get_runtime_model(); m_kv_cache_seq_length_axis = ov::genai::utils::get_seq_len_axis(language_model); diff --git a/src/cpp/src/visual_language/vision_encoder.cpp b/src/cpp/src/visual_language/vision_encoder.cpp index 0842524820..9f8f9b0498 100644 --- a/src/cpp/src/visual_language/vision_encoder.cpp +++ b/src/cpp/src/visual_language/vision_encoder.cpp @@ -648,10 +648,12 @@ ov::Tensor get_pixel_values_internvl(const ov::Tensor& image, const ProcessorCon VisionEncoder::VisionEncoder(const std::filesystem::path& model_dir, const VLMModelType model_type, const std::string& device, const ov::AnyMap device_config) : model_type(model_type) { - m_vision_encoder = utils::singleton_core().compile_model(model_dir / "openvino_vision_embeddings_model.xml", device, device_config).create_infer_request(); - m_processor_config = utils::from_config_json_if_exists( - model_dir, "preprocessor_config.json" - ); + auto compiled_model = utils::singleton_core().compile_model(model_dir / "openvino_vision_embeddings_model.xml", + device, + device_config); + ov::genai::utils::print_compiled_model_properties(compiled_model, "VLM vision embeddings model"); + m_vision_encoder = compiled_model.create_infer_request(); + m_processor_config = utils::from_config_json_if_exists(model_dir, "preprocessor_config.json"); } VisionEncoder::VisionEncoder( diff --git a/src/cpp/src/whisper_pipeline.cpp b/src/cpp/src/whisper_pipeline.cpp index 5c31d85fec..d472a20238 100644 --- a/src/cpp/src/whisper_pipeline.cpp +++ b/src/cpp/src/whisper_pipeline.cpp @@ -56,15 +56,18 @@ class WhisperPipeline::WhisperPipelineStatefulImpl : public WhisperPipeline::Whi auto [core_properties, compile_properties] = ov::genai::utils::split_core_compile_config(properties); core.set_property(core_properties); - m_models.encoder = - core.compile_model((models_path / "openvino_encoder_model.xml").string(), device, compile_properties) - .create_infer_request(); - m_models.decoder = - core.compile_model((models_path / "openvino_decoder_model.xml").string(), device, compile_properties) - .create_infer_request(); - m_models.decoder_with_past = - core.compile_model(models_path / "openvino_decoder_with_past_model.xml", device, compile_properties) - .create_infer_request(); + ov::CompiledModel compiled_model; + compiled_model = + core.compile_model((models_path / "openvino_encoder_model.xml").string(), device, compile_properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "whisper encoder model"); + m_models.encoder = compiled_model.create_infer_request(); + compiled_model = + core.compile_model((models_path / "openvino_decoder_model.xml").string(), device, compile_properties); + ov::genai::utils::print_compiled_model_properties(compiled_model, "whisper decoder model"); + m_models.decoder = compiled_model.create_infer_request(); + compiled_model = core.compile_model(models_path / "openvino_decoder_with_past_model.xml", device, compile_properties); + m_models.decoder_with_past = compiled_model.create_infer_request(); + ov::genai::utils::print_compiled_model_properties(compiled_model, "whisper decoder with past model"); // If eos_token_id was not provided, take value if (m_generation_config.eos_token_id == -1) { diff --git a/src/cpp/src/whisper_pipeline_static.cpp b/src/cpp/src/whisper_pipeline_static.cpp index 9937082a81..136819fa01 100644 --- a/src/cpp/src/whisper_pipeline_static.cpp +++ b/src/cpp/src/whisper_pipeline_static.cpp @@ -555,9 +555,16 @@ WhisperPipeline::StaticWhisperPipeline::StaticWhisperPipeline(const std::filesys preprocess_decoder(decoder_model); preprocess_decoder(decoder_with_past_model); - m_models.encoder = core.compile_model(encoder_model, "NPU").create_infer_request(); - m_models.decoder = core.compile_model(decoder_model, "NPU").create_infer_request(); - m_models.decoder_with_past = core.compile_model(decoder_with_past_model, "NPU").create_infer_request(); + ov::CompiledModel compiled_model; + compiled_model = core.compile_model(encoder_model, "NPU"); + ov::genai::utils::print_compiled_model_properties(compiled_model, "Static Whisper encoder model"); + m_models.encoder = compiled_model.create_infer_request(); + compiled_model = core.compile_model(decoder_model, "NPU"); + ov::genai::utils::print_compiled_model_properties(compiled_model, "Static Whisper decoder model"); + m_models.decoder = compiled_model.create_infer_request(); + compiled_model = core.compile_model(decoder_with_past_model, "NPU"); + ov::genai::utils::print_compiled_model_properties(compiled_model, "Static Whisper decoder with past model"); + m_models.decoder_with_past = compiled_model.create_infer_request(); // If eos_token_id was not provided, take value if (m_generation_config.eos_token_id == -1) { diff --git a/src/docs/DEBUG_LOG.md b/src/docs/DEBUG_LOG.md new file mode 100644 index 0000000000..5ed3f35d17 --- /dev/null +++ b/src/docs/DEBUG_LOG.md @@ -0,0 +1,43 @@ +## 1. Using Debug Log + +There are six levels of logs, which can be called explicitly or set via the ``OPENVINO_LOG_LEVEL`` environment variable: + +0 - ``ov::log::Level::NO`` +1 - ``ov::log::Level::ERR`` +2 - ``ov::log::Level::WARNING`` +3 - ``ov::log::Level::INFO`` +4 - ``ov::log::Level::DEBUG`` +5 - ``ov::log::Level::TRACE`` + +When setting the environment variable OPENVINO_LOG_LEVEL > ov::log::Level::WARNING, the properties of the compiled model can be printed. + +For example: + +Linux - export OPENVINO_LOG_LEVEL=3 +Windows - set OPENVINO_LOG_LEVEL=3 + +the properties of the compiled model are printed as follows: +```sh + NETWORK_NAME: Model0 + OPTIMAL_NUMBER_OF_INFER_REQUESTS: 1 + NUM_STREAMS: 1 + INFERENCE_NUM_THREADS: 48 + PERF_COUNT: NO + INFERENCE_PRECISION_HINT: bf16 + PERFORMANCE_HINT: LATENCY + EXECUTION_MODE_HINT: PERFORMANCE + PERFORMANCE_HINT_NUM_REQUESTS: 0 + ENABLE_CPU_PINNING: YES + SCHEDULING_CORE_TYPE: ANY_CORE + MODEL_DISTRIBUTION_POLICY: + ENABLE_HYPER_THREADING: NO + EXECUTION_DEVICES: CPU + CPU_DENORMALS_OPTIMIZATION: NO + LOG_LEVEL: LOG_NONE + CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1 + DYNAMIC_QUANTIZATION_GROUP_SIZE: 32 + KV_CACHE_PRECISION: f16 + AFFINITY: CORE + EXECUTION_DEVICES: + CPU: Intel(R) Xeon(R) Platinum 8468 +``` \ No newline at end of file From 7d2a303270ac2c6f34754edff5611a6e8c23c854 Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Wed, 18 Dec 2024 07:13:06 +0400 Subject: [PATCH 090/113] remove test models and fix order of checks (#1401) * added removing test models after llm bench tests passing to reduce disk space * fixed order of checks in wwb tests (csv file is result of successful execution of cli command, test trying to open file and only after that check cli command return code) * reduces inference counts in llm bench tests (reduces execution time in 2 times, from 72 min to 36 min) --- .github/workflows/llm_bench-python.yml | 22 ++++++++++++------- tools/llm_bench/task/image_generation.py | 11 ++++++---- .../who_what_benchmark/tests/test_cli_text.py | 9 +++----- 3 files changed, 24 insertions(+), 18 deletions(-) diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 6903882ca0..1999bafcfe 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -61,7 +61,6 @@ jobs: SRC_DIR: ${{ github.workspace }} LLM_BENCH_PYPATH: ${{ github.workspace }}/tools/llm_bench WWB_PATH: ${{ github.workspace }}/tools/who_what_benchmark - OPENVINO_LOG_LEVEL: 3 steps: - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 @@ -103,30 +102,34 @@ jobs: - name: Test native pytorch model on Linux run: | git clone --depth 1 https://huggingface.co/katuni4ka/tiny-random-qwen - python ./tools/llm_bench/benchmark.py -m tiny-random-qwen -d cpu -n 1 -f pt + python ./tools/llm_bench/benchmark.py -m tiny-random-qwen -d cpu -n 1 -f pt -ic 20 + rm -rf tiny-random-qwen env: GIT_LFS_SKIP_SMUDGE: 0 - name: Test tiny-random-baichuan2 on Linux Optimum Intel run: | optimum-cli export openvino --model katuni4ka/tiny-random-baichuan2 --trust-remote-code --weight-format fp16 ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16 - python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 --optimum + python ./tools/llm_bench/benchmark.py -m ./ov_models/tiny-random-baichuan2/pytorch/dldt/FP16/ -d cpu -n 1 --optimum -ic 10 + rm -rf ./ov_models/tiny-random-baichuan2 - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux Optimum Intel run: | huggingface-cli download OpenVINO/LCM_Dreamshaper_v7-int8-ov --local-dir ov_models/lcm_dreamshaper_v7 - python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --optimum + python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --optimum -ic 4 - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux with GenAI run: | - python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 + python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 -ic 4 - name: Test OpenVINO/LCM_Dreamshaper_v7-int8-ov on Linux with GenAI and LoRA run: | wget -O ./ov_models/soulcard.safetensors https://civitai.com/api/download/models/72591 - python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7 + python ./tools/llm_bench/benchmark.py -m ./ov_models/lcm_dreamshaper_v7/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7 -ic 4 + rm -rf ./ov_models/lcm_dreamshaper_v7/ - name: Test TinyLlama-1.1B-Chat-v1.0 in Speculative Deconding mode on Linux run: | optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format fp16 ov_models/TinyLlama-1.1B-Chat-v1.0/FP16 optimum-cli export openvino --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 --trust-remote-code --weight-format int8 ov_models/TinyLlama-1.1B-Chat-v1.0/INT8 - python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --assistant_confidence_threshold 0.4 - python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --num_assistant_tokens 5 + python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --assistant_confidence_threshold 0.4 -ic 20 + python ./tools/llm_bench/benchmark.py -m ./ov_models/TinyLlama-1.1B-Chat-v1.0/FP16/ --draft_model ./ov_models/TinyLlama-1.1B-Chat-v1.0/INT8/ -p "Why is the Sun yellow?" -d cpu --draft_device cpu -n 1 --num_assistant_tokens 5 -ic 20 + rm -rf ov_models/TinyLlama-1.1B-Chat-v1.0 - name: Test whisper-tiny on Linux run: | GIT_LFS_SKIP_SMUDGE=1 git clone --depth 1 --branch main --single-branch https://huggingface.co/datasets/facebook/multilingual_librispeech @@ -138,11 +141,14 @@ jobs: optimum-cli export openvino --trust-remote-code --model openai/whisper-tiny ./ov_models/whisper-tiny python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 --optimum python ./tools/llm_bench/benchmark.py -m ./ov_models/whisper-tiny --media multilingual_librispeech/data/mls_polish/train/audio/3283_1447_000/3283_1447_000000.flac -d cpu -n 1 + rm -rf ./ov_models/whisper-tiny + rm -rf multilingual_librispeech - name: Text InternVL2-1B on Linux run: | optimum-cli export openvino --model OpenGVLab/InternVL2-1B ./ov_models/internvl2-1B --task image-text-to-text --trust-remote-code python ./tools/llm_bench/benchmark.py -m ./ov_models/internvl2-1B --media https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11 --prompt "What is unusual on this image?" -ic 20 python ./tools/llm_bench/benchmark.py -m ./ov_models/internvl2-1B --media https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11 --prompt "What is unusual on this image?" -ic 20 --optimum + rm -rf ./ov_models/internvl2-1B - name: WWB Tests run: | pip install git+https://github.com/huggingface/optimum-intel.git diff --git a/tools/llm_bench/task/image_generation.py b/tools/llm_bench/task/image_generation.py index b870c7ec98..7f43afe6e2 100644 --- a/tools/llm_bench/task/image_generation.py +++ b/tools/llm_bench/task/image_generation.py @@ -25,11 +25,14 @@ stable_diffusion_hook = StableDiffusionHook() -def collects_input_args(image_param, model_type, model_name, callback=None): +def collects_input_args(image_param, model_type, model_name, infer_count=None, callback=None): input_args = {} input_args["width"] = image_param.get('width', DEFAULT_IMAGE_WIDTH) input_args["height"] = image_param.get('height', DEFAULT_IMAGE_HEIGHT) - input_args["num_inference_steps"] = image_param.get('steps', DEFAULT_INFERENCE_STEPS if 'lcm' not in model_name else LCM_DEFAULT_INFERENCE_STEPS) + if infer_count is None: + input_args["num_inference_steps"] = image_param.get('steps', DEFAULT_INFERENCE_STEPS if 'lcm' not in model_name else LCM_DEFAULT_INFERENCE_STEPS) + else: + input_args["num_inference_steps"] = infer_count guidance_scale = image_param.get('guidance_scale', None) if guidance_scale is not None: @@ -57,7 +60,7 @@ def collects_input_args(image_param, model_type, model_name, callback=None): def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption, callback=None): set_seed(args['seed']) input_text = image_param['prompt'] - input_args = collects_input_args(image_param, args['model_type'], args['model_name']) + input_args = collects_input_args(image_param, args['model_type'], args['model_name'], args["infer_count"]) out_str = f"Input params: Batch_size={args['batch_size']}, " \ f"steps={input_args['num_inference_steps']}, width={input_args['width']}, height={input_args['height']}" if 'guidance_scale' in input_args: @@ -120,7 +123,7 @@ def run_image_generation(image_param, num, image_id, pipe, args, iter_data_list, def run_image_generation_genai(image_param, num, image_id, pipe, args, iter_data_list, proc_id, mem_consumption, callback=None): set_seed(args['seed']) input_text = image_param['prompt'] - input_args = collects_input_args(image_param, args['model_type'], args['model_name'], callback) + input_args = collects_input_args(image_param, args['model_type'], args['model_name'], args["infer_count"], callback) out_str = f"Input params: Batch_size={args['batch_size']}, " \ f"steps={input_args['num_inference_steps']}, width={input_args['width']}, height={input_args['height']}" if 'guidance_scale' in input_args: diff --git a/tools/who_what_benchmark/tests/test_cli_text.py b/tools/who_what_benchmark/tests/test_cli_text.py index 79335d46eb..9973cd357f 100644 --- a/tools/who_what_benchmark/tests/test_cli_text.py +++ b/tools/who_what_benchmark/tests/test_cli_text.py @@ -94,9 +94,8 @@ def test_text_gt_data(): "CPU", ] ) + assert result.returncode == 0 data = pd.read_csv(temp_file_name) - - assert result.returncode == 0 assert len(data["questions"].values) == 2 @@ -174,9 +173,8 @@ def test_text_language_autodetect(): "CPU", ] ) + assert result.returncode == 0 data = pd.read_csv(temp_file_name) - - assert result.returncode == 0 assert "马克" in data["prompts"].values[0] @@ -196,9 +194,8 @@ def test_text_hf_model(): "--hf", ] ) + assert result.returncode == 0 data = pd.read_csv(temp_file_name) - - assert result.returncode == 0 assert len(data["prompts"].values) == 2 From 9bcadf7ffdcfe5b133605847d964759593949fac Mon Sep 17 00:00:00 2001 From: Irina Efode Date: Wed, 18 Dec 2024 08:33:47 +0400 Subject: [PATCH 091/113] [Prompt lookup] (#1245) *Description:* * Implementation of Prompt lookup decoding based on continuous batching pipeline (cb_promp_lookup_impl + prompt_lookup_impl) * Update `prompt_lookup_sample` to use new API * Update statistic to make of printing more usable *Ticket:* * https://jira.devtools.intel.com/browse/CVS-137987 *Example of usage:* * **Input:** `return 0;` * **Result Prompt lookup:** ``` =============================== Total duration, ms: 3.02267 Draft model duration, ms: 0.000724718 Main model duration, ms: 3.02195 Draft model duration, %: 0.0239761 Main model duration, %: 99.976 AVG acceptance rate, %: 10.8333 =============================== Request_id: 0 ||| 0 0 0 0 0 0 0 0 20 20 0 0 0 0 20 100 80 0 0 0 0 0 0 60 0 0 20 0 0 0 0 0 20 0 0 50 ``` * **Result Greedy:** ``` =============================== Total duration, ms: 3.18111 Draft model duration, ms: 1.538e-06 Main model duration, ms: 3.18111 Draft model duration, %: 4.83479e-05 Main model duration, %: 100 AVG acceptance rate, %: -nan =============================== ``` * **Speedup**: 100 Generated tokens: 5.24% && 300 Generated tokens: 81% (9.42 vs 5.19) --------- Co-authored-by: Ilya Lavrenov --- .github/workflows/causal_lm_cpp.yml | 31 +- .../prompt_lookup_decoding_lm/CMakeLists.txt | 21 +- .../prompt_lookup_decoding_lm.cpp | 357 ++---------------- .../speculative_decoding_lm.cpp | 1 - .../prompt_lookup_decoding_lm/README.md | 41 ++ .../prompt_lookup_decoding_lm.py | 39 ++ .../genai/continuous_batching_pipeline.hpp | 4 + .../openvino/genai/generation_config.hpp | 13 +- .../include/openvino/genai/llm_pipeline.hpp | 7 + src/cpp/src/continuous_batching_impl.cpp | 4 +- src/cpp/src/continuous_batching_impl.hpp | 3 +- src/cpp/src/continuous_batching_pipeline.cpp | 28 +- src/cpp/src/generation_config.cpp | 11 +- .../continuous_batching_for_prompt_lookup.cpp | 85 +++++ .../continuous_batching_for_prompt_lookup.hpp | 40 ++ .../src/prompt_lookup/prompt_lookup_impl.cpp | 159 ++++++++ .../src/prompt_lookup/prompt_lookup_impl.hpp | 49 +++ ...batching_for_speculative_decoding_impl.cpp | 4 +- .../speculative_decoding_impl.cpp | 23 +- .../speculative_decoding_metrics.cpp | 59 +++ .../speculative_decoding_metrics.hpp | 7 + src/python/openvino_genai/__init__.py | 2 +- .../openvino_genai/py_openvino_genai.pyi | 13 +- src/python/py_generation_config.cpp | 4 +- src/python/py_llm_pipeline.cpp | 5 +- src/python/py_openvino_genai.cpp | 1 - tests/cpp/CMakeLists.txt | 1 + 27 files changed, 606 insertions(+), 406 deletions(-) create mode 100644 samples/python/prompt_lookup_decoding_lm/README.md create mode 100755 samples/python/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.py create mode 100644 src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.cpp create mode 100644 src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.hpp create mode 100644 src/cpp/src/prompt_lookup/prompt_lookup_impl.cpp create mode 100644 src/cpp/src/prompt_lookup/prompt_lookup_impl.hpp diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 107777bf74..2e9d72e263 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -491,7 +491,6 @@ jobs: python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly python -m pip install -r ./samples/requirements.txt optimum-cli export openvino --trust-remote-code --weight-format fp16 --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 - optimum-cli export openvino --trust-remote-code --weight-format fp16 --model Qwen/Qwen-7B-Chat Qwen-7B-Chat --task text-generation-with-past - name: run and compare run: | source ./ov/setupvars.sh @@ -505,36 +504,22 @@ jobs: ./build/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_prompt_lookup.txt ./build/samples/cpp/text_generation/greedy_causal_lm ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_greedy.txt + python ./samples/python/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.py ./TinyLlama-1.1B-Chat-v1.0/ "$( predictions_py.txt python -c " with open('predictions_greedy.txt', 'r') as f: predicted_greedy = f.readline() with open('predictions_prompt_lookup.txt', 'r') as f: predicted_prompt_lookup = f.readline() + with open('predictions_py.txt', 'r') as f: + predicted_prompt_lookup_py = f.readline() assert predicted_greedy == predicted_prompt_lookup + assert predicted_greedy == predicted_prompt_lookup_py + assert predicted_prompt_lookup == predicted_prompt_lookup_py " echo "Prompt lookup" passed - - name: run and compare (model with seq_length_axis = 1) - run: | - source ./ov/setupvars.sh - - echo 'Code:```python - def add(a, b): - return a + b - ``` - Question: Can you please add 2 and 3 - A:' > ./prompt.txt - - ./build/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm ./Qwen-7B-Chat/ "$( predictions_prompt_lookup.txt - ./build/samples/cpp/text_generation/greedy_causal_lm ./Qwen-7B-Chat/ "$( predictions_greedy.txt - python -c " - with open('predictions_greedy.txt', 'r') as f: - predicted_greedy = f.readline() - with open('predictions_prompt_lookup.txt', 'r') as f: - predicted_prompt_lookup = f.readline() - assert predicted_greedy == predicted_prompt_lookup - " - echo "Prompt lookup" passed - + env: + PYTHONPATH: "./build/:$PYTHONPATH" + LD_LIBRARY_PATH: "./build/openvino_genai/:$LD_LIBRARY_PATH" cpp-Phi-1_5: runs-on: ubuntu-20.04-16-cores defaults: diff --git a/samples/cpp/prompt_lookup_decoding_lm/CMakeLists.txt b/samples/cpp/prompt_lookup_decoding_lm/CMakeLists.txt index c899c6e47b..b0ce8b1b60 100644 --- a/samples/cpp/prompt_lookup_decoding_lm/CMakeLists.txt +++ b/samples/cpp/prompt_lookup_decoding_lm/CMakeLists.txt @@ -1,8 +1,6 @@ # Copyright (C) 2023-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -find_package(OpenVINO REQUIRED COMPONENTS Runtime Threading) - find_package(OpenVINOGenAI REQUIRED PATHS "${CMAKE_BINARY_DIR}" # Reuse the package from the build. @@ -10,21 +8,16 @@ find_package(OpenVINOGenAI REQUIRED NO_CMAKE_FIND_ROOT_PATH ) -add_executable(prompt_lookup_decoding_lm prompt_lookup_decoding_lm.cpp) -target_link_libraries(prompt_lookup_decoding_lm PRIVATE openvino::runtime openvino::threading) -set_target_properties(prompt_lookup_decoding_lm PROPERTIES - COMPILE_PDB_NAME prompt_lookup_decoding_lm +set(TARGET_NAME prompt_lookup_decoding_lm) +add_executable(${TARGET_NAME} ${TARGET_NAME}.cpp) +target_link_libraries(${TARGET_NAME} PRIVATE openvino::genai) + +set_target_properties(${TARGET_NAME} PROPERTIES + COMPILE_PDB_NAME ${TARGET_NAME} # Ensure out of box LC_RPATH on macOS with SIP INSTALL_RPATH_USE_LINK_PATH ON) -target_compile_features(prompt_lookup_decoding_lm PRIVATE cxx_std_17) - -get_target_property(genai_imported openvino::genai IMPORTED_LOCATION) -set(OPENVINO_TOKENIZERS_PATH $,${genai_imported},$>) -set(OPENVINO_TOKENIZERS_FILENAME "${CMAKE_SHARED_LIBRARY_PREFIX}openvino_tokenizers${CMAKE_SHARED_LIBRARY_SUFFIX}") -target_compile_definitions(prompt_lookup_decoding_lm PRIVATE - OPENVINO_TOKENIZERS_PATH="${OPENVINO_TOKENIZERS_PATH}/${OPENVINO_TOKENIZERS_FILENAME}") -install(TARGETS prompt_lookup_decoding_lm +install(TARGETS ${TARGET_NAME} RUNTIME DESTINATION samples_bin/ COMPONENT samples_bin EXCLUDE_FROM_ALL) diff --git a/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.cpp b/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.cpp index 282220a4b1..e692110027 100644 --- a/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.cpp +++ b/samples/cpp/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.cpp @@ -1,338 +1,45 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 -#include #include -#include -namespace { - -// only batch_size = 1 currently supported -constexpr size_t BATCH_SIZE = 1; - -size_t get_seq_len_axis(std::shared_ptr model) { - // sequence length axis in key/values tensors, for most cases [BATCH_SIZE, num_kv_heads, seq_len, head_size], - // therefore usually seq_length_axis = 2 - size_t seq_length_axis = 2; - - // "ReadValue" node is KV cache representation in stateful model - std::string kv_node_type_name = std::string(ov::op::v6::ReadValue::get_type_info_static().name); - - for (const auto op : model->get_ops()) { - if (op->get_type_name() != kv_node_type_name) { - continue; - } - - // Shape example: [-1,4,0,64] - auto shape = op->get_input_partial_shape(0); - - for (size_t i = 0; i < shape.rank().get_length(); i++) { - // Find axis = 0. This would be sequence length axis. - if (shape[i] == 0) { - seq_length_axis = i; - } - } - break; - } - - return seq_length_axis; -} - -std::pair tokenize(ov::InferRequest& tokenizer, std::string&& prompt) { - tokenizer.set_input_tensor(ov::Tensor{ov::element::string, {BATCH_SIZE}, &prompt}); - tokenizer.infer(); - return {tokenizer.get_tensor("input_ids"), tokenizer.get_tensor("attention_mask")}; -} - -std::string detokenize(ov::InferRequest& detokenizer, std::vector& tokens) { - detokenizer.set_input_tensor(ov::Tensor{ov::element::i64, {BATCH_SIZE, tokens.size()}, tokens.data()}); - detokenizer.infer(); - return detokenizer.get_output_tensor().data()[0]; -} - -// The following reasons require TextStreamer to keep a cache of previous tokens: -// detokenizer removes starting ' '. For example detokenize(tokenize(" a")) == "a", -// but detokenize(tokenize("prefix a")) == "prefix a" -// 1 printable token may consist of 2 token ids: detokenize(incomplete_token_idx) == "�" -struct TextStreamer { - ov::InferRequest detokenizer; - std::vector token_cache; - size_t print_len = 0; - - void put(int64_t token) { - token_cache.push_back(token); - std::string text = detokenize(detokenizer, token_cache); - if (!text.empty() && '\n' == text.back() && text.size() > print_len) { - // Flush the cache after the new line symbol - std::cout << std::string_view{text.data() + print_len, text.size() - print_len}; - token_cache.clear(); - print_len = 0; - return; - } - constexpr char replacement[] = "\xef\xbf\xbd"; // MSVC with /utf-8 fails to compile � directly with newline in string literal error. - if (text.size() >= 3 && text.compare(text.size() - 3, 3, replacement) == 0) { - // Don't print incomplete text - return; - } else if (text.size() > print_len) { - // It is possible to have a shorter text after adding new token. - // Print to output only if text length is increaeseds. - std::cout << std::string_view{text.data() + print_len, text.size() - print_len} << std::flush; - print_len = text.size(); - } - } - - void end() { - std::string text = detokenize(detokenizer, token_cache); - if (text.size() <= print_len) - return; - std::cout << std::string_view{text.data() + print_len, text.size() - print_len} << '\n'; - token_cache.clear(); - print_len = 0; - } -}; - -ov::Tensor trimm_tensor(ov::Tensor& tensor, uint64_t seq_len_axis, uint64_t new_seq_len) { - // Copy elements from the old to a new tensor and return it. - // Trim kv tensor on sequence length axis - // key/values tensor shape example: [BATCH_SIZE, num_kv_heads, seq_len, head_size] - // Sequence length axis position may vary from one model to another - - auto shape = tensor.get_shape(); - - OPENVINO_ASSERT(seq_len_axis < shape.size(), - "Sequence length axis: ", - seq_len_axis, - " should be less than shape size: ", - shape.size()); - - size_t old_seq_len = shape[seq_len_axis]; - - OPENVINO_ASSERT(new_seq_len <= old_seq_len); - - // if new_seq_len equal to old one no need to copy tensor, return as is - if (old_seq_len == new_seq_len) - return tensor; - - shape[seq_len_axis] = new_seq_len; - - if (seq_len_axis == 0) { - tensor.set_shape(shape); - return tensor; - } - - ov::Coordinate new_shape_begin{0, 0, 0, 0}; - ov::Coordinate new_shape_end{shape}; - - auto new_tensor = ov::Tensor(tensor, new_shape_begin, new_shape_end); - - return new_tensor; -} - -void update_kv_cache(ov::InferRequest request, uint64_t seq_len_axis, uint64_t new_seq_len) { - // trim kv_cache values up to the new_seq_len - auto states = request.query_state(); - ov::parallel_for(states.size(), [&](size_t i) { - ov::Tensor old_tensor = states.at(i).get_state(); - states.at(i).set_state(trimm_tensor(old_tensor, seq_len_axis, new_seq_len)); - }); -} - -class PromptLookupCandidateGenerator { -private: - const size_t max_ngram_size = 3; - size_t num_pred_tokens = 5; - const size_t max_pred_tokens = 20; - -public: - PromptLookupCandidateGenerator(const size_t max_ngram_size, const size_t num_pred_tokens) - : max_ngram_size{max_ngram_size}, - num_pred_tokens{num_pred_tokens} {}; - - std::vector generate_candidates(const std::vector& input_ids) { - const size_t input_length = input_ids.size(); - - for (int32_t ngram_size = max_ngram_size; ngram_size > 0; ngram_size--) { - // extract last ngram_size tokens as search ngram - std::vector ngram = std::vector{input_ids.cend() - ngram_size, input_ids.cend()}; - - // find ngram match in input_ids - size_t ngram_i = 0; - for (size_t input_i = 0; input_i < input_length - ngram_size; input_i++) { - if (ngram[ngram_i] != input_ids[input_i]) { - ngram_i = 0; - continue; - } - - ngram_i++; - - if (ngram_i < ngram_size) { - continue; - } - - // match found with the end at input_i - size_t avaliable_num_pred = std::min(input_length - (input_i + 1), num_pred_tokens); - - // return candidates with length of avaliable_num_pred - return std::vector{input_ids.cbegin() + input_i + 1, - input_ids.cbegin() + input_i + 1 + avaliable_num_pred}; - } - } - - return std::vector{}; - } - - void update_candidate_strategy(const size_t num_matches) { - // dynamically adjust number of generated candidates based on number of matches - // we want to balance the benefits of getting assistant tokens correct with the - // cost of forecasting incorrect assistant tokens. - if (num_matches == num_pred_tokens) { - num_pred_tokens = std::min(num_pred_tokens + 2, max_pred_tokens); - } else { - num_pred_tokens = std::max(num_pred_tokens - 1, size_t(1)); - } - } -}; - -int64_t get_eos_token(const std::shared_ptr tokenizer) { - auto rt_info = tokenizer->get_rt_info(); // Get the runtime info for the model - - auto it = rt_info.find("eos_token_id"); - if (it == rt_info.end()) { - throw std::runtime_error("EOS token ID not found in model's runtime information."); - } - return it->second.as(); -} - -} // namespace +#include "openvino/genai/llm_pipeline.hpp" int main(int argc, char* argv[]) try { - if (argc != 3) { + if (3 != argc) { throw std::runtime_error(std::string{"Usage: "} + argv[0] + " ''"); } - // tokenizer model - ov::Core core; - core.add_extension(OPENVINO_TOKENIZERS_PATH); // OPENVINO_TOKENIZERS_PATH is defined in CMakeLists.txt - - const std::string model_dir = std::string{argv[1]}; - - auto tokenizer_model = core.read_model(model_dir + "/openvino_tokenizer.xml"); - // tokenizer and detokenizer work on CPU only - ov::InferRequest tokenizer = core.compile_model(tokenizer_model, "CPU").create_infer_request(); - auto [input_ids, attention_mask] = tokenize(tokenizer, argv[2]); - - std::vector full_input_ids{input_ids.data(), input_ids.data() + input_ids.get_size()}; - - ov::InferRequest detokenizer = - core.compile_model(model_dir + "/openvino_detokenizer.xml", "CPU").create_infer_request(); - TextStreamer text_streamer{std::move(detokenizer)}; - - std::shared_ptr ov_model = core.read_model(model_dir + "/openvino_model.xml"); - - size_t seq_len_axis = get_seq_len_axis(ov_model); - - ov::InferRequest model = core.compile_model(ov_model, "CPU").create_infer_request(); - - model.set_tensor("input_ids", input_ids); - model.set_tensor("attention_mask", attention_mask); - - ov::Tensor position_ids = model.get_tensor("position_ids"); - position_ids.set_shape(input_ids.get_shape()); - std::iota(position_ids.data(), position_ids.data() + position_ids.get_size(), 0); - size_t seq_len = input_ids.get_shape()[1]; - - // set beam_idx for stateful model: no beam search is used and BATCH_SIZE = 1 - model.get_tensor("beam_idx").set_shape({BATCH_SIZE}); - model.get_tensor("beam_idx").data()[0] = 0; - - // To collect kv-cache for the and to get the next token run the very first infer request - model.infer(); - - // logits shape is [BATCH_SIZE, seq_len, vocab_size] - auto logits = model.get_tensor("logits"); - size_t vocab_size = logits.get_shape().back(); - auto data_logits = logits.data() + (seq_len - 1) * vocab_size; - int64_t out_token = std::max_element(data_logits, data_logits + vocab_size) - data_logits; - - full_input_ids.push_back(out_token); - - auto first_token = out_token; - text_streamer.put(out_token); - - const int64_t EOS_TOKEN = get_eos_token(tokenizer_model); - - // Prompt lookup decoding is a speculative decoding technique where the draft model replaced - // with string matching in the prompt to generate candidate token sequences. - int max_sequence_length = 100; - PromptLookupCandidateGenerator candidateGenerator{3, 5}; - - while (out_token != EOS_TOKEN && seq_len < max_sequence_length) { - auto candidates = candidateGenerator.generate_candidates(full_input_ids); - - // cut redundant candidates on last iteration - size_t tokens_to_generate = max_sequence_length - seq_len; - candidates.resize(std::min(candidates.size(), tokens_to_generate - 1)); - size_t candidates_size = candidates.size(); - - // candidates_size + 1 tokens will be fed at once in a single infer request. - input_ids.set_shape({BATCH_SIZE, candidates_size + 1}); - input_ids.data()[0] = first_token; - std::copy_n(candidates.begin(), candidates_size, input_ids.data() + 1); - - attention_mask.set_shape({BATCH_SIZE, seq_len + candidates_size + 1}); - std::fill_n(attention_mask.data(), attention_mask.get_size(), 1); - - position_ids.set_shape({BATCH_SIZE, candidates_size + 1}); - std::iota(position_ids.data(), position_ids.data() + position_ids.get_size(), seq_len); - - model.infer(); - - data_logits = logits.data(); // [BATCH_SIZE, 1 + candidates_size, vocab_size] - - // 1. accept current out token (if not eos) - // 2. check if it matches appropriate candidate - // 2.1 if it's match, continue - accept next token - // 2.2 it it's mismatch, stop iteration but still accept current token as it was last token generated by - // model from a valid sequence. - size_t accepted_tokens_number = 0; - for (size_t i = 0; i < candidates_size + 1; i++) { - auto start = data_logits + vocab_size * i; - auto stop = data_logits + vocab_size * (i + 1); - out_token = std::max_element(start, stop) - start; - - if (out_token == EOS_TOKEN) { - break; - } - - text_streamer.put(out_token); - full_input_ids.push_back(out_token); - accepted_tokens_number++; - - if (i == candidates_size || out_token != candidates[i]) { - break; - } - } - - if (accepted_tokens_number > 0) { - candidateGenerator.update_candidate_strategy(accepted_tokens_number - 1); - } - - // After the inference request, key/values have shape [BATCH_SIZE, seq_len + candidates_size, vocab_size]. - // Increment the sequence length by the number of matched tokens, and - // trim the KV cache to match the new sequence length. - seq_len += accepted_tokens_number; - update_kv_cache(model, seq_len_axis, seq_len); - - first_token = out_token; - } - - text_streamer.end(); - // Model is stateful which means that context (kv-cache) which belongs to a particular - // text sequence is accumulated inside the model during the generation loop above. - // This context should be reset before processing the next text sequence. - // While it is not required to reset context in this sample as only one sequence is processed, - // it is called for education purposes: - model.reset_state(); + ov::genai::GenerationConfig config; + config.max_new_tokens = 100; + // Define candidates number for candidate generation + config.num_assistant_tokens = 5; + // Define max_ngram_size + config.max_ngram_size = 3; + + std::string model_path = argv[1]; + std::string prompt = argv[2]; + + std::string device = "CPU"; + + ov::genai::SchedulerConfig scheduler_config; + scheduler_config.cache_size = 5; + + ov::genai::LLMPipeline pipe( + model_path, + device, + ov::genai::prompt_lookup(true), + ov::genai::scheduler_config(scheduler_config)); + + auto streamer = [](std::string subword) { + std::cout << subword << std::flush; + return false; + }; + + // Since the streamer is set, the results will + // be printed each time a new token is generated. + pipe.generate(prompt, config, streamer); + std::cout << std::endl; } catch (const std::exception& error) { try { std::cerr << error.what() << '\n'; diff --git a/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp b/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp index dc6761879c..487296566b 100644 --- a/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp +++ b/samples/cpp/speculative_decoding_lm/speculative_decoding_lm.cpp @@ -29,7 +29,6 @@ int main(int argc, char* argv[]) try { ov::genai::SchedulerConfig scheduler_config; scheduler_config.cache_size = 5; - // Different devices require different block sizes, so different scheduler configs need to be set. ov::genai::LLMPipeline pipe( main_model_path, main_device, diff --git a/samples/python/prompt_lookup_decoding_lm/README.md b/samples/python/prompt_lookup_decoding_lm/README.md new file mode 100644 index 0000000000..1e5f4003d4 --- /dev/null +++ b/samples/python/prompt_lookup_decoding_lm/README.md @@ -0,0 +1,41 @@ +# prompt_lookup_decoding_lm Python sample that supports most popular models like LLaMA 3 + +[Prompt Lookup decoding](https://github.com/apoorvumang/prompt-lookup-decoding) is [assested-generation](https://huggingface.co/blog/assisted-generation#understanding-text-generation-latency) technique where the draft model is replaced with simple string matching the prompt to generate candidate token sequences. This method highly effective for input grounded generation (summarization, document QA, multi-turn chat, code editing), where there is high n-gram overlap between LLM input (prompt) and LLM output. This could be entity names, phrases, or code chunks that the LLM directly copies from the input while generating the output. Prompt lookup exploits this pattern to speed up autoregressive decoding in LLMs. This results in significant speedups with no effect on output quality. + +This example showcases inference of text-generation Large Language Models (LLMs): `chatglm`, `LLaMA`, `Qwen` and other models with the same signature. The application doesn't have many configuration options to encourage the reader to explore and modify the source code. Loading `openvino_tokenizers` to `ov::Core` enables tokenization. Run `optimum-cli` to generate IRs for the samples. There is also a Jupyter [notebook](https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot) which provides an example of LLM-powered Chatbot in Python. + +## Download and convert the model and tokenizers + +The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. + +It's not required to install [../../export-requirements.txt](../../export requirements.txt) for deployment if the model has already been exported. + +```sh +source /setupvars.sh +pip install --upgrade-strategy eager -r ../../requirements.txt +optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 +``` + +## Run + +Install [deployment-requirements.txt](../../deployment-requirements.txt) via `pip install -r ../../deployment-requirements.txt` and then, run a sample: + +`python prompt_lookup_decoding_lm.py ./TinyLlama-1.1B-Chat-v1.0/ "return 0;"` + + +Discrete GPUs (dGPUs) usually provide better performance compared to CPUs. It is recommended to run larger models on a dGPU with 32GB+ RAM. For example, the model meta-llama/Llama-2-13b-chat-hf can benefit from being run on a dGPU. Modify the source code to change the device for inference to the GPU. + +See https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md#supported-models for the list of supported models. + +### Troubleshooting + +#### Unicode characters encoding error on Windows + +Example error: +``` +UnicodeEncodeError: 'charmap' codec can't encode character '\u25aa' in position 0: character maps to +``` + +If you encounter the error described in the example when sample is printing output to the Windows console, it is likely due to the default Windows encoding not supporting certain Unicode characters. To resolve this: +1. Enable Unicode characters for Windows cmd - open `Region` settings from `Control panel`. `Administrative`->`Change system locale`->`Beta: Use Unicode UTF-8 for worldwide language support`->`OK`. Reboot. +2. Enable UTF-8 mode by setting environment variable `PYTHONIOENCODING="utf8"`. diff --git a/samples/python/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.py b/samples/python/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.py new file mode 100755 index 0000000000..557897b6b1 --- /dev/null +++ b/samples/python/prompt_lookup_decoding_lm/prompt_lookup_decoding_lm.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import argparse +import openvino_genai + +def streamer(subword): + print(subword, end='', flush=True) + # Return flag corresponds whether generation should be stopped. + # False means continue generation. + return False + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('model_dir') + parser.add_argument('prompt') + args = parser.parse_args() + + device = 'CPU' + scheduler_config = openvino_genai.SchedulerConfig() + # cache params + scheduler_config.cache_size = 2 + + pipe = openvino_genai.LLMPipeline(args.model_dir, device, scheduler_config=scheduler_config, prompt_lookup=True) + + config = openvino_genai.GenerationConfig() + config.max_new_tokens = 100 + # add parameter to enable prompt lookup decoding to generate `num_assistant_tokens` candidates per iteration + config.num_assistant_tokens = 5 + # Define max_ngram_size + config.max_ngram_size = 3 + + # Since the streamer is set, the results will be printed + # every time a new token is generated and put into the streamer queue. + pipe.generate(args.prompt, config, streamer) + +if '__main__' == __name__: + main() diff --git a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp index 4a0637f2d9..74466ee488 100644 --- a/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp +++ b/src/cpp/include/openvino/genai/continuous_batching_pipeline.hpp @@ -55,10 +55,14 @@ class OPENVINO_GENAI_EXPORTS ContinuousBatchingPipeline { class ImplInterface; class ContinuousBatchingImpl; class ContinuousBatchingForSpeculativeDecodingImpl; + class ContinuousBatchingForPromptLookupImpl; class SpeculativeDecodingImpl; + class PromptLookupImpl; friend class ContinuousBatchingForSpeculativeDecodingImpl; + friend class ContinuousBatchingForPromptLookupImpl; friend class SpeculativeDecodingImpl; + friend class PromptLookupImpl; std::shared_ptr m_impl; diff --git a/src/cpp/include/openvino/genai/generation_config.hpp b/src/cpp/include/openvino/genai/generation_config.hpp index 9d79240aa8..b8b222e347 100644 --- a/src/cpp/include/openvino/genai/generation_config.hpp +++ b/src/cpp/include/openvino/genai/generation_config.hpp @@ -71,9 +71,10 @@ enum class StopCriteria { EARLY, HEURISTIC, NEVER }; * @param frequency_penalty reduces absolute log prob as many times as the token was generated. * @param rng_seed initializes random generator. * - * Speculative decoding parameters: - * @param assistant_confidence_threshold the lower token probability of candidate to be validated by main model in case of static strategy candidates number update. - * @param num_assistant_tokens the defined candidates number to be generated by draft model in case of dynamic strategy candidates number update. + * Assisting generation parameters: + * @param assistant_confidence_threshold the lower token probability of candidate to be validated by main model in case of dynamic strategy candidates number update. + * @param num_assistant_tokens the defined candidates number to be generated by draft model/prompt lookup in case of static strategy candidates number update. + * @param max_ngram_size is maximum ngram to use when looking for matches in the prompt. */ class OPENVINO_GENAI_EXPORTS GenerationConfig { @@ -114,9 +115,10 @@ class OPENVINO_GENAI_EXPORTS GenerationConfig { float frequency_penalty = 0.0f; size_t rng_seed = 0; - // Speculative decoding + // Assisting generation parameters float assistant_confidence_threshold = 0.f; size_t num_assistant_tokens = 0; + size_t max_ngram_size = 0; // EOS special token int64_t eos_token_id = -1; @@ -132,7 +134,10 @@ class OPENVINO_GENAI_EXPORTS GenerationConfig { bool is_greedy_decoding() const; bool is_beam_search() const; bool is_multinomial() const; + OPENVINO_DEPRECATED("Please, use `is_assisting_generation()` instead of `is_speculative_decoding()`. This method will be removed in 2025.0.0 release") bool is_speculative_decoding() const; + bool is_assisting_generation() const; + bool is_prompt_lookup() const; void update_generation_config(const ov::AnyMap& config_map); template diff --git a/src/cpp/include/openvino/genai/llm_pipeline.hpp b/src/cpp/include/openvino/genai/llm_pipeline.hpp index 44427d45b1..948baab6f4 100644 --- a/src/cpp/include/openvino/genai/llm_pipeline.hpp +++ b/src/cpp/include/openvino/genai/llm_pipeline.hpp @@ -320,5 +320,12 @@ inline std::pair draft_model( */ static constexpr ov::Property scheduler_config{"scheduler_config"}; +/** +* @brief enable prompt_lookup property serves to activate prompt lookup decoding. +* Set `true` to activate this mode. +* And create LLMPipeline instance with this config. +*/ +static constexpr ov::Property prompt_lookup{"prompt_lookup"}; + } // namespace genai } // namespace ov diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index bf0c979d39..6e7e982a4c 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -16,10 +16,12 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::ContinuousBatchingImpl( const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& properties, - const ov::genai::GenerationConfig& generation_config + const ov::genai::GenerationConfig& generation_config, + bool is_validation_mode_enabled ) { m_tokenizer = tokenizer; m_generation_config = generation_config; + m_is_validation_mode_enabled = is_validation_mode_enabled; ov::Core core; diff --git a/src/cpp/src/continuous_batching_impl.hpp b/src/cpp/src/continuous_batching_impl.hpp index 780bff6a31..8da05c6dfa 100644 --- a/src/cpp/src/continuous_batching_impl.hpp +++ b/src/cpp/src/continuous_batching_impl.hpp @@ -58,7 +58,8 @@ class ContinuousBatchingPipeline::ContinuousBatchingImpl : public ContinuousBatc const SchedulerConfig& scheduler_config, const std::string& device, const ov::AnyMap& properties, - const ov::genai::GenerationConfig& generation_config); + const ov::genai::GenerationConfig& generation_config, + bool is_validation_mode_enabled = false); GenerationHandle add_request(uint64_t request_id, const ov::Tensor& input_ids, diff --git a/src/cpp/src/continuous_batching_pipeline.cpp b/src/cpp/src/continuous_batching_pipeline.cpp index 2faad4354e..148eb2fa9f 100644 --- a/src/cpp/src/continuous_batching_pipeline.cpp +++ b/src/cpp/src/continuous_batching_pipeline.cpp @@ -11,6 +11,7 @@ #include "openvino/genai/tokenizer.hpp" #include "continuous_batching_impl.hpp" #include "speculative_decoding/speculative_decoding_impl.hpp" +#include "prompt_lookup/prompt_lookup_impl.hpp" #include "timer.hpp" #include "utils.hpp" #include "debug_utils.hpp" @@ -28,6 +29,15 @@ extract_draft_model_from_config(ov::AnyMap& config) { return draft_model; } +inline bool +extract_prompt_lookup_from_config(ov::AnyMap& config) { + bool res = false; + if (config.find(ov::genai::prompt_lookup.name()) != config.end()) { + res = config.at(ov::genai::prompt_lookup.name()).as(); + config.erase(ov::genai::prompt_lookup.name()); + } + return res; +} ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::filesystem::path& models_path, const SchedulerConfig& scheduler_config, @@ -36,12 +46,16 @@ ContinuousBatchingPipeline::ContinuousBatchingPipeline( const std::filesystem::p const ov::AnyMap& tokenizer_properties) { auto properties_without_draft_model = properties; auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + auto is_prompt_lookup_enabled = extract_prompt_lookup_from_config(properties_without_draft_model); std::filesystem::path openvino_model_name = "openvino_model.xml"; auto model = utils::singleton_core().read_model((models_path / openvino_model_name).string()); auto tokenizer = ov::genai::Tokenizer(models_path, tokenizer_properties); auto generation_config = utils::from_config_json_if_exists(models_path); - if (draft_model_desr.model == nullptr) { + if (is_prompt_lookup_enabled) { + OPENVINO_ASSERT(draft_model_desr.model == nullptr, "Speculative decoding and prompt lookup decoding are mutually excluded"); + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties_without_draft_model, generation_config); + } else if (draft_model_desr.model == nullptr) { m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); } else { auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); @@ -57,11 +71,15 @@ ContinuousBatchingPipeline::ContinuousBatchingPipeline( const ov::AnyMap& properties) { auto properties_without_draft_model = properties; auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + auto is_prompt_lookup_enabled = extract_prompt_lookup_from_config(properties_without_draft_model); std::filesystem::path openvino_model_name = "openvino_model.xml"; auto model = utils::singleton_core().read_model((models_path / openvino_model_name).string()); auto generation_config = utils::from_config_json_if_exists(models_path); - if (draft_model_desr.model == nullptr) { + if (is_prompt_lookup_enabled) { + OPENVINO_ASSERT(draft_model_desr.model == nullptr, "Speculative decoding and prompt lookup decoding are mutually excluded"); + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties_without_draft_model, generation_config); + } else if (draft_model_desr.model == nullptr) { m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); } else { auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); @@ -79,9 +97,13 @@ ContinuousBatchingPipeline::ContinuousBatchingPipeline( const ov::genai::GenerationConfig& generation_config) { auto properties_without_draft_model = properties; auto draft_model_desr = extract_draft_model_from_config(properties_without_draft_model); + auto is_prompt_lookup_enabled = extract_prompt_lookup_from_config(properties_without_draft_model); auto model = utils::singleton_core().read_model(model_str, weights_tensor); - if (draft_model_desr.model == nullptr) { + if (is_prompt_lookup_enabled) { + OPENVINO_ASSERT(draft_model_desr.model == nullptr, "Speculative decoding and prompt lookup decoding are mutually excluded"); + m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties_without_draft_model, generation_config); + } else if (draft_model_desr.model == nullptr) { m_impl = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); } else { auto main_model_descr = ov::genai::ModelDesc(model, tokenizer, device, properties_without_draft_model, scheduler_config, generation_config); diff --git a/src/cpp/src/generation_config.cpp b/src/cpp/src/generation_config.cpp index 189cfeded7..35ae92d605 100644 --- a/src/cpp/src/generation_config.cpp +++ b/src/cpp/src/generation_config.cpp @@ -132,9 +132,17 @@ bool GenerationConfig::is_multinomial() const { } bool GenerationConfig::is_speculative_decoding() const { + return is_assisting_generation(); +} + +bool GenerationConfig::is_assisting_generation() const { return (assistant_confidence_threshold > 0 || num_assistant_tokens > 0); } +bool GenerationConfig::is_prompt_lookup() const { + return (max_ngram_size > 0 && num_assistant_tokens > 0); +} + void GenerationConfig::validate() const { OPENVINO_ASSERT(eos_token_id == -1 || stop_token_ids.find(eos_token_id) != stop_token_ids.end(), "'stop_token_ids' must contain 'eos_token_id'. Please, call 'set_eos_token_id' with 'eos_token_id' value"); @@ -181,9 +189,10 @@ void GenerationConfig::validate() const { OPENVINO_ASSERT(frequency_penalty >= -2.0f && frequency_penalty <= 2.0f, "frequence_penalty penalty must be a [-2; +2]"); OPENVINO_ASSERT(presence_penalty >= -2.0f && presence_penalty <= 2.0f, "presence_penalty penalty must be a [-2; +2]"); } - if (is_speculative_decoding()) { + if (is_assisting_generation()) { if (assistant_confidence_threshold != 0.f) { OPENVINO_ASSERT(num_assistant_tokens == 0, "Parameters `assistant_confidence_threshold` and `num_assistant_tokens` are mutually exclusive in `GenerationConfig`"); + OPENVINO_ASSERT(!is_prompt_lookup(), "Parameters `assistant_confidence_threshold` cannot be used while Prompt Lookup decoding"); } else { OPENVINO_ASSERT(num_assistant_tokens > 0, "Parameters `assistant_confidence_threshold` and `num_assistant_tokens` are mutually exclusive in `GenerationConfig`"); }; diff --git a/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.cpp b/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.cpp new file mode 100644 index 0000000000..8c9e520728 --- /dev/null +++ b/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.cpp @@ -0,0 +1,85 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "continuous_batching_for_prompt_lookup.hpp" + +namespace ov::genai { + +std::map +ContinuousBatchingPipeline::ContinuousBatchingForPromptLookupImpl::get_generated_request_len() { + std::map result; + for (const auto& request : m_requests) { + const auto request_id = request->get_request_id(); + auto validation_len = request->get_num_tokens_to_validate(); + auto generated_len = request->get_num_processed_tokens() - request->get_prompt_len() + 1; + result.insert({ request_id, { generated_len, validation_len } }); + } + return result; +} + +TokenIds ContinuousBatchingPipeline::ContinuousBatchingForPromptLookupImpl::generate_candidates(const TokenIds& input_ids, size_t num_pred_tokens, size_t max_ngram_size) { + if (num_pred_tokens == 0) { + return std::vector{}; + } + + const size_t input_length = input_ids.size(); + + for (int32_t ngram_size = max_ngram_size; ngram_size > 0; ngram_size--) { + // extract last ngram_size tokens as search ngram + std::vector ngram = std::vector{input_ids.cend() - ngram_size, input_ids.cend()}; + + // find ngram match in input_ids + size_t ngram_i = 0; + for (size_t input_i = 0; input_i < input_length - ngram_size; input_i++) { + if (ngram[ngram_i] != input_ids[input_i]) { + ngram_i = 0; + continue; + } + + ngram_i++; + + if (ngram_i < ngram_size) { + continue; + } + + // match found with the end at input_i + size_t avaliable_num_pred = std::min(input_length - (input_i + 1), num_pred_tokens); + + // return candidates with length of avaliable_num_pred + return std::vector{input_ids.cbegin() + input_i + 1, + input_ids.cbegin() + input_i + 1 + avaliable_num_pred}; + } + } + + return std::vector{}; +} + +void ContinuousBatchingPipeline::ContinuousBatchingForPromptLookupImpl::generate_candidates() { + for (auto& request : m_requests) { + const auto prompt = request->get_prompt_ids(); + size_t max_validation_len = 0; + for (auto& running_sequence : request->get_running_sequences()) { + const auto generated_tokens = running_sequence->get_generated_ids(); + TokenIds full_input_ids = prompt; + full_input_ids.insert(full_input_ids.end(), generated_tokens.begin(), generated_tokens.end()); + + size_t min_num_assistant_tokens = 0; + const auto sampling_params = request->get_sampling_parameters(); + { + const auto generated_len = running_sequence->get_generated_len(); + const auto left_generated_len = std::min(sampling_params.max_new_tokens, sampling_params.max_length) - generated_len - 1; + min_num_assistant_tokens = std::min(sampling_params.num_assistant_tokens, left_generated_len); + } + TokenIds candidates = generate_candidates(full_input_ids, min_num_assistant_tokens, sampling_params.max_ngram_size); + + if (!candidates.empty()) { + for (const auto& candidate : candidates) { + running_sequence->append_token(candidate, 0); + } + max_validation_len = std::max(max_validation_len, candidates.size()); + } + } + request->set_num_validated_tokens(max_validation_len); + } +} +} \ No newline at end of file diff --git a/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.hpp b/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.hpp new file mode 100644 index 0000000000..8962aba0f2 --- /dev/null +++ b/src/cpp/src/prompt_lookup/continuous_batching_for_prompt_lookup.hpp @@ -0,0 +1,40 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "openvino/genai/continuous_batching_pipeline.hpp" + +#include "continuous_batching_impl.hpp" + +namespace ov::genai { +class ContinuousBatchingPipeline::ContinuousBatchingForPromptLookupImpl : public ContinuousBatchingPipeline::ContinuousBatchingImpl { +public: + ContinuousBatchingForPromptLookupImpl() = default; + + ContinuousBatchingForPromptLookupImpl( + const std::shared_ptr& model, + const Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config, + bool is_validation_mode_enabled = false) : + ContinuousBatchingImpl{ model, + tokenizer, + scheduler_config, + device, + properties, + generation_config, + true } {}; + + void generate_candidates(); + + // { generated_len, validation_len } + using SequenceLen = std::pair; + std::map get_generated_request_len(); + +protected: + TokenIds generate_candidates(const TokenIds& input_ids, size_t num_pred_tokens, size_t max_ngram_size); +}; +} \ No newline at end of file diff --git a/src/cpp/src/prompt_lookup/prompt_lookup_impl.cpp b/src/cpp/src/prompt_lookup/prompt_lookup_impl.cpp new file mode 100644 index 0000000000..f934a56939 --- /dev/null +++ b/src/cpp/src/prompt_lookup/prompt_lookup_impl.cpp @@ -0,0 +1,159 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "prompt_lookup_impl.hpp" +#include "text_callback_streamer.hpp" + +namespace ov::genai { +template struct overloaded : Ts... {using Ts::operator()...;}; +template overloaded(Ts...) -> overloaded; + +GenerationHandle +ContinuousBatchingPipeline::PromptLookupImpl::add_request(uint64_t request_id, + const ov::Tensor& input_ids, + ov::genai::GenerationConfig sampling_params) { + OPENVINO_ASSERT(sampling_params.is_prompt_lookup(), "`max_ngram_size` && `num_assistant_tokens` should be specified for `prompt lookup decoding`"); + return m_pipeline->add_request(request_id, input_ids, sampling_params); +}; + +GenerationHandle +ContinuousBatchingPipeline::PromptLookupImpl::add_request(uint64_t request_id, + const std::string& prompt, + ov::genai::GenerationConfig sampling_params) { + OPENVINO_ASSERT(sampling_params.is_prompt_lookup(), "`max_ngram_size` && `num_assistant_tokens` should be specified for `prompt lookup decoding`"); + return m_pipeline->add_request(request_id, prompt, sampling_params); +} + +bool ContinuousBatchingPipeline::PromptLookupImpl::has_non_finished_requests() { + return m_pipeline->has_non_finished_requests(); +} + +void ContinuousBatchingPipeline::PromptLookupImpl::step() { + ManualTimer candidates_timer("prompt_lookup_decoding: generate_candidates()"); + candidates_timer.start(); + m_pipeline->generate_candidates(); + candidates_timer.end(); + m_sd_metrics.draft_duration += candidates_timer.get_duration(); + auto generated_len_before = m_pipeline->get_generated_request_len(); + + ManualTimer main_timer("prompt_lookup_decoding: step()"); + main_timer.start(); + m_pipeline->step(); + main_timer.end(); + m_sd_metrics.main_duration += main_timer.get_duration(); + m_pipeline_metrics = m_pipeline->get_metrics(); + auto generated_len_after = m_pipeline->get_generated_request_len(); + + for (const auto request : generated_len_before) { + auto request_id = request.first; + auto prev_validation_len = request.second.second; + if (prev_validation_len == 0) { + continue; + } + size_t num_matches = prev_validation_len; + float acceptance_rate = 1.f; + if (generated_len_after.count(request.first)) { + auto present_req_len = generated_len_after.at(request.first).first; + auto prev_full_req_len = request.second.first; + + num_matches = (present_req_len - prev_full_req_len - 1); + acceptance_rate = static_cast(num_matches) / static_cast(prev_validation_len); + } + m_sd_metrics.update_acceptance_rate(request_id, acceptance_rate * 100); + m_sd_metrics.update_draft_accepted_tokens(request_id, num_matches); + } + + if (generated_len_after.empty() && 0) { + m_sd_metrics.print(true); + m_sd_metrics.clean_up(); + } +} + +std::vector +ContinuousBatchingPipeline::PromptLookupImpl::generate(const std::vector& input_ids, + const std::vector& sampling_params, + const StreamerVariant& streamer) { + ManualTimer generate_timer("speculative_decoding: generate()"); + generate_timer.start(); + OPENVINO_ASSERT(!has_non_finished_requests(), "Generate cannot be called while ContinuousBatchingPipeline is already in running state. Use ContinuousBatchingPipeline::add_request"); + OPENVINO_ASSERT(input_ids.size() == sampling_params.size()); + const std::shared_ptr& streamer_ptr = std::visit(overloaded{ + [](std::monostate) -> std::shared_ptr { + return nullptr; + }, + [](const std::shared_ptr& streamer) { + return streamer; + }, + [this](const std::function& streamer) -> std::shared_ptr { + return std::make_unique(m_tokenizer, streamer); + } + }, streamer); + + OPENVINO_ASSERT(streamer_ptr == nullptr || input_ids.size() == 1 && (sampling_params[0].is_greedy_decoding() || sampling_params[0].is_multinomial()), + "Currently streaming is possible only with batch size=1 and only for greedy or multinomial decoding"); + + std::vector main_generations; + for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { + OPENVINO_ASSERT(1 == input_ids[request_id].get_shape().at(0), "Use multiple tensors to pass a batch."); + OPENVINO_ASSERT(sampling_params[request_id].is_prompt_lookup(), "`max_ngram_size` && `num_assistant_tokens` should be specified for `prompt lookup decoding`"); + main_generations.push_back(m_pipeline->add_request(request_id, input_ids[request_id], sampling_params[request_id])); + } + + std::vector results; + results.reserve(input_ids.size()); + + bool continue_generation = true; + while (has_non_finished_requests() && continue_generation) { + step(); + if (streamer_ptr) { + // not generated tokens like several prompt phase + if (!main_generations.at(0).get()->can_read()) { + continue; + } + std::unordered_map token = main_generations.at(0).get()->back(); + OPENVINO_ASSERT(1 <= token.size()); + OPENVINO_ASSERT(1 <= token.begin()->second.generated_ids.size()); + for (const auto& gen_token : token.begin()->second.generated_ids) { + continue_generation = !streamer_ptr->put(gen_token); + if (!continue_generation) { + break; + } + } + } + } + if (streamer_ptr) { + streamer_ptr->end(); + } + + for (size_t generation_idx = 0; generation_idx < main_generations.size(); ++generation_idx) { + const auto& generation = main_generations[generation_idx]; + EncodedGenerationResult result; + result.m_request_id = 1; + std::vector generation_outputs = generation->read_all(); + std::sort(generation_outputs.begin(), generation_outputs.end(), [=] (GenerationOutput& r1, GenerationOutput& r2) { + return r1.score > r2.score; + }); + + auto num_outputs = std::min(sampling_params[generation_idx].num_return_sequences, generation_outputs.size()); + for (size_t generation_output_idx = 0; generation_output_idx < num_outputs; ++generation_output_idx) { + const auto& generation_output = generation_outputs[generation_output_idx]; + m_sd_metrics.set_generated_len(generation_idx, generation_outputs[generation_output_idx].generated_ids.size()); + result.m_generation_ids.push_back(std::move(generation_output.generated_ids)); + result.m_scores.push_back(generation_output.score); + } + result.m_status = generation->get_status(); + results.push_back(std::move(result)); + } + + OPENVINO_ASSERT(results.size() == input_ids.size()); + generate_timer.end(); + m_sd_metrics.total_duration = generate_timer.get_duration(); + + return results; +} + +SpeculativeDecodingMetrics +ContinuousBatchingPipeline::PromptLookupImpl::get_metrics() { + return m_sd_metrics; +}; +} diff --git a/src/cpp/src/prompt_lookup/prompt_lookup_impl.hpp b/src/cpp/src/prompt_lookup/prompt_lookup_impl.hpp new file mode 100644 index 0000000000..dae721741b --- /dev/null +++ b/src/cpp/src/prompt_lookup/prompt_lookup_impl.hpp @@ -0,0 +1,49 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "openvino/genai/continuous_batching_pipeline.hpp" +#include "continuous_batching_impl.hpp" +#include "continuous_batching_for_prompt_lookup.hpp" +#include "speculative_decoding/speculative_decoding_metrics.hpp" +#include "utils.hpp" + +namespace ov::genai { + +class ContinuousBatchingPipeline::PromptLookupImpl : public ContinuousBatchingPipeline::ImplInterface { +protected: + std::shared_ptr m_pipeline; + SpeculativeDecodingMetrics m_sd_metrics; + +public: + PromptLookupImpl(const std::shared_ptr& model, + const Tokenizer& tokenizer, + const SchedulerConfig& scheduler_config, + const std::string& device, + const ov::AnyMap& properties, + const ov::genai::GenerationConfig& generation_config) { + m_tokenizer = tokenizer; + m_pipeline = std::make_shared(model, tokenizer, scheduler_config, device, properties, generation_config); + }; + + GenerationHandle add_request(uint64_t request_id, + const ov::Tensor& input_ids, + ov::genai::GenerationConfig sampling_params) override; + GenerationHandle add_request(uint64_t request_id, + const std::string& prompt, + ov::genai::GenerationConfig sampling_params) override; + + bool has_non_finished_requests() override; + + void step() override; + + std::vector + generate(const std::vector& input_ids, + const std::vector& sampling_params, + const StreamerVariant& streamer) override; + + SpeculativeDecodingMetrics get_metrics(); +}; + +} \ No newline at end of file diff --git a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp index 06a51b38be..36f274f30f 100644 --- a/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/continuous_batching_for_speculative_decoding_impl.cpp @@ -141,7 +141,7 @@ init_request( LogitProcessor& logit_processor, bool is_update_logit_processor, bool is_init_all_sequences_in_request = false) { - OPENVINO_ASSERT(request->get_sampling_parameters().is_speculative_decoding(), + OPENVINO_ASSERT(request->get_sampling_parameters().is_assisting_generation(), "Speculative decoding should have initialized options `assistant_confidence_threshold` xor `num_assistant_tokens` in `GenerationConfig`."); if (candidates.begin()->second.token_ids.empty() && !is_init_all_sequences_in_request) { return 0; @@ -303,7 +303,7 @@ void ContinuousBatchingPipeline::ContinuousBatchingForSpeculativeDecodingImpl::m to_generate = false; for (auto& request : m_requests) { const auto& sampling_params = request->get_sampling_parameters(); - if (!sampling_params.is_speculative_decoding()) { + if (!sampling_params.is_assisting_generation()) { // generate only one token in case of non speculative decoding request->pause_generation(true); } else if (request->get_num_processed_tokens() >= request->get_prompt_len() && diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index e4f3b1ad1f..4a0748b5c0 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -182,6 +182,11 @@ void ContinuousBatchingPipeline::SpeculativeDecodingImpl::step() { m_sd_metrics.update_acceptance_rate(request_id, acceptance_rate * 100); m_sd_metrics.update_draft_accepted_tokens(request_id, (updated_seq_info.inserted_tokens_cnt - updated_seq_info.removed_tokens_cnt)); } + + if (main_generated_requests.empty() && 0) { + m_sd_metrics.print(true); + m_sd_metrics.clean_up(); + } } std::vector @@ -266,24 +271,6 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::generate(const std::vector< OPENVINO_ASSERT(results.size() == input_ids.size()); generate_timer.end(); - m_sd_metrics.total_duration = generate_timer.get_duration(); - - // Print Speculative decoding metrics - if (0) { - std::cout << std::endl; - std::cout << "Total duration, ms: " << m_sd_metrics.total_duration << std::endl; - std::cout << "Draft model duration, ms: " << m_sd_metrics.draft_duration << std::endl; - std::cout << "Main model duration, ms: " << m_sd_metrics.main_duration << std::endl; - std::cout << "Draft model duration, %: " << m_sd_metrics.get_draft_duration_percentage() << std::endl; - std::cout << "Main model duration, %: " << m_sd_metrics.get_main_duration_percentage() << std::endl; - std::cout << "Main model iterations: " << m_sd_metrics.get_iteration_number(0) << std::endl; - std::cout << "Token per sec: " << float(sampling_params[0].max_new_tokens) / m_sd_metrics.total_duration << std::endl; - std::cout << "AVG acceptance rate, %: " << m_sd_metrics.get_avg_acceptance_rate(0) << std::endl; - std::cout << "Accepted tokens by draft model: " << m_sd_metrics.get_draft_accepted_tokens_counter(0) << std::endl; - std::cout << "Generated tokens: " << sampling_params[0].max_new_tokens << std::endl; - std::cout << "Accepted token rate, %: " << m_sd_metrics.get_draft_accepted_tokens_percentage(0) << std::endl; - } - return results; } diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_metrics.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_metrics.cpp index 42d3f0b750..4e5602482a 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_metrics.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_metrics.cpp @@ -95,4 +95,63 @@ void SpeculativeDecodingMetrics::set_generated_len(int64_t request_id, size_t ge m_generated_len.insert({ request_id, generated_len }); } +size_t SpeculativeDecodingMetrics::get_generated_len(int64_t request_id) { + return m_generated_len.at(request_id); +} + +std::vector SpeculativeDecodingMetrics::get_requests_id() { + std::vector result; + for (const auto& req : m_generated_len) { + result.push_back(req.first); + } + return result; +} + +void SpeculativeDecodingMetrics::print_acceptance_rates() { + for (const auto& a : m_acceptance_rate) { + std::cout << "Request_id: " << a.first << " ||| "; + for (const auto& b : a.second) { + std::cout << b << " "; + } + std::cout << std::endl; + } +} + +void SpeculativeDecodingMetrics::print(bool is_printing_per_request) { + if (total_duration == 0) { + total_duration = draft_duration + main_duration; + } + std::cout << "\n=============================== " << std::endl; + std::cout << "Total duration, ms: " << total_duration << std::endl; + std::cout << "Draft model duration, ms: " << draft_duration << std::endl; + std::cout << "Main model duration, ms: " << main_duration << std::endl; + std::cout << "Draft model duration, %: " << get_draft_duration_percentage() << std::endl; + std::cout << "Main model duration, %: " << get_main_duration_percentage() << std::endl; + std::cout << "AVG acceptance rate, %: " << get_avg_acceptance_rate(-1) << std::endl; + std::cout << "=============================== " << std::endl; + if (is_printing_per_request) { + for (const auto& i : get_requests_id()) { + std::cout << "REQUEST_ID: " << i << std::endl; + std::cout << "Main model iterations: " << get_iteration_number(i) << std::endl; + std::cout << "Token per sec: " << float(get_generated_len(i)) / total_duration << std::endl; + std::cout << "AVG acceptance rate, %: " << get_avg_acceptance_rate(i) << std::endl; + std::cout << "Accepted tokens by draft model: " << get_draft_accepted_tokens_counter(i) << std::endl; + std::cout << "Generated tokens: " << get_generated_len(i) << std::endl; + std::cout << "Accepted token rate, %: " << get_draft_accepted_tokens_percentage(i) << std::endl; + std::cout << "=============================== " << std::endl; + } + print_acceptance_rates(); + } + +} + +void SpeculativeDecodingMetrics::clean_up() { + m_acceptance_rate.clear(); + m_draft_accepted_tokens.clear(); + m_generated_len.clear(); + draft_duration = 0; + main_duration = 0; + total_duration = 0; +} + } \ No newline at end of file diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_metrics.hpp b/src/cpp/src/speculative_decoding/speculative_decoding_metrics.hpp index 5256128277..0d9173b99f 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_metrics.hpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_metrics.hpp @@ -28,6 +28,7 @@ class SpeculativeDecodingMetrics { void update_draft_accepted_tokens(int64_t request_id, size_t num_matches); void set_generated_len(int64_t request_id, size_t generated_len); + size_t get_generated_len(int64_t request_id); size_t get_iteration_number(int64_t request_id); @@ -35,5 +36,11 @@ class SpeculativeDecodingMetrics { float get_main_duration_percentage(); float get_inference_duration_percentage(); + std::vector get_requests_id(); + + void print_acceptance_rates(); + void print(bool is_printing_per_request = false); + + void clean_up(); }; } \ No newline at end of file diff --git a/src/python/openvino_genai/__init__.py b/src/python/openvino_genai/__init__.py index 470ddd0cd8..a0b0faf58c 100644 --- a/src/python/openvino_genai/__init__.py +++ b/src/python/openvino_genai/__init__.py @@ -28,7 +28,7 @@ # LLM pipeline from .py_openvino_genai import ( LLMPipeline, - draft_model + draft_model, ) # LoRA diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 6135a187eb..524ff0f921 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -575,6 +575,7 @@ class GenerationConfig: logprobs: int max_length: int max_new_tokens: int + max_ngram_size: int min_new_tokens: int no_repeat_ngram_size: int num_assistant_tokens: int @@ -598,11 +599,13 @@ class GenerationConfig: @typing.overload def __init__(self, **kwargs) -> None: ... + def is_assisting_generation(self) -> bool: + ... def is_beam_search(self) -> bool: ... def is_greedy_decoding(self) -> bool: ... - def is_speculative_decoding(self) -> bool: + def is_prompt_lookup(self) -> bool: ... def set_eos_token_id(self, tokenizer_eos_token_id: int) -> None: ... @@ -2122,11 +2125,7 @@ class WhisperRawPerfMetrics: @property def features_extraction_durations(self) -> list[float]: ... -class draft_model: +def draft_model(models_path: os.PathLike, device: str = '', **kwargs) -> openvino._pyopenvino.OVAny: """ - This class is used to enable Speculative Decoding + device on which inference will be performed """ - def __init__(self, models_path: os.PathLike, device: str = '', **kwargs) -> None: - """ - device on which inference will be performed - """ diff --git a/src/python/py_generation_config.cpp b/src/python/py_generation_config.cpp index d24a915dd6..b1a5c6cd2e 100644 --- a/src/python/py_generation_config.cpp +++ b/src/python/py_generation_config.cpp @@ -107,12 +107,14 @@ void init_generation_config(py::module_& m) { .def_readwrite("logprobs", &GenerationConfig::logprobs) .def_readwrite("assistant_confidence_threshold", &GenerationConfig::assistant_confidence_threshold) .def_readwrite("num_assistant_tokens", &GenerationConfig::num_assistant_tokens) + .def_readwrite("max_ngram_size", &GenerationConfig::max_ngram_size) .def_readwrite("include_stop_str_in_output", &GenerationConfig::include_stop_str_in_output) .def_readwrite("stop_token_ids", &GenerationConfig::stop_token_ids) .def_readwrite("adapters", &GenerationConfig::adapters) .def("set_eos_token_id", &GenerationConfig::set_eos_token_id, py::arg("tokenizer_eos_token_id")) .def("is_beam_search", &GenerationConfig::is_beam_search) .def("is_greedy_decoding", &GenerationConfig::is_greedy_decoding) - .def("is_speculative_decoding", &GenerationConfig::is_speculative_decoding) + .def("is_assisting_generation", &GenerationConfig::is_assisting_generation) + .def("is_prompt_lookup", &GenerationConfig::is_prompt_lookup) .def("update_generation_config", static_cast(&ov::genai::GenerationConfig::update_generation_config), py::arg("config_map")); } diff --git a/src/python/py_llm_pipeline.cpp b/src/python/py_llm_pipeline.cpp index b53cc56f10..b1d5136253 100644 --- a/src/python/py_llm_pipeline.cpp +++ b/src/python/py_llm_pipeline.cpp @@ -195,15 +195,14 @@ void init_llm_pipeline(py::module_& m) { .def("get_generation_config", &LLMPipeline::get_generation_config, py::return_value_policy::copy) .def("set_generation_config", &LLMPipeline::set_generation_config, py::arg("config")); - py::class_(m, "draft_model", py::module_local(), "This class is used to enable Speculative Decoding") - .def(py::init([]( + m.def("draft_model", []( const std::filesystem::path& models_path, const std::string& device, const py::kwargs& kwargs ) { ScopedVar env_manager(pyutils::ov_tokenizers_module_path()); return draft_model(models_path, device, pyutils::kwargs_to_any_map(kwargs)).second; - }), + }, py::arg("models_path"), "folder with openvino_model.xml and openvino_tokenizer[detokenizer].xml files", py::arg("device") = "", "device on which inference will be performed"); } diff --git a/src/python/py_openvino_genai.cpp b/src/python/py_openvino_genai.cpp index e821c1cfdc..429f48f30d 100644 --- a/src/python/py_openvino_genai.cpp +++ b/src/python/py_openvino_genai.cpp @@ -21,7 +21,6 @@ using ov::genai::DecodedResults; using ov::genai::EncodedResults; using ov::genai::StreamerBase; using ov::genai::StringInputs; -using ov::genai::draft_model; void init_lora_adapter(py::module_& m); void init_perf_metrics(py::module_& m); diff --git a/tests/cpp/CMakeLists.txt b/tests/cpp/CMakeLists.txt index f404e63cff..093cd993de 100644 --- a/tests/cpp/CMakeLists.txt +++ b/tests/cpp/CMakeLists.txt @@ -19,6 +19,7 @@ file(GLOB src_files "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/sequence_group.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/cache_eviction.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/sampler.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/speculative_decoding/*.cpp" + "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/prompt_lookup/*.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/utils/*.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/utils.cpp" "${OpenVINOGenAI_SOURCE_DIR}/src/cpp/src/continuous_batching*.cpp" From 499096a22d73e4365695f0d45077cd163aa45a1e Mon Sep 17 00:00:00 2001 From: Ekaterina Aidova Date: Wed, 18 Dec 2024 20:27:04 +0400 Subject: [PATCH 092/113] [llm bench]: add infer latency for genai (#1397) CVS-158466 port from 2024.6 to master https://github.com/openvinotoolkit/openvino.genai/pull/1391 --- tools/llm_bench/task/speech_to_text_generation.py | 2 +- tools/llm_bench/task/text_generation.py | 3 ++- tools/llm_bench/task/visual_language_generation.py | 3 ++- 3 files changed, 5 insertions(+), 3 deletions(-) diff --git a/tools/llm_bench/task/speech_to_text_generation.py b/tools/llm_bench/task/speech_to_text_generation.py index f1e7ac54a0..15a47a8b6a 100644 --- a/tools/llm_bench/task/speech_to_text_generation.py +++ b/tools/llm_bench/task/speech_to_text_generation.py @@ -57,7 +57,7 @@ def run_speech_2_txt_generation(input_param, args, md5_list, iter_data_list): - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) ).tolist() tm_list = (np.array([first_token_time] + second_tokens_durations) / 1000).tolist() - tm_infer_list = None + tm_infer_list = (np.array(perf_metrics.raw_metrics.token_infer_durations) / 1000 / 1000).tolist() result_text = result_text.texts[0] else: start = time.perf_counter() diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 3f5b5ed301..485de94996 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -302,6 +302,7 @@ def token_printer(): ).tolist() tm_list = np.array([first_token_time] + second_tokens_durations) / 1000 + inference_durations = (np.array(perf_metrics.raw_metrics.token_infer_durations) / 1000 / 1000).tolist() log.debug('latency of all tokens:') [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] iter_data = gen_output_data.gen_iterate_data( @@ -323,7 +324,7 @@ def token_printer(): num, iter_data, tm_list.tolist(), - None, + inference_durations.tolist(), warm_up=(num == 0), max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, diff --git a/tools/llm_bench/task/visual_language_generation.py b/tools/llm_bench/task/visual_language_generation.py index c4144366b4..068ae0cf60 100644 --- a/tools/llm_bench/task/visual_language_generation.py +++ b/tools/llm_bench/task/visual_language_generation.py @@ -268,11 +268,12 @@ def run_visual_language_generation_genai( mm_embeddings_preparation_time=perf_metrics.get_prepare_embeddings_duration().mean ) iter_data_list.append(iter_data) + inference_durations = np.array(perf_metrics.raw_metrics.token_infer_durations) / 1000 / 1000 metrics_print.print_metrics( num, iter_data, tm_list.tolist(), - None, + inference_durations.tolist(), warm_up=(num == 0), max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, From 1542c60f9a07de77eb3485b3589b309d3c5b5347 Mon Sep 17 00:00:00 2001 From: Alexander Kozlov Date: Thu, 19 Dec 2024 10:39:36 +0300 Subject: [PATCH 093/113] Removed generator patching (#1408) --- tools/who_what_benchmark/whowhatbench/wwb.py | 4 ---- 1 file changed, 4 deletions(-) diff --git a/tools/who_what_benchmark/whowhatbench/wwb.py b/tools/who_what_benchmark/whowhatbench/wwb.py index 026a6cc69b..04813f5fd8 100644 --- a/tools/who_what_benchmark/whowhatbench/wwb.py +++ b/tools/who_what_benchmark/whowhatbench/wwb.py @@ -1,7 +1,3 @@ -from .utils import patch_diffusers - -patch_diffusers() - import argparse import difflib import numpy as np From 7a02d2bca6cf29dfe8fdcd796fca0d33ef275426 Mon Sep 17 00:00:00 2001 From: Anna Likholat Date: Thu, 19 Dec 2024 08:41:00 +0100 Subject: [PATCH 094/113] [ImageGeneration] EulerAncestralDiscreteScheduler (#1407) ![image](https://github.com/user-attachments/assets/6b688510-50d9-4f32-b80d-cb8cfa0b4b79) CVS-156803 CVS-158965 --------- Co-authored-by: Ilya Lavrenov --- .../genai/image_generation/scheduler.hpp | 3 +- .../schedulers/euler_ancestral_discrete.cpp | 261 ++++++++++++++++++ .../schedulers/euler_ancestral_discrete.hpp | 61 ++++ .../image_generation/schedulers/scheduler.cpp | 3 + .../src/image_generation/schedulers/types.cpp | 2 + src/docs/SUPPORTED_MODELS.md | 1 + .../openvino_genai/py_openvino_genai.pyi | 5 +- src/python/py_image_generation_pipelines.cpp | 3 +- tools/llm_bench/llm_bench_utils/ov_utils.py | 2 +- 9 files changed, 337 insertions(+), 4 deletions(-) create mode 100644 src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp create mode 100644 src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.hpp diff --git a/src/cpp/include/openvino/genai/image_generation/scheduler.hpp b/src/cpp/include/openvino/genai/image_generation/scheduler.hpp index 21c266aa50..25c5e07a2f 100644 --- a/src/cpp/include/openvino/genai/image_generation/scheduler.hpp +++ b/src/cpp/include/openvino/genai/image_generation/scheduler.hpp @@ -19,7 +19,8 @@ class OPENVINO_GENAI_EXPORTS Scheduler { DDIM, EULER_DISCRETE, FLOW_MATCH_EULER_DISCRETE, - PNDM + PNDM, + EULER_ANCESTRAL_DISCRETE }; static std::shared_ptr from_config(const std::filesystem::path& scheduler_config_path, diff --git a/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp b/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp new file mode 100644 index 0000000000..a63a073cfc --- /dev/null +++ b/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.cpp @@ -0,0 +1,261 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include +#include +#include +#include + +#include "image_generation/schedulers/euler_ancestral_discrete.hpp" +#include "image_generation/numpy_utils.hpp" + +namespace ov { +namespace genai { + +EulerAncestralDiscreteScheduler::Config::Config(const std::filesystem::path& scheduler_config_path) { + std::ifstream file(scheduler_config_path); + OPENVINO_ASSERT(file.is_open(), "Failed to open ", scheduler_config_path); + + nlohmann::json data = nlohmann::json::parse(file); + using utils::read_json_param; + + read_json_param(data, "num_train_timesteps", num_train_timesteps); + read_json_param(data, "beta_start", beta_start); + read_json_param(data, "beta_end", beta_end); + read_json_param(data, "beta_schedule", beta_schedule); + read_json_param(data, "trained_betas", trained_betas); + read_json_param(data, "steps_offset", steps_offset); + read_json_param(data, "prediction_type", prediction_type); + read_json_param(data, "timestep_spacing", timestep_spacing); + read_json_param(data, "rescale_betas_zero_snr", rescale_betas_zero_snr); +} + +EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path) + : EulerAncestralDiscreteScheduler(Config(scheduler_config_path)) { +} + +EulerAncestralDiscreteScheduler::EulerAncestralDiscreteScheduler(const Config& scheduler_config): m_config(scheduler_config) { + std::vector alphas, betas; + + using numpy_utils::linspace; + + if (!m_config.trained_betas.empty()) { + betas = m_config.trained_betas; + } else if (m_config.beta_schedule == BetaSchedule::LINEAR) { + betas = linspace(m_config.beta_start, m_config.beta_end, m_config.num_train_timesteps); + } else if (m_config.beta_schedule == BetaSchedule::SCALED_LINEAR) { + float start = std::sqrt(m_config.beta_start); + float end = std::sqrt(m_config.beta_end); + betas = linspace(start, end, m_config.num_train_timesteps); + std::for_each(betas.begin(), betas.end(), [](float& x) { + x *= x; + }); + // TODO: else if beta_schedule == "squaredcos_cap_v2" + } else { + OPENVINO_THROW( + "'beta_schedule' must be one of 'LINEAR' or 'SCALED_LINEAR'. Please, add support of other types"); + } + + if (m_config.rescale_betas_zero_snr) { + using numpy_utils::rescale_zero_terminal_snr; + rescale_zero_terminal_snr(betas); + } + + std::transform(betas.begin(), betas.end(), std::back_inserter(alphas), [](float b) { + return 1.0f - b; + }); + + for (size_t i = 1; i <= alphas.size(); ++i) { + float alpha_cumprod = + std::accumulate(std::begin(alphas), std::begin(alphas) + i, 1.0, std::multiplies{}); + m_alphas_cumprod.push_back(alpha_cumprod); + } + + if (m_config.rescale_betas_zero_snr) { + m_alphas_cumprod.back() = std::pow(2, -24); + } + + for (auto it = m_alphas_cumprod.rbegin(); it != m_alphas_cumprod.rend(); ++it) { + float sigma = std::pow(((1 - (*it)) / (*it)), 0.5); + m_sigmas.push_back(sigma); + } + m_sigmas.push_back(0); + + // setable values + auto linspaced = + linspace(0.0f, static_cast(m_config.num_train_timesteps - 1), m_config.num_train_timesteps, true); + for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) { + m_timesteps.push_back(static_cast(std::round(*it))); + } + m_num_inference_steps = -1; + m_step_index = -1; + m_begin_index = -1; + m_is_scale_input_called = false; +} + +void EulerAncestralDiscreteScheduler::set_timesteps(size_t num_inference_steps, float strength) { + m_timesteps.clear(); + m_sigmas.clear(); + m_step_index = m_begin_index = -1; + m_num_inference_steps = num_inference_steps; + std::vector sigmas; + + switch (m_config.timestep_spacing) { + case TimestepSpacing::LINSPACE: { + using numpy_utils::linspace; + float end = static_cast(m_config.num_train_timesteps - 1); + auto linspaced = linspace(0.0f, end, num_inference_steps, true); + for (auto it = linspaced.rbegin(); it != linspaced.rend(); ++it) { + m_timesteps.push_back(static_cast(std::round(*it))); + } + break; + } + case TimestepSpacing::LEADING: { + size_t step_ratio = m_config.num_train_timesteps / m_num_inference_steps; + for (size_t i = num_inference_steps - 1; i != -1; --i) { + m_timesteps.push_back(i * step_ratio + m_config.steps_offset); + } + break; + } + case TimestepSpacing::TRAILING: { + float step_ratio = static_cast(m_config.num_train_timesteps) / static_cast(m_num_inference_steps); + for (float i = m_config.num_train_timesteps; i > 0; i -= step_ratio) { + m_timesteps.push_back(static_cast(std::round(i)) - 1); + } + break; + } + default: + OPENVINO_THROW("Unsupported value for 'timestep_spacing'"); + } + + for (const float& i : m_alphas_cumprod) { + float sigma = std::pow(((1 - i) / i), 0.5); + sigmas.push_back(sigma); + } + + using numpy_utils::interp; + std::vector x_data_points(sigmas.size()); + std::iota(x_data_points.begin(), x_data_points.end(), 0); + m_sigmas = interp(m_timesteps, x_data_points, sigmas); + m_sigmas.push_back(0.0f); + + // apply 'strength' used in image generation + // in diffusers, it's https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py#L650 + { + size_t init_timestep = std::min(num_inference_steps * strength, num_inference_steps); + size_t t_start = std::max(num_inference_steps - init_timestep, 0); + // keep original timesteps + m_schedule_timesteps = m_timesteps; + // while return patched ones by 'strength' parameter + m_timesteps = std::vector(m_timesteps.begin() + t_start, m_timesteps.end()); + m_begin_index = t_start; + } +} + +std::map EulerAncestralDiscreteScheduler::step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) { + // noise_pred - model_output + // latents - sample + // inference_step + + size_t timestep = m_timesteps[inference_step]; + + if (m_step_index == -1) + m_step_index = m_begin_index; + + float sigma = m_sigmas[m_step_index]; + + float* model_output_data = noise_pred.data(); + float* sample_data = latents.data(); + + ov::Tensor pred_original_sample(noise_pred.get_element_type(), noise_pred.get_shape()); + float* pred_original_sample_data = pred_original_sample.data(); + + switch (m_config.prediction_type) { + case PredictionType::EPSILON: + for (size_t i = 0; i < noise_pred.get_size(); ++i) { + pred_original_sample_data[i] = sample_data[i] - sigma * model_output_data[i]; + } + break; + case PredictionType::V_PREDICTION: + for (size_t i = 0; i < noise_pred.get_size(); ++i) { + pred_original_sample_data[i] = model_output_data[i] * (-sigma / std::pow((std::pow(sigma, 2) + 1), 0.5)) + + (sample_data[i] / (std::pow(sigma, 2) + 1)); + } + break; + default: + OPENVINO_THROW("Unsupported value for 'PredictionType': must be one of `epsilon`, or `v_prediction`"); + } + + float sigma_from = m_sigmas[m_step_index]; + float sigma_to = m_sigmas[m_step_index + 1]; + float sigma_up = std::sqrt(std::pow(sigma_to, 2) * (std::pow(sigma_from, 2) - std::pow(sigma_to, 2)) / std::pow(sigma_from, 2)); + float sigma_down = std::sqrt(std::pow(sigma_to, 2) - std::pow(sigma_up, 2)); + float dt = sigma_down - sigma; + + ov::Tensor prev_sample = ov::Tensor(latents.get_element_type(), latents.get_shape()); + float* prev_sample_data = prev_sample.data(); + + ov::Tensor noise = generator->randn_tensor(noise_pred.get_shape()); + const float* noise_data = noise.data(); + + for (size_t i = 0; i < prev_sample.get_size(); ++i) { + float derivative = (sample_data[i] - pred_original_sample_data[i]) / sigma; + prev_sample_data[i] = (sample_data[i] + derivative * dt) + noise_data[i] * sigma_up; + } + + m_step_index++; + + return {{"latent", prev_sample}, {"denoised", pred_original_sample}}; +} + +size_t EulerAncestralDiscreteScheduler::_index_for_timestep(int64_t timestep) const{ + for (size_t i = 0; i < m_schedule_timesteps.size(); ++i) { + if (timestep == m_schedule_timesteps[i]) { + return i; + } + } + + OPENVINO_THROW("Failed to find index for timestep ", timestep); +} + +void EulerAncestralDiscreteScheduler::add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const { + size_t index_for_timestep = _index_for_timestep(latent_timestep); + const float sigma = m_sigmas[index_for_timestep]; + + float * init_latent_data = init_latent.data(); + const float * noise_data = noise.data(); + + for (size_t i = 0; i < init_latent.get_size(); ++i) { + init_latent_data[i] = init_latent_data[i] + sigma * noise_data[i]; + } +} + +std::vector EulerAncestralDiscreteScheduler::get_timesteps() const { + return m_timesteps; +} + +void EulerAncestralDiscreteScheduler::scale_model_input(ov::Tensor sample, size_t inference_step) { + if (m_step_index == -1) + m_step_index = m_begin_index; + + float sigma = m_sigmas[m_step_index]; + float* sample_data = sample.data(); + for (size_t i = 0; i < sample.get_size(); i++) { + sample_data[i] /= std::pow((std::pow(sigma, 2) + 1), 0.5); + } + m_is_scale_input_called = true; +} + +float EulerAncestralDiscreteScheduler::get_init_noise_sigma() const { + float max_sigma = *std::max_element(m_sigmas.begin(), m_sigmas.end()); + + if (m_config.timestep_spacing == TimestepSpacing::LINSPACE || + m_config.timestep_spacing == TimestepSpacing::TRAILING) { + return max_sigma; + } + + return std::sqrt(std::pow(max_sigma, 2) + 1); +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.hpp b/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.hpp new file mode 100644 index 0000000000..9d82c9a0a9 --- /dev/null +++ b/src/cpp/src/image_generation/schedulers/euler_ancestral_discrete.hpp @@ -0,0 +1,61 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include +#include + +#include "image_generation/schedulers/types.hpp" +#include "image_generation/schedulers/ischeduler.hpp" + +namespace ov { +namespace genai { + +class EulerAncestralDiscreteScheduler : public IScheduler { +public: + struct Config { + int32_t num_train_timesteps = 1000; + float beta_start = 0.0001f, beta_end = 0.02f; + BetaSchedule beta_schedule = BetaSchedule::LINEAR; + std::vector trained_betas = {}; + size_t steps_offset = 0; + PredictionType prediction_type = PredictionType::EPSILON; + TimestepSpacing timestep_spacing = TimestepSpacing::LEADING; + bool rescale_betas_zero_snr = false; + + Config() = default; + explicit Config(const std::filesystem::path& scheduler_config_path); + }; + + explicit EulerAncestralDiscreteScheduler(const std::filesystem::path& scheduler_config_path); + explicit EulerAncestralDiscreteScheduler(const Config& scheduler_config); + + void set_timesteps(size_t num_inference_steps, float strength) override; + + std::vector get_timesteps() const override; + + float get_init_noise_sigma() const override; + + void scale_model_input(ov::Tensor sample, size_t inference_step) override; + + std::map step(ov::Tensor noise_pred, ov::Tensor latents, size_t inference_step, std::shared_ptr generator) override; + + void add_noise(ov::Tensor init_latent, ov::Tensor noise, int64_t latent_timestep) const override; + +private: + Config m_config; + + std::vector m_alphas_cumprod, m_sigmas; + std::vector m_timesteps, m_schedule_timesteps; + size_t m_num_inference_steps; + + int m_step_index, m_begin_index; + bool m_is_scale_input_called; + + size_t _index_for_timestep(int64_t timestep) const; +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/image_generation/schedulers/scheduler.cpp b/src/cpp/src/image_generation/schedulers/scheduler.cpp index f9cd098346..868f6f05cf 100644 --- a/src/cpp/src/image_generation/schedulers/scheduler.cpp +++ b/src/cpp/src/image_generation/schedulers/scheduler.cpp @@ -11,6 +11,7 @@ #include "image_generation/schedulers/euler_discrete.hpp" #include "image_generation/schedulers/flow_match_euler_discrete.hpp" #include "image_generation/schedulers/pndm.hpp" +#include "image_generation/schedulers/euler_ancestral_discrete.hpp" namespace ov { namespace genai { @@ -41,6 +42,8 @@ std::shared_ptr Scheduler::from_config(const std::filesystem::path& s scheduler = std::make_shared(scheduler_config_path); } else if (scheduler_type == Scheduler::Type::PNDM) { scheduler = std::make_shared(scheduler_config_path); + } else if (scheduler_type == Scheduler::Type::EULER_ANCESTRAL_DISCRETE) { + scheduler = std::make_shared(scheduler_config_path); } else { OPENVINO_THROW("Unsupported scheduler type '", scheduler_type, ". Please, manually create scheduler via supported one"); } diff --git a/src/cpp/src/image_generation/schedulers/types.cpp b/src/cpp/src/image_generation/schedulers/types.cpp index 2f7c6d3f25..5a9e5b6865 100644 --- a/src/cpp/src/image_generation/schedulers/types.cpp +++ b/src/cpp/src/image_generation/schedulers/types.cpp @@ -57,6 +57,8 @@ void read_json_param(const nlohmann::json& data, const std::string& name, Schedu param = Scheduler::FLOW_MATCH_EULER_DISCRETE; else if (scheduler_type_str == "PNDMScheduler") param = Scheduler::PNDM; + else if (scheduler_type_str == "EulerAncestralDiscreteScheduler") + param = Scheduler::EULER_ANCESTRAL_DISCRETE; else if (!scheduler_type_str.empty()) { OPENVINO_THROW("Unsupported value for 'scheduler' ", scheduler_type_str); } diff --git a/src/docs/SUPPORTED_MODELS.md b/src/docs/SUPPORTED_MODELS.md index 8c922ee644..9762874596 100644 --- a/src/docs/SUPPORTED_MODELS.md +++ b/src/docs/SUPPORTED_MODELS.md @@ -217,6 +217,7 @@ The pipeline can work with other similar topologies produced by `optimum-intel` diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index 524ff0f921..bfcb869157 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1343,15 +1343,18 @@ class Scheduler: FLOW_MATCH_EULER_DISCRETE PNDM + + EULER_ANCESTRAL_DISCRETE """ AUTO: typing.ClassVar[Scheduler.Type] # value = DDIM: typing.ClassVar[Scheduler.Type] # value = + EULER_ANCESTRAL_DISCRETE: typing.ClassVar[Scheduler.Type] # value = EULER_DISCRETE: typing.ClassVar[Scheduler.Type] # value = FLOW_MATCH_EULER_DISCRETE: typing.ClassVar[Scheduler.Type] # value = LCM: typing.ClassVar[Scheduler.Type] # value = LMS_DISCRETE: typing.ClassVar[Scheduler.Type] # value = PNDM: typing.ClassVar[Scheduler.Type] # value = - __members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': , 'LCM': , 'LMS_DISCRETE': , 'DDIM': , 'EULER_DISCRETE': , 'FLOW_MATCH_EULER_DISCRETE': , 'PNDM': } + __members__: typing.ClassVar[dict[str, Scheduler.Type]] # value = {'AUTO': , 'LCM': , 'LMS_DISCRETE': , 'DDIM': , 'EULER_DISCRETE': , 'FLOW_MATCH_EULER_DISCRETE': , 'PNDM': , 'EULER_ANCESTRAL_DISCRETE': } def __eq__(self, other: typing.Any) -> bool: ... def __getstate__(self) -> int: diff --git a/src/python/py_image_generation_pipelines.cpp b/src/python/py_image_generation_pipelines.cpp index f5347c279d..311f3f3760 100644 --- a/src/python/py_image_generation_pipelines.cpp +++ b/src/python/py_image_generation_pipelines.cpp @@ -198,7 +198,8 @@ void init_image_generation_pipelines(py::module_& m) { .value("DDIM", ov::genai::Scheduler::Type::DDIM) .value("EULER_DISCRETE", ov::genai::Scheduler::Type::EULER_DISCRETE) .value("FLOW_MATCH_EULER_DISCRETE", ov::genai::Scheduler::Type::FLOW_MATCH_EULER_DISCRETE) - .value("PNDM", ov::genai::Scheduler::Type::PNDM); + .value("PNDM", ov::genai::Scheduler::Type::PNDM) + .value("EULER_ANCESTRAL_DISCRETE", ov::genai::Scheduler::Type::EULER_ANCESTRAL_DISCRETE); image_generation_scheduler.def_static("from_config", &ov::genai::Scheduler::from_config, py::arg("scheduler_config_path"), diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index c3df84925b..316c9d0b89 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -421,7 +421,7 @@ def get_vae_decoder_step_count(self): scheduler_type = data.get("scheduler", ["", ""])[1] if (scheduler_type not in ["LCMScheduler", "DDIMScheduler", "PNDMScheduler", "LMSDiscreteScheduler", "EulerDiscreteScheduler", - "FlowMatchEulerDiscreteScheduler"]): + "FlowMatchEulerDiscreteScheduler", "EulerAncestralDiscreteScheduler"]): scheduler = openvino_genai.Scheduler.from_config(model_path / "scheduler/scheduler_config.json", openvino_genai.Scheduler.Type.DDIM) log.warning(f'Type of scheduler {scheduler_type} is unsupported. Please, be aware that it will be replaced to DDIMScheduler') From 17f4eb32a1586aec8f42183e0667348b2cbd2fef Mon Sep 17 00:00:00 2001 From: Sofya Balandina Date: Thu, 19 Dec 2024 07:45:17 +0000 Subject: [PATCH 095/113] fill prompt for sampler analysis with real tokens in VLM pipeline (#1247) + add missed token, if prev generation was finished because max length was reached --- src/cpp/src/utils.cpp | 8 +++ src/cpp/src/utils.hpp | 2 + .../src/visual_language/inputs_embedder.cpp | 56 ++++++++++++------- .../src/visual_language/inputs_embedder.hpp | 8 ++- src/cpp/src/visual_language/pipeline.cpp | 12 ++-- 5 files changed, 59 insertions(+), 27 deletions(-) diff --git a/src/cpp/src/utils.cpp b/src/cpp/src/utils.cpp index 9fa14b7f9f..be9fc972dc 100644 --- a/src/cpp/src/utils.cpp +++ b/src/cpp/src/utils.cpp @@ -381,6 +381,14 @@ void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t se } } +ov::Tensor push_front_inputs(const ov::Tensor& base_tensor, int64_t add_to_front) { + ov::Tensor new_tensor = ov::Tensor{ov::element::i64, {base_tensor.get_shape().at(0), base_tensor.get_shape().at(1) + 1}}; + auto new_tensor_data = new_tensor.data(); + new_tensor_data[0] = add_to_front; + std::copy_n(base_tensor.data(), base_tensor.get_size(), new_tensor_data + 1); + return new_tensor; +} + void print_compiled_model_properties(ov::CompiledModel& compiled_Model, const char* model_title) { // Specify the name of the environment variable const char* env_var_name = "OPENVINO_LOG_LEVEL"; diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 5342ac427c..96191387cd 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -104,6 +104,8 @@ size_t get_seq_len_axis(std::shared_ptr model); void trim_kv_cache(ov::InferRequest request, uint64_t remove_from_end, size_t seq_length_axis, std::optional adapter_controller); +ov::Tensor push_front_inputs(const ov::Tensor& base_tensor, int64_t add_to_front); + void print_compiled_model_properties(ov::CompiledModel& compiled_Model, const char* model_title); } // namespace utils diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index cf77dfce3c..8175d44b16 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -10,6 +10,7 @@ #include "utils.hpp" + namespace { constexpr size_t BATCH_SIZE = 1; @@ -40,10 +41,12 @@ class InputsEmbedder::IInputsEmbedder { // Templated chat history std::string m_templated_chat_history; // Tokenized chat history - std::vector m_tokenized_chat_history; + std::vector m_tokenized_history; // The number of elements, which need to remove from the end of KV cache // removed elements will be added to inputs_ids size_t m_to_remove_from_hist = 0; + // Tail of previous output for LM in chat mode is missing in KV cache. + std::optional m_last_disappeared_token = std::nullopt; public: virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) = 0; @@ -56,26 +59,30 @@ class InputsEmbedder::IInputsEmbedder { return m_tokenizer; } - std::vector get_tokenized_chat_history() const { - return m_tokenized_chat_history; + std::vector get_tokenized_history() const { + return m_tokenized_history; } size_t get_amount_to_remove_from_hist() const { return m_to_remove_from_hist; } - void update_tokenized_chat_history(std::vector encoded_result) { - std::copy(encoded_result.begin(), encoded_result.end(), std::back_inserter(m_tokenized_chat_history)); + void update_tokenized_history(std::vector encoded_result, bool token_will_disappear) { + std::copy(encoded_result.begin(), encoded_result.end(), std::back_inserter(m_tokenized_history)); m_to_remove_from_hist = 0; + if (token_will_disappear) + m_last_disappeared_token = encoded_result.back(); + else + m_last_disappeared_token = std::nullopt; } virtual void start_chat(const std::string& system_message) { m_is_chat_conversation = true; m_to_remove_from_hist = 0; - if (!m_tokenized_chat_history.empty()) { + if (!m_tokenized_history.empty()) { m_history.clear(); m_templated_chat_history.clear(); - m_tokenized_chat_history.clear(); + m_tokenized_history.clear(); } if (system_message.empty()) { return; @@ -98,7 +105,7 @@ class InputsEmbedder::IInputsEmbedder { m_history.clear(); m_templated_chat_history.clear(); - m_tokenized_chat_history.clear(); + m_tokenized_history.clear(); } protected: @@ -165,37 +172,46 @@ class InputsEmbedder::IInputsEmbedder { // if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history // so let's check it out, find the trusted part and use it in on the next step size_t last_same_hist_token = 0; - if (!m_tokenized_chat_history.empty()) { + if (!m_tokenized_history.empty()) { std::set stop_tokens = {m_tokenizer.get_eos_token_id()}; - last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens); + last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_history, stop_tokens); } - if (m_tokenized_chat_history.empty()) { + if (m_tokenized_history.empty()) { encoded_input_ids = new_chat_tokens; } else if (last_same_hist_token != SIZE_MAX) { - m_to_remove_from_hist = m_tokenized_chat_history.size() - last_same_hist_token; + m_to_remove_from_hist = m_tokenized_history.size() - last_same_hist_token; + // if prev generation was finished because of max len was reached, kv cache is missed one last token, let's keep it + m_to_remove_from_hist -= m_last_disappeared_token.has_value() ? 1 : 0; ov::Tensor new_tensor = ov::Tensor(new_chat_tokens.get_element_type(), {1, new_chat_tokens.get_shape().at(1) - last_same_hist_token}, new_chat_tokens.data() + last_same_hist_token); - encoded_input_ids = new_tensor; + encoded_input_ids = ov::Tensor(new_chat_tokens.get_element_type(), + {1, new_chat_tokens.get_shape().at(1) - last_same_hist_token}); + new_tensor.copy_to(encoded_input_ids); } else { encoded_input_ids = utils::subtract_chat_tokenized_inputs( {new_chat_tokens}, prev_chat_tokens ).input_ids; + + if (m_last_disappeared_token.has_value()) + encoded_input_ids = ov::genai::utils::push_front_inputs(encoded_input_ids, *m_last_disappeared_token); } auto end_tokenizer_time = std::chrono::steady_clock::now(); metrics.raw_metrics.tokenization_durations.emplace_back(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); m_templated_chat_history = std::move(new_templated_chat_history); - m_tokenized_chat_history.clear(); - std::copy(new_chat_tokens.data(), new_chat_tokens.data() + new_chat_tokens.get_size(), - std::back_inserter(m_tokenized_chat_history)); + m_tokenized_history.clear(); + std::copy_n(new_chat_tokens.data(), new_chat_tokens.get_size(), std::back_inserter(m_tokenized_history)); } else { auto start_tokenizer_time = std::chrono::steady_clock::now(); encoded_input_ids = m_tokenizer.encode(prompt).input_ids; auto end_tokenizer_time = std::chrono::steady_clock::now(); metrics.raw_metrics.tokenization_durations.emplace_back(PerfMetrics::get_microsec(end_tokenizer_time - start_tokenizer_time)); + m_tokenized_history.clear(); + std::copy_n(encoded_input_ids.data(), encoded_input_ids.get_size(), std::back_inserter(m_tokenized_history)); } + return encoded_input_ids; } @@ -1172,12 +1188,12 @@ EmbeddingsModel InputsEmbedder::get_embedding_model() const { return m_impl->get_embedding_model(); } -std::vector InputsEmbedder::get_tokenized_chat_history() const { - return m_impl->get_tokenized_chat_history(); +std::vector InputsEmbedder::get_tokenized_history() const { + return m_impl->get_tokenized_history(); } -void InputsEmbedder::update_tokenized_chat_history(std::vector encoded_result) { - return m_impl->update_tokenized_chat_history(encoded_result); +void InputsEmbedder::update_tokenized_history(std::vector encoded_result, bool token_will_disappear) { + return m_impl->update_tokenized_history(encoded_result, token_will_disappear); } size_t InputsEmbedder::get_amount_to_remove_from_hist() const { diff --git a/src/cpp/src/visual_language/inputs_embedder.hpp b/src/cpp/src/visual_language/inputs_embedder.hpp index 5c5b9d2b81..8c84c6ad43 100644 --- a/src/cpp/src/visual_language/inputs_embedder.hpp +++ b/src/cpp/src/visual_language/inputs_embedder.hpp @@ -41,16 +41,20 @@ class InputsEmbedder { Tokenizer get_tokenizer() const; // returns tokenized chat history - std::vector get_tokenized_chat_history() const; + std::vector get_tokenized_history() const; + // add new results to tokenized chat history - void update_tokenized_chat_history(std::vector encoded_result); + void update_tokenized_history(std::vector encoded_result, bool token_will_disappear); + // returns amount of elements, which need to remove from the end of the KV cache size_t get_amount_to_remove_from_hist() const; // starts chat and adds optional system_message to chat history void start_chat(const std::string& system_message); + // adds currently generated text to chat history void update_chat_history(const std::string& decoded_results); + // finishes chat and clears a chat history void finish_chat(); private: diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 1ce0cbf210..0d7aebc506 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -17,6 +17,7 @@ #include "utils.hpp" #include "lm_encoding.hpp" + using namespace ov::genai; namespace { @@ -163,19 +164,18 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { auto to_remove_from_hist = m_inputs_embedder->get_amount_to_remove_from_hist(); ov::genai::utils::trim_kv_cache(m_language, to_remove_from_hist, m_kv_cache_seq_length_axis, std::nullopt); - Sampler sampler = Sampler(m_tokenizer); - std::vector requests; size_t request_id = 0; size_t block_size = 1; // not used bool enable_prefix_caching = false; - auto tokenized_chat_history = m_inputs_embedder->get_tokenized_chat_history(); size_t history_size = m_language.get_tensor("attention_mask").get_shape().at(1) - to_remove_from_hist; size_t inputs_embeds_size = inputs_embeds.get_shape().at(1); + auto tokenized_history = m_inputs_embedder->get_tokenized_history(); ov::Tensor prompt_ids(ov::element::i64, { history_size + inputs_embeds_size }); - std::fill_n(prompt_ids.data(), prompt_ids.get_size(), 0); + std::fill_n(prompt_ids.data(), prompt_ids.get_size(), m_tokenizer.get_pad_token_id()); + std::copy(tokenized_history.begin(), tokenized_history.end(), prompt_ids.data()); SequenceGroup::Ptr sequence_group = std::make_shared(request_id, prompt_ids, generation_config, block_size, enable_prefix_caching); sequence_group->set_sequence_group_ptr(sequence_group); @@ -204,6 +204,8 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { ov::Tensor position_ids = ov::Tensor{ov::element::i64, { 1, inputs_embeds_size }}; std::iota(position_ids.data(), position_ids.data() + position_ids.get_size(), history_size); + Sampler sampler = Sampler(m_tokenizer); + ov::genai::EncodedResults encoded_result; int32_t m_selected_beam = 0; std::tie(encoded_result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, sampler, requests, @@ -243,7 +245,7 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { decoded.perf_metrics.m_evaluated = false; decoded.perf_metrics.evaluate_statistics(generate_start_time); - m_inputs_embedder->update_tokenized_chat_history(encoded_result.tokens[0]); + m_inputs_embedder->update_tokenized_history(encoded_result.tokens[0], requests[0]->get_finished_sequences()[0]->get_finish_reason() == GenerationFinishReason::LENGTH); return decoded; } From e1f910ddef54728cc1147c9f839a09cdc176c2dd Mon Sep 17 00:00:00 2001 From: Alexander Suvorov Date: Thu, 19 Dec 2024 11:48:09 +0100 Subject: [PATCH 096/113] Whisper pipeline: cache models in python tests (#1389) Ticket: 159277 --- tests/python_tests/test_whisper_generate_api.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/tests/python_tests/test_whisper_generate_api.py b/tests/python_tests/test_whisper_generate_api.py index 5a68dd98b6..9a117bc939 100644 --- a/tests/python_tests/test_whisper_generate_api.py +++ b/tests/python_tests/test_whisper_generate_api.py @@ -25,7 +25,9 @@ def run_gc_after_test(): yield gc.collect() -@functools.lru_cache(1) +# used whisper models are relatively small +# cache them in memory to speedup tests +@functools.lru_cache(3) def read_whisper_model(params, **tokenizer_kwargs): model_id, path = params From 0be7b3df3d28fa6c9009f1f070851b21bac4a4bf Mon Sep 17 00:00:00 2001 From: Alexander Suvorov Date: Thu, 19 Dec 2024 12:06:50 +0100 Subject: [PATCH 097/113] Whisper pipeline: implement 'initial_prompt' and 'hotwords' parameters (#1378) Adds: * `initial_prompt` parameter ([faster_whisper reference](https://github.com/SYSTRAN/faster-whisper/blob/203dddb047fd2c3ed2a520fe1416467a527e0f37/faster_whisper/transcribe.py#L732)) - injects initial prompt tokens as a previous transcription into the first processing window * `hotwords` parameter ([faster_whisper reference](https://github.com/SYSTRAN/faster-whisper/blob/203dddb047fd2c3ed2a520fe1416467a527e0f37/faster_whisper/transcribe.py#L768)) - injects hotwords tokens as a previous transcription into the all processing windows * Whisper pipeline usage notes in samples Closes https://github.com/openvinotoolkit/openvino.genai/issues/1150 Ticket: 156888 --- .../cpp/whisper_speech_recognition/README.md | 85 ++++++++++++++++++ .../whisper_speech_recognition.cpp | 1 + .../whisper_speech_recognition/README.md | 87 ++++++++++++++++++ .../whisper_speech_recognition.py | 7 +- .../genai/whisper_generation_config.hpp | 34 ++++++- src/cpp/src/whisper/context_tokens.cpp | 89 +++++++++++++++++++ src/cpp/src/whisper/context_tokens.hpp | 25 ++++++ src/cpp/src/whisper/whisper.cpp | 24 +++-- src/cpp/src/whisper/whisper.hpp | 2 + src/cpp/src/whisper_generation_config.cpp | 5 +- src/cpp/src/whisper_pipeline.cpp | 6 ++ src/cpp/src/whisper_pipeline_static.cpp | 3 + .../openvino_genai/py_openvino_genai.pyi | 53 +++++++++++ src/python/py_whisper_pipeline.cpp | 28 ++++++ .../python_tests/test_whisper_generate_api.py | 25 ++++++ 15 files changed, 460 insertions(+), 14 deletions(-) create mode 100644 src/cpp/src/whisper/context_tokens.cpp create mode 100644 src/cpp/src/whisper/context_tokens.hpp diff --git a/samples/cpp/whisper_speech_recognition/README.md b/samples/cpp/whisper_speech_recognition/README.md index 773135b648..d649266613 100644 --- a/samples/cpp/whisper_speech_recognition/README.md +++ b/samples/cpp/whisper_speech_recognition/README.md @@ -33,6 +33,91 @@ timestamps: [0, 2] text: How are you doing today? See [SUPPORTED_MODELS.md](../../../src/docs/SUPPORTED_MODELS.md#whisper-models) for the list of supported models. +# Whisper pipeline usage + +```c++ +#include "openvino/genai/whisper_pipeline.hpp" + +ov::genai::WhisperPipeline pipeline(model_dir, "CPU"); +// Pipeline expects normalized audio with Sample Rate of 16kHz +ov::genai::RawSpeechInput raw_speech = read_wav("how_are_you_doing_today.wav"); +auto result = pipeline.generate(raw_speech); +// How are you doing today? +``` + +### Transcription + +Whisper pipeline predicts the language of the source audio automatically. + +```c++ +ov::genai::RawSpeechInput raw_speech = read_wav("how_are_you_doing_today.wav"); +auto result = pipeline.generate(raw_speech); +// How are you doing today? + +raw_speech = read_wav("fr_sample.wav"); +result = pipeline.generate(raw_speech); +// Il s'agit d'une entité très complexe qui consiste... +``` + +If the source audio languange is know in advance, it can be specified as an argument to `generate` method: + +```c++ +ov::genai::RawSpeechInput raw_speech = read_wav("how_are_you_doing_today.wav"); +auto result = pipeline.generate(raw_speech, ov::genai::language("<|en|>")); +// How are you doing today? + +raw_speech = read_wav("fr_sample.wav"); +result = pipeline.generate(raw_speech, ov::genai::language("<|fr|>")); +// Il s'agit d'une entité très complexe qui consiste... +``` + +### Translation + +By default, Whisper performs the task of speech transcription, where the source audio language is the same as the target text language. To perform speech translation, where the target text is in English, set the task to "translate": + +```c++ +ov::genai::RawSpeechInput raw_speech = read_wav("fr_sample.wav"); +auto result = pipeline.generate(raw_speech, ov::genai::task("translate")); +// It is a very complex entity that consists... +``` + +### Timestamps prediction + +The model can predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument: + +```C++ +ov::genai::RawSpeechInput raw_speech = read_wav("how_are_you_doing_today.wav"); +auto result = pipeline.generate(raw_speech, ov::genai::return_timestamps(true)); + +std::cout << std::setprecision(2); +for (auto& chunk : *result.chunks) { + std::cout << "timestamps: [" << chunk.start_ts << ", " << chunk.end_ts << "] text: " << chunk.text << "\n"; +} +// timestamps: [0, 2] text: How are you doing today? +``` + +### Long-Form audio Transcription + +The Whisper model is designed to work on audio samples of up to 30s in duration. Whisper pipeline uses sequential chunking algorithm to transcribe audio samples of arbitrary length. +Sequential chunking algorithm uses a "sliding window", transcribing 30-second slices one after the other. + +### Initial prompt and hotwords + +Whisper pipeline has `initial_prompt` and `hotwords` generate arguments: +* `initial_prompt`: initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing window +* `hotwords`: hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows + +The Whisper model can use that context to better understand the speech and maintain a consistent writing style. However, prompts do not need to be genuine transcripts from prior audio segments. Such prompts can be used to steer the model to use particular spellings or styles: + +```c++ +auto result = pipeline.generate(raw_speech); +// He has gone and gone for good answered Paul Icrom who... + +result = pipeline.generate(raw_speech, ov::genai::initial_prompt("Polychrome")); +// He has gone and gone for good answered Polychrome who... +``` + + ### Troubleshooting #### Empty or rubbish output diff --git a/samples/cpp/whisper_speech_recognition/whisper_speech_recognition.cpp b/samples/cpp/whisper_speech_recognition/whisper_speech_recognition.cpp index 31d3f8c551..3df17a77f5 100644 --- a/samples/cpp/whisper_speech_recognition/whisper_speech_recognition.cpp +++ b/samples/cpp/whisper_speech_recognition/whisper_speech_recognition.cpp @@ -28,6 +28,7 @@ int main(int argc, char* argv[]) try { std::cout << result << "\n"; + std::cout << std::setprecision(2); for (auto& chunk : *result.chunks) { std::cout << "timestamps: [" << chunk.start_ts << ", " << chunk.end_ts << "] text: " << chunk.text << "\n"; } diff --git a/samples/python/whisper_speech_recognition/README.md b/samples/python/whisper_speech_recognition/README.md index 158bd18311..aeb46444bf 100644 --- a/samples/python/whisper_speech_recognition/README.md +++ b/samples/python/whisper_speech_recognition/README.md @@ -40,6 +40,93 @@ timestamps: [0, 2] text: How are you doing today? See [SUPPORTED_MODELS.md](../../../src/docs/SUPPORTED_MODELS.md#whisper-models) for the list of supported models. +# Whisper pipeline usage + +```python +import openvino_genai +import librosa + +def read_wav(filepath): + raw_speech, samplerate = librosa.load(filepath, sr=16000) + return raw_speech.tolist() + +pipe = openvino_genai.WhisperPipeline(model_dir, "CPU") +# Pipeline expects normalized audio with Sample Rate of 16kHz +raw_speech = read_wav('how_are_you_doing_today.wav') +result = pipe.generate(raw_speech) +# How are you doing today? +``` + +### Transcription + +Whisper pipeline predicts the language of the source audio automatically. + +```python +raw_speech = read_wav('how_are_you_doing_today.wav') +result = pipe.generate(raw_speech) +# How are you doing today? + +raw_speech = read_wav('fr_sample.wav') +result = pipe.generate(raw_speech) +# Il s'agit d'une entité très complexe qui consiste... +``` + +If the source audio languange is know in advance, it can be specified as an argument to `generate` method: + +```python +raw_speech = read_wav("how_are_you_doing_today.wav") +result = pipe.generate(raw_speech, language="<|en|>") +# How are you doing today? + +raw_speech = read_wav("fr_sample.wav") +result = pipe.generate(raw_speech, language="<|fr|>") +# Il s'agit d'une entité très complexe qui consiste... +``` + +### Translation + +By default, Whisper performs the task of speech transcription, where the source audio language is the same as the target text language. To perform speech translation, where the target text is in English, set the task to "translate": + +```python +raw_speech = read_wav("fr_sample.wav") +result = pipe.generate(raw_speech, task="translate") +# It is a very complex entity that consists... +``` + +### Timestamps prediction + +The model can predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument: + +```python +raw_speech = read_wav("how_are_you_doing_today.wav") +result = pipe.generate(raw_speech, return_timestamps=True) + +for chunk in result.chunks: + print(f"timestamps: [{chunk.start_ts:.2f}, {chunk.end_ts:.2f}] text: {chunk.text}") +# timestamps: [0.00, 2.00] text: How are you doing today? +``` + +### Long-Form audio Transcription + +The Whisper model is designed to work on audio samples of up to 30s in duration. Whisper pipeline uses sequential chunking algorithm to transcribe audio samples of arbitrary length. +Sequential chunking algorithm uses a "sliding window", transcribing 30-second slices one after the other. + +### Initial prompt and hotwords + +Whisper pipeline has `initial_prompt` and `hotwords` generate arguments: +* `initial_prompt`: initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing window +* `hotwords`: hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows + +The Whisper model can use that context to better understand the speech and maintain a consistent writing style. However, prompts do not need to be genuine transcripts from prior audio segments. Such prompts can be used to steer the model to use particular spellings or styles: + +```python +result = pipe.generate(raw_speech) +# He has gone and gone for good answered Paul Icrom who... + +result = pipe.generate(raw_speech, initial_prompt="Polychrome") +# He has gone and gone for good answered Polychrome who... +``` + ### Troubleshooting #### Empty or rubbish output diff --git a/samples/python/whisper_speech_recognition/whisper_speech_recognition.py b/samples/python/whisper_speech_recognition/whisper_speech_recognition.py index 3fddfc8ffa..9cf3be5fa1 100755 --- a/samples/python/whisper_speech_recognition/whisper_speech_recognition.py +++ b/samples/python/whisper_speech_recognition/whisper_speech_recognition.py @@ -18,7 +18,7 @@ def main(): parser.add_argument("wav_file_path") args = parser.parse_args() - device = "CPU" # GPU can be used as well + device = "CPU" # GPU, NPU can be used as well pipe = openvino_genai.WhisperPipeline(args.model_dir, device) config = pipe.get_generation_config() @@ -34,8 +34,9 @@ def main(): print(result) - for chunk in result.chunks: - print(f"timestamps: [{chunk.start_ts}, {chunk.end_ts}] text: {chunk.text}") + if result.chunks: + for chunk in result.chunks: + print(f"timestamps: [{chunk.start_ts:.2f}, {chunk.end_ts:.2f}] text: {chunk.text}") if "__main__" == __name__: diff --git a/src/cpp/include/openvino/genai/whisper_generation_config.hpp b/src/cpp/include/openvino/genai/whisper_generation_config.hpp index 37b23cde74..44d611923d 100644 --- a/src/cpp/include/openvino/genai/whisper_generation_config.hpp +++ b/src/cpp/include/openvino/genai/whisper_generation_config.hpp @@ -3,8 +3,8 @@ #pragma once -#include #include +#include #include "openvino/genai/tokenizer.hpp" #include "openvino/runtime/compiled_model.hpp" @@ -46,6 +46,9 @@ class OPENVINO_GENAI_EXPORTS WhisperGenerationConfig { // Transcribe token id. int64_t transcribe_token_id = 50359; + // Corresponds to the ”<|startofprev|>” token. + int64_t prev_sot_token_id = 50361; + // No timestamps token id. int64_t no_timestamps_token_id = 50363; @@ -75,6 +78,32 @@ class OPENVINO_GENAI_EXPORTS WhisperGenerationConfig { // Note that a segment of text refers to a sequence of one or more words, rather than individual words. bool return_timestamps = false; + /* + * Initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing + * window. Can be used to steer the model to use particular spellings or styles. + * + * Example: + * auto result = pipeline.generate(raw_speech); + * // He has gone and gone for good answered Paul Icrom who... + * + * auto result = pipeline.generate(raw_speech, ov::genai::initial_prompt("Polychrome")); + * // He has gone and gone for good answered Polychrome who... + */ + std::optional initial_prompt = std::nullopt; + + /* + * Hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows. + * Can be used to steer the model to use particular spellings or styles. + * + * Example: + * auto result = pipeline.generate(raw_speech); + * // He has gone and gone for good answered Paul Icrom who... + * + * auto result = pipeline.generate(raw_speech, ov::genai::hotwords("Polychrome")); + * // He has gone and gone for good answered Polychrome who... + */ + std::optional hotwords = std::nullopt; + // A list containing tokens that will be suppressed at the beginning of the sampling process. std::vector begin_suppress_tokens; @@ -111,9 +140,12 @@ static constexpr ov::Property pad_token_id{"pad_token_id"}; static constexpr ov::Property transcribe_token_id{"transcribe_token_id"}; static constexpr ov::Property translate_token_id{"translate_token_id"}; static constexpr ov::Property no_timestamps_token_id{"no_timestamps_token_id"}; +static constexpr ov::Property prev_sot_token_id{"prev_sot_token_id"}; static constexpr ov::Property language{"language"}; static constexpr ov::Property task{"task"}; static constexpr ov::Property return_timestamps{"return_timestamps"}; +static constexpr ov::Property initial_prompt{"initial_prompt"}; +static constexpr ov::Property hotwords{"hotwords"}; static constexpr ov::Property> lang_to_id{"lang_to_id"}; } // namespace genai diff --git a/src/cpp/src/whisper/context_tokens.cpp b/src/cpp/src/whisper/context_tokens.cpp new file mode 100644 index 0000000000..75ee442551 --- /dev/null +++ b/src/cpp/src/whisper/context_tokens.cpp @@ -0,0 +1,89 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "context_tokens.hpp" + +namespace { +std::pair, float> tokenize(std::string&& text, + const ov::genai::WhisperGenerationConfig& config, + ov::genai::Tokenizer& tokenizer) { + if (text.empty()) { + return {{}, 0.0f}; + } + + auto start_time = std::chrono::steady_clock::now(); + auto encoded = tokenizer.encode(text, ov::genai::add_special_tokens(false)); + auto duration = ov::genai::PerfMetrics::get_microsec(std::chrono::steady_clock::now() - start_time); + + auto input_ids = encoded.input_ids; + auto input_ids_data = input_ids.data(); + + std::vector prompt_tokens; + prompt_tokens.reserve(input_ids.get_size()); + + // even with ov::genai::add_special_tokens(false) tokenizer adds next special tokens. Ticket: 159569 + std::set special_tokens{config.decoder_start_token_id, config.eos_token_id, config.no_timestamps_token_id}; + + for (size_t i = 0; i < input_ids.get_size(); i++) { + if (special_tokens.count(input_ids_data[i])) { + continue; + } + + prompt_tokens.emplace_back(input_ids_data[i]); + } + + return {prompt_tokens, duration}; +} +} // namespace + +namespace ov { +namespace genai { + +std::pair prepare_context_tokens(const WhisperGenerationConfig& config, + Tokenizer& tokenizer) { + WhisperContextTokens context_tokens; + float duration = 0.0f; + + if (config.initial_prompt.has_value()) { + auto [initial_prompt_tokens, initial_prompt_duration] = + tokenize(" " + *config.initial_prompt, config, tokenizer); + context_tokens.initial_prompt = std::move(initial_prompt_tokens); + duration += initial_prompt_duration; + } + + if (config.hotwords.has_value()) { + auto [hotwords_tokens, hotwords_duration] = tokenize(" " + *config.hotwords, config, tokenizer); + context_tokens.hotwords = std::move(hotwords_tokens); + duration += hotwords_duration; + } + + return {context_tokens, duration}; +} + +std::vector get_prompt_tokens(const WhisperContextTokens& context_tokens, + const WhisperGenerationConfig& config, + size_t chunk_offset) { + bool should_add_initial_prompt = !context_tokens.initial_prompt.empty() && chunk_offset == 0; + bool should_add_hotwords = !context_tokens.hotwords.empty(); + + if (!should_add_initial_prompt && !should_add_hotwords) { + return {}; + } + + std::vector prompt_tokens{config.prev_sot_token_id}; + + if (should_add_initial_prompt) { + prompt_tokens.insert(prompt_tokens.end(), + context_tokens.initial_prompt.begin(), + context_tokens.initial_prompt.end()); + } + + if (should_add_hotwords) { + prompt_tokens.insert(prompt_tokens.end(), context_tokens.hotwords.begin(), context_tokens.hotwords.end()); + } + + return prompt_tokens; +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/whisper/context_tokens.hpp b/src/cpp/src/whisper/context_tokens.hpp new file mode 100644 index 0000000000..0042ba8136 --- /dev/null +++ b/src/cpp/src/whisper/context_tokens.hpp @@ -0,0 +1,25 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "openvino/genai/perf_metrics.hpp" +#include "openvino/genai/whisper_generation_config.hpp" + +namespace ov { +namespace genai { + +struct WhisperContextTokens { + std::vector initial_prompt; + std::vector hotwords; +}; + +std::pair prepare_context_tokens(const WhisperGenerationConfig& config, + Tokenizer& tokenizer); + +std::vector get_prompt_tokens(const WhisperContextTokens& context_tokens, + const WhisperGenerationConfig& config, + size_t chunk_offset); + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/whisper/whisper.cpp b/src/cpp/src/whisper/whisper.cpp index 355ccc619b..9d6aa698ce 100644 --- a/src/cpp/src/whisper/whisper.cpp +++ b/src/cpp/src/whisper/whisper.cpp @@ -8,6 +8,7 @@ #include #include +#include "context_tokens.hpp" #include "logit_processor.hpp" #include "openvino/genai/perf_metrics.hpp" #include "openvino/genai/whisper_generation_config.hpp" @@ -175,11 +176,11 @@ int64_t detect_language(ov::Tensor& encoder_hidden_state, return output_token; } -std::vector prepare_init_ids(ov::Tensor& encoder_hidden_state, - ov::InferRequest decoder, - const ov::genai::WhisperGenerationConfig& config, - const bool return_timestamps, - ov::genai::RawPerfMetrics& raw_metrics) { +std::vector prepare_init_tokens(ov::Tensor& encoder_hidden_state, + ov::InferRequest decoder, + const ov::genai::WhisperGenerationConfig& config, + const bool return_timestamps, + ov::genai::RawPerfMetrics& raw_metrics) { if (!config.is_multilingual) { if (return_timestamps) { return std::vector{config.decoder_start_token_id}; @@ -290,6 +291,7 @@ namespace genai { WhisperGenerateResult whisper_generate(const ov::genai::WhisperGenerationConfig& config, const ov::genai::WhisperConfig& model_config, + const WhisperContextTokens& context_tokens, const RawSpeechInput& raw_speech, ov::genai::WhisperInitializedModels& models, WhisperFeatureExtractor& feature_extractor, @@ -313,7 +315,7 @@ WhisperGenerateResult whisper_generate(const ov::genai::WhisperGenerationConfig& // long-form audio processing requires timestamps to be enabled const bool return_timestamps = config.return_timestamps || !is_shortform; - std::vector init_ids; + std::vector init_tokens; std::vector& output_tokens = result.output_tokens; std::vector segments; @@ -335,14 +337,18 @@ WhisperGenerateResult whisper_generate(const ov::genai::WhisperGenerationConfig& raw_metrics); // prepare init_ids just once for whole input - if (init_ids.empty()) { - init_ids = prepare_init_ids(hidden_state_tensor, models.decoder, config, return_timestamps, raw_metrics); + if (init_tokens.empty()) { + init_tokens = + prepare_init_tokens(hidden_state_tensor, models.decoder, config, return_timestamps, raw_metrics); } + std::vector chunk_init_tokens = ov::genai::get_prompt_tokens(context_tokens, config, chunk_offset); + chunk_init_tokens.insert(chunk_init_tokens.end(), init_tokens.begin(), init_tokens.end()); + auto [cancelled, chunk_output_tokens] = full_decode(hidden_state_tensor, config, models, - init_ids, + chunk_init_tokens, max_new_tokens - output_tokens.size(), return_timestamps, raw_metrics, diff --git a/src/cpp/src/whisper/whisper.hpp b/src/cpp/src/whisper/whisper.hpp index 4904edf925..81f559db9f 100644 --- a/src/cpp/src/whisper/whisper.hpp +++ b/src/cpp/src/whisper/whisper.hpp @@ -5,6 +5,7 @@ #include +#include "context_tokens.hpp" #include "openvino/genai/whisper_generation_config.hpp" #include "openvino/genai/whisper_pipeline.hpp" #include "whisper_config.hpp" @@ -28,6 +29,7 @@ struct WhisperGenerateResult { WhisperGenerateResult whisper_generate(const ov::genai::WhisperGenerationConfig& config, const ov::genai::WhisperConfig& model_config, + const WhisperContextTokens& context_tokens, const ov::genai::RawSpeechInput& raw_speech, ov::genai::WhisperInitializedModels& models, ov::genai::WhisperFeatureExtractor& feature_extractor, diff --git a/src/cpp/src/whisper_generation_config.cpp b/src/cpp/src/whisper_generation_config.cpp index 0fba4e962f..beb663caaf 100644 --- a/src/cpp/src/whisper_generation_config.cpp +++ b/src/cpp/src/whisper_generation_config.cpp @@ -8,8 +8,8 @@ #include #include -#include "utils.hpp" #include "json_utils.hpp" +#include "utils.hpp" namespace ov { namespace genai { @@ -31,6 +31,7 @@ WhisperGenerationConfig::WhisperGenerationConfig(const std::filesystem::path& js read_json_param(data, "pad_token_id", pad_token_id); read_json_param(data, "no_timestamps_token_id", no_timestamps_token_id); read_json_param(data, "max_initial_timestamp_index", max_initial_timestamp_index); + read_json_param(data, "prev_sot_token_id", prev_sot_token_id); read_json_param(data, "is_multilingual", is_multilingual); if (is_multilingual) { @@ -73,6 +74,8 @@ void WhisperGenerationConfig::update_generation_config(const ov::AnyMap& config_ read_anymap_param(config_map, "lang_to_id", lang_to_id); read_anymap_param(config_map, "task", task); read_anymap_param(config_map, "return_timestamps", return_timestamps); + read_anymap_param(config_map, "initial_prompt", initial_prompt); + read_anymap_param(config_map, "hotwords", hotwords); } size_t WhisperGenerationConfig::get_max_new_tokens(size_t prompt_length) const { diff --git a/src/cpp/src/whisper_pipeline.cpp b/src/cpp/src/whisper_pipeline.cpp index d472a20238..f0fb34cdf6 100644 --- a/src/cpp/src/whisper_pipeline.cpp +++ b/src/cpp/src/whisper_pipeline.cpp @@ -9,6 +9,7 @@ #include #include "utils.hpp" +#include "whisper/context_tokens.hpp" #include "whisper/streamer.hpp" #include "whisper/whisper.hpp" #include "whisper/whisper_config.hpp" @@ -91,8 +92,11 @@ class WhisperPipeline::WhisperPipelineStatefulImpl : public WhisperPipeline::Whi streamer_ptr = std::make_shared(m_tokenizer, *callback); } + auto [context_tokens, tokenization_duration_microseconds] = prepare_context_tokens(config, m_tokenizer); + auto generate_result = ov::genai::whisper_generate(config, m_model_config, + context_tokens, raw_speech_input, m_models, m_feature_extractor, @@ -102,6 +106,8 @@ class WhisperPipeline::WhisperPipelineStatefulImpl : public WhisperPipeline::Whi generate_result.perf_metrics.raw_metrics.detokenization_durations.emplace_back( PerfMetrics::get_microsec(std::chrono::steady_clock::now() - decode_start_time)); + result.perf_metrics.raw_metrics.tokenization_durations.emplace_back(tokenization_duration_microseconds); + result.perf_metrics = generate_result.perf_metrics; auto& segments = generate_result.segments; diff --git a/src/cpp/src/whisper_pipeline_static.cpp b/src/cpp/src/whisper_pipeline_static.cpp index 136819fa01..dc26789846 100644 --- a/src/cpp/src/whisper_pipeline_static.cpp +++ b/src/cpp/src/whisper_pipeline_static.cpp @@ -579,6 +579,9 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( WhisperGenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; config.validate(); + OPENVINO_ASSERT(!config.initial_prompt.has_value(), "'initial_prompt' parameter is not supported on NPU device."); + OPENVINO_ASSERT(!config.hotwords.has_value(), "'hotwords' parameter is not supported on NPU device."); + std::shared_ptr streamer_ptr; if (auto streamer_obj = std::get_if(&streamer)) { streamer_ptr = nullptr; diff --git a/src/python/openvino_genai/py_openvino_genai.pyi b/src/python/openvino_genai/py_openvino_genai.pyi index bfcb869157..3d27b23052 100644 --- a/src/python/openvino_genai/py_openvino_genai.pyi +++ b/src/python/openvino_genai/py_openvino_genai.pyi @@ -1948,6 +1948,9 @@ class WhisperGenerationConfig: :param no_timestamps_token_id: No timestamps token id. :type no_timestamps_token_id: int + :param prev_sot_token_id: Corresponds to the ”<|startofprev|>” token. + :type prev_sot_token_id: int + :param is_multilingual: :type is_multilingual: bool @@ -1976,10 +1979,34 @@ class WhisperGenerationConfig: then it means the model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds. Note that a segment of text refers to a sequence of one or more words, rather than individual words. :type return_timestamps: bool + + :param initial_prompt: Initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing + window. Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::initial_prompt("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type initial_prompt: Optional[str] + + :param hotwords: Hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows. + Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::hotwords("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type hotwords: Optional[str] """ begin_suppress_tokens: list[int] decoder_start_token_id: int eos_token_id: int + hotwords: str | None + initial_prompt: str | None is_multilingual: bool lang_to_id: dict[str, int] language: str | None @@ -1988,6 +2015,7 @@ class WhisperGenerationConfig: max_new_tokens: int no_timestamps_token_id: int pad_token_id: int + prev_sot_token_id: int return_timestamps: bool suppress_tokens: list[int] task: str | None @@ -2080,6 +2108,9 @@ class WhisperPipeline: :param no_timestamps_token_id: No timestamps token id. :type no_timestamps_token_id: int + :param prev_sot_token_id: Corresponds to the ”<|startofprev|>” token. + :type prev_sot_token_id: int + :param is_multilingual: :type is_multilingual: bool @@ -2108,6 +2139,28 @@ class WhisperPipeline: then it means the model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds. Note that a segment of text refers to a sequence of one or more words, rather than individual words. :type return_timestamps: bool + + :param initial_prompt: Initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing + window. Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::initial_prompt("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type initial_prompt: Optional[str] + + :param hotwords: Hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows. + Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::hotwords("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type hotwords: Optional[str] """ def get_generation_config(self) -> WhisperGenerationConfig: ... diff --git a/src/python/py_whisper_pipeline.cpp b/src/python/py_whisper_pipeline.cpp index 49152c03f4..cd42dcf58d 100644 --- a/src/python/py_whisper_pipeline.cpp +++ b/src/python/py_whisper_pipeline.cpp @@ -103,6 +103,9 @@ auto whisper_generation_config_docstring = R"( :param no_timestamps_token_id: No timestamps token id. :type no_timestamps_token_id: int + :param prev_sot_token_id: Corresponds to the ”<|startofprev|>” token. + :type prev_sot_token_id: int + :param is_multilingual: :type is_multilingual: bool @@ -131,6 +134,28 @@ auto whisper_generation_config_docstring = R"( then it means the model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds. Note that a segment of text refers to a sequence of one or more words, rather than individual words. :type return_timestamps: bool + + :param initial_prompt: Initial prompt tokens passed as a previous transcription (after `<|startofprev|>` token) to the first processing + window. Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::initial_prompt("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type initial_prompt: Optional[str] + + :param hotwords: Hotwords tokens passed as a previous transcription (after `<|startofprev|>` token) to the all processing windows. + Can be used to steer the model to use particular spellings or styles. + + Example: + auto result = pipeline.generate(raw_speech); + // He has gone and gone for good answered Paul Icrom who... + + auto result = pipeline.generate(raw_speech, ov::genai::hotwords("Polychrome")); + // He has gone and gone for good answered Polychrome who... + :type hotwords: Optional[str] )"; auto streamer_base_docstring = R"( @@ -262,11 +287,14 @@ void init_whisper_pipeline(py::module_& m) { .def_readwrite("transcribe_token_id", &WhisperGenerationConfig::transcribe_token_id) .def_readwrite("max_initial_timestamp_index", &WhisperGenerationConfig::max_initial_timestamp_index) .def_readwrite("no_timestamps_token_id", &WhisperGenerationConfig::no_timestamps_token_id) + .def_readwrite("prev_sot_token_id", &WhisperGenerationConfig::prev_sot_token_id) .def_readwrite("is_multilingual", &WhisperGenerationConfig::is_multilingual) .def_readwrite("language", &WhisperGenerationConfig::language) .def_readwrite("lang_to_id", &WhisperGenerationConfig::lang_to_id) .def_readwrite("task", &WhisperGenerationConfig::task) .def_readwrite("return_timestamps", &WhisperGenerationConfig::return_timestamps) + .def_readwrite("initial_prompt", &WhisperGenerationConfig::initial_prompt) + .def_readwrite("hotwords", &WhisperGenerationConfig::hotwords) .def("set_eos_token_id", &WhisperGenerationConfig::set_eos_token_id, py::arg("tokenizer_eos_token_id")); py::class_(m, "WhisperRawPerfMetrics", raw_perf_metrics_docstring) diff --git a/tests/python_tests/test_whisper_generate_api.py b/tests/python_tests/test_whisper_generate_api.py index 9a117bc939..1450ef1f2e 100644 --- a/tests/python_tests/test_whisper_generate_api.py +++ b/tests/python_tests/test_whisper_generate_api.py @@ -570,6 +570,31 @@ def test_longform_audio(model_descr, test_sample): assert genai_result.chunks == None +@pytest.mark.parametrize("model_descr", get_whisper_models_list(tiny_only=True)) +@pytest.mark.parametrize( + "test_sample", + get_samples_from_dataset(length=1), +) +@pytest.mark.precommit +def test_initial_prompt_hotwords(model_descr, test_sample): + model_id, path, opt_pipe, pipe = read_whisper_model(model_descr) + + result = pipe.generate(test_sample) + + assert "Joel Keaton" in result.texts[0] + assert "Joel Kyton" not in result.texts[0] + + result = pipe.generate(test_sample, initial_prompt="Joel Kyton") + + assert "Joel Keaton" not in result.texts[0] + assert "Joel Kyton" in result.texts[0] + + result = pipe.generate(test_sample, hotwords="Joel Kyton") + + assert "Joel Keaton" not in result.texts[0] + assert "Joel Kyton" in result.texts[0] + + @pytest.mark.parametrize("model_descr", get_whisper_models_list(tiny_only=True)) @pytest.mark.parametrize( "test_sample", From c13e8e5a2effdb7834a40a10586dfdd39e72bd2a Mon Sep 17 00:00:00 2001 From: Irina Efode Date: Thu, 19 Dec 2024 19:34:57 +0400 Subject: [PATCH 098/113] [ SD ] Fix of scheduler config for main_pipeline (#1406) --- .../speculative_decoding_impl.cpp | 17 +++++++++-------- .../utils/paged_attention_transformations.cpp | 2 +- .../utils/paged_attention_transformations.hpp | 2 +- 3 files changed, 11 insertions(+), 10 deletions(-) diff --git a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp index 4a0748b5c0..46b7b106a6 100644 --- a/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp +++ b/src/cpp/src/speculative_decoding/speculative_decoding_impl.cpp @@ -46,14 +46,15 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl(con draft_scheduler_config = is_scheduler_undefined ? main_scheduler_config : draft_model_desc.scheduler_config; if (is_scheduler_undefined) { // split KV cache to 2 caches for main and draft models - size_t main_model_cache_size = utils::get_kv_cache_size(main_model), - draft_model_cache_size = utils::get_kv_cache_size(draft_model); - auto k = static_cast(draft_model_cache_size) / (main_model_cache_size + draft_model_cache_size); + size_t main_model_hidden_size = utils::get_hidden_size(main_model), + draft_model_hidden_size = utils::get_hidden_size(draft_model); + auto k = static_cast(draft_model_hidden_size) / (main_model_hidden_size + draft_model_hidden_size); - size_t main_cache_size = main_scheduler_config.cache_size * (1 - k), + size_t main_cache_size = std::ceil(main_scheduler_config.cache_size * (1.f - k)), draft_cache_size = main_scheduler_config.cache_size - main_cache_size; + OPENVINO_ASSERT(main_cache_size > 0, "KV cache model cache size should be > 0"); if (draft_cache_size == 0) { - main_cache_size -= main_cache_size > 1 ? 1 : 0; + main_cache_size -= (main_cache_size > 1 ? 1 : 0); draft_cache_size = 1; } @@ -63,7 +64,7 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl(con ov::AnyMap draft_properties = draft_model_desc.properties == ov::AnyMap{} ? compile_properties : draft_model_desc.properties; - DeviceConfig main_device_config(core, main_scheduler_config, main_device, compile_properties), + DeviceConfig main_device_config(core, main_scheduler_config_updated, main_device, compile_properties), draft_device_config(core, draft_scheduler_config, draft_device, draft_properties); utils::set_kv_cache_type_and_shape(main_model, main_device_config); @@ -82,7 +83,7 @@ ContinuousBatchingPipeline::SpeculativeDecodingImpl::SpeculativeDecodingImpl(con // to create `main_pipeline` with enabled validation_mode and `draft_pipeline` with disabled validation mode m_main_pipeline = std::make_shared(core, main_model, main_model_tokenizer, main_model_desc.generation_config, - main_device_config, main_scheduler_config, main_device, compile_properties, true); + main_device_config, main_scheduler_config_updated, main_device, compile_properties, true); m_draft_pipeline = std::make_shared(core, draft_model, draft_model_tokenizer, draft_model_desc.generation_config, draft_device_config, draft_scheduler_config, draft_device, draft_properties, false); @@ -278,4 +279,4 @@ SpeculativeDecodingMetrics ContinuousBatchingPipeline::SpeculativeDecodingImpl::get_speculative_decoding_metrics() { return m_sd_metrics; }; -} \ No newline at end of file +} diff --git a/src/cpp/src/utils/paged_attention_transformations.cpp b/src/cpp/src/utils/paged_attention_transformations.cpp index 53690f770c..16c9556151 100644 --- a/src/cpp/src/utils/paged_attention_transformations.cpp +++ b/src/cpp/src/utils/paged_attention_transformations.cpp @@ -16,7 +16,7 @@ inline ov::PartialShape to_partial_with_dyn_0_dim(const ov::Shape& static_shape) return partial_shape; } -size_t get_kv_cache_size(const std::shared_ptr model) { +size_t get_hidden_size(const std::shared_ptr model) { const auto& parameters = model->get_parameters(); // extract num_kv_heads and head_size size_t kv_caches_inputs_offset = 2; diff --git a/src/cpp/src/utils/paged_attention_transformations.hpp b/src/cpp/src/utils/paged_attention_transformations.hpp index 3bc423d7bc..88ac0876c5 100644 --- a/src/cpp/src/utils/paged_attention_transformations.hpp +++ b/src/cpp/src/utils/paged_attention_transformations.hpp @@ -23,7 +23,7 @@ void apply_paged_attention_transformations(std::shared_ptr model, Dev void apply_paged_attention_transformations(std::shared_ptr model, bool per_layer_cache_control = false); -size_t get_kv_cache_size(const std::shared_ptr model); +size_t get_hidden_size(const std::shared_ptr model); void set_kv_cache_type_and_shape(std::shared_ptr model, DeviceConfig& device_config); From 19c66f5d3c316f0d54b1e4f2594d72b3a4add018 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Thu, 19 Dec 2024 18:06:27 +0100 Subject: [PATCH 099/113] Fail gracefully when openvino_tokenizer.xml is not available (#1413) Is was failing with segfault. Now fails more gracefully ``` Check 'm_ireq_queue_tokenizer' failed at .../src/cpp/src/tokenizer.cpp:387: Either openvino_tokenizer.xml was not provided or it was not loaded correctly. Tokenizer::encode is not available ``` CVS-158884 --- src/cpp/src/tokenizer.cpp | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/src/cpp/src/tokenizer.cpp b/src/cpp/src/tokenizer.cpp index 642236d32a..ed6fbc0a06 100644 --- a/src/cpp/src/tokenizer.cpp +++ b/src/cpp/src/tokenizer.cpp @@ -194,10 +194,16 @@ class Tokenizer::TokenizerImpl { void setupTokenizer(const std::pair, std::shared_ptr>& models, const ov::AnyMap& properties) { auto [ov_tokenizer, ov_detokenizer] = models; + OPENVINO_ASSERT(ov_tokenizer || ov_detokenizer, "Neither tokenizer nor detokenzier models were provided"); - m_older_than_24_5 = ov_tokenizer->get_rt_info().count("openvino_tokenizers_version") != 1; auto core = get_core_singleton(); std::string device = "CPU"; // only CPU is supported for now + + std::string version_str; + utils::read_rt_info(ov_tokenizer != nullptr ? ov_tokenizer: ov_detokenizer , "openvino_tokenizers_version", version_str); + // Saving IR version was added only in 24.5, so if it's empty, then it's older than 24.5 + m_older_than_24_5 = version_str.empty(); + if (ov_tokenizer) { ov::pass::Manager manager; manager.register_pass(); @@ -230,7 +236,8 @@ class Tokenizer::TokenizerImpl { if (m_tokenizer) { // TODO CVS-150630: Empty strings sporadically can fail, therefore use nonempty string for warmup. encode("non empty string").input_ids; - if (m_detokenizer) + } + if (m_detokenizer) { decode({1, 33, 199, 42, 42}); } @@ -377,6 +384,9 @@ class Tokenizer::TokenizerImpl { } TokenizedInputs encode(std::string prompt, const ov::AnyMap& tokenization_params = {}) { + OPENVINO_ASSERT(m_ireq_queue_tokenizer, "Either openvino_tokenizer.xml was not provided or it was not loaded correctly. " + "Tokenizer::encode is not available"); + CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_tokenizer.get()); set_state_if_necessary(infer_request_guard, tokenization_params); size_t batch_size = 1; @@ -390,6 +400,8 @@ class Tokenizer::TokenizerImpl { } TokenizedInputs encode(std::vector& prompts, const ov::AnyMap& tokenization_params = {}) { + OPENVINO_ASSERT(m_ireq_queue_tokenizer, "Either openvino_tokenizer.xml was not provided or it was not loaded correctly. " + "Tokenizer::encode is not available"); TokenizedInputs unpadded; { CircularBufferQueueElementGuard infer_request_guard(this->m_ireq_queue_tokenizer.get()); From 4d18f8b264c79ddce3c2dc0997992c26ab5c6c5f Mon Sep 17 00:00:00 2001 From: Sofya Balandina Date: Fri, 20 Dec 2024 08:03:49 +0000 Subject: [PATCH 100/113] Make Sampler a member of the class for llm/vlm pipelines (#1412) cherry-pick https://github.com/openvinotoolkit/openvino.genai/pull/1347 to master --- src/cpp/src/llm_pipeline.cpp | 12 +++++++++--- src/cpp/src/lm_encoding.cpp | 3 +++ src/cpp/src/sampler.hpp | 7 ++++++- src/cpp/src/visual_language/pipeline.cpp | 14 ++++++++++++-- tests/python_tests/test_chat_generate_api.py | 7 +++++-- 5 files changed, 35 insertions(+), 8 deletions(-) diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 6d9aae30fa..6fdb8ac1cd 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -45,6 +45,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { ov::genai::utils::GenerationChatInputsType m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; size_t m_to_remove_from_hist = 0; size_t m_kv_cache_seq_length_axis = 2; + Sampler m_sampler; StatefulLLMPipeline( const ov::InferRequest& request, @@ -75,7 +76,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { const std::string& device, const ov::AnyMap& config, const ov::genai::GenerationConfig& generation_config - ) : LLMPipelineImplBase(tokenizer, generation_config) { + ) : LLMPipelineImplBase(tokenizer, generation_config), m_sampler(m_tokenizer) { ov::Core core; ov::CompiledModel compiled_model; auto [core_plugin_config, plugin_config] = ov::genai::utils::split_core_compile_config(config); @@ -96,6 +97,8 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { // If eos_token_id was not provided, take value if (m_generation_config.eos_token_id == -1) m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id()); + + m_sampler.set_seed(m_generation_config.rng_seed); } StatefulLLMPipeline( @@ -358,9 +361,12 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { requests.push_back(sequence_group); } - Sampler sampler = Sampler(m_tokenizer); + if (m_sampler.get_seed() != config.rng_seed) { + m_sampler.set_seed(config.rng_seed); + } + std::tie(result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_model_runner, input_ids, concatenated_attention_mask, streamer_ptr, - sampler, requests, position_ids, std::nullopt, m_selected_beam); + m_sampler, requests, position_ids, std::nullopt, m_selected_beam); } if (is_chat_conversation) { diff --git a/src/cpp/src/lm_encoding.cpp b/src/cpp/src/lm_encoding.cpp index 3ab041fa58..62c53cace4 100644 --- a/src/cpp/src/lm_encoding.cpp +++ b/src/cpp/src/lm_encoding.cpp @@ -247,6 +247,9 @@ std::pair get_lm_encoded_results( // next_selected_beam = sampler.last_selected_beam(request); } + for (SequenceGroup::Ptr sequence_group : sequence_groups) + sampler.clear_request_info(sequence_group->get_request_id()); + return {results, next_selected_beam}; } diff --git a/src/cpp/src/sampler.hpp b/src/cpp/src/sampler.hpp index 0f7876cbf9..08a9863e0a 100644 --- a/src/cpp/src/sampler.hpp +++ b/src/cpp/src/sampler.hpp @@ -55,6 +55,7 @@ class Sampler { std::map m_beam_search_info; std::mt19937 rng_engine; + size_t seed = rng_engine.default_seed; // { request_id, logit_processor } std::map m_logit_processors; @@ -65,7 +66,11 @@ class Sampler { Sampler(Tokenizer & tokenizer) : m_tokenizer(tokenizer) {}; SamplerOutput sample(std::vector & sequence_groups, ov::Tensor logits, bool is_validation_mode_enabled = false); - void set_seed(size_t seed) { rng_engine.seed(seed); } + void set_seed(size_t new_seed) { + rng_engine.seed(new_seed); + seed = new_seed; + } + size_t get_seed() { return seed; } void clear_request_info(uint64_t request_id); diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 0d7aebc506..7bf1c1070a 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -67,6 +67,8 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { float m_load_time_ms = 0; // Axis num in kv cache from m_language model, which contains information about history len size_t m_kv_cache_seq_length_axis = 2; + // Component for applying sampling to lm outputs + Sampler m_sampler; VLMPipelineImpl( const std::filesystem::path& models_dir, @@ -105,6 +107,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { if (m_generation_config.eos_token_id == -1) { m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id()); } + + m_sampler = Sampler(m_tokenizer); + m_sampler.set_seed(m_generation_config.rng_seed); } VLMPipelineImpl( @@ -140,6 +145,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { if (m_generation_config.eos_token_id == -1) { m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id()); } + + m_sampler = Sampler(m_tokenizer); + m_sampler.set_seed(m_generation_config.rng_seed); } VLMDecodedResults generate( @@ -204,11 +212,13 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { ov::Tensor position_ids = ov::Tensor{ov::element::i64, { 1, inputs_embeds_size }}; std::iota(position_ids.data(), position_ids.data() + position_ids.get_size(), history_size); - Sampler sampler = Sampler(m_tokenizer); + if (m_sampler.get_seed() != generation_config.rng_seed) { + m_sampler.set_seed(generation_config.rng_seed); + } ov::genai::EncodedResults encoded_result; int32_t m_selected_beam = 0; - std::tie(encoded_result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, sampler, requests, + std::tie(encoded_result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, m_sampler, requests, position_ids, m_embedding, std::nullopt); auto decode_start_time = std::chrono::steady_clock::now(); diff --git a/tests/python_tests/test_chat_generate_api.py b/tests/python_tests/test_chat_generate_api.py index 9260e671d6..d9661e538b 100644 --- a/tests/python_tests/test_chat_generate_api.py +++ b/tests/python_tests/test_chat_generate_api.py @@ -187,10 +187,13 @@ def test_set_chat_template(): model_descr = get_chat_models_list()[0] model_id, path, tokenizer, model_opt, pipe = read_model((model_descr[0], model_descr[1] / '_test_chat')) pipe.get_tokenizer().set_chat_template("{% for message in messages %}{{ message['content'] }}{% endfor %}") + config = ov_genai.GenerationConfig() + config.max_new_tokens = 1 + config.do_sample = False pipe.start_chat() - generated = pipe.generate("a", max_new_tokens=1) + generated = pipe.generate("a", config) pipe.finish_chat() - reference = pipe.generate("a", max_new_tokens=1) + reference = pipe.generate("a", config) assert generated == reference prompts = [ From 04d97283263de2303a9df61cf43d20a624e07d0d Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 20 Dec 2024 13:33:54 +0400 Subject: [PATCH 101/113] [LLM/VLM] Stop generation when streaming callback returns true (#1410) Affects only stateful VLM and LLM pipelines and CB, SD implementation should be fixed separately as 2 pipelines should be aborted in case of exception / cancel via streaming callback --- src/cpp/src/continuous_batching_impl.cpp | 81 ++++++++++------- src/cpp/src/generation_handle.cpp | 2 +- src/cpp/src/generation_stream.hpp | 5 +- src/cpp/src/llm_pipeline.cpp | 15 ++-- src/cpp/src/lm_encoding.cpp | 105 ++++++++++------------- src/cpp/src/sequence_group.hpp | 14 +-- src/cpp/src/visual_language/pipeline.cpp | 5 +- 7 files changed, 113 insertions(+), 114 deletions(-) diff --git a/src/cpp/src/continuous_batching_impl.cpp b/src/cpp/src/continuous_batching_impl.cpp index 6e7e982a4c..e1ffd062de 100644 --- a/src/cpp/src/continuous_batching_impl.cpp +++ b/src/cpp/src/continuous_batching_impl.cpp @@ -22,7 +22,7 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::ContinuousBatchingImpl( m_tokenizer = tokenizer; m_generation_config = generation_config; m_is_validation_mode_enabled = is_validation_mode_enabled; - + ov::Core core; auto [core_properties, compile_properties] = utils::split_core_compile_config(properties); @@ -255,18 +255,6 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::generate(const std::vector generations; - for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { - OPENVINO_ASSERT(1 == input_ids[request_id].get_shape().at(0), "Use multiple tensors to pass a batch."); - generations.push_back(add_request(request_id, input_ids[request_id], sampling_params[request_id])); - } - - std::vector results; - results.reserve(m_awaiting_requests.size()); - auto drop_requests = [&] () { for (const std::shared_ptr request : m_requests) { for (const auto& sequence: request->get_sequences()) { @@ -279,25 +267,40 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::generate(const std::vector generations; + for (size_t request_id = 0; request_id < input_ids.size(); ++request_id) { + OPENVINO_ASSERT(1 == input_ids[request_id].get_shape().at(0), "Use multiple tensors to pass a batch."); + generations.push_back(add_request(request_id, input_ids[request_id], sampling_params[request_id])); + } + auto all_requests = m_awaiting_requests; // we need to store all requests to get results from them once generation has finished + bool continue_generation = true; while (has_non_finished_requests() && continue_generation) { try { step(); } catch (...) { - drop_requests(); + drop_requests(); // remove all requests from pipeline state in case of exception throw; } - if (streamer_ptr && generations.at(0)->can_read()) { - std::unordered_map token = generations.at(0).get()->back(); + + auto & generation = generations.at(0); + if (streamer_ptr && generation->can_read()) { + std::unordered_map token = generation->back(); for (const auto& gen_token : token.begin()->second.generated_ids) { - if (!streamer_ptr->put(gen_token)) { + continue_generation = !streamer_ptr->put(gen_token); + if (!continue_generation) { + generation->drop(); break; } } } } - if (streamer_ptr) { + if (streamer_ptr) { // push streamer's cache streamer_ptr->end(); } @@ -307,16 +310,32 @@ ContinuousBatchingPipeline::ContinuousBatchingImpl::generate(const std::vector results; + results.reserve(all_requests.size()); + + for (size_t request_id = 0; request_id < all_requests.size(); ++request_id) { + const auto& request = all_requests[request_id]; + auto sampling_params = request->get_sampling_parameters(); + const auto& sequences = request->get_finished_sequences(); + size_t num_outputs = std::min(sampling_params.num_return_sequences, sequences.size()); + EncodedGenerationResult result; - result.m_request_id = 1; - std::vector generation_outputs = generation->read_all(); - for (const auto& generation_output : generation_outputs) { - result.m_generation_ids.push_back(std::move(generation_output.generated_ids)); - result.m_scores.push_back(generation_output.score); + result.m_request_id = request_id; + result.m_generation_ids.resize(num_outputs); + result.m_scores.resize(num_outputs); + + for (size_t i = 0; i < num_outputs; ++i) { + const auto & sequence = sequences[i]; + const float score = sampling_params.is_beam_search() ? sequence->get_beam_search_score(sampling_params) : sequence->get_cumulative_log_probs(); + const auto & generated_ids = sequence->get_generated_ids(); + + if (sampling_params.echo) + result.m_generation_ids[i] = request->get_prompt_ids(); + std::copy(generated_ids.begin(), generated_ids.end(), std::back_inserter(result.m_generation_ids[i])); + result.m_scores[i] = score; } - result.m_status = generation->get_status(); + + result.m_status = generations[request_id]->get_status(); results.push_back(std::move(result)); } @@ -408,7 +427,7 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::_fill_prompt_log_probs( for (size_t sequence_group_id = 0, currently_processed_tokens = 0; sequence_group_id < sequence_groups.size(); ++sequence_group_id) { SequenceGroup::Ptr sequence_group = sequence_groups[sequence_group_id]; // requests not scheduled, in decoding phase or not echoing are not processed - if (!sequence_group->is_scheduled() || sequence_group->get_context_len() > sequence_group->get_prompt_len() || + if (!sequence_group->is_scheduled() || sequence_group->get_context_len() > sequence_group->get_prompt_len() || !sequence_group->get_sampling_parameters().echo) continue; @@ -421,10 +440,10 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::_fill_prompt_log_probs( size_t num_prompt_tokens_processed = sequence_group->get_num_processed_tokens(); OPENVINO_ASSERT(num_prompt_tokens_processed + actual_seq_len <= sequence_group->get_prompt_len()); - + // if we processed the whole prompt we don't include last logprob as it will be processed by the sampler (it's already completion) - // otherwise we include it as it will be used in the next part of the prompt - int exclude_last_logprob = 1; + // otherwise we include it as it will be used in the next part of the prompt + int exclude_last_logprob = 1; if (num_prompt_tokens_processed + actual_seq_len < sequence_group->get_prompt_len()) exclude_last_logprob = 0; @@ -435,7 +454,7 @@ void ContinuousBatchingPipeline::ContinuousBatchingImpl::_fill_prompt_log_probs( for (int token_logits_offset = 0, token_id_offset = num_prompt_tokens_processed + 1; token_logits_offset < actual_seq_len - exclude_last_logprob; token_logits_offset++, token_id_offset++) { - + const float* token_logits = (sequence_group_logits_data + token_logits_offset * vocab_size); int64_t token_id = sequence_group->get_prompt_ids()[token_id_offset]; float token_logit = token_logits[token_id]; diff --git a/src/cpp/src/generation_handle.cpp b/src/cpp/src/generation_handle.cpp index a1dd467523..0f10a85a86 100644 --- a/src/cpp/src/generation_handle.cpp +++ b/src/cpp/src/generation_handle.cpp @@ -17,7 +17,7 @@ GenerationStatus GenerationHandleImpl::get_status() { } bool GenerationHandleImpl::can_read() { - return !is_dropped() && m_generation_stream->can_read(); + return !is_dropped() && m_generation_stream->can_read(); } bool GenerationHandleImpl::is_dropped() { diff --git a/src/cpp/src/generation_stream.hpp b/src/cpp/src/generation_stream.hpp index 4d41f160e4..518699ba36 100644 --- a/src/cpp/src/generation_stream.hpp +++ b/src/cpp/src/generation_stream.hpp @@ -14,8 +14,6 @@ class GenerationStream { GenerationStatus m_status = GenerationStatus::RUNNING; SynchronizedQueue m_output_queue; - std::vector last_sequence_ids; - public: using Ptr = std::shared_ptr; @@ -30,10 +28,11 @@ class GenerationStream { m_output_queue.push(std::move(outputs)); } - // Retrieving vector of pairs as we can generate multiple outputs for a single prompt + // Retrieving vector of pairs as we can generate multiple outputs for a single prompt GenerationOutputs back() { return m_output_queue.back(); } + GenerationOutputs read() { return m_output_queue.pull(); } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 6fdb8ac1cd..623333e349 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -284,10 +284,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { } auto batch_size = input_ids.get_shape().at(0); - if ((batch_size != 1 || !(config.is_greedy_decoding() || config.is_multinomial())) && streamer_ptr) { - OPENVINO_THROW("Currently streaming is possible only with batch size=1 and " - "only for greedy or multinomial decoding"); - } + OPENVINO_ASSERT(streamer_ptr == nullptr || batch_size == 1 && config.num_return_sequences == 1 && + (config.is_greedy_decoding() || config.is_multinomial()), + "Currently streaming is possible only with batch size=1 and only for greedy or multinomial decoding"); auto num_inputs = m_model_runner.get_compiled_model().inputs().size(); OPENVINO_ASSERT(num_inputs == 4 || num_inputs == 3, "Model should have 3 or 4 inputs: " @@ -587,9 +586,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { std::vector plain_replies; std::vector plain_scores; for (GenerationResult& res : generated) { - if (GenerationStatus::FINISHED != res.m_status) { - OPENVINO_THROW("Got unfinished GenerationStatus"); - } + OPENVINO_ASSERT(res.m_status == GenerationStatus::FINISHED || res.m_status == GenerationStatus::DROPPED_BY_HANDLE, "Got unfinished GenerationStatus"); std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(plain_replies)); std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(plain_scores)); } @@ -645,9 +642,7 @@ class ContinuousBatchingAdapter final : public LLMPipelineImplBase { std::vector> plain_tokens; std::vector plain_scores; for (EncodedGenerationResult& res : generated) { - if (GenerationStatus::FINISHED != res.m_status) { - OPENVINO_THROW("Got unfinished GenerationStatus"); - } + OPENVINO_ASSERT(res.m_status == GenerationStatus::FINISHED || res.m_status == GenerationStatus::DROPPED_BY_HANDLE, "Got unfinished GenerationStatus"); std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(plain_tokens)); std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(plain_scores)); } diff --git a/src/cpp/src/lm_encoding.cpp b/src/cpp/src/lm_encoding.cpp index 62c53cace4..8ef993e09f 100644 --- a/src/cpp/src/lm_encoding.cpp +++ b/src/cpp/src/lm_encoding.cpp @@ -67,33 +67,49 @@ std::pair get_lm_encoded_results( generations.push_back(std::make_shared(sequence_group->get_generation_stream(), sequence_group->get_sampling_parameters())); } + auto active_sequence_groups{sequence_groups}; + + auto stream_generated_tokens = [&streamer_ptr, &generations, &active_sequence_groups]() { + GenerationHandle& handle = generations.at(0); + if (streamer_ptr && handle->can_read()) { + std::unordered_map token = handle->back(); + for (const auto& gen_token : token.begin()->second.generated_ids) { + if (streamer_ptr->put(gen_token)) { + handle->drop(); + break; + } + } + } + + // free non running requests + auto removed_it = std::remove_if(active_sequence_groups.begin(), active_sequence_groups.end(), + [](SequenceGroup::Ptr sg) -> bool { + return sg->has_finished() || sg->out_of_memory() || sg->handle_dropped(); + }); + active_sequence_groups.erase(removed_it, active_sequence_groups.end()); + }; + ov::Shape prompts_shape = input_ids.get_shape(); const size_t batch_size = prompts_shape[0]; // Initialize results and performance metrics. + EncodedResults results; auto& raw_perf_counters = results.perf_metrics.raw_metrics; raw_perf_counters.m_inference_durations = {{ MicroSeconds(0.0f) }}; // Initialize inputs - if (m_embedding.has_value()) - m_llm.set_tensor("inputs_embeds", input_ids); - else - m_llm.set_tensor("input_ids", input_ids); - + m_llm.set_tensor(m_embedding.has_value() ? "inputs_embeds" : "input_ids", input_ids); m_llm.set_tensor("attention_mask", attention_mask); - if (position_ids.has_value()) m_llm.set_tensor("position_ids", *position_ids); ov::Tensor beam_idx = ov::Tensor(ov::element::i32, {batch_size}); - auto beam_data = beam_idx.data(); - if (selected_beam_idx.has_value()) - beam_data[0] = *selected_beam_idx; - else - std::fill_n(beam_data, batch_size, 0); + std::fill_n(beam_idx.data(), batch_size, selected_beam_idx.has_value() ? *selected_beam_idx : 0); m_llm.set_tensor("beam_idx", beam_idx); + // "Prompt" phase + const auto infer_start = std::chrono::steady_clock::now(); m_llm.infer(); const auto infer_end = std::chrono::steady_clock::now(); @@ -109,7 +125,6 @@ std::pair get_lm_encoded_results( for (auto& sequence_group : sequence_groups) { sequence_group->update_processed_tokens_num(sequence_group->get_prompt_len() - sequence_len); sequence_group->schedule_tokens(sequence_len); - } std::map beam_offets; @@ -117,27 +132,11 @@ std::pair get_lm_encoded_results( beam_offets.insert({sequence_groups.at(i)->get_request_id(), i}); SamplerOutput sampler_output = sampler.sample(sequence_groups, logits); + stream_generated_tokens(); - auto active_sequence_groups{sequence_groups}; - auto get_active_sequence_groups = [](SequenceGroup::Ptr sg) { return sg->has_finished(); }; - - active_sequence_groups.erase(std::remove_if(active_sequence_groups.begin(), - active_sequence_groups.end(), - get_active_sequence_groups), - active_sequence_groups.end()); - - auto stream_generated_tokens = [&streamer_ptr, &generations]() { - if (streamer_ptr && generations.at(0).get()->can_read()) { - std::unordered_map token = generations.at(0).get()->back(); - for (const auto& gen_token : token.begin()->second.generated_ids) { - if (!streamer_ptr->put(gen_token)) { - break; - } - } - } - }; + // "Generation" phase - while (active_sequence_groups.size() > 0) { + while (!active_sequence_groups.empty()) { size_t total_num_tokens = 0; for (auto& sequence_group : active_sequence_groups) { @@ -178,20 +177,13 @@ std::pair get_lm_encoded_results( } for (size_t i = 0; i < sequence_groups.size(); i++) { - if (i == 0) - beam_offets[sequence_groups.at(i)->get_request_id()] = 0; - else { - beam_offets[sequence_groups.at(i)->get_request_id()] = sequence_groups.at(i - 1)->num_running_seqs() + beam_offets[i -1]; - } + beam_offets[sequence_groups.at(i)->get_request_id()] = i == 0 ? 0 : (sequence_groups.at(i - 1)->num_running_seqs() + beam_offets[i - 1]); } if (m_embedding.has_value()) { const ov::Tensor& embed_prompt_tensor = (*m_embedding).infer(new_input_ids); - - m_llm.get_tensor("inputs_embeds").set_shape(embed_prompt_tensor.get_shape()); m_llm.set_tensor("inputs_embeds", embed_prompt_tensor); } else { - m_llm.get_tensor("input_ids").set_shape(new_input_ids.get_shape()); m_llm.set_tensor("input_ids", new_input_ids); } @@ -201,7 +193,6 @@ std::pair get_lm_encoded_results( update_position_ids(m_llm.get_tensor("position_ids"), m_llm.get_tensor("attention_mask")); } - m_llm.get_tensor("beam_idx").set_shape({ total_num_tokens }); m_llm.set_tensor("beam_idx", ov::Tensor{ov::element::i32, {total_num_tokens}, next_beams.data()}); const auto infer_start = std::chrono::steady_clock::now(); @@ -213,36 +204,30 @@ std::pair get_lm_encoded_results( raw_perf_counters.m_new_token_times.emplace_back(infer_end); raw_perf_counters.m_batch_sizes.emplace_back(batch_size); - stream_generated_tokens(); - sampler_output = sampler.sample(active_sequence_groups, m_llm.get_tensor("logits")); - - active_sequence_groups.erase(std::remove_if(active_sequence_groups.begin(), - active_sequence_groups.end(), - get_active_sequence_groups), - active_sequence_groups.end()); + stream_generated_tokens(); } - // to stream last token - stream_generated_tokens(); - if (streamer_ptr) { + if (streamer_ptr) { // push streamer's cache streamer_ptr->end(); } - + + // Collect results + size_t next_selected_beam = 0; for (size_t i = 0; i < sequence_groups.size(); i++) { auto request = sequence_groups[i]; - auto generation_outputs = generations[i]->read_all(); + std::vector generation_outputs; + auto sampling_params = request->get_sampling_parameters(); + const auto& sequences = request->get_finished_sequences(); + size_t num_outputs = std::min(request->get_sampling_parameters().num_return_sequences, sequences.size()); - std::sort(generation_outputs.begin(), generation_outputs.end(), [] (const GenerationOutput& r1, const GenerationOutput& r2) { - return r1.score > r2.score; - }); + for (size_t seq_id = 0; seq_id < num_outputs; ++seq_id) { + const auto & sequence = sequences[seq_id]; + const float score = sampling_params.is_beam_search() ? sequence->get_beam_search_score(sampling_params) : sequence->get_cumulative_log_probs(); - auto num_outputs = std::min(request->get_sampling_parameters().num_return_sequences, generation_outputs.size()); - for (size_t generation_output_idx = 0; generation_output_idx < num_outputs; ++generation_output_idx) { - const auto& generation_output = generation_outputs[generation_output_idx]; - results.tokens.push_back(std::move(generation_output.generated_ids)); - results.scores.push_back(generation_output.score); + results.tokens.push_back(sequence->get_generated_ids()); + results.scores.push_back(score); } // next_selected_beam = sampler.last_selected_beam(request); } diff --git a/src/cpp/src/sequence_group.hpp b/src/cpp/src/sequence_group.hpp index 6755255fe8..c32e4a1189 100644 --- a/src/cpp/src/sequence_group.hpp +++ b/src/cpp/src/sequence_group.hpp @@ -173,8 +173,6 @@ class Sequence { return score; } - - // Each KV block can be uniquely identified by void set_sequence_group_ptr(std::shared_ptr sequence_group) { m_sequence_group = sequence_group; @@ -332,14 +330,16 @@ class SequenceGroup { std::vector get_finished_sequences() const { std::vector finished_seqs; for (size_t seq_id = 0; seq_id < m_sequences.size(); ++seq_id) { - if (m_sequences[seq_id]->has_finished() || m_sequences[seq_id]->out_of_memory()) { + if (m_sequences[seq_id]->has_finished() || m_sequences[seq_id]->out_of_memory() || handle_dropped()) { finished_seqs.push_back(m_sequences[seq_id]); } } - // do we need to sort sequences here or sampler can handle it for us? - std::sort(finished_seqs.begin(), finished_seqs.end(), [=] (Sequence::CPtr s1, Sequence::CPtr s2) { - return s1->get_beam_search_score(m_sampling_params) > s2->get_beam_search_score(m_sampling_params); + std::sort(finished_seqs.begin(), finished_seqs.end(), [=] (Sequence::CPtr s1, Sequence::CPtr s2) -> bool { + bool is_beam_search = m_sampling_params.is_beam_search(); + const float score_1 = is_beam_search ? s1->get_beam_search_score(m_sampling_params) : s1->get_cumulative_log_probs(); + const float score_2 = is_beam_search ? s2->get_beam_search_score(m_sampling_params) : s2->get_cumulative_log_probs(); + return score_1 > score_2; }); return finished_seqs; @@ -571,7 +571,7 @@ class SequenceGroup { m_generation_stream->set_generation_status(status); } - bool handle_dropped() { + bool handle_dropped() const { return m_generation_stream->get_status() == GenerationStatus::DROPPED_BY_HANDLE; } diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index 7bf1c1070a..ad4529e22f 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -203,8 +203,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { }, }, streamer); - OPENVINO_ASSERT((generation_config.is_greedy_decoding() || generation_config.is_multinomial() || !streamer_ptr), - "Currently streaming is possible only for greedy or multinomial decoding"); + OPENVINO_ASSERT(streamer_ptr == nullptr || generation_config.num_return_sequences == 1 && + (generation_config.is_greedy_decoding() || generation_config.is_multinomial()), + "Currently streaming is possible only with batch size=1 and only for greedy or multinomial decoding"); ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, { 1, history_size + inputs_embeds_size }}; std::fill_n(new_atten_mask.data(), new_atten_mask.get_size(), 1); From 9e612b8f96d32c1dfaab9d877e477c224da7048e Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Fri, 20 Dec 2024 21:52:32 +0400 Subject: [PATCH 102/113] =?UTF-8?q?llm=5Fpipeline=5Fstatic:=20flush=20stre?= =?UTF-8?q?amer=20after=20generation=20loop=20is=20complete=E2=80=A6=20(#1?= =?UTF-8?q?418)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit … (#1350) Without these changes, chat_sample with NPU device produces responses that are clipped by 4 characters: ![image](https://github.com/user-attachments/assets/e841bf36-948b-4899-820f-6b52460076e9) Flushing the streamer (as [get_lm_encoded_results()](https://github.com/openvinotoolkit/openvino.genai/blob/71ea7aae7357fa0bb21a5161ef078bef8ce7af7c/src/cpp/src/lm_encoding.cpp#L224) does in non-static LLM cases) seems to resolve the issue. Signed-off-by: Ryan Metcalfe Co-authored-by: Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com> --- src/cpp/src/llm_pipeline_static.cpp | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 090aed9650..42430f70a6 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -1102,6 +1102,11 @@ EncodedResults StaticLLMPipeline::generate( m_kvcache_request.get_tensor(output_name).copy_to(kvcache_in_slice); } } + + if (streamer_ptr) { + streamer_ptr->end(); + } + auto stop_time = std::chrono::steady_clock::now(); // If is called without tokenization then that stat will not be reported. auto& metrics = results.perf_metrics; From 930ec7eaa00ecf78058656eb08a6d5bedcf38539 Mon Sep 17 00:00:00 2001 From: Anatoliy Talamanov Date: Fri, 20 Dec 2024 20:22:29 +0000 Subject: [PATCH 103/113] StaticLLMPipeline: Cherry-pick num_key_value_heads not present in config.json (#1409) Original: https://github.com/openvinotoolkit/openvino.genai/pull/1355 --- src/cpp/src/llm_pipeline_static.cpp | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 42430f70a6..6f4f124894 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -407,7 +407,8 @@ ov::genai::ModelConfigDesc get_modeldesc_from_json(const std::filesystem::path& if (config_data.contains("_name_or_path")) { desc.name_or_path = config_data["_name_or_path"].get(); } - desc.num_key_value_heads = config_data["num_key_value_heads"].get(); + desc.num_key_value_heads = config_data.contains("num_key_value_heads") + ? config_data["num_key_value_heads"].get() : -1; return desc; } From 7d7134580ba15519578eb9968c5d9d4845192363 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Sat, 21 Dec 2024 00:50:54 +0400 Subject: [PATCH 104/113] Pin optimum-intel commit (#1420) Optimum-intel's main broke image generations models See https://github.com/openvinotoolkit/openvino.genai/actions/runs/12436082329/job/34723277088 --- .github/workflows/llm_bench-python.yml | 4 ++-- samples/export-requirements.txt | 2 +- tests/python_tests/requirements.txt | 2 +- tools/llm_bench/requirements.txt | 2 +- 4 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index 1999bafcfe..8356805e19 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -151,7 +151,7 @@ jobs: rm -rf ./ov_models/internvl2-1B - name: WWB Tests run: | - pip install git+https://github.com/huggingface/optimum-intel.git + pip install git+https://github.com/huggingface/optimum-intel.git@420fa87d039425a906b7f755e4562b65947f016a GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }} python -m pytest -v ${{ env.WWB_PATH }}/tests stateful: @@ -190,7 +190,7 @@ jobs: - name: WWB Tests run: | pip install pytest - pip install git+https://github.com/huggingface/optimum-intel.git + pip install git+https://github.com/huggingface/optimum-intel.git@420fa87d039425a906b7f755e4562b65947f016a GIT_CLONE_PROTECTION_ACTIVE=false PIP_PRE=1 PIP_EXTRA_INDEX_URL=https://storage.openvinotoolkit.org/simple/wheels/nightly pip install ${{ env.WWB_PATH }} python -m pytest -v ${{ env.WWB_PATH }}/tests diff --git a/samples/export-requirements.txt b/samples/export-requirements.txt index 797b680b9a..d75fdbacee 100644 --- a/samples/export-requirements.txt +++ b/samples/export-requirements.txt @@ -2,7 +2,7 @@ --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino-tokenizers~=2025.0.0.0.dev -optimum-intel @ git+https://github.com/huggingface/optimum-intel.git +optimum-intel @ git+https://github.com/huggingface/optimum-intel.git@420fa87d039425a906b7f755e4562b65947f016a numpy<2.0.0; sys_platform == 'darwin' einops==0.8.0 # For Qwen transformers_stream_generator==0.0.5 # For Qwen diff --git a/tests/python_tests/requirements.txt b/tests/python_tests/requirements.txt index 3dac3f8b00..bc5324b211 100644 --- a/tests/python_tests/requirements.txt +++ b/tests/python_tests/requirements.txt @@ -1,5 +1,5 @@ --extra-index-url https://download.pytorch.org/whl/cpu -optimum-intel @ git+https://github.com/huggingface/optimum-intel.git +optimum-intel @ git+https://github.com/huggingface/optimum-intel.git@420fa87d039425a906b7f755e4562b65947f016a numpy<2.0.0; sys_platform == 'darwin' onnx==1.17.0 pytest diff --git a/tools/llm_bench/requirements.txt b/tools/llm_bench/requirements.txt index f5f4a3fdeb..acbc668c52 100644 --- a/tools/llm_bench/requirements.txt +++ b/tools/llm_bench/requirements.txt @@ -10,7 +10,7 @@ torch transformers>=4.40.0 diffusers>=0.22.0 #optimum is in dependency list of optimum-intel -git+https://github.com/huggingface/optimum-intel.git@main#egg=optimum-intel +git+https://github.com/huggingface/optimum-intel.git@420fa87d039425a906b7f755e4562b65947f016a#egg=optimum-intel git+https://github.com/openvinotoolkit/nncf.git@develop#egg=nncf packaging psutil From 74cdfc900fa60e6f0473895641cda0c9d0416738 Mon Sep 17 00:00:00 2001 From: Irina Efode Date: Sat, 21 Dec 2024 01:51:52 +0400 Subject: [PATCH 105/113] [ CB ][ SD ] Support streaming with using `stop_strings` and `include_stop_strings` (#1382) *Details:*: * Implement streaming with using `stop_strings` in CB like pipelines * Change `stop_string_match` logic to encode them only once per request * Do not stream tokens which are matched to the part of a `stop_string` (Tests was a bit changes in this case according HF does not support exclude `stop_strings`) *Tickets:* * CVS-158463 --------- Co-authored-by: Ilya Lavrenov --- src/cpp/src/lm_encoding.cpp | 2 +- src/cpp/src/sampler.cpp | 166 +++++++++++++------------ src/cpp/src/sampler.hpp | 4 +- src/cpp/src/sequence_group.hpp | 61 ++++++--- src/cpp/src/text_callback_streamer.cpp | 2 +- src/cpp/src/text_callback_streamer.hpp | 2 +- tests/python_tests/common.py | 39 +++++- tests/python_tests/test_sampling.py | 10 +- 8 files changed, 180 insertions(+), 106 deletions(-) diff --git a/src/cpp/src/lm_encoding.cpp b/src/cpp/src/lm_encoding.cpp index 8ef993e09f..031214468e 100644 --- a/src/cpp/src/lm_encoding.cpp +++ b/src/cpp/src/lm_encoding.cpp @@ -239,4 +239,4 @@ std::pair get_lm_encoded_results( } } // namespace genai -} // namespace ov \ No newline at end of file +} // namespace ov diff --git a/src/cpp/src/sampler.cpp b/src/cpp/src/sampler.cpp index f77463d767..9c18dc7721 100644 --- a/src/cpp/src/sampler.cpp +++ b/src/cpp/src/sampler.cpp @@ -85,75 +85,63 @@ std::string clean_wrapped_text(const std::string& wrapped_text, const std::strin return clean_text; } +std::vector encode_and_process_string(const std::string& stop_string, ov::genai::Tokenizer& tokenizer) { + // encode stop_string + std::string stop_string_copy = stop_string; + ov::Tensor ov_encoded_stop_string = tokenizer.encode(stop_string_copy, ov::genai::add_special_tokens(false)).input_ids; + size_t tensor_size = ov_encoded_stop_string.get_size(); + std::vector encoded_stop_string(tensor_size); + std::copy_n(ov_encoded_stop_string.data(), tensor_size, encoded_stop_string.begin()); + return encoded_stop_string; +} + +struct MatchStopStringResult { + size_t to_remove = 0; + // int64_t last_token_id = 0; + // bool is_to_update_last_token = false; + bool is_matched = false; +}; + // Return number of last tokens that match one of the stop_strings. If there's no match 0 is returned. -int match_stop_string(Tokenizer & tokenizer, const TokenIds & generated_tokens, const std::set & stop_strings) { - /* - For catching stop_string hit we run comparisons character-wise to catch cases where stop string - overlaps with part of another token on both sides or is just a part of a single token. - For every stop_string we iterate over generated tokens starting from the last one and going backwards. - Every token is wrapped with prefix tokens to ensure tokenizer doesn't remove prefix whitespace of the actual token. - After that all tokens are decoded and prefix is removed from the decoded text, so we end up with decoded token. - Its characters are compared to the stop_string character at a current_position - (position of a character in the stop_string counting from the last one) - at the beginning position is 0. - When characters match we increase current_position and check if we have a full match already, if not we continue. - If we have already matched some characters (current_position > 0) and next character is not matching - before we reach the full match, then we reset current_position to 0. - */ - std::string prefix = "a"; - auto prefix_ov = tokenizer.encode(prefix).input_ids; - std::vector prefix_tokens(prefix_ov.data(), prefix_ov.data() + prefix_ov.get_size()); - std::string suffix = "b"; - auto suffix_ov = tokenizer.encode(suffix).input_ids; - std::vector suffix_tokens(suffix_ov.data(), suffix_ov.data() + suffix_ov.get_size()); - - // Since whitespace can be added at the beginning of the suffix we also try to capture that behavior here - // and get suffix string that will actually be part of the decoded string so we can remove it correctly - auto wrapped_suffix_tokens = suffix_tokens; - wrapped_suffix_tokens.insert(wrapped_suffix_tokens.begin(), prefix_tokens.begin(), prefix_tokens.end()); - std::string wrapped_suffix = tokenizer.decode(wrapped_suffix_tokens); - auto wrapper_pos = wrapped_suffix.find(prefix); - suffix = wrapped_suffix.substr(wrapper_pos + prefix.size()); - - for (auto stop_string: stop_strings) { - int current_position = 0; - int num_matched_tokens = 0; - // Getting reverse iterator to check tokens starting from the last one generated and going backwards - auto generated_tokens_rit = generated_tokens.rbegin(); - std::vector tokens_buffer; - while (generated_tokens_rit != generated_tokens.rend()) { - num_matched_tokens++; - tokens_buffer.insert(tokens_buffer.begin(), *generated_tokens_rit); - - std::vector wrapped_tokens = wrap_tokens(tokens_buffer, prefix_tokens, suffix_tokens); - std::string wrapped_text = tokenizer.decode(wrapped_tokens); - std::string clean_text = clean_wrapped_text(wrapped_text, prefix, suffix); - - if (clean_text == "" || (clean_text.size() >= 3 && (clean_text.compare(clean_text.size() - 3, 3, "�") == 0))) { - generated_tokens_rit++; - continue; - } else { - tokens_buffer.clear(); - } - // Checking clean_text characters starting from the last one - for (auto clean_text_rit = clean_text.rbegin(); clean_text_rit != clean_text.rend(); clean_text_rit++) { - // On character match increment current_position for the next comparisons - if (*clean_text_rit == *(stop_string.rbegin() + current_position)) { - current_position++; - // If this is the last character from the stop_string we have a match - if ((stop_string.rbegin() + current_position) == stop_string.rend()) { - return num_matched_tokens; - } - } else if (current_position) { - // Already found matching characters, but the last one didn't match, so we reset current_position - current_position = 0; - // Looking for the match will start over from this character so we decrement iterator - clean_text_rit--; +MatchStopStringResult match_stop_string(Tokenizer& tokenizer, + const TokenIds& generated_tokens, + const std::pair>& stop_strings, + bool is_include_to_output) { + MatchStopStringResult result; + if (generated_tokens.size() >= stop_strings.first) { + size_t offset = generated_tokens.size() - stop_strings.first; + TokenIds buffer(generated_tokens.begin() + offset, generated_tokens.end()); + std::string decoded_buffer = tokenizer.decode(buffer); + for (const auto& stop_string : stop_strings.second) { + auto pos = decoded_buffer.find(stop_string); + if (pos != std::string::npos) { + result.is_matched = true; + + auto stop_string_len = is_include_to_output ? stop_string.length() : 0; + decoded_buffer = decoded_buffer.substr(0, pos + stop_string_len); + // to remove word splitting symbols from tail + while (decoded_buffer.back() == ' ' || decoded_buffer.back() == '\n') { + decoded_buffer.pop_back(); + } + if (decoded_buffer.empty()) { + result.to_remove = buffer.size(); + return result; } + + // find token cnt to be removed from sequence by decoding token by token + std::string decoded_partially_string = ""; + for (size_t i = 0; i < buffer.size(); ++i) { + decoded_partially_string += tokenizer.decode(TokenIds{buffer[i]}); + if (decoded_partially_string.find(decoded_buffer) != std::string::npos) { + result.to_remove = buffer.size() - i - 1; + break; + } + } + return result; } - generated_tokens_rit++; } } - return 0; + return result; } // Return number of last tokens that match one of the stop_strings. If there's no match 0 is returned. @@ -245,7 +233,9 @@ std::map Sampler::GroupBeamSearcher::get_beam_idxs() { return next_beams; } -void Sampler::GroupBeamSearcher::select_next_tokens(const ov::Tensor& logits, SamplerOutput& sampler_output) { +void Sampler::GroupBeamSearcher::select_next_tokens(const ov::Tensor& logits, + SamplerOutput& sampler_output, + const std::pair>& stop_strings) { assert(m_parameters.num_beams % m_parameters.num_beam_groups == 0 && "number of beams should be divisible by number of groups"); size_t group_size = m_parameters.num_beams / m_parameters.num_beam_groups; @@ -392,19 +382,17 @@ void Sampler::GroupBeamSearcher::select_next_tokens(const ov::Tensor& logits, Sa // There's probably a better way to do that, than copying whole vector... std::vector token_ids = candidate.m_sequence->get_generated_ids(); token_ids.push_back(candidate.m_token_id); - int num_last_matched_tokens = match_stop_string(m_tokenizer, token_ids, m_sequence_group->get_sampling_parameters().stop_strings); - if (num_last_matched_tokens) { + auto match_result = match_stop_string(m_tokenizer, token_ids, stop_strings, m_parameters.include_stop_str_in_output); + if (match_result.is_matched) { // If beam_token does not belong to top num_beams tokens, it should not be added if (cand_idx >= group_size) continue; - if(!m_parameters.include_stop_str_in_output) { - // remove tokens that match stop_string from output (last token is not included in candidate.m_sequence at this point) - candidate.m_sequence->remove_last_tokens(num_last_matched_tokens - 1); - } + // remove tokens that match stop_string from output (last token is not included in candidate.m_sequence at this point) + candidate.m_sequence->remove_last_tokens(match_result.to_remove); // try to finish candidate - try_to_finish_candidate(group, candidate, m_parameters.include_stop_str_in_output); + try_to_finish_candidate(group, candidate); continue; } } @@ -576,10 +564,11 @@ std::vector Sampler::_try_finish_generation(SequenceGroup::Ptr & sequen } if (!sampling_params.stop_strings.empty()) { - int num_matched_last_tokens = match_stop_string(m_tokenizer, running_sequence->get_generated_ids(), sampling_params.stop_strings); - if (num_matched_last_tokens) { - if (!sampling_params.include_stop_str_in_output) - running_sequence->remove_last_tokens(num_matched_last_tokens); + auto& stop_strings = m_stop_strings.at(sequence_group->get_request_id()); + auto match_result = match_stop_string(m_tokenizer, running_sequence->get_generated_ids(), stop_strings, sampling_params.include_stop_str_in_output); + if (match_result.is_matched) { + running_sequence->remove_last_tokens(match_result.to_remove); + running_sequence->set_status(SequenceStatus::FINISHED); running_sequence->set_finish_reason(GenerationFinishReason::STOP); dropped_seq_ids.push_back(running_sequence->get_id()); @@ -741,6 +730,19 @@ float get_p_prime(Sequence::Ptr& running_sequence, return p_prime; } +std::pair> +process_stop_strings(const std::set& stop_strings, Tokenizer& tokenizer) { + std::pair> result; + for (const auto& stop_string : stop_strings) { + auto encoded_stop_string = encode_and_process_string(stop_string, tokenizer); + if (result.first < encoded_stop_string.size()) { + result.first = encoded_stop_string.size(); + } + result.second.insert(stop_string); + } + return result; +} + SamplerOutput Sampler::sample(std::vector & sequence_groups, ov::Tensor logits, bool is_validation_mode_enabled) { @@ -764,6 +766,12 @@ SamplerOutput Sampler::sample(std::vector & sequence_groups, if (!m_logit_processors.count(request_id)) { m_logit_processors.insert({request_id, LogitProcessor(sampling_params, sequence_group->get_prompt_ids())}); } + if (!m_stop_strings.count(request_id)) { + auto processed_stop_string = process_stop_strings(sampling_params.stop_strings, m_tokenizer); + m_stop_strings.insert({request_id, processed_stop_string}); + sequence_group->set_stream_window_size(processed_stop_string.first); + } + auto& stop_strings = m_stop_strings.at(request_id); auto& logit_processor = m_logit_processors.at(request_id); const void * sequence_group_logits_data = logits_data + vocab_size * currently_processed_tokens; ov::Tensor sequence_group_logits(ov::element::f32, ov::Shape{num_running_sequences, actual_seq_len, vocab_size}, (void *)sequence_group_logits_data); @@ -873,7 +881,7 @@ SamplerOutput Sampler::sample(std::vector & sequence_groups, } // current algorithm already adds new tokens to running sequences and - m_beam_search_info.at(request_id).select_next_tokens(sequence_group_logits, sampler_output); + m_beam_search_info.at(request_id).select_next_tokens(sequence_group_logits, sampler_output, stop_strings); // check max length stop criteria std::vector running_sequences = sequence_group->get_running_sequences(); @@ -886,8 +894,7 @@ SamplerOutput Sampler::sample(std::vector & sequence_groups, // Notify handle after sampling is done. // For non-streaming this is effective only when the generation is finished. OPENVINO_ASSERT(num_tokens_to_process >= max_removed_tokens_per_request); - size_t num_output_token_to_push = num_tokens_to_process - max_removed_tokens_per_request + 1; - sequence_group->notify_handle(num_output_token_to_push); + sequence_group->notify_handle(); } else { // we are in prompt processing phase when prompt is split into chunks and processed step by step } @@ -926,6 +933,7 @@ void Sampler::create_logit_processor(uint64_t request_id, const GenerationConfig void Sampler::clear_request_info(uint64_t request_id) { m_beam_search_info.erase(request_id); m_logit_processors.erase(request_id); + m_stop_strings.erase(request_id); } int64_t Sampler::GroupBeamSearcher::Group::finish(Beam beam, const ov::genai::GenerationConfig& sampling_params) { diff --git a/src/cpp/src/sampler.hpp b/src/cpp/src/sampler.hpp index 08a9863e0a..981e11560f 100644 --- a/src/cpp/src/sampler.hpp +++ b/src/cpp/src/sampler.hpp @@ -58,6 +58,8 @@ class Sampler { size_t seed = rng_engine.default_seed; // { request_id, logit_processor } std::map m_logit_processors; + // { request_id, { max_encoded_len, { stop_strings }}} + std::map>> m_stop_strings; Tokenizer m_tokenizer; @@ -120,7 +122,7 @@ class Sampler::GroupBeamSearcher { public: explicit GroupBeamSearcher(SequenceGroup::Ptr sequence_group, Tokenizer tokenizer); - void select_next_tokens(const ov::Tensor& logits, SamplerOutput& sampler_output); + void select_next_tokens(const ov::Tensor& logits, SamplerOutput& sampler_output, const std::pair>& stop_strings); void finalize(SamplerOutput& sampler_output); std::map get_beam_idxs(); }; diff --git a/src/cpp/src/sequence_group.hpp b/src/cpp/src/sequence_group.hpp index c32e4a1189..220e93c032 100644 --- a/src/cpp/src/sequence_group.hpp +++ b/src/cpp/src/sequence_group.hpp @@ -126,23 +126,28 @@ class Sequence { } } - GenerationOutput get_last_generation_output(size_t token_cnt = 1) { + GenerationOutput get_last_generation_output(size_t token_cnt = 1, size_t num_token_to_ignore = 0) { GenerationOutput output; - OPENVINO_ASSERT(m_generated_ids.size()); - output.score = get_cumulative_log_probs(); + if (token_cnt > 0) { + OPENVINO_ASSERT(m_generated_ids.size()); + output.score = get_cumulative_log_probs(); - auto generated_token_id = get_generated_ids(); - auto generated_log_probs = get_generated_log_probs(); + auto generated_token_id = get_generated_ids(); + auto generated_log_probs = get_generated_log_probs(); - OPENVINO_ASSERT(get_generated_len() >= token_cnt); - auto offset = get_generated_len() - token_cnt; + OPENVINO_ASSERT(get_generated_len() >= token_cnt); + if (get_generated_len() > num_token_to_ignore) { + auto offset = get_generated_len() - token_cnt - num_token_to_ignore; + auto offset_back = get_generated_len() - num_token_to_ignore; - std::vector token_id(generated_token_id.begin() + offset, generated_token_id.end()); - std::vector log_probs(generated_log_probs.begin() + offset, generated_log_probs.end()); + std::vector token_id(generated_token_id.begin() + offset, generated_token_id.begin() + offset_back); + std::vector log_probs(generated_log_probs.begin() + offset, generated_log_probs.begin() + offset_back); - output.generated_ids = token_id; - output.generated_log_probs = log_probs; - output.finish_reason = get_finish_reason(); + output.generated_ids = token_id; + output.generated_log_probs = log_probs; + output.finish_reason = get_finish_reason(); + } + } return output; } @@ -219,6 +224,8 @@ class SequenceGroup { // flag to enable/disable token generation, e.g. in speculative decoding scenario bool m_is_gen_paused = false; + size_t m_num_streamed_tokens = 0, m_stream_window_size = 0; + SequenceGroup(uint64_t request_id, const ov::genai::GenerationConfig& sampling_params, std::size_t block_size, bool enable_prefix_caching) : m_request_id(request_id), @@ -454,6 +461,10 @@ class SequenceGroup { size_t get_num_tokens_to_validate() { return m_num_validation_tokens; } + + void set_stream_window_size(size_t k) { + m_stream_window_size = k; + } size_t get_num_available_tokens_for_batching() const { OPENVINO_ASSERT(!has_finished(), "Internal error: this function cannot be called on finished sequence group"); @@ -601,7 +612,7 @@ class SequenceGroup { for (auto& sequence : m_sequences) { // todo: check seq.is_finished() to generate without several // or is it ok to use padding? - auto output = sequence->get_last_generation_output(token_cnt); + auto output = sequence->get_last_generation_output(token_cnt, m_stream_window_size); if (m_sampling_params.echo && !m_has_echoed) { output.generated_ids.insert(output.generated_ids.begin(), m_prompt_ids.begin(), m_prompt_ids.end()); output.generated_log_probs.insert(output.generated_log_probs.begin(), m_prompt_log_probs.begin(), m_prompt_log_probs.end()); @@ -612,24 +623,36 @@ class SequenceGroup { m_generation_stream->push(std::move(outputs)); } - void notify_handle(size_t num_output_token_to_push = 0) { + void notify_handle() { if (out_of_memory()) { set_generation_status(GenerationStatus::IGNORED); } else if (has_finished()) { set_generation_status(GenerationStatus::FINISHED); } // For beam search streaming is not available, so we notify only upon finishing - if(m_sampling_params.is_beam_search()) { + if (m_sampling_params.is_beam_search()) { if (has_finished() || out_of_memory()) { push_outputs(); } } else if (m_sampling_params.is_greedy_decoding() || m_sampling_params.is_multinomial()) { // We can stream only when one sequence is returned and we don't use stop strings that would be excluded from the output // (after stop string is detected its tokens are already sent) - if (num_total_seqs() == 1 && - (m_sampling_params.stop_strings.empty() || m_sampling_params.include_stop_str_in_output)) { - if (num_output_token_to_push) - push_partial_outputs(num_output_token_to_push); + if (num_total_seqs() == 1) { + const auto generated_len = m_sequences.front()->get_generated_len(); + if (has_finished()) { + m_stream_window_size = 0; + } + if (generated_len <= (m_num_streamed_tokens + m_stream_window_size)) { + return; + } + // speculative decoding draft handling + if (generated_len < m_num_streamed_tokens) { + m_num_streamed_tokens = generated_len; + } + OPENVINO_ASSERT(generated_len >= (m_num_streamed_tokens + m_stream_window_size)); + size_t num_output_token_to_push = generated_len - m_num_streamed_tokens - m_stream_window_size; + push_partial_outputs(num_output_token_to_push); + m_num_streamed_tokens += (num_output_token_to_push); } else if (has_finished() || out_of_memory()) { push_outputs(); } diff --git a/src/cpp/src/text_callback_streamer.cpp b/src/cpp/src/text_callback_streamer.cpp index 314a7ffa4d..5938b55f6c 100644 --- a/src/cpp/src/text_callback_streamer.cpp +++ b/src/cpp/src/text_callback_streamer.cpp @@ -52,4 +52,4 @@ void TextCallbackStreamer::end() { ov::genai::StreamerBase::~StreamerBase() = default; } // namespace genai -} // namespace ov +} // namespace ov \ No newline at end of file diff --git a/src/cpp/src/text_callback_streamer.hpp b/src/cpp/src/text_callback_streamer.hpp index a03b0deccb..6f0872ad1b 100644 --- a/src/cpp/src/text_callback_streamer.hpp +++ b/src/cpp/src/text_callback_streamer.hpp @@ -25,4 +25,4 @@ class TextCallbackStreamer: public StreamerBase { }; } // namespace genai -} // namespace ov +} // namespace ov \ No newline at end of file diff --git a/tests/python_tests/common.py b/tests/python_tests/common.py index 50ee452f5c..163a00192e 100644 --- a/tests/python_tests/common.py +++ b/tests/python_tests/common.py @@ -125,6 +125,34 @@ def get_beam_search_with_multiple_stop_strings_no_match() -> GenerationConfig: generation_config.include_stop_str_in_output = True return generation_config +def get_greedy_stop_strings_exclude_from_output() -> GenerationConfig: + generation_config = GenerationConfig() + generation_config.max_new_tokens = 30 + generation_config.stop_strings = { "machines" } + generation_config.include_stop_str_in_output = False + return generation_config + +def get_greedy_stop_strings_include_to_output() -> GenerationConfig: + generation_config = GenerationConfig() + generation_config.max_new_tokens = 30 + generation_config.stop_strings = { "machines" } + generation_config.include_stop_str_in_output = True + return generation_config + +def get_greedy_n_stop_strings_exclude_from_output() -> GenerationConfig: + generation_config = GenerationConfig() + generation_config.max_new_tokens = 30 + generation_config.stop_strings = { "machines", "manage" } + generation_config.include_stop_str_in_output = False + return generation_config + +def get_greedy_n_stop_strings_include_to_output() -> GenerationConfig: + generation_config = GenerationConfig() + generation_config.max_new_tokens = 30 + generation_config.stop_strings = { "machines", "manage" } + generation_config.include_stop_str_in_output = True + return generation_config + def get_multinomial_temperature() -> GenerationConfig: generation_config = GenerationConfig() generation_config.do_sample = True @@ -359,9 +387,14 @@ def compare_results(hf_result: GenerationResult, ov_result: GenerationResult, ge # Note, that for fp32 / fp16 models scores are different less than 0.001 assert abs(hf_score - ov_score) < 0.02 - assert len(hf_result.m_generation_ids) == len(ov_result.m_generation_ids) - for hf_text, ov_text in zip(hf_result.m_generation_ids, ov_result.m_generation_ids): - assert hf_text == ov_text + if not generation_config.include_stop_str_in_output and len(generation_config.stop_strings) > 0: + assert len(hf_result.m_generation_ids) >= len(ov_result.m_generation_ids) + for hf_text, ov_text in zip(hf_result.m_generation_ids, ov_result.m_generation_ids): + assert ov_text in hf_text + else: + assert len(hf_result.m_generation_ids) == len(ov_result.m_generation_ids) + for hf_text, ov_text in zip(hf_result.m_generation_ids, ov_result.m_generation_ids): + assert hf_text == ov_text def save_ov_model_from_optimum(model, hf_tokenizer, models_path: Path): model.save_pretrained(models_path) diff --git a/tests/python_tests/test_sampling.py b/tests/python_tests/test_sampling.py index 9aa6931d85..d5df28bfd6 100644 --- a/tests/python_tests/test_sampling.py +++ b/tests/python_tests/test_sampling.py @@ -21,6 +21,8 @@ get_beam_search, get_beam_search_min_and_max_tokens, get_beam_search_with_single_stop_string, \ get_beam_search_with_multiple_stop_strings, get_beam_search_with_multiple_stop_strings_no_match, get_multinomial_max_and_min_token, \ get_multinomial_temperature_and_frequence_penalty, get_multinomial_temperature_and_presence_penalty, \ + get_greedy_stop_strings_exclude_from_output, get_greedy_stop_strings_include_to_output, \ + get_greedy_n_stop_strings_exclude_from_output, get_greedy_n_stop_strings_include_to_output, \ generate_and_compare_with_hf, get_multinomial_temperature_and_repetition_penalty, get_scheduler_config, \ run_continuous_batching @@ -77,7 +79,9 @@ def test_eos_greedy(tmp_path): @pytest.mark.precommit @pytest.mark.parametrize("generation_config", [get_greedy(), get_greedy_with_min_and_max_tokens(), get_greedy_with_repetition_penalty(), get_greedy_with_single_stop_string(), get_greedy_with_multiple_stop_strings(), get_greedy_with_multiple_stop_strings_no_match(), - get_beam_search(), get_beam_search_min_and_max_tokens(), get_beam_search_with_multiple_stop_strings_no_match(), ], + get_beam_search(), get_beam_search_min_and_max_tokens(), get_beam_search_with_multiple_stop_strings_no_match(), + get_greedy_stop_strings_exclude_from_output(), get_greedy_stop_strings_include_to_output(), + get_greedy_n_stop_strings_exclude_from_output(), get_greedy_n_stop_strings_include_to_output() ], ids=[ "greedy", "greedy_with_min_and_max_tokens", @@ -88,6 +92,10 @@ def test_eos_greedy(tmp_path): "beam", "beam_search_min_and_max_tokens", "beam_search_with_multiple_stop_strings_no_match", + "get_greedy_stop_strings_exclude_from_output", + "get_greedy_stop_strings_include_to_output", + "get_greedy_n_stop_strings_exclude_from_output", + "get_greedy_n_stop_strings_include_to_output" ]) def test_individual_generation_configs_deterministic(tmp_path, generation_config): prompts = [ From 05d01ac415ce35703a343017f6fe1f49acec9477 Mon Sep 17 00:00:00 2001 From: Sofya Balandina Date: Fri, 20 Dec 2024 23:31:43 +0000 Subject: [PATCH 106/113] Move beam search in case of chat scenario to sampler.cpp (#1215) Task [CVS-156578](https://jira.devtools.intel.com/browse/CVS-156578) - add missed token, if prev generation was finished because max length was reached --- src/cpp/src/group_beam_searcher.cpp | 455 ------------------ src/cpp/src/llm_pipeline.cpp | 134 +++--- src/cpp/src/lm_encoding.cpp | 39 +- src/cpp/src/lm_encoding.hpp | 10 +- src/cpp/src/utils.hpp | 15 + .../src/visual_language/inputs_embedder.cpp | 65 ++- .../src/visual_language/inputs_embedder.hpp | 6 +- src/cpp/src/visual_language/pipeline.cpp | 13 +- 8 files changed, 161 insertions(+), 576 deletions(-) delete mode 100644 src/cpp/src/group_beam_searcher.cpp diff --git a/src/cpp/src/group_beam_searcher.cpp b/src/cpp/src/group_beam_searcher.cpp deleted file mode 100644 index a0262c0dc8..0000000000 --- a/src/cpp/src/group_beam_searcher.cpp +++ /dev/null @@ -1,455 +0,0 @@ -// Copyright (C) 2023-2024 Intel Corporation -// SPDX-License-Identifier: Apache-2.0 - -#include - -#include - -#include "openvino/genai/llm_pipeline.hpp" -#include "utils.hpp" -#include "lm_encoding.hpp" - -namespace { - -// Modified Knuth–Morris–Pratt algorithm which returns tokens following after every needle occurrence in haystack -std::vector kmp_search(const std::vector& haystack, const std::vector& needle) { - if (needle.empty()) { // no_repeat_ngram_size == 1, ban every token - return {haystack.begin(), haystack.end()}; - } - std::vector partial_match_table(needle.size() + 1, -1); - int cnd = 0; - for (size_t pos = 1; pos < needle.size(); ++pos) { - if (needle.at(pos) == needle.at(size_t(cnd))) { - partial_match_table.at(pos) = partial_match_table.at(size_t(cnd)); - } else { - partial_match_table.at(pos) = cnd; - while (cnd >= 0 && needle.at(pos) != needle.at(size_t(cnd))) { - cnd = partial_match_table.at(size_t(cnd)); - } - } - ++cnd; - } - partial_match_table.back() = cnd; - std::vector res; - size_t haystack_id = 0; - int needle_id = 0; - while (haystack_id < haystack.size() - 1) { - if (needle.at(size_t(needle_id)) == haystack.at(haystack_id)) { - ++haystack_id; - ++needle_id; - if (needle_id == int(needle.size())) { - res.push_back(haystack.at(haystack_id)); - needle_id = partial_match_table.at(size_t(needle_id)); - } - } else { - needle_id = partial_match_table.at(size_t(needle_id)); - if (needle_id < 0) { - ++haystack_id; - ++needle_id; - } - } - } - return res; -} - -struct Token { - float log_prob; - int64_t idx; -}; - -std::vector log_softmax(const ov::Tensor& logits, const size_t batch_idx) { - if (logits.get_shape().at(0) <= batch_idx) { - throw std::runtime_error("logits batch size doesn't match the number of beams"); - } - size_t vocab_size = logits.get_shape().back(); - size_t batch_offset = batch_idx * logits.get_shape().at(1) * vocab_size; - size_t sequence_offset = (logits.get_shape().at(1) - 1) * vocab_size; - const float* beam_logits = logits.data() + batch_offset + sequence_offset; - float max_logit = *std::max_element(beam_logits, beam_logits + vocab_size); - float log_sum = std::log( - std::accumulate(beam_logits, beam_logits + vocab_size, 0.0f, [max_logit](float accumulated, float to_add) { - return accumulated + std::exp(to_add - max_logit); - })); - std::vector tokens; - tokens.reserve(vocab_size); - for (size_t idx = 0; idx < vocab_size; ++idx) { - tokens.push_back({beam_logits[idx] - max_logit - log_sum, int64_t(idx)}); - } - return tokens; -} - -struct Beam { - float score = -std::numeric_limits::infinity(); // The bigger, the better - std::vector tokens; - size_t global_beam_idx = 0; -}; - -bool greater(const Beam& left, const Beam& right) { - return left.score > right.score; -} - -struct Parameters { - std::vector> prompts; - int64_t eos_token_id; - size_t n_groups = 3; - size_t group_size = 5; - float diversity_penalty = 1.0; - size_t max_new_tokens = 20; - ov::genai::StopCriteria stop_criteria = ov::genai::StopCriteria::HEURISTIC; - float length_penalty = 1.0; - size_t no_repeat_ngram_size = std::numeric_limits::max(); - - std::function early_finish = [](const Beam&) { - return false; - }; -}; - -struct Group { - std::vector ongoing; // Best beams in front - std::vector min_heap; // The worst of the best completed beams is the first - bool done = false; - - void finish(Beam&& beam, const Parameters& parameters) { - beam.score /= std::pow(float(beam.tokens.size()), parameters.length_penalty); - - min_heap.push_back(std::move(beam)); - std::push_heap(min_heap.begin(), min_heap.end(), greater); - if (min_heap.size() > parameters.group_size) { - std::pop_heap(min_heap.begin(), min_heap.end(), greater); - min_heap.pop_back(); - } - } - void is_done(const Parameters& parameters) { - if (min_heap.size() < parameters.group_size) { - return; - } - size_t cur_len = ongoing.front().tokens.size(); - float best_sum_logprobs = ongoing.front().score; - float worst_score = min_heap.front().score; - switch (parameters.stop_criteria) { - case ov::genai::StopCriteria::EARLY: - done = true; - return; - case ov::genai::StopCriteria::HEURISTIC: { - float highest_attainable_score = best_sum_logprobs / std::pow(float(cur_len), parameters.length_penalty); - done = worst_score >= highest_attainable_score; - return; - } - case ov::genai::StopCriteria::NEVER: { - size_t length = parameters.length_penalty > 0.0 ? parameters.max_new_tokens : cur_len; - float highest_attainable_score = best_sum_logprobs / std::pow(float(length), parameters.length_penalty); - done = worst_score >= highest_attainable_score; - return; - } - default: - throw std::runtime_error("Never reached"); - } - } -}; - -// GroupBeamSearcher processes logits prduced by a language model and accumulates beams using group beam search -// algorithm. select_next_tokens() returns token ids selected by the algorithm and corresponding beam ids. These values -// are used for next inference. select_next_tokens() returns empty, if all groups are completed -struct GroupBeamSearcher { - Parameters parameters; - std::vector> prompts_groups; - - GroupBeamSearcher(Parameters parameters) : parameters{parameters}, prompts_groups{parameters.prompts.size()} { - if (parameters.no_repeat_ngram_size == 0) { - throw std::runtime_error("no_repeat_ngram_size must be positive"); - } - for (std::vector& prompts_groups : prompts_groups) { - prompts_groups.resize(parameters.n_groups); - for (Group& group : prompts_groups) { - group.ongoing.resize(parameters.group_size); - group.ongoing.front().score = 0.0; - } - } - } - - std::pair, std::vector> select_next_tokens(const ov::Tensor& logits) { - std::vector next_tokens; - std::vector next_beams; - - const size_t promts_size = parameters.prompts.size(); - - next_tokens.reserve(promts_size * parameters.n_groups * parameters.group_size); - next_beams.reserve(promts_size * parameters.n_groups * parameters.group_size); - - size_t beam_count = 0; - size_t prompt_id = 0; - for (std::vector& groups : prompts_groups) { - for (Group& group : groups) { - if (group.done) { - continue; - } - for (Beam& beam : group.ongoing) { - // beam.tokens.empty() holds for the first select_next_tokens() call. - // Every beam is constructed from the single batch at first call - if (beam.tokens.empty()) { - beam.global_beam_idx = prompt_id; - } else { - beam.global_beam_idx = beam_count; - ++beam_count; - } - } - } - - prompt_id += 1; - } - - for (int prompt_id = 0; prompt_id < promts_size; prompt_id++) { - const std::vector prompt = parameters.prompts[prompt_id]; - std::vector& groups = prompts_groups[prompt_id]; - auto [prompt_next_tokens, prompt_next_beams] = select_prompt_next_tokens(logits, prompt, groups); - - next_tokens.insert(next_tokens.end(), prompt_next_tokens.begin(), prompt_next_tokens.end()); - next_beams.insert(next_beams.end(), prompt_next_beams.begin(), prompt_next_beams.end()); - } - - return {next_tokens, next_beams}; - } - - std::pair, std::vector> select_prompt_next_tokens(const ov::Tensor& logits, - const std::vector& prompt, - std::vector& groups) { - std::vector next_tokens; - std::vector next_beams; - next_tokens.reserve(parameters.n_groups * parameters.group_size); - next_beams.reserve(parameters.n_groups * parameters.group_size); - - for (auto group = groups.begin(); group != groups.end(); ++group) { - if (group->done) { - continue; - } - std::vector candidates; - candidates.reserve(parameters.group_size * 2 * parameters.group_size); - for (const Beam& beam : group->ongoing) { - std::vector tokens = log_softmax(logits, beam.global_beam_idx); - for (auto prev_group = groups.cbegin(); prev_group != group; ++prev_group) { - for (const Beam& prev_beam : prev_group->ongoing) { - if (prev_beam.tokens.size() > beam.tokens.size()) { - tokens.at(size_t(prev_beam.tokens.back())).log_prob -= parameters.diversity_penalty; - } - } - } - std::vector full_text{prompt}; - full_text.insert(full_text.end(), beam.tokens.begin(), beam.tokens.end()); - if (full_text.size() > 1 && full_text.size() >= parameters.no_repeat_ngram_size) { - auto tail_start = full_text.end() - ptrdiff_t(parameters.no_repeat_ngram_size) + 1; - for (int64_t banned_token : kmp_search(full_text, {tail_start, full_text.end()})) { - tokens.at(size_t(banned_token)).log_prob = -std::numeric_limits::infinity(); - } - } - std::sort(tokens.begin(), tokens.end(), [](Token left, Token right) { - return left.log_prob > right.log_prob; // Most probable tokens in front - }); - size_t add_count = 0; - for (Token token : tokens) { - Beam new_candidate = beam; - new_candidate.score += token.log_prob; - new_candidate.tokens.push_back(token.idx); - if (parameters.early_finish(new_candidate)) { - group->finish(std::move(new_candidate), parameters); - } else { - candidates.push_back(std::move(new_candidate)); - ++add_count; - if (add_count == 2 * parameters.group_size) { - break; - } - } - } - } - // Sample 2 * group_size highest score tokens to get at least 1 non EOS token per beam - if (candidates.size() < 2 * parameters.group_size) { - throw std::runtime_error("No beams left to search"); - } - auto to_sort = candidates.begin() + ptrdiff_t(2 * parameters.group_size); - std::partial_sort(candidates.begin(), to_sort, candidates.end(), greater); - group->ongoing.clear(); - for (size_t cand_idx = 0; cand_idx < candidates.size(); ++cand_idx) { - if (parameters.eos_token_id == candidates.at(cand_idx).tokens.back()) { - // If beam_token does not belong to top num_beams tokens, it should not be added - if (cand_idx >= parameters.group_size) { - continue; - } - group->finish(std::move(candidates.at(cand_idx)), parameters); - } else { - group->ongoing.push_back(std::move(candidates.at(cand_idx))); - if (group->ongoing.size() == parameters.group_size) { - break; - } - } - } - group->is_done(parameters); - if (!group->done) { - for (const Beam& beam : group->ongoing) { - next_tokens.push_back(beam.tokens.back()); - next_beams.push_back(int32_t(beam.global_beam_idx)); - } - } - } - return {next_tokens, next_beams}; - } -}; - -// Consume group_beam_searcher because beams are consumed -std::vector>> finalize(GroupBeamSearcher&& group_beam_searcher) { - std::vector>> finalized; - finalized.resize(group_beam_searcher.prompts_groups.size()); - - for (size_t prompt_id = 0; prompt_id < group_beam_searcher.prompts_groups.size(); prompt_id++) { - std::vector& groups = group_beam_searcher.prompts_groups.at(prompt_id); - finalized.at(prompt_id).reserve(groups.size()); - - for (Group& group : groups) { - if (!group.done) { - for (Beam& beam : group.ongoing) { - group.finish(std::move(beam), group_beam_searcher.parameters); - } - } - finalized.at(prompt_id).push_back(std::move(group.min_heap)); - } - } - - return finalized; -} - -void reset_all_inputs_to_empty_tensors(ov::InferRequest& request) { - request.set_tensor("input_ids", ov::Tensor(ov::element::i64, {0, 0})); - request.set_tensor("beam_idx", ov::Tensor(ov::element::i32, {0})); - if (request.get_compiled_model().inputs().size() == 4) - request.set_tensor("position_ids", ov::Tensor(ov::element::i64, {0, 0})); -} -} // namespace - -namespace ov { -namespace genai { - -std::pair beam_search(ov::InferRequest& lm, - ov::Tensor input_ids, - ov::Tensor attention_mask, - GenerationConfig config, - std::optional position_ids, - std::optional selected_beam_idx) { - OPENVINO_ASSERT(config.num_beams % config.num_beam_groups == 0, - "number of beams should be divisible by number of groups"); - - auto batch_size = input_ids.get_shape().at(0); - auto sequence_length = input_ids.get_shape().at(1); - - // Initialize beam search. - const int64_t* prompt_data = input_ids.data(); - std::vector> prompts; - prompts.reserve(batch_size); - for (size_t batch = 0; batch < batch_size; batch++) { - size_t batch_offset = batch * sequence_length; - const int64_t* prompt_start = prompt_data + batch_offset; - prompts.push_back(std::vector{prompt_start, prompt_start + sequence_length}); - } - - lm.set_tensor("input_ids", input_ids); - lm.set_tensor("attention_mask", attention_mask); - if (position_ids.has_value()) - lm.set_tensor("position_ids", *position_ids); - - ov::Tensor beam_idx = ov::Tensor(ov::element::i32, {batch_size}); - auto beam_data = beam_idx.data(); - if (selected_beam_idx.has_value()) - beam_data[0] = *selected_beam_idx; - else - std::fill_n(beam_data, batch_size, 0); - lm.set_tensor("beam_idx", beam_idx); - - Parameters parameters{std::move(prompts)}; - parameters.max_new_tokens = config.get_max_new_tokens(sequence_length); - parameters.eos_token_id = config.eos_token_id; - parameters.n_groups = config.num_beam_groups; - parameters.group_size = config.num_beams / config.num_beam_groups; - parameters.diversity_penalty = config.diversity_penalty; - parameters.length_penalty = config.length_penalty; - parameters.stop_criteria = config.stop_criteria; - parameters.no_repeat_ngram_size = config.no_repeat_ngram_size; - GroupBeamSearcher group_beam_searcher{parameters}; - - std::vector next_tokens; - std::vector next_beams; - - // Reserve for performance counters. - std::vector new_token_times; - std::vector batch_sizes; - new_token_times.reserve(parameters.max_new_tokens); - batch_sizes.reserve(parameters.max_new_tokens); - - for (size_t length_count = 0; ; ++length_count) { - lm.infer(); - - std::tie(next_tokens, next_beams) = group_beam_searcher.select_next_tokens(lm.get_tensor("logits")); - new_token_times.emplace_back(std::chrono::steady_clock::now()); - batch_sizes.emplace_back(batch_size); - - if (next_tokens.empty() || length_count == parameters.max_new_tokens - 1) { - // Break the cycle before masks are extended in update_attention_mask_with_beams. - // If generation is continued, attention_mask length should be equal to KV cache size. - break; - } - - size_t running_batch_size = next_tokens.size(); - // Set pointers - lm.set_tensor("input_ids", ov::Tensor{ov::element::i64, {running_batch_size, 1}, next_tokens.data()}); - lm.set_tensor("beam_idx", ov::Tensor{ov::element::i32, {running_batch_size}, next_beams.data()}); - - // Set auxiliary inputs - update_attention_mask_with_beams(lm.get_tensor("attention_mask"), next_beams); - if (position_ids.has_value()) - update_position_ids(lm.get_tensor("position_ids"), lm.get_tensor("attention_mask")); - } - - reset_all_inputs_to_empty_tensors(lm); - - auto scores_comparator = [](Beam& left, Beam& right) { - return (left.score > right.score); - }; - - auto result = finalize(std::move(group_beam_searcher)); - ov::genai::EncodedResults results; - int32_t res_selected_beam_idx = 0; - results.scores.reserve(config.num_return_sequences * result.size()); - results.tokens.reserve(config.num_return_sequences * result.size()); - auto& raw_perf_counters = results.perf_metrics.raw_metrics; - raw_perf_counters.m_new_token_times = new_token_times; - raw_perf_counters.m_batch_sizes = batch_sizes; - - // align output with HF - for (size_t prompt_id = 0; prompt_id < result.size(); prompt_id++) { - auto prompt_group = result.at(prompt_id); - std::vector> plain_beams; - plain_beams.reserve(parameters.n_groups * parameters.group_size); - for (std::vector& group : prompt_group) { - for (Beam& beam : group) { - plain_beams.push_back(beam); - } - } - assert(config.num_return_sequences <= plain_beams.size()); - std::partial_sort( - plain_beams.begin(), - plain_beams.begin() + config.num_return_sequences, - plain_beams.end(), - scores_comparator - ); - res_selected_beam_idx = plain_beams.at(0).get().global_beam_idx; - for ( - auto beam = plain_beams.begin(); - beam != plain_beams.begin() + config.num_return_sequences; - ++beam - ) { - results.scores.push_back(beam->get().score); - results.tokens.push_back(std::move(beam->get().tokens)); - } - } - - return {results, res_selected_beam_idx}; -} - -} // namespace genai -} // namespace ov diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 623333e349..33180a9199 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -24,28 +24,23 @@ namespace ov { namespace genai { -std::pair beam_search( - ov::InferRequest& lm, - ov::Tensor prompts, - ov::Tensor attention_mask, - GenerationConfig config, - std::optional position_ids, - std::optional selected_beam_idx -); - class StatefulLLMPipeline final : public LLMPipelineImplBase { public: ov::InferRequest m_model_runner; bool is_chat_conversation = false; bool m_trust_encoded_history = true; - std::optional m_selected_beam = std::nullopt; ChatHistory m_history; std::string m_templated_chat_history = {}; std::vector m_tokenized_chat_history; ov::genai::utils::GenerationChatInputsType m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; - size_t m_to_remove_from_hist = 0; size_t m_kv_cache_seq_length_axis = 2; Sampler m_sampler; + // Tail of previous output in chat mode is missing in KV cache, let's keep it + std::optional m_last_disappeared_token = std::nullopt; + // If sequence contains some symbols, which could be ambiguously encoded by tokenizer, we need to trim kv cache + // If we use beam search sampling with chat mode we need to remove last answer of the model from kv cache and add best answer to history + // so, let's keep info about amount of tokens to trim from kv cache and amount of tokens to keep in history + ov::genai::utils::HistoryRemoveManager m_kv_history_manager = {0, 0}; StatefulLLMPipeline( const ov::InferRequest& request, @@ -154,35 +149,44 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { // some symbols combinations can be encoded by the tokenizer in different ways // if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history // so let's check it out, find the trusted part and use it in on the next step - size_t last_same_hist_token = 0; + size_t trusted_history_length = 0; if (!m_tokenized_chat_history.empty()) { std::set stop_tokens = config.stop_token_ids; - last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens); - m_trust_encoded_history = last_same_hist_token == SIZE_MAX; + trusted_history_length = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_chat_history, stop_tokens); + m_trust_encoded_history = trusted_history_length == SIZE_MAX; } if (m_tokenized_chat_history.empty()) { encoded_input = new_chat_tokens; - } else if (last_same_hist_token != SIZE_MAX) { - m_to_remove_from_hist = m_tokenized_chat_history.size() - last_same_hist_token; + } else if (trusted_history_length != SIZE_MAX || m_kv_history_manager.does_kv_cache_need_to_update()) { + // does_kv_cache_need_to_update will be true here if beam search is activated + // in beam search mode we want to remove all history about last model answer from kv cache and add the best answer directly + // if we have difference in model answer and decoded answer it anyway will be less then entire history, so let's use data from m_kv_history_manager + if (m_kv_history_manager.does_kv_cache_need_to_update()) { + trusted_history_length = m_kv_history_manager.trusted_history_length; + } else { + m_kv_history_manager.num_tokens_to_remove_from_kv_cache = m_tokenized_chat_history.size() - trusted_history_length; + // if prev generation was finished because of max len was reached, kv cache is missed one last token, let's keep it + m_kv_history_manager.num_tokens_to_remove_from_kv_cache -= m_last_disappeared_token.has_value() ? 1 : 0; + } ov::Tensor new_tensor = ov::Tensor(new_chat_tokens.input_ids.get_element_type(), - {1, new_chat_tokens.input_ids.get_shape().at(1) - last_same_hist_token}, - new_chat_tokens.input_ids.data() + last_same_hist_token); + {1, new_chat_tokens.input_ids.get_shape().at(1) - trusted_history_length}, + new_chat_tokens.input_ids.data() + trusted_history_length); ov::Tensor new_attention_mask(ov::element::i64, new_tensor.get_shape()); std::fill_n(new_attention_mask.data(), new_tensor.get_shape()[1], 1); encoded_input.input_ids = ov::Tensor(new_chat_tokens.input_ids.get_element_type(), - {1, new_chat_tokens.input_ids.get_shape().at(1) - last_same_hist_token}); + {1, new_chat_tokens.input_ids.get_shape().at(1) - trusted_history_length}); new_tensor.copy_to(encoded_input.input_ids); encoded_input.attention_mask = new_attention_mask; - - m_selected_beam = std::nullopt; + m_last_disappeared_token = std::nullopt; } else { encoded_input = utils::subtract_chat_tokenized_inputs(new_chat_tokens, prev_chat_tokens); } m_templated_chat_history = new_templated_chat_history; + m_tokenized_chat_history.clear(); m_tokenized_chat_history.reserve(new_chat_tokens.input_ids.get_size()); std::copy_n(new_chat_tokens.input_ids.data(), new_chat_tokens.input_ids.get_size(), @@ -264,6 +268,12 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS) std::copy(input_ids.data(), input_ids.data() + input_ids.get_size(), std::back_inserter(m_tokenized_chat_history)); + // Tail of previous output in chat mode is missing in KV cache. + if (m_last_disappeared_token.has_value()) { + attention_mask = ov::genai::utils::push_front_inputs(attention_mask, 1); + input_ids = ov::genai::utils::push_front_inputs(input_ids, *m_last_disappeared_token); + } + GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; // If eos_token_id was not provided, take value from default m_generation_config @@ -294,7 +304,7 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { "(input_ids, attention_mask, position_ids, beam_idx) " "but you have '" + std::to_string(num_inputs) + "' inputs"); - ov::genai::utils::trim_kv_cache(m_model_runner, m_to_remove_from_hist, m_kv_cache_seq_length_axis, m_adapter_controller); + ov::genai::utils::trim_kv_cache(m_model_runner, m_kv_history_manager.num_tokens_to_remove_from_kv_cache, m_kv_cache_seq_length_axis, m_adapter_controller); size_t kv_cache_len = 0; ov::Tensor concatenated_attention_mask; @@ -304,10 +314,12 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { // Between subsequent runs attention_mask should not be modified. auto atten_mask_history = m_model_runner.get_tensor("attention_mask"); auto prompt_len = attention_mask.get_shape()[1]; - kv_cache_len = atten_mask_history.get_shape()[1] - m_to_remove_from_hist; + + kv_cache_len = atten_mask_history.get_shape()[1] - m_kv_history_manager.num_tokens_to_remove_from_kv_cache; ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, {batch_size, kv_cache_len + prompt_len}}; - auto start_atten_hst = atten_mask_history.data() + kv_cache_len * (*m_selected_beam); + auto start_atten_hst = atten_mask_history.data(); + std::copy(start_atten_hst, start_atten_hst + kv_cache_len, new_atten_mask.data()); std::copy(attention_mask.data(), attention_mask.data() + prompt_len, @@ -317,6 +329,8 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { concatenated_attention_mask = attention_mask; } + size_t prev_attn_mask_size = concatenated_attention_mask.get_shape()[1]; + bool position_ids_available = (num_inputs == 4); std::optional position_ids = std::nullopt; if (position_ids_available) { @@ -330,51 +344,55 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { if (is_chat_conversation && !m_trust_encoded_history) { m_trust_encoded_history = true; - m_to_remove_from_hist = 0; + m_kv_history_manager.reset(); } - ov::genai::EncodedResults result; - if (config.is_beam_search() && is_chat_conversation) { - std::tie(result, m_selected_beam) = beam_search(m_model_runner, input_ids, concatenated_attention_mask, - config, position_ids, m_selected_beam); - } else { - std::vector requests; - size_t block_size = 1; - bool enable_prefix_caching = false; - - for (size_t request_id = 0; request_id < batch_size; request_id++) { - SequenceGroup::Ptr sequence_group; - if (is_chat_conversation) { - ov::Tensor tokenized_chat_history = ov::Tensor(ov::element::i64, {1, m_tokenized_chat_history.size()}, m_tokenized_chat_history.data()); - sequence_group = std::make_shared(request_id, tokenized_chat_history, config, block_size, enable_prefix_caching); - } else { - size_t seq_len = input_ids.get_shape().at(1); - size_t batch_offset = request_id * seq_len; - const int64_t* prompt_start = input_ids.data() + batch_offset; - std::vector tokenized_prompt(prompt_start, prompt_start + seq_len); + std::vector requests; + size_t block_size = 1; + bool enable_prefix_caching = false; - sequence_group = std::make_shared(request_id, tokenized_prompt, config, block_size, enable_prefix_caching); - } + for (size_t request_id = 0; request_id < batch_size; request_id++) { + SequenceGroup::Ptr sequence_group; + if (is_chat_conversation) { + ov::Tensor tokenized_chat_history = ov::Tensor(ov::element::i64, {1, m_tokenized_chat_history.size()}, m_tokenized_chat_history.data()); + sequence_group = std::make_shared(request_id, tokenized_chat_history, config, block_size, enable_prefix_caching); + } else { + size_t seq_len = input_ids.get_shape().at(1); + size_t batch_offset = request_id * seq_len; + const int64_t* prompt_start = input_ids.data() + batch_offset; + std::vector tokenized_prompt(prompt_start, prompt_start + seq_len); - sequence_group->set_sequence_group_ptr(sequence_group); - requests.push_back(sequence_group); + sequence_group = std::make_shared(request_id, tokenized_prompt, config, block_size, enable_prefix_caching); } - if (m_sampler.get_seed() != config.rng_seed) { - m_sampler.set_seed(config.rng_seed); - } + sequence_group->set_sequence_group_ptr(sequence_group); + requests.push_back(sequence_group); + } - std::tie(result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_model_runner, input_ids, concatenated_attention_mask, streamer_ptr, - m_sampler, requests, position_ids, std::nullopt, m_selected_beam); + if (m_sampler.get_seed() != config.rng_seed) { + m_sampler.set_seed(config.rng_seed); } + ov::genai::EncodedResults result; + std::tie(result, m_last_disappeared_token) = ov::genai::get_lm_encoded_results(m_model_runner, input_ids, concatenated_attention_mask, + streamer_ptr, m_sampler, requests, position_ids, std::nullopt); + if (is_chat_conversation) { + // force remove from kv_cache last answer + if (config.is_beam_search() && m_chat_input_type != ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS) { + m_kv_history_manager.trusted_history_length = m_tokenized_chat_history.size(); + m_kv_history_manager.num_tokens_to_remove_from_kv_cache = m_model_runner.get_tensor("attention_mask").get_shape()[1] - prev_attn_mask_size; + } + std::copy(result.tokens[0].begin(), result.tokens[0].end(), std::back_inserter(m_tokenized_chat_history)); } else { reset_kv_state(); - m_selected_beam = std::nullopt; + m_last_disappeared_token = std::nullopt; } + if (is_chat_conversation && m_chat_input_type == ov::genai::utils::GenerationChatInputsType::ENCODED_INPUTS) + std::copy(result.tokens[0].begin(), result.tokens[0].end(), std::back_inserter(m_tokenized_chat_history)); + auto stop_time = std::chrono::steady_clock::now(); // If is called without tokenization then that stat will not be reported. @@ -388,10 +406,10 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { void start_chat(const std::string& system_message) override { is_chat_conversation = true; - m_selected_beam = std::nullopt; m_trust_encoded_history = true; - m_to_remove_from_hist = 0; + m_kv_history_manager.reset(); m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; + m_last_disappeared_token = std::nullopt; if (!m_tokenized_chat_history.empty()) { reset_kv_state(); m_history = {}; @@ -409,10 +427,10 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { void finish_chat() override { is_chat_conversation = false; - m_selected_beam = std::nullopt; m_trust_encoded_history = true; - m_to_remove_from_hist = 0; + m_kv_history_manager.reset(); m_chat_input_type = ov::genai::utils::GenerationChatInputsType::UNDEF; + m_last_disappeared_token = std::nullopt; if (!m_tokenized_chat_history.empty()) { reset_kv_state(); m_history.clear(); diff --git a/src/cpp/src/lm_encoding.cpp b/src/cpp/src/lm_encoding.cpp index 031214468e..17a20dd961 100644 --- a/src/cpp/src/lm_encoding.cpp +++ b/src/cpp/src/lm_encoding.cpp @@ -9,12 +9,11 @@ #include #include +#include "utils.hpp" +#include "debug_utils.hpp" #include "lm_encoding.hpp" #include "openvino/genai/perf_metrics.hpp" -#include "debug_utils.hpp" - -#include "utils.hpp" namespace ov { namespace genai { @@ -51,7 +50,7 @@ void update_attention_mask_with_beams(ov::Tensor&& attention_mask, std::vector get_lm_encoded_results( +std::pair> get_lm_encoded_results( ov::InferRequest& m_llm, const ov::Tensor& input_ids, const ov::Tensor& attention_mask, @@ -59,8 +58,7 @@ std::pair get_lm_encoded_results( Sampler& sampler, std::vector sequence_groups, std::optional position_ids, - std::optional m_embedding, - std::optional selected_beam_idx + std::optional m_embedding ) { std::vector generations; for (SequenceGroup::Ptr sequence_group : sequence_groups) { @@ -105,7 +103,7 @@ std::pair get_lm_encoded_results( m_llm.set_tensor("position_ids", *position_ids); ov::Tensor beam_idx = ov::Tensor(ov::element::i32, {batch_size}); - std::fill_n(beam_idx.data(), batch_size, selected_beam_idx.has_value() ? *selected_beam_idx : 0); + std::fill_n(beam_idx.data(), batch_size, 0); m_llm.set_tensor("beam_idx", beam_idx); // "Prompt" phase @@ -171,13 +169,13 @@ std::pair get_lm_encoded_results( // apply strides to shift to a next sequence input_ids_data += num_scheduled_tokens; - // for different sequences iteration of beams started from 0, but we collect it to one input_ids# + // for different sequences iteration of beams started from 0, but we collect it to one input_ids next_beams.push_back(beam_idxs[sequence->get_id()] + beam_offets.at(sequence_group->get_request_id())); } } - for (size_t i = 0; i < sequence_groups.size(); i++) { - beam_offets[sequence_groups.at(i)->get_request_id()] = i == 0 ? 0 : (sequence_groups.at(i - 1)->num_running_seqs() + beam_offets[i - 1]); + for (size_t i = 0; i < active_sequence_groups.size(); i++) { + beam_offets[active_sequence_groups.at(i)->get_request_id()] = i == 0 ? 0 : (active_sequence_groups.at(i - 1)->num_running_seqs() + beam_offets[i - 1]); } if (m_embedding.has_value()) { @@ -212,15 +210,10 @@ std::pair get_lm_encoded_results( streamer_ptr->end(); } - // Collect results - - size_t next_selected_beam = 0; - for (size_t i = 0; i < sequence_groups.size(); i++) { - auto request = sequence_groups[i]; - std::vector generation_outputs; - auto sampling_params = request->get_sampling_parameters(); - const auto& sequences = request->get_finished_sequences(); - size_t num_outputs = std::min(request->get_sampling_parameters().num_return_sequences, sequences.size()); + for (auto& sequence_group : sequence_groups) { + auto sampling_params = sequence_group->get_sampling_parameters(); + const auto& sequences = sequence_group->get_finished_sequences(); + size_t num_outputs = std::min(sequence_group->get_sampling_parameters().num_return_sequences, sequences.size()); for (size_t seq_id = 0; seq_id < num_outputs; ++seq_id) { const auto & sequence = sequences[seq_id]; @@ -229,13 +222,17 @@ std::pair get_lm_encoded_results( results.tokens.push_back(sequence->get_generated_ids()); results.scores.push_back(score); } - // next_selected_beam = sampler.last_selected_beam(request); } for (SequenceGroup::Ptr sequence_group : sequence_groups) sampler.clear_request_info(sequence_group->get_request_id()); - return {results, next_selected_beam}; + // it is not saved in KV cache, we need to add it for some cases + std::optional last_token_of_best_sequence = std::nullopt; + if (sequence_groups[0]->get_finished_sequences()[0]->get_finish_reason() == GenerationFinishReason::LENGTH || sequence_groups[0]->handle_dropped()) + last_token_of_best_sequence = results.tokens[0].back(); + + return {results, last_token_of_best_sequence}; } } // namespace genai diff --git a/src/cpp/src/lm_encoding.hpp b/src/cpp/src/lm_encoding.hpp index fa6692ede0..c31cffb9bc 100644 --- a/src/cpp/src/lm_encoding.hpp +++ b/src/cpp/src/lm_encoding.hpp @@ -8,13 +8,9 @@ namespace ov { namespace genai { -std::pair get_lm_encoded_results(ov::InferRequest& m_llm, const ov::Tensor& input_ids, const ov::Tensor& attention_mask, - const std::shared_ptr& streamer_ptr, Sampler& sampler, std::vector sequence_groups, - std::optional position_ids, std::optional m_embedding, std::optional selected_beam_idx); - -void update_attention_mask_with_beams(ov::Tensor&& attention_mask, std::vector next_beams); - -void update_position_ids(ov::Tensor&& position_ids, const ov::Tensor&& attention_mask); +std::pair> get_lm_encoded_results(ov::InferRequest& m_llm, const ov::Tensor& input_ids, const ov::Tensor& attention_mask, + const std::shared_ptr& streamer_ptr, Sampler& sampler, std::vector sequence_groups, + std::optional position_ids, std::optional m_embedding); } } diff --git a/src/cpp/src/utils.hpp b/src/cpp/src/utils.hpp index 96191387cd..57225e60ff 100644 --- a/src/cpp/src/utils.hpp +++ b/src/cpp/src/utils.hpp @@ -28,6 +28,21 @@ enum class GenerationChatInputsType { ENCODED_INPUTS = 2, // Type of inputs is EncodedInputs }; +struct HistoryRemoveManager +{ + size_t num_tokens_to_remove_from_kv_cache = 0; + size_t trusted_history_length = 0; + + bool does_kv_cache_need_to_update() { + return (trusted_history_length > 0 || num_tokens_to_remove_from_kv_cache > 0); + } + + void reset() { + num_tokens_to_remove_from_kv_cache = 0; + trusted_history_length = 0; + } +}; + Tensor init_attention_mask(const Tensor& position_ids); void print_tensor(const ov::Tensor& tensor); diff --git a/src/cpp/src/visual_language/inputs_embedder.cpp b/src/cpp/src/visual_language/inputs_embedder.cpp index 8175d44b16..e53be4e1cd 100644 --- a/src/cpp/src/visual_language/inputs_embedder.cpp +++ b/src/cpp/src/visual_language/inputs_embedder.cpp @@ -42,11 +42,12 @@ class InputsEmbedder::IInputsEmbedder { std::string m_templated_chat_history; // Tokenized chat history std::vector m_tokenized_history; - // The number of elements, which need to remove from the end of KV cache - // removed elements will be added to inputs_ids - size_t m_to_remove_from_hist = 0; // Tail of previous output for LM in chat mode is missing in KV cache. std::optional m_last_disappeared_token = std::nullopt; + // If sequence contains some symbols, which could be ambiguous encoded by tokenizer, we need to trim kv cache + // If we use beam search sampling with chat mode we need to remove last answer of the model from kv cache and add best answer to history + // so, let's keep info about amount of tokens to trim from kv cache and amount of tokens to keep in history + ov::genai::utils::HistoryRemoveManager m_kv_history_manager = {0, 0}; public: virtual ov::Tensor get_inputs_embeds(const std::string& prompt, const std::vector& images, ov::genai::VLMPerfMetrics& metrics) = 0; @@ -63,22 +64,26 @@ class InputsEmbedder::IInputsEmbedder { return m_tokenized_history; } - size_t get_amount_to_remove_from_hist() const { - return m_to_remove_from_hist; + size_t get_num_tokens_to_remove_from_hist() const { + return m_kv_history_manager.num_tokens_to_remove_from_kv_cache; } - void update_tokenized_history(std::vector encoded_result, bool token_will_disappear) { + void update_tokenized_history(const std::vector& encoded_result, std::optional last_disappeared_token, bool is_beam_search, size_t last_answer_len) { + if (is_beam_search) { + m_kv_history_manager.trusted_history_length = m_tokenized_history.size(); + m_kv_history_manager.num_tokens_to_remove_from_kv_cache = last_answer_len; + } else { + m_kv_history_manager.reset(); + } + + m_last_disappeared_token = last_disappeared_token; + std::copy(encoded_result.begin(), encoded_result.end(), std::back_inserter(m_tokenized_history)); - m_to_remove_from_hist = 0; - if (token_will_disappear) - m_last_disappeared_token = encoded_result.back(); - else - m_last_disappeared_token = std::nullopt; } virtual void start_chat(const std::string& system_message) { m_is_chat_conversation = true; - m_to_remove_from_hist = 0; + m_kv_history_manager.reset(); if (!m_tokenized_history.empty()) { m_history.clear(); m_templated_chat_history.clear(); @@ -101,7 +106,7 @@ class InputsEmbedder::IInputsEmbedder { virtual void finish_chat() { m_is_chat_conversation = false; - m_to_remove_from_hist = 0; + m_kv_history_manager.reset(); m_history.clear(); m_templated_chat_history.clear(); @@ -171,24 +176,32 @@ class InputsEmbedder::IInputsEmbedder { // some symbols combinations can be encoded by the tokenizer in different ways // if we met sequence with such combination of symbols, we cannot correctly subtract the new history from the old history // so let's check it out, find the trusted part and use it in on the next step - size_t last_same_hist_token = 0; + size_t trusted_history_length = 0; if (!m_tokenized_history.empty()) { std::set stop_tokens = {m_tokenizer.get_eos_token_id()}; - last_same_hist_token = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_history, stop_tokens); + trusted_history_length = ov::genai::utils::get_first_history_difference(prev_chat_tokens.input_ids, m_tokenized_history, stop_tokens); } if (m_tokenized_history.empty()) { encoded_input_ids = new_chat_tokens; - } else if (last_same_hist_token != SIZE_MAX) { - m_to_remove_from_hist = m_tokenized_history.size() - last_same_hist_token; - // if prev generation was finished because of max len was reached, kv cache is missed one last token, let's keep it - m_to_remove_from_hist -= m_last_disappeared_token.has_value() ? 1 : 0; + + } else if (trusted_history_length != SIZE_MAX || m_kv_history_manager.does_kv_cache_need_to_update()) { + // does_kv_cache_need_to_update will be true here if beam search is activated + // in beam search mode we want to remove all history about last model answer from kv cache and add the best answer directly + // if we have difference in model answer and decoded answer it anyway will be less then entire history, so let's use data from m_kv_history_manager + if (m_kv_history_manager.does_kv_cache_need_to_update()) { + trusted_history_length = m_kv_history_manager.trusted_history_length; + } else { + m_kv_history_manager.num_tokens_to_remove_from_kv_cache = m_tokenized_history.size() - trusted_history_length; + // if prev generation was finished because of max len was reached, kv cache is missed one last token, let's keep it + m_kv_history_manager.num_tokens_to_remove_from_kv_cache -= m_last_disappeared_token.has_value() ? 1 : 0; + } ov::Tensor new_tensor = ov::Tensor(new_chat_tokens.get_element_type(), - {1, new_chat_tokens.get_shape().at(1) - last_same_hist_token}, - new_chat_tokens.data() + last_same_hist_token); + {1, new_chat_tokens.get_shape().at(1) - trusted_history_length}, + new_chat_tokens.data() + trusted_history_length); encoded_input_ids = ov::Tensor(new_chat_tokens.get_element_type(), - {1, new_chat_tokens.get_shape().at(1) - last_same_hist_token}); + {1, new_chat_tokens.get_shape().at(1) - trusted_history_length}); new_tensor.copy_to(encoded_input_ids); } else { encoded_input_ids = utils::subtract_chat_tokenized_inputs( @@ -1192,12 +1205,12 @@ std::vector InputsEmbedder::get_tokenized_history() const { return m_impl->get_tokenized_history(); } -void InputsEmbedder::update_tokenized_history(std::vector encoded_result, bool token_will_disappear) { - return m_impl->update_tokenized_history(encoded_result, token_will_disappear); +void InputsEmbedder::update_tokenized_history(const std::vector& encoded_result, std::optional last_disappeared_token, bool is_beam_search, size_t last_answer_len) { + return m_impl->update_tokenized_history(encoded_result, last_disappeared_token, is_beam_search, last_answer_len); } -size_t InputsEmbedder::get_amount_to_remove_from_hist() const { - return m_impl->get_amount_to_remove_from_hist(); +size_t InputsEmbedder::get_num_tokens_to_remove_from_hist() const { + return m_impl->get_num_tokens_to_remove_from_hist(); } Tokenizer InputsEmbedder::get_tokenizer() const { diff --git a/src/cpp/src/visual_language/inputs_embedder.hpp b/src/cpp/src/visual_language/inputs_embedder.hpp index 8c84c6ad43..1d72b742ab 100644 --- a/src/cpp/src/visual_language/inputs_embedder.hpp +++ b/src/cpp/src/visual_language/inputs_embedder.hpp @@ -43,11 +43,11 @@ class InputsEmbedder { // returns tokenized chat history std::vector get_tokenized_history() const; - // add new results to tokenized chat history - void update_tokenized_history(std::vector encoded_result, bool token_will_disappear); + // add new results to tokenized history + void update_tokenized_history(const std::vector& encoded_result, std::optional last_disappeared_token, bool is_beam_search, size_t last_answer_len); // returns amount of elements, which need to remove from the end of the KV cache - size_t get_amount_to_remove_from_hist() const; + size_t get_num_tokens_to_remove_from_hist() const; // starts chat and adds optional system_message to chat history void start_chat(const std::string& system_message); diff --git a/src/cpp/src/visual_language/pipeline.cpp b/src/cpp/src/visual_language/pipeline.cpp index ad4529e22f..d625485205 100644 --- a/src/cpp/src/visual_language/pipeline.cpp +++ b/src/cpp/src/visual_language/pipeline.cpp @@ -169,7 +169,7 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { ov::Tensor inputs_embeds = m_inputs_embedder->get_inputs_embeds(prompt, rgbs, perf_metrics); auto end_get_inputs_embeds = std::chrono::steady_clock::now(); - auto to_remove_from_hist = m_inputs_embedder->get_amount_to_remove_from_hist(); + auto to_remove_from_hist = m_inputs_embedder->get_num_tokens_to_remove_from_hist(); ov::genai::utils::trim_kv_cache(m_language, to_remove_from_hist, m_kv_cache_seq_length_axis, std::nullopt); std::vector requests; @@ -218,9 +218,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { } ov::genai::EncodedResults encoded_result; - int32_t m_selected_beam = 0; - std::tie(encoded_result, m_selected_beam) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, m_sampler, requests, - position_ids, m_embedding, std::nullopt); + std::optional last_disappeared_token; + std::tie(encoded_result, last_disappeared_token) = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, m_sampler, requests, + position_ids, m_embedding); auto decode_start_time = std::chrono::steady_clock::now(); VLMDecodedResults decoded; @@ -230,6 +230,9 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { } auto decode_end_time = std::chrono::steady_clock::now(); + m_inputs_embedder->update_tokenized_history(encoded_result.tokens[0], last_disappeared_token, generation_config.is_beam_search(), + m_language.get_tensor("attention_mask").get_shape()[1] - (history_size + inputs_embeds_size)); + std::string decoded_results = decoded.texts.at(0); if (m_is_chat_conversation) { m_inputs_embedder->update_chat_history(decoded_results); @@ -256,8 +259,6 @@ class ov::genai::VLMPipeline::VLMPipelineImpl { decoded.perf_metrics.m_evaluated = false; decoded.perf_metrics.evaluate_statistics(generate_start_time); - m_inputs_embedder->update_tokenized_history(encoded_result.tokens[0], requests[0]->get_finished_sequences()[0]->get_finish_reason() == GenerationFinishReason::LENGTH); - return decoded; } From 2fb56d40cc3623c54538cfb8e72b3fa9b71708f3 Mon Sep 17 00:00:00 2001 From: Nikita Savelyev Date: Mon, 23 Dec 2024 10:14:33 +0100 Subject: [PATCH 107/113] Add a command for whisper quantization (#1422) Co-authored-by: Alexander Kozlov --- README.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index c2509528c3..be3de5e8ce 100644 --- a/README.md +++ b/README.md @@ -331,10 +331,14 @@ For more examples check out our [Generative AI workflow](https://docs.openvino.a NOTE: Whisper Pipeline requires preprocessing of audio input (to adjust sampling rate and normalize) - ### Converting and compressing image generation model from Hugging Face library + ### Converting and quantizing speech-to-text model from Hugging Face library ```sh #Download and convert to OpenVINO whisper-base model optimum-cli export openvino --trust-remote-code --model openai/whisper-base whisper-base + +#Download, convert and apply int8 static quantization to whisper-base model +optimum-cli export openvino --trust-remote-code --model openai/whisper-base \ +--quant-mode int8 --dataset librispeech --num-samples 32 whisper-base-int8 ``` ### Run generation using Whisper Pipeline API in Python From 3ed69638c56cd4164681f33cf0a24296de65e439 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Mon, 23 Dec 2024 10:16:31 +0100 Subject: [PATCH 108/113] remove redundant `.tolist()` (#1419) ![image](https://github.com/user-attachments/assets/77013e49-d1bd-4f3a-99aa-1d17e9b8f6b5) - To fix remove redundant `.tolist()` since it was already done above. --------- Co-authored-by: Ilya Lavrenov --- tools/llm_bench/task/text_generation.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 485de94996..4822b228ca 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -301,7 +301,7 @@ def token_printer(): - np.array(perf_metrics.raw_metrics.m_new_token_times[:-1]) ).tolist() - tm_list = np.array([first_token_time] + second_tokens_durations) / 1000 + tm_list = (np.array([first_token_time] + second_tokens_durations) / 1000).tolist() inference_durations = (np.array(perf_metrics.raw_metrics.token_infer_durations) / 1000 / 1000).tolist() log.debug('latency of all tokens:') [log.debug('[{}]{:.4f}'.format(idx, tm)) for idx, tm in enumerate(tm_list)] @@ -323,8 +323,8 @@ def token_printer(): metrics_print.print_metrics( num, iter_data, - tm_list.tolist(), - inference_durations.tolist(), + tm_list, + inference_durations, warm_up=(num == 0), max_rss_mem=max_rss_mem_consumption, max_shared_mem=max_shared_mem_consumption, From eac4f376e9fc509a68fc3c1f6a3637d9f19b7526 Mon Sep 17 00:00:00 2001 From: Ilya Lavrenov Date: Mon, 23 Dec 2024 14:11:37 +0400 Subject: [PATCH 109/113] [Image generation] Added i64 support for text encoders inputs (#1424) Can be required for new optimum versions --- .../image_generation/models/clip_text_model.cpp | 16 +++++++++++----- .../models/clip_text_model_with_projection.cpp | 16 +++++++++++----- .../image_generation/models/t5_encoder_model.cpp | 10 +++++++--- .../models/unet_inference_dynamic.hpp | 16 ++++------------ .../models/unet_inference_static_bs1.hpp | 3 +-- 5 files changed, 34 insertions(+), 27 deletions(-) diff --git a/src/cpp/src/image_generation/models/clip_text_model.cpp b/src/cpp/src/image_generation/models/clip_text_model.cpp index efbc840d4f..72fdc63082 100644 --- a/src/cpp/src/image_generation/models/clip_text_model.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model.cpp @@ -118,13 +118,20 @@ ov::Tensor CLIPTextModel::infer(const std::string& pos_prompt, const std::string const size_t text_embedding_batch_size = do_classifier_free_guidance ? 2 : 1; auto perform_tokenization = [&](const std::string& prompt, ov::Tensor input_ids) { - std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); - ov::Tensor input_ids_token = m_clip_tokenizer.encode(prompt).input_ids; - std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + + if (input_ids.get_element_type() == ov::element::i32) { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + } else { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + } }; - ov::Tensor input_ids(ov::element::i32, {text_embedding_batch_size, m_config.max_position_embeddings}); + ov::Tensor input_ids = m_request.get_input_tensor(); + input_ids.set_shape({text_embedding_batch_size, m_config.max_position_embeddings}); + size_t current_batch_idx = 0; if (do_classifier_free_guidance) { @@ -141,7 +148,6 @@ ov::Tensor CLIPTextModel::infer(const std::string& pos_prompt, const std::string {current_batch_idx + 1, m_config.max_position_embeddings})); // text embeddings - m_request.set_tensor("input_ids", input_ids); m_request.infer(); return m_request.get_output_tensor(0); diff --git a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp index 982800a701..1160c30b6a 100644 --- a/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp +++ b/src/cpp/src/image_generation/models/clip_text_model_with_projection.cpp @@ -109,13 +109,20 @@ ov::Tensor CLIPTextModelWithProjection::infer(const std::string& pos_prompt, con const size_t text_embedding_batch_size = do_classifier_free_guidance ? 2 : 1; auto perform_tokenization = [&](const std::string& prompt, ov::Tensor input_ids) { - std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); - ov::Tensor input_ids_token = m_clip_tokenizer.encode(prompt).input_ids; - std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + + if (input_ids.get_element_type() == ov::element::i32) { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + } else { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), input_ids_token.get_size(), input_ids.data()); + } }; - ov::Tensor input_ids(ov::element::i64, {text_embedding_batch_size, m_config.max_position_embeddings}); + ov::Tensor input_ids = m_request.get_input_tensor(); + input_ids.set_shape({text_embedding_batch_size, m_config.max_position_embeddings}); + size_t current_batch_idx = 0; if (do_classifier_free_guidance) { @@ -132,7 +139,6 @@ ov::Tensor CLIPTextModelWithProjection::infer(const std::string& pos_prompt, con {current_batch_idx + 1, m_config.max_position_embeddings})); // text embeddings - m_request.set_tensor("input_ids", input_ids); m_request.infer(); return m_request.get_output_tensor(0); diff --git a/src/cpp/src/image_generation/models/t5_encoder_model.cpp b/src/cpp/src/image_generation/models/t5_encoder_model.cpp index 21df456d46..a83697b2e6 100644 --- a/src/cpp/src/image_generation/models/t5_encoder_model.cpp +++ b/src/cpp/src/image_generation/models/t5_encoder_model.cpp @@ -80,8 +80,13 @@ ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, const std::strin ov::Tensor input_ids_token = m_tokenizer.encode(prompt).input_ids; size_t min_length = std::min(input_ids.get_size(), input_ids_token.get_size()); - std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); - std::copy_n(input_ids_token.data(), min_length, input_ids.data()); + if (input_ids.get_element_type() == ov::element::i32) { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), min_length, input_ids.data()); + } else { + std::fill_n(input_ids.data(), input_ids.get_size(), pad_token_id); + std::copy_n(input_ids_token.data(), min_length, input_ids.data()); + } }; ov::Tensor input_ids = m_request.get_input_tensor(); @@ -114,7 +119,6 @@ ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, const std::strin {current_batch_idx + 1, input_ids.get_shape()[1]})); // text embeddings - m_request.set_tensor("input_ids", input_ids); m_request.infer(); return m_request.get_output_tensor(0); diff --git a/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp b/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp index 6dc285f76d..914fbcf50b 100644 --- a/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp +++ b/src/cpp/src/image_generation/models/unet_inference_dynamic.hpp @@ -12,11 +12,8 @@ namespace genai { class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel::UNetInference { - public: - - virtual void compile(std::shared_ptr model, const std::string& device, const ov::AnyMap& properties) override - { + virtual void compile(std::shared_ptr model, const std::string& device, const ov::AnyMap& properties) override { ov::Core core = utils::singleton_core(); ov::CompiledModel compiled_model = core.compile_model(model, device, properties); @@ -24,20 +21,17 @@ class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel:: m_request = compiled_model.create_infer_request(); } - virtual void set_hidden_states(const std::string& tensor_name, ov::Tensor encoder_hidden_states) override - { + virtual void set_hidden_states(const std::string& tensor_name, ov::Tensor encoder_hidden_states) override { OPENVINO_ASSERT(m_request, "UNet model must be compiled first"); m_request.set_tensor(tensor_name, encoder_hidden_states); } - virtual void set_adapters(AdapterController &adapter_controller, const AdapterConfig& adapters) override - { + virtual void set_adapters(AdapterController &adapter_controller, const AdapterConfig& adapters) override { OPENVINO_ASSERT(m_request, "UNet model must be compiled first"); adapter_controller.apply(m_request, adapters); } - virtual ov::Tensor infer(ov::Tensor sample, ov::Tensor timestep) override - { + virtual ov::Tensor infer(ov::Tensor sample, ov::Tensor timestep) override { OPENVINO_ASSERT(m_request, "UNet model must be compiled first. Cannot infer non-compiled model"); m_request.set_tensor("sample", sample); @@ -49,10 +43,8 @@ class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel:: } private: - ov::InferRequest m_request; }; - } // namespace genai } // namespace ov \ No newline at end of file diff --git a/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp b/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp index 7aa6f6301c..f63a8ea237 100644 --- a/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp +++ b/src/cpp/src/image_generation/models/unet_inference_static_bs1.hpp @@ -42,8 +42,7 @@ class UNet2DConditionModel::UNetInferenceStaticBS1 : public UNet2DConditionModel ov::CompiledModel compiled_model = core.compile_model(model, device, properties); ov::genai::utils::print_compiled_model_properties(compiled_model, "UNet 2D Condition batch-1 model"); - for (int i = 0; i < m_native_batch_size; i++) - { + for (int i = 0; i < m_native_batch_size; i++) { m_requests[i] = compiled_model.create_infer_request(); } } From 1179cb611fa65910180e260cf31b98742113a896 Mon Sep 17 00:00:00 2001 From: Aamir Nazir Date: Mon, 23 Dec 2024 15:21:46 +0400 Subject: [PATCH 110/113] [LLM Bench] Allow Image Generation Models to Run in BF16 (#1368) This change allows setting image generation models to BF16 using config passed while running benchmark. Co-authored-by: Ekaterina Aidova Co-authored-by: guozhong wang --- tools/llm_bench/llm_bench_utils/pt_utils.py | 1 + 1 file changed, 1 insertion(+) diff --git a/tools/llm_bench/llm_bench_utils/pt_utils.py b/tools/llm_bench/llm_bench_utils/pt_utils.py index 4c41efad01..dc2c6d05f5 100644 --- a/tools/llm_bench/llm_bench_utils/pt_utils.py +++ b/tools/llm_bench/llm_bench_utils/pt_utils.py @@ -131,6 +131,7 @@ def create_image_gen_model(model_path, device, **kwargs): model_class = PT_MODEL_CLASSES_MAPPING[model_type] start = time.perf_counter() pipe = model_class.from_pretrained(model_path) + pipe = set_bf16(pipe, device, **kwargs) end = time.perf_counter() from_pretrain_time = end - start else: From 5d68567484594c915d6047cd9a31a95eab40962d Mon Sep 17 00:00:00 2001 From: Aamir Nazir Date: Mon, 23 Dec 2024 15:22:05 +0400 Subject: [PATCH 111/113] [LLM Bench] Defining Framework in Torch Compile Benchmarking (#1354) It looks like the framework needs to be specified as pytorch for the models to be compile with torch compile, otherwise it takes the OV framework route and never hits the torch compile code. Although the following [line](https://github.com/openvinotoolkit/openvino.genai/blob/b26fc8b7a484e0f66accba89ea9f972c6d23fda7/tools/llm_bench/llm_bench_utils/pt_utils.py#L157) tries to use torch compile on the entire image generation pipeline which causes issues since it is expected to compile the models within the pipeline. --------- Co-authored-by: Ekaterina Aidova Co-authored-by: Ilya Lavrenov --- tools/llm_bench/llm_bench_utils/model_utils.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/tools/llm_bench/llm_bench_utils/model_utils.py b/tools/llm_bench/llm_bench_utils/model_utils.py index f3e7d21777..78f72147c7 100644 --- a/tools/llm_bench/llm_bench_utils/model_utils.py +++ b/tools/llm_bench/llm_bench_utils/model_utils.py @@ -137,6 +137,9 @@ def analyze_args(args): model_framework = args.framework model_path = Path(args.model) + if model_args["torch_compile_backend"]: + log.info("Setting Framework to PyTorch Since torch_compile_backend is provided.") + model_framework = 'pt' if not model_path.exists(): raise RuntimeError(f'==Failure FOUND==: Incorrect model path:{model_path}') if model_framework in ('ov', 'pt'): From c09207cd497e250e8b3e7ad442cec3bc4181827e Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Mon, 23 Dec 2024 12:33:47 +0100 Subject: [PATCH 112/113] [test] Ensure that the first token generation is not included into TPOT (#1414) CVS-155098 --- src/cpp/src/perf_metrics.cpp | 2 +- tests/python_tests/conftest.py | 3 ++- tests/python_tests/test_generate_api.py | 10 +++++++++- 3 files changed, 12 insertions(+), 3 deletions(-) diff --git a/src/cpp/src/perf_metrics.cpp b/src/cpp/src/perf_metrics.cpp index 3bd6252c78..3725dc0cfc 100644 --- a/src/cpp/src/perf_metrics.cpp +++ b/src/cpp/src/perf_metrics.cpp @@ -101,7 +101,7 @@ void PerfMetrics::evaluate_statistics(std::optional start_time) { auto ttft = tok_times[0] - start_time_val; raw_metrics.m_times_to_first_token = std::vector(); - raw_metrics.m_times_to_first_token.emplace_back(ttft / batch_sizes[0]); + raw_metrics.m_times_to_first_token.emplace_back(ttft); num_generated_tokens = batch_sizes[0]; // The very first infer request (prefill stage) is slower than subsequent ones since we process a sequence of tokens. diff --git a/tests/python_tests/conftest.py b/tests/python_tests/conftest.py index f98f47ecf3..e159045601 100644 --- a/tests/python_tests/conftest.py +++ b/tests/python_tests/conftest.py @@ -3,7 +3,8 @@ def pytest_make_parametrize_id(config, val, argname): if argname in ['prompt', 'prompts', 'batched_prompts']: - return f'{val}' + # Print only first 1000 characters of long prompts. + return f'{val[:1000]}' elif argname == 'model_descr': return f"{val[0]}" elif argname == 'chat_config': diff --git a/tests/python_tests/test_generate_api.py b/tests/python_tests/test_generate_api.py index d15747be63..9bb9eff49c 100644 --- a/tests/python_tests/test_generate_api.py +++ b/tests/python_tests/test_generate_api.py @@ -798,6 +798,12 @@ def test_perf_metrics(model_descr, generation_config, prompt): assert (mean_ttft, std_ttft) == (perf_metrics.get_ttft().mean, perf_metrics.get_ttft().std) assert mean_ttft > 0 and mean_ttft < 1000.0 + raw_metrics = perf_metrics.raw_metrics + durations = np.array(raw_metrics.m_durations) / 1000 + # Check that prefill is not included in durations for TPOT calculation. + # For the very long prompt prefill is slow and TTFT is much larger than any other token genration duration. + assert np.all(mean_ttft > durations * 2) + mean_tpot, std_tpot = perf_metrics.get_tpot() assert (mean_tpot, std_tpot) == (perf_metrics.get_tpot().mean, perf_metrics.get_tpot().std) assert mean_tpot > 0 and mean_ttft < 1000.0 @@ -822,7 +828,9 @@ def test_perf_metrics(model_descr, generation_config, prompt): assert std_detok_duration == 0 # assert that calculating statistics manually from the raw counters we get the same restults as from PerfMetrics - raw_metrics = perf_metrics.raw_metrics + assert np.allclose(mean_tpot, np.mean(durations)) + assert np.allclose(std_tpot, np.std(durations)) + raw_dur = np.array(raw_metrics.generate_durations) / 1000 assert np.allclose(mean_gen_duration, np.mean(raw_dur)) assert np.allclose(std_gen_duration, np.std(raw_dur)) From 3496d453ee2a2dd1a0340247076ab64787094446 Mon Sep 17 00:00:00 2001 From: Ekaterina Shiryaeva Date: Mon, 23 Dec 2024 12:48:23 +0100 Subject: [PATCH 113/113] Add perf metrics support for WhisperStaticPipeline (#1337) --- src/cpp/src/whisper/whisper.cpp | 37 ++----------- src/cpp/src/whisper/whisper_utils.cpp | 46 ++++++++++++++++ src/cpp/src/whisper/whisper_utils.hpp | 22 ++++++++ src/cpp/src/whisper_pipeline_static.cpp | 70 +++++++++++++++++++++---- 4 files changed, 131 insertions(+), 44 deletions(-) create mode 100644 src/cpp/src/whisper/whisper_utils.cpp create mode 100644 src/cpp/src/whisper/whisper_utils.hpp diff --git a/src/cpp/src/whisper/whisper.cpp b/src/cpp/src/whisper/whisper.cpp index 9d6aa698ce..04993f288c 100644 --- a/src/cpp/src/whisper/whisper.cpp +++ b/src/cpp/src/whisper/whisper.cpp @@ -18,6 +18,7 @@ #include "whisper_config.hpp" #include "whisper_feature_extractor.hpp" #include "whisper_models.hpp" +#include "whisper_utils.hpp" using ov::genai::MicroSeconds; @@ -79,17 +80,6 @@ void set_past_key_value(ov::InferRequest& source, ov::InferRequest& dest) { } } -void infer_with_perf_metrics(ov::InferRequest& request, ov::genai::RawPerfMetrics& raw_metrics) { - const auto infer_start = std::chrono::steady_clock::now(); - request.infer(); - const auto infer_end = std::chrono::steady_clock::now(); - const auto infer_ms = ov::genai::PerfMetrics::get_microsec(infer_end - infer_start); - raw_metrics.m_inference_durations[0] += MicroSeconds(infer_ms); - raw_metrics.m_token_infer_durations.emplace_back(infer_ms); - raw_metrics.m_new_token_times.emplace_back(infer_end); - raw_metrics.m_batch_sizes.emplace_back(1); -} - int64_t decode(ov::Tensor& encoder_hidden_state, ov::InferRequest& decoder, std::vector& input_ids, @@ -102,7 +92,7 @@ int64_t decode(ov::Tensor& encoder_hidden_state, ov::Tensor input_ids_tensor(ov::element::i64, {1, input_ids.size()}, input_ids.data()); decoder.set_tensor("input_ids", input_ids_tensor); - infer_with_perf_metrics(decoder, raw_metrics); + ov::genai::utils::infer_with_perf_metrics(decoder, raw_metrics); auto output_tensor = decoder.get_tensor("logits"); @@ -138,7 +128,7 @@ int64_t decode_with_past(ov::Tensor& encoder_hidden_state, cache_position_tensor.set_shape({1}); cache_position_tensor.data()[0] = cache_position; - infer_with_perf_metrics(decoder_with_past, raw_metrics); + ov::genai::utils::infer_with_perf_metrics(decoder_with_past, raw_metrics); auto output_tensor = decoder_with_past.get_tensor("logits"); @@ -265,25 +255,6 @@ std::pair> full_decode(ov::Tensor& encoder_hidden_sta return {false, output_tokens}; } -template -void filter_by_ranges(std::vector& value, size_t offset, std::vector>& ranges) { - OPENVINO_ASSERT(ranges.empty() || value.size() >= (offset + ranges.back().second)); - std::vector result{value.begin(), value.begin() + offset}; - for (auto [start, end] : ranges) { - result.insert(result.end(), value.begin() + offset + start, value.begin() + offset + end); - } - - value = result; -} - -void filter_non_segment_metrics(ov::genai::RawPerfMetrics& raw_metrics, - size_t offset, - std::vector>& ranges) { - filter_by_ranges(raw_metrics.m_token_infer_durations, offset, ranges); - filter_by_ranges(raw_metrics.m_new_token_times, offset, ranges); - filter_by_ranges(raw_metrics.m_batch_sizes, offset, ranges); -} - } // namespace namespace ov { @@ -362,7 +333,7 @@ WhisperGenerateResult whisper_generate(const ov::genai::WhisperGenerationConfig& feature_extractor.nb_max_frames, time_precision); - filter_non_segment_metrics(raw_metrics, output_tokens.size(), extracted_segments.segment_ranges); + ov::genai::utils::filter_non_segment_metrics(raw_metrics, output_tokens.size(), extracted_segments.segment_ranges); segments.insert(segments.end(), extracted_segments.segments.begin(), extracted_segments.segments.end()); diff --git a/src/cpp/src/whisper/whisper_utils.cpp b/src/cpp/src/whisper/whisper_utils.cpp new file mode 100644 index 0000000000..6e56a1439d --- /dev/null +++ b/src/cpp/src/whisper/whisper_utils.cpp @@ -0,0 +1,46 @@ +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "whisper_utils.hpp" + +namespace { + +template +void filter_by_ranges(std::vector& value, size_t offset, std::vector>& ranges) { + OPENVINO_ASSERT(ranges.empty() || value.size() >= (offset + ranges.back().second)); + std::vector result{value.begin(), value.begin() + offset}; + for (auto [start, end] : ranges) { + result.insert(result.end(), value.begin() + offset + start, value.begin() + offset + end); + } + + value = result; +} + +} // namespace + +namespace ov { +namespace genai { +namespace utils { + +void infer_with_perf_metrics(ov::InferRequest& request, ov::genai::RawPerfMetrics& raw_metrics) { + const auto infer_start = std::chrono::steady_clock::now(); + request.infer(); + const auto infer_end = std::chrono::steady_clock::now(); + const auto infer_ms = ov::genai::PerfMetrics::get_microsec(infer_end - infer_start); + raw_metrics.m_inference_durations[0] += MicroSeconds(infer_ms); + raw_metrics.m_token_infer_durations.emplace_back(infer_ms); + raw_metrics.m_new_token_times.emplace_back(infer_end); + raw_metrics.m_batch_sizes.emplace_back(1); +} + +void filter_non_segment_metrics(ov::genai::RawPerfMetrics& raw_metrics, + size_t offset, + std::vector>& ranges) { + filter_by_ranges(raw_metrics.m_token_infer_durations, offset, ranges); + filter_by_ranges(raw_metrics.m_new_token_times, offset, ranges); + filter_by_ranges(raw_metrics.m_batch_sizes, offset, ranges); +} + +} // namespace utils +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/whisper/whisper_utils.hpp b/src/cpp/src/whisper/whisper_utils.hpp new file mode 100644 index 0000000000..234feed6a8 --- /dev/null +++ b/src/cpp/src/whisper/whisper_utils.hpp @@ -0,0 +1,22 @@ +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include + +#include "openvino/genai/perf_metrics.hpp" + +namespace ov { +namespace genai { +namespace utils { + +void infer_with_perf_metrics(ov::InferRequest& request, ov::genai::RawPerfMetrics& raw_metrics); + +void filter_non_segment_metrics(ov::genai::RawPerfMetrics& raw_metrics, + size_t offset, + std::vector>& ranges); + +} // namespace utils +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/whisper_pipeline_static.cpp b/src/cpp/src/whisper_pipeline_static.cpp index dc26789846..cc61eb0659 100644 --- a/src/cpp/src/whisper_pipeline_static.cpp +++ b/src/cpp/src/whisper_pipeline_static.cpp @@ -14,6 +14,7 @@ #include "whisper/timestamps.hpp" #include "whisper/whisper.hpp" #include "whisper/whisper_config.hpp" +#include "whisper/whisper_utils.hpp" #include "openvino/core/layout.hpp" #include "openvino/core/preprocess/pre_post_process.hpp" @@ -26,6 +27,8 @@ #include "openvino/op/convert.hpp" #include "openvino/op/parameter.hpp" +using ov::genai::MicroSeconds; + namespace { template @@ -44,7 +47,8 @@ void copy_to_tensor(const std::vector& src_vec, ov::Tensor dst_tensor) { ov::Tensor encode(ov::InferRequest& request, std::vector& mel_data, const size_t feature_size, - const size_t nb_max_frames) { + const size_t nb_max_frames, + ov::genai::RawPerfMetrics& raw_metrics) { OPENVINO_ASSERT(mel_data.size() == feature_size * nb_max_frames, "Mel spectrogram required size: ", feature_size, @@ -54,7 +58,12 @@ ov::Tensor encode(ov::InferRequest& request, mel_data.size(), "."); copy_to_tensor(mel_data, request.get_tensor("input_features")); + + const auto infer_start = std::chrono::steady_clock::now(); request.infer(); + const auto infer_ms = ov::genai::PerfMetrics::get_microsec(std::chrono::steady_clock::now() - infer_start); + raw_metrics.m_inference_durations[0] += MicroSeconds(infer_ms); + return request.get_tensor("last_hidden_state"); } @@ -140,13 +149,14 @@ int64_t decode(ov::Tensor& encoder_hidden_state, ov::InferRequest& decoder, const std::vector& init_ids, const ov::genai::WhisperGenerationConfig& config, + ov::genai::RawPerfMetrics& raw_metrics, const bool apply_logit_processors = true, const bool return_timestamps = false) { // NB: Fill decoder inputs encoder_hidden_state.copy_to(decoder.get_tensor("encoder_hidden_states")); set_decoder_input_ids_attention_mask(decoder, init_ids, config.pad_token_id); - decoder.infer(); + ov::genai::utils::infer_with_perf_metrics(decoder, raw_metrics); auto output_tensor = decoder.get_tensor("logits"); @@ -167,6 +177,7 @@ int64_t decode_with_past(ov::InferRequest& decoder_with_past, const int64_t input_id, const int64_t position_id, const ov::genai::WhisperGenerationConfig& config, + ov::genai::RawPerfMetrics& raw_metrics, const bool return_timestamps, const std::vector& generated_tokens) { // FIXME: Avoid this cast to i32. Why it's not i64 precision in model? @@ -175,7 +186,7 @@ int64_t decode_with_past(ov::InferRequest& decoder_with_past, // FIXME: Is "attention_mask" supposed to be f16? decoder_with_past.get_tensor("attention_mask").data()[position_id - 1] = 0u; - decoder_with_past.infer(); + ov::genai::utils::infer_with_perf_metrics(decoder_with_past, raw_metrics); auto output_tensor = decoder_with_past.get_tensor("logits"); ov::genai::do_suppress_tokens(output_tensor, 0, config.suppress_tokens); @@ -217,13 +228,17 @@ void prepare_decoder_with_past(ov::InferRequest& decoder_with_past, ov::InferReq int64_t detect_language(ov::Tensor& encoder_hidden_state, ov::InferRequest decoder, - const ov::genai::WhisperGenerationConfig& config) { + const ov::genai::WhisperGenerationConfig& config, + ov::genai::RawPerfMetrics& raw_metrics) { decoder.set_tensor("encoder_hidden_states", ov::Tensor{encoder_hidden_state}); std::vector init_ids{static_cast(config.decoder_start_token_id)}; set_decoder_input_ids_attention_mask(decoder, init_ids, config.pad_token_id); + const auto infer_start = std::chrono::steady_clock::now(); decoder.infer(); + const auto infer_ms = ov::genai::PerfMetrics::get_microsec(std::chrono::steady_clock::now() - infer_start); + raw_metrics.m_inference_durations[0] += MicroSeconds(infer_ms); auto output_tensor = decoder.get_tensor("logits"); @@ -246,7 +261,8 @@ int64_t detect_language(ov::Tensor& encoder_hidden_state, std::vector prepare_init_ids(ov::Tensor& encoder_hidden_state, ov::InferRequest& decoder, const ov::genai::WhisperGenerationConfig& config, - const bool return_timestamps) { + const bool return_timestamps, + ov::genai::RawPerfMetrics& raw_metrics) { if (!config.is_multilingual) { if (return_timestamps) { return std::vector{static_cast(config.decoder_start_token_id)}; @@ -263,7 +279,7 @@ std::vector prepare_init_ids(ov::Tensor& encoder_hidden_state, language_token_id = static_cast(config.lang_to_id.at(language)); } } else { - language_token_id = detect_language(encoder_hidden_state, decoder, config); + language_token_id = detect_language(encoder_hidden_state, decoder, config, raw_metrics); } int32_t task_token_id = static_cast(config.transcribe_token_id); @@ -289,8 +305,9 @@ std::pair> full_decode(ov::Tensor& encoder_hidden_sta std::vector init_ids, const size_t max_new_tokens, const bool return_timestamps, + ov::genai::RawPerfMetrics& raw_metrics, const std::shared_ptr streamer) { - int64_t output_token = decode(encoder_hidden_state, models.decoder, init_ids, config, true, return_timestamps); + int64_t output_token = decode(encoder_hidden_state, models.decoder, init_ids, config, raw_metrics, true, return_timestamps); std::vector output_tokens{output_token}; if (!return_timestamps && streamer && streamer->put(output_token)) { @@ -308,6 +325,7 @@ std::pair> full_decode(ov::Tensor& encoder_hidden_sta output_tokens.back(), i + init_ids.size(), config, + raw_metrics, return_timestamps, output_tokens); update_past_key_value(models.decoder_with_past, models.decoder_with_past, i + init_ids.size()); @@ -576,6 +594,7 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( const RawSpeechInput& raw_speech_input, OptionalWhisperGenerationConfig generation_config, ChunkStreamerVariant streamer) { + auto start_time = std::chrono::steady_clock::now(); WhisperGenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; config.validate(); @@ -591,14 +610,25 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( streamer_ptr = std::make_shared(m_tokenizer, *callback); } + size_t max_new_tokens = config.get_max_new_tokens(); + + WhisperPerfMetrics perf_metrics; + perf_metrics.num_input_tokens = 0; + RawPerfMetrics& raw_metrics = perf_metrics.raw_metrics; + raw_metrics.m_new_token_times.reserve(max_new_tokens); + raw_metrics.m_batch_sizes.reserve(max_new_tokens); + raw_metrics.m_token_infer_durations.reserve(max_new_tokens); + raw_metrics.m_inference_durations = {{MicroSeconds(0.0f)}}; + + const auto extract_start = std::chrono::steady_clock::now(); auto input_features = m_feature_extractor.extract(raw_speech_input); + const auto extract_ms = ov::genai::PerfMetrics::get_microsec(std::chrono::steady_clock::now() - extract_start); + perf_metrics.whisper_raw_metrics.features_extraction_durations.emplace_back(extract_ms); const bool is_shortform = input_features.n_frames <= m_feature_extractor.nb_max_frames; // long-form audio processing requires timestamps to be enabled const bool return_timestamps = config.return_timestamps || !is_shortform; - size_t max_new_tokens = config.get_max_new_tokens(); - std::vector init_ids; std::vector output_tokens; std::vector segments; @@ -619,11 +649,12 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( ov::Tensor hidden_state_tensor = encode(m_models.encoder, input_features_chunk, m_feature_extractor.feature_size, - m_feature_extractor.nb_max_frames); + m_feature_extractor.nb_max_frames, + raw_metrics); // prepare init_ids just once for whole input if (init_ids.empty()) { - init_ids = prepare_init_ids(hidden_state_tensor, m_models.decoder, config, return_timestamps); + init_ids = prepare_init_ids(hidden_state_tensor, m_models.decoder, config, return_timestamps, raw_metrics); } auto [cancelled, chunk_output_tokens] = full_decode(hidden_state_tensor, @@ -632,6 +663,7 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( init_ids, max_new_tokens - output_tokens.size(), return_timestamps, + raw_metrics, streamer_ptr); if (return_timestamps) { @@ -640,6 +672,8 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( m_feature_extractor.nb_max_frames, time_precision); + ov::genai::utils::filter_non_segment_metrics(raw_metrics, output_tokens.size(), extracted_segments.segment_ranges); + segments.insert(segments.end(), extracted_segments.segments.begin(), extracted_segments.segments.end()); output_tokens.insert(output_tokens.end(), @@ -669,7 +703,11 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( streamer_ptr->end(); } + auto decode_start_time = std::chrono::steady_clock::now(); WhisperDecodedResults result{std::vector{m_tokenizer.decode(output_tokens)}, std::vector{1.f}}; + result.perf_metrics = perf_metrics; + result.perf_metrics.raw_metrics.detokenization_durations.emplace_back( + PerfMetrics::get_microsec(std::chrono::steady_clock::now() - decode_start_time)); // if return_timestamps wasn't enabled by user if (!config.return_timestamps) { @@ -681,13 +719,23 @@ WhisperDecodedResults WhisperPipeline::StaticWhisperPipeline::generate( chunks.reserve(segments.size()); for (auto& segment : segments) { + decode_start_time = std::chrono::steady_clock::now(); chunks.push_back( WhisperDecodedResultChunk{segment.m_start, segment.m_end, m_tokenizer.decode(segment.m_tokens)}); + result.perf_metrics.raw_metrics.detokenization_durations.emplace_back( + PerfMetrics::get_microsec(std::chrono::steady_clock::now() - decode_start_time)); } result.chunks = chunks; } + auto& metrics = result.perf_metrics; + metrics.load_time = this->m_load_time_ms; + auto stop_time = std::chrono::steady_clock::now(); + metrics.raw_metrics.generate_durations.emplace_back(PerfMetrics::get_microsec(stop_time - start_time)); + metrics.raw_metrics.tokenization_durations.emplace_back(MicroSeconds(0.0f)); + metrics.evaluate_statistics(start_time); + return result; }
Supported