diff --git a/joss.05884/10.21105.joss.05884.crossref.xml b/joss.05884/10.21105.joss.05884.crossref.xml new file mode 100644 index 0000000000..d24c36f2bb --- /dev/null +++ b/joss.05884/10.21105.joss.05884.crossref.xml @@ -0,0 +1,418 @@ + + + + 20240601205503-95e65822e16cb768793fb3df8653a236036da3ad + 20240601205503 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 06 + 2024 + + + 9 + + 98 + + + + Foam: A Python package for forward asteroseismic +modelling of gravity modes + + + + Mathias + Michielsen + https://orcid.org/0000-0001-9097-3655 + + + + 06 + 01 + 2024 + + + 5884 + + + 10.21105/joss.05884 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.11237626 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5884 + + + + 10.21105/joss.05884 + https://joss.theoj.org/papers/10.21105/joss.05884 + + + https://joss.theoj.org/papers/10.21105/joss.05884.pdf + + + + + + Probing the temperature gradient in the core +boundary layer of stars with gravito-inertial modes. The case of KIC +7760680 + Michielsen + Astronomy and Astrophysics + 650 + 10.1051/0004-6361/202039926 + 2021 + Michielsen, M., Aerts, C., & +Bowman, D. M. (2021). Probing the temperature gradient in the core +boundary layer of stars with gravito-inertial modes. The case of KIC +7760680. Astronomy and Astrophysics, 650, A175. +https://doi.org/10.1051/0004-6361/202039926 + + + Probing the physics in the core boundary +layers of the double-lined B-type binary KIC 4930889 from its +gravito-inertial modes + Michielsen + Astronomy and Astrophysics + 679 + 10.1051/0004-6361/202244192 + 2023 + Michielsen, M., Van Reeth, T., +Tkachenko, A., & Aerts, C. (2023). Probing the physics in the core +boundary layers of the double-lined B-type binary KIC 4930889 from its +gravito-inertial modes. Astronomy and Astrophysics, 679, A6. +https://doi.org/10.1051/0004-6361/202244192 + + + Slowly pulsating B stars. + Waelkens + Astronomy and Astrophysics + 246 + 1991 + Waelkens, C. (1991). Slowly pulsating +B stars. Astronomy and Astrophysics, 246, 453. + + + Asteroseismology + Aerts + 10.1007/978-1-4020-5803-5 + 2010 + Aerts, C., Christensen-Dalsgaard, J., +& Kurtz, D. W. (2010). Asteroseismology. Springer, Astronomy; +Astrophysics Library. +https://doi.org/10.1007/978-1-4020-5803-5 + + + Convective Boundary Mixing in Main-Sequence +Stars: Theory and Empirical Constraints + Anders + Galaxies + 2 + 11 + 10.3390/galaxies11020056 + 2023 + Anders, E. H., & Pedersen, M. G. +(2023). Convective Boundary Mixing in Main-Sequence Stars: Theory and +Empirical Constraints. Galaxies, 11(2), 56. +https://doi.org/10.3390/galaxies11020056 + + + Probing the interior physics of stars through +asteroseismology + Aerts + Reviews of Modern Physics + 1 + 93 + 10.1103/RevModPhys.93.015001 + 2021 + Aerts, C. (2021). Probing the +interior physics of stars through asteroseismology. Reviews of Modern +Physics, 93(1), 015001. +https://doi.org/10.1103/RevModPhys.93.015001 + + + The BAyesian STellar algorithm (BASTA): a +fitting tool for stellar studies, asteroseismology, exoplanets, and +Galactic archaeology + Aguirre Børsen-Koch + Monthly Notices of the RAS + 3 + 509 + 10.1093/mnras/stab2911 + 2022 + Aguirre Børsen-Koch, V., Rørsted, J. +L., Justesen, A. B., Stokholm, A., Verma, K., Winther, M. L., Knudstrup, +E., Nielsen, K. B., Sahlholdt, C., Larsen, J. R., Cassisi, S., +Serenelli, A. M., Casagrande, L., Christensen-Dalsgaard, J., Davies, G. +R., Ferguson, J. W., Lund, M. N., Weiss, A., & White, T. R. (2022). +The BAyesian STellar algorithm (BASTA): a fitting tool for stellar +studies, asteroseismology, exoplanets, and Galactic archaeology. Monthly +Notices of the RAS, 509(3), 4344–4364. +https://doi.org/10.1093/mnras/stab2911 + + + AIMS - a new tool for stellar parameter +determinations using asteroseismic constraints + Rendle + Monthly Notices of the RAS + 1 + 484 + 10.1093/mnras/stz031 + 2019 + Rendle, B. M., Buldgen, G., Miglio, +A., Reese, D., Noels, A., Davies, G. R., Campante, T. L., Chaplin, W. +J., Lund, M. N., Kuszlewicz, J. S., Scott, L. J. A., Scuflaire, R., +Ball, W. H., Smetana, J., & Nsamba, B. (2019). AIMS - a new tool for +stellar parameter determinations using asteroseismic constraints. +Monthly Notices of the RAS, 484(1), 771–786. +https://doi.org/10.1093/mnras/stz031 + + + pySYD: Automated measurements of global +asteroseismic parameters + Chontos + The Journal of Open Source +Software + 79 + 7 + 10.21105/joss.03331 + 2022 + Chontos, A., Huber, D., Sayeed, M., +& Yamsiri, P. (2022). pySYD: Automated measurements of global +asteroseismic parameters. The Journal of Open Source Software, 7(79), +3331. https://doi.org/10.21105/joss.03331 + + + Forward Asteroseismic Modeling of Stars with +a Convective Core from Gravity-mode Oscillations: Parameter Estimation +and Stellar Model Selection + Aerts + The Astrophysical Journal Supplement +Series + 237 + 10.3847/1538-4365/aaccfb + 2018 + Aerts, C., Molenberghs, G., +Michielsen, M., Pedersen, M. G., Björklund, R., Johnston, C., Mombarg, +J. S. G., Bowman, D. M., Buysschaert, B., Pápics, P. I., Sekaran, S., +Sundqvist, J. O., Tkachenko, A., Truyaert, K., Van Reeth, T., & +Vermeyen, E. (2018). Forward Asteroseismic Modeling of Stars with a +Convective Core from Gravity-mode Oscillations: Parameter Estimation and +Stellar Model Selection. The Astrophysical Journal Supplement Series, +237, 15. +https://doi.org/10.3847/1538-4365/aaccfb + + + GYRE: an open-source stellar oscillation code +based on a new Magnus Multiple Shooting scheme + Townsend + Monthly Notices of the RAS + 435 + 10.1093/mnras/stt1533 + 2013 + Townsend, R. H. D., & Teitler, S. +A. (2013). GYRE: an open-source stellar oscillation code based on a new +Magnus Multiple Shooting scheme. Monthly Notices of the RAS, 435, +3406–3418. https://doi.org/10.1093/mnras/stt1533 + + + Angular momentum transport by heat-driven +g-modes in slowly pulsating B stars + Townsend + Monthly Notices of the RAS + 475 + 10.1093/mnras/stx3142 + 2018 + Townsend, R. H. D., Goldstein, J., +& Zweibel, E. G. (2018). Angular momentum transport by heat-driven +g-modes in slowly pulsating B stars. Monthly Notices of the RAS, 475, +879–893. https://doi.org/10.1093/mnras/stx3142 + + + Modules for Experiments in Stellar +Astrophysics (MESA) + Paxton + The Astrophysical Journal Supplement +Series + 1 + 192 + 10.1088/0067-0049/192/1/3 + 2011 + Paxton, B., Bildsten, L., Dotter, A., +Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for +Experiments in Stellar Astrophysics (MESA). The Astrophysical Journal +Supplement Series, 192(1), 3. +https://doi.org/10.1088/0067-0049/192/1/3 + + + Modules for Experiments in Stellar +Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive +Stars + Paxton + The Astrophysical Journal Supplement +Series + 1 + 208 + 10.1088/0067-0049/208/1/4 + 2013 + Paxton, B., Cantiello, M., Arras, P., +Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. +H., Stello, D., Timmes, F. X., & Townsend, R. (2013). Modules for +Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, +Rotation, and Massive Stars. The Astrophysical Journal Supplement +Series, 208(1), 4. +https://doi.org/10.1088/0067-0049/208/1/4 + + + Modules for Experiments in Stellar +Astrophysics (MESA): Binaries, Pulsations, and +Explosions + Paxton + The Astrophysical Journal Supplement +Series + 1 + 220 + 10.1088/0067-0049/220/1/15 + 2015 + Paxton, B., Marchant, P., Schwab, J., +Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, +H., Langer, N., Townsend, R. H. D., Townsley, D. M., & Timmes, F. X. +(2015). Modules for Experiments in Stellar Astrophysics (MESA): +Binaries, Pulsations, and Explosions. The Astrophysical Journal +Supplement Series, 220(1), 15. +https://doi.org/10.1088/0067-0049/220/1/15 + + + Modules for Experiments in Stellar +Astrophysics (MESA): Convective Boundaries, Element Diffusion, and +Massive Star Explosions + Paxton + The Astrophysical Journal Supplement +Series + 2 + 234 + 10.3847/1538-4365/aaa5a8 + 2018 + Paxton, B., Schwab, J., Bauer, E. B., +Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., +Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., & Timmes, +F. X. (2018). Modules for Experiments in Stellar Astrophysics (MESA): +Convective Boundaries, Element Diffusion, and Massive Star Explosions. +The Astrophysical Journal Supplement Series, 234(2), 34. +https://doi.org/10.3847/1538-4365/aaa5a8 + + + Modules for Experiments in Stellar +Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective +Boundaries, and Energy Conservation + Paxton + The Astrophysical Journal Supplement +Series + 1 + 243 + 10.3847/1538-4365/ab2241 + 2019 + Paxton, B., Smolec, R., Schwab, J., +Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R., +Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A., +Townsend, R. H. D., Wolf, W. M., Zhang, M., & Timmes, F. X. (2019). +Modules for Experiments in Stellar Astrophysics (MESA): Pulsating +Variable Stars, Rotation, Convective Boundaries, and Energy +Conservation. The Astrophysical Journal Supplement Series, 243(1), 10. +https://doi.org/10.3847/1538-4365/ab2241 + + + Modules for Experiments in Stellar +Astrophysics (MESA): Time-dependent Convection, Energy Conservation, +Automatic Differentiation, and Infrastructure + Jermyn + The Astrophysical Journal Supplement +Series + 1 + 265 + 10.3847/1538-4365/acae8d + 2023 + Jermyn, A. S., Bauer, E. B., Schwab, +J., Farmer, R., Ball, W. H., Bellinger, E. P., Dotter, A., Joyce, M., +Marchant, P., Mombarg, J. S. G., Wolf, W. M., Sunny Wong, T. L., +Cinquegrana, G. C., Farrell, E., Smolec, R., Thoul, A., Cantiello, M., +Herwig, F., Toloza, O., … Timmes, F. X. (2023). Modules for Experiments +in Stellar Astrophysics (MESA): Time-dependent Convection, Energy +Conservation, Automatic Differentiation, and Infrastructure. The +Astrophysical Journal Supplement Series, 265(1), 15. +https://doi.org/10.3847/1538-4365/acae8d + + + Hydrodynamics of oceans and +atmospheres + Eckart + Hydrodynamics of oceans and atmospheres, +Pergamon Press, Oxford + 10.1002/qj.49708938224 + 1477-870X + 1960 + Eckart, G. (1960). Hydrodynamics of +oceans and atmospheres. Hydrodynamics of Oceans and Atmospheres, +Pergamon Press, Oxford. +https://doi.org/10.1002/qj.49708938224 + + + Improved asymptotic expressions for the +eigenvalues of Laplace’s tidal equations + Townsend + Monthly Notices of the RAS + 3 + 497 + 10.1093/mnras/staa2159 + 2020 + Townsend, R. H. D. (2020). Improved +asymptotic expressions for the eigenvalues of Laplace’s tidal equations. +Monthly Notices of the RAS, 497(3), 2670–2679. +https://doi.org/10.1093/mnras/staa2159 + + + Model Selection and Model Averaging, Cambridge +Series in Statistical and Probabilistic Mathematics + Claeskens + 10.1017/CBO9780511790485 + 2008 + Claeskens, G., & Hjort, N. L. +(2008). Model Selection and Model Averaging, Cambridge Series in +Statistical and Probabilistic Mathematics. +https://doi.org/10.1017/CBO9780511790485 + + + + + + diff --git a/joss.05884/10.21105.joss.05884.pdf b/joss.05884/10.21105.joss.05884.pdf new file mode 100644 index 0000000000..cad0c91f26 Binary files /dev/null and b/joss.05884/10.21105.joss.05884.pdf differ diff --git a/joss.05884/paper.jats/10.21105.joss.05884.jats b/joss.05884/paper.jats/10.21105.joss.05884.jats new file mode 100644 index 0000000000..867ae3d370 --- /dev/null +++ b/joss.05884/paper.jats/10.21105.joss.05884.jats @@ -0,0 +1,791 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5884 +10.21105/joss.05884 + +Foam: A Python package for forward asteroseismic +modelling of gravity modes + + + +https://orcid.org/0000-0001-9097-3655 + +Michielsen +Mathias + + + + + +Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, +B-3001 Leuven, Belgium + + + + +17 +2 +2024 + +9 +98 +5884 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +astronomy +stellar astrophysics +asteroseismology + + + + + + Summary +

Asteroseismology, the study of stellar pulsations, offers insights + into the internal structures and evolution of stars. Analysing the + variations in a star’s brightness allows the determination of + fundamental properties such as mass, radius, age, and chemical + composition. Asteroseismology heavily relies on computational tools, + but a significant number of them are closed-source, thus inaccessible + to the broader astronomic community. This manuscript presents + Foam, a Python package designed to perform + forward asteroseismic modelling of stars exhibiting gravity modes. It + automates and streamlines a considerable fraction of the modelling + process, comparing grids of theoretical stellar models and their + oscillation frequencies to observed frequency sets in stars.

+

Foam offers the flexibility to employ + diverse modelling approaches, allowing users to choose different + methodologies for matching theoretically predicted oscillations to + observations. It provides options to utilise various sets of + observables for comparison with their theoretical counterparts, employ + different merit functions for assessing goodness of fit, and to + incorporate nested subgrids in a statistically rigorous manner. For + applications of these methodologies in modelling observed gravity + modes, refer to Michielsen et al. + (2021) + and Michielsen et al. + (2023).

+
+ + Introduction +

Stars spend approximately 90% of their evolution on their so called + main sequence, during which they fuse hydrogen into + helium in their cores. In stars with masses above about 1.2 times the + mass of the sun, the stellar core in which these fusion processes take + place becomes convective. Macroscopic element transport in and near + the convective cores of these stars has a large influence on their + life, since it transports additional hydrogen from outside of the + nuclear fusion region into this region. In this way it both prolongs + the main-sequence lifetime of stars and enlarges the mass of the + helium core at the end of the main sequence, which significantly + influences all later stages of their evolution. However, these + transport processes provide the largest uncertainties in stellar + structure and evolution models for stars with convective cores, due to + our poor understanding of macroscopic element transport and limited + number of useful observations to test the theories. (See e.g. + Anders + & Pedersen, 2023 for a review on this topic.)

+

Through asteroseismology, we gain the means to unravel the interior + structure of stars + (Aerts + et al., 2010; + Aerts, + 2021). Gravity (g-) modes in particular have a high sensitivity + to the properties of the near-core region. These modes have buoyancy + as their restoring force, have dominantly horizontal displacements, + and oscillate with a period of several hours to a few days. + Additionally, they can only propagate in the non-convective regions in + the star, which makes their propagation cavity very sensitive to the + size of the convective core. We can exploit the probing power of + g-modes, observed in e.g. Slowly Pulsating B-type stars + (Waelkens, + 1991), to investigate the physics in the interior of these + stars, particularly the transition region between the convective core + and radiative envelope.

+
+ + Statement of need +

Some tools have been developed and made publicly available to model + and determine stellar parameters of solar-like oscillators, such as + AIMS + (Rendle + et al., 2019), BASTA + (Aguirre + Børsen-Koch et al., 2022), and pySYD + (Chontos + et al., 2022). However, there are several key differences + between the modelling of the pressure (p-) modes observed in + solar-like oscillators, and the modelling of the g-modes observed in + more massive stars. First and foremost, the well-known asteroseismic + scaling relations used for solar-like oscillators cannot be + extrapolated to main-sequence stars with a convective core. Secondly, + the effect of rotation on p-modes is often included in a perturbative + way, whereas the g-mode frequencies are strongly dependent on rotation + and require the inclusion of the Coriolis acceleration in a + non-perturbative way. Additionally the mass regime of stars with + convective cores is subject to strong correlations between several + model parameters, which sometimes follow non-linear relationships. In + this context, the Mahalanobis distance (MD) (see + Aerts + et al., 2018 for its application to asteroseismic modelling) + provides a more appropriate merit function than the often used + + + χ2, + since it tackles both these non-linear correlations and includes + uncertainties for the theoretical predictions. The use of a different, + more appropriate merit function significantly impacts modelling + results. This is demonstrated by Michielsen et al. + (2021) + in their comparison between the results obtained by employing the MD + versus + + χ2, + applied in the modelling of an observed star.

+

Foam was developed to be complimentary to + the available modelling tools for solar-like oscillators. It provides + a framework for the forward modelling of g-modes in main-sequence + stars with convective cores, and tackles the differences in the + modelling approach as compared to the case of solar-like oscillators. + Foam therefore extends the efforts to provide + publicly available, open-source tools for asteroseismic modelling to + the g-mode domain, given that the currently available tools + predominantly concern the solar-like oscillators.

+
+ + Software package overview +

Foam is designed as a customisable pipeline. + It will match theoretical models to observations, computing the + goodness of fit of each model based on the selected merit function. + Afterwards it will determine the best model alongside the uncertainty + region of this solution based on statistical criteria. On the + observational side, it will take a list of frequencies as an input, + optionally complemented by additional information such as a set of + surface properties (effective temperature, surface gravity, + luminosity, element surface abundances…). On the theoretical side + Foam will use a grid of theoretical stellar + models, calculated by the user to suit their specific needs. Although + the current implementation is made for a grid of stellar equilibrium + models computed by MESA + (Jermyn + et al., 2023; + Paxton + et al., 2011, + 2013, + 2015, + 2018, + 2019), + whose pulsation frequencies are computed with + GYRE + (Townsend + et al., 2018; + Townsend + & Teitler, 2013), the majority of the code is not + inherently dependent on MESA. By making certain + adjustments to the modelling pipeline, Foam + could potentially employ grids generated by different stellar + evolution codes. Some suggestions how to approach this are given in + the description of + the + theoretical model grid in the online documentation. + However, the implementation of such functionality currently remains + out of the scope of the project.

+

The script to run the pipeline can be altered in order to change + the modelling approach you want to take. The various configuration + options, the installation procedure, and a walkthrough of how to + create your own modelling setup, are described in more detail in the + online + documentation. Although it relies on grids of stellar + equilibrium models computed by MESA as the + source of the theoretical model grid, MESA’s + installation itself is not required for Foam to + function. The installation of GYRE is however + required, specifically since Foam relies on the + tar_fit.mX.kX.h5 files included in the + GYRE installation. This allows us to rescale + the g-modes for various stellar rotation rates, following the + traditional approximation of rotation (e.g. + Eckart, + 1960; see + Townsend, + 2020 for its implementation in GYRE) and + assuming rigid rotation. This facilitates computing the oscillation + frequencies for the grid of stellar equilibrium models only once, and + subsequently rescaling them to find the optimised rotation rate (see + Michielsen + et al., 2023). This approach avoids repeating the oscillation + computations for a variety of rotation values, which would introduce + extra dimensionality in the modelling problem in the form of adding + the rotation rate as an additional free parameter.

+

Foam’s modelling procedure can be broken + down into following sequential + steps + of the pipeline:

+ + +

Extract all required parameters and quantities from the files + in the theoretical MESA and + GYRE grids.

+
+ +

Construct the theoretical pulsation patterns for each stellar + model. Thereafter select theoretical pulsation patterns matching + the observational pattern whilst optimising their rotation rates. + Finally combine this information with the models’ surface + properties.

+
+ +

Calculate the likelihood of all the theoretical patterns + according to the specified merit functions and observables. This + list of observables consist of the pulsations, but can optionally + be extended with spectroscopic or astrometric information.

+
+ +

Exclude all the models that fall outside an n-sigma error box + on the spectroscopic and astrometric constraints as acceptable + solutions.

+
+ +

Calculate the Akaike information criterion (AIC, + Claeskens + & Hjort, 2008) corrected for small sample size. This + statistical criterion rewards goodness of fit, but penalises model + complexity in the form of additional free parameters. The AIC thus + allows a statistical comparison between models of different + (nested) grids where the number of free parameters is not the + same.

+
+ +

Calculate the 2 sigma uncertainty region of the maximum + likelihood solution using Bayes’ theorem.

+
+ +

Make corner plots for all combinations of the different + modelling choices (See + [fig:cornerplot] + for an example).

+
+ +

Construct a table with the best model of the grid for each + combination of different modelling choices.

+
+
+

Next to the tables with the best model parameters and their AIC + values, the cornerplots provide a quick way to assess the output of + the pipeline and visualise the modelling results. + [fig:cornerplot] + shows an example of such a cornerplot for the modelling of KIC 4930889 + performed by Michielsen et al. + (2023). + It gives a clear indication of which models are included (coloured) or + excluded (greyscale) from the uncertainty region, and indicates what + the best models of the grid are (yellow, see the colour bar).

+ +

Cornerplot with the parameters in the grid and the + rotation. The 50% best models are shown, colour-coded according to + the log of their merit function value. Models in colour fall within + the 2 sigma error ellipse, while those in greyscale fall outside of + it. Figures on the diagonal show binned parameter distributions of + the models in the error ellipse, and the panel at the top right + shows an Hertzsprung-Russell (HR) diagram with 1 and 3 sigma + observational error boxes. Figure taken from Michielsen et al. + (2023). +

+ +
+
+ + Acknowledgements +

The research leading to the development of this package has + received funding from the Research Foundation Flanders (FWO) by means + of a PhD scholarship to MM under project No. 11F7120N. MM is grateful + to Timothy Van Reeth for his help concerning the scaling of g-modes + with rotation, to Alex Kemp for his suggestions regarding the online + documentation, and to the reviewers Ashley Chontos and Ankit Barik for + their constructive remarks.

+
+ + + + + + + MichielsenM. + AertsC. + BowmanD. M. + + Probing the temperature gradient in the core boundary layer of stars with gravito-inertial modes. The case of KIC 7760680 + Astronomy and Astrophysics + 202106 + 650 + https://arxiv.org/abs/2104.04531 + 10.1051/0004-6361/202039926 + A175 + + + + + + + MichielsenM. + Van ReethT. + TkachenkoA. + AertsC. + + Probing the physics in the core boundary layers of the double-lined B-type binary KIC 4930889 from its gravito-inertial modes + Astronomy and Astrophysics + 202311 + 679 + https://arxiv.org/abs/2309.13123 + 10.1051/0004-6361/202244192 + A6 + + + + + + + WaelkensC. + + Slowly pulsating B stars. + Astronomy and Astrophysics + 199106 + 246 + 453 + + + + + + + AertsC. + Christensen-DalsgaardJ. + KurtzD. W. + + Asteroseismology + Springer, Astronomy; Astrophysics Library + 2010 + 10.1007/978-1-4020-5803-5 + + + + + + AndersEvan H. + PedersenMay G. + + Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints + Galaxies + 202304 + 11 + 2 + https://arxiv.org/abs/2303.12099 + 10.3390/galaxies11020056 + 56 + + + + + + + AertsC. + + Probing the interior physics of stars through asteroseismology + Reviews of Modern Physics + 202101 + 93 + 1 + https://arxiv.org/abs/1912.12300 + 10.1103/RevModPhys.93.015001 + 015001 + + + + + + + Aguirre Børsen-KochV. + RørstedJ. L. + JustesenA. B. + StokholmA. + VermaK. + WintherM. L. + KnudstrupE. + NielsenK. B. + SahlholdtC. + LarsenJ. R. + CassisiS. + SerenelliA. M. + CasagrandeL. + Christensen-DalsgaardJ. + DaviesG. R. + FergusonJ. W. + LundM. N. + WeissA. + WhiteT. R. + + The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology + Monthly Notices of the RAS + 202201 + 509 + 3 + https://arxiv.org/abs/2109.14622 + 10.1093/mnras/stab2911 + 4344 + 4364 + + + + + + RendleBen M. + BuldgenGaël + MiglioAndrea + ReeseDaniel + NoelsArlette + DaviesGuy R. + CampanteTiago L. + ChaplinWilliam J. + LundMikkel N. + KuszlewiczJames S. + ScottLaura J. A. + ScuflaireRichard + BallWarrick H. + SmetanaJiri + NsambaBenard + + AIMS - a new tool for stellar parameter determinations using asteroseismic constraints + Monthly Notices of the RAS + 201903 + 484 + 1 + https://arxiv.org/abs/1901.02663 + 10.1093/mnras/stz031 + 771 + 786 + + + + + + ChontosAshley + HuberDaniel + SayeedMaryum + YamsiriPavadol + + pySYD: Automated measurements of global asteroseismic parameters + The Journal of Open Source Software + 202211 + 7 + 79 + https://arxiv.org/abs/2108.00582 + 10.21105/joss.03331 + 3331 + + + + + + + AertsC. + MolenberghsG. + MichielsenM. + PedersenM. G. + BjörklundR. + JohnstonC. + MombargJ. S. G. + BowmanD. M. + BuysschaertB. + PápicsP. I. + SekaranS. + SundqvistJ. O. + TkachenkoA. + TruyaertK. + Van ReethT. + VermeyenE. + + Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection + The Astrophysical Journal Supplement Series + 201807 + 237 + https://arxiv.org/abs/1806.06869 + 10.3847/1538-4365/aaccfb + 15 + + + + + + + TownsendR. H. D. + TeitlerS. A. + + GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme + Monthly Notices of the RAS + 201311 + 435 + https://arxiv.org/abs/1308.2965 + 10.1093/mnras/stt1533 + 3406 + 3418 + + + + + + TownsendR. H. D. + GoldsteinJ. + ZweibelE. G. + + Angular momentum transport by heat-driven g-modes in slowly pulsating B stars + Monthly Notices of the RAS + 201803 + 475 + https://arxiv.org/abs/1712.02420 + 10.1093/mnras/stx3142 + 879 + 893 + + + + + + PaxtonBill + BildstenLars + DotterAaron + HerwigFalk + LesaffrePierre + TimmesFrank + + Modules for Experiments in Stellar Astrophysics (MESA) + The Astrophysical Journal Supplement Series + 201101 + 192 + 1 + https://arxiv.org/abs/1009.1622 + 10.1088/0067-0049/192/1/3 + 3 + + + + + + + PaxtonBill + CantielloMatteo + ArrasPhil + BildstenLars + BrownEdward F. + DotterAaron + MankovichChristopher + MontgomeryM. H. + StelloDennis + TimmesF. X. + TownsendRichard + + Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars + The Astrophysical Journal Supplement Series + 201309 + 208 + 1 + https://arxiv.org/abs/1301.0319 + 10.1088/0067-0049/208/1/4 + 4 + + + + + + + PaxtonBill + MarchantPablo + SchwabJosiah + BauerEvan B. + BildstenLars + CantielloMatteo + DessartLuc + FarmerR. + HuH. + LangerN. + TownsendR. H. D. + TownsleyDean M. + TimmesF. X. + + Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions + The Astrophysical Journal Supplement Series + 201509 + 220 + 1 + https://arxiv.org/abs/1506.03146 + 10.1088/0067-0049/220/1/15 + 15 + + + + + + + PaxtonBill + SchwabJosiah + BauerEvan B. + BildstenLars + BlinnikovSergei + DuffellPaul + FarmerR. + GoldbergJared A. + MarchantPablo + SorokinaElena + ThoulAnne + TownsendRichard H. D. + TimmesF. X. + + Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions + The Astrophysical Journal Supplement Series + 201802 + 234 + 2 + https://arxiv.org/abs/1710.08424 + 10.3847/1538-4365/aaa5a8 + 34 + + + + + + + PaxtonBill + SmolecR. + SchwabJosiah + GautschyA. + BildstenLars + CantielloMatteo + DotterAaron + FarmerR. + GoldbergJared A. + JermynAdam S. + KanburS. M. + MarchantPablo + ThoulAnne + TownsendRichard H. D. + WolfWilliam M. + ZhangMichael + TimmesF. X. + + Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation + The Astrophysical Journal Supplement Series + 201907 + 243 + 1 + https://arxiv.org/abs/1903.01426 + 10.3847/1538-4365/ab2241 + 10 + + + + + + + JermynAdam S. + BauerEvan B. + SchwabJosiah + FarmerR. + BallWarrick H. + BellingerEarl P. + DotterAaron + JoyceMeridith + MarchantPablo + MombargJoey S. G. + WolfWilliam M. + Sunny WongTin Long + CinquegranaGiulia C. + FarrellEoin + SmolecR. + ThoulAnne + CantielloMatteo + HerwigFalk + TolozaOdette + BildstenLars + TownsendRichard H. D. + TimmesF. X. + + Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure + The Astrophysical Journal Supplement Series + 202303 + 265 + 1 + https://arxiv.org/abs/2208.03651 + 10.3847/1538-4365/acae8d + 15 + + + + + + + EckartG. + + Hydrodynamics of oceans and atmospheres + Hydrodynamics of oceans and atmospheres, Pergamon Press, Oxford + 1960 + 1477-870X + http://dx.doi.org/10.1002/qj.49708938224 + 10.1002/qj.49708938224 + + + + + + TownsendR. H. D. + + Improved asymptotic expressions for the eigenvalues of Laplace’s tidal equations + Monthly Notices of the RAS + 202009 + 497 + 3 + https://arxiv.org/abs/2006.12596 + 10.1093/mnras/staa2159 + 2670 + 2679 + + + + + + ClaeskensG. + HjortN. L. + + Model Selection and Model Averaging, Cambridge Series in Statistical and Probabilistic Mathematics + 2008 + 10.1017/CBO9780511790485 + + + + +
diff --git a/joss.05884/paper.jats/example-modelling-output.png b/joss.05884/paper.jats/example-modelling-output.png new file mode 100644 index 0000000000..bf90f05eaf Binary files /dev/null and b/joss.05884/paper.jats/example-modelling-output.png differ