diff --git a/joss.07085/10.21105.joss.07085.crossref.xml b/joss.07085/10.21105.joss.07085.crossref.xml new file mode 100644 index 0000000000..5adbc987de --- /dev/null +++ b/joss.07085/10.21105.joss.07085.crossref.xml @@ -0,0 +1,254 @@ + + + + 20241021074950-86b7b35a79e7bf983fc86a579dad89c9ec888be3 + 20241021074950 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 10 + 2024 + + + 9 + + 102 + + + + ASIMTools: A lightweight framework for scalable and +reproducible atomic simulations + + + + Mgcini Keith + Phuthi + https://orcid.org/0000-0002-0982-8635 + + + Emil + Annevelink + https://orcid.org/0000-0001-5035-7807 + + + Venkatasubramanian + Viswanathan + https://orcid.org/0000-0003-1060-5495 + + + + 10 + 21 + 2024 + + + 7085 + + + 10.21105/joss.07085 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.13952433 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/7085 + + + + 10.21105/joss.07085 + https://joss.theoj.org/papers/10.21105/joss.07085 + + + https://joss.theoj.org/papers/10.21105/joss.07085.pdf + + + + + + Atomic Simulation Recipes: A Python framework +and library for automated workflows + Gjerding + Computational Materials +Science + 199 + 10.1016/j.commatsci.2021.110731 + 0927-0256 + 2021 + Gjerding, M., Skovhus, T., Rasmussen, +A., Bertoldo, F., Larsen, A. H., Mortensen, J. J., & Thygesen, K. S. +(2021). Atomic Simulation Recipes: A Python framework and library for +automated workflows. Computational Materials Science, 199, 110731. +https://doi.org/10.1016/j.commatsci.2021.110731 + + + LAMMPS - a flexible simulation tool for +particle-based materials modeling at the atomic, meso, and continuum +scales + Thompson + Comp. Phys. Comm. + 271 + 10.1016/j.cpc.2021.108171 + 2022 + Thompson, A. P., Aktulga, H. M., +Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. +J. in ’t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, +M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - +a flexible simulation tool for particle-based materials modeling at the +atomic, meso, and continuum scales. Comp. Phys. Comm., 271, 108171. +https://doi.org/10.1016/j.cpc.2021.108171 + + + Open computational materials +science + Walsh + Nature Materials + 1 + 23 + 10.1038/s41563-023-01699-7 + 1476-4660 + 2024 + Walsh, A. (2024). Open computational +materials science. Nature Materials, 23(1), 16–17. +https://doi.org/10.1038/s41563-023-01699-7 + + + FireWorks: A dynamic workflow system designed +for high-throughput applications + Jain + Concurrency and Computation: Practice and +Experience + 17 + 27 + 10.1002/cpe.3505 + 1532-0634 + 2015 + Jain, A., Ong, S. P., Chen, W., +Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, +G.-M., Hautier, G., Gunter, D., & Persson, K. A. (2015). FireWorks: +A dynamic workflow system designed for high-throughput applications. +Concurrency and Computation: Practice and Experience, 27(17), 5037–5059. +https://doi.org/10.1002/cpe.3505 + + + Python Materials Genomics (pymatgen): A +robust, open-source python library for materials +analysis + Ong + Computational Materials +Science + 68 + 10.1016/j.commatsci.2012.10.028 + 0927-0256 + 2013 + Ong, S. P., Richards, W. D., Jain, +A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., +Persson, K. A., & Ceder, G. (2013). Python Materials Genomics +(pymatgen): A robust, open-source python library for materials analysis. +Computational Materials Science, 68, 314–319. +https://doi.org/10.1016/j.commatsci.2012.10.028 + + + The atomic simulation environment—a Python +library for working with atoms + Larsen + Journal of Physics: Condensed +Matter + 27 + 29 + 10.1088/1361-648X/aa680e + 0953-8984 + 2017 + Larsen, A. H., Mortensen, J. J., +Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., +Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., +Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., +Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic +simulation environment—a Python library for working with atoms. Journal +of Physics: Condensed Matter, 29(27), 273002. +https://doi.org/10.1088/1361-648X/aa680e + + + AiiDA 1.0, a scalable computational +infrastructure for automated reproducible workflows and data +provenance + Huber + Scientific Data + 1 + 7 + 10.1038/s41597-020-00638-4 + 2052-4463 + 2020 + Huber, S. P., Zoupanos, S., Uhrin, +M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T., +Yakutovich, A. V., Andersen, C. W., Ramirez, F. F., Adorf, C. S., +Gargiulo, F., Kumbhar, S., Passaro, E., Johnston, C., Merkys, A., +Cepellotti, A., Mounet, N., … Pizzi, G. (2020). AiiDA 1.0, a scalable +computational infrastructure for automated reproducible workflows and +data provenance. Scientific Data, 7(1), 300. +https://doi.org/10.1038/s41597-020-00638-4 + + + Accurate Surface and Finite-Temperature Bulk +Properties of Lithium Metal at Large Scales Using Machine Learning +Interaction Potentials + Phuthi + ACS Omega + 9 + 9 + 10.1021/acsomega.3c10014 + 2024 + Phuthi, M. K., Yao, A. M., Batzner, +S., Musaelian, A., Guan, P., Kozinsky, B., Cubuk, E. D., & +Viswanathan, V. (2024). Accurate Surface and Finite-Temperature Bulk +Properties of Lithium Metal at Large Scales Using Machine Learning +Interaction Potentials. ACS Omega, 9(9), 10904–10912. +https://doi.org/10.1021/acsomega.3c10014 + + + Vibrational Entropy and Free Energy of Solid +Lithium using Covariance of Atomic Displacements Enabled by Machine +Learning + Phuthi + 2024 + Phuthi, M. K., Huang, Y., Widom, M., +& Viswanathan, V. (2024). Vibrational Entropy and Free Energy of +Solid Lithium using Covariance of Atomic Displacements Enabled by +Machine Learning. arXiv. +http://arxiv.org/abs/2406.15491 + + + + + +