diff --git a/joss.06836/10.21105.joss.06836.crossref.xml b/joss.06836/10.21105.joss.06836.crossref.xml
new file mode 100644
index 000000000..c3633845b
--- /dev/null
+++ b/joss.06836/10.21105.joss.06836.crossref.xml
@@ -0,0 +1,294 @@
+
+
+
+ 20241213134827-a299c849a3b06497dccccc080f9390e2a2513072
+ 20241213134827
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 12
+ 2024
+
+
+ 9
+
+ 104
+
+
+
+ DuneCopasi: A multi-compartment reaction-diffusion simulator for systems biology
+
+
+
+ Santiago
+ Ospina De Los Ríos
+
+ Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany
+ Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp), Heidelberg University, Germany
+
+ https://orcid.org/0000-0003-0814-9670
+
+
+ Peter
+ Bastian
+
+ Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany
+
+
+
+ Liam
+ Keegan
+
+ Scientific Software Center (SSC), Heidelberg University, Germany
+
+ https://orcid.org/0000-0002-0654-4979
+
+
+ Sven
+ Sahle
+
+ BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Germany
+
+ https://orcid.org/0000-0002-5458-7404
+
+
+ Dylan
+ Vermoortele
+
+ Cardiovascular Imaging and Dynamics, KU Leuven, Belgium
+
+ https://orcid.org/0000-0001-8769-783X
+
+
+ Lilija
+ Wehling
+
+ BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Germany
+ Institute of Pathology, University Hospital Heidelberg, Germany
+
+ https://orcid.org/0000-0002-8697-5348
+
+
+
+ 12
+ 13
+ 2024
+
+
+ 6836
+
+
+ 10.21105/joss.06836
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.10855069
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6836
+
+
+
+ 10.21105/joss.06836
+ https://joss.theoj.org/papers/10.21105/joss.06836
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06836.pdf
+
+
+
+
+
+ A generic grid interface for parallel and adaptive scientific computing. Part i: Abstract framework
+ Bastian
+ Computing
+ 82
+ 10.1007/s00607-008-0003-x
+ 2008
+ Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., & Sander, O. (2008). A generic grid interface for parallel and adaptive scientific computing. Part i: Abstract framework. Computing, 82, 103–119. https://doi.org/10.1007/s00607-008-0003-x
+
+
+ Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE)
+ Bastian
+ Kybernetika
+ 2
+ 46
+ 2010
+ Bastian, P., Heimann, F., & Marnach, S. (2010). Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika, 46(2), 294–315. dml.cz/dmlcz/140745
+
+
+ The dune framework: Basic concepts and recent developments
+ Bastian
+ Computers & Mathematics with Applications
+ 81
+ 10.1016/j.camwa.2020.06.007
+ 0898-1221
+ 2021
+ Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., Gräser, C., Grüninger, C., Kempf, D., Klöfkorn, R., Ohlberger, M., & Sander, O. (2021). The dune framework: Basic concepts and recent developments. Computers & Mathematics with Applications, 81, 75–112. https://doi.org/10.1016/j.camwa.2020.06.007
+
+
+ Reaction–diffusion systems for spatio-temporal intracellular protein networks: A beginner’s guide with two examples
+ Eliaš
+ Computational and Structural Biotechnology Journal
+ 16
+ 10
+ 10.1016/j.csbj.2014.05.007
+ 2001-0370
+ 2014
+ Eliaš, J., & Clairambault, J. (2014). Reaction–diffusion systems for spatio-temporal intracellular protein networks: A beginner’s guide with two examples. Computational and Structural Biotechnology Journal, 10(16), 12–22. https://doi.org/10.1016/j.csbj.2014.05.007
+
+
+ The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
+ Hucka
+ Bioinformatics
+ 4
+ 19
+ 10.1093/bioinformatics/btg015
+ 1367-4803
+ 2003
+ Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., … SBML Forum:, the rest of the. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524–531. https://doi.org/10.1093/bioinformatics/btg015
+
+
+ A general computational framework for modeling cellular structure and function
+ Schaff
+ Biophys. J.
+ 3
+ 73
+ 10.1016/s0006-3495(97)78146-3
+ 1997
+ Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., & Loew, L. M. (1997). A general computational framework for modeling cellular structure and function. Biophys. J., 73(3), 1135–1146. https://doi.org/10.1016/s0006-3495(97)78146-3
+
+
+ Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology
+ Starruß
+ Bioinformatics
+ 9
+ 30
+ 10.1093/bioinformatics/btt772
+ 1367-4803
+ 2014
+ Starruß, J., Back, W. de, Brusch, L., & Deutsch, A. (2014). Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics, 30(9), 1331–1332. https://doi.org/10.1093/bioinformatics/btt772
+
+
+ The deal.II library, version 9.5
+ Arndt
+ Journal of Numerical Mathematics
+ 3
+ 31
+ 10.1515/jnma-2023-0089
+ 2023
+ Arndt, D., Bangerth, W., Bergbauer, M., Feder, M., Fehling, M., Heinz, J., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Turcksin, B., Wells, D., & Zampini, S. (2023). The deal.II library, version 9.5. Journal of Numerical Mathematics, 31(3), 231–246. https://doi.org/10.1515/jnma-2023-0089
+
+
+ New development in FreeFem++
+ Hecht
+ J. Numer. Math.
+ 3-4
+ 20
+ 10.1515/jnum-2012-0013
+ 1570-2820
+ 2012
+ Hecht, F. (2012). New development in FreeFem++. J. Numer. Math., 20(3-4), 251–265. https://doi.org/10.1515/jnum-2012-0013
+
+
+ Nektar++: An open-source spectral/hp element framework
+ Cantwell
+ Computer Physics Communications
+ 192
+ 10.1016/j.cpc.2015.02.008
+ 0010-4655
+ 2015
+ Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R. M., & Sherwin, S. J. (2015). Nektar++: An open-source spectral/hp element framework. Computer Physics Communications, 192, 205–219. https://doi.org/10.1016/j.cpc.2015.02.008
+
+
+ Spatial-model-editor/spatial-model-editor: 1.5.0
+ Keegan
+ 10.5281/zenodo.10246531
+ 2023
+ Keegan, L., Andriushchenko, P., Schreiner, H., Caramizaru, H., & Patel, H. (2023). Spatial-model-editor/spatial-model-editor: 1.5.0 (Version 1.5.0). Zenodo. https://doi.org/10.5281/zenodo.10246531
+
+
+ Spatial modeling reveals nuclear phosphorylation and subcellular shuttling of YAP upon drug-induced liver injury
+ Wehling
+ Elife
+ 11
+ 10.7554/eLife.78540
+ 2022
+ Wehling, L., Keegan, L., Fernández-Palanca, P., Hassan, R., Ghallab, A., Schmitt, J., Tang, Y., Le Marois, M., Roessler, S., Schirmacher, P., & others. (2022). Spatial modeling reveals nuclear phosphorylation and subcellular shuttling of YAP upon drug-induced liver injury. Elife, 11, e78540. https://doi.org/10.7554/eLife.78540
+
+
+ Parafields: A generator for distributed, stationary gaussian processes
+ Kempf
+ Journal of Open Source Software
+ 92
+ 8
+ 10.21105/joss.05735
+ 2023
+ Kempf, D., Klein, O., Kutri, R., Scheichl, R., & Bastian, P. (2023). Parafields: A generator for distributed, stationary gaussian processes. Journal of Open Source Software, 8(92), 5735. https://doi.org/10.21105/joss.05735
+
+
+ A flexible framework for multi physics and multi domain PDE simulations
+ Müthing
+ 10.18419/opus-3620
+ 2015
+ Müthing, S. (2015). A flexible framework for multi physics and multi domain PDE simulations [PhD thesis, Universität Stuttgart]. https://doi.org/10.18419/opus-3620
+
+
+ Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models
+ Arevalo
+ Nature communications
+ 1
+ 7
+ 10.1038/ncomms11437
+ 2016
+ Arevalo, H. J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K. C., & Trayanova, N. A. (2016). Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications, 7(1), 11437. https://doi.org/10.1038/ncomms11437
+
+
+ COPASI—a COmplex PAthway SImulator
+ Hoops
+ Bioinformatics
+ 24
+ 22
+ 10.1093/bioinformatics/btl485
+ 1367-4803
+ 2006
+ Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., & Kummer, U. (2006). COPASI—a COmplex PAthway SImulator. Bioinformatics, 22(24), 3067–3074. https://doi.org/10.1093/bioinformatics/btl485
+
+
+
+
+
+
diff --git a/joss.06836/10.21105.joss.06836.pdf b/joss.06836/10.21105.joss.06836.pdf
new file mode 100644
index 000000000..7a51531c6
Binary files /dev/null and b/joss.06836/10.21105.joss.06836.pdf differ
diff --git a/joss.06836/paper.jats/10.21105.joss.06836.jats b/joss.06836/paper.jats/10.21105.joss.06836.jats
new file mode 100644
index 000000000..cef2c3da3
--- /dev/null
+++ b/joss.06836/paper.jats/10.21105.joss.06836.jats
@@ -0,0 +1,858 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6836
+10.21105/joss.06836
+
+DuneCopasi: A multi-compartment reaction-diffusion
+simulator for systems biology
+
+
+
+https://orcid.org/0000-0003-0814-9670
+
+Ospina De Los Ríos
+Santiago
+
+
+
+
+
+
+Bastian
+Peter
+
+
+
+
+https://orcid.org/0000-0002-0654-4979
+
+Keegan
+Liam
+
+
+
+
+https://orcid.org/0000-0002-5458-7404
+
+Sahle
+Sven
+
+
+
+
+https://orcid.org/0000-0001-8769-783X
+
+Vermoortele
+Dylan
+
+
+
+
+https://orcid.org/0000-0002-8697-5348
+
+Wehling
+Lilija
+
+
+
+
+
+
+Interdisciplinary Center for Scientific Computing (IWR),
+Heidelberg University, Germany
+
+
+
+
+Heidelberg Graduate School of Mathematical and
+Computational Methods for the Sciences (HGS MathComp), Heidelberg
+University, Germany
+
+
+
+
+Scientific Software Center (SSC), Heidelberg University,
+Germany
+
+
+
+
+BioQuant, Centre for Organismal Studies (COS), Heidelberg
+University, Germany
+
+
+
+
+Institute of Pathology, University Hospital Heidelberg,
+Germany
+
+
+
+
+Cardiovascular Imaging and Dynamics, KU Leuven,
+Belgium
+
+
+
+9
+104
+6836
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2024
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Diffusion
+Reaction Networks
+Multiple Compartments
+Continuous Galerkin Method
+Partial Differential Equations
+Finite Element Method
+Systems Biology
+C++
+WebAssembly
+Docker
+DUNE
+
+
+
+
+
+ Summary
+
DuneCopasi is a C++ library designed to simulate how chemical
+ reactions and diffusion processes occur in space, which is crucial for
+ understanding many biological systems. It allows users to model these
+ processes in both simple and complex environments, using grids that
+ represent one, two, or three dimensions. Optimised for modern
+ computers, DuneCopasi can be used as a standalone command-line
+ application, accessed through tools like Docker or a web-based
+ terminal, as a C++ library, or integrated into a graphical interface.
+ One such interface is the Spatial Model
+ Editor (SME)
+ (Keegan
+ et al., 2023), which helps users create and manipulate
+ biological reaction models. The project was initiated to provide the
+ numerical foundation for a spatial modelling tool for biochemical
+ reaction networks, complementing the COmplex
+ PAthway SImulator (COPASI) software
+ (Hoops
+ et al., 2006). This development resulted from a collaboration
+ between the COPASI team and the Distributed and
+ Unified Numerics Environment
+ (DUNE) team
+ (Bastian
+ et al., 2021).
+
+
+ Background
+
In the context of cell biology, computational modelling has become
+ an essential technique for understanding and discovering biological
+ processes. By comparing model simulations with experimental data,
+ researchers can set up models, validate them, and test hypotheses
+ about these processes. Traditionally, most biological systems studied
+ this way have been spatially homogeneous. That is, the data are
+ typically time-resolved concentrations or quantities of biochemical
+ species, modelled using Ordinary
+ Differential Equations (ODEs).
+
However, recent advances in live-cell imaging technology have made
+ more detailed spatio-temporal data available, leading to a growing
+ need for models that capture not only the time dynamics but also the
+ spatial distribution of these biochemical species. This has prompted a
+ shift toward spatially resolved models.
+
+
+ Model Problem
+
A natural extension of spatially homogeneous ODE models is to
+ incorporate spatio-temporal dynamics by formulating the problem as a
+ system of Partial Differential
+ Equations (PDEs) across multiple compartments. In such
+ models, each compartment’s PDE represents the reaction-diffusion
+ processes of biochemical species in a specific physical domain (e.g.,
+ the cytosol), while boundary conditions between compartments (e.g.,
+ membrane fluxes) govern the interactions between them.
+
Specifically, our program solves the mass balance equation for the
+ species
+
+ uik
+ in the
+
+ k-th
+ compartment
+
+ Ωk
+ for every
+
+ k∈K
+ and
+
+ i∈Nk.
+ Each mass balance equation is given by
Here,
+
+ 𝐮k:=(u1k,…,udim(Nk)k)
+ represents the vector of species concentrations in compartment
+
+
+ k,
+ while the full vector of species concentrations across all
+ compartments is denoted as
+
+ 𝐮:=(𝐮1,…,𝐮dim(K)).
+ The unit outer normal vector on the boundary
+
+
+ ∂Ωk
+ is represented by
+
+ 𝐧k,
+ and the set of neighbouring compartments to
+
+
+ k
+ is given by
+
+ Tk:={l∈K:∂Ωk∩Ω¯l≠⌀},
+ indicating the compartments that share a boundary with
+
+
+ Ωk.
+
The reaction operator
+
+ ℛik(𝐮)
+ governs the local reaction dynamics within
+
+
+ Ωk,
+ while the storage terms
+
+ ϕik
+ account for species accumulation in the compartment. Cross-diffusion
+ terms
+
+ 𝖣ijk
+ describe how species diffuse between different species within the same
+ compartment. The non-linear transmission conditions
+
+
+ 𝒯ikl(𝐮)
+ represent the outflow of species
+
+ uik
+ from compartment
+
+ Ωk,
+ where the outflow can either move to a neighbouring compartment
+
+
+ l
+ (if
+
+ l≠k)
+ or exit the system. Likewise, Dirichlet boundary conditions
+
+
+ uik(0)
+ are imposed on the subset
+
+ ΓkD
+ of the boundary
+
+ ∂Ωk,
+ specifying the fixed concentrations of species on that portion of the
+ boundary.
+
The parameters governing these equations are fully configurable at
+ run-time, either through the command line or via a configuration file.
+ By allowing full control over these parameters, users can adapt the
+ software to simulate a wide variety of biochemical processes, from
+ simple reactions in homogeneous environments to complex,
+ multi-compartmental systems with intricate boundary conditions and
+ interactions.
+
+
+ Capabilities
+
Many features of DuneCopasi have been designed and developed with
+ the specific case of systems biology in mind. Thus, a substantial
+ effort has been made to have a library that is interoperable with
+ systems biology data assets and requirements needed by their
+ practitioners. Among others, include:
+
+
+
a single executable configurable at run-time,
+
+
+
a run-time mathematical expression parser that understands the
+ Systems Biology Markup Language SBML
+ (Hucka
+ et al., 2003) specification,
+
+
+
the input of custom grid data and image files in the TIFF
+ format for initial spatial concentrations and other
+ parameters,
+
+
+
a powerful, yet simple, boundary/transmission condition
+ specification for each compartment to account for generic
+ trans-membrane fluxes,
+
+
+
a (non-linear) cross-diffusion specification that allows any
+ species to cross-diffuse into other mass balance equations,
+
+
+
a specification to compare results with user-defined objective
+ functions,
+
+
+
an in-place function interpolator that reduces the
+ computational cost of evaluating common expensive reaction
+ operations, and
+
+
+
an embedded random field generator
+ (Kempf
+ et al., 2023) to represent statistical spatial variations
+ on the domain.
+
+
+
Furthermore, DuneCopasi is a stand-alone multi-compartment
+ reaction-diffusion solver that may easily be used for many other
+ fields of research and engineering fitting our model problem
+ (e.g. [fig:cardiac_ep]).
+
+
DuneCopasi is a highly flexible simulator that is
+ run-time configurable using dedicated configuration files.
+ DuneCopasi can autonomysly interpret mathematical equations,
+ assemble the computational problems and solve these equations based
+ on the configuration file. Here we illustrate the integration of
+ DuneCopasi within a computational electrophysiology pipeline
+ allowing to solve the electrophysiological mono-domain equations
+ with Mitchell-Schaefer cell model using a medical imaging derived
+ from biventricular geometry.
+
+
+
+
+
+ Statement of Need
+
Finite element frameworks like DUNE
+ (Bastian
+ et al., 2008), Deal.II
+ (Arndt
+ et al., 2023), Necktar++
+ (Cantwell
+ et al., 2015), or FreeFem++
+ (Hecht,
+ 2012) are too generic by design and don’t address the specific
+ requirements of the computational modelling practices in systems
+ biology out of the box. In particular, most finite element frameworks
+ don’t consider the multi-compartment systems in their design,
+ resulting, if at all possible, in inefficient simulations or obscure
+ tricks to force this feature. Here, we extended DUNE-PDELab
+ (Bastian
+ et al., 2010;
+ Müthing,
+ 2015) with efficient data structures especially tailored for
+ this task.
+
In the space of systems biology, two well-known software packages
+ also provide similar features to DuneCopasi, namely Morpheus
+ (Starruß
+ et al., 2014) and VCell
+ (Schaff
+ et al., 1997). Morpheus is a computational tool for
+ multi-cellular systems which follows a cellular automata design to set
+ rules of interactions between individual cells. It focuses on
+ modelling approaches like cellular Potts models combined with
+ gradients modelled by PDEs, rather than multi-compartment PDE models.
+ Furthermore, due to its design, it falls short for moderate and big
+ PDE computations since explicit solvers are severely limited by the
+ required time steps. On the other hand, VCell provides a fully
+ implicit finite volume solver on structured grids that can very well
+ manage the multi-compartment case in addition to membrane unknowns. In
+ comparison, our solution aims to resolve the geometry and the
+ transmission conditions directly in the weak formulation of the
+ problem while also being designed to provide implicit and monolithic
+ solvers as well as tailored preconditioners for the underlying linear
+ solvers.
+
+
+ Research and Use Cases
+
The principal purpose of our project has been to bridge the gap
+ between systems biology and scientific computing by providing
+ researchers with an accessible and reproducible spatial simulator. An
+ illustration of this is the study depicted in
+ [fig:wehling_2022]
+ (Wehling
+ et al., 2022), where simulations with the SME
+ (Keegan
+ et al., 2023) aided in assessing and better understanding the
+ mechanisms of the YAP and TAZ proteins that regulate cell
+ proliferation in liver cells. Further examples that fit our model
+ problem in this context have been presented by others
+ (Eliaš
+ & Clairambault, 2014). Additionally, DuneCopasi stands as a
+ versatile tool capable of accommodating diverse computational needs
+ beyond its initial focus on systems biology. For example, the general
+ purpose nature allows for seamless integration into electrophysiology
+ simulations, without requiring any modifications. The emerging concept
+ of identifying patients based on personalised cardiac
+ electrophysiology simulations
+ (Arevalo
+ et al., 2016) underscores the demand for easy-to-use and
+ efficient simulators.
+ [fig:cardiac_ep]
+ demonstrates how DuneCopasi emerges as a flexible solver poised to
+ meet these evolving needs.
+
+
Mathematical modelling predicts that nuclear
+ phosphorylation controls spatial localization of Hippo signalling
+ pathway components YAP and TAZ. Here, we compare two model
+ topologies - “Model 1” (canonical) and “Model 2” (alternative model)
+ - concerning the intracellular distribution of YAP and TAZ proteins
+ (Pr) and their phosphorylated counterparts (pPr). If the
+ phosphorylation of YAP/TAZ takes place exclusively outside the
+ nucleus, as shown in “Model 1”, PDE simulation indicates low spatial
+ accordance with the experimentally measured subcellular localization
+ of YAP/TAZ. Whereas, “Model 2” describes YAP/TAZ protein
+ phosphorylation and dephosphorylation in the nucleus. The simulation
+ of “Model 2” agrees with experimentally measured subcellular
+ distribution of YAP/TAZ proteins, as reported in
+ (Wehling
+ et al., 2022).
+
+
+
+
+
+ Acknowledgements
+
We want to thank all the contributions that aided in the
+ development and deployment of the package. Special thanks to Ursula
+ Kummer from the COPASI team for valuable guidance. This work has been
+ funded and supported by the German Federal Ministry of Education and
+ Research (BMBF) FKZ 031L0158.
+
+
+
+
+
+
+
+
+ BastianPeter
+ BlattMarkus
+ DednerAndreas
+ EngwerChristian
+ KlöfkornRobert
+ OhlbergerMario
+ SanderOliver
+
+ A generic grid interface for parallel and adaptive scientific computing. Part i: Abstract framework
+
+ Springer
+ 2008
+ 82
+ 10.1007/s00607-008-0003-x
+ 103
+ 119
+
+
+
+
+
+ BastianPeter
+ HeimannFelix
+ MarnachSven
+
+ Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE)
+
+ 2010
+ 20171012
+ 46
+ 2
+ dml.cz/dmlcz/140745
+ 294
+ 315
+
+
+
+
+
+ BastianPeter
+ BlattMarkus
+ DednerAndreas
+ DreierNils-Arne
+ EngwerChristian
+ FritzeRené
+ GräserCarsten
+ GrüningerChristoph
+ KempfDominic
+ KlöfkornRobert
+ OhlbergerMario
+ SanderOliver
+
+ The dune framework: Basic concepts and recent developments
+
+ 2021
+ 81
+ 0898-1221
+ https://www.sciencedirect.com/science/article/pii/S089812212030256X
+ 10.1016/j.camwa.2020.06.007
+ 75
+ 112
+
+
+
+
+
+ EliašJán
+ ClairambaultJean
+
+ Reaction–diffusion systems for spatio-temporal intracellular protein networks: A beginner’s guide with two examples
+
+ 2014
+ 10
+ 16
+ 2001-0370
+ https://www.sciencedirect.com/science/article/pii/S2001037014000087
+ 10.1016/j.csbj.2014.05.007
+ 12
+ 22
+
+
+
+
+
+ HuckaM.
+ FinneyA.
+ SauroH. M.
+ BolouriH.
+ DoyleJ. C.
+ KitanoH.
+ ArkinA. P.
+ BornsteinB. J.
+ BrayD.
+ Cornish-BowdenA.
+ CuellarA. A.
+ DronovS.
+ GillesE. D.
+ GinkelM.
+ GorV.
+ GoryaninI. I.
+ HedleyW. J.
+ HodgmanT. C.
+ HofmeyrJ.-H.
+ HunterP. J.
+ JutyN. S.
+ KasbergerJ. L.
+ KremlingA.
+ KummerU.
+ Le NovèreN.
+ LoewL. M.
+ LucioD.
+ MendesP.
+ MinchE.
+ MjolsnessE. D.
+ NakayamaY.
+ NelsonM. R.
+ NielsenP. F.
+ SakuradaT.
+ SchaffJ. C.
+ ShapiroB. E.
+ ShimizuT. S.
+ SpenceH. D.
+ StellingJ.
+ TakahashiK.
+ TomitaM.
+ WagnerJ.
+ WangJ.
+ SBML Forum:
+
+ The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
+
+ 200303
+ 19
+ 4
+ 1367-4803
+ 10.1093/bioinformatics/btg015
+ 524
+ 531
+
+
+
+
+
+ SchaffJ
+ FinkC C
+ SlepchenkoB
+ CarsonJ H
+ LoewL M
+
+ A general computational framework for modeling cellular structure and function
+
+ Elsevier BV
+ 199709
+ 73
+ 3
+ 10.1016/s0006-3495(97)78146-3
+ 1135
+ 1146
+
+
+
+
+
+ StarrußJörn
+ BackWalter de
+ BruschLutz
+ DeutschAndreas
+
+ Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology
+
+ 201401
+ 30
+ 9
+ 1367-4803
+ 10.1093/bioinformatics/btt772
+ 1331
+ 1332
+
+
+
+
+
+ ArndtDaniel
+ BangerthWolfgang
+ BergbauerMaximilian
+ FederMarco
+ FehlingMarc
+ HeinzJohannes
+ HeisterTimo
+ HeltaiLuca
+ KronbichlerMartin
+ MaierMatthias
+ MunchPeter
+ PelteretJean-Paul
+ TurcksinBruno
+ WellsDavid
+ ZampiniStefano
+
+ The deal.II library, version 9.5
+
+ 2023
+ 31
+ 3
+ https://dealii.org/deal95-preprint.pdf
+ 10.1515/jnma-2023-0089
+ 231
+ 246
+
+
+
+
+
+ HechtF.
+
+ New development in FreeFem++
+
+ 2012
+ 20
+ 3-4
+ 1570-2820
+ https://freefem.org/
+ 10.1515/jnum-2012-0013
+ 251
+ 265
+
+
+
+
+
+ CantwellC. D.
+ MoxeyD.
+ ComerfordA.
+ BolisA.
+ RoccoG.
+ MengaldoG.
+ De GraziaD.
+ YakovlevS.
+ LombardJ.-E.
+ EkelschotD.
+ JordiB.
+ XuH.
+ MohamiedY.
+ EskilssonC.
+ NelsonB.
+ VosP.
+ BiottoC.
+ KirbyR. M.
+ SherwinS. J.
+
+ Nektar++: An open-source spectral/hp element framework
+
+ 2015
+ 192
+ 0010-4655
+ https://www.sciencedirect.com/science/article/pii/S0010465515000533
+ 10.1016/j.cpc.2015.02.008
+ 205
+ 219
+
+
+
+
+
+ KeeganLiam
+ AndriushchenkoPetr
+ SchreinerHenry
+ CaramizaruHorea
+ PatelHrishikesh
+
+ Spatial-model-editor/spatial-model-editor: 1.5.0
+ Zenodo
+ 202312
+ 10.5281/zenodo.10246531
+
+
+
+
+
+ WehlingLilija
+ KeeganLiam
+ Fernández-PalancaPaula
+ HassanReham
+ GhallabAhmed
+ SchmittJennifer
+ TangYingyue
+ Le MaroisMaxime
+ RoesslerStephanie
+ SchirmacherPeter
+ others
+
+ Spatial modeling reveals nuclear phosphorylation and subcellular shuttling of YAP upon drug-induced liver injury
+
+ eLife Sciences Publications Limited
+ 2022
+ 11
+ 10.7554/eLife.78540
+ e78540
+
+
+
+
+
+
+ KempfDominic
+ KleinOle
+ KutriRobert
+ ScheichlRobert
+ BastianPeter
+
+ Parafields: A generator for distributed, stationary gaussian processes
+
+ The Open Journal
+ 2023
+ 8
+ 92
+ 10.21105/joss.05735
+ 5735
+
+
+
+
+
+
+ MüthingSteffen
+
+ A flexible framework for multi physics and multi domain PDE simulations
+ Universität Stuttgart
+ 2015
+ 10.18419/opus-3620
+
+
+
+
+
+ ArevaloHermenegild J
+ VadakkumpadanFijoy
+ GuallarEliseo
+ JebbAlexander
+ MalamasPeter
+ WuKatherine C
+ TrayanovaNatalia A
+
+ Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models
+
+ Nature Publishing Group UK London
+ 2016
+ 7
+ 1
+ 10.1038/ncomms11437
+ 11437
+
+
+
+
+
+
+ HoopsStefan
+ SahleSven
+ GaugesRalph
+ LeeChristine
+ PahleJürgen
+ SimusNatalia
+ SinghalMudita
+ XuLiang
+ MendesPedro
+ KummerUrsula
+
+ COPASI—a COmplex PAthway SImulator
+
+ 200610
+ 22
+ 24
+ 1367-4803
+ https://doi.org/10.1093/bioinformatics/btl485
+ 10.1093/bioinformatics/btl485
+ 3067
+ 3074
+
+
+
+
+
diff --git a/joss.06836/paper.jats/cardiac_ep.png b/joss.06836/paper.jats/cardiac_ep.png
new file mode 100644
index 000000000..0517d06cb
Binary files /dev/null and b/joss.06836/paper.jats/cardiac_ep.png differ
diff --git a/joss.06836/paper.jats/wehling_2022.pdf b/joss.06836/paper.jats/wehling_2022.pdf
new file mode 100644
index 000000000..680f57976
Binary files /dev/null and b/joss.06836/paper.jats/wehling_2022.pdf differ