diff --git a/joss.05884/10.21105.joss.05884.crossref.xml b/joss.05884/10.21105.joss.05884.crossref.xml
new file mode 100644
index 0000000000..d24c36f2bb
--- /dev/null
+++ b/joss.05884/10.21105.joss.05884.crossref.xml
@@ -0,0 +1,418 @@
+
+
+
+ 20240601205503-95e65822e16cb768793fb3df8653a236036da3ad
+ 20240601205503
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 06
+ 2024
+
+
+ 9
+
+ 98
+
+
+
+ Foam: A Python package for forward asteroseismic
+modelling of gravity modes
+
+
+
+ Mathias
+ Michielsen
+ https://orcid.org/0000-0001-9097-3655
+
+
+
+ 06
+ 01
+ 2024
+
+
+ 5884
+
+
+ 10.21105/joss.05884
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.11237626
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5884
+
+
+
+ 10.21105/joss.05884
+ https://joss.theoj.org/papers/10.21105/joss.05884
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05884.pdf
+
+
+
+
+
+ Probing the temperature gradient in the core
+boundary layer of stars with gravito-inertial modes. The case of KIC
+7760680
+ Michielsen
+ Astronomy and Astrophysics
+ 650
+ 10.1051/0004-6361/202039926
+ 2021
+ Michielsen, M., Aerts, C., &
+Bowman, D. M. (2021). Probing the temperature gradient in the core
+boundary layer of stars with gravito-inertial modes. The case of KIC
+7760680. Astronomy and Astrophysics, 650, A175.
+https://doi.org/10.1051/0004-6361/202039926
+
+
+ Probing the physics in the core boundary
+layers of the double-lined B-type binary KIC 4930889 from its
+gravito-inertial modes
+ Michielsen
+ Astronomy and Astrophysics
+ 679
+ 10.1051/0004-6361/202244192
+ 2023
+ Michielsen, M., Van Reeth, T.,
+Tkachenko, A., & Aerts, C. (2023). Probing the physics in the core
+boundary layers of the double-lined B-type binary KIC 4930889 from its
+gravito-inertial modes. Astronomy and Astrophysics, 679, A6.
+https://doi.org/10.1051/0004-6361/202244192
+
+
+ Slowly pulsating B stars.
+ Waelkens
+ Astronomy and Astrophysics
+ 246
+ 1991
+ Waelkens, C. (1991). Slowly pulsating
+B stars. Astronomy and Astrophysics, 246, 453.
+
+
+ Asteroseismology
+ Aerts
+ 10.1007/978-1-4020-5803-5
+ 2010
+ Aerts, C., Christensen-Dalsgaard, J.,
+& Kurtz, D. W. (2010). Asteroseismology. Springer, Astronomy;
+Astrophysics Library.
+https://doi.org/10.1007/978-1-4020-5803-5
+
+
+ Convective Boundary Mixing in Main-Sequence
+Stars: Theory and Empirical Constraints
+ Anders
+ Galaxies
+ 2
+ 11
+ 10.3390/galaxies11020056
+ 2023
+ Anders, E. H., & Pedersen, M. G.
+(2023). Convective Boundary Mixing in Main-Sequence Stars: Theory and
+Empirical Constraints. Galaxies, 11(2), 56.
+https://doi.org/10.3390/galaxies11020056
+
+
+ Probing the interior physics of stars through
+asteroseismology
+ Aerts
+ Reviews of Modern Physics
+ 1
+ 93
+ 10.1103/RevModPhys.93.015001
+ 2021
+ Aerts, C. (2021). Probing the
+interior physics of stars through asteroseismology. Reviews of Modern
+Physics, 93(1), 015001.
+https://doi.org/10.1103/RevModPhys.93.015001
+
+
+ The BAyesian STellar algorithm (BASTA): a
+fitting tool for stellar studies, asteroseismology, exoplanets, and
+Galactic archaeology
+ Aguirre Børsen-Koch
+ Monthly Notices of the RAS
+ 3
+ 509
+ 10.1093/mnras/stab2911
+ 2022
+ Aguirre Børsen-Koch, V., Rørsted, J.
+L., Justesen, A. B., Stokholm, A., Verma, K., Winther, M. L., Knudstrup,
+E., Nielsen, K. B., Sahlholdt, C., Larsen, J. R., Cassisi, S.,
+Serenelli, A. M., Casagrande, L., Christensen-Dalsgaard, J., Davies, G.
+R., Ferguson, J. W., Lund, M. N., Weiss, A., & White, T. R. (2022).
+The BAyesian STellar algorithm (BASTA): a fitting tool for stellar
+studies, asteroseismology, exoplanets, and Galactic archaeology. Monthly
+Notices of the RAS, 509(3), 4344–4364.
+https://doi.org/10.1093/mnras/stab2911
+
+
+ AIMS - a new tool for stellar parameter
+determinations using asteroseismic constraints
+ Rendle
+ Monthly Notices of the RAS
+ 1
+ 484
+ 10.1093/mnras/stz031
+ 2019
+ Rendle, B. M., Buldgen, G., Miglio,
+A., Reese, D., Noels, A., Davies, G. R., Campante, T. L., Chaplin, W.
+J., Lund, M. N., Kuszlewicz, J. S., Scott, L. J. A., Scuflaire, R.,
+Ball, W. H., Smetana, J., & Nsamba, B. (2019). AIMS - a new tool for
+stellar parameter determinations using asteroseismic constraints.
+Monthly Notices of the RAS, 484(1), 771–786.
+https://doi.org/10.1093/mnras/stz031
+
+
+ pySYD: Automated measurements of global
+asteroseismic parameters
+ Chontos
+ The Journal of Open Source
+Software
+ 79
+ 7
+ 10.21105/joss.03331
+ 2022
+ Chontos, A., Huber, D., Sayeed, M.,
+& Yamsiri, P. (2022). pySYD: Automated measurements of global
+asteroseismic parameters. The Journal of Open Source Software, 7(79),
+3331. https://doi.org/10.21105/joss.03331
+
+
+ Forward Asteroseismic Modeling of Stars with
+a Convective Core from Gravity-mode Oscillations: Parameter Estimation
+and Stellar Model Selection
+ Aerts
+ The Astrophysical Journal Supplement
+Series
+ 237
+ 10.3847/1538-4365/aaccfb
+ 2018
+ Aerts, C., Molenberghs, G.,
+Michielsen, M., Pedersen, M. G., Björklund, R., Johnston, C., Mombarg,
+J. S. G., Bowman, D. M., Buysschaert, B., Pápics, P. I., Sekaran, S.,
+Sundqvist, J. O., Tkachenko, A., Truyaert, K., Van Reeth, T., &
+Vermeyen, E. (2018). Forward Asteroseismic Modeling of Stars with a
+Convective Core from Gravity-mode Oscillations: Parameter Estimation and
+Stellar Model Selection. The Astrophysical Journal Supplement Series,
+237, 15.
+https://doi.org/10.3847/1538-4365/aaccfb
+
+
+ GYRE: an open-source stellar oscillation code
+based on a new Magnus Multiple Shooting scheme
+ Townsend
+ Monthly Notices of the RAS
+ 435
+ 10.1093/mnras/stt1533
+ 2013
+ Townsend, R. H. D., & Teitler, S.
+A. (2013). GYRE: an open-source stellar oscillation code based on a new
+Magnus Multiple Shooting scheme. Monthly Notices of the RAS, 435,
+3406–3418. https://doi.org/10.1093/mnras/stt1533
+
+
+ Angular momentum transport by heat-driven
+g-modes in slowly pulsating B stars
+ Townsend
+ Monthly Notices of the RAS
+ 475
+ 10.1093/mnras/stx3142
+ 2018
+ Townsend, R. H. D., Goldstein, J.,
+& Zweibel, E. G. (2018). Angular momentum transport by heat-driven
+g-modes in slowly pulsating B stars. Monthly Notices of the RAS, 475,
+879–893. https://doi.org/10.1093/mnras/stx3142
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA)
+ Paxton
+ The Astrophysical Journal Supplement
+Series
+ 1
+ 192
+ 10.1088/0067-0049/192/1/3
+ 2011
+ Paxton, B., Bildsten, L., Dotter, A.,
+Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for
+Experiments in Stellar Astrophysics (MESA). The Astrophysical Journal
+Supplement Series, 192(1), 3.
+https://doi.org/10.1088/0067-0049/192/1/3
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive
+Stars
+ Paxton
+ The Astrophysical Journal Supplement
+Series
+ 1
+ 208
+ 10.1088/0067-0049/208/1/4
+ 2013
+ Paxton, B., Cantiello, M., Arras, P.,
+Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M.
+H., Stello, D., Timmes, F. X., & Townsend, R. (2013). Modules for
+Experiments in Stellar Astrophysics (MESA): Planets, Oscillations,
+Rotation, and Massive Stars. The Astrophysical Journal Supplement
+Series, 208(1), 4.
+https://doi.org/10.1088/0067-0049/208/1/4
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA): Binaries, Pulsations, and
+Explosions
+ Paxton
+ The Astrophysical Journal Supplement
+Series
+ 1
+ 220
+ 10.1088/0067-0049/220/1/15
+ 2015
+ Paxton, B., Marchant, P., Schwab, J.,
+Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu,
+H., Langer, N., Townsend, R. H. D., Townsley, D. M., & Timmes, F. X.
+(2015). Modules for Experiments in Stellar Astrophysics (MESA):
+Binaries, Pulsations, and Explosions. The Astrophysical Journal
+Supplement Series, 220(1), 15.
+https://doi.org/10.1088/0067-0049/220/1/15
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA): Convective Boundaries, Element Diffusion, and
+Massive Star Explosions
+ Paxton
+ The Astrophysical Journal Supplement
+Series
+ 2
+ 234
+ 10.3847/1538-4365/aaa5a8
+ 2018
+ Paxton, B., Schwab, J., Bauer, E. B.,
+Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A.,
+Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., & Timmes,
+F. X. (2018). Modules for Experiments in Stellar Astrophysics (MESA):
+Convective Boundaries, Element Diffusion, and Massive Star Explosions.
+The Astrophysical Journal Supplement Series, 234(2), 34.
+https://doi.org/10.3847/1538-4365/aaa5a8
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective
+Boundaries, and Energy Conservation
+ Paxton
+ The Astrophysical Journal Supplement
+Series
+ 1
+ 243
+ 10.3847/1538-4365/ab2241
+ 2019
+ Paxton, B., Smolec, R., Schwab, J.,
+Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R.,
+Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A.,
+Townsend, R. H. D., Wolf, W. M., Zhang, M., & Timmes, F. X. (2019).
+Modules for Experiments in Stellar Astrophysics (MESA): Pulsating
+Variable Stars, Rotation, Convective Boundaries, and Energy
+Conservation. The Astrophysical Journal Supplement Series, 243(1), 10.
+https://doi.org/10.3847/1538-4365/ab2241
+
+
+ Modules for Experiments in Stellar
+Astrophysics (MESA): Time-dependent Convection, Energy Conservation,
+Automatic Differentiation, and Infrastructure
+ Jermyn
+ The Astrophysical Journal Supplement
+Series
+ 1
+ 265
+ 10.3847/1538-4365/acae8d
+ 2023
+ Jermyn, A. S., Bauer, E. B., Schwab,
+J., Farmer, R., Ball, W. H., Bellinger, E. P., Dotter, A., Joyce, M.,
+Marchant, P., Mombarg, J. S. G., Wolf, W. M., Sunny Wong, T. L.,
+Cinquegrana, G. C., Farrell, E., Smolec, R., Thoul, A., Cantiello, M.,
+Herwig, F., Toloza, O., … Timmes, F. X. (2023). Modules for Experiments
+in Stellar Astrophysics (MESA): Time-dependent Convection, Energy
+Conservation, Automatic Differentiation, and Infrastructure. The
+Astrophysical Journal Supplement Series, 265(1), 15.
+https://doi.org/10.3847/1538-4365/acae8d
+
+
+ Hydrodynamics of oceans and
+atmospheres
+ Eckart
+ Hydrodynamics of oceans and atmospheres,
+Pergamon Press, Oxford
+ 10.1002/qj.49708938224
+ 1477-870X
+ 1960
+ Eckart, G. (1960). Hydrodynamics of
+oceans and atmospheres. Hydrodynamics of Oceans and Atmospheres,
+Pergamon Press, Oxford.
+https://doi.org/10.1002/qj.49708938224
+
+
+ Improved asymptotic expressions for the
+eigenvalues of Laplace’s tidal equations
+ Townsend
+ Monthly Notices of the RAS
+ 3
+ 497
+ 10.1093/mnras/staa2159
+ 2020
+ Townsend, R. H. D. (2020). Improved
+asymptotic expressions for the eigenvalues of Laplace’s tidal equations.
+Monthly Notices of the RAS, 497(3), 2670–2679.
+https://doi.org/10.1093/mnras/staa2159
+
+
+ Model Selection and Model Averaging, Cambridge
+Series in Statistical and Probabilistic Mathematics
+ Claeskens
+ 10.1017/CBO9780511790485
+ 2008
+ Claeskens, G., & Hjort, N. L.
+(2008). Model Selection and Model Averaging, Cambridge Series in
+Statistical and Probabilistic Mathematics.
+https://doi.org/10.1017/CBO9780511790485
+
+
+
+
+
+
diff --git a/joss.05884/10.21105.joss.05884.pdf b/joss.05884/10.21105.joss.05884.pdf
new file mode 100644
index 0000000000..cad0c91f26
Binary files /dev/null and b/joss.05884/10.21105.joss.05884.pdf differ
diff --git a/joss.05884/paper.jats/10.21105.joss.05884.jats b/joss.05884/paper.jats/10.21105.joss.05884.jats
new file mode 100644
index 0000000000..867ae3d370
--- /dev/null
+++ b/joss.05884/paper.jats/10.21105.joss.05884.jats
@@ -0,0 +1,791 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5884
+10.21105/joss.05884
+
+Foam: A Python package for forward asteroseismic
+modelling of gravity modes
+
+
+
+https://orcid.org/0000-0001-9097-3655
+
+Michielsen
+Mathias
+
+
+
+
+
+Institute of Astronomy, KU Leuven, Celestijnenlaan 200D,
+B-3001 Leuven, Belgium
+
+
+
+
+17
+2
+2024
+
+9
+98
+5884
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+astronomy
+stellar astrophysics
+asteroseismology
+
+
+
+
+
+ Summary
+
Asteroseismology, the study of stellar pulsations, offers insights
+ into the internal structures and evolution of stars. Analysing the
+ variations in a star’s brightness allows the determination of
+ fundamental properties such as mass, radius, age, and chemical
+ composition. Asteroseismology heavily relies on computational tools,
+ but a significant number of them are closed-source, thus inaccessible
+ to the broader astronomic community. This manuscript presents
+ Foam, a Python package designed to perform
+ forward asteroseismic modelling of stars exhibiting gravity modes. It
+ automates and streamlines a considerable fraction of the modelling
+ process, comparing grids of theoretical stellar models and their
+ oscillation frequencies to observed frequency sets in stars.
+
Foam offers the flexibility to employ
+ diverse modelling approaches, allowing users to choose different
+ methodologies for matching theoretically predicted oscillations to
+ observations. It provides options to utilise various sets of
+ observables for comparison with their theoretical counterparts, employ
+ different merit functions for assessing goodness of fit, and to
+ incorporate nested subgrids in a statistically rigorous manner. For
+ applications of these methodologies in modelling observed gravity
+ modes, refer to Michielsen et al.
+ (2021)
+ and Michielsen et al.
+ (2023).
+
+
+ Introduction
+
Stars spend approximately 90% of their evolution on their so called
+ main sequence, during which they fuse hydrogen into
+ helium in their cores. In stars with masses above about 1.2 times the
+ mass of the sun, the stellar core in which these fusion processes take
+ place becomes convective. Macroscopic element transport in and near
+ the convective cores of these stars has a large influence on their
+ life, since it transports additional hydrogen from outside of the
+ nuclear fusion region into this region. In this way it both prolongs
+ the main-sequence lifetime of stars and enlarges the mass of the
+ helium core at the end of the main sequence, which significantly
+ influences all later stages of their evolution. However, these
+ transport processes provide the largest uncertainties in stellar
+ structure and evolution models for stars with convective cores, due to
+ our poor understanding of macroscopic element transport and limited
+ number of useful observations to test the theories. (See e.g.
+ Anders
+ & Pedersen, 2023 for a review on this topic.)
+
Through asteroseismology, we gain the means to unravel the interior
+ structure of stars
+ (Aerts
+ et al., 2010;
+ Aerts,
+ 2021). Gravity (g-) modes in particular have a high sensitivity
+ to the properties of the near-core region. These modes have buoyancy
+ as their restoring force, have dominantly horizontal displacements,
+ and oscillate with a period of several hours to a few days.
+ Additionally, they can only propagate in the non-convective regions in
+ the star, which makes their propagation cavity very sensitive to the
+ size of the convective core. We can exploit the probing power of
+ g-modes, observed in e.g. Slowly Pulsating B-type stars
+ (Waelkens,
+ 1991), to investigate the physics in the interior of these
+ stars, particularly the transition region between the convective core
+ and radiative envelope.
+
+
+ Statement of need
+
Some tools have been developed and made publicly available to model
+ and determine stellar parameters of solar-like oscillators, such as
+ AIMS
+ (Rendle
+ et al., 2019), BASTA
+ (Aguirre
+ Børsen-Koch et al., 2022), and pySYD
+ (Chontos
+ et al., 2022). However, there are several key differences
+ between the modelling of the pressure (p-) modes observed in
+ solar-like oscillators, and the modelling of the g-modes observed in
+ more massive stars. First and foremost, the well-known asteroseismic
+ scaling relations used for solar-like oscillators cannot be
+ extrapolated to main-sequence stars with a convective core. Secondly,
+ the effect of rotation on p-modes is often included in a perturbative
+ way, whereas the g-mode frequencies are strongly dependent on rotation
+ and require the inclusion of the Coriolis acceleration in a
+ non-perturbative way. Additionally the mass regime of stars with
+ convective cores is subject to strong correlations between several
+ model parameters, which sometimes follow non-linear relationships. In
+ this context, the Mahalanobis distance (MD) (see
+ Aerts
+ et al., 2018 for its application to asteroseismic modelling)
+ provides a more appropriate merit function than the often used
+
+
+ χ2,
+ since it tackles both these non-linear correlations and includes
+ uncertainties for the theoretical predictions. The use of a different,
+ more appropriate merit function significantly impacts modelling
+ results. This is demonstrated by Michielsen et al.
+ (2021)
+ in their comparison between the results obtained by employing the MD
+ versus
+
+ χ2,
+ applied in the modelling of an observed star.
+
Foam was developed to be complimentary to
+ the available modelling tools for solar-like oscillators. It provides
+ a framework for the forward modelling of g-modes in main-sequence
+ stars with convective cores, and tackles the differences in the
+ modelling approach as compared to the case of solar-like oscillators.
+ Foam therefore extends the efforts to provide
+ publicly available, open-source tools for asteroseismic modelling to
+ the g-mode domain, given that the currently available tools
+ predominantly concern the solar-like oscillators.
+
+
+ Software package overview
+
Foam is designed as a customisable pipeline.
+ It will match theoretical models to observations, computing the
+ goodness of fit of each model based on the selected merit function.
+ Afterwards it will determine the best model alongside the uncertainty
+ region of this solution based on statistical criteria. On the
+ observational side, it will take a list of frequencies as an input,
+ optionally complemented by additional information such as a set of
+ surface properties (effective temperature, surface gravity,
+ luminosity, element surface abundances…). On the theoretical side
+ Foam will use a grid of theoretical stellar
+ models, calculated by the user to suit their specific needs. Although
+ the current implementation is made for a grid of stellar equilibrium
+ models computed by MESA
+ (Jermyn
+ et al., 2023;
+ Paxton
+ et al., 2011,
+ 2013,
+ 2015,
+ 2018,
+ 2019),
+ whose pulsation frequencies are computed with
+ GYRE
+ (Townsend
+ et al., 2018;
+ Townsend
+ & Teitler, 2013), the majority of the code is not
+ inherently dependent on MESA. By making certain
+ adjustments to the modelling pipeline, Foam
+ could potentially employ grids generated by different stellar
+ evolution codes. Some suggestions how to approach this are given in
+ the description of
+ the
+ theoretical model grid in the online documentation.
+ However, the implementation of such functionality currently remains
+ out of the scope of the project.
+
The script to run the pipeline can be altered in order to change
+ the modelling approach you want to take. The various configuration
+ options, the installation procedure, and a walkthrough of how to
+ create your own modelling setup, are described in more detail in the
+ online
+ documentation. Although it relies on grids of stellar
+ equilibrium models computed by MESA as the
+ source of the theoretical model grid, MESA’s
+ installation itself is not required for Foam to
+ function. The installation of GYRE is however
+ required, specifically since Foam relies on the
+ tar_fit.mX.kX.h5 files included in the
+ GYRE installation. This allows us to rescale
+ the g-modes for various stellar rotation rates, following the
+ traditional approximation of rotation (e.g.
+ Eckart,
+ 1960; see
+ Townsend,
+ 2020 for its implementation in GYRE) and
+ assuming rigid rotation. This facilitates computing the oscillation
+ frequencies for the grid of stellar equilibrium models only once, and
+ subsequently rescaling them to find the optimised rotation rate (see
+ Michielsen
+ et al., 2023). This approach avoids repeating the oscillation
+ computations for a variety of rotation values, which would introduce
+ extra dimensionality in the modelling problem in the form of adding
+ the rotation rate as an additional free parameter.
+
Foam’s modelling procedure can be broken
+ down into following sequential
+ steps
+ of the pipeline:
+
+
+
Extract all required parameters and quantities from the files
+ in the theoretical MESA and
+ GYRE grids.
+
+
+
Construct the theoretical pulsation patterns for each stellar
+ model. Thereafter select theoretical pulsation patterns matching
+ the observational pattern whilst optimising their rotation rates.
+ Finally combine this information with the models’ surface
+ properties.
+
+
+
Calculate the likelihood of all the theoretical patterns
+ according to the specified merit functions and observables. This
+ list of observables consist of the pulsations, but can optionally
+ be extended with spectroscopic or astrometric information.
+
+
+
Exclude all the models that fall outside an n-sigma error box
+ on the spectroscopic and astrometric constraints as acceptable
+ solutions.
+
+
+
Calculate the Akaike information criterion (AIC,
+ Claeskens
+ & Hjort, 2008) corrected for small sample size. This
+ statistical criterion rewards goodness of fit, but penalises model
+ complexity in the form of additional free parameters. The AIC thus
+ allows a statistical comparison between models of different
+ (nested) grids where the number of free parameters is not the
+ same.
+
+
+
Calculate the 2 sigma uncertainty region of the maximum
+ likelihood solution using Bayes’ theorem.
+
+
+
Make corner plots for all combinations of the different
+ modelling choices (See
+ [fig:cornerplot]
+ for an example).
+
+
+
Construct a table with the best model of the grid for each
+ combination of different modelling choices.
+
+
+
Next to the tables with the best model parameters and their AIC
+ values, the cornerplots provide a quick way to assess the output of
+ the pipeline and visualise the modelling results.
+ [fig:cornerplot]
+ shows an example of such a cornerplot for the modelling of KIC 4930889
+ performed by Michielsen et al.
+ (2023).
+ It gives a clear indication of which models are included (coloured) or
+ excluded (greyscale) from the uncertainty region, and indicates what
+ the best models of the grid are (yellow, see the colour bar).
+
+
Cornerplot with the parameters in the grid and the
+ rotation. The 50% best models are shown, colour-coded according to
+ the log of their merit function value. Models in colour fall within
+ the 2 sigma error ellipse, while those in greyscale fall outside of
+ it. Figures on the diagonal show binned parameter distributions of
+ the models in the error ellipse, and the panel at the top right
+ shows an Hertzsprung-Russell (HR) diagram with 1 and 3 sigma
+ observational error boxes. Figure taken from Michielsen et al.
+ (2023).
+
+
+
+
+
+ Acknowledgements
+
The research leading to the development of this package has
+ received funding from the Research Foundation Flanders (FWO) by means
+ of a PhD scholarship to MM under project No. 11F7120N. MM is grateful
+ to Timothy Van Reeth for his help concerning the scaling of g-modes
+ with rotation, to Alex Kemp for his suggestions regarding the online
+ documentation, and to the reviewers Ashley Chontos and Ankit Barik for
+ their constructive remarks.
+
+
+
+
+
+
+
+ MichielsenM.
+ AertsC.
+ BowmanD. M.
+
+ Probing the temperature gradient in the core boundary layer of stars with gravito-inertial modes. The case of KIC 7760680
+
+ 202106
+ 650
+ https://arxiv.org/abs/2104.04531
+ 10.1051/0004-6361/202039926
+ A175
+
+
+
+
+
+
+ MichielsenM.
+ Van ReethT.
+ TkachenkoA.
+ AertsC.
+
+ Probing the physics in the core boundary layers of the double-lined B-type binary KIC 4930889 from its gravito-inertial modes
+
+ 202311
+ 679
+ https://arxiv.org/abs/2309.13123
+ 10.1051/0004-6361/202244192
+ A6
+
+
+
+
+
+
+ WaelkensC.
+
+ Slowly pulsating B stars.
+
+ 199106
+ 246
+ 453
+
+
+
+
+
+
+ AertsC.
+ Christensen-DalsgaardJ.
+ KurtzD. W.
+
+
+ Springer, Astronomy; Astrophysics Library
+ 2010
+ 10.1007/978-1-4020-5803-5
+
+
+
+
+
+ AndersEvan H.
+ PedersenMay G.
+
+ Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints
+
+ 202304
+ 11
+ 2
+ https://arxiv.org/abs/2303.12099
+ 10.3390/galaxies11020056
+ 56
+
+
+
+
+
+
+ AertsC.
+
+ Probing the interior physics of stars through asteroseismology
+
+ 202101
+ 93
+ 1
+ https://arxiv.org/abs/1912.12300
+ 10.1103/RevModPhys.93.015001
+ 015001
+
+
+
+
+
+
+ Aguirre Børsen-KochV.
+ RørstedJ. L.
+ JustesenA. B.
+ StokholmA.
+ VermaK.
+ WintherM. L.
+ KnudstrupE.
+ NielsenK. B.
+ SahlholdtC.
+ LarsenJ. R.
+ CassisiS.
+ SerenelliA. M.
+ CasagrandeL.
+ Christensen-DalsgaardJ.
+ DaviesG. R.
+ FergusonJ. W.
+ LundM. N.
+ WeissA.
+ WhiteT. R.
+
+ The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology
+
+ 202201
+ 509
+ 3
+ https://arxiv.org/abs/2109.14622
+ 10.1093/mnras/stab2911
+ 4344
+ 4364
+
+
+
+
+
+ RendleBen M.
+ BuldgenGaël
+ MiglioAndrea
+ ReeseDaniel
+ NoelsArlette
+ DaviesGuy R.
+ CampanteTiago L.
+ ChaplinWilliam J.
+ LundMikkel N.
+ KuszlewiczJames S.
+ ScottLaura J. A.
+ ScuflaireRichard
+ BallWarrick H.
+ SmetanaJiri
+ NsambaBenard
+
+ AIMS - a new tool for stellar parameter determinations using asteroseismic constraints
+
+ 201903
+ 484
+ 1
+ https://arxiv.org/abs/1901.02663
+ 10.1093/mnras/stz031
+ 771
+ 786
+
+
+
+
+
+ ChontosAshley
+ HuberDaniel
+ SayeedMaryum
+ YamsiriPavadol
+
+ pySYD: Automated measurements of global asteroseismic parameters
+
+ 202211
+ 7
+ 79
+ https://arxiv.org/abs/2108.00582
+ 10.21105/joss.03331
+ 3331
+
+
+
+
+
+
+ AertsC.
+ MolenberghsG.
+ MichielsenM.
+ PedersenM. G.
+ BjörklundR.
+ JohnstonC.
+ MombargJ. S. G.
+ BowmanD. M.
+ BuysschaertB.
+ PápicsP. I.
+ SekaranS.
+ SundqvistJ. O.
+ TkachenkoA.
+ TruyaertK.
+ Van ReethT.
+ VermeyenE.
+
+ Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection
+
+ 201807
+ 237
+ https://arxiv.org/abs/1806.06869
+ 10.3847/1538-4365/aaccfb
+ 15
+
+
+
+
+
+
+ TownsendR. H. D.
+ TeitlerS. A.
+
+ GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme
+
+ 201311
+ 435
+ https://arxiv.org/abs/1308.2965
+ 10.1093/mnras/stt1533
+ 3406
+ 3418
+
+
+
+
+
+ TownsendR. H. D.
+ GoldsteinJ.
+ ZweibelE. G.
+
+ Angular momentum transport by heat-driven g-modes in slowly pulsating B stars
+
+ 201803
+ 475
+ https://arxiv.org/abs/1712.02420
+ 10.1093/mnras/stx3142
+ 879
+ 893
+
+
+
+
+
+ PaxtonBill
+ BildstenLars
+ DotterAaron
+ HerwigFalk
+ LesaffrePierre
+ TimmesFrank
+
+ Modules for Experiments in Stellar Astrophysics (MESA)
+
+ 201101
+ 192
+ 1
+ https://arxiv.org/abs/1009.1622
+ 10.1088/0067-0049/192/1/3
+ 3
+
+
+
+
+
+
+ PaxtonBill
+ CantielloMatteo
+ ArrasPhil
+ BildstenLars
+ BrownEdward F.
+ DotterAaron
+ MankovichChristopher
+ MontgomeryM. H.
+ StelloDennis
+ TimmesF. X.
+ TownsendRichard
+
+ Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars
+
+ 201309
+ 208
+ 1
+ https://arxiv.org/abs/1301.0319
+ 10.1088/0067-0049/208/1/4
+ 4
+
+
+
+
+
+
+ PaxtonBill
+ MarchantPablo
+ SchwabJosiah
+ BauerEvan B.
+ BildstenLars
+ CantielloMatteo
+ DessartLuc
+ FarmerR.
+ HuH.
+ LangerN.
+ TownsendR. H. D.
+ TownsleyDean M.
+ TimmesF. X.
+
+ Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions
+
+ 201509
+ 220
+ 1
+ https://arxiv.org/abs/1506.03146
+ 10.1088/0067-0049/220/1/15
+ 15
+
+
+
+
+
+
+ PaxtonBill
+ SchwabJosiah
+ BauerEvan B.
+ BildstenLars
+ BlinnikovSergei
+ DuffellPaul
+ FarmerR.
+ GoldbergJared A.
+ MarchantPablo
+ SorokinaElena
+ ThoulAnne
+ TownsendRichard H. D.
+ TimmesF. X.
+
+ Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions
+
+ 201802
+ 234
+ 2
+ https://arxiv.org/abs/1710.08424
+ 10.3847/1538-4365/aaa5a8
+ 34
+
+
+
+
+
+
+ PaxtonBill
+ SmolecR.
+ SchwabJosiah
+ GautschyA.
+ BildstenLars
+ CantielloMatteo
+ DotterAaron
+ FarmerR.
+ GoldbergJared A.
+ JermynAdam S.
+ KanburS. M.
+ MarchantPablo
+ ThoulAnne
+ TownsendRichard H. D.
+ WolfWilliam M.
+ ZhangMichael
+ TimmesF. X.
+
+ Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation
+
+ 201907
+ 243
+ 1
+ https://arxiv.org/abs/1903.01426
+ 10.3847/1538-4365/ab2241
+ 10
+
+
+
+
+
+
+ JermynAdam S.
+ BauerEvan B.
+ SchwabJosiah
+ FarmerR.
+ BallWarrick H.
+ BellingerEarl P.
+ DotterAaron
+ JoyceMeridith
+ MarchantPablo
+ MombargJoey S. G.
+ WolfWilliam M.
+ Sunny WongTin Long
+ CinquegranaGiulia C.
+ FarrellEoin
+ SmolecR.
+ ThoulAnne
+ CantielloMatteo
+ HerwigFalk
+ TolozaOdette
+ BildstenLars
+ TownsendRichard H. D.
+ TimmesF. X.
+
+ Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure
+
+ 202303
+ 265
+ 1
+ https://arxiv.org/abs/2208.03651
+ 10.3847/1538-4365/acae8d
+ 15
+
+
+
+
+
+
+ EckartG.
+
+ Hydrodynamics of oceans and atmospheres
+
+ 1960
+ 1477-870X
+ http://dx.doi.org/10.1002/qj.49708938224
+ 10.1002/qj.49708938224
+
+
+
+
+
+ TownsendR. H. D.
+
+ Improved asymptotic expressions for the eigenvalues of Laplace’s tidal equations
+
+ 202009
+ 497
+ 3
+ https://arxiv.org/abs/2006.12596
+ 10.1093/mnras/staa2159
+ 2670
+ 2679
+
+
+
+
+
+ ClaeskensG.
+ HjortN. L.
+
+
+ 2008
+ 10.1017/CBO9780511790485
+
+
+
+
+
diff --git a/joss.05884/paper.jats/example-modelling-output.png b/joss.05884/paper.jats/example-modelling-output.png
new file mode 100644
index 0000000000..bf90f05eaf
Binary files /dev/null and b/joss.05884/paper.jats/example-modelling-output.png differ