diff --git a/joss.06888/paper.jats/10.21105.joss.06888.jats b/joss.06888/paper.jats/10.21105.joss.06888.jats new file mode 100644 index 0000000000..a67537e10d --- /dev/null +++ b/joss.06888/paper.jats/10.21105.joss.06888.jats @@ -0,0 +1,1059 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6888 +10.21105/joss.06888 + +GRBoondi: A code for evolving Generalized Proca theories +on arbitrary backgrounds + + + +https://orcid.org/0000-0002-8059-0359 + +Fell +Shaun David Brocus + + + + +https://orcid.org/0000-0002-5766-8242 + +Heisenberg +Lavinia + + + + + +Institute for Theoretical Physics, Universitaet Heidelberg, +Philosophenweg 12, 69120 Heidelberg, Germany + + + +9 +103 +6888 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2024 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +C++ +MPI +OpenMP +vector intrinsics +Generalized Proca +gravity +general relativity +numerical relativity +adaptive refinement + + + + + + Summary +

Proca theories are a simple massive extension of the typical + electromagnetic field. Such a simple modification of the underlying + theory can have tremendous phenomenological implications, particularly + in the case of early-universe high-energy physics, structure + formation, and various dark matter models. On the theoretical side, + they arise naturally in certain string theories and axionic + interactions. Phenomenologically, Proca fields can be produced in the + early universe from quantum fluctuations. This leads the Proca field + to be an excellent candidate for the dark matter particle. Naturally, + generalizations of the Proca field can lead to even richer + astrophysical implications, providing possible solutions to many + challenges across a wide range of astrophysical phenomena.

+ + Generalized Proca +

Generalized Proca theories + (Heisenberg, + 2014, + 2019) + provide a rich landscape to search for solutions to deep, + fundamental questions, such as the nature of dark energy and dark + matter. Moreover, strong gravity regimes, like those surrounding + dense, compact astrophysical entities, offer novel avenues to + explore fundamental fields. To effectively probe these domains, + precise models are imperative for sifting through vast quantities of + data. Crafting concrete models for the entirety of generalized Proca + theories represents a formidable endeavor, typically relying on + numerical methods. These numerical methods are usually written to be + case dependent, especially for a particular background. This makes + it difficult to generalize the computational code to account for + higher-order couplings or different types of backgrounds. The + difficulty is especially amplified when considering the full + landscape of generalized Proca theories and beyond + (Heisenberg + et al., 2016). Already at the level of the Lagrangian, the + equations are immense, + + g.P.=g(14FμνFμν+n=26αnn), + where each sub-Lagrangian + + n + contains terms of different orders in the derivatives of the Proca + field + (Heisenberg, + 2014, + 2019). + Even including solely + + 2, + the equations of motion can be extremely cumbersome. Solving these + equations of motion analytically very quickly becomes + intractable.

+

GRBoondi provides a unified interface for computing the evolution + of any generalized Proca model on an arbitrary background. Given a + specific background with known expressions for the metric variables + and initial data for the Proca field, GRBoondi numerically computes + the time evolution of the Proca field, given user-specified + generalized Proca equations of motion. While the simultaneous + evolution of the metric and matter fields offers the most + comprehensive depiction of their temporal progression, there are + instances where the density of the Proca field is negligible in + comparison to the background curvature. In such cases, fixed + background evolution routines serve as an excellent approximation to + the complete mutual evolution. A core feature of GRBoondi is that it + simplifies much of the boilerplate code required to begin a + simulation from scratch. The only additions a user needs to input + are the initial conditions, the modifications to the equations of + motion (EOM), and the background functions. GRBoondi will + automatically compute various diagnostic quantities and plot files. + Moreover, GRBoondi is incredibly modular and modifications to any of + the in-built functions is effortless.

+
+
+ + Statement of need +

In practice, any numerical relativity (NR) software library can be + used to evolve generalized Proca theories. Prominent examples of NR + codes encompass the extensive Einstein Toolkit + (Brandt + et al., 2024) and its related Cactus framework + (Goodale + et al., 2003), Kranc + (Husa + et al., 2006), LEAN + (Sperhake, + 2007), and Canuda + (Witek + et al., 2023). Other libraries worth mentioning are the + non-public BAM + (Brügmann + et al., 2008), AMSS-NCKU + (Galaviz + et al., 2010), PAMR + (East + et al., 2012) and HAD + (Neilsen + et al., n.d.). The non-exhaustive list can be expanded with + SPeC + (Pfeiffer + et al., 2003), which is a pseudo-spectral code that uses + generalized harmonic coordinates. Similarly, SpECTRE + (Cao + et al., 2019; + Deppe + et al., 2021; + Kidder + et al., 2017) uses the Galerkin methods. NRPy + (Ruchlin + et al., 2018) is a Python library that aims for use on non-high + performance computing clusters. There are also cosmological simulation + codes like CosmoGRaPH + (Mertens + et al., 2016) and GRAMSES + (Barrera-Hinojosa + & Li, 2020). Simflowny + (Palenzuela + et al., 2018) is a magneto-hydrodynamic simulation software. + GR-Athena++ + (Daszuta + et al., 2021) uses the oct-tree AMR for maximum scaling. + ExaGRyPE is a NR program leveraging the ExaHyPRE PDE solver + (Zhang + et al., 2024). GRDzhadzha + (Aurrekoetxea + et al., 2024) is another fixed background code, based off the + GRChombo + (Andrade + et al., 2021) framework, which GRBoondi utilizes.

+

This extensive list underscores the abundance of NR libraries at + one’s disposal. However, none of them provide a tailored unified + interface for studying the vast landscape of gravity theories, like + generalized Proca. Using any of the numerous frameworks requires + significant work in order to evolve even a single generalized Proca + theory. GRBoondi tackles this problem by providing a collection of + specialized tools for computing the generalized Proca equations, + relying on existing tools which allows for rapid updating and + debugging. On top of this, GRBoondi offers catered plotting routines + for viewing data, leveraging the highly parallelizable VisIt + (Childs + et al., 2012) analysis tool. In addition, since the metric + variables and their derivatives are computed exactly at each grid + point, the adaptability of the AMR grid can be focused solely on the + matter variables.

+
+ + Key features of GRBoondi + + +

Ease of use: A central pillar of GRBoondi is its + ease of use, relative to other NR software. Many of the basic + boilerplate code and complexities are kept within the source code, + allowing the user to have only a basic understanding of the code + in order to start researching their problem.

+
+ +

Arbitrary choice of background spacetime: The main + parts of GRBoondi are extremely modular — users can swap in and + out backgrounds with ease. GRBoondi comes pre-equipped with four + background classes ready for use, along with testing suites to + verify convergence of each class. These include (starred + backgrounds are inherited from GRDzhadzha and are immediately + usable in GRBoondi):

+ + +

Minkowski space

+
+ +

Kerr-de Sitter black hole

+
+ +

*Boosted Schwarzschild black hole

+
+ +

*Kerr black hole

+
+
+
+ +

Arbitrary modifications to base Proca: GRBoondi + uses specific coding idioms that allow arbitrary modifications to + the hard-coded equations of motion. This allows for numerical + simulations of any generalized Proca theory. The base model is the + standard electromagnetic model, subject to the usual Proca + constraint. Any generalized Proca theory can be added on top of + this by simply adding the additional pieces from the generalized + Proca Lagrangian. Examples of simulating standard Proca and a + simple non-linear model + (Clough + et al., 2022; + Coates + & Ramazanoğlu, 2022; + Ünlütürk + et al., 2023) are included in the code repository.

+
+ +

Diagnostics: GRBoondi comes equipped with a large + number of diagnostic quantities that can be calculated during the + course of a simulation and additional tools for users to calculate + their own quantities.

+
+ +

Tailored post-processing tools: GRBoondi comes + equipped with custom-built post-processing scripts, leveraging + VisIt’s Python interface. Any of the diagnostic quantities + computed during the evolution can be plotted using these tools. It + also contains a simple integral plotter, for quickly visualizing + the various integrals computed during a simulation, leveraging + Python’s Matplotlib package + (Hunter, + 2007)

+
+
+

Additional features of GRBoondi are elucidated on the + GitHub + Wiki.

+ +

Some examples of the usage of GRBoondi. The left image + is the energy density of a Proca cloud superradiantly excited around + a rapidly spinning black hole, superimposed with streamlines of the + spatial Proca vector field. The right image is a plot in the + xz-plane of the square of the Proca 4-vector in the same background. + The spin axis of the black hole is orientated along the z-axis. + Superimposed on both images is a slice of the computational grid, + clearly showing the refinement hierarchy.

+ +
+
+ + Acknowledgements +

LH is supported by funding from the European Research Council (ERC) + under the European Unions Horizon 2020 research and innovation + programme grant agreement No 801781. LH further acknowledges support + from the Deutsche Forschungsgemeinschaft (DFG, German Research + Foundation) under Germany’s Excellence Strategy EXC 2181/1 - 390900948 + (the Heidelberg STRUCTURES Excellence Cluster).

+

SF is indebted to Katy Clough for her stimulating discussions and + extensive input to the code. Katy was an invaluable source of aid for + the nuances of NR simulations and some of the finer details of + GRChombo.

+

The simulations performed as part of this release were carried out + on the Baden-Württemberg high-performance computing cluster. The + authors acknowledge support by the state of Baden-Württemberg through + bwHPC.

+
+ + + + + + + + HeisenbergLavinia + + A systematic approach to generalisations of general relativity and their cosmological implications + Physics Reports + 201903 + 796 + 10.1016/j.physrep.2018.11.006 + 1 + 113 + + + + + + HeisenbergLavinia + + Generalization of the Proca action + Journal of Cosmology and Astroparticle Physics + 201405 + 2014 + 05 + 1475-7516 + 10.1088/1475-7516/2014/05/015 + 015 + 015 + + + + + + AndradeTomas + SaloLlibert Areste + AurrekoetxeaJosu C. + BamberJamie + CloughKaty + CroftRobin + JongEloy de + DrewAmelia + DuranAlejandro + FerreiraPedro G. + FiguerasPau + FinkelHal + FrançaTiago + GeBo-Xuan + GuChenxia + HelferThomas + JäykkäJuha + JoanaCristian + KuneschMarkus + KornetKacper + LimEugene A. + MuiaFrancesco + NazariZainab + RadiaMiren + RipleyJustin + ShellardPaul + SperhakeUlrich + TraykovaDina + TunyasuvunakoolSaran + WangZipeng + WiddicombeJames Y. + WongKaze + + GRChombo: An adaptable numerical relativity code for fundamental physics + Journal of Open Source Software + The Open Journal + 2021 + 6 + 68 + https://doi.org/10.21105/joss.03703 + 10.21105/joss.03703 + 3703 + + + + + + + CloughKaty + HelferThomas + WitekHelvi + BertiEmanuele + + Ghost instabilities in self-interacting vector fields: The problem with Proca fields + Phys. Rev. Lett. + American Physical Society + 202210 + 129 + https://link.aps.org/doi/10.1103/PhysRevLett.129.151102 + 10.1103/PhysRevLett.129.151102 + 151102 + + + + + + + CoatesAndrew + RamazanoğluFethi M. + + Intrinsic pathology of self-interacting vector fields + Phys. Rev. Lett. + American Physical Society + 202210 + 129 + https://link.aps.org/doi/10.1103/PhysRevLett.129.151103 + 10.1103/PhysRevLett.129.151103 + 151103 + + + + + + + ÜnlütürkKıvanç İ. + CoatesAndrew + RamazanoğluFethi M. + + Loss of hyperbolicity and tachyons in generalized Proca theories + Physical Review D + American Physical Society (APS) + 202308 + 108 + 4 + 2470-0029 + http://dx.doi.org/10.1103/PhysRevD.108.044022 + 10.1103/physrevd.108.044022 + + + + + + AurrekoetxeaJosu C. + BamberJamie + BradySam E. + CloughKaty + HelferThomas + MarsdenJames + RadiaMiren + TraykovaDina + WangZipeng + + GRDzhadzha: A code for evolving relativistic matter on analytic metric backgrounds + Journal of Open Source Software + The Open Journal + 2024 + 9 + 96 + https://doi.org/10.21105/joss.05956 + 10.21105/joss.05956 + 5956 + + + + + + + BrandtSteven R. + HaasRoland + DienerPeter + EnnoggiLorenzo + FergusonDeborah + JacquesTerrence Pierre + JiLiwei + KalinaniJay + RizzoMaxwell + SanchesLucas Timotheo + SrivastavaDhruv + TsaoBing-Jyun + BhatiaKrishiv + BozzolaGabriele + ChabanovMichail + ChengCheng-Hsin + CuppSamuel + DimaAlexandru + DohertyJake + EtienneZachariah + MacphersonHayley + SchnetterErik + ShankarSwapnil + TichyWolfgang + TootleSamuel + WerneckLeonardo + WitekHelvi + AlcubierreMiguel + AlicDaniela + AllenGabrielle + AnsorgMarcus + ArmengolFederico G. Lopez + Babiuc-HamiltonMaria + BaiottiLuca + BengerWerner + BentivegnaEloisa + BernuzziSebastiano + BodeTanja + BrendalBrockton + BruegmannBernd + CampanelliManuela + CipollettaFederico + CorvinoGiovanni + PietriRoberto De + DimmelmeierHarry + DooleyRion + DorbandNils + ElleyMatthew + KhamraYaakoub El + FaberJoshua + FicarraGiuseppe + FontToni + FriebenJoachim + GiacomazzoBruno + GoodaleTom + GundlachCarsten + HawkeIan + HawleyScott + HinderIan + HuertaE. A. + HusaSascha + IkedaTaishi + IyerSai + JohnsonDaniel + JoshiAbhishek V. + KankaniAnuj + KastaunWolfgang + KellermannThorsten + KnappAndrew + KoppitzMichael + LagunaPablo + LanfermanGerd + LaskyPaul + LöfflerFrank + MassoJoan + MengerLars + MerzkyAndre + MillerJonah Maxwell + MillerMark + MoestaPhilipp + MonteroPedro + MundimBruno + NelsonPatrick + NerozziAndrea + NobleScott C. + OttChristian + PapenfortLudwig Jens + ParuchuriRavi + PirogMichal + PollneyDenis + PriceDaniel + RadiceDavid + RadkeThomas + ReisswigChristian + RezzollaLuciano + RichardsChloe B. + RideoutDavid + RipeanuMatei + SalaLorenzo + SchewtschenkoJascha A + SchutzBernard + SeidelEd + SeidelEric + ShalfJohn + SibleKen + SperhakeUlrich + StergioulasNikolaos + SuenWai-Mo + SzilagyiBela + TakahashiRyoji + ThomasMichael + ThornburgJonathan + TianChi + TobiasMalcolm + TonitaAaryn + WalkerPaul + WanMew-Bing + WardellBarry + ZilhãoMiguel + ZinkBurkhard + ZlochowerYosef + + The Einstein Toolkit + Zenodo + 202406 + https://doi.org/10.5281/zenodo.12588764 + 10.5281/zenodo.12588764 + + + + + + GoodaleTom + AllenGabrielle + LanfermannGerd + MassóJoan + RadkeThomas + SeidelEdward + ShalfJohn + + The cactus framework and toolkit: Design and applications + High performance computing for computational science — VECPAR 2002 + + PalmaJosé M. L. M. + SousaA. Augusto + DongarraJack + HernándezVicente + + Springer Berlin Heidelberg + Berlin, Heidelberg + 2003 + 978-3-540-36569-3 + 10.1007/3-540-36569-9_13 + 197 + 227 + + + + + + HusaSascha + HinderIan + LechnerChristiane + + Kranc: A Mathematica application to generate numerical codes for tensorial evolution equations + Comput. Phys. Commun. + 2006 + 174 + https://arxiv.org/abs/gr-qc/0404023 + 10.1016/j.cpc.2006.02.002 + 983 + 1004 + + + + + + SperhakeUlrich + + Binary black-hole evolutions of excision and puncture data + Phys. Rev. D + 2007 + 76 + https://arxiv.org/abs/gr-qc/0606079 + 10.1103/PhysRevD.76.104015 + 104015 + + + + + + + WitekHelvi + ZilhaoMiguel + BozzolaGabriele + ChengCheng-Hsin + DimaAlexandru + ElleyMatthew + FicarraGiuseppe + IkedaTaishi + LunaRaimon + RichardsChloe + Sanchis-GualNicolas + SilvaHector + + Canuda: A public numerical relativity library to probe fundamental physics + Zenodo + 202305 + https://doi.org/10.5281/zenodo.7791842 + 10.5281/zenodo.7791842 + + + + + + BrügmannBernd + GonzálezJosé A. + HannamMark + HusaSascha + SperhakeUlrich + TichyWolfgang + + Calibration of moving puncture simulations + Phys. Rev. D + American Physical Society + 200801 + 77 + https://link.aps.org/doi/10.1103/PhysRevD.77.024027 + 10.1103/PhysRevD.77.024027 + 024027 + + + + + + + GalavizPablo + BruegmannBernd + CaoZhoujian + + Numerical evolution of multiple black holes with accurate initial data + Phys. Rev. D + 2010 + 82 + https://arxiv.org/abs/1004.1353 + 10.1103/PhysRevD.82.024005 + 024005 + + + + + + + EastWilliam E. + PretoriusFrans + StephensBranson C. + + Hydrodynamics in full general relativity with conservative AMR + Phys. Rev. D + 2012 + 85 + https://arxiv.org/abs/1112.3094 + 10.1103/PhysRevD.85.124010 + 124010 + + + + + + + NeilsenDavid + HirschmannEric W. + AndersonMatthew + LieblingSteven L. + + Adaptive mesh refinement and relativistic MHD + The eleventh Marcel Grossmann Meeting + https://worldscientific.com/doi/abs/10.1142/9789812834300\%5F0200 + 10.1142/9789812834300_0200 + 1579 + 1581 + + + + + + PfeifferHarald P. + KidderLawrence E. + ScheelMark A. + TeukolskySaul A. + + A multidomain spectral method for solving elliptic equations + Computer Physics Communications + 2003 + 152 + 3 + 0010-4655 + https://www.sciencedirect.com/science/article/pii/S0010465502008470 + 10.1016/S0010-4655(02)00847-0 + 253 + 273 + + + + + + DeppeNils + ThroweWilliam + KidderLawrence E. + FischerNils L. + ArmazaCristóbal + BonillaGabriel S. + HébertFrançois + KumarPrayush + LovelaceGeoffrey + MoxonJordan + O’SheaEamonn + PfeifferHarald P. + ScheelMark A. + TeukolskySaul A. + AnantpurkarIsha + BoyleMichael + FoucartFrancois + GieslerMatthew + IozzoDante A. B. + LegredIsaac + LiDongjun + MacedoAlexandra + MelchorDenyz + MoralesMarlo + RamirezTeresita + RüterHannes R. + SanchezJennifer + ThomasSierra + WlodarczykTom + + SpECTRE + Zenodo + 202105 + https://doi.org/10.5281/zenodo.4734670 + 10.5281/zenodo.4734670 + + + + + + KidderLawrence E. + FieldScott E. + FoucartFrancois + SchnetterErik + TeukolskySaul A. + BohnAndy + DeppeNils + DienerPeter + HébertFrançois + LippunerJonas + MillerJonah + OttChristian D. + ScheelMark A. + VincentTrevor + + SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics + Journal of Computational Physics + 2017 + 335 + 0021-9991 + https://www.sciencedirect.com/science/article/pii/S0021999117300098 + 10.1016/j.jcp.2016.12.059 + 84 + 114 + + + + + + CaoZhoujian + FuPei + JiLi-Wei + XiaYinhua + + Application of local discontinuous Galerkin method to Einstein equations + International Journal of Modern Physics D + 2019 + 28 + 01 + https://doi.org/10.1142/S0218271819500147 + 10.1142/S0218271819500147 + 1950014 + + + + + + + RuchlinIan + EtienneZachariah B. + BaumgarteThomas W. + + SENR/NRPy+: Numerical relativity in singular curvilinear coordinate systems + Phys. Rev. D + 2018 + 97 + 6 + https://arxiv.org/abs/1712.07658 + 10.1103/PhysRevD.97.064036 + 064036 + + + + + + + MertensJames B. + GiblinJohn T. + StarkmanGlenn D. + + Integration of inhomogeneous cosmological spacetimes in the BSSN formalism + Phys. Rev. D + 2016 + 93 + 12 + https://arxiv.org/abs/1511.01106 + 10.1103/PhysRevD.93.124059 + 124059 + + + + + + + Barrera-HinojosaCristian + LiBaojiu + + GRAMSES: A new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code description + Journal of Cosmology and Astroparticle Physics + 2020 + 01 + https://arxiv.org/abs/1905.08890 + 10.1088/1475-7516/2020/01/007 + 007 + + + + + + + PalenzuelaCarlos + MiñanoBorja + ViganòDaniele + ArbonaAntoni + Bona-CasasCarles + RigoAndreu + BezaresMiguel + BonaCarles + MassóJoan + + A Simflowny-based finite-difference code for high-performance computing in numerical relativity + Classical and Quantum Gravity + IOP Publishing + 201808 + 35 + 18 + https://dx.doi.org/10.1088/1361-6382/aad7f6 + 10.1088/1361-6382/aad7f6 + 185007 + + + + + + + DaszutaBoris + ZappaFrancesco + CookWilliam + RadiceDavid + BernuzziSebastiano + MorozovaViktoriya + + GR-Athena++: Puncture evolutions on vertex-centered oct-tree adaptive mesh refinement + The Astrophysical Journal Supplement Series + The American Astronomical Society + 202111 + 257 + 2 + https://dx.doi.org/10.3847/1538-4365/ac157b + 10.3847/1538-4365/ac157b + 25 + + + + + + + ChildsHank + BruggerEric + WhitlockBrad + MeredithJeremy + AhernSean + PugmireDavid + BiagasKathleen + MillerMark + HarrisonCyrus + WeberGunther H. + KrishnanHari + FogalThomas + SandersonAllen + GarthChristoph + BethelE. Wes + CampDavid + RübelOliver + DurantMarc + FavreJean M. + NavrátilPaul + + VisIt: An end-user tool for visualizing and analyzing very large data + High performance visualization–enabling extreme-scale scientific insight + 201210 + 10.1201/b12985 + 357 + 372 + + + + + + HunterJ. D. + + Matplotlib: A 2D graphics environment + Computing in Science & Engineering + IEEE COMPUTER SOC + 2007 + 9 + 3 + 10.1109/MCSE.2007.55 + 90 + 95 + + + + + + HeisenbergLavinia + KaseRyotaro + TsujikawaShinji + + Beyond generalized proca theories + Phys. Lett. B + 2016 + 760 + https://arxiv.org/abs/1605.05565 + 10.1016/j.physletb.2016.07.052 + 617 + 626 + + + + + + ZhangHan + LiBaojiu + WeinzierlTobias + Barrera-HinojosaCristian + + ExaGRyPE: Numerical general relativity solvers based upon the hyperbolic PDEs solver engine ExaHyPE + 2024 + https://arxiv.org/abs/2406.11626 + 10.2139/ssrn.4886174 + + + + +