diff --git a/joss.06016/10.21105.joss.06016.crossref.xml b/joss.06016/10.21105.joss.06016.crossref.xml
new file mode 100644
index 0000000000..6debc9b18d
--- /dev/null
+++ b/joss.06016/10.21105.joss.06016.crossref.xml
@@ -0,0 +1,412 @@
+
+
+
+ 20240309T213717-c4c182635a393f940f7adf8b7bd1acb3efcdb6a3
+ 20240309213717
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 03
+ 2024
+
+
+ 9
+
+ 95
+
+
+
+ HyperNetX: A Python package for modeling complex
+network data as hypergraphs
+
+
+
+ Brenda
+ Praggastis
+ https://orcid.org/0000-0003-1344-0497
+
+
+ Sinan
+ Aksoy
+ https://orcid.org/0000-0002-3466-3334
+
+
+ Dustin
+ Arendt
+ https://orcid.org/0000-0003-2466-199X
+
+
+ Mark
+ Bonicillo
+ https://orcid.org/0009-0003-9764-2180
+
+
+ Cliff
+ Joslyn
+ https://orcid.org/0000-0002-5923-5547
+
+
+ Emilie
+ Purvine
+ https://orcid.org/0000-0003-2069-5594
+
+
+ Madelyn
+ Shapiro
+ https://orcid.org/0000-0002-2786-7056
+
+
+ Ji Young
+ Yun
+
+
+
+ 03
+ 09
+ 2024
+
+
+ 6016
+
+
+ 10.21105/joss.06016
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.10795225
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6016
+
+
+
+ 10.21105/joss.06016
+ https://joss.theoj.org/papers/10.21105/joss.06016
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06016.pdf
+
+
+
+
+
+ Hypergraph analytics of domain name system
+relationships
+ Joslyn
+ Algorithms and models for the web
+graph
+ 10.1007/978-3-030-48478-1_1
+ 978-3-030-48478-1
+ 2020
+ Joslyn, C. A., Aksoy, S., Arendt, D.,
+Firoz, J., Jenkins, L., Praggastis, B., Purvine, E., & Zalewski, M.
+(2020). Hypergraph analytics of domain name system relationships. In B.
+Kamiński, P. Prałat, & P. Szufel (Eds.), Algorithms and models for
+the web graph (pp. 1–15). Springer International Publishing.
+https://doi.org/10.1007/978-3-030-48478-1_1
+
+
+ The application of directed hyper-graphs for
+analysis of models of information systems
+ Molnár
+ Mathematics
+ 5
+ 10
+ 10.3390/math10050759
+ 2022
+ Molnár, B., & Benczúr, A. (2022).
+The application of directed hyper-graphs for analysis of models of
+information systems. Mathematics, 10(5), 759.
+https://doi.org/10.3390/math10050759
+
+
+ Hypernetwork science via high-order
+hypergraph walks
+ Aksoy
+ EPJ Data Science
+ 1
+ 9
+ 10.1140/epjds/s13688-020-00231-0
+ 2020
+ Aksoy, S. G., Joslyn, C., Marrero, C.
+O., Praggastis, B., & Purvine, E. (2020). Hypernetwork science via
+high-order hypergraph walks. EPJ Data Science, 9(1), 16.
+https://doi.org/10.1140/epjds/s13688-020-00231-0
+
+
+ Graphs and Hypergraphs,(translated by Edward
+Minieka)
+ Berge
+ 10.1016/s0924-6509(09)x7013-3
+ 1973
+ Berge, C. (1973). Graphs and
+Hypergraphs,(translated by Edward Minieka). American Elsevier, New York.
+https://doi.org/10.1016/s0924-6509(09)x7013-3
+
+
+ Hypergraph models of biological networks to
+identify genes critical to pathogenic viral response
+ Feng
+ BMC bioinformatics
+ 1
+ 22
+ 10.1186/s12859-021-04197-2
+ 2021
+ Feng, S., Heath, E., Jefferson, B.,
+Joslyn, C., Kvinge, H., Mitchell, H. D., Praggastis, B., Eisfeld, A. J.,
+Sims, A. C., Thackray, L. B., & others. (2021). Hypergraph models of
+biological networks to identify genes critical to pathogenic viral
+response. BMC Bioinformatics, 22(1), 1–21.
+https://doi.org/10.1186/s12859-021-04197-2
+
+
+ Growth principles of natural
+hypergraphs
+ Vazquez
+ arXiv preprint
+arXiv:2208.03103
+ 10.48550/arXiv.2208.03103
+ 2022
+ Vazquez, A. (2022). Growth principles
+of natural hypergraphs. arXiv Preprint arXiv:2208.03103.
+https://doi.org/10.48550/arXiv.2208.03103
+
+
+ Hypergraphx: A library for higher-order
+network analysis
+ Lotito
+ Journal of Complex Networks
+ 3
+ 11
+ 10.1093/comnet/cnad019
+ 2023
+ Lotito, Q. F., Contisciani, M., De
+Bacco, C., Di Gaetano, L., Gallo, L., Montresor, A., Musciotto, F.,
+Ruggeri, N., & Battiston, F. (2023). Hypergraphx: A library for
+higher-order network analysis. Journal of Complex Networks, 11(3),
+cnad019. https://doi.org/10.1093/comnet/cnad019
+
+
+ The SVD of convolutional weights: A CNN
+interpretability framework
+ Praggastis
+ arXiv preprint
+arXiv:2208.06894
+ 10.48550/arXiv.2208.06894
+ 2022
+ Praggastis, B., Brown, D., Marrero,
+C. O., Purvine, E., Shapiro, M., & Wang, B. (2022). The SVD of
+convolutional weights: A CNN interpretability framework. arXiv Preprint
+arXiv:2208.06894.
+https://doi.org/10.48550/arXiv.2208.06894
+
+
+ Hypernetwork science: From multidimensional
+networks to computational topology
+ Joslyn
+ Unifying themes in complex systems
+x
+ 10.1007/978-3-030-67318-5_25
+ 978-3-030-67318-5
+ 2021
+ Joslyn, C. A., Aksoy, S. G.,
+Callahan, T. J., Hunter, L. E., Jefferson, B., Praggastis, B., Purvine,
+E., & Tripodi, I. J. (2021). Hypernetwork science: From
+multidimensional networks to computational topology. In D. Braha, M. A.
+M. de Aguiar, C. Gershenson, A. J. Morales, L. Kaufman, E. N. Naumova,
+A. A. Minai, & Y. Bar-Yam (Eds.), Unifying themes in complex systems
+x (pp. 377–392). Springer International Publishing.
+https://doi.org/10.1007/978-3-030-67318-5_25
+
+
+ The why, how, and when of representations for
+complex systems
+ Torres
+ SIAM Review
+ 3
+ 63
+ 10.1137/20M1355896
+ 2021
+ Torres, L., Blevins, A. S., Bassett,
+D., & Eliassi-Rad, T. (2021). The why, how, and when of
+representations for complex systems. SIAM Review, 63(3), 435–485.
+https://doi.org/10.1137/20M1355896
+
+
+ Phoenix: A scalable streaming hypergraph
+analysis framework
+ Kurte
+ 10.1007/978-3-030-71704-9_1
+ 2021
+ Kurte, K., Imam, N., Hasan, S. M. S.,
+& Kannan, R. (2021). Phoenix: A scalable streaming hypergraph
+analysis framework.
+https://doi.org/10.1007/978-3-030-71704-9_1
+
+
+ The stanford GraphBase: A platform for
+combinatorial computing
+ Knuth
+ 1
+ 1993
+ Knuth, D. E. (1993). The stanford
+GraphBase: A platform for combinatorial computing (Vol. 1). AcM Press
+New York.
+
+
+ igraph enables fast and robust network
+analysis across programming languages
+ Antonov
+ 2023
+ Antonov, M., Csárdi, G., Horvát, S.,
+Müller, K., Nepusz, T., Noom, D., Salmon, M., Traag, V., Welles, B. F.,
+& Zanini, F. (2023). igraph enables fast and robust network analysis
+across programming languages.
+https://arxiv.org/abs/2311.10260
+
+
+ The igraph software package for complex
+network research
+ Csardi
+ InterJournal, complex systems
+ 5
+ 1695
+ 2006
+ Csardi, G., Nepusz, T., & others.
+(2006). The igraph software package for complex network research.
+InterJournal, Complex Systems, 1695(5), 1–9.
+
+
+ HyperThesis: Topological hypothesis
+management in a hypergraph knowledgebase.
+ Joslyn
+ TAC
+ 2018
+ Joslyn, C. A., Robinson, M., Smart,
+J., Agarwal, K., Bridgeland, D., Brown, A., Choudhury, S., Jefferson, B.
+A., Praggastis, B., Purvine, E., & others. (2018). HyperThesis:
+Topological hypothesis management in a hypergraph knowledgebase.
+TAC.
+
+
+ XGI: A python package for higher-order
+interaction networks
+ Landry
+ Journal of Open Source
+Software
+ 85
+ 8
+ 10.21105/joss.05162
+ 2023
+ Landry, N. W., Lucas, M., Iacopini,
+I., Petri, G., Schwarze, A., Patania, A., & Torres, L. (2023). XGI:
+A python package for higher-order interaction networks. Journal of Open
+Source Software, 8(85), 5162.
+https://doi.org/10.21105/joss.05162
+
+
+ SimpleHypergraphs. Jl—novel software
+framework for modelling and analysis of hypergraphs
+ Antelmi
+ Algorithms and models for the web graph: 16th
+international workshop, WAW 2019, brisbane, QLD, australia, july 6–7,
+2019, proceedings 16
+ 10.1007/978-3-030-25070-6_9
+ 2019
+ Antelmi, A., Cordasco, G., Kamiński,
+B., Prałat, P., Scarano, V., Spagnuolo, C., & Szufel, P. (2019).
+SimpleHypergraphs. Jl—novel software framework for modelling and
+analysis of hypergraphs. Algorithms and Models for the Web Graph: 16th
+International Workshop, WAW 2019, Brisbane, QLD, Australia, July 6–7,
+2019, Proceedings 16, 115–129.
+https://doi.org/10.1007/978-3-030-25070-6_9
+
+
+ Introducing molecular hypernetworks for
+discovery in multidimensional metabolomics data
+ Colby
+ bioRxiv
+ 10.1101/2023.09.29.560191
+ 2023
+ Colby, S. M., Shapiro, M. R., Lin,
+A., Bilbao, A., Broeckling, C. D., Purvine, E., & Joslyn, C. A.
+(2023). Introducing molecular hypernetworks for discovery in
+multidimensional metabolomics data. bioRxiv.
+https://doi.org/10.1101/2023.09.29.560191
+
+
+ pandas-dev/pandas: Pandas
+ The pandas development team
+ 10.5281/zenodo.3509134
+ 2020
+ The pandas development team. (2020).
+pandas-dev/pandas: Pandas (latest). Zenodo.
+https://doi.org/10.5281/zenodo.3509134
+
+
+ Data Structures for Statistical Computing in
+Python
+ McKinney
+ Proceedings of the 9th Python in Science
+Conference
+ 10.25080/Majora-92bf1922-00a
+ 2010
+ McKinney, Wes. (2010). Data
+Structures for Statistical Computing in Python. In Stéfan van der Walt
+& Jarrod Millman (Eds.), Proceedings of the 9th Python in Science
+Conference (pp. 56–61).
+https://doi.org/10.25080/Majora-92bf1922-00a
+
+
+ Exploring network structure, dynamics, and
+function using NetworkX
+ Hagberg
+ Proceedings of the 7th python in science
+conference
+ 2008
+ Hagberg, A. A., Schult, D. A., &
+Swart, P. J. (2008). Exploring network structure, dynamics, and function
+using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.),
+Proceedings of the 7th python in science conference (pp.
+11–15).
+
+
+
+
+
+
diff --git a/joss.06016/10.21105.joss.06016.jats b/joss.06016/10.21105.joss.06016.jats
new file mode 100644
index 0000000000..eef084f465
--- /dev/null
+++ b/joss.06016/10.21105.joss.06016.jats
@@ -0,0 +1,690 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6016
+10.21105/joss.06016
+
+HyperNetX: A Python package for modeling complex network
+data as hypergraphs
+
+
+
+https://orcid.org/0000-0003-1344-0497
+
+Praggastis
+Brenda
+
+
+
+
+https://orcid.org/0000-0002-3466-3334
+
+Aksoy
+Sinan
+
+
+
+
+https://orcid.org/0000-0003-2466-199X
+
+Arendt
+Dustin
+
+
+
+
+https://orcid.org/0009-0003-9764-2180
+
+Bonicillo
+Mark
+
+
+
+
+https://orcid.org/0000-0002-5923-5547
+
+Joslyn
+Cliff
+
+
+
+
+https://orcid.org/0000-0003-2069-5594
+
+Purvine
+Emilie
+
+
+
+
+https://orcid.org/0000-0002-2786-7056
+
+Shapiro
+Madelyn
+
+
+
+
+
+Yun
+Ji Young
+
+
+
+
+
+Pacific Northwest National Laboratory, USA
+
+
+
+
+21
+6
+2023
+
+9
+95
+6016
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+hypergraph
+network science
+simplicial-complexes
+knowledge graph
+simplicial-homology
+s-linegraph
+property hypergraph
+
+
+
+
+
+ Summary
+
HyperNetX (HNX) is an open source Python library for the analysis
+ and visualization of complex network data modeled as hypergraphs.
+ Initially released in 2019, HNX facilitates exploratory data analysis
+ of complex networks using algebraic topology, combinatorics, and
+ generalized hypergraph and graph theoretical methods on structured
+ data inputs. With its 2023 release, the library supports attaching
+ metadata, numerical and categorical, to nodes (vertices) and
+ hyperedges, as well as to node-hyperedge pairings (incidences). HNX
+ has a customizable Matplotlib-based visualization module as well as
+ HypernetX-Widget, its JavaScript addon for interactive exploration and
+ visualization of hypergraphs within Jupyter Notebooks. Both packages
+ are available on GitHub and PyPI. With a growing community of users
+ and collaborators, HNX has become a preeminent tool for hypergraph
+ analysis.
+
+
HNX-Widget is an add-on for the Jupyter Notebook
+ computational environment, enabling users to view and interactively
+ explore hypergraphs. The main features of the tool are: 1)
+ adjustable layout 2) advanced selection and 3) visual encoding of
+ node and edge properties. Metadata may be attached to the tool by
+ providing tabular data via two optional data frames indexed by node
+ and hyperedge identifiers. Above is an HNX-Widget visualization of a
+ Scene to Character mapping from the LesMis dataset
+ (Knuth,
+ 1993).
+
+
+
+
+ Statement of need
+
For more than a century, graph theory has provided powerful methods
+ for studying network relationships among abstract entities. Since the
+ early 2000’s, software packages such as NetworkX
+ (Hagberg
+ et al., 2008) and igraph
+ (Antonov
+ et al., 2023;
+ Csardi
+ et al., 2006) have made these theoretical tools available to
+ data scientists for studying large data sets. Graphs represent
+ pairwise interactions between entities, but for many network datasets
+ this is a severe limitation. In 1973, hypergraphs were introduced by
+ Claude Berge
+ (Berge,
+ 1973) as a strict generalization of graphs: a hyperedge in a
+ hypergraph can contain any number of nodes, including 1, 2, or more.
+ Hypergraphs have been used to model complex network datasets in areas
+ such as the biological sciences, information systems, the power grid,
+ and cyber security. Hypergraphs strictly generalize graphs (all graphs
+ are (2-uniform) hypergraphs), and thus can represent additional data
+ complexity and have more mathematical properties to exploit (for
+ example, hyperedges can be contained in other hyperedges). As
+ mathematical set systems, simplicial and homological methods from
+ Algebraic Topology are well suited to aid in their analysis
+ (Cliff
+ A. Joslyn et al., 2021;
+ Torres
+ et al., 2021). With the development of hypergraph modeling
+ methods, new software was required to support experimentation and
+ exploration, which prompted the development of HyperNetX.
+
+ Related Software
+
Due to the diversity of hypergraph modeling applications,
+ hypergraph software libraries are often bootstrapped using data
+ structures and methods most appropriate to their usage. In 2020
+ SimpleHypergraph.jl was made available for high performance
+ computing on hypergraphs using Julia. The library offers a suite of
+ tools for centrality analysis and community detection and integrates
+ its own visualization tools with those offered by HNX
+ (Antelmi
+ et al., 2019). In 2021 CompleX Group Interactions (XGI) was
+ released. Originally developed to efficiently discover spreading
+ processes in complex social systems, the library now offers a
+ statistics package as well as a full suite of hypergraph analysis
+ and visualization tools
+ (Landry
+ et al., 2023). More recently, in 2023 HyperGraphX (HGX) was
+ released, again with a full suite of tools for community detection
+ as well as general hypergraph analytics
+ (Lotito
+ et al., 2023). A nice compendium of many of the hypergraph
+ libraries created in the last decade can be found in Kurte et al.
+ (2021).
+
HNX leads the effort to share library capabilities by specifying
+ a Hypergraph Interchange Format (HIF) for storing hypergraph data as
+ a JSON object. Since hypergraphs can store metadata on its nodes,
+ hyperedges, and incidence pairs, a standardized format makes it easy
+ to share hypergraphs across libraries.
+
+
Visualizations from hypergraph libraries based on the
+ bipartite graph seen in grey under the HyperNetX visualization
+ (left side): XGI (Center), Landry et al.
+ (2023)
+ and SimpleHypergraph (Right), Antelmi et al.
+ (2019).
+
+
+
+
+
+ Overview of HNX
+
HNX serves as a platform for the collaboration and sharing of
+ hypergraph methods within the research community. Originally intended
+ to generalize many of the methods from NetworkX to hypergraphs, HNX
+ now has implementations for many hypergraph-specific metrics. While
+ graph paths can be measured by length, hypergraph paths also have a
+ width parameter s, given by the minimum intersection
+ size of incident hyperedges in the path
+ (Aksoy
+ et al., 2020). HNX uses this s parameter in
+ many of its core methods as well as in its
+ s-centrality module. As set systems, hypergraphs can
+ be viewed as subsets of abstract simplicial complexes – combinatorial
+ projections of geometric objects constructed from points, line
+ segments, triangles, tetrahedrons, and their higher dimensional
+ analogues. HNX’s Simplicial Homology module identifies and computes
+ the voids of different dimensions in the simplicial
+ complexes generated by modestly sized hypergraphs. These objects,
+ which are used for defining the Homology Groups
+ studied by Algebraic Topologists, offer new metrics for exploratory
+ data science.
+
As a collaborative platform, HNX contains contributed modules and
+ tutorials in the form of Jupyter notebooks for Laplacian clustering,
+ clustering and modularity, synthetic generation of hypergraphs, and
+ Contagion Theory. In its latest release, HNX 2.0 uses Pandas
+ dataframes
+ (McKinney,
+ 2010;
+ The
+ pandas development team, 2020) as its underlying data
+ structure, making the nodes and hyperedges of a hypergraph as
+ accessible as the cells in a dataframe. This simple design allows HNX
+ to import data from semantically loaded graphs such as property graphs
+ and knowledge graphs, in order to model and explore their higher order
+ relationships. Because it is open source, HNX provides a unique
+ opportunity for hypergraph researchers to implement their own methods
+ built from HNX and contribute them as modules and Jupyter tutorials to
+ the HNX user community.
+
+ Projects using HNX
+
HNX was created by the Pacific Northwest National Laboratory. It
+ has provided data analysis and visualization support for academic
+ papers in subject areas such as biological systems
+ (Colby
+ et al., 2023;
+ Feng
+ et al., 2021), cyber security
+ (Cliff
+ A. Joslyn et al., 2020), information systems
+ (Molnár
+ & Benczúr, 2022), neural networks
+ (Praggastis
+ et al., 2022), knowledge graphs
+ (Cliff
+ A. Joslyn et al., 2018), and the foundations of hypergraph
+ theory
+ (Vazquez,
+ 2022).
+
+
+
+
+
+
+
+
+ JoslynCliff A.
+ AksoySinan
+ ArendtDustin
+ FirozJesun
+ JenkinsLouis
+ PraggastisBrenda
+ PurvineEmilie
+ ZalewskiMarcin
+
+ Hypergraph analytics of domain name system relationships
+
+
+ KamińskiBogumił
+ PrałatPaweł
+ SzufelPrzemysław
+
+ Springer International Publishing
+ Cham
+ 2020
+ 978-3-030-48478-1
+ 10.1007/978-3-030-48478-1_1
+ 1
+ 15
+
+
+
+
+
+ MolnárBálint
+ BenczúrAndrás
+
+ The application of directed hyper-graphs for analysis of models of information systems
+
+ MDPI
+ 2022
+ 10
+ 5
+ 10.3390/math10050759
+ 759
+
+
+
+
+
+
+ AksoySinan G
+ JoslynCliff
+ MarreroCarlos Ortiz
+ PraggastisBrenda
+ PurvineEmilie
+
+ Hypernetwork science via high-order hypergraph walks
+
+ Springer Berlin Heidelberg
+ 2020
+ 9
+ 1
+ 10.1140/epjds/s13688-020-00231-0
+ 16
+
+
+
+
+
+
+ BergeClaude
+
+ Graphs and Hypergraphs,(translated by Edward Minieka)
+ American Elsevier, New York
+ 1973
+ 10.1016/s0924-6509(09)x7013-3
+
+
+
+
+
+ FengSong
+ HeathEmily
+ JeffersonBrett
+ JoslynCliff
+ KvingeHenry
+ MitchellHugh D
+ PraggastisBrenda
+ EisfeldAmie J
+ SimsAmy C
+ ThackrayLarissa B
+ others
+
+ Hypergraph models of biological networks to identify genes critical to pathogenic viral response
+
+ BioMed Central
+ 2021
+ 22
+ 1
+ 10.1186/s12859-021-04197-2
+ 1
+ 21
+
+
+
+
+
+ VazquezAlexei
+
+ Growth principles of natural hypergraphs
+
+ 2022
+ 10.48550/arXiv.2208.03103
+
+
+
+
+
+ LotitoQuintino Francesco
+ ContiscianiMartina
+ De BaccoCaterina
+ Di GaetanoLeonardo
+ GalloLuca
+ MontresorAlberto
+ MusciottoFederico
+ RuggeriNicolò
+ BattistonFederico
+
+ Hypergraphx: A library for higher-order network analysis
+
+ Oxford University Press
+ 2023
+ 11
+ 3
+ 10.1093/comnet/cnad019
+ cnad019
+
+
+
+
+
+
+ PraggastisBrenda
+ BrownDavis
+ MarreroCarlos Ortiz
+ PurvineEmilie
+ ShapiroMadelyn
+ WangBei
+
+ The SVD of convolutional weights: A CNN interpretability framework
+
+ 2022
+ 10.48550/arXiv.2208.06894
+
+
+
+
+
+ JoslynCliff A.
+ AksoySinan G.
+ CallahanTiffany J.
+ HunterLawrence E.
+ JeffersonBrett
+ PraggastisBrenda
+ PurvineEmilie
+ TripodiIgnacio J.
+
+ Hypernetwork science: From multidimensional networks to computational topology
+
+
+ BrahaDan
+ AguiarMarcus A. M. de
+ GershensonCarlos
+ MoralesAlfredo J.
+ KaufmanLes
+ NaumovaElena N.
+ MinaiAli A.
+ Bar-YamYaneer
+
+ Springer International Publishing
+ Cham
+ 2021
+ 978-3-030-67318-5
+ 10.1007/978-3-030-67318-5_25
+ 377
+ 392
+
+
+
+
+
+ TorresLeo
+ BlevinsAnn S.
+ BassettDanielle
+ Eliassi-RadTina
+
+ The why, how, and when of representations for complex systems
+
+ 2021
+ 63
+ 3
+ https://doi.org/10.1137/20M1355896
+ 10.1137/20M1355896
+ 435
+ 485
+
+
+
+
+
+ KurteKuldeep
+ ImamNeena
+ HasanS M Shamimul
+ KannanRamakrishnan
+
+ Phoenix: A scalable streaming hypergraph analysis framework
+ 202110
+ https://www.osti.gov/biblio/1830117
+ 10.1007/978-3-030-71704-9_1
+
+
+
+
+
+ KnuthDonald Ervin
+
+
+ AcM Press New York
+ 1993
+ 1
+
+
+
+
+
+ AntonovMichael
+ CsárdiGábor
+ HorvátSzabolcs
+ MüllerKirill
+ NepuszTamás
+ NoomDaniel
+ SalmonMaëlle
+ TraagVincent
+ WellesBrooke Foucault
+ ZaniniFabio
+
+ igraph enables fast and robust network analysis across programming languages
+ 2023
+ https://arxiv.org/abs/2311.10260
+
+
+
+
+
+ CsardiGabor
+ NepuszTamas
+ others
+
+ The igraph software package for complex network research
+
+ 2006
+ 1695
+ 5
+ 1
+ 9
+
+
+
+
+
+ JoslynCliff A
+ RobinsonMichael
+ SmartJ
+ AgarwalKhushbu
+ BridgelandDavid
+ BrownAdam
+ ChoudhurySutanay
+ JeffersonBrett A
+ PraggastisBrenda
+ PurvineEmilie
+ others
+
+ HyperThesis: Topological hypothesis management in a hypergraph knowledgebase.
+
+ 2018
+
+
+
+
+
+ LandryNicholas W.
+ LucasMaxime
+ IacopiniIacopo
+ PetriGiovanni
+ SchwarzeAlice
+ PataniaAlice
+ TorresLeo
+
+ XGI: A python package for higher-order interaction networks
+
+ The Open Journal
+ 2023
+ 8
+ 85
+ https://doi.org/10.21105/joss.05162
+ 10.21105/joss.05162
+ 5162
+
+
+
+
+
+
+ AntelmiAlessia
+ CordascoGennaro
+ KamińskiBogumił
+ PrałatPaweł
+ ScaranoVittorio
+ SpagnuoloCarmine
+ SzufelPrzemyslaw
+
+ SimpleHypergraphs. Jl—novel software framework for modelling and analysis of hypergraphs
+
+ Springer
+ 2019
+ 10.1007/978-3-030-25070-6_9
+ 115
+ 129
+
+
+
+
+
+ ColbySean M
+ ShapiroMadelyn R
+ LinAndy
+ BilbaoAivett
+ BroecklingCorey D
+ PurvineEmilie
+ JoslynCliff A
+
+ Introducing molecular hypernetworks for discovery in multidimensional metabolomics data
+
+ Cold Spring Harbor Laboratory
+ 2023
+ https://www.biorxiv.org/content/early/2023/10/02/2023.09.29.560191
+ 10.1101/2023.09.29.560191
+
+
+
+
+
+ The pandas development team
+
+ pandas-dev/pandas: Pandas
+ Zenodo
+ 202002
+ https://doi.org/10.5281/zenodo.3509134
+ 10.5281/zenodo.3509134
+
+
+
+
+
+ McKinney
+
+ Data Structures for Statistical Computing in Python
+
+
+ Walt
+ Millman
+
+ 2010
+ 10.25080/Majora-92bf1922-00a
+ 56
+ 61
+
+
+
+
+
+ HagbergAric A.
+ SchultDaniel A.
+ SwartPieter J.
+
+ Exploring network structure, dynamics, and function using NetworkX
+
+
+ VaroquauxGaël
+ VaughtTravis
+ MillmanJarrod
+
+ Pasadena, CA USA
+ 2008
+ 11
+ 15
+
+
+
+
+
diff --git a/joss.06016/10.21105.joss.06016.pdf b/joss.06016/10.21105.joss.06016.pdf
new file mode 100644
index 0000000000..09c2914cac
Binary files /dev/null and b/joss.06016/10.21105.joss.06016.pdf differ
diff --git a/joss.06016/media/Figures/3graphs.png b/joss.06016/media/Figures/3graphs.png
new file mode 100644
index 0000000000..0928c02ba8
Binary files /dev/null and b/joss.06016/media/Figures/3graphs.png differ
diff --git a/joss.06016/media/Figures/hnxexample.png b/joss.06016/media/Figures/hnxexample.png
new file mode 100644
index 0000000000..51b5f94102
Binary files /dev/null and b/joss.06016/media/Figures/hnxexample.png differ