diff --git a/joss.05703/10.21105.joss.05703.crossref.xml b/joss.05703/10.21105.joss.05703.crossref.xml
new file mode 100644
index 0000000000..be1b0b0132
--- /dev/null
+++ b/joss.05703/10.21105.joss.05703.crossref.xml
@@ -0,0 +1,550 @@
+
+
+
+ 20230915T221355-ed1b2372159ece9b8ccfb7d165267614ffbf1d12
+ 20230915221355
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 09
+ 2023
+
+
+ 8
+
+ 89
+
+
+
+ pysersic: A Python package for determining galaxy
+structural properties via Bayesian inference, accelerated with
+jax
+
+
+
+ Imad
+ Pasha
+ https://orcid.org/0000-0002-7075-9931
+
+
+ Tim B.
+ Miller
+ https://orcid.org/0000-0001-8367-6265
+
+
+
+ 09
+ 15
+ 2023
+
+
+ 5703
+
+
+ 10.21105/joss.05703
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.8335352
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5703
+
+
+
+ 10.21105/joss.05703
+ https://joss.theoj.org/papers/10.21105/joss.05703
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05703.pdf
+
+
+
+
+
+ A hybrid Fourier–Real Gaussian Mixture method
+for fast galaxy–PSF convolution
+ Lang
+ arXiv e-prints
+ 10.48550/arXiv.2012.15797
+ 2020
+ Lang, D. (2020). A hybrid
+Fourier–Real Gaussian Mixture method for fast galaxy–PSF convolution.
+arXiv e-Prints, arXiv:2012.15797.
+https://doi.org/10.48550/arXiv.2012.15797
+
+
+ Atlas de Galaxias Australes
+ Sersic
+ 1968
+ Sersic, J. L. (1968). Atlas de
+Galaxias Australes.
+
+
+ JAX: Composable transformations of
+Python+NumPy programs
+ Bradbury
+ 2018
+ Bradbury, J., Frostig, R., Hawkins,
+P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
+VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX:
+Composable transformations of Python+NumPy programs (Version 0.3.13).
+http://github.com/google/jax
+
+
+ Pyro: Deep universal probabilistic
+programming
+ Bingham
+ J. Mach. Learn. Res.
+ 20
+ 2019
+ Bingham, E., Chen, J. P., Jankowiak,
+M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.
+A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal
+probabilistic programming. J. Mach. Learn. Res., 20, 28:1–28:6.
+http://jmlr.org/papers/v20/18-403.html
+
+
+ Composable effects for flexible and
+accelerated probabilistic programming in NumPyro
+ Phan
+ arXiv preprint
+arXiv:1912.11554
+ 2019
+ Phan, D., Pradhan, N., &
+Jankowiak, M. (2019). Composable effects for flexible and accelerated
+probabilistic programming in NumPyro. arXiv Preprint
+arXiv:1912.11554.
+
+
+ COSMOS-DASH: The Evolution of the Galaxy
+Size-Mass Relation since z \sim 3 from New Wide-field WFC3 Imaging
+Combined with CANDELS/3D-HST
+ Mowla
+ Astrophysical Journal
+ 1
+ 880
+ 10.3847/1538-4357/ab290a
+ 2019
+ Mowla, L. A., van Dokkum, P.,
+Brammer, G. B., Momcheva, I., van der Wel, A., Whitaker, K., Nelson, E.,
+Bezanson, R., Muzzin, A., Franx, M., MacKenty, J., Leja, J., Kriek, M.,
+& Marchesini, D. (2019). COSMOS-DASH: The Evolution of the Galaxy
+Size-Mass Relation since z \sim 3 from New Wide-field WFC3 Imaging
+Combined with CANDELS/3D-HST. Astrophysical Journal, 880(1), 57.
+https://doi.org/10.3847/1538-4357/ab290a
+
+
+ Galaxy And Mass Assembly (GAMA): mass-size
+relations of z < 0.1 galaxies subdivided by Sérsic index, colour and
+morphology
+ Lange
+ Monthly Notices of the RAS
+ 3
+ 447
+ 10.1093/mnras/stu2467
+ 2015
+ Lange, R., Driver, S. P., Robotham,
+A. S. G., Kelvin, L. S., Graham, A. W., Alpaslan, M., Andrews, S. K.,
+Baldry, I. K., Bamford, S., Bland-Hawthorn, J., Brough, S., Cluver, M.
+E., Conselice, C. J., Davies, L. J. M., Haeussler, B., Konstantopoulos,
+I. S., Loveday, J., Moffett, A. J., Norberg, P., … Wilkins, S. M.
+(2015). Galaxy And Mass Assembly (GAMA): mass-size relations of z <
+0.1 galaxies subdivided by Sérsic index, colour and morphology. Monthly
+Notices of the RAS, 447(3), 2603–2630.
+https://doi.org/10.1093/mnras/stu2467
+
+
+ Hyper Suprime-Cam Subaru Strategic Program: A
+Mass-dependent Slope of the Galaxy Size-Mass Relation at z <
+1
+ Kawinwanichakij
+ Astrophysical Journal
+ 1
+ 921
+ 10.3847/1538-4357/ac1f21
+ 2021
+ Kawinwanichakij, L., Silverman, J.
+D., Ding, X., George, A., Damjanov, I., Sawicki, M., Tanaka, M., Taranu,
+D. S., Birrer, S., Huang, S., Li, J., Onodera, M., Shibuya, T., &
+Yasuda, N. (2021). Hyper Suprime-Cam Subaru Strategic Program: A
+Mass-dependent Slope of the Galaxy Size-Mass Relation at z < 1.
+Astrophysical Journal, 921(1), 38.
+https://doi.org/10.3847/1538-4357/ac1f21
+
+
+ IMFIT: A Fast, Flexible New Program for
+Astronomical Image Fitting
+ Erwin
+ Astrophysical Journal
+ 2
+ 799
+ 10.1088/0004-637X/799/2/226
+ 2015
+ Erwin, P. (2015). IMFIT: A Fast,
+Flexible New Program for Astronomical Image Fitting. Astrophysical
+Journal, 799(2), 226.
+https://doi.org/10.1088/0004-637X/799/2/226
+
+
+ Detailed Structural Decomposition of Galaxy
+Images
+ Peng
+ Astronomical Journal
+ 1
+ 124
+ 10.1086/340952
+ 2002
+ Peng, C. Y., Ho, L. C., Impey, C. D.,
+& Rix, H.-W. (2002). Detailed Structural Decomposition of Galaxy
+Images. Astronomical Journal, 124(1), 266–293.
+https://doi.org/10.1086/340952
+
+
+ PROFIT: Bayesian profile fitting of galaxy
+images
+ Robotham
+ Monthly Notices of the RAS
+ 2
+ 466
+ 10.1093/mnras/stw3039
+ 2017
+ Robotham, A. S. G., Taranu, D. S.,
+Tobar, R., Moffett, A., & Driver, S. P. (2017). PROFIT: Bayesian
+profile fitting of galaxy images. Monthly Notices of the RAS, 466(2),
+1513–1541. https://doi.org/10.1093/mnras/stw3039
+
+
+ PyAutoGalaxy: Open-source multiwavelength
+galaxy structure & morphology
+ Nightingale
+ Journal of Open Source
+Software
+ 81
+ 8
+ 10.21105/joss.04475
+ 2023
+ Nightingale, James. W., Amvrosiadis,
+A., Hayes, R. G., He, Q., Etherington, A., Cao, X., Cole, S., Frawley,
+J., Frenk, C. S., Lange, S., Li, R., Massey, R. J., Negrello, M., &
+Robertson, A. (2023). PyAutoGalaxy: Open-source multiwavelength galaxy
+structure & morphology. Journal of Open Source Software, 8(81),
+4475. https://doi.org/10.21105/joss.04475
+
+
+ Galaxy shapes of Light (GaLight): a 2D
+modeling of galaxy images
+ Ding
+ arXiv e-prints
+ 10.48550/arXiv.2111.08721
+ 2021
+ Ding, X., Birrer, S., Treu, T., &
+Silverman, J. D. (2021). Galaxy shapes of Light (GaLight): a 2D modeling
+of galaxy images. arXiv e-Prints, arXiv:2111.08721.
+https://doi.org/10.48550/arXiv.2111.08721
+
+
+ Lenstronomy II: A gravitational lensingW
+software ecosystem
+ Birrer
+ Journal of Open Source
+Software
+ 62
+ 6
+ 10.21105/joss.03283
+ 2021
+ Birrer, S., Shajib, A. J., Gilman,
+D., Galan, A., Aalbers, J., Millon, M., Morgan, R., Pagano, G., Park, J.
+W., Teodori, L., Tessore, N., Ueland, M., Vyvere, L. V. de,
+Wagner-Carena, S., Wempe, E., Yang, L., Ding, X., Schmidt, T., Sluse,
+D., … Amara, A. (2021). Lenstronomy II: A gravitational lensingW
+software ecosystem. Journal of Open Source Software, 6(62), 3283.
+https://doi.org/10.21105/joss.03283
+
+
+ Unified lensing and kinematic analysis for
+any elliptical mass profile
+ Shajib
+ Monthly Notices of the RAS
+ 1
+ 488
+ 10.1093/mnras/stz1796
+ 2019
+ Shajib, A. J. (2019). Unified lensing
+and kinematic analysis for any elliptical mass profile. Monthly Notices
+of the RAS, 488(1), 1387–1400.
+https://doi.org/10.1093/mnras/stz1796
+
+
+ PetroFit: A Python Package for Computing
+Petrosian Radii and Fitting Galaxy Light Profiles
+ Geda
+ Astronomical Journal
+ 5
+ 163
+ 10.3847/1538-3881/ac5908
+ 2022
+ Geda, R., Crawford, S. M., Hunt, L.,
+Bershady, M., Tollerud, E., & Randriamampandry, S. (2022). PetroFit:
+A Python Package for Computing Petrosian Radii and Fitting Galaxy Light
+Profiles. Astronomical Journal, 163(5), 202.
+https://doi.org/10.3847/1538-3881/ac5908
+
+
+ The No-U-Turn sampler: adaptively setting
+path lengths in Hamiltonian Monte Carlo
+ Hoffman
+ J. Mach. Learn. Res.
+ 1
+ 15
+ 2014
+ Hoffman, M. D., Gelman, A., &
+others. (2014). The No-U-Turn sampler: adaptively setting path lengths
+in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1),
+1593–1623.
+
+
+ Black box variational
+inference
+ Ranganath
+ Artificial intelligence and
+statistics
+ 2014
+ Ranganath, R., Gerrish, S., &
+Blei, D. (2014). Black box variational inference. Artificial
+Intelligence and Statistics, 814–822.
+
+
+ Block neural autoregressive
+flow
+ De Cao
+ Uncertainty in artificial
+intelligence
+ 2020
+ De Cao, N., Aziz, W., & Titov, I.
+(2020). Block neural autoregressive flow. Uncertainty in Artificial
+Intelligence, 1263–1273.
+
+
+ Pandas-dev/pandas: pandas
+ team
+ 10.5281/zenodo.3509134
+ 2020
+ team, T. pandas development. (2020).
+Pandas-dev/pandas: pandas (latest). Zenodo.
+https://doi.org/10.5281/zenodo.3509134
+
+
+ Astropy/photutils: 1.5.0
+ Bradley
+ 10.5281/zenodo.6825092
+ 2022
+ Bradley, L., Sipőcz, B., Robitaille,
+T., Tollerud, E., Vinícius, Z., Deil, C., Barbary, K., Wilson, T. J.,
+Busko, I., Donath, A., Günther, H. M., Cara, M., Lim, P. L., Meßlinger,
+S., Conseil, S., Bostroem, A., Droettboom, M., Bray, E. M., Bratholm, L.
+A., … Souchereau, H. (2022). Astropy/photutils: 1.5.0 (Version 1.5.0).
+Zenodo. https://doi.org/10.5281/zenodo.6825092
+
+
+ Pytest
+ Krekel
+ 10.1007/978-1-4842-2677-3_5
+ 2004
+ Krekel, H., Oliveira, B.,
+Pfannschmidt, R., Bruynooghe, F., Laugher, B., & Bruhin, F. (2004).
+Pytest.
+https://doi.org/10.1007/978-1-4842-2677-3_5
+
+
+ SciPy 1.0: Fundamental Algorithms for
+Scientific Computing in Python
+ Virtanen
+ Nature Methods
+ 17
+ 10.1038/s41592-019-0686-2
+ 2020
+ Virtanen, P., Gommers, R., Oliphant,
+T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
+P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
+J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
+Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
+Algorithms for Scientific Computing in Python. Nature Methods, 17,
+261–272.
+https://doi.org/10.1038/s41592-019-0686-2
+
+
+ tqdm: A fast, Extensible Progress Bar for
+Python and CLI
+ Costa-Luis
+ 10.5281/zenodo.7697295
+ 2023
+ Costa-Luis, C. da, Larroque, S. K.,
+Altendorf, K., Mary, H., richardsheridan, Korobov, M., Raphael, N.,
+Ivanov, I., Bargull, M., Rodrigues, N., Chen, G., Lee, A., Newey, C.,
+CrazyPython, JC, Zugnoni, M., Pagel, M. D., mjstevens777, Dektyarev, M.,
+… Nordlund, M. (2023). tqdm: A fast, Extensible Progress Bar for Python
+and CLI (Version v4.65.0). Zenodo.
+https://doi.org/10.5281/zenodo.7697295
+
+
+ Matplotlib: A 2D graphics
+environment
+ Hunter
+ Computing in Science &
+Engineering
+ 3
+ 9
+ 10.1109/MCSE.2007.55
+ 2007
+ Hunter, J. D. (2007). Matplotlib: A
+2D graphics environment. Computing in Science & Engineering, 9(3),
+90–95. https://doi.org/10.1109/MCSE.2007.55
+
+
+ Array programming with NumPy
+ Harris
+ Nature
+ 7825
+ 585
+ 10.1038/s41586-020-2649-2
+ 2020
+ Harris, C. R., Millman, K. J., Walt,
+S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
+Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
+Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M.,
+Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.
+Nature, 585(7825), 357–362.
+https://doi.org/10.1038/s41586-020-2649-2
+
+
+ Corner.py: Scatterplot matrices in
+python
+ Foreman-Mackey
+ The Journal of Open Source
+Software
+ 2
+ 1
+ 10.21105/joss.00024
+ 2016
+ Foreman-Mackey, D. (2016). Corner.py:
+Scatterplot matrices in python. The Journal of Open Source Software,
+1(2), 24. https://doi.org/10.21105/joss.00024
+
+
+ Astropy: A community Python package for
+astronomy
+ Astropy Collaboration
+ Astronomy and Astrophysics
+ 558
+ 10.1051/0004-6361/201322068
+ 2013
+ Astropy Collaboration, Robitaille, T.
+P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft,
+T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E.,
+Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier,
+F., Parikh, M. M., Nair, P. H., … Streicher, O. (2013). Astropy: A
+community Python package for astronomy. Astronomy and Astrophysics, 558,
+A33. https://doi.org/10.1051/0004-6361/201322068
+
+
+ The Astropy Project: Building an Open-science
+Project and Status of the v2.0 Core Package
+ Astropy Collaboration
+ Astronomical Journal
+ 3
+ 156
+ 10.3847/1538-3881/aabc4f
+ 2018
+ Astropy Collaboration, Price-Whelan,
+A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M.,
+Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A.,
+Vand erPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de Val-Borro, M.,
+Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., …
+Astropy Contributors. (2018). The Astropy Project: Building an
+Open-science Project and Status of the v2.0 Core Package. Astronomical
+Journal, 156(3), 123.
+https://doi.org/10.3847/1538-3881/aabc4f
+
+
+ The Astropy Project: Sustaining and Growing a
+Community-oriented Open-source Project and the Latest Major Release
+(v5.0) of the Core Package
+ Astropy Collaboration
+ Astrophysical Journal
+ 2
+ 935
+ 10.3847/1538-4357/ac7c74
+ 2022
+ Astropy Collaboration, Price-Whelan,
+A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., Shupe, D. L.,
+Patil, A. A., Corrales, L., Brasseur, C. E., N"othe, M., Donath, A.,
+Tollerud, E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A.,
+Tocknell, J., Jamieson, W., … Astropy Project Contributors. (2022). The
+Astropy Project: Sustaining and Growing a Community-oriented Open-source
+Project and the Latest Major Release (v5.0) of the Core Package.
+Astrophysical Journal, 935(2), 167.
+https://doi.org/10.3847/1538-4357/ac7c74
+
+
+ Asdf-format/asdf: 2.15.0
+ D’Avella
+ 10.5281/zenodo.7799772
+ 2023
+ D’Avella, D., Jamieson, W.,
+Droettboom, M., Slavich, E., Graham, B., Robitaille, T., Dencheva, N.,
+perrygreenfield, Simon, B., MacDonald, K., Bray, E. M., Burnett, Z.,
+Davies, J., Mumford, S., Markovtsev, V., Tollerud, E., Sipőcz, B.,
+Bradley, L., Fabry, Ç., … Ginsburg, A. (2023). Asdf-format/asdf: 2.15.0
+(Version 2.15.0). Zenodo.
+https://doi.org/10.5281/zenodo.7799772
+
+
+ ArviZ a unified library for exploratory
+analysis of Bayesian models in Python
+ Kumar
+ Journal of Open Source
+Software
+ 33
+ 4
+ 10.21105/joss.01143
+ 2019
+ Kumar, R., Carroll, C., Hartikainen,
+A., & Martin, O. (2019). ArviZ a unified library for exploratory
+analysis of Bayesian models in Python. Journal of Open Source Software,
+4(33), 1143. https://doi.org/10.21105/joss.01143
+
+
+
+
+
+
diff --git a/joss.05703/10.21105.joss.05703.jats b/joss.05703/10.21105.joss.05703.jats
new file mode 100644
index 0000000000..4374a41783
--- /dev/null
+++ b/joss.05703/10.21105.joss.05703.jats
@@ -0,0 +1,1414 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5703
+10.21105/joss.05703
+
+pysersic: A Python package for determining galaxy
+structural properties via Bayesian inference, accelerated with
+jax
+
+
+
+https://orcid.org/0000-0002-7075-9931
+
+Pasha
+Imad
+
+
+
+
+
+https://orcid.org/0000-0001-8367-6265
+
+Miller
+Tim B.
+
+
+
+
+
+Department of Astronomy, Yale University, USA
+
+
+
+
+National Science Foundation Graduate Research
+Fellow
+
+
+
+
+5
+6
+2023
+
+8
+89
+5703
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+astronomy
+galaxies
+model fitting
+
+
+
+
+
+ Summary
+
The modern standard for measuring structural parameters of galaxies
+ involves a forward-modeling procedure in which parametric models are
+ fit directly to images while accounting for the effect of the
+ point-spread function (PSF). This is an integral step in many
+ extragalactic studies. The most common parametric form is a Sérsic
+ profile
+ (Sersic,
+ 1968) which is described by a radial surface brightness
+ profiles following,
+
+
+ I(R)∝Ftotalexp[(RRe)1/n−1],
+
where the total flux,
+
+ Ftotal,
+ half-light radius,
+
+ Re
+ and Sérsic index,
+
+ n
+ are the parameters of interest to be fit and subsequently used to
+ characterize a galaxy’s morphology.
+
Here we present pysersic, a Bayesian
+ framework created to facilitate the inference of structural parameters
+ from galaxy images. It is written in pure
+ Python, and built using the
+ jax framework
+ (Bradbury
+ et al., 2018) allowing for just-in-time (JIT) compilation,
+ auto-differentiation and seamless execution on CPUs, GPUs or TPUs.
+ Inference is performed with the numpyro
+ (Bingham
+ et al., 2019;
+ Phan
+ et al., 2019) package utilizing gradient based methods, e.g.,
+ No U-Turn Sampling (NUTS)
+ (Hoffman
+ et al., 2014), for efficient and robust posterior estimation.
+ pysersic was designed to have a user-friendly
+ interface, allowing users to fit single or multiple sources in a few
+ lines of code. It was also designed to scale to many images, such that
+ it can be seamlessly integrated into current and future analysis
+ pipelines.
+
+
+ Statement of need
+
Parametric profile fitting has become a ubiquitous and essential
+ tool for numerous applications including measuring the photometry — or
+ total flux — of galaxies, as well as the investigation of the
+ structural evolution of galaxies over cosmic time
+ (Kawinwanichakij
+ et al., 2021;
+ Lange
+ et al., 2015;
+ Mowla
+ et al., 2019). This approach allows one to both extrapolate
+ galaxy surface brightness profiles beyond the noise limit of images,
+ as well as account for the PSF to accurately measure the structure of
+ galaxies near the resolution limit of those images. The empirically
+ derived Sérsic profile is the most common parametric form for the
+ surface-brightness profile as it provides a reasonable approximation
+ to nearly all galaxies, given the additional freedom of the Sérsic
+ index,
+
+ n,
+ over fixed-index profiles.
+
Given the long history of Sérsic fitting codes with many available
+ tools, the development of pysersic was largely
+ motivated by two related factors, first and foremost of which was the
+ desire to implement Sérsic fitting in a fully Bayesian context
+ at speed. The ability to place the
+ typical Sérsic fitting problem into a Bayesian context with runtimes
+ that are not prohibitive (the traditional drawback of MCMC methods)
+ has recently been unlocked by the second motivation: to leverage the
+ jax library. jax
+ utilizes JIT compilation to decrease computational runtimes, provides
+ seamless integration with hardware accelerators such as GPUs and TPUs
+ for further improvements in performance, and enables automatic
+ differentiation, facilitating gradient based optimization and sampling
+ methods. Together, these features greatly increase speed and
+ efficiency, especially when sampling or optimizing a large number of
+ parameters.
+
Inference in pysersic is implemented using
+ the numpyro probabilistic programming language
+ (PPL). This allows for total control over the priors and methods used
+ for inference. The numpyro package utilizes
+ jax’s auto-differentiation capabilities for
+ gradient based samplers such as Hamiltonian Monte Carlo (HMC) and
+ No-U-Turn-Sampling (NUTS). In addition, there are recently-developed
+ techniques for posterior estimation, including variational inference
+ (Ranganath
+ et al., 2014) utilizing normalizing flows
+ (De
+ Cao et al., 2020). These techniques dramatically reduce the
+ number of likelihood calls required to provide accurate estimates of
+ the posterior relative to gradient-free methods. Combined with the
+ jax’s JIT compilation, posteriors can now be
+ generated in a few minutes or less on modern laptops.
+
+
+ Code Description
+
pysersic was designed to have a
+ user-friendly API with sensible defaults. Tools are provided to
+ automatically generate priors for all free parameters based on an
+ initial characterization of a given image — but can also easily be set
+ manually. We provide default inference routines for NUTS MCMC and
+ variational inference using neural flows. Users can access the
+ underlying numpyro model if desired, to perform
+ inference using any tools available within the
+ numpyro ecosystem. The goal for
+ pysersic is to provide reasonable defaults for
+ new users interested in a handful of galaxies, yet maintain the
+ ability for advanced users to tweak options as necessary to perform
+ inference for entire surveys.
+
A crucial component of any Sérsic fitting code is an efficient and
+ accurate rendering algorithm. Sérsic profiles with high index,
+
+
+ n≳3
+ are notoriously difficult to render accurately given the steep
+ increase in brightness as
+
+ r→0.
+ In pysersic, the
+ rendering module is kept separate from the
+ frontend API and inference modules, such that different algorithms can
+ be interchanged and therefore easily tested (and hopefully encourage
+ innovation as well). In this initial release, we provide three
+ algorithms. The first is a traditional rendering algorithm in which
+ the intrinsic profile is rendered in real space, with oversampling in
+ the center to ensure accurate results for high index profiles. The
+ second and third methods render the profiles in Fourier space,
+ providing accurate results even for strongly peaked profiles and
+ avoiding artifacts due to pixelization. In
+ pysersic, this is achieved by representing the
+ profiles using a series of Gaussian following the algorithm presented
+ in Shajib
+ (2019).
+ We include one algorithm that is fully based in Fourier space, along
+ with a version of the hybrid real-Fourier algorithm introduced in Lang
+ (2020)
+ which helps avoid some of the aliasing present when rendering solely
+ in Fourier space.
+
+
+ Related Software
+
There is a long history and many software tools designed for Sérsic
+ profile fitting. Some of the most popular libraries are listed
+ below.
+
+
+
galfit
+ (Peng
+ et al., 2002)
+
+
+
imfit
+ (Erwin,
+ 2015)
+
+
+
profit
+ (Robotham
+ et al., 2017)
+
+
+
galight
+ (Ding
+ et al., 2021), which is built on top of
+ lenstronomy
+ (Birrer
+ et al., 2021)