diff --git a/joss.05703/10.21105.joss.05703.crossref.xml b/joss.05703/10.21105.joss.05703.crossref.xml new file mode 100644 index 0000000000..be1b0b0132 --- /dev/null +++ b/joss.05703/10.21105.joss.05703.crossref.xml @@ -0,0 +1,550 @@ + + + + 20230915T221355-ed1b2372159ece9b8ccfb7d165267614ffbf1d12 + 20230915221355 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 09 + 2023 + + + 8 + + 89 + + + + pysersic: A Python package for determining galaxy +structural properties via Bayesian inference, accelerated with +jax + + + + Imad + Pasha + https://orcid.org/0000-0002-7075-9931 + + + Tim B. + Miller + https://orcid.org/0000-0001-8367-6265 + + + + 09 + 15 + 2023 + + + 5703 + + + 10.21105/joss.05703 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.8335352 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5703 + + + + 10.21105/joss.05703 + https://joss.theoj.org/papers/10.21105/joss.05703 + + + https://joss.theoj.org/papers/10.21105/joss.05703.pdf + + + + + + A hybrid Fourier–Real Gaussian Mixture method +for fast galaxy–PSF convolution + Lang + arXiv e-prints + 10.48550/arXiv.2012.15797 + 2020 + Lang, D. (2020). A hybrid +Fourier–Real Gaussian Mixture method for fast galaxy–PSF convolution. +arXiv e-Prints, arXiv:2012.15797. +https://doi.org/10.48550/arXiv.2012.15797 + + + Atlas de Galaxias Australes + Sersic + 1968 + Sersic, J. L. (1968). Atlas de +Galaxias Australes. + + + JAX: Composable transformations of +Python+NumPy programs + Bradbury + 2018 + Bradbury, J., Frostig, R., Hawkins, +P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., +VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: +Composable transformations of Python+NumPy programs (Version 0.3.13). +http://github.com/google/jax + + + Pyro: Deep universal probabilistic +programming + Bingham + J. Mach. Learn. Res. + 20 + 2019 + Bingham, E., Chen, J. P., Jankowiak, +M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P. +A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal +probabilistic programming. J. Mach. Learn. Res., 20, 28:1–28:6. +http://jmlr.org/papers/v20/18-403.html + + + Composable effects for flexible and +accelerated probabilistic programming in NumPyro + Phan + arXiv preprint +arXiv:1912.11554 + 2019 + Phan, D., Pradhan, N., & +Jankowiak, M. (2019). Composable effects for flexible and accelerated +probabilistic programming in NumPyro. arXiv Preprint +arXiv:1912.11554. + + + COSMOS-DASH: The Evolution of the Galaxy +Size-Mass Relation since z \sim 3 from New Wide-field WFC3 Imaging +Combined with CANDELS/3D-HST + Mowla + Astrophysical Journal + 1 + 880 + 10.3847/1538-4357/ab290a + 2019 + Mowla, L. A., van Dokkum, P., +Brammer, G. B., Momcheva, I., van der Wel, A., Whitaker, K., Nelson, E., +Bezanson, R., Muzzin, A., Franx, M., MacKenty, J., Leja, J., Kriek, M., +& Marchesini, D. (2019). COSMOS-DASH: The Evolution of the Galaxy +Size-Mass Relation since z \sim 3 from New Wide-field WFC3 Imaging +Combined with CANDELS/3D-HST. Astrophysical Journal, 880(1), 57. +https://doi.org/10.3847/1538-4357/ab290a + + + Galaxy And Mass Assembly (GAMA): mass-size +relations of z < 0.1 galaxies subdivided by Sérsic index, colour and +morphology + Lange + Monthly Notices of the RAS + 3 + 447 + 10.1093/mnras/stu2467 + 2015 + Lange, R., Driver, S. P., Robotham, +A. S. G., Kelvin, L. S., Graham, A. W., Alpaslan, M., Andrews, S. K., +Baldry, I. K., Bamford, S., Bland-Hawthorn, J., Brough, S., Cluver, M. +E., Conselice, C. J., Davies, L. J. M., Haeussler, B., Konstantopoulos, +I. S., Loveday, J., Moffett, A. J., Norberg, P., … Wilkins, S. M. +(2015). Galaxy And Mass Assembly (GAMA): mass-size relations of z < +0.1 galaxies subdivided by Sérsic index, colour and morphology. Monthly +Notices of the RAS, 447(3), 2603–2630. +https://doi.org/10.1093/mnras/stu2467 + + + Hyper Suprime-Cam Subaru Strategic Program: A +Mass-dependent Slope of the Galaxy Size-Mass Relation at z < +1 + Kawinwanichakij + Astrophysical Journal + 1 + 921 + 10.3847/1538-4357/ac1f21 + 2021 + Kawinwanichakij, L., Silverman, J. +D., Ding, X., George, A., Damjanov, I., Sawicki, M., Tanaka, M., Taranu, +D. S., Birrer, S., Huang, S., Li, J., Onodera, M., Shibuya, T., & +Yasuda, N. (2021). Hyper Suprime-Cam Subaru Strategic Program: A +Mass-dependent Slope of the Galaxy Size-Mass Relation at z < 1. +Astrophysical Journal, 921(1), 38. +https://doi.org/10.3847/1538-4357/ac1f21 + + + IMFIT: A Fast, Flexible New Program for +Astronomical Image Fitting + Erwin + Astrophysical Journal + 2 + 799 + 10.1088/0004-637X/799/2/226 + 2015 + Erwin, P. (2015). IMFIT: A Fast, +Flexible New Program for Astronomical Image Fitting. Astrophysical +Journal, 799(2), 226. +https://doi.org/10.1088/0004-637X/799/2/226 + + + Detailed Structural Decomposition of Galaxy +Images + Peng + Astronomical Journal + 1 + 124 + 10.1086/340952 + 2002 + Peng, C. Y., Ho, L. C., Impey, C. D., +& Rix, H.-W. (2002). Detailed Structural Decomposition of Galaxy +Images. Astronomical Journal, 124(1), 266–293. +https://doi.org/10.1086/340952 + + + PROFIT: Bayesian profile fitting of galaxy +images + Robotham + Monthly Notices of the RAS + 2 + 466 + 10.1093/mnras/stw3039 + 2017 + Robotham, A. S. G., Taranu, D. S., +Tobar, R., Moffett, A., & Driver, S. P. (2017). PROFIT: Bayesian +profile fitting of galaxy images. Monthly Notices of the RAS, 466(2), +1513–1541. https://doi.org/10.1093/mnras/stw3039 + + + PyAutoGalaxy: Open-source multiwavelength +galaxy structure & morphology + Nightingale + Journal of Open Source +Software + 81 + 8 + 10.21105/joss.04475 + 2023 + Nightingale, James. W., Amvrosiadis, +A., Hayes, R. G., He, Q., Etherington, A., Cao, X., Cole, S., Frawley, +J., Frenk, C. S., Lange, S., Li, R., Massey, R. J., Negrello, M., & +Robertson, A. (2023). PyAutoGalaxy: Open-source multiwavelength galaxy +structure & morphology. Journal of Open Source Software, 8(81), +4475. https://doi.org/10.21105/joss.04475 + + + Galaxy shapes of Light (GaLight): a 2D +modeling of galaxy images + Ding + arXiv e-prints + 10.48550/arXiv.2111.08721 + 2021 + Ding, X., Birrer, S., Treu, T., & +Silverman, J. D. (2021). Galaxy shapes of Light (GaLight): a 2D modeling +of galaxy images. arXiv e-Prints, arXiv:2111.08721. +https://doi.org/10.48550/arXiv.2111.08721 + + + Lenstronomy II: A gravitational lensingW +software ecosystem + Birrer + Journal of Open Source +Software + 62 + 6 + 10.21105/joss.03283 + 2021 + Birrer, S., Shajib, A. J., Gilman, +D., Galan, A., Aalbers, J., Millon, M., Morgan, R., Pagano, G., Park, J. +W., Teodori, L., Tessore, N., Ueland, M., Vyvere, L. V. de, +Wagner-Carena, S., Wempe, E., Yang, L., Ding, X., Schmidt, T., Sluse, +D., … Amara, A. (2021). Lenstronomy II: A gravitational lensingW +software ecosystem. Journal of Open Source Software, 6(62), 3283. +https://doi.org/10.21105/joss.03283 + + + Unified lensing and kinematic analysis for +any elliptical mass profile + Shajib + Monthly Notices of the RAS + 1 + 488 + 10.1093/mnras/stz1796 + 2019 + Shajib, A. J. (2019). Unified lensing +and kinematic analysis for any elliptical mass profile. Monthly Notices +of the RAS, 488(1), 1387–1400. +https://doi.org/10.1093/mnras/stz1796 + + + PetroFit: A Python Package for Computing +Petrosian Radii and Fitting Galaxy Light Profiles + Geda + Astronomical Journal + 5 + 163 + 10.3847/1538-3881/ac5908 + 2022 + Geda, R., Crawford, S. M., Hunt, L., +Bershady, M., Tollerud, E., & Randriamampandry, S. (2022). PetroFit: +A Python Package for Computing Petrosian Radii and Fitting Galaxy Light +Profiles. Astronomical Journal, 163(5), 202. +https://doi.org/10.3847/1538-3881/ac5908 + + + The No-U-Turn sampler: adaptively setting +path lengths in Hamiltonian Monte Carlo + Hoffman + J. Mach. Learn. Res. + 1 + 15 + 2014 + Hoffman, M. D., Gelman, A., & +others. (2014). The No-U-Turn sampler: adaptively setting path lengths +in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), +1593–1623. + + + Black box variational +inference + Ranganath + Artificial intelligence and +statistics + 2014 + Ranganath, R., Gerrish, S., & +Blei, D. (2014). Black box variational inference. Artificial +Intelligence and Statistics, 814–822. + + + Block neural autoregressive +flow + De Cao + Uncertainty in artificial +intelligence + 2020 + De Cao, N., Aziz, W., & Titov, I. +(2020). Block neural autoregressive flow. Uncertainty in Artificial +Intelligence, 1263–1273. + + + Pandas-dev/pandas: pandas + team + 10.5281/zenodo.3509134 + 2020 + team, T. pandas development. (2020). +Pandas-dev/pandas: pandas (latest). Zenodo. +https://doi.org/10.5281/zenodo.3509134 + + + Astropy/photutils: 1.5.0 + Bradley + 10.5281/zenodo.6825092 + 2022 + Bradley, L., Sipőcz, B., Robitaille, +T., Tollerud, E., Vinícius, Z., Deil, C., Barbary, K., Wilson, T. J., +Busko, I., Donath, A., Günther, H. M., Cara, M., Lim, P. L., Meßlinger, +S., Conseil, S., Bostroem, A., Droettboom, M., Bray, E. M., Bratholm, L. +A., … Souchereau, H. (2022). Astropy/photutils: 1.5.0 (Version 1.5.0). +Zenodo. https://doi.org/10.5281/zenodo.6825092 + + + Pytest + Krekel + 10.1007/978-1-4842-2677-3_5 + 2004 + Krekel, H., Oliveira, B., +Pfannschmidt, R., Bruynooghe, F., Laugher, B., & Bruhin, F. (2004). +Pytest. +https://doi.org/10.1007/978-1-4842-2677-3_5 + + + SciPy 1.0: Fundamental Algorithms for +Scientific Computing in Python + Virtanen + Nature Methods + 17 + 10.1038/s41592-019-0686-2 + 2020 + Virtanen, P., Gommers, R., Oliphant, +T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, +P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, +J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., +Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental +Algorithms for Scientific Computing in Python. Nature Methods, 17, +261–272. +https://doi.org/10.1038/s41592-019-0686-2 + + + tqdm: A fast, Extensible Progress Bar for +Python and CLI + Costa-Luis + 10.5281/zenodo.7697295 + 2023 + Costa-Luis, C. da, Larroque, S. K., +Altendorf, K., Mary, H., richardsheridan, Korobov, M., Raphael, N., +Ivanov, I., Bargull, M., Rodrigues, N., Chen, G., Lee, A., Newey, C., +CrazyPython, JC, Zugnoni, M., Pagel, M. D., mjstevens777, Dektyarev, M., +… Nordlund, M. (2023). tqdm: A fast, Extensible Progress Bar for Python +and CLI (Version v4.65.0). Zenodo. +https://doi.org/10.5281/zenodo.7697295 + + + Matplotlib: A 2D graphics +environment + Hunter + Computing in Science & +Engineering + 3 + 9 + 10.1109/MCSE.2007.55 + 2007 + Hunter, J. D. (2007). Matplotlib: A +2D graphics environment. Computing in Science & Engineering, 9(3), +90–95. https://doi.org/10.1109/MCSE.2007.55 + + + Array programming with NumPy + Harris + Nature + 7825 + 585 + 10.1038/s41586-020-2649-2 + 2020 + Harris, C. R., Millman, K. J., Walt, +S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., +Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., +Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., +Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. +Nature, 585(7825), 357–362. +https://doi.org/10.1038/s41586-020-2649-2 + + + Corner.py: Scatterplot matrices in +python + Foreman-Mackey + The Journal of Open Source +Software + 2 + 1 + 10.21105/joss.00024 + 2016 + Foreman-Mackey, D. (2016). Corner.py: +Scatterplot matrices in python. The Journal of Open Source Software, +1(2), 24. https://doi.org/10.21105/joss.00024 + + + Astropy: A community Python package for +astronomy + Astropy Collaboration + Astronomy and Astrophysics + 558 + 10.1051/0004-6361/201322068 + 2013 + Astropy Collaboration, Robitaille, T. +P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, +T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., +Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, +F., Parikh, M. M., Nair, P. H., … Streicher, O. (2013). Astropy: A +community Python package for astronomy. Astronomy and Astrophysics, 558, +A33. https://doi.org/10.1051/0004-6361/201322068 + + + The Astropy Project: Building an Open-science +Project and Status of the v2.0 Core Package + Astropy Collaboration + Astronomical Journal + 3 + 156 + 10.3847/1538-3881/aabc4f + 2018 + Astropy Collaboration, Price-Whelan, +A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., +Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., +Vand erPlas, J. T., Bradley, L. D., Pérez-Suárez, D., de Val-Borro, M., +Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., … +Astropy Contributors. (2018). The Astropy Project: Building an +Open-science Project and Status of the v2.0 Core Package. Astronomical +Journal, 156(3), 123. +https://doi.org/10.3847/1538-3881/aabc4f + + + The Astropy Project: Sustaining and Growing a +Community-oriented Open-source Project and the Latest Major Release +(v5.0) of the Core Package + Astropy Collaboration + Astrophysical Journal + 2 + 935 + 10.3847/1538-4357/ac7c74 + 2022 + Astropy Collaboration, Price-Whelan, +A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., Shupe, D. L., +Patil, A. A., Corrales, L., Brasseur, C. E., N"othe, M., Donath, A., +Tollerud, E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A., +Tocknell, J., Jamieson, W., … Astropy Project Contributors. (2022). The +Astropy Project: Sustaining and Growing a Community-oriented Open-source +Project and the Latest Major Release (v5.0) of the Core Package. +Astrophysical Journal, 935(2), 167. +https://doi.org/10.3847/1538-4357/ac7c74 + + + Asdf-format/asdf: 2.15.0 + D’Avella + 10.5281/zenodo.7799772 + 2023 + D’Avella, D., Jamieson, W., +Droettboom, M., Slavich, E., Graham, B., Robitaille, T., Dencheva, N., +perrygreenfield, Simon, B., MacDonald, K., Bray, E. M., Burnett, Z., +Davies, J., Mumford, S., Markovtsev, V., Tollerud, E., Sipőcz, B., +Bradley, L., Fabry, Ç., … Ginsburg, A. (2023). Asdf-format/asdf: 2.15.0 +(Version 2.15.0). Zenodo. +https://doi.org/10.5281/zenodo.7799772 + + + ArviZ a unified library for exploratory +analysis of Bayesian models in Python + Kumar + Journal of Open Source +Software + 33 + 4 + 10.21105/joss.01143 + 2019 + Kumar, R., Carroll, C., Hartikainen, +A., & Martin, O. (2019). ArviZ a unified library for exploratory +analysis of Bayesian models in Python. Journal of Open Source Software, +4(33), 1143. https://doi.org/10.21105/joss.01143 + + + + + + diff --git a/joss.05703/10.21105.joss.05703.jats b/joss.05703/10.21105.joss.05703.jats new file mode 100644 index 0000000000..4374a41783 --- /dev/null +++ b/joss.05703/10.21105.joss.05703.jats @@ -0,0 +1,1414 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5703 +10.21105/joss.05703 + +pysersic: A Python package for determining galaxy +structural properties via Bayesian inference, accelerated with +jax + + + +https://orcid.org/0000-0002-7075-9931 + +Pasha +Imad + + + + + +https://orcid.org/0000-0001-8367-6265 + +Miller +Tim B. + + + + + +Department of Astronomy, Yale University, USA + + + + +National Science Foundation Graduate Research +Fellow + + + + +5 +6 +2023 + +8 +89 +5703 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +astronomy +galaxies +model fitting + + + + + + Summary +

The modern standard for measuring structural parameters of galaxies + involves a forward-modeling procedure in which parametric models are + fit directly to images while accounting for the effect of the + point-spread function (PSF). This is an integral step in many + extragalactic studies. The most common parametric form is a Sérsic + profile + (Sersic, + 1968) which is described by a radial surface brightness + profiles following,

+

+ + I(R)Ftotalexp[(RRe)1/n1],

+

where the total flux, + + Ftotal, + half-light radius, + + Re + and Sérsic index, + + n + are the parameters of interest to be fit and subsequently used to + characterize a galaxy’s morphology.

+

Here we present pysersic, a Bayesian + framework created to facilitate the inference of structural parameters + from galaxy images. It is written in pure + Python, and built using the + jax framework + (Bradbury + et al., 2018) allowing for just-in-time (JIT) compilation, + auto-differentiation and seamless execution on CPUs, GPUs or TPUs. + Inference is performed with the numpyro + (Bingham + et al., 2019; + Phan + et al., 2019) package utilizing gradient based methods, e.g., + No U-Turn Sampling (NUTS) + (Hoffman + et al., 2014), for efficient and robust posterior estimation. + pysersic was designed to have a user-friendly + interface, allowing users to fit single or multiple sources in a few + lines of code. It was also designed to scale to many images, such that + it can be seamlessly integrated into current and future analysis + pipelines.

+
+ + Statement of need +

Parametric profile fitting has become a ubiquitous and essential + tool for numerous applications including measuring the photometry — or + total flux — of galaxies, as well as the investigation of the + structural evolution of galaxies over cosmic time + (Kawinwanichakij + et al., 2021; + Lange + et al., 2015; + Mowla + et al., 2019). This approach allows one to both extrapolate + galaxy surface brightness profiles beyond the noise limit of images, + as well as account for the PSF to accurately measure the structure of + galaxies near the resolution limit of those images. The empirically + derived Sérsic profile is the most common parametric form for the + surface-brightness profile as it provides a reasonable approximation + to nearly all galaxies, given the additional freedom of the Sérsic + index, + + n, + over fixed-index profiles.

+

Given the long history of Sérsic fitting codes with many available + tools, the development of pysersic was largely + motivated by two related factors, first and foremost of which was the + desire to implement Sérsic fitting in a fully Bayesian context + at speed. The ability to place the + typical Sérsic fitting problem into a Bayesian context with runtimes + that are not prohibitive (the traditional drawback of MCMC methods) + has recently been unlocked by the second motivation: to leverage the + jax library. jax + utilizes JIT compilation to decrease computational runtimes, provides + seamless integration with hardware accelerators such as GPUs and TPUs + for further improvements in performance, and enables automatic + differentiation, facilitating gradient based optimization and sampling + methods. Together, these features greatly increase speed and + efficiency, especially when sampling or optimizing a large number of + parameters.

+

Inference in pysersic is implemented using + the numpyro probabilistic programming language + (PPL). This allows for total control over the priors and methods used + for inference. The numpyro package utilizes + jax’s auto-differentiation capabilities for + gradient based samplers such as Hamiltonian Monte Carlo (HMC) and + No-U-Turn-Sampling (NUTS). In addition, there are recently-developed + techniques for posterior estimation, including variational inference + (Ranganath + et al., 2014) utilizing normalizing flows + (De + Cao et al., 2020). These techniques dramatically reduce the + number of likelihood calls required to provide accurate estimates of + the posterior relative to gradient-free methods. Combined with the + jax’s JIT compilation, posteriors can now be + generated in a few minutes or less on modern laptops.

+
+ + Code Description +

pysersic was designed to have a + user-friendly API with sensible defaults. Tools are provided to + automatically generate priors for all free parameters based on an + initial characterization of a given image — but can also easily be set + manually. We provide default inference routines for NUTS MCMC and + variational inference using neural flows. Users can access the + underlying numpyro model if desired, to perform + inference using any tools available within the + numpyro ecosystem. The goal for + pysersic is to provide reasonable defaults for + new users interested in a handful of galaxies, yet maintain the + ability for advanced users to tweak options as necessary to perform + inference for entire surveys.

+

A crucial component of any Sérsic fitting code is an efficient and + accurate rendering algorithm. Sérsic profiles with high index, + + + n3 + are notoriously difficult to render accurately given the steep + increase in brightness as + + r0. + In pysersic, the + rendering module is kept separate from the + frontend API and inference modules, such that different algorithms can + be interchanged and therefore easily tested (and hopefully encourage + innovation as well). In this initial release, we provide three + algorithms. The first is a traditional rendering algorithm in which + the intrinsic profile is rendered in real space, with oversampling in + the center to ensure accurate results for high index profiles. The + second and third methods render the profiles in Fourier space, + providing accurate results even for strongly peaked profiles and + avoiding artifacts due to pixelization. In + pysersic, this is achieved by representing the + profiles using a series of Gaussian following the algorithm presented + in Shajib + (2019). + We include one algorithm that is fully based in Fourier space, along + with a version of the hybrid real-Fourier algorithm introduced in Lang + (2020) + which helps avoid some of the aliasing present when rendering solely + in Fourier space.

+
+ + Related Software +

There is a long history and many software tools designed for Sérsic + profile fitting. Some of the most popular libraries are listed + below.

+ + +

galfit + (Peng + et al., 2002)

+
+ +

imfit + (Erwin, + 2015)

+
+ +

profit + (Robotham + et al., 2017)

+
+ +

galight + (Ding + et al., 2021), which is built on top of + lenstronomy + (Birrer + et al., 2021)

+
+ +

PetroFit + (Geda + et al., 2022)

+
+ +

PyAutoGalaxy + (Nightingale + et al., 2023)

+
+
+
+ + Software Citations +

pysersic makes use of the following + packages:

+ + +

arviz + (Kumar + et al., 2019)

+
+ +

asdf + (D’Avella + et al., 2023)

+
+ +

astropy + (Astropy + Collaboration et al., 2013, + 2018, + 2022)

+
+ +

corner + (Foreman-Mackey, + 2016)

+
+ +

jax + (Bradbury + et al., 2018)

+
+ +

matplotlib + (Hunter, + 2007)

+
+ +

numpy + (Harris + et al., 2020)

+
+ +

numpyro + (Bingham + et al., 2019; + Phan + et al., 2019)

+
+ +

pandas + (team, + 2020)

+
+ +

photutils + (Bradley + et al., 2022)

+
+ +

pytest + (Krekel + et al., 2004)

+
+ +

scipy + (Virtanen + et al., 2020)

+
+ +

tqdm + (Costa-Luis + et al., 2023)

+
+
+
+ + Acknowledgements +

We acknowledge Pieter van Dokkum for useful conversations + surrounding the design and implementation of + pysersic.

+
+ + + + + + + LangDustin + + A hybrid Fourier–Real Gaussian Mixture method for fast galaxy–PSF convolution + arXiv e-prints + 202012 + https://arxiv.org/abs/2012.15797 + 10.48550/arXiv.2012.15797 + arXiv:2012.15797 + + + + + + + SersicJose Luis + + Atlas de Galaxias Australes + 1968 + + + + + + BradburyJames + FrostigRoy + HawkinsPeter + JohnsonMatthew James + LearyChris + MaclaurinDougal + NeculaGeorge + PaszkeAdam + VanderPlasJake + Wanderman-MilneSkye + ZhangQiao + + JAX: Composable transformations of Python+NumPy programs + 2018 + http://github.com/google/jax + + + + + + BinghamEli + ChenJonathan P. + JankowiakMartin + ObermeyerFritz + PradhanNeeraj + KaraletsosTheofanis + SinghRohit + SzerlipPaul A. + HorsfallPaul + GoodmanNoah D. + + Pyro: Deep universal probabilistic programming + J. Mach. Learn. Res. + 2019 + 20 + http://jmlr.org/papers/v20/18-403.html + 28:1 + 28:6 + + + + + + PhanDu + PradhanNeeraj + JankowiakMartin + + Composable effects for flexible and accelerated probabilistic programming in NumPyro + arXiv preprint arXiv:1912.11554 + 2019 + + + + + + MowlaLamiya A. + van DokkumPieter + BrammerGabriel B. + MomchevaIvelina + van der WelArjen + WhitakerKatherine + NelsonErica + BezansonRachel + MuzzinAdam + FranxMarijn + MacKentyJohn + LejaJoel + KriekMariska + MarchesiniDanilo + + COSMOS-DASH: The Evolution of the Galaxy Size-Mass Relation since z \sim 3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST + Astrophysical Journal + 201907 + 880 + 1 + https://arxiv.org/abs/1808.04379 + 10.3847/1538-4357/ab290a + 57 + + + + + + + LangeRebecca + DriverSimon P. + RobothamAaron S. G. + KelvinLee S. + GrahamAlister W. + AlpaslanMehmet + AndrewsStephen K. + BaldryIvan K. + BamfordSteven + Bland-HawthornJoss + BroughSarah + CluverMichelle E. + ConseliceChristopher J. + DaviesLuke J. M. + HaeusslerBoris + KonstantopoulosIraklis S. + LovedayJon + MoffettAmanda J. + NorbergPeder + PhillippsSteven + TaylorEdward N. + López-SánchezÁngel R. + WilkinsStephen M. + + Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology + Monthly Notices of the RAS + 201503 + 447 + 3 + https://arxiv.org/abs/1411.6355 + 10.1093/mnras/stu2467 + 2603 + 2630 + + + + + + KawinwanichakijLalitwadee + SilvermanJohn D. + DingXuheng + GeorgeAngelo + DamjanovIvana + SawickiMarcin + TanakaMasayuki + TaranuDan S. + BirrerSimon + HuangSong + LiJunyao + OnoderaMasato + ShibuyaTakatoshi + YasudaNaoki + + Hyper Suprime-Cam Subaru Strategic Program: A Mass-dependent Slope of the Galaxy Size-Mass Relation at z < 1 + Astrophysical Journal + 202111 + 921 + 1 + https://arxiv.org/abs/2109.09766 + 10.3847/1538-4357/ac1f21 + 38 + + + + + + + ErwinPeter + + IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting + Astrophysical Journal + 201502 + 799 + 2 + https://arxiv.org/abs/1408.1097 + 10.1088/0004-637X/799/2/226 + 226 + + + + + + + PengChien Y. + HoLuis C. + ImpeyChris D. + RixHans-Walter + + Detailed Structural Decomposition of Galaxy Images + Astronomical Journal + 200207 + 124 + 1 + https://arxiv.org/abs/astro-ph/0204182 + 10.1086/340952 + 266 + 293 + + + + + + RobothamA. S. G. + TaranuD. S. + TobarR. + MoffettA. + DriverS. P. + + PROFIT: Bayesian profile fitting of galaxy images + Monthly Notices of the RAS + 201704 + 466 + 2 + https://arxiv.org/abs/1611.08586 + 10.1093/mnras/stw3039 + 1513 + 1541 + + + + + + NightingaleJames. W. + AmvrosiadisAristeidis + HayesRichard G. + HeQiuhan + EtheringtonAmy + CaoXiaoYue + ColeShaun + FrawleyJonathan + FrenkCarlos S. + LangeSam + LiRan + MasseyRichard J. + NegrelloMattia + RobertsonAndrew + + PyAutoGalaxy: Open-source multiwavelength galaxy structure & morphology + Journal of Open Source Software + The Open Journal + 2023 + 8 + 81 + https://doi.org/10.21105/joss.04475 + 10.21105/joss.04475 + 4475 + + + + + + + DingXuheng + BirrerSimon + TreuTommaso + SilvermanJohn D. + + Galaxy shapes of Light (GaLight): a 2D modeling of galaxy images + arXiv e-prints + 202111 + https://arxiv.org/abs/2111.08721 + 10.48550/arXiv.2111.08721 + arXiv:2111.08721 + + + + + + + BirrerSimon + ShajibAnowar J. + GilmanDaniel + GalanAymeric + AalbersJelle + MillonMartin + MorganRobert + PaganoGiulia + ParkJi Won + TeodoriLuca + TessoreNicolas + UelandMadison + VyvereLyne Van de + Wagner-CarenaSebastian + WempeEwoud + YangLilan + DingXuheng + SchmidtThomas + SluseDominique + ZhangMing + AmaraAdam + + Lenstronomy II: A gravitational lensingW software ecosystem + Journal of Open Source Software + The Open Journal + 2021 + 6 + 62 + https://doi.org/10.21105/joss.03283 + 10.21105/joss.03283 + 3283 + + + + + + + ShajibAnowar J. + + Unified lensing and kinematic analysis for any elliptical mass profile + Monthly Notices of the RAS + 201909 + 488 + 1 + https://arxiv.org/abs/1906.08263 + 10.1093/mnras/stz1796 + 1387 + 1400 + + + + + + GedaRobel + CrawfordSteven M. + HuntLucas + BershadyMatthew + TollerudErik + RandriamampandrySolohery + + PetroFit: A Python Package for Computing Petrosian Radii and Fitting Galaxy Light Profiles + Astronomical Journal + 202205 + 163 + 5 + https://arxiv.org/abs/2202.13493 + 10.3847/1538-3881/ac5908 + 202 + + + + + + + HoffmanMatthew D + GelmanAndrew + others + + The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo + J. Mach. Learn. Res. + 2014 + 15 + 1 + 1593 + 1623 + + + + + + RanganathRajesh + GerrishSean + BleiDavid + + Black box variational inference + Artificial intelligence and statistics + PMLR + 2014 + 814 + 822 + + + + + + De CaoNicola + AzizWilker + TitovIvan + + Block neural autoregressive flow + Uncertainty in artificial intelligence + PMLR + 2020 + 1263 + 1273 + + + + + + teamThe pandas development + + Pandas-dev/pandas: pandas + Zenodo + 202002 + https://doi.org/10.5281/zenodo.3509134 + 10.5281/zenodo.3509134 + + + + + + BradleyLarry + SipőczBrigitta + RobitailleThomas + TollerudErik + Vinícius + DeilChristoph + BarbaryKyle + WilsonTom J + BuskoIvo + DonathAxel + GüntherHans Moritz + CaraMihai + LimP. L. + MeßlingerSebastian + ConseilSimon + BostroemAzalee + DroettboomMichael + BrayE. M. + BratholmLars Andersen + BarentsenGeert + CraigMatt + RathiShivangee + PascualSergio + PerrenGabriel + GeorgievIskren Y. + Val-BorroMiguel de + KerzendorfWolfgang + BachYoonsoo P. + QuintBruno + SouchereauHarrison + + Astropy/photutils: 1.5.0 + Zenodo + 202207 + https://doi.org/10.5281/zenodo.6825092 + 10.5281/zenodo.6825092 + + + + + + KrekelHolger + OliveiraBruno + PfannschmidtRonny + BruynoogheFloris + LaugherBrianna + BruhinFlorian + + Pytest + 2004 + https://github.com/pytest-dev/pytest + 10.1007/978-1-4842-2677-3_5 + + + + + + VirtanenPauli + GommersRalf + OliphantTravis E. + HaberlandMatt + ReddyTyler + CournapeauDavid + BurovskiEvgeni + PetersonPearu + WeckesserWarren + BrightJonathan + van der WaltStéfan J. + BrettMatthew + WilsonJoshua + MillmanK. Jarrod + MayorovNikolay + NelsonAndrew R. J. + JonesEric + KernRobert + LarsonEric + CareyC J + Polatİlhan + FengYu + MooreEric W. + VanderPlasJake + LaxaldeDenis + PerktoldJosef + CimrmanRobert + HenriksenIan + QuinteroE. A. + HarrisCharles R. + ArchibaldAnne M. + RibeiroAntônio H. + PedregosaFabian + van MulbregtPaul + SciPy 1.0 Contributors + + SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python + Nature Methods + 2020 + 17 + 10.1038/s41592-019-0686-2 + 261 + 272 + + + + + + Costa-LuisCasper da + LarroqueStephen Karl + AltendorfKyle + MaryHadrien + richardsheridan + KorobovMikhail + RaphaelNoam + IvanovIvan + BargullMarcel + RodriguesNishant + ChenGuangshuo + LeeAntony + NeweyCharles + CrazyPython + JC + ZugnoniMartin + PagelMatthew D. + mjstevens777 + DektyarevMikhail + RothbergAlex + PlavinAlexander + PanteleitDaniel + DillFabian + FichteFoll + SturmGregor + HeoHeo + KemenadeHugo van + McCrackenJack + MapleCCC + NordlundMax + + tqdm: A fast, Extensible Progress Bar for Python and CLI + Zenodo + 202303 + https://doi.org/10.5281/zenodo.7697295 + 10.5281/zenodo.7697295 + + + + + + HunterJ. D. + + Matplotlib: A 2D graphics environment + Computing in Science & Engineering + IEEE COMPUTER SOC + 2007 + 9 + 3 + 10.1109/MCSE.2007.55 + 90 + 95 + + + + + + HarrisCharles R. + MillmanK. Jarrod + WaltStéfan J. van der + GommersRalf + VirtanenPauli + CournapeauDavid + WieserEric + TaylorJulian + BergSebastian + SmithNathaniel J. + KernRobert + PicusMatti + HoyerStephan + KerkwijkMarten H. van + BrettMatthew + HaldaneAllan + RíoJaime Fernández del + WiebeMark + PetersonPearu + Gérard-MarchantPierre + SheppardKevin + ReddyTyler + WeckesserWarren + AbbasiHameer + GohlkeChristoph + OliphantTravis E. + + Array programming with NumPy + Nature + Springer Science; Business Media LLC + 202009 + 585 + 7825 + https://doi.org/10.1038/s41586-020-2649-2 + 10.1038/s41586-020-2649-2 + 357 + 362 + + + + + + Foreman-MackeyDaniel + + Corner.py: Scatterplot matrices in python + The Journal of Open Source Software + The Open Journal + 201606 + 1 + 2 + https://doi.org/10.21105/joss.00024 + 10.21105/joss.00024 + 24 + + + + + + + Astropy Collaboration + RobitailleT. P. + TollerudE. J. + GreenfieldP. + DroettboomM. + BrayE. + AldcroftT. + DavisM. + GinsburgA. + Price-WhelanA. M. + KerzendorfW. E. + ConleyA. + CrightonN. + BarbaryK. + MunaD. + FergusonH. + GrollierF. + ParikhM. M. + NairP. H. + UntherH. M. + DeilC. + WoillezJ. + ConseilS. + KramerR. + TurnerJ. E. H. + SingerL. + FoxR. + WeaverB. A. + ZabalzaV. + EdwardsZ. I. + Azalee BostroemK. + BurkeD. J. + CaseyA. R. + CrawfordS. M. + DenchevaN. + ElyJ. + JennessT. + LabrieK. + LimP. L. + PierfedericiF. + PontzenA. + PtakA. + RefsdalB. + ServillatM. + StreicherO. + + Astropy: A community Python package for astronomy + Astronomy and Astrophysics + 201310 + 558 + https://arxiv.org/abs/1307.6212 + 10.1051/0004-6361/201322068 + A33 + + + + + + + Astropy Collaboration + Price-WhelanA. M. + SipőczB. M. + GüntherH. M. + LimP. L. + CrawfordS. M. + ConseilS. + ShupeD. L. + CraigM. W. + DenchevaN. + GinsburgA. + Vand erPlasJ. T. + BradleyL. D. + Pérez-SuárezD. + de Val-BorroM. + AldcroftT. L. + CruzK. L. + RobitailleT. P. + TollerudE. J. + ArdeleanC. + BabejT. + BachY. P. + BachettiM. + BakanovA. V. + BamfordS. P. + BarentsenG. + BarmbyP. + BaumbachA. + BerryK. L. + BiscaniF. + BoquienM. + BostroemK. A. + BoumaL. G. + BrammerG. B. + BrayE. M. + BreytenbachH. + BuddelmeijerH. + BurkeD. J. + CalderoneG. + Cano Rodrı́guezJ. L. + CaraM. + CardosoJ. V. M. + CheedellaS. + CopinY. + CorralesL. + CrichtonD. + D’AvellaD. + DeilC. + DepagneÉ. + DietrichJ. P. + DonathA. + DroettboomM. + EarlN. + ErbenT. + FabbroS. + FerreiraL. A. + FinethyT. + FoxR. T. + GarrisonL. H. + GibbonsS. L. J. + GoldsteinD. A. + GommersR. + GrecoJ. P. + GreenfieldP. + GroenerA. M. + GrollierF. + HagenA. + HirstP. + HomeierD. + HortonA. J. + HosseinzadehG. + HuL. + HunkelerJ. S. + IvezićŽ. + JainA. + JennessT. + KanarekG. + KendrewS. + KernN. S. + KerzendorfW. E. + KhvalkoA. + KingJ. + KirkbyD. + KulkarniA. M. + KumarA. + LeeA. + LenzD. + LittlefairS. P. + MaZ. + MacleodD. M. + MastropietroM. + McCullyC. + MontagnacS. + MorrisB. M. + MuellerM. + MumfordS. J. + MunaD. + MurphyN. A. + NelsonS. + NguyenG. H. + NinanJ. P. + NötheM. + OgazS. + OhS. + ParejkoJ. K. + ParleyN. + PascualS. + PatilR. + PatilA. A. + PlunkettA. L. + ProchaskaJ. X. + RastogiT. + Reddy JangaV. + SabaterJ. + SakurikarP. + SeifertM. + SherbertL. E. + Sherwood-TaylorH. + ShihA. Y. + SickJ. + SilbigerM. T. + SinganamallaS. + SingerL. P. + SladenP. H. + SooleyK. A. + SornarajahS. + StreicherO. + TeubenP. + ThomasS. W. + TremblayG. R. + TurnerJ. E. H. + TerrónV. + van KerkwijkM. H. + de la VegaA. + WatkinsL. L. + WeaverB. A. + WhitmoreJ. B. + WoillezJ. + ZabalzaV. + Astropy Contributors + + The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package + Astronomical Journal + 201809 + 156 + 3 + https://arxiv.org/abs/1801.02634 + 10.3847/1538-3881/aabc4f + 123 + + + + + + + Astropy Collaboration + Price-WhelanAdrian M. + LimPey Lian + EarlNicholas + StarkmanNathaniel + BradleyLarry + ShupeDavid L. + PatilAarya A. + CorralesLia + BrasseurC. E. + N"otheMaximilian + DonathAxel + TollerudErik + MorrisBrett M. + GinsburgAdam + VaherEero + WeaverBenjamin A. + TocknellJames + JamiesonWilliam + van KerkwijkMarten H. + RobitailleThomas P. + MerryBruce + BachettiMatteo + G"untherH. Moritz + AldcroftThomas L. + Alvarado-MontesJaime A. + ArchibaldAnne M. + B’odiAttila + BapatShreyas + BarentsenGeert + Baz’anJuanjo + BiswasManish + BoquienM’ed’eric + BurkeD. J. + CaraDaria + CaraMihai + ConroyKyle E. + ConseilSimon + CraigMatthew W. + CrossRobert M. + CruzKelle L. + D’EugenioFrancesco + DenchevaNadia + DevillepoixHadrien A. R. + DietrichJ"org P. + EigenbrotArthur Davis + ErbenThomas + FerreiraLeonardo + Foreman-MackeyDaniel + FoxRyan + FreijNabil + GargSuyog + GedaRobel + GlattlyLauren + GondhalekarYash + GordonKarl D. + GrantDavid + GreenfieldPerry + GroenerAusten M. + GuestSteve + GurovichSebastian + HandbergRasmus + HartAkeem + Hatfield-DoddsZac + HomeierDerek + HosseinzadehGriffin + JennessTim + JonesCraig K. + JosephPrajwel + KalmbachJ. Bryce + KaramehmetogluEmir + Kaluszy’nskiMikolaj + KelleyMichael S. P. + KernNicholas + KerzendorfWolfgang E. + KochEric W. + KulumaniShankar + LeeAntony + LyChun + MaZhiyuan + MacBrideConor + MaljaarsJakob M. + MunaDemitri + MurphyN. A. + NormanHenrik + O’SteenRichard + OmanKyle A. + PacificiCamilla + PascualSergio + Pascual-GranadoJ. + PatilRohit R. + PerrenGabriel I. + PickeringTimothy E. + RastogiTanuj + RoulstonBenjamin R. + RyanDaniel F. + RykoffEli S. + SabaterJose + SakurikarParikshit + SalgadoJes’us + SanghiAniket + SaundersNicholas + SavchenkoVolodymyr + SchwardtLudwig + Seifert-EckertMichael + ShihAlbert Y. + JainAnany Shrey + ShuklaGyanendra + SickJonathan + SimpsonChris + SinganamallaSudheesh + SingerLeo P. + SinghalJaladh + SinhaManodeep + SipHoczBrigitta M. + SpitlerLee R. + StansbyDavid + StreicherOle + SumakJani + SwinbankJohn D. + TaranuDan S. + TewaryNikita + TremblayGrant R. + Val-BorroMiguel de + Van KootenSamuel J. + Vasovi’cZlatan + VermaShresth + de Miranda CardosoJos’e Vin’icius + WilliamsPeter K. G. + WilsonTom J. + WinkelBenjamin + Wood-VaseyW. M. + XueRui + YoachimPeter + ZhangChen + ZoncaAndrea + Astropy Project Contributors + + The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package + Astrophysical Journal + 202208 + 935 + 2 + https://arxiv.org/abs/2206.14220 + 10.3847/1538-4357/ac7c74 + 167 + + + + + + + D’AvellaDan + JamiesonWilliam + DroettboomMichael + SlavichEdward + GrahamBrett + RobitailleThomas + DenchevaNadia + perrygreenfield + SimonBernie + MacDonaldKen + BrayE. M. + BurnettZach + DaviesJames + MumfordStuart + MarkovtsevVadim + TollerudErik + SipőczBrigitta + BradleyLarry + FabryÇağtay + GarrisonLehman + GreinerBen + DeilChristoph + CraigMatt + LimP. L. + BarbaryKyle + StreicherOle + GinsburgAdam + + Asdf-format/asdf: 2.15.0 + Zenodo + 202304 + https://doi.org/10.5281/zenodo.7799772 + 10.5281/zenodo.7799772 + + + + + + KumarRavin + CarrollColin + HartikainenAri + MartinOsvaldo + + ArviZ a unified library for exploratory analysis of Bayesian models in Python + Journal of Open Source Software + The Open Journal + 2019 + 4 + 33 + https://doi.org/10.21105/joss.01143 + 10.21105/joss.01143 + 1143 + + + + + +
diff --git a/joss.05703/10.21105.joss.05703.pdf b/joss.05703/10.21105.joss.05703.pdf new file mode 100644 index 0000000000..9a3466458f Binary files /dev/null and b/joss.05703/10.21105.joss.05703.pdf differ