diff --git a/joss.06276/10.21105.joss.06276.crossref.xml b/joss.06276/10.21105.joss.06276.crossref.xml
new file mode 100644
index 0000000000..a39daae07e
--- /dev/null
+++ b/joss.06276/10.21105.joss.06276.crossref.xml
@@ -0,0 +1,377 @@
+
+
+
+ 20240403T144144-6c26a7dc7ff4522f413abab1651b18dd75cb0d25
+ 20240403144144
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 04
+ 2024
+
+
+ 9
+
+ 96
+
+
+
+ pypfilt: a particle filter for Python
+
+
+
+ Robert
+ Moss
+ https://orcid.org/0000-0002-4568-2012
+
+
+
+ 04
+ 03
+ 2024
+
+
+ 6276
+
+
+ 10.21105/joss.06276
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.26188/25529974
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6276
+
+
+
+ 10.21105/joss.06276
+ https://joss.theoj.org/papers/10.21105/joss.06276
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06276.pdf
+
+
+
+
+
+ Forecasting influenza outbreak dynamics in
+Melbourne from Internet search query surveillance data
+ Moss
+ Influenza and Other Respiratory
+Viruses
+ 4
+ 10
+ 10.1111/irv.12376
+ 2016
+ Moss, R., Zarebski, A., Dawson, P.,
+& McCaw, J. M. (2016). Forecasting influenza outbreak dynamics in
+Melbourne from Internet search query surveillance data. Influenza and
+Other Respiratory Viruses, 10(4), 314–323.
+https://doi.org/10.1111/irv.12376
+
+
+ Retrospective forecasting of the 2010–14
+Melbourne influenza seasons using multiple surveillance
+systems
+ Moss
+ Epidemiology and Infection
+ 1
+ 145
+ 10.1017/S0950268816002053
+ 2017
+ Moss, R., Zarebski, A., Dawson, P.,
+& McCaw, J. M. (2017). Retrospective forecasting of the 2010–14
+Melbourne influenza seasons using multiple surveillance systems.
+Epidemiology and Infection, 145(1), 156–169.
+https://doi.org/10.1017/S0950268816002053
+
+
+ Model selection for seasonal influenza
+forecasting
+ Zarebski
+ Infectious Disease Modelling
+ 1
+ 2
+ 10.1016/j.idm.2016.12.004
+ 2468-0427
+ 2017
+ Zarebski, A. E., Dawson, P., McCaw,
+J. M., & Moss, R. (2017). Model selection for seasonal influenza
+forecasting. Infectious Disease Modelling, 2(1), 56–70.
+https://doi.org/10.1016/j.idm.2016.12.004
+
+
+ Epidemic forecasts as a tool for public
+health: Interpretation and (re)calibration
+ Moss
+ Australian and New Zealand Journal of Public
+Health
+ 1
+ 42
+ 10.1111/1753-6405.12750
+ 2018
+ Moss, R., Fielding, J. E., Franklin,
+L. J., Stephens, N., McVernon, J., Dawson, P., & McCaw., J. M.
+(2018). Epidemic forecasts as a tool for public health: Interpretation
+and (re)calibration. Australian and New Zealand Journal of Public
+Health, 42(1), 69–76.
+https://doi.org/10.1111/1753-6405.12750
+
+
+ Disease forecasting system takes out National
+Innovation Awards
+ Pyne
+ Media release
+ 2018
+ Pyne, C. (2018). Disease forecasting
+system takes out National Innovation Awards. In Media release.
+Australian Department of Defence.
+https://www.minister.defence.gov.au/media-releases/2018-05-11/disease-forecasting-system-takes-out-national-innovation-awards
+
+
+ Accounting for healthcare-seeking behaviours
+and testing practices in real-time influenza forecasts
+ Moss
+ Tropical Medicine and Infectious
+Disease
+ 1
+ 4
+ 10.3390/tropicalmed4010012
+ 2019
+ Moss, R., Zarebski, A. E., Carlson,
+S. J., & McCaw., J. M. (2019). Accounting for healthcare-seeking
+behaviours and testing practices in real-time influenza forecasts.
+Tropical Medicine and Infectious Disease, 4(1), 12.
+https://doi.org/10.3390/tropicalmed4010012
+
+
+ Anatomy of a seasonal influenza epidemic
+forecast
+ Moss
+ Communicable Diseases
+Intelligence
+ 43
+ 10.33321/cdi.2019.43.7
+ 2019
+ Moss, R., Zarebski, A. E., Dawson,
+P., Franklin, L. J., Birrell, F. A., & McCaw., J. M. (2019). Anatomy
+of a seasonal influenza epidemic forecast. Communicable Diseases
+Intelligence, 43, 1–14.
+https://doi.org/10.33321/cdi.2019.43.7
+
+
+ Early analysis of the Australian COVID-19
+epidemic
+ Price
+ eLife
+ 9
+ 10.7554/eLife.58785
+ 2020
+ Price, D. J., Shearer, F. M., Meehan,
+M. T., McBryde, E. S., Moss, R., Golding, N., Conway, E. J., Dawson, P.,
+Cromer, D., Wood, J., Abbott, S., McVernon, J., & McCaw, J. M.
+(2020). Early analysis of the Australian COVID-19 epidemic. eLife, 9,
+e58785. https://doi.org/10.7554/eLife.58785
+
+
+ Infectious disease pandemic planning and
+response: Incorporating decision analysis
+ Shearer
+ PLOS Medicine
+ 17
+ 10.1371/journal.pmed.1003018
+ 2020
+ Shearer, F. M., Moss, R., McVernon,
+J., Ross, J. V., & McCaw, J. M. (2020). Infectious disease pandemic
+planning and response: Incorporating decision analysis. PLOS Medicine,
+17, e1003018.
+https://doi.org/10.1371/journal.pmed.1003018
+
+
+ Coronavirus disease model to inform
+transmission-reducing measures and health system preparedness,
+Australia
+ Moss
+ Emerging Infectious Diseases
+ 12
+ 26
+ 10.3201/eid2612.202530
+ 2020
+ Moss, R., Wood, J., Brown, D.,
+Shearer, F. M., Black, A. J., Glass, K., Cheng, A. C., McCaw, J. M.,
+& McVernon, J. (2020). Coronavirus disease model to inform
+transmission-reducing measures and health system preparedness,
+Australia. Emerging Infectious Diseases, 26(12), 2844–2853.
+https://doi.org/10.3201/eid2612.202530
+
+
+ Forecasting COVID-19 activity in Australia to
+support pandemic response: May to October 2020
+ Moss
+ Scientific Reports
+ 1
+ 13
+ 10.1038/s41598-023-35668-6
+ 2023
+ Moss, R., Price, D. J., Golding, N.,
+Dawson, P., McVernon, J., Hyndman, R. J., Shearer, F. M., & McCaw,
+J. M. (2023). Forecasting COVID-19 activity in Australia to support
+pandemic response: May to October 2020. Scientific Reports, 13(1).
+https://doi.org/10.1038/s41598-023-35668-6
+
+
+ Monte Carlo filter and smoother for
+non-Gaussian nonlinear state space models
+ Kitagawa
+ Journal of Computational and Graphical
+Statistics
+ 1
+ 5
+ 10.1080/10618600.1996.10474692
+ 1996
+ Kitagawa, G. (1996). Monte Carlo
+filter and smoother for non-Gaussian nonlinear state space models.
+Journal of Computational and Graphical Statistics, 5(1), 1–25.
+https://doi.org/10.1080/10618600.1996.10474692
+
+
+ Sequential Monte Carlo methods in
+practice
+ 10.1007/978-1-4757-3437-9
+ 978-1-4419-2887-0
+ 2001
+ Doucet, A., Freitas, N. de, &
+Gordon, N. (Eds.). (2001). Sequential Monte Carlo methods in practice
+(1st ed.). Springer.
+https://doi.org/10.1007/978-1-4757-3437-9
+
+
+ Improving regularised particle
+filters
+ Musso
+ Sequential Monte Carlo methods in
+practice
+ 10.1007/978-1-4757-3437-9_12
+ 2001
+ Musso, C., Oudjane, N., & Le
+Gland, F. (2001). Improving regularised particle filters. In Sequential
+Monte Carlo methods in practice (pp. 247–271). Springer.
+https://doi.org/10.1007/978-1-4757-3437-9_12
+
+
+ An introduction to Sequential Monte
+Carlo
+ Chopin
+ 10.1007/978-3-030-47845-2
+ 2020
+ Chopin, N., & Papaspiliopoulos,
+O. (2020). An introduction to Sequential Monte Carlo. Springer.
+https://doi.org/10.1007/978-3-030-47845-2
+
+
+ Forecasting: Principles and
+practice
+ Hyndman
+ 2021
+ Hyndman, R. J., & Athanasopoulos,
+G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts.
+https://otexts.com/fpp3
+
+
+ PyMC: A modern, and comprehensive
+probabilistic programming framework in Python
+ Abril-Pla
+ PeerJ Computer Science
+ 9
+ 10.7717/peerj-cs.1516
+ 2376-5992
+ 2023
+ Abril-Pla, O., Andreani, V., Carroll,
+C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J.,
+Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T.,
+& Zinkov, R. (2023). PyMC: A modern, and comprehensive probabilistic
+programming framework in Python. PeerJ Computer Science, 9, e1516.
+https://doi.org/10.7717/peerj-cs.1516
+
+
+ Pyro: Deep universal probabilistic
+programming
+ Bingham
+ Journal of Machine Learning
+Research
+ 20
+ 2019
+ Bingham, E., Chen, J. P., Jankowiak,
+M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.
+A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal
+probabilistic programming. Journal of Machine Learning Research, 20,
+28:1–28:6.
+http://jmlr.org/papers/v20/18-403.html
+
+
+ Dstl/stone-soup: v1.1 release
+ Hiscocks
+ 10.5281/zenodo.8308177
+ 2023
+ Hiscocks, S., Harrald, O., Barr, J.,
+Perree, N., Vladimirov, L., Green, R., Rosoman, O., etfrogers-dstl,
+idorrington-dstl, Glover, T., Hunter, E., Wright, J., gawebb-dstl,
+Harris, M., Fraser, B., spike, Pritchett, H., jjosborne-dstl, Carniglia,
+P., … Hiles, J. (2023). Dstl/stone-soup: v1.1 release (Version v1.1).
+Zenodo. https://doi.org/10.5281/zenodo.8308177
+
+
+ FilterPy - Kalman filters and other optimal
+and non-optimal estimation filters in Python
+ Labbe
+ GitHub repository
+ 2022
+ Labbe, R. R. (2022). FilterPy -
+Kalman filters and other optimal and non-optimal estimation filters in
+Python. In GitHub repository. GitHub.
+https://github.com/rlabbe/filterpy
+
+
+ SMCPy - Sequential Monte Carlo with
+Python
+ Leser
+ GitHub repository
+ 2023
+ Leser, P., & Wang, M. (2023).
+SMCPy - Sequential Monte Carlo with Python. In GitHub repository.
+GitHub. https://github.com/nasa/SMCPy
+
+
+
+
+
+
diff --git a/joss.06276/10.21105.joss.06276.jats b/joss.06276/10.21105.joss.06276.jats
new file mode 100644
index 0000000000..03b75fafe6
--- /dev/null
+++ b/joss.06276/10.21105.joss.06276.jats
@@ -0,0 +1,668 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6276
+10.21105/joss.06276
+
+pypfilt: a particle filter for Python
+
+
+
+https://orcid.org/0000-0002-4568-2012
+
+Moss
+Robert
+
+
+
+
+
+Melbourne School of Population and Global Health, The
+University of Melbourne, Australia
+
+
+
+
+20
+12
+2023
+
+9
+96
+6276
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+particle filter
+forecasting
+
+
+
+
+
+ Summary
+
Mathematical models are used to simulate real-world systems in many
+ scientific fields. These models can be fitted to real-time data, and
+ used to generate probabilistic forecasts that
+ describe how the system will behave in the future and convey the
+ uncertainty in these predictions. Particle filters
+ are a class of Sequential Monte Carlo (SMC) methods
+ (Doucet
+ et al., 2001) that have been used in many scientific fields for
+ real-time forecasting, with the COVID-19 pandemic being one of the
+ most recent and high-profile examples. These methods can be used to
+ estimate model parameters and state as new data become available
+ (“online estimation”).
+
pypfilt is a Python package for online
+ estimation and forecasting that implements several particle filters.
+ It was developed to enable real-time seasonal influenza forecasting in
+ Australia, for which we won two national innovation awards
+ (Pyne,
+ 2018), and played a key role in generating forecasts that have
+ supported Australia’s COVID-19 response
+ (Moss
+ et al., 2023). The package is deliberately generic and readily
+ applicable to other domains.
+
+
+ Statement of need
+
Particle filters are provided by Python packages that implement a
+ range of inference methods, such as PyMC
+ (Abril-Pla
+ et al., 2023), pyro
+ (Bingham
+ et al., 2019), and stonesoup
+ (Hiscocks
+ et al., 2023); accompany textbooks, such as
+ particles
+ (Chopin
+ & Papaspiliopoulos, 2020) and
+ filterpy
+ (Labbe,
+ 2022); and focus on other applications, such as
+ SMCPy
+ (Leser
+ & Wang, 2023). However, pypfilt
+ appears to be unique in supporting all of the following: (a) online
+ state estimation for time-series forecasting; (b) arbitrary
+ state-space models; (c) non-analytic likelihood functions; (d) control
+ over memory usage for large-scale applications; (e) a declarative
+ approach for defining and running forecasts; and (f) reproducible
+ results. In brief:
+
+
+
Forecasts are generated efficiently. Repeated
+ calculations are avoided when new data are received (online
+ estimation), even when previous data are updated or corrected, due
+ to a sophisticated caching system.
+
+
+
Complex models are easily defined. Models only
+ need to define the state vector, with arbitrarily nested fields
+ and dimensions, and define an update rule for the state
+ vector.
+
+
+
Likelihood functions are unconstrained. They
+ do not need to be differentiable, and can inspect both the current
+ state and any previous states.
+
+
+
Memory usage is flexible. The particle filter
+ can retain only a sliding window of previous states, and only
+ record states at coarse intervals, so that forecasts with large
+ numbers of particles and/or very small time-steps do not exceed
+ available memory.
+
+
+
Forecasts are simple to define and run.
+ Forecasts are defined in plain-text configuration files, enforcing
+ a clear separation between model implementation and experiment
+ (e.g., choice of prior distributions, input data, particle filter
+ settings).
+
+
+
Reproducibility is ensured. Output files
+ include all data and metadata required to reproduce the original
+ results.
+
+
+
Additional features include supporting scalar and calendar time
+ scales, providing a range of resampling strategies
+ (Kitagawa,
+ 1996) and summary statistics, post-regularisation
+ (Musso
+ et al., 2001), and measuring forecast performance with
+ Continuous Ranked Probability Scores (CRPS)
+ (Hyndman
+ & Athanasopoulos, 2021). It also supports scenario
+ modelling — simulating from multiple prior distributions and
+ comparing matching particles in each ensemble — which provides
+ additional decision-support capabilities beyond those provided by
+ real-time forecasts
+ (Moss
+ et al., 2020;
+ Shearer
+ et al., 2020).
+
A suite of almost 150
+ test
+ cases (comprising more than 6,000 lines of code) runs
+ automatically every time the code is updated. This includes tests
+ which verify that outputs are reproducible, and tests which verify
+ that outputs are identical whether or not the particle filter resumed
+ from a previously-cached state.
+
+
+ Availability and usage
+
This is available as a Python package on
+ PyPI
+ and can be installed using pip. It deliberately
+ supports older versions of Python (
+
+ ≥3.8),
+ NumPy (
+
+ ≥1.17),
+ and SciPy (
+
+ ≥1.4).
+ The documentation is available at
+ https://pypfilt.readthedocs.io/,
+ and includes a
+ Getting
+ Started tutorial that demonstrates how to construct a
+ model, fit it to data, and generate forecasts (see
+ [fig:example]).
+ In this tutorial we use the Lorenz-63 system of ordinary differential
+ equations (which has chaotic solutions) to show how
+ post-regularisation can greatly improve forecast performance (see
+ [fig:perf]), and to
+ highlight how easy it is to define and run a suite of forecasts.
+
+
An example forecast at time
+
+
+ t=20
+ for the Lorenz-63 system. This figure was generated using the
+ pypfilt.plot
+ module.
+
+
+
+
+ Ongoing research projects
+
Beginning in 2015, pypfilt was developed to
+ support real-time seasonal influenza forecasting in Australia
+ (Moss
+ et al., 2016,
+ 2017,
+ 2018;
+ Moss,
+ Zarebski, Carlson, et al., 2019;
+ Moss,
+ Zarebski, Dawson, et al., 2019;
+ Zarebski
+ et al., 2017), and has been used to support the Australian
+ Government’s response to COVID-19
+ (Moss
+ et al., 2023;
+ Price
+ et al., 2020).
+
+
An example of using Continuous Ranked Probability Scores
+ (CPRS) to compare forecast performance. Post-regularisation improves
+ performance by 76.7% in this
+ example.
+
+
+
+
+ Acknowledgements
+
Peter Dawson, James M. McCaw, David J. Price, and Alexander E.
+ Zarebski contributed helpful comments and suggestions. Package
+ development was supported by the Defence Science and Technology Group
+ project “Bioterrorism Preparedness Strategic Research Initiative
+ 07/301”, and by Australian National Health and Medical Research
+ Council (NHMRC) Centres for Research Excellence (PRISM, 1078068;
+ APPRISE, 1116530; SPECTRUM, 1170960). RM was supported by an NHMRC
+ APPRISE Research Fellowship (1116530).
+
+
+
+
+
+
+
+ MossRobert
+ ZarebskiAlex
+ DawsonPeter
+ McCawJames M.
+
+ Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data
+
+ 2016
+ 10
+ 4
+ 10.1111/irv.12376
+ 314
+ 323
+
+
+
+
+
+ MossRobert
+ ZarebskiAlex
+ DawsonPeter
+ McCawJames M.
+
+ Retrospective forecasting of the 2010–14 Melbourne influenza seasons using multiple surveillance systems
+
+ 2017
+ 145
+ 1
+ 10.1017/S0950268816002053
+ 156
+ 169
+
+
+
+
+
+ ZarebskiAlexander E.
+ DawsonPeter
+ McCawJames M.
+ MossRobert
+
+ Model selection for seasonal influenza forecasting
+
+ Elsevier BV
+ 201702
+ 2
+ 1
+ 2468-0427
+ 10.1016/j.idm.2016.12.004
+ 56
+ 70
+
+
+
+
+
+ MossRobert
+ FieldingJames E.
+ FranklinLucinda J.
+ StephensNicola
+ McVernonJodie
+ DawsonPeter
+ McCaw.James M.
+
+ Epidemic forecasts as a tool for public health: Interpretation and (re)calibration
+
+ 2018
+ 42
+ 1
+ 10.1111/1753-6405.12750
+ 69
+ 76
+
+
+
+
+
+ PyneChristopher
+
+ Disease forecasting system takes out National Innovation Awards
+
+ Australian Department of Defence
+ 2018
+ https://www.minister.defence.gov.au/media-releases/2018-05-11/disease-forecasting-system-takes-out-national-innovation-awards
+
+
+
+
+
+ MossRobert
+ ZarebskiAlexander E.
+ CarlsonSandra J.
+ McCaw.James M.
+
+ Accounting for healthcare-seeking behaviours and testing practices in real-time influenza forecasts
+
+ 2019
+ 4
+ 1
+ 10.3390/tropicalmed4010012
+ 12
+
+
+
+
+
+
+ MossRobert
+ ZarebskiAlexander E.
+ DawsonPeter
+ FranklinLucinda J.
+ BirrellFrances A.
+ McCaw.James M.
+
+ Anatomy of a seasonal influenza epidemic forecast
+
+ 2019
+ 43
+ 10.33321/cdi.2019.43.7
+ 1
+ 14
+
+
+
+
+
+ PriceDavid J.
+ ShearerFreya M.
+ MeehanMichael T.
+ McBrydeEmma S.
+ MossRobert
+ GoldingNick
+ ConwayEamon J.
+ DawsonPeter
+ CromerDeborah
+ WoodJames
+ AbbottSam
+ McVernonJodie
+ McCawJames M.
+
+ Early analysis of the Australian COVID-19 epidemic
+
+ 2020
+ 9
+ 10.7554/eLife.58785
+ e58785
+
+
+
+
+
+
+ ShearerFreya M.
+ MossRobert
+ McVernonJodie
+ RossJoshua V.
+ McCawJames M.
+
+ Infectious disease pandemic planning and response: Incorporating decision analysis
+
+ 2020
+ 17
+ 10.1371/journal.pmed.1003018
+ e1003018
+
+
+
+
+
+
+ MossRobert
+ WoodJames
+ BrownDamien
+ ShearerFreya M.
+ BlackAndrew J.
+ GlassKathryn
+ ChengAllen C.
+ McCawJames M.
+ McVernonJodie
+
+ Coronavirus disease model to inform transmission-reducing measures and health system preparedness, Australia
+
+ Centers for Disease Control; Prevention (CDC)
+ 202012
+ 26
+ 12
+ https://doi.org/10.3201/eid2612.202530
+ 10.3201/eid2612.202530
+ 2844
+ 2853
+
+
+
+
+
+ MossRobert
+ PriceDavid J.
+ GoldingNick
+ DawsonPeter
+ McVernonJodie
+ HyndmanRob J.
+ ShearerFreya M.
+ McCawJames M.
+
+ Forecasting COVID-19 activity in Australia to support pandemic response: May to October 2020
+
+ Springer Science; Business Media LLC
+ 202305
+ 13
+ 1
+ 10.1038/s41598-023-35668-6
+
+
+
+
+
+ KitagawaGenshiro
+
+ Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
+
+ 1996
+ 5
+ 1
+ 10.1080/10618600.1996.10474692
+ 1
+ 25
+
+
+
+
+
+
+ DoucetArnaud
+ FreitasNando de
+ GordonNeil
+
+ Springer
+ New York
+ 2001
+ 1st
+ 978-1-4419-2887-0
+ 10.1007/978-1-4757-3437-9
+
+
+
+
+
+ MussoChristian
+ OudjaneNadia
+ Le GlandFrançois
+
+ Improving regularised particle filters
+
+ Springer
+ 2001
+ 10.1007/978-1-4757-3437-9_12
+ 247
+ 271
+
+
+
+
+
+ ChopinNicolas
+ PapaspiliopoulosOmiros
+
+
+ Springer
+ Basel
+ 2020
+ 10.1007/978-3-030-47845-2
+
+
+
+
+
+ HyndmanRob J.
+ AthanasopoulosGeorge
+
+
+ OTexts
+ Melbourne, Australia
+ 2021
+ 3rd
+ https://otexts.com/fpp3
+
+
+
+
+
+ Abril-PlaOriol
+ AndreaniVirgile
+ CarrollColin
+ DongLarry
+ FonnesbeckChristopher J.
+ KochurovMaxim
+ KumarRavin
+ LaoJunpeng
+ LuhmannChristian C.
+ MartinOsvaldo A.
+ OsthegeMichael
+ VieiraRicardo
+ WieckiThomas
+ ZinkovRobert
+
+ PyMC: A modern, and comprehensive probabilistic programming framework in Python
+
+ PeerJ
+ 202309
+ 9
+ 2376-5992
+ 10.7717/peerj-cs.1516
+ e1516
+
+
+
+
+
+
+ BinghamEli
+ ChenJonathan P.
+ JankowiakMartin
+ ObermeyerFritz
+ PradhanNeeraj
+ KaraletsosTheofanis
+ SinghRohit
+ SzerlipPaul A.
+ HorsfallPaul
+ GoodmanNoah D.
+
+ Pyro: Deep universal probabilistic programming
+
+ 2019
+ 20
+ http://jmlr.org/papers/v20/18-403.html
+ 28:1
+ 28:6
+
+
+
+
+
+ HiscocksSteven
+ HarraldOliver
+ BarrJordi
+ PerreeNicola
+ VladimirovLyudmil
+ GreenRichard
+ RosomanOliver
+ etfrogers-dstl
+ idorrington-dstl
+ GloverTimothy
+ HunterEmily
+ WrightJames
+ gawebb-dstl
+ HarrisMichael
+ FraserBenjamin
+ spike
+ PritchettHenry
+ jjosborne-dstl
+ CarnigliaPeter
+ cje20a
+ lflaherty-dstl
+ KirklandDavid
+ rg
+ DaviesRichard
+ snaylor20
+ CampbellMark
+ dcrew-dstl
+ dlast-dstl
+ ThomasSam
+ HilesJohn
+
+ Dstl/stone-soup: v1.1 release
+ Zenodo
+ 202309
+ https://doi.org/10.5281/zenodo.8308177
+ 10.5281/zenodo.8308177
+
+
+
+
+
+ LabbeRoger R.
+
+ FilterPy - Kalman filters and other optimal and non-optimal estimation filters in Python
+
+ GitHub
+ 2022
+ https://github.com/rlabbe/filterpy
+
+
+
+
+
+ LeserPatrick
+ WangMichael
+
+ SMCPy - Sequential Monte Carlo with Python
+
+ GitHub
+ 2023
+ https://github.com/nasa/SMCPy
+
+
+
+
+
diff --git a/joss.06276/10.21105.joss.06276.pdf b/joss.06276/10.21105.joss.06276.pdf
new file mode 100644
index 0000000000..7db74c762f
Binary files /dev/null and b/joss.06276/10.21105.joss.06276.pdf differ
diff --git a/joss.06276/media/lorenz63_crps_comparison.png b/joss.06276/media/lorenz63_crps_comparison.png
new file mode 100644
index 0000000000..340d6a2a52
Binary files /dev/null and b/joss.06276/media/lorenz63_crps_comparison.png differ
diff --git a/joss.06276/media/lorenz63_forecast_regularised.png b/joss.06276/media/lorenz63_forecast_regularised.png
new file mode 100644
index 0000000000..d0eef3d059
Binary files /dev/null and b/joss.06276/media/lorenz63_forecast_regularised.png differ