diff --git a/joss.06970/paper.jats/10.21105.joss.06970.jats b/joss.06970/paper.jats/10.21105.joss.06970.jats new file mode 100644 index 0000000000..b12e480f8d --- /dev/null +++ b/joss.06970/paper.jats/10.21105.joss.06970.jats @@ -0,0 +1,1384 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6970 +10.21105/joss.06970 + +MoSDeF-dihedral-fit: A lightweight software for fitting +dihedrals within MoSDeF + + + +https://orcid.org/0000-0003-0638-7333 + +Crawford +Brad + + + + + +https://orcid.org/0000-0002-1255-4161 + +Quach +Co D. + + + + + +https://orcid.org/0000-0002-4607-4377 + +Craven +Nicholas C. + + + + + +https://orcid.org/0000-0003-0557-0427 + +Iacovella +Christopher R. + + + + + + +https://orcid.org/0000-0002-8552-9135 + +McCabe +Clare + + + + + + +https://orcid.org/0000-0002-9766-2216 + +Cummings +Peter T. + + + + + + +https://orcid.org/0000-0002-4421-8787 + +Potoff +Jeffrey J. + + + + + +Atomfold, PA, United States of America + + + + +Department of Chemical Engineering and Materials Science, +Wayne State University, Detroit, MI 48202-4050, United States of +America + + + + +Department of Chemical and Biomolecular Engineering, +Vanderbilt University, Nashville, TN 37235-1604, United States of +America + + + + +Multiscale Modeling and Simulation (MuMS) Center, +Vanderbilt University, Nashville, TN 37212, United States of +America + + + + +Interdisciplinary Material Science Program, Vanderbilt +University, Nashville, TN 37235-0106, United States of +America + + + + +School of Engineering and Physical Sciences, Heriot-Watt +University, Edinburgh EH14 4AS, United Kingdom + + + + +6 +12 +2024 + +9 +104 +6970 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2024 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +Molecular simulations +Molecular mechanics +Molecular dynamics +Monte Carlo +Quantum mechanics +dihedral fitting +torsion fitting +force field +MoSDeF +GOMC +MoSDeF-GOMC + + + + + + Summary +

Molecular Mechanics (MM) simulations (e.g., molecular dynamics and + Monte Carlo) provide a third method of scientific discovery, adding to + the traditional theoretical and experimental scientific methods + (Mielke + et al., 2019; + Siegfried, + 2014). Experimental methods measure the data under set + conditions (e.g., temperature and pressure), whereas the traditional + theoretical methods are based on analytical equations, and sometimes + their constants are fitted to experimental data. The MM simulations + are deterministic and stochastic, and their models, commonly known as + “force fields”, can be optimized to match experimental data, similar + to analytical theory-based methods + (Allen + & Tildesley, 2017; + Errington + & Panagiotopoulos, 1999; + Frenkel + & Smit, 2002; + Hemmen + & Gross, 2015; + Jorgensen + et al., 1996; + Martin + & Siepmann, 1998; + Potoff + & Bernard-Brunel, 2009; + Scott + J. Weiner et al., 1984; + S. + J. Weiner et al., 1986). In larger, more complex systems, the + stochastic simulation’s molecules can jump large energy barriers that + deterministic simulations may not be able to overcome in a reasonable + timeframe, even with modern computing capabilities + (Allen + & Tildesley, 2017; + Frenkel + & Smit, 2002). However, deterministic and stochastic + systems that provide adequate sampling for calculating a given + property can provide critical insights into the system’s phase space, + which are not obtainable via traditional theoretical and experimental + methods. Additionally, molecular simulations provide critical insights + from visualizations and by obtaining chemical or material properties + that do not currently exist, are not easily attainable (e.g., too + expensive or dangerous) by traditional theoretical and experimental + methods + (Hirst + et al., 2014; + Hollingsworth + & Dror, 2018), or require hard-to-achieve conditions, such + as very high pressures and temperatures + (Koneru + et al., 2022; + Kumar + et al., 2022; + Louie + et al., 2021; + Swai, + 2020; + Yu + & Pahl, 2023). However, the force field parameters are + ideally determined from Quantum Mechanics (QM) simulations or other + methods, including the vibrational spectrum and machine learning + methods + (Friederich + et al., 2018; + Kania + et al., 2021; + Mayne + et al., 2013; + Schmid + et al., 2011; + Kenno + Vanommeslaeghe et al., 2014; + Vermeyen + et al., 2023). The MM proper dihedrals (i.e., dihedrals) are + challenging to obtain if they do not currently exist for the chosen + force field, inaccurately scale-up in larger molecules, or misbehave + with other moiety combinations, provided some were separately derived + using small molecules + (Kania + et al., 2021; + Mayne + et al., 2013). While the same QM simulations can fit the + dihedrals in most force field types, these dihedrals are not easily + transferable between force fields due to the different parameters and + formulas, including the combining rules and 1-4 scaling factors. + (Chen + et al., 2015; + Huang + & Roux, 2013; + K. + Vanommeslaeghe et al., 2010; + Kenno + Vanommeslaeghe et al., 2014).

+

The MoSDeF-Dihedral-Fit + (Crawford, + Quach, et al., 2023) library allows users to quickly calculate + the MM dihedrals directly from the QM simulations for several force + fields (OPLS, TraPPE, AMBER, Mie, and Exp6) + (Errington + & Panagiotopoulos, 1999; + Hemmen + & Gross, 2015; + Jorgensen + et al., 1996; + Martin + & Siepmann, 1998; + Potoff + & Bernard-Brunel, 2009; + Scott + J. Weiner et al., 1984; + S. + J. Weiner et al., 1986). The user simply has to generate or use + an existing Molecular Simulation Design Framework (MoSDeF) force field + .xml file + (Cummings + et al., 2021; + GMSO, + 2019; + Summers + et al., 2020; + Timalsina, + 2022), provide Gaussian 16 .log or + Gaussian-style QM simulation files that cover the dihedral rotation + (typically between 0-360 degrees), and provide the molecular structure + information in a .mol2 format + (Frisch + et al., 2016). The MoSDeF-Dihedral-Fit + software uses the QM and MM data to produce the dihedral for the + specific force field, fitting the constants for the OPLS dihedral form + (equation 1)

+

+ + UOPLS=k02 + + + +k12*(1+cos(θ))+k22*(1cos(2*θ)) + + + +k32*(1+cos(3*θ))+k42*(1cos(4*θ))

+

and then analytically converting them to the Ryckaert-Bellemans + torsion (equation 2)

+

+ + URyckaert-Bellemans=C0 + + + +C1*cos(ψ)+C2*cos(ψ)2 + + + +C3*cos(ψ)3+C4*cos(ψ)4 + + + where: ψ=θ180o

+

and the periodic dihedral forms (equation + 3).

+

+ + UPeriodic=K0*(1+cos(n0*θd0)) + + + +K1*(1+cos(n1*θd1))+K2*(1+cos(n2*θd2)) + + + +K3*(1+cos(n3*θd3))+K4*(1+cos(n4*θ)d4) + + + where: n0=0;n1=1;n2=2;n3=3;n4=4 + + + d0=90o;d1=180o;d2=0o;d3=180o;d4=0o

+

This analytical conversion from the OPLS dihedral form requires + setting the specified parameters in the Ryckaert-Bellemans torsion and + periodic dihedral forms (see equations + 2 and + 3). The software + outputs the calculated MM dihedral points, enabling users to fit + unsupported dihedral forms, provided the force fields are supported by + the MoSDeF, GPU Optimized Monte Carlo (GOMC), MoSDeF-GOMC + (Crawford + et al., 2022; + Crawford, + Timalsina, et al., 2023; + Crawford, + Quach, et al., 2023; + Nejahi + et al., 2019, + 2021), + and vmd-python + (Betz, + 2016) software (a derivative of the VMD software + (Humphrey + et al., 1996; + Stone + et al., 2001)).

+
+ + Statement of need +

While many of these MM force field parameters can be transferred + between force fields, such as bonds, angles, and improper dihedrals + (often referred to as “impropers”), the proper dihedrals (dihedrals) + can not be easily transferred due to the different combining rules + (arithmetic and geometric) and 1-4 scaling factors (i.e., between the + 1st and 4th bonded atoms) that were used in the development of the + original parameters + (Berthelot, + 1898; + Good + & Hope, 1970; + Lorentz, + 1881). The accuracy of these dihedral parameters is critical in + obtaining the correct molecular conformations and configurations, + which are required for understanding and analyzing the system’s + microstructure and physical properties (e.g., free energies, + viscosities, adsorption loading, diffusion constants, and many + more).

+

Some integrated dihedral fitting software currently exists for + AMBER + (Horton + et al., 2022) or CHARMM-style force fields + (Mayne + et al., 2013), and other software will fit the dihedral + constants to the final MM and QM energies, which need to be calculated + by other means + (Guvench + & MacKerell, 1998). However, there is a need for a simple, + generalized software package that supports multiple potential + functions, imports QM and MM files, automatically reads and organizes + the QM data, calculates the MM energies, auto-corrects the dihedral + fit to account for multiple instances of the dihedral, and + automatically removes the unusable cosine power series combinations + due to this symmetry. The MoSDeF-dihedral-fit + software accomplishes all this and automatically accounts for any of + the common combining rules and the 1-4 scaling factors specified via + the MoSDeF .xml (i.e., force field) files + (Cummings + et al., 2021; + GMSO, + 2019; + Summers + et al., 2020; + Timalsina, + 2022). By allowing the user to set any other dihedral in the + molecule to zero, this software avoids forcing one dihedral fit to + correct the inaccurate forces of another dihedral, resulting in a + problematic or bad cosine series fit; thus, providing a more flexible + and accurate fit by combining multiple dihedral conformational + energies in a single dihedral, a strategy used in the original and + modern OPLS force fields + (Jorgensen + et al., 1996; + Lu + et al., 2021). For example, a carboxylic acid with an alkyl + tail has two dihedrals in the same rotation cycle; the C-C-C-O: (O: = + oxygen without hydrogen) dihedral is set to zero while the C-C-O-H + dihedral is fit + (Jorgensen + et al., 1996; + Kamath + et al., 2004; + Lu + et al., 2021). The MoSDeF-dihedral-fit + (Crawford, + Quach, et al., 2023) API fills the missing gap by providing a + generalized and easy solution to fitting dihedrals in their commonly + used forms and outputting the MM dihedral data points so users can fit + other custom dihedral forms.

+
+ + Acknowledgements +

This research was partially supported by the National Science + Foundation (grants OAC-1835713, OAC-1835874, and CBET 2052438). + Atomfold LLC also donated research and development time and + computational resources for this research and software. Wayne State + University Grid provided some of the computational resources used in + this work.

+
+ + + + + + + + MayneC. G. Mayne + SaamJ + SchultenK. + TajkhorshidE. + GumbartJ. C. + + Rapid parameterization of small molecules using the force field toolkit + J. Comp. Chem. + 2013 + 34 + https://doi.org/10.1002/jcc.23422 + 10.1002/jcc.23422 + 2757 + 2770 + + + + + + HortonJ. T. + BoothroydS. + WagnerJ. + MitchellJ. A. + GokeyT. + DotsonD. L. + KumarP. + RamaswamyB. K. + M.Mackey + ChoderaJ. D. + AnwarJ. + MobleyD. L. + ColeD. J. + + Open Force Field BespokeFit: Automating Bespoke Torsion Parametrization at Scale + J. Chem. Inf. Mod. + 2022 + 62 + https://pubs.acs.org/doi/10.1021/acs.jcim.2c01153 + 10.1021/acs.jcim.2c01153 + 5622 + 5633 + + + + + + GuvenchO. + MacKerellA. D. + + Automated conformational energy fitting for force-field development + J. Mol. Model. + 1998 + 14 + https://doi.org/10.1007/s00894-008-0305-0 + 10.1007/s00894-008-0305-0 + 667 + 679 + + + + + + MartinMarcus G + SiepmannJ Ilja + + Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes + J. Phys. Chem. B + 1998 + 102 + 14 + https://pubs.acs.org/sharingguidelines + 10.1021/jp972543+ + 2569 + 2577 + + + + + + WeinerScott J. + KollmanPeter A. + CaseDavid A. + SinghU. Chandra + GhioCaterina + AlagonaGuliano + ProfetaSalvatore + WeinerPaul + + A new force field for molecular mechanical simulation of nucleic acids and proteins + Journal of the American Chemical Society + 1984 + 106 + 3 + https://doi.org/10.1021/ja00315a051 + 10.1021/ja00315a051 + 765 + 784 + + + + + + WeinerS. J. + KollmanP. A. + NguyenNguyen D. T. + CaseD. A. + + An all atom force field for simulations of proteins and nucleic acids + J. Comp. Chem. + 1986 + 7 + https://doi.org/10.1002/jcc.540070216 + 10.1002/jcc.540070216 + 230 + 252 + + + + + + JorgensenW. L. + MaxwellD. S. + Tirado-RivesJ. + + Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids + J. Amer. Chem. Soc. + 1996 + 118(45) + 10.1021/ja9621760 + 11225 + 11236 + + + + + + LuChao + WuChuanjie + GhoreishiDelaram + ChenWei + WangLingle + DammWolfgang + RossGregory A. + DahlgrenMarkus K. + RussellEllery + Von BargenChristopher D. + AbelRobert + FriesnerRichard A. + HarderEdward D. + + OPLS4: Improving force field accuracy on challenging regimes of chemical space + Journal of Chemical Theory and Computation + 2021 + 17 + 7 + https://doi.org/10.1021/acs.jctc.1c00302 + 10.1021/acs.jctc.1c00302 + 4291 + 4300 + + + + + + BerthelotDaniel + + Sur le mélange des gaz + Comptes Rendus Hebd. Acad. Sci. + 1898 + 126 + https://www.biodiversitylibrary.org/item/111847#page/757/mode/1up + 1703 + 1855 + + + + + + GoodRobert J. + HopeChristopher J. + + New combining rule for intermolecular distances in intermolecular potential functions + J. Chem. Phys. + 1970 + 53 + 10.1063/1.1674022 + 540 + 543 + + + + + + LorentzH. A. + + Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase + Ann. d. Phys. + 1881 + 12 + 10.1002/andp.18812480110 + 127 + 136 + + + + + + FrischM. J. + TrucksG. W. + SchlegelH. B. + ScuseriaG. E. + RobbM. A. + CheesemanJ. R. + ScalmaniG. + BaroneV. + PeterssonG. A. + NakatsujiH. + LiX. + CaricatoM. + MarenichA. V. + BloinoJ. + JaneskoB. G. + GompertsR. + MennucciB. + HratchianH. P. + OrtizJ. V. + IzmaylovA. F. + SonnenbergJ. L. + Williams-YoungD. + DingF. + LippariniF. + EgidiF. + GoingsJ. + PengB. + PetroneA. + HendersonT. + RanasingheD. + ZakrzewskiV. G. + GaoJ. + RegaN. + ZhengG. + LiangW. + HadaM. + EharaM. + ToyotaK. + FukudaR. + HasegawaJ. + IshidaM. + NakajimaT. + HondaY. + KitaoO. + NakaiH. + VrevenT. + ThrossellK. + MontgomeryJ. A.Jr. + PeraltaJ. E. + OgliaroF. + BearparkM. J. + HeydJ. J. + BrothersE. N. + KudinK. N. + StaroverovV. N. + KeithT. A. + KobayashiR. + NormandJ. + RaghavachariK. + RendellA. P. + BurantJ. C. + IyengarS. S. + TomasiJ. + CossiM. + MillamJ. M. + KleneM. + AdamoC. + CammiR. + OchterskiJ. W. + MartinR. L. + MorokumaK. + FarkasO. + ForesmanJ. B. + FoxD. J. + + Gaussian 16 Revision C.01 + 2016 + + + + + GMSO: General molecular simulation object + Github + 2019 + https://github.com/mosdef-hub/gmso + 10.5281/zenodo.12533861 + + + + + + TimalsinaUmesh + + Forcefield-utilities + Github + 2022 + https://github.com/mosdef-hub/forcefield-utilities + 10.5281/zenodo.10494867 + + + + + + CummingsP. T. + McCabeC. + IacovellaC. R. + LedecziA. + JankowskiE. + JayaramanA. + PalmerJ. C. + MaginnE. J. + GlotzerS. C. + AndersonJ. A. + SiepmannJ. I. + PotoffJ. + MatsumotoR. A. + GilmerJ. B. + DeFeverR. S. + SinghR. + CrawfordB. + + Open-source molecular modeling software in chemical engineering, with focus on the Molecular Simulation Design Framework (MoSDeF) + AICHE J. + 2021 + 67(3) + 10.1002/aic.17206 + e17206 + + + + + + + SummersAndrew Z. + GilmerJustin B. + IacovellaChristopher R. + CummingsPeter T. + MccabeClare + + MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films + J. Chem. Theor. Comput. + American Chemical Society + 202003 + 16 + 3 + https://pubs.acs.org/doi/full/10.1021/acs.jctc.9b01183 + 10.1021/acs.jctc.9b01183 + 32004433 + 1779 + 1793 + + + + + + CrawfordBrad + QuachCo + CravenNicholas + IacovellaChristopher R. + McCabeClare + CummingsPeter T. + PotoffJeffrey + + MoSDeF-dihedral-fit: A simple software package to fit dihedrals via the MoSDeF software. + Github + 2023 + https://github.com/GOMC-WSU/MoSDeF-dihedral-fit + 10.5281/zenodo.14107384 + + + + + + CrawfordBrad + TimalsinaUmesh + QuachCo D. + CravenNicholas C. + GilmerJustin B. + McCabeClare + CummingsPeter T. + PotoffJeffrey J. + + MoSDeF-GOMC: Python software for the creation of scientific workflows for the Monte Carlo simulation engine GOMC + Journal of Chemical Information and Modeling + 2023 + 63 + 4 + https://doi.org/10.1021/acs.jcim.2c01498 + 10.1021/acs.jcim.2c01498 + 1218 + 1228 + + + + + + CrawfordBrad + TimalsinaUmesh + QuachCo D. + CravenNicholas + GilmerJustin + CummingsPeter T. + PotoffJeffrey + + MoSDeF-GOMC: Python software for the creation of scientific workflows for the Monte Carlo simulation engine GOMC + Github + 2022 + https://github.com/GOMC-WSU/MoSDeF-GOMC + 10.5281/zenodo.14266177 + + + + + + NejahiYounes + Soroush BarhaghiMohammad + MickJason + JackmanBrock + RushaidatKamel + LiYuanzhe + SchwiebertLoren + PotoffJeffrey + + GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids + SoftwareX + Elsevier B.V. + 2019 + 9 + https://doi.org/10.1016/j.softx.2018.11.005 + 10.1016/j.softx.2018.11.005 + 20 + 27 + + + + + + NejahiYounes + Soroush BarhaghiMohammad + SchwingGregory + SchwiebertLoren + PotoffJeffrey + + Update 2.70 to “GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids” + SoftwareX + Elsevier B.V. + 2021 + 13 + 10.1016/j.softx.2020.100627 + 100627 + + + + + + + ErringtonJeffrey R. + PanagiotopoulosAthanassios Z. + + A new intermolecular potential model for the n-alkane homologous series + The Journal of Physical Chemistry B + 1999 + 103 + 30 + https://doi.org/10.1021/jp990988n + 10.1021/jp990988n + 6314 + 6322 + + + + + + PotoffJeffrey J. + Bernard-BrunelDamien A. + + Mie potentials for phase equilibria calculations: Application to alkanes and perfluoroalkanes + The Journal of Physical Chemistry B + 2009 + 113 + 44 + https://doi.org/10.1021/jp9072137 + 10.1021/jp9072137 + 14725 + 14731 + + + + + + HemmenAndrea + GrossJoachim + + Transferable anisotropic united-atom force field based on the mie potential for phase equilibrium calculations: N-alkanes and n-olefins + The Journal of Physical Chemistry B + 2015 + 119 + 35 + https://doi.org/10.1021/acs.jpcb.5b01354 + 10.1021/acs.jpcb.5b01354 + 11695 + 11707 + + + + + + HumphreyWilliam + DalkeAndrew + SchultenKlaus + + VMD – Visual Molecular Dynamics + Journal of Molecular Graphics + 1996 + 14 + 10.1016/0263-7855(96)00018-5 + 33 + 38 + + + + + + StoneJohn + GullingsrudJustin + GraysonPaul + SchultenKlaus + + A system for interactive molecular dynamics simulation + 2001 ACM symposium on interactive 3D graphics + + HughesJohn F. + SéquinCarlo H. + + ACM SIGGRAPH + New York + 2001 + 10.1145/364338.364398 + 191 + 194 + + + + + + BetzRobin + + VMD-python + Github + 2016 + https://github.com/Eigenstate/vmd-python + + + + + + KamathGanesh + CaoFeng + PotoffJeffrey J. + + An improved force field for the prediction of the vapor−liquid equilibria for carboxylic acids + The Journal of Physical Chemistry B + 2004 + 108 + 37 + https://doi.org/10.1021/jp048581s + 10.1021/jp048581s + 14130 + 14136 + + + + + + KaniaAdrian + SarapataKrzysztof + GucwaMichał + Wójcik-AugustynAnna + + Optimal solution to the torsional coefficient fitting problem in force field parametrization + The Journal of Physical Chemistry A + 2021 + 125 + 12 + https://doi.org/10.1021/acs.jpca.0c10845 + 10.1021/acs.jpca.0c10845 + 2673 + 2681 + + + + + + FriederichPascal + KonradManuel + StrunkTimo + WenzelWolfgang + + Machine learning of correlated dihedral potentials for atomistic molecular force fields + Scientific Reports + 2018 + 8 + https://doi.org/10.1038/s41598-018-21070-0 + 10.1038/s41598-018-21070-0 + 2559 + + + + + + + VermeyenTom + CunhaAna + BultinckPatrick + HerreboutWouter + + Impact of conformation and intramolecular interactions on vibrational circular dichroism spectra identified with machine learning + Communications Chemistry + 2023 + 6 + https://doi.org/10.1038/s42004-023-00944-z + 10.1038/s42004-023-00944-z + 148 + + + + + + + SchmidNathan + EichenbergerAndreas P. + ChoutkoAlexandra + RinikerSereina + WingerMoritz + MarkAlan E. + GunsterenWilfred F. van + + Definition and testing of the GROMOS force-field versions 54A7 and 54B7 + European Biophysics Journal + 2011 + 40 + https://doi.org/10.1007/s00249-011-0700-9 + 10.1007/s00249-011-0700-9 + 843 + + + + + + + HuangLei + RouxBenoît + + Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data + Journal of Chemical Theory and Computation + 2013 + 9 + 8 + https://doi.org/10.1021/ct4003477 + 10.1021/ct4003477 + 3543 + 3556 + + + + + + VanommeslaegheK. + HatcherE. + AcharyaC. + KunduS. + ZhongS. + ShimJ. + DarianE. + GuvenchO. + LopesP. + VorobyovI. + A. D. MacKerellJr. + + CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields + J Comput Chem. + 2010 + 31 + https://doi.org/10.1002/jcc.21367 + 10.1002/jcc.21367 + 671 + 690 + + + + + + VanommeslaegheKenno + GuvenchOlgun + Alexander D. MacKerellJr. + + Molecular mechanics + Current Pharmaceutical Design + 2014 + 20 + 10.2174/13816128113199990600 + 3281 + 3292 + + + + + + ChenSiyan + YiShasha + GaoWenmei + ZuoChuncheng + HuZhonghan + + Force field development for organic molecules: Modifying dihedral and 1-n pair interaction parameters + J Comput Chem. + 2015 + 36 + https://doi.org/10.1002/jcc.23808 + 10.1002/jcc.23808 + 376 + 384 + + + + + + MielkeRoland R. + LeathrumJames F. + CollinsAndrew J. + AudetteMichel Albert + + Overview of computational modeling and simulation + Healthcare simulation research: A practical guide + + NestelDebra + HuiJoshua + KunklerKevin + ScerboMark W. + CalhounAaron W. + + Springer International Publishing + Cham + 2019 + 978-3-030-26837-4 + https://doi.org/10.1007/978-3-030-26837-4_6 + 10.1007/978-3-030-26837-4_6 + 39 + 47 + + + + + + SiegfriedRobert + + Introduction + Modeling and simulation of complex systems: A framework for efficient agent-based modeling and simulation + Springer Fachmedien Wiesbaden + Wiesbaden + 2014 + 978-3-658-07529-3 + https://doi.org/10.1007/978-3-658-07529-3_1 + 10.1007/978-3-658-07529-3_1 + 1 + 8 + + + + + + YuDiana + PahlElke + + Melting of atomic materials under high pressures using computer simulations + Advances in Physics: X + Taylor & Francis + 2023 + 8 + 1 + https://doi.org/10.1080/23746149.2023.2235060 + 10.1080/23746149.2023.2235060 + 2235060 + + + + + + + KoneruBhargavi + SwapnalinJhilmil + BanerjeeP. + NaiduKadiyala Chandra Babu + KumarN. Suresh + + Materials under extreme pressure: Combining theoretical and experimental techniques + The European Physical Journal Special Topics + 2022 + 231 + https://doi.org/10.1140/epjs/s11734-022-00569-8 + 10.1140/epjs/s11734-022-00569-8 + 4221 + + + + + + + SwaiRogers Evarist + + A review of molecular dynamics simulations in the designing of effective shale inhibitors: Application for drilling with water-based drilling fluids + Journal of Petroleum Exploration and Production Technology + 2020 + 10 + https://doi.org/10.1007/s13202-020-01003-2 + 10.1007/s13202-020-01003-2 + 3515 + + + + + + + HollingsworthScott A. + DrorRon O. + + Molecular dynamics simulation for all + Neuron + 2018 + 99 + https://doi.org/10.1016/j.neuron.2018.08.011 + 10.1016/j.neuron.2018.08.011 + 1129 + 1143 + + + + + + HirstJonathan D + GlowackiDavid R + BaadenMarc + + Molecular simulations and visualization: Introduction and overview + Faraday Discussions + 2014 + 169 + 10.1039/c4fd90024c + 9 + 22 + + + + + + KumarGaurav + MishraRadha Raman + VermaAkarsh + + Introduction to molecular dynamics simulations + Forcefields for atomistic-scale simulations: Materials and applications + + VermaAkarsh + Mavinkere RangappaSanjay + OgataShigenobu + SiengchinSuchart + + Springer Nature Singapore + Singapore + 2022 + 978-981-19-3092-8 + https://doi.org/10.1007/978-981-19-3092-8_1 + 10.1007/978-981-19-3092-8_1 + 1 + 19 + + + + + + LouieSteven G. + ChanYang-Hao + JornadaFelipe H. da + LiZhenglu + QiuDiana Y. + + Discovering and understanding materials through computation + Nature Materials + 2021 + 20 + https://doi.org/10.1038/s41563-021-01015-1 + 10.1038/s41563-021-01015-1 + 728 + + + + + + + AllenM. P. + TildesleyD. J + + Computer simulation of liquids (2nd ed.) + Oxford University Press + 2017 + + + + + + FrenkelDaan + SmitBerend + + Understanding molecular simulation from algorithms to applications (2nd ed.) + Academic Press + 2002 + + + + +