From ffd002df2ba8825eea5b4af60faf95c40c133ee4 Mon Sep 17 00:00:00 2001 From: The Open Journals editorial robot <89919391+editorialbot@users.noreply.github.com> Date: Fri, 1 Nov 2024 09:40:22 +0000 Subject: [PATCH] Creating 10.21105.joss.06586.crossref.xml --- joss.06586/10.21105.joss.06586.crossref.xml | 598 ++++++++++++++++++++ 1 file changed, 598 insertions(+) create mode 100644 joss.06586/10.21105.joss.06586.crossref.xml diff --git a/joss.06586/10.21105.joss.06586.crossref.xml b/joss.06586/10.21105.joss.06586.crossref.xml new file mode 100644 index 0000000000..a923dc1562 --- /dev/null +++ b/joss.06586/10.21105.joss.06586.crossref.xml @@ -0,0 +1,598 @@ + + + + 20241101093946-f49d75048d2e1e618b5bb262f9a0238014f337fc + 20241101093946 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 11 + 2024 + + + 9 + + 103 + + + + PulPy: A Python Toolkit for MRI RF and Gradient Pulse +Design + + + + Jonathan B. + Martin + + Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States of America + + https://orcid.org/0000-0002-9384-8056 + + + Heng + Sun + + Department of Biomedical Engineering, Yale University, New Haven, United States of America + + + + Madison + Albert + + Department of Biomedical Engineering, Case Western Reserve University, Cleveland, United States of America + + + + Kevin M. + Johnson + + Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, United States of America + + + + William A. + Grissom + + Department of Biomedical Engineering, Case Western Reserve University, Cleveland, United States of America + + https://orcid.org/0000-0002-3289-1827 + + + + 11 + 01 + 2024 + + + 6586 + + + 10.21105/joss.06586 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.13963346 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6586 + + + + 10.21105/joss.06586 + https://joss.theoj.org/papers/10.21105/joss.06586 + + + https://joss.theoj.org/papers/10.21105/joss.06586.pdf + + + + + + Multiband excitation pulses for +hyperpolarized 13C dynamic chemical shift imaging + Larson + Journal of Magnetic Resonance + 1 + 194 + 10.1016/j.jmr.2008.06.010 + 2008 + Larson, P. E., Kerr, A. B., Chen, A. +P., Lustig, M., Zierhut, M. L., Hu, S., Cunningham, C. H., Pauly, J. M., +Kurhanewicz, J., & Vigneron, D. B. (2008). Multiband excitation +pulses for hyperpolarized 13C dynamic chemical shift imaging. Journal of +Magnetic Resonance, 194(1), 121–127. +https://doi.org/10.1016/j.jmr.2008.06.010 + + + Multiband RF pulse design for realistic +gradient performance + Abo Seada + Magnetic resonance in +medicine + 1 + 81 + 10.1002/mrm.27411 + 2019 + Abo Seada, S., Price, A. N., +Schneider, T., Hajnal, J. V., & Malik, S. J. (2019). Multiband RF +pulse design for realistic gradient performance. Magnetic Resonance in +Medicine, 81(1), 362–376. +https://doi.org/10.1002/mrm.27411 + + + FastPtx: a versatile toolbox for rapid, joint +design of pTx RF and gradient pulses using Pytorch’s +autodifferentiation + Bosch + Magnetic Resonance Materials in Physics, +Biology and Medicine + 1 + 37 + 10.1007/s10334-023-01134-7 + 2023 + Bosch, D., & Scheffler, K. +(2023). FastPtx: a versatile toolbox for rapid, joint design of pTx RF +and gradient pulses using Pytorch’s autodifferentiation. Magnetic +Resonance Materials in Physics, Biology and Medicine, 37(1), 127–138. +https://doi.org/10.1007/s10334-023-01134-7 + + + Parameter relations for the Shinnar-Le Roux +selective excitation pulse design algorithm (NMR +imaging) + Pauly + IEEE Transactions on Medical +Imaging + 1 + 10 + 10.1109/42.75611 + 1991 + Pauly, J., Le Roux, P., Nishimura, +D., & Macovski, A. (1991). Parameter relations for the Shinnar-Le +Roux selective excitation pulse design algorithm (NMR imaging). IEEE +Transactions on Medical Imaging, 10(1), 53–65. +https://doi.org/10.1109/42.75611 + + + Michigan Image Reconstruction +Toolbox + Fessler + Fessler, J. A. (n.d.). Michigan Image +Reconstruction Toolbox. +http://web.eecs.umich.edu/~fessler/irt/irt + + + Adjustment and basic imaging sequences for +the open-source MRI4ALL console using the PyPulseq and MaRCoS +libraries. + Artiges + Proc. Intl. Soc. Magn. Reson. +Med. + 2024 + Artiges, A., Martin, J., Saimbhi, A. +S., Stockmann, J., Sun, H., Wiggins, R., Zi, R., Geethanath, S., & +Block, K. (2024). Adjustment and basic imaging sequences for the +open-source MRI4ALL console using the PyPulseq and MaRCoS libraries. +Proc. Intl. Soc. Magn. Reson. Med. + + + Open source imaging initiative (OSI²)-update +and roadmap + Arndt + Proc. Intl. Soc. Magn. Reson. +Med + 10.1002/mrm.26235 + 2017 + Arndt, F., Aussenhofer, S., Behrens, +E., Blücher, C., Blümler, P., Brand, J., Ettinger, K. M., Fillmer, A., +Grissom, W., Gruber, B., Guerin, B., Haas, S., Han, H., Hansen, M., +Hasselwander, C. J., Hodge, R., Hoffmann, W., Ittermann, B., Jakubowski, +M., … Zaitsev, M. (2017). Open source imaging initiative (OSI²)-update +and roadmap. Proc. Intl. Soc. Magn. Reson. Med. +https://doi.org/10.1002/mrm.26235 + + + Vespa: Integrated applications for RF pulse +design, spectral simulation and MRS data analysis + Soher + Magnetic Resonance in +Medicine + 90 + 10.1002/MRM.29686 + 1522-2594 + 2023 + Soher, B. J., Semanchuk, P., Todd, +D., Ji, X., Deelchand, D., Joers, J., Oz, G., & Young, K. (2023). +Vespa: Integrated applications for RF pulse design, spectral simulation +and MRS data analysis. Magnetic Resonance in Medicine, 90, 823–838. +https://doi.org/10.1002/MRM.29686 + + + AniRes2D: Anisotropic residual-enhanced +diffusion for 2D MR super-resolution + Wu + 10.1117/12.3008456 + 2023 + Wu, Z., Remedios, S. W., Dewey, B. +E., Carass, A., & Prince, J. L. (2023). AniRes2D: Anisotropic +residual-enhanced diffusion for 2D MR super-resolution. +https://doi.org/10.1117/12.3008456 + + + Deep reinforcement learning-designed +radiofrequency waveform in MRI + Shin + Nature Machine Intelligence 2021 +3:11 + 3 + 10.1038/s42256-021-00411-1 + 2522-5839 + 2021 + Shin, D., Kim, Y., Oh, C., An, H., +Park, J., Kim, J., & Lee, J. (2021). Deep reinforcement +learning-designed radiofrequency waveform in MRI. Nature Machine +Intelligence 2021 3:11, 3, 985–994. +https://doi.org/10.1038/s42256-021-00411-1 + + + Exploring the limits of RF shimming for +high-field MRI of the human head + Mao + Magnetic resonance in medicine : official +journal of the Society of Magnetic Resonance in Medicine / Society of +Magnetic Resonance in Medicine + 56 + 10.1002/MRM.21013 + 2006 + Mao, W., Smith, M. B., & Collins, +C. M. (2006). Exploring the limits of RF shimming for high-field MRI of +the human head. Magnetic Resonance in Medicine : Official Journal of the +Society of Magnetic Resonance in Medicine / Society of Magnetic +Resonance in Medicine, 56, 918. +https://doi.org/10.1002/MRM.21013 + + + A k-space analysis of small-tip-angle +excitation + Pauly + Journal of Magnetic Resonance + 81 + 10.1016/0022-2364(89)90265-5 + 1989 + Pauly, J., Nishimura, D., & +Macovski, A. (1989). A k-space analysis of small-tip-angle excitation. +Journal of Magnetic Resonance, 81, 43–56. +https://doi.org/10.1016/0022-2364(89)90265-5 + + + NMR imaging in biomedicine + Mansfield + 10.1007/BF02797382 + 1982 + Mansfield, P., & Morris, P. +(1982). NMR imaging in biomedicine. Elsevier Academic Press. +https://doi.org/10.1007/BF02797382 + + + The Return of the Frequency Sweep: Designing +Adiabatic Pulses for Contemporary NMR + Garwood + Journal of Magnetic Resonance + 2 + 153 + 10.1006/JMRE.2001.2340 + 1090-7807 + 2001 + Garwood, M. (2001). The Return of the +Frequency Sweep: Designing Adiabatic Pulses for Contemporary NMR. +Journal of Magnetic Resonance, 153(2), 155–177. +https://doi.org/10.1006/JMRE.2001.2340 + + + Power independent of number of slices (PINS) +radiofrequency pulses for low-power simultaneous multislice +excitation + Norris + Magnetic Resonance in +Medicine + 5 + 66 + 10.1002/MRM.23152 + 1522-2594 + 2011 + Norris, D. G., Koopmans, P. J., +Boyacioǧlu, R., & Barth, M. (2011). Power independent of number of +slices (PINS) radiofrequency pulses for low-power simultaneous +multislice excitation. Magnetic Resonance in Medicine, 66(5), 1234–1240. +https://doi.org/10.1002/MRM.23152 + + + Selective complex pulse design by optimal +control theory + Connolly + Proc. Soc. Magn. Reson. med. + 1986 + Connolly, S., Nishimura, D., & +Macovski, A. (1986). Selective complex pulse design by optimal control +theory. Proc. Soc. Magn. Reson. Med., 1456–1457. + + + A Fast Method for Designing Time-Optimal +Gradient Waveforms for Arbitrary k-Space Trajectories + Lustig + IEEE transactions on medical +imaging + 6 + 27 + 10.1109/TMI.2008.922699 + 2008 + Lustig, M., Kim, S. J., & Pauly, +J. M. (2008). A Fast Method for Designing Time-Optimal Gradient +Waveforms for Arbitrary k-Space Trajectories. IEEE Transactions on +Medical Imaging, 27(6), 866. +https://doi.org/10.1109/TMI.2008.922699 + + + Simple analytic variable density spiral +design + Kim + Magnetic resonance in +medicine + 1 + 50 + 10.1002/MRM.10493 + 0740-3194 + 2003 + Kim, D. H., Adalsteinsson, E., & +Spielman, D. M. (2003). Simple analytic variable density spiral design. +Magnetic Resonance in Medicine, 50(1), 214–219. +https://doi.org/10.1002/MRM.10493 + + + Jointly Learning Non-Cartesian k-Space +Trajectories and Reconstruction Networks for 2D and 3D MR Imaging +through Projection + Radhakrishna + Bioengineering + 2 + 10 + 10.3390/BIOENGINEERING10020158 + 2023 + Radhakrishna, C. G., & Ciuciu, P. +(2023). Jointly Learning Non-Cartesian k-Space Trajectories and +Reconstruction Networks for 2D and 3D MR Imaging through Projection. +Bioengineering, 10(2). +https://doi.org/10.3390/BIOENGINEERING10020158 + + + B-Spline Parameterized Joint Optimization of +Reconstruction and K-Space Trajectories (BJORK) for Accelerated 2D +MRI + Wang + IEEE transactions on medical +imaging + 9 + 41 + 10.1109/TMI.2022.3161875 + 2022 + Wang, G., Luo, T., Nielsen, J. F., +Noll, D. C., & Fessler, J. A. (2022). B-Spline Parameterized Joint +Optimization of Reconstruction and K-Space Trajectories (BJORK) for +Accelerated 2D MRI. IEEE Transactions on Medical Imaging, 41(9), 2318. +https://doi.org/10.1109/TMI.2022.3161875 + + + Advanced Normalization Tools +(ANTS) + Avants + 2014 + Avants, B. B., Tustison, N., & +Johnson, H. (2014). Advanced Normalization Tools +(ANTS). + + + SigPy: A Python Package for High Performance +Iterative Recon- struction + Ong + Proc. Intl. Soc. Mag. Reson. +med. + 2019 + Ong, F., & Lustig, M. (2019). +SigPy: A Python Package for High Performance Iterative Recon- struction. +Proc. Intl. Soc. Mag. Reson. Med., 4819. + + + Berkeley Advanced Reconstruction +Toolbox + Uecker + Proc. Intl. Soc. Mag. Reson. +med. + 2015 + Uecker, M., Ong, F., Tamir, J. I., +Bahri, D., Virtue, P., Cheng, J. Y., Zhang, T., & Lustig, M. (2015). +Berkeley Advanced Reconstruction Toolbox. Proc. Intl. Soc. Mag. Reson. +Med., 2486. + + + Quantitative MRI made easy with +qMRLab + Duval + Proc. Intl. Soc. Mag. Reson. +med. + 10.13140/RG.2.2.25014.34881 + 2018 + Duval, T., Leppert, I. R., Cabana, +J.-F., Boudreau, M., Gagnon, I., Berestovoy, G., Cohen-Adad, J., & +Stikov, N. (2018). Quantitative MRI made easy with qMRLab. Proc. Intl. +Soc. Mag. Reson. Med., 2288. +https://doi.org/10.13140/RG.2.2.25014.34881 + + + PyPulseq: A Python Package for MRI Pulse +Sequence Design + Sravan Ravi + Journal of Open Source +Software + 42 + 4 + 10.21105/JOSS.01725 + 2475-9066 + 2019 + Sravan Ravi, K., Geethanath, S., +& Thomas Vaughan Jr, J. (2019). PyPulseq: A Python Package for MRI +Pulse Sequence Design. Journal of Open Source Software, 4(42), 1725. +https://doi.org/10.21105/JOSS.01725 + + + Spatial domain method for the design of RF +pulses in multicoil parallel excitation + Grissom + Magnetic Resonance in +Medicine + 3 + 56 + 10.1002/MRM.20978 + 1522-2594 + 2006 + Grissom, W., Yip, C. Y., Zhang, Z., +Stenger, V. A., Fessler, J. A., & Noll, D. C. (2006). Spatial domain +method for the design of RF pulses in multicoil parallel excitation. +Magnetic Resonance in Medicine, 56(3), 620–629. +https://doi.org/10.1002/MRM.20978 + + + MARIE a MATLAB-based open source software for +the fast electromagnetic analysis of MRI systems + Villena + Proc. Intl. Soc. Mag. Reson. +med. + 2014 + Villena, J. F., Polimeridis, A. G., +Serrales, J. E. C., Wald, L. L., Adalsteinsson, E., White, J., & +Daniel, L. (2014). MARIE a MATLAB-based open source software for the +fast electromagnetic analysis of MRI systems. Proc. Intl. Soc. Mag. +Reson. Med., 0709. + + + SigPy.RF: Comprehensive Open-Source RF Pulse +Design Tools for Reproducible Research + Martin + Proc. Intl. Soc. Mag. Reson. +med. + 2020 + Martin, J., Ong, F., Ma, J., Tamir, +J., Lustig, M., & Grissom, W. (2020). SigPy.RF: Comprehensive +Open-Source RF Pulse Design Tools for Reproducible Research. Proc. Intl. +Soc. Mag. Reson. Med., 1045. + + + Pulseq: A rapid and hardware-independent +pulse sequence prototyping framework + Layton + Magnetic resonance in +medicine + 4 + 77 + 10.1002/MRM.26235 + 1522-2594 + 2017 + Layton, K. J., Kroboth, S., Jia, F., +Littin, S., Yu, H., Leupold, J., Nielsen, J. F., Stöcker, T., & +Zaitsev, M. (2017). Pulseq: A rapid and hardware-independent pulse +sequence prototyping framework. Magnetic Resonance in Medicine, 77(4), +1544–1552. https://doi.org/10.1002/MRM.26235 + + + High-performance computing MRI +simulations + Stöcker + Magnetic resonance in +medicine + 1 + 64 + 10.1002/MRM.22406 + 1522-2594 + 2010 + Stöcker, T., Vahedipour, K., +Pflugfelder, D., & Shah, N. J. (2010). High-performance computing +MRI simulations. Magnetic Resonance in Medicine, 64(1), 186–193. +https://doi.org/10.1002/MRM.22406 + + + OCRA : a low-cost, open-source FPGA-based MRI +console capable of real-time control + Anand + 2018 + Anand, S. M. (2018). OCRA : a +low-cost, open-source FPGA-based MRI console capable of real-time +control. +https://dspace.mit.edu/handle/1721.1/121619 + + + CoilGen: Open-source MR coil layout +generator + Amrein + Magnetic Resonance in +Medicine + 3 + 88 + 10.1002/MRM.29294 + 1522-2594 + 2022 + Amrein, P., Jia, F., Zaitsev, M., +& Littin, S. (2022). CoilGen: Open-source MR coil layout generator. +Magnetic Resonance in Medicine, 88(3), 1465–1479. +https://doi.org/10.1002/MRM.29294 + + + Selective excitation localized by the +Bloch–Siegert shift and a B1+ gradient + Martin + Magnetic Resonance in +Medicine + 10.1002/MRM.29271 + 1522-2594 + 2022 + Martin, J., Abitha Srinivas, S., +Vaughn, C. E., Sun, H., Griswold, M. A., Grissom, W. A., & Jonathan +Martin, C. B. (2022). Selective excitation localized by the +Bloch–Siegert shift and a B1+ gradient. Magnetic Resonance in Medicine. +https://doi.org/10.1002/MRM.29271 + + + + + +