From 9c868b356fc3ee8c25220612c41862469a9395a2 Mon Sep 17 00:00:00 2001 From: The Open Journals editorial robot <89919391+editorialbot@users.noreply.github.com> Date: Tue, 12 Dec 2023 17:00:12 +0000 Subject: [PATCH] Creating 10.21105.joss.05873.crossref.xml --- joss.05873/10.21105.joss.05873.crossref.xml | 496 ++++++++++++++++++++ 1 file changed, 496 insertions(+) create mode 100644 joss.05873/10.21105.joss.05873.crossref.xml diff --git a/joss.05873/10.21105.joss.05873.crossref.xml b/joss.05873/10.21105.joss.05873.crossref.xml new file mode 100644 index 0000000000..53f1e60a9c --- /dev/null +++ b/joss.05873/10.21105.joss.05873.crossref.xml @@ -0,0 +1,496 @@ + + + + 20231212T165950-7df13fb8321d887c97dd9dda83a52185cd313025 + 20231212165950 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 12 + 2023 + + + 8 + + 92 + + + + pudu: A Python library for agnostic feature selection +and explainability of Machine Learning spectroscopic problems + + + + Enric + Grau-Luque + https://orcid.org/0000-0002-8357-5824 + + + Ignacio + Becerril-Romero + https://orcid.org/0000-0002-7087-6097 + + + Alejandro + Perez-Rodriguez + https://orcid.org/0000-0002-3634-1355 + + + Maxim + Guc + https://orcid.org/0000-0002-2072-9566 + + + Victor + Izquierdo-Roca + https://orcid.org/0000-0002-5502-3133 + + + + 12 + 12 + 2023 + + + 5873 + + + 10.21105/joss.05873 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10161346 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5873 + + + + 10.21105/joss.05873 + https://joss.theoj.org/papers/10.21105/joss.05873 + + + https://joss.theoj.org/papers/10.21105/joss.05873.pdf + + + + + + Explanatory analysis of spectroscopic data +using machine learning of simple, interpretable rules + Goodacre + Vibrational Spectroscopy + 1 + 32 + 10.1016/S0924-2031(03)00045-6 + 0924-2031 + 2003 + Goodacre, R. (2003). Explanatory +analysis of spectroscopic data using machine learning of simple, +interpretable rules. Vibrational Spectroscopy, 32(1), 33–45. +https://doi.org/10.1016/S0924-2031(03)00045-6 + + + Deep Learning for Raman Spectroscopy: A +Review + Luo + Analytica + 3 + 3 + 10.3390/analytica3030020 + 2022 + Luo, R., Popp, J., & Bocklitz, T. +(2022). Deep Learning for Raman Spectroscopy: A Review. Analytica, 3(3), +287–301. +https://doi.org/10.3390/analytica3030020 + + + Practical guides for x-ray photoelectron +spectroscopy: Analysis of polymers + Easton + Journal of Vacuum Science & Technology A: +Vacuum, Surfaces, and Films + 2 + 38 + 10.1116/1.5140587 + 0734-2101 + 2020 + Easton, C. D., Kinnear, C., McArthur, +S. L., & Gengenbach, T. R. (2020). Practical guides for x-ray +photoelectron spectroscopy: Analysis of polymers. Journal of Vacuum +Science & Technology A: Vacuum, Surfaces, and Films, 38(2). +https://doi.org/10.1116/1.5140587 + + + Infrared Spectroscopy in Corrosion +Research + Haruna + Corrosion Science + 10.1201/9781003328513-9 + 9781003328513 + 2023 + Haruna, K., Obot, I. B., & Saleh, +T. A. (2023). Infrared Spectroscopy in Corrosion Research. Corrosion +Science, 261–289. +https://doi.org/10.1201/9781003328513-9 + + + Raman spectroscopy for profiling physical and +chemical properties of atmospheric aerosol particles: A +review + Estefany + Ecotoxicology and Environmental +Safety + 249 + 10.1016/J.ECOENV.2022.114405 + 0147-6513 + 2023 + Estefany, C., Sun, Z., Hong, Z., +& Du, J. (2023). Raman spectroscopy for profiling physical and +chemical properties of atmospheric aerosol particles: A review. +Ecotoxicology and Environmental Safety, 249, 114405. +https://doi.org/10.1016/J.ECOENV.2022.114405 + + + Spectroscopic Analysis Techniques in Forensic +Science + Bhatt + Modern Forensic Tools and Devices: Trends in +Criminal Investigation + 10.1002/9781119763406.CH8 + 9781119763406 + 2023 + Bhatt, P. V., & Rawtani, D. +(2023). Spectroscopic Analysis Techniques in Forensic Science. Modern +Forensic Tools and Devices: Trends in Criminal Investigation, 149–197. +https://doi.org/10.1002/9781119763406.CH8 + + + Scanning tunneling spectroscopy of +high-temperature superconductors + Fischer + Reviews of Modern Physics + 1 + 79 + 10.1103/REVMODPHYS.79.353 + 2007 + Fischer, Ø., Kugler, M., +Maggio-Aprile, I., Berthod, C., & Renner, C. (2007). Scanning +tunneling spectroscopy of high-temperature superconductors. Reviews of +Modern Physics, 79(1), 353–419. +https://doi.org/10.1103/REVMODPHYS.79.353 + + + Infrared spectroscopy and microscopy in +cancer research and diagnosis + Bellisola + American Journal of Cancer +Research + 1 + 2 + 2012 + Bellisola, G., & Sorio, C. +(2012). Infrared spectroscopy and microscopy in cancer research and +diagnosis. American Journal of Cancer Research, 2(1), 1. +/pmc/articles/PMC3236568/ /pmc/articles/PMC3236568/?report=abstract +https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236568/ + + + Explainable machine learning in materials +science + Zhong + npj Computational Materials 2022 +8:1 + 1 + 8 + 10.1038/s41524-022-00884-7 + 2057-3960 + 2022 + Zhong, X., Gallagher, B., Liu, S., +Kailkhura, B., Hiszpanski, A., & Han, T. Y. J. (2022). Explainable +machine learning in materials science. Npj Computational Materials 2022 +8:1, 8(1), 1–19. +https://doi.org/10.1038/s41524-022-00884-7 + + + "Why Should I Trust You?": Explaining the +Predictions of Any Classifier + Ribeiro + NAACL-HLT 2016 - 2016 Conference of the North +American Chapter of the Association for Computational Linguistics: Human +Language Technologies, Proceedings of the Demonstrations +Session + 10.48550/arxiv.1602.04938 + 9781450342322 + 2016 + Ribeiro, M. T., Singh, S., & +Guestrin, C. (2016). "Why Should I Trust You?": Explaining the +Predictions of Any Classifier. NAACL-HLT 2016 - 2016 Conference of the +North American Chapter of the Association for Computational Linguistics: +Human Language Technologies, Proceedings of the Demonstrations Session, +97–101. +https://doi.org/10.48550/arxiv.1602.04938 + + + A Survey on the Explainability of Supervised +Machine Learning + Burkart + Journal of Artificial Intelligence +Research + 70 + 10.1613/JAIR.1.12228 + 1076-9757 + 2021 + Burkart, N., & Huber, M. F. +(2021). A Survey on the Explainability of Supervised Machine Learning. +Journal of Artificial Intelligence Research, 70, 245–317. +https://doi.org/10.1613/JAIR.1.12228 + + + Explainable Machine Learning for Scientific +Insights and Discoveries + Roscher + IEEE Access + 8 + 10.1109/ACCESS.2020.2976199 + 2020 + Roscher, R., Bohn, B., Duarte, M. F., +& Garcke, J. (2020). Explainable Machine Learning for Scientific +Insights and Discoveries. IEEE Access, 8, 42200–42216. +https://doi.org/10.1109/ACCESS.2020.2976199 + + + Principles and Practice of Explainable +Machine Learning + Belle + Frontiers in Big Data + 4 + 10.3389/FDATA.2021.688969 + 2021 + Belle, V., & Papantonis, I. +(2021). Principles and Practice of Explainable Machine Learning. +Frontiers in Big Data, 4, 39. +https://doi.org/10.3389/FDATA.2021.688969 + + + A Unified Approach to Interpreting Model +Predictions + Lundberg + Advances in Neural Information Processing +Systems + 30 + 2017 + Lundberg, S. M., Allen, P. G., & +Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. +Advances in Neural Information Processing Systems, 30. +https://github.com/slundberg/shap + + + Grad-CAM: Visual Explanations From Deep +Networks via Gradient-Based Localization + Selvaraju + Proceedings of the IEEE International +Conference on Computer Vision + 10.1109/iccv.2017.74 + 2017 + Selvaraju, R. R., Cogswell, M., Das, +A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual +Explanations From Deep Networks via Gradient-Based Localization. In +Proceedings of the IEEE International Conference on Computer Vision (pp. +618–626). https://doi.org/10.1109/iccv.2017.74 + + + Scikit-learn: Machine Learning in +Python + Pedregosa + 12 + 2011 + Pedregosa, F., Varoquaux, G., +Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., +Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., +Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). +Scikit-learn: Machine Learning in Python (Vol. 12, pp. 2825–2830). +http://scikit-learn.sourceforge.net. + + + Keras: The Python Deep Learning +library + Chollet + Astrophysics source code +library + 2018 + Chollet, F., Others, Chollet, F., +& Others. (2018). Keras: The Python Deep Learning library. +Astrophysics Source Code Library, ascl:1806.022. +https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract + + + sigvaldm/localreg: Multivariate RBF +output + Marholm + 10.5281/ZENODO.6344451 + 2022 + Marholm, S. (2022). +sigvaldm/localreg: Multivariate RBF output. +https://doi.org/10.5281/ZENODO.6344451 + + + Array programming with NumPy + Harris + 585 + 10.1038/s41586-020-2649-2 + 2020 + Harris, C. R., Millman, K. J., Walt, +S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., +Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., +Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., +Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy +(No. 7825; Vol. 585, pp. 357–362). Nature Research. +https://doi.org/10.1038/s41586-020-2649-2 + + + Interpreting Interpretability: Understanding +Data Scientists’ Use of Interpretability Tools for Machine +Learning + Kaur + 10.1145/3313831.3376219 + 9781450367080 + Kaur, H., Nori, H., Jenkins, S., +Caruana, R., Wallach, H., & Wortman Vaughan, J. (n.d.). Interpreting +Interpretability: Understanding Data Scientists’ Use of Interpretability +Tools for Machine Learning. +https://doi.org/10.1145/3313831.3376219 + + + The Disagreement Problem in Explainable +Machine Learning: A Practitioner’s Perspective + Krishnå1 + 2022 + Krishnå1, S., Han˚1, T. H., Gu, A., +Pombra, J., Jabbari, S., Wu, Z. S., & Lakkaraju, H. (2022). The +Disagreement Problem in Explainable Machine Learning: A Practitioner’s +Perspective. https://arxiv.org/abs/2202.01602v3 + + + Explainable Artificial Intelligence (XAI) on +TimeSeries Data: A Survey + Rojat + 2021 + Rojat, T., Puget, R., Filliat, D., +Del Ser, J., Gelin, R., & Díaz-Rodríguez, N. (2021). Explainable +Artificial Intelligence (XAI) on TimeSeries Data: A Survey. +https://arxiv.org/abs/2104.00950v1 + + + Explainable Machine Learning in +Deployment + Bhatt + 10.1145/3351095.3375624 + 9781450369367 + 2020 + Bhatt, U., Xiang, A., Sharma, S., +Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M. F., +& Eckersley, P. (2020). Explainable Machine Learning in Deployment. +https://doi.org/10.1145/3351095.3375624 + + + Insights into the Effects of +RbF-Post-Deposition Treatments on the Absorber Surface of High +Efficiency Cu(In,Ga)Se2 Solar Cells and Development of Analytical and +Machine Learning Process Monitoring Methodologies Based on Combinatorial +Analysis + Fonoll-Rubio + Advanced Energy Materials + 10.1002/AENM.202103163 + 1614-6840 + 2022 + Fonoll-Rubio, R., Paetel, S., +Grau-Luque, E., Becerril-Romero, I., Mayer, R., Pérez-Rodríguez, A., +Guc, M., & Izquierdo-Roca, V. (2022). Insights into the Effects of +RbF-Post-Deposition Treatments on the Absorber Surface of High +Efficiency Cu(In,Ga)Se2 Solar Cells and Development of Analytical and +Machine Learning Process Monitoring Methodologies Based on Combinatorial +Analysis. Advanced Energy Materials, 2103163. +https://doi.org/10.1002/AENM.202103163 + + + Combinatorial and machine learning approaches +for the analysis of Cu2ZnGeSe4: influence of the off-stoichiometry on +defect formation and solar cell performance + Grau-Luque + Journal of Materials Chemistry +A + 16 + 9 + 10.1039/d1ta01299a + 2021 + Grau-Luque, E., Anefnaf, I., +Benhaddou, N., Fonoll-Rubio, R., Becerril-Romero, I., Aazou, S., +Saucedo, E., Sekkat, Z., Perez-Rodriguez, A., Izquierdo-Roca, V., & +Guc, M. (2021). Combinatorial and machine learning approaches for the +analysis of Cu2ZnGeSe4: influence of the off-stoichiometry on defect +formation and solar cell performance. Journal of Materials Chemistry A, +9(16), 10466–10476. +https://doi.org/10.1039/d1ta01299a + + + Python 3 Reference Manual; +CreateSpace + Van Rossum + Scotts Valley, CA + 978-1-4414-1269-0 + 2009 + Van Rossum, G., & Drake, F. L. +(2009). Python 3 Reference Manual; CreateSpace. Scotts Valley, CA, 242. +ISBN: 978-1-4414-1269-0 + + + matplotlib/matplotlib: REL: +v3.4.2 + Caswell + 10.5281/ZENODO.4743323 + 2021 + Caswell, T. A., Droettboom, M., Lee, +A., Andrade, E. S. de, Hunter, J., Hoffmann, T., Firing, E., Klymak, J., +Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, +P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., … +Ivanov, P. (2021). matplotlib/matplotlib: REL: v3.4.2. +https://doi.org/10.5281/ZENODO.4743323 + + + + + +