diff --git a/joss.06773/10.21105.joss.06773.crossref.xml b/joss.06773/10.21105.joss.06773.crossref.xml new file mode 100644 index 0000000000..7fc3660e98 --- /dev/null +++ b/joss.06773/10.21105.joss.06773.crossref.xml @@ -0,0 +1,432 @@ + + + + 20241114000017-095213beba04d86465f52368d6fa147f77ad4be2 + 20241114000017 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 11 + 2024 + + + 9 + + 103 + + + + multipers : Multiparameter Persistence for Machine +Learning + + + + David + Loiseaux + + Centre Inria d’Université Côte d’Azur, France + + + + Hannah + Schreiber + + Centre Inria d’Université Côte d’Azur, France + + + + + 11 + 13 + 2024 + + + 6773 + + + 10.21105/joss.06773 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.14042221 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6773 + + + + 10.21105/joss.06773 + https://joss.theoj.org/papers/10.21105/joss.06773 + + + https://joss.theoj.org/papers/10.21105/joss.06773.pdf + + + + + + Persistable: Persistent and stable +clustering + Scoccola + Journal of Open Source +Software + 83 + 8 + 10.21105/joss.05022 + 2475-9066 + 2023 + Scoccola, L., & Rolle, A. (2023). +Persistable: Persistent and stable clustering. Journal of Open Source +Software, 8(83), 5022. +https://doi.org/10.21105/joss.05022 + + + Elder-Rule-Staircodes for Augmented Metric +Spaces + Cai + SIAM Journal on Applied Algebra and +Geometry + 3 + 5 + 10.1137/20M1353605 + 2470-6566 + 2021 + Cai, C., Kim, W., Memoli, F., & +Wang, Y. (2021). Elder-Rule-Staircodes for Augmented Metric Spaces. SIAM +Journal on Applied Algebra and Geometry, 5(3), 417–454. +https://doi.org/10.1137/20M1353605 + + + Euler Characteristic Tools For Topological +Data Analysis + Hacquard + arXiv.org + 10.48550/arxiv.2303.14040 + 2023 + Hacquard, O., & Lebovici, V. +(2023). Euler Characteristic Tools For Topological Data Analysis. +arXiv.org. +https://doi.org/10.48550/arxiv.2303.14040 + + + Filtration-domination in bifiltered +graphs + Alonso + 2023 proceedings of the symposium on +algorithm engineering and experiments (ALENEX ) + 10.1137/1.9781611977561.ch3 + 2023 + Alonso, Á. J., Kerber, M., & +Pritam, S. (2023). Filtration-domination in bifiltered graphs. In 2023 +proceedings of the symposium on algorithm engineering and experiments +(ALENEX ) (pp. 27–38). +https://doi.org/10.1137/1.9781611977561.ch3 + + + Delaunay Bifiltrations of Functions on Point +Clouds + Alonso + Proceedings of the 2024 Annual ACM-SIAM +Symposium on Discrete Algorithms ( SODA) + 10.1137/1.9781611977912.173 + 2024 + Alonso, Á. J., Kerber, M., Lam, T., +& Lesnick, M. (2024). Delaunay Bifiltrations of Functions on Point +Clouds. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete +Algorithms ( SODA) (pp. 4872–4891). Society for Industrial and Applied +Mathematics. +https://doi.org/10.1137/1.9781611977912.173 + + + GRIL: A $2$-parameter Persistence Based +Vectorization for Machine Learning + Xin + Proceedings of 2nd Annual Workshop on +Topology, Algebra, and Geometry in Machine Learning +(TAG-ML) + 2640-3498 + 2023 + Xin, C., Mukherjee, S., Samaga, S. +N., & Dey, T. K. (2023). GRIL: A $2$-parameter Persistence Based +Vectorization for Machine Learning. Proceedings of 2nd Annual Workshop +on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), +313–333. + + + GUDHI + TheGudhiProject + 2023 + TheGudhiProject. (2023). GUDHI. GUDHI +Editorial Board. + + + Fast, Stable and Efficient Approximation of +Multi-parameter Persistence Modules with MMA + Loiseaux + 10.48550/arXiv.2206.02026 + 2022 + Loiseaux, D., Carrière, M., & +Blumberg, A. J. (2022). Fast, Stable and Efficient Approximation of +Multi-parameter Persistence Modules with MMA. +https://doi.org/10.48550/arXiv.2206.02026 + + + A Framework for Fast and Stable +Representations of Multiparameter Persistent Homology +Decompositions + Loiseaux + Advances in Neural Information Processing +Systems + 36 + 2023 + Loiseaux, D., Carrière, M., & +Blumberg, A. (2023). A Framework for Fast and Stable Representations of +Multiparameter Persistent Homology Decompositions. Advances in Neural +Information Processing Systems, 36, 35774–35798. + + + Fast Minimal Presentations of Bi-graded +Persistence Modules + Kerber + arXiv:2010.15623 [cs, math] + 10.1137/1.9781611976472.16 + 2020 + Kerber, M., & Rolle, A. (2020). +Fast Minimal Presentations of Bi-graded Persistence Modules. +arXiv:2010.15623 [Cs, Math]. +https://doi.org/10.1137/1.9781611976472.16 + + + Multiparameter persistence +landscapes + Vipond + Journal of Machine Learning +Research + 21 + 2020 + Vipond, O. (2020). Multiparameter +persistence landscapes. Journal of Machine Learning Research, 21, +61:1–61:38. + + + Stable and consistent density-based +clustering via multiparameter persistence + Rolle + arXiv.org + 10.48550/arXiv.2005.09048 + 2020 + Rolle, A., & Scoccola, L. (2020). +Stable and consistent density-based clustering via multiparameter +persistence. arXiv.org. +https://doi.org/10.48550/arXiv.2005.09048 + + + POT: Python optimal transport + Flamary + The Journal of Machine Learning +Research + 1 + 22 + 1532-4435 + 2021 + Flamary, R., Courty, N., Gramfort, +A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., +Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T. H., Janati, H., +Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., +Sutherland, D. J., … Vayer, T. (2021). POT: Python optimal transport. +The Journal of Machine Learning Research, 22(1), +78:3571–78:3578. + + + Kernel Operations on the GPU, with Autodiff, +without Memory Overflows + Charlier + Journal of Machine Learning +Research + 74 + 22 + 1533-7928 + 2021 + Charlier, B., Feydy, J., Glaunès, J. +A., Collin, F. ois-D., & Durif, G. (2021). Kernel Operations on the +GPU, with Autodiff, without Memory Overflows. Journal of Machine +Learning Research, 22(74), 1–6. + + + PyTorch: An imperative style, +high-performance deep learning library + Paszke + Proceedings of the 33rd International +Conference on Neural Information Processing Systems + 2019 + Paszke, A., Gross, S., Massa, F., +Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, +N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, +M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. +(2019). PyTorch: An imperative style, high-performance deep learning +library. In Proceedings of the 33rd International Conference on Neural +Information Processing Systems (pp. 8026–8037). Curran Associates +Inc. + + + Interactive visualization of 2-D persistence +modules + Lesnick + arXiv:1512.00180 [cs, math] + 10.48550/arXiv.1512.00180 + 2015 + Lesnick, M., & Wright, M. (2015). +Interactive visualization of 2-D persistence modules. arXiv:1512.00180 +[Cs, Math]. +https://doi.org/10.48550/arXiv.1512.00180 + + + Stable Vectorization of Multiparameter +Persistent Homology using Signed Barcodes as Measures + Loiseaux + Advances in Neural Information Processing +Systems + 36 + 2023 + Loiseaux, D., Scoccola, L., Carrière, +M., Botnan, M. B., & Oudot, S. (2023). Stable Vectorization of +Multiparameter Persistent Homology using Signed Barcodes as Measures. +Advances in Neural Information Processing Systems, 36, +68316–68342. + + + Scikit-learn: Machine Learning in +Python + Pedregosa + Journal of Machine Learning +Research + 85 + 12 + 1533-7928 + 2011 + Pedregosa, F., Varoquaux, G., +Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., +Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., +Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). +Scikit-learn: Machine Learning in Python. Journal of Machine Learning +Research, 12(85), 2825–2830. + + + Signed Barcodes for Multi-Parameter +Persistence via Rank Decompositions + Botnan + 38th International Symposium on Computational +Geometry (SoCG 2022) + 224 + 10.4230/LIPIcs.SoCG.2022.19 + 1868-8969 + 978-3-95977-227-3 + 2022 + Botnan, M. B., Oppermann, S., & +Oudot, S. (2022). Signed Barcodes for Multi-Parameter Persistence via +Rank Decompositions. In X. Goaoc & M. Kerber (Eds.), 38th +International Symposium on Computational Geometry (SoCG 2022) (Vol. 224, +pp. 19:1–19:18). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. +https://doi.org/10.4230/LIPIcs.SoCG.2022.19 + + + On the Stability of Multigraded Betti Numbers +and Hilbert Functions + Oudot + SIAM Journal on Applied Algebra and +Geometry + 1 + 8 + 10.1137/22M1489150 + 2024 + Oudot, S., & Scoccola, L. (2024). +On the Stability of Multigraded Betti Numbers and Hilbert Functions. +SIAM Journal on Applied Algebra and Geometry, 8(1), 54–88. +https://doi.org/10.1137/22M1489150 + + + Differentiability and Optimization of +Multiparameter Persistent Homology + Scoccola + Proceedings of the 41st International +Conference on Machine Learning + 235 + 2640-3498 + 2024 + Scoccola, L., Setlur, S., Loiseaux, +D., Carrière, M., & Oudot, S. (2024). Differentiability and +Optimization of Multiparameter Persistent Homology. Proceedings of the +41st International Conference on Machine Learning, 235, +43986–44011. + + + Pytest 8.3 + Krekel + 2004 + Krekel, H., Oliveira, B., +Pfannschmidt, R., Bruynooghe, F., Laugher, B., & Bruhin, F. (2004). +Pytest 8.3. + + + Cython: The best of both +worlds + Behnel + Computing in Science +Engineering + 2 + 13 + 10.1109/MCSE.2010.118 + 1521-9615 + Behnel, S., Bradshaw, R., Citro, C., +Dalcin, L., Seljebotn, D. S., & Smith, K. (2011-03/2011-04). Cython: +The best of both worlds. Computing in Science Engineering, 13(2), 31–39. +https://doi.org/10.1109/MCSE.2010.118 + + + Intel Threading Building Blocks +(TBB) + Robison + Encyclopedia of Parallel +Computing + 10.1007/978-0-387-09766-4_51 + 978-0-387-09766-4 + 2011 + Robison, A. D. (2011). Intel +Threading Building Blocks (TBB). In D. Padua (Ed.), Encyclopedia of +Parallel Computing (pp. 955–964). Springer US. +https://doi.org/10.1007/978-0-387-09766-4_51 + + + + + + diff --git a/joss.06773/10.21105.joss.06773.pdf b/joss.06773/10.21105.joss.06773.pdf new file mode 100644 index 0000000000..dc70d29563 Binary files /dev/null and b/joss.06773/10.21105.joss.06773.pdf differ diff --git a/joss.06773/paper.jats/10.21105.joss.06773.jats b/joss.06773/paper.jats/10.21105.joss.06773.jats new file mode 100644 index 0000000000..c073a44d44 --- /dev/null +++ b/joss.06773/paper.jats/10.21105.joss.06773.jats @@ -0,0 +1,771 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6773 +10.21105/joss.06773 + +multipers : Multiparameter +Persistence for Machine Learning + + + + +Loiseaux +David + + + + + +Schreiber +Hannah + + + + + +Centre Inria d’Université Côte d’Azur, France + + + +9 +103 +6773 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2024 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +machine learning +topological data analysis + + + + + + Summary +

multipers is a Python library for + Topological Data Analysis, focused on Multiparameter + Persistence computation and visualizations for Machine + Learning. It features several efficient computational and + visualization tools, with integrated, easy to use, auto-differentiable + Machine Learning pipelines, that can be seamlessly interfaced with + scikit-learn + (Pedregosa + et al., 2011) and PyTorch + (Paszke + et al., 2019). This library is meant to be usable for + non-experts in Topological or Geometrical Machine Learning. + Performance-critical functions are implemented in + C++ or in Cython + (Behnel + et al., 2011-03/2011-04), are parallelizable with + TBB + (Robison, + 2011), and have Python bindings and + interface. It can handle a very diverse range of datasets that can be + framed into a (finite) multi-filtered simplicial or cell complex, + including, e.g., point clouds, graphs, time series, images, etc.

+ +

+ (Left) Topological 2-filtration grid. The color + corresponds to the density estimation of the sampling measure of the + point cloud. More formally, a point + + x2 + belongs to the grid cell with coordinates + + + (r,d) + iff + + d(x,pointcloud)r + and + + density(x)d. + The green background shape corresponds to the lifetime of the + annulus in this 2-parameter grid. (Right) A + visualization of the lifetimes of geometric structures given by + multipers; here each colored shape + corresponds to a cycle appearing in the bi-filtration on the left, + and the shape represents its lifetime. The biggest green shape on + the right is the same as the one on the left.

+ +
+

Some motivation. In the example of Figure + [1], a point cloud is given from + sampling a probability measure whose mass is, for the most part, + located on an annulus, with some diffuse background noise. The goal + here is to recover this information in a topological descriptor. For + this, the point cloud can be analyzed at some geometric scale + + 0]]> + r>0 + and density scale + + d + by centering balls of radius + + r + around each point whose density is above + + + d, + and looking at the topology induced by the union of balls. However, + notice that neither a fixed geometric scale nor density scale alone + can retrieve (canonically) meaningful information due to the diffuse + noise in the background; which is the main limitation of the prevalent + approach. Nevertheless, by considering all possible + combinations of geometric or density scales, also called a + bi-filtration, it becomes straightforward with + multipers to retrieve some of the underlying + geometrical structures without relying on any arbitrary scale + choice.

+

Furthermore, multipers seamlessly integrates + several Rust and C++ + libraries such as Gudhi + (TheGudhiProject, + 2023), filtration-domination + (Alonso + et al., 2023), mpfree + (Kerber + & Rolle, 2020), and + function-delaunay + (Alonso + et al., 2024), and leverages on state-of-the-art Machine + Learning libraries for fast computations, such as + scikit-learn + (Pedregosa + et al., 2011), Python Optimal Transport + (Flamary + et al., 2021), PyKeops + (Charlier + et al., 2021), or PyTorch + (Paszke + et al., 2019). This makes multipers a + very efficient and fully-featured library, showcasing a wide variety + of mathematically-grounded multiparameter topological invariants, + including, e.g., Multiparameter Module Approximation + (Loiseaux + et al., 2022), Euler, Hilbert, and Rectangle Signed Barcodes + (Botnan + et al., 2022; + Oudot + & Scoccola, 2024), Multiparameter Persistent Landscapes + (Vipond, + 2020); each of them computable from several multi-filtrations, + e.g., Rips-Density-like filtrations, Cubical, Degree-Rips, + Function-Delaunay, or any + + k-critical + multi-filtration. These topological descriptors can then directly be + used in auto-differentiable Machine Learning pipelines, using the + differentiability framework developed in + (Scoccola + et al., 2024), through several methods, such as, e.g., + Decomposable Module Representations + (Loiseaux, + Carrière, et al., 2023), Sliced Wasserstein Kernels or + Convolutions from Signed Measures + (Loiseaux, + Scoccola, et al., 2023). As a result, + multipers is capable of handling, within a + single minute of computation, datasets of + + + 50k + points with only 5 lines of Python code. See Figures + [2], + [3].

+ +

Typical + interpretation of a “Geometric & Density” bi-filtration with + multipers. (Left) Point cloud + with color induced by density estimation (same as Figure + [1]). (Right) A + visualization of the topological structure lifetimes computed from a + Delaunay-Codensity bi-filtration; here the three cycles can be + retrieved using their radii (x-axis) and their co-densities + (y-axis). The first cycle is the densiest, and smallest, and thus + corresponds to the one that appears in the + bottom(high-density)-left(small-radius) of the bi-filtration. The + second is less dense (thus above the first one) and bigger (thus + more on the right). The same goes for the last one.

+ +
+ +

Different + Signed Barcodes from the same dataset as Figure + [2]. (Left) Euler + Decomposition Signed Barcode, and the Euler Surface in the + background. (Middle) Hilbert Decomposition Signed + Barcode, with its Hilbert Function surface. (Right) + Rank invariant Signed Barcode, with the Hilbert Function as a + background.

+ +
+

The core functions of the Python library are automatically tested + on Linux and macOS, using pytest + (Krekel + et al., 2004) alongside GitHub Actions.

+
+ + Related work and statement of need +

There exists several libraries for computation or pre-processing of + very specific tasks related to multiparameter persistence. However, to + the best of our knowledge, none of them are able to tackle the + challenges that multipers is dealing with, + i.e., (1) computing and unifying the computations of + multiparameter persistent structures, in a non-expert friendly + approach, and (2) provide ready-to-use general tools to + use these descriptors for Machine Learning pipelines and projects.

+

Eulearning. + This library features different approaches for computing and using the + Euler Characteristic of a multiparameter filtration + (Hacquard + & Lebovici, 2023). Although relying on distinct methods, + multipers can also be used to compute Machine + Learning descriptors from the Euler Characteristic, i.e., the Euler + Decomposition Signed Barcode, or Euler Surfaces. Moreover, + multipers computations are faster (especially + on point cloud datasets), easier to use, and available on a wider + range of multi-filtrations.

+

Multiparameter + Persistent Landscape. Implemented on top of + Rivet + (Lesnick + & Wright, 2015), this library computes a multiparameter + persistent descriptor by computing 1-parameter persistence landscape + vectorizations of slices in multi-filtrations + (Vipond, + 2020), called Multiparameter Persistent Landscape (MPL). This + library also features some multiparameter persistence visualizations. + However, it is limited to Rivet capabilities + and landscapes computations, which on one hand does not leverage on + recently developed optimizations, e.g., + (Alonso + et al., 2023), or + (Kerber + & Rolle, 2020), and on the other hand can only work with + very specific text file inputs.

+

GRIL. + This library provides code to compute a specific, generalized version + of the Multiparameter Persistent Landscapes + (Xin et + al., 2023), relying on 1-paramter persistence zigzag + computations. This library however is limited to this invariant, can + only deal with 2-parameter persistence, and is not as much integrated + as multipers with other multiparameter + persistence and Machine Learning libraries.

+

Elder + Rule Staircode. This library features a descriptor + for 2-parameter, degree-0 homology, rips-densitity-like filtrations + (Cai + et al., 2021). Once again, this library is very specific and + not linked with other libraries.

+

Persistable. + is a GUI interactive library for clustering, using degree-0 + multiparameter persistence + (Rolle + & Scoccola, 2020; + Scoccola + & Rolle, 2023). Although aiming at distinct goals and using + very different approaches, multipers can also + be used for clustering, by computing (differentiable) descriptors that + can be used afterward with standard clustering methods, e.g., + K-means.

+

We contribute to this variety of task-specific libraries by + providing a general purpose library, + multipers, with novel and efficient topological + invariant computations, integrated state-of-the art Machine Learning + topological pipelines, and interfaces to standard Machine Learning and + Deep Learning libraries.

+
+ + Acknowledgements +

David Loiseaux was supported by ANR grant 3IA Côte d’Azur + (ANR-19-P3IA-0002). The authors would like to thank Mathieu Carrière, + and Luis Scoccola for their help on Sliced Wasserstein, and Möbius + inversion code.

+
+ + + + + + + + ScoccolaLuis + RolleAlexander + + Persistable: Persistent and stable clustering + Journal of Open Source Software + 202303 + 20240509 + 8 + 83 + 2475-9066 + 10.21105/joss.05022 + 5022 + + + + + + + CaiChen + KimWoojin + MemoliFacundo + WangYusu + + Elder-Rule-Staircodes for Augmented Metric Spaces + SIAM Journal on Applied Algebra and Geometry + 202101 + 20220520 + 5 + 3 + 2470-6566 + https://arxiv.org/abs/2003.04523 + 10.1137/20M1353605 + 417 + 454 + + + + + + HacquardOlympio + LeboviciVadim + + Euler Characteristic Tools For Topological Data Analysis + arXiv.org + 202303 + 20240416 + 10.48550/arxiv.2303.14040 + + + + + + AlonsoÁngel Javier + KerberMichael + PritamSiddharth + + Filtration-domination in bifiltered graphs + 2023 proceedings of the symposium on algorithm engineering and experiments (ALENEX ) + 2023 + 10.1137/1.9781611977561.ch3 + 27 + 38 + + + + + + AlonsoÁngel Javier + KerberMichael + LamTung + LesnickMichael + + Delaunay Bifiltrations of Functions on Point Clouds + Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms ( SODA) + Society for Industrial and Applied Mathematics + 202401 + 20240514 + 10.1137/1.9781611977912.173 + 4872 + 4891 + + + + + + XinCheng + MukherjeeSoham + SamagaShreyas N. + DeyTamal K. + + GRIL: A $2$-parameter Persistence Based Vectorization for Machine Learning + Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML) + PMLR + 202309 + 20240416 + 2640-3498 + 313 + 333 + + + + + + TheGudhiProject + + GUDHI + GUDHI Editorial Board + 2023 + + + + + + LoiseauxDavid + CarrièreMathieu + BlumbergAndrew J. + + Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA + 202206 + 20240416 + 10.48550/arXiv.2206.02026 + + + + + + LoiseauxDavid + CarrièreMathieu + BlumbergAndrew + + A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions + Advances in Neural Information Processing Systems + 202312 + 20240319 + 36 + 35774 + 35798 + + + + + + KerberMichael + RolleAlexander + + Fast Minimal Presentations of Bi-graded Persistence Modules + arXiv:2010.15623 [cs, math] + 202010 + 20210721 + https://arxiv.org/abs/2010.15623 + 10.1137/1.9781611976472.16 + + + + + + VipondOliver + + Multiparameter persistence landscapes + Journal of Machine Learning Research + 2020 + 21 + 61:1 + 61:38 + + + + + + RolleAlexander + ScoccolaLuis + + Stable and consistent density-based clustering via multiparameter persistence + arXiv.org + 202005 + 20240416 + 10.48550/arXiv.2005.09048 + + + + + + FlamaryRémi + CourtyNicolas + GramfortAlexandre + AlayaMokhtar Z. + BoisbunonAurélie + ChambonStanislas + ChapelLaetitia + CorenflosAdrien + FatrasKilian + FournierNemo + GautheronLéo + GayraudNathalie T. H. + JanatiHicham + RakotomamonjyAlain + RedkoIevgen + RoletAntoine + SchutzAntony + SeguyVivien + SutherlandDanica J. + TavenardRomain + TongAlexander + VayerTitouan + + POT: Python optimal transport + The Journal of Machine Learning Research + 202101 + 22 + 1 + 1532-4435 + 78:3571 + 78:3578 + + + + + + CharlierBenjamin + FeydyJean + GlaunèsJoan Alexis + CollinFranç ois-David + DurifGhislain + + Kernel Operations on the GPU, with Autodiff, without Memory Overflows + Journal of Machine Learning Research + 2021 + 20240416 + 22 + 74 + 1533-7928 + 1 + 6 + + + + + + PaszkeAdam + GrossSam + MassaFrancisco + LererAdam + BradburyJames + ChananGregory + KilleenTrevor + LinZeming + GimelsheinNatalia + AntigaLuca + DesmaisonAlban + KöpfAndreas + YangEdward + DeVitoZach + RaisonMartin + TejaniAlykhan + ChilamkurthySasank + SteinerBenoit + FangLu + BaiJunjie + ChintalaSoumith + + PyTorch: An imperative style, high-performance deep learning library + Proceedings of the 33rd International Conference on Neural Information Processing Systems + Curran Associates Inc. + Red Hook, NY, USA + 201912 + 20240416 + 8026 + 8037 + + + + + + LesnickMichael + WrightMatthew + + Interactive visualization of 2-D persistence modules + arXiv:1512.00180 [cs, math] + 201512 + https://arxiv.org/abs/1512.00180 + 10.48550/arXiv.1512.00180 + + + + + + LoiseauxDavid + ScoccolaLuis + CarrièreMathieu + BotnanMagnus Bakke + OudotSteve + + Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures + Advances in Neural Information Processing Systems + 202312 + 20240319 + 36 + 68316 + 68342 + + + + + + PedregosaFabian + VaroquauxGaël + GramfortAlexandre + MichelVincent + ThirionBertrand + GriselOlivier + BlondelMathieu + PrettenhoferPeter + WeissRon + DubourgVincent + VanderplasJake + PassosAlexandre + CournapeauDavid + BrucherMatthieu + PerrotMatthieu + DuchesnayÉdouard + + Scikit-learn: Machine Learning in Python + Journal of Machine Learning Research + 2011 + 20240416 + 12 + 85 + 1533-7928 + 2825 + 2830 + + + + + + BotnanMagnus Bakke + OppermannSteffen + OudotSteve + + Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions + 38th International Symposium on Computational Geometry (SoCG 2022) + + GoaocXavier + KerberMichael + + Schloss Dagstuhl – Leibniz-Zentrum für Informatik + Dagstuhl, Germany + 2022 + 20220614 + 224 + 978-3-95977-227-3 + 1868-8969 + 10.4230/LIPIcs.SoCG.2022.19 + 19:1 + 19:18 + + + + + + OudotSteve + ScoccolaLuis + + On the Stability of Multigraded Betti Numbers and Hilbert Functions + SIAM Journal on Applied Algebra and Geometry + Society for Industrial and Applied Mathematics + 202403 + 20240514 + 8 + 1 + 10.1137/22M1489150 + 54 + 88 + + + + + + ScoccolaLuis + SetlurSiddharth + LoiseauxDavid + CarrièreMathieu + OudotSteve + + Differentiability and Optimization of Multiparameter Persistent Homology + Proceedings of the 41st International Conference on Machine Learning + PMLR + 202407 + 20241002 + 235 + 2640-3498 + 43986 + 44011 + + + + + + KrekelHolger + OliveiraBruno + PfannschmidtRonny + BruynoogheFloris + LaugherBrianna + BruhinFlorian + + Pytest 8.3 + 2004 + + + + + + BehnelS. + BradshawR. + CitroC. + DalcinL. + SeljebotnD. S. + SmithK. + + Cython: The best of both worlds + Computing in Science Engineering + 13 + 2 + 1521-9615 + 10.1109/MCSE.2010.118 + 31 + 39 + + + + + + RobisonArch D. + + Intel Threading Building Blocks (TBB) + Encyclopedia of Parallel Computing + + PaduaDavid + + Springer US + Boston, MA + 2011 + 20241009 + 978-0-387-09766-4 + 10.1007/978-0-387-09766-4_51 + 955 + 964 + + + + +
diff --git a/joss.06773/paper.jats/3cycles.png b/joss.06773/paper.jats/3cycles.png new file mode 100644 index 0000000000..36d164be32 Binary files /dev/null and b/joss.06773/paper.jats/3cycles.png differ diff --git a/joss.06773/paper.jats/SignedBarcodes.png b/joss.06773/paper.jats/SignedBarcodes.png new file mode 100644 index 0000000000..5e4b90a836 Binary files /dev/null and b/joss.06773/paper.jats/SignedBarcodes.png differ diff --git a/joss.06773/paper.jats/annulus.png b/joss.06773/paper.jats/annulus.png new file mode 100644 index 0000000000..2cf004e46e Binary files /dev/null and b/joss.06773/paper.jats/annulus.png differ