diff --git a/joss.06515/10.21105.joss.06515.crossref.xml b/joss.06515/10.21105.joss.06515.crossref.xml
new file mode 100644
index 0000000000..4213018fe3
--- /dev/null
+++ b/joss.06515/10.21105.joss.06515.crossref.xml
@@ -0,0 +1,326 @@
+
+
+
+ 20240605205130-509b6bf699f143b88d1945348de36100641f4b1b
+ 20240605205130
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 06
+ 2024
+
+
+ 9
+
+ 98
+
+
+
+ Pybehave: a hardware agnostic, Python-based framework
+for controlling behavioral neuroscience experiments
+
+
+
+ Evan M. Dastin-van
+ Rijn
+ https://orcid.org/0000-0002-1428-0723
+
+
+ Joel
+ Nielsen
+
+
+ Elizabeth M.
+ Sachse
+ https://orcid.org/0000-0002-1669-8752
+
+
+ Christina
+ Li
+
+
+ Megan E.
+ Mensinger
+
+
+ Stefanie G.
+ Simpson
+
+
+ Michelle C.
+ Buccini
+
+
+ Francesca A.
+ Iacobucci
+
+
+ David J.
+ Titus
+ https://orcid.org/0000-0001-7819-734X
+
+
+ Alik S.
+ Widge
+ https://orcid.org/0000-0001-8510-341X
+
+
+
+ 06
+ 05
+ 2024
+
+
+ 6515
+
+
+ 10.21105/joss.06515
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.11244351
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6515
+
+
+
+ 10.21105/joss.06515
+ https://joss.theoj.org/papers/10.21105/joss.06515
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06515.pdf
+
+
+
+
+
+ Open-source, Python-based, hardware and
+software for controlling behavioural neuroscience
+experiments
+ Akam
+ eLife
+ 11
+ 10.7554/eLife.67846
+ 2050-084X
+ 2022
+ Akam, T., Lustig, A., Rowland, J. M.,
+Kapanaiah, S. K., Esteve-Agraz, J., Panniello, M., Márquez, C., Kohl, M.
+M., Kätzel, D., Costa, R. M., & Walton, M. E. (2022). Open-source,
+Python-based, hardware and software for controlling behavioural
+neuroscience experiments. eLife, 11, e67846.
+https://doi.org/10.7554/eLife.67846
+
+
+ NIMH MonkeyLogic: Behavioral control and data
+acquisition in MATLAB
+ Hwang
+ Journal of Neuroscience
+Methods
+ 323
+ 10.1016/j.jneumeth.2019.05.002
+ 0165-0270
+ 2019
+ Hwang, J., Mitz, A. R., & Murray,
+E. A. (2019). NIMH MonkeyLogic: Behavioral control and data acquisition
+in MATLAB. Journal of Neuroscience Methods, 323, 13–21.
+https://doi.org/10.1016/j.jneumeth.2019.05.002
+
+
+ jsPsych: A JavaScript library for creating
+behavioral experiments in a Web browser
+ Leeuw
+ Behavior Research Methods
+ 1
+ 47
+ 10.3758/s13428-014-0458-y
+ 1554-3528
+ 2015
+ Leeuw, J. R. de. (2015). jsPsych: A
+JavaScript library for creating behavioral experiments in a Web browser.
+Behavior Research Methods, 47(1), 1–12.
+https://doi.org/10.3758/s13428-014-0458-y
+
+
+ PsychoPy2: Experiments in behavior made
+easy
+ Peirce
+ Behavior Research Methods
+ 1
+ 51
+ 10.3758/s13428-018-01193-y
+ 1554-3528
+ 2019
+ Peirce, J., Gray, J. R., Simpson, S.,
+MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv,
+J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior
+Research Methods, 51(1), 195–203.
+https://doi.org/10.3758/s13428-018-01193-y
+
+
+ The Psychophysics Toolbox
+ Brainard
+ Spatial Vision
+ 4
+ 10
+ 10.1163/156856897X00357
+ 0169-1015
+ 1997
+ Brainard, D. H. (1997). The
+Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.
+https://doi.org/10.1163/156856897X00357
+
+
+ Neuroscience Needs Behavior: Correcting a
+Reductionist Bias
+ Krakauer
+ Neuron
+ 3
+ 93
+ 10.1016/j.neuron.2016.12.041
+ 0896-6273
+ 2017
+ Krakauer, J. W., Ghazanfar, A. A.,
+Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience
+Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480–490.
+https://doi.org/10.1016/j.neuron.2016.12.041
+
+
+ Honeycomb: A template for reproducible
+psychophysiological tasks for clinic, laboratory, and home
+use
+ Provenza
+ Brazilian Journal of
+Psychiatry
+ 44
+ 10.1590/1516-4446-2020-1675
+ 1516-4446
+ 2021
+ Provenza, N. R., Gelin, L. F. F.,
+Mahaphanit, W., McGrath, M. C., Dastin-van Rijn, E. M., Fan, Y., Dhar,
+R., Frank, M. J., Restrepo, M. I., Goodman, W. K., & Borton, D. A.
+(2021). Honeycomb: A template for reproducible psychophysiological tasks
+for clinic, laboratory, and home use. Brazilian Journal of Psychiatry,
+44, 147–155.
+https://doi.org/10.1590/1516-4446-2020-1675
+
+
+ OSCAR: An open-source controller for animal
+research
+ Dastin-van Rijn
+ 10.1101/2023.02.03.527033
+ 2023
+ Dastin-van Rijn, E. M., Sachse, E.,
+Iacobucci, F., Mensinger, M., & Widge, A. S. (2023). OSCAR: An
+open-source controller for animal research. bioRxiv.
+https://doi.org/10.1101/2023.02.03.527033
+
+
+ 534. Optogenetic Deep Brain Stimulation of
+mPFC Axons in Mid-Striatum Improves Cognitive
+Flexibility
+ Sachse
+ Biological Psychiatry
+ 9
+ 93
+ 10.1016/j.biopsych.2023.02.774
+ 0006-3223
+ 2023
+ Sachse, E., Rijn, E. M. D.,
+Mensinger, M. E., Iacobucci, F. A., Reimer, A. E., & Widge, A. S.
+(2023). 534. Optogenetic Deep Brain Stimulation of mPFC Axons in
+Mid-Striatum Improves Cognitive Flexibility. Biological Psychiatry,
+93(9), S310.
+https://doi.org/10.1016/j.biopsych.2023.02.774
+
+
+ 462. Deep Brain Stimulation Does Not Affect
+Impulsivity in a Rodent 5-Choice Serial Reaction Time
+Task
+ Mensinger
+ Biological Psychiatry
+ 9
+ 93
+ 10.1016/j.biopsych.2023.02.702
+ 0006-3223
+ 2023
+ Mensinger, M., Wald, A., Sachse, E.
+M., Rijn, E. M. D., Reimer, A. E., & Widge, A. S. (2023). 462. Deep
+Brain Stimulation Does Not Affect Impulsivity in a Rodent 5-Choice
+Serial Reaction Time Task. Biological Psychiatry, 93(9), S281–S282.
+https://doi.org/10.1016/j.biopsych.2023.02.702
+
+
+ Bonsai: An event-based framework for
+processing and controlling data streams
+ Lopes
+ Frontiers in Neuroinformatics
+ 9
+ 10.3389/fninf.2015.00007
+ 1662-5196
+ 2015
+ Lopes, G., Bonacchi, N., Frazão, J.,
+Neto, J. P., Atallah, B. V., Soares, S., Moreira, L., Matias, S.,
+Itskov, P. M., Correia, P. A., Medina, R. E., Calcaterra, L., Dreosti,
+E., Paton, J. J., & Kampff, A. R. (2015). Bonsai: An event-based
+framework for processing and controlling data streams. Frontiers in
+Neuroinformatics, 9.
+https://doi.org/10.3389/fninf.2015.00007
+
+
+ Whisker: A client–server high-performance
+multimedia research control system
+ Cardinal
+ Behavior Research Methods
+ 4
+ 42
+ 10.3758/BRM.42.4.1059
+ 1554-3528
+ 2010
+ Cardinal, R. N., & Aitken, M. R.
+F. (2010). Whisker: A client–server high-performance multimedia research
+control system. Behavior Research Methods, 42(4), 1059–1071.
+https://doi.org/10.3758/BRM.42.4.1059
+
+
+
+
+
+
diff --git a/joss.06515/10.21105.joss.06515.pdf b/joss.06515/10.21105.joss.06515.pdf
new file mode 100644
index 0000000000..3cd9877b1e
Binary files /dev/null and b/joss.06515/10.21105.joss.06515.pdf differ
diff --git a/joss.06515/paper.jats/10.21105.joss.06515.jats b/joss.06515/paper.jats/10.21105.joss.06515.jats
new file mode 100644
index 0000000000..837af13cf1
--- /dev/null
+++ b/joss.06515/paper.jats/10.21105.joss.06515.jats
@@ -0,0 +1,562 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6515
+10.21105/joss.06515
+
+Pybehave: a hardware agnostic, Python-based framework for
+controlling behavioral neuroscience experiments
+
+
+
+https://orcid.org/0000-0002-1428-0723
+
+Rijn
+Evan M. Dastin-van
+
+
+*
+
+
+
+Nielsen
+Joel
+
+
+
+
+https://orcid.org/0000-0002-1669-8752
+
+Sachse
+Elizabeth M.
+
+
+
+
+
+Li
+Christina
+
+
+
+
+
+Mensinger
+Megan E.
+
+
+
+
+
+Simpson
+Stefanie G.
+
+
+
+
+
+Buccini
+Michelle C.
+
+
+
+
+
+Iacobucci
+Francesca A.
+
+
+
+
+https://orcid.org/0000-0001-7819-734X
+
+Titus
+David J.
+
+
+
+
+https://orcid.org/0000-0001-8510-341X
+
+Widge
+Alik S.
+
+
+
+
+
+Department of Psychiatry and Behavioral Sciences,
+University of Minnesota Medical Center, Minneapolis, MN 55454, United
+States of America
+
+
+
+
+* E-mail:
+
+
+13
+8
+2017
+
+9
+98
+6515
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+Animal behavior
+Operant tasks
+
+
+
+
+
+ Summary
+
This work presents our pybehave framework
+ for developing behavioral tasks for use in experimental animal
+ neuroscience. In contrast to other platforms,
+ pybehave is built around a hardware-agnostic
+ and highly object-oriented design philosophy.
+ Pybehave separates code for task design from
+ specific hardware implementations to streamline development,
+ accessibility, and data sharing. This approach, combined with
+ task-specific graphical user interfaces, expedites and simplifies the
+ creation and visualization of complex behavioral tasks. User created
+ task definition files can interact with hardware-specific source
+ files, both written in Python. Any and all local configuration can be
+ handled separately from the underlying task code.
+
+
+ Statement of need
+
Operant animal behavior training and monitoring is fundamental to
+ scientific inquiry across fields
+ (Krakauer
+ et al., 2017). In many cases, a behavior of relevance, or its
+ neural substrate, is best studied through a controlled laboratory
+ task. These tasks require tight integration of the hardware components
+ with which animals interact (IR beams, levers, lights, food
+ dispensers, etc.) and the overarching software that coordinates these
+ components to elicit desired behaviors. There are a plethora of
+ options for systems to facilitate behavioral tasks, from commercial
+ solutions (Panlab, Lafayette Instruments, Med Associates) to
+ open-source packages
+ (Akam
+ et al., 2022;
+ Dastin-van
+ Rijn et al., 2023;
+ Hwang
+ et al., 2019) enabling a large variety of behavioral paradigms.
+ Many of these systems are designed for the same behavioral paradigms
+ with only slight differences in hardware, sensory modalities, or
+ geometry. However, while the actual mechanics of these paradigms
+ remain relatively similar, different solutions will often rely on
+ vastly different software interfaces
+ (Cardinal
+ & Aitken, 2010;
+ Lopes
+ et al., 2015). Especially with commercial systems, behavioral
+ tasks are often programmed in proprietary formats. This approach
+ significantly raises the barrier to entry, leads to outdated software,
+ and prevents sharing of tasks across labs.
+
Research in human behavior does not suffer from many of the
+ aforementioned issues. Human behavioral tasks are generally run
+ through a graphical interface implemented in a standard programming
+ language like Python
+ (Peirce
+ et al., 2019), Javascript
+ (Leeuw,
+ 2015), or Matlab
+ (Brainard,
+ 1997). These tasks are readily compatible with most machines
+ and are frequently shared between labs and used across multiple
+ studies
+ (Provenza
+ et al., 2021). Protocols, data, and task code can be easily
+ included in a manuscript and accessed and modified by future
+ researchers. However, unlike experiments in animal behavior, human
+ experiments rarely require hardware beyond a monitor and standard
+ input device (keyboard/mouse). Instead, most animal platforms, even
+ from open source developers, restrict their software to certain types
+ of hardware
+ (Akam
+ et al., 2022;
+ Hwang
+ et al., 2019). For example, pycontrol is
+ only compatible with their companion microcontroller and input devices
+ and MonkeyLogic can only communicate with DAQs
+ manufactured by National Instruments. To address these limitations, we
+ developed pybehave as a framework for
+ abstracting standard hardware components to enable an
+ implementation-independent format for developing and running
+ behavioral tasks.
+
+
+ Benefits
+
Pybehave is a complete framework for
+ building and running behavioral neuroscience experiments. It offers
+ the following benefits: (1) hardware independence; (2) a flexible,
+ programmatic system for developing tasks; (3) a highly extensible
+ graphical interface for configuring and executing tasks; (4) options
+ for task-specific visualization; (5) simultaneous control of multiple
+ experiments; (6) options for locally configuring task variables and
+ protocols; and (5) an extensive developer API, which allows users to
+ extend the platform with tie-ins for custom hardware, event logging,
+ or software connections.
+
+
+ Software Design Principles
+
To ensure flexibility while maintaining low-latency,
+ pybehave is optimized through a combination of
+ multiprocessing and multithreading along with separation of its
+ features (events, hardware sources, tasks, etc.) into a modular
+ software architecture. Additionally, pybehave
+ uses two different GUI frameworks (QT and pygame) for user interfacing
+ and task visualization/stimulus display respectively
+ ([fig:framework]).
+
+
Framework diagram showing the information exchange
+ between the pybehave threads and processes.
+ The workstation process handles the interface and task GUIs. When
+ Tasks are added from the workstation, they are initialized in the
+ task process. Each Source with a connection to an external hardware
+ or software system communicates with their
+ pybehave equivalent in the Task process. All
+ events sent between processes are mediated via inter-process
+ communication over
+ Pipes.
+
+
+
+
+ Tutorials and ongoing usage
+
A variety of tutorials are included in the repository aimed at all
+ levels of usage, from technicians running tasks or analyzing
+ behavioral data to developers aiming to build new tasks or integrate
+ additional hardware. Pybehave has already been
+ applied to implement a variety of behavioral tasks which have been
+ included in a separate repository for users to pull from directly or
+ modify. These tasks are being run in a number of ongoing studies
+ spanning standard operant conditioning
+ (Dastin-van
+ Rijn et al., 2023;
+ Mensinger
+ et al., 2023), evoked responses
+ (Sachse
+ et al., 2023), and video assays.
+
+
+ Acknowledgements
+
Testing of pybehave was carried out with
+ substantial support from many members of the Translational
+ Neuroengineering lab. Evan Dastin-van Rijn was supported by a National
+ Science Foundation Graduate Research Fellowship under award number
+ 2237827. Aspects of the research were supported by grants R01MH123634,
+ R01NS120851, R01NS113804 and R01MH119384, as well as by the Minnesota
+ Medical Discovery Team on Addiction and the MnDRIVE Brain Conditions
+ Initiative. The opinions presented herein are not those of any funding
+ body.
+
+
+
+
+
+
+
+
+ AkamThomas
+ LustigAndy
+ RowlandJames M
+ KapanaiahSampath KT
+ Esteve-AgrazJoan
+ PannielloMariangela
+ MárquezCristina
+ KohlMichael M
+ KätzelDennis
+ CostaRui M
+ WaltonMark E
+
+ Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments
+
+
+ KemereCaleb
+ WassumKate M
+ KemereCaleb
+ SiegleJosh
+
+ 202201
+ 20240117
+ 11
+ 2050-084X
+ https://doi.org/10.7554/eLife.67846
+ 10.7554/eLife.67846
+ e67846
+
+
+
+
+
+
+ HwangJaewon
+ MitzAndrew R.
+ MurrayElisabeth A.
+
+ NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB
+
+ 201907
+ 20240117
+ 323
+ 0165-0270
+ https://www.sciencedirect.com/science/article/pii/S0165027019301360
+ 10.1016/j.jneumeth.2019.05.002
+ 13
+ 21
+
+
+
+
+
+ LeeuwJoshua R. de
+
+ jsPsych: A JavaScript library for creating behavioral experiments in a Web browser
+
+ 201503
+ 20240117
+ 47
+ 1
+ 1554-3528
+ https://doi.org/10.3758/s13428-014-0458-y
+ 10.3758/s13428-014-0458-y
+ 1
+ 12
+
+
+
+
+
+ PeirceJonathan
+ GrayJeremy R.
+ SimpsonSol
+ MacAskillMichael
+ HöchenbergerRichard
+ SogoHiroyuki
+ KastmanErik
+ LindeløvJonas Kristoffer
+
+ PsychoPy2: Experiments in behavior made easy
+
+ 201902
+ 20240117
+ 51
+ 1
+ 1554-3528
+ https://doi.org/10.3758/s13428-018-01193-y
+ 10.3758/s13428-018-01193-y
+ 195
+ 203
+
+
+
+
+
+ BrainardDavid H.
+
+ The Psychophysics Toolbox
+
+ 1997
+ 20240117
+ 10
+ 4
+ 0169-1015
+ https://brill.com/view/journals/sv/10/4/article-p433_15.xml
+ 10.1163/156856897X00357
+ 433
+ 436
+
+
+
+
+
+ KrakauerJohn W.
+ GhazanfarAsif A.
+ Gomez-MarinAlex
+ MacIverMalcolm A.
+ PoeppelDavid
+
+ Neuroscience Needs Behavior: Correcting a Reductionist Bias
+
+ 201702
+ 20240117
+ 93
+ 3
+ 0896-6273
+ https://www.sciencedirect.com/science/article/pii/S0896627316310406
+ 10.1016/j.neuron.2016.12.041
+ 480
+ 490
+
+
+
+
+
+ ProvenzaNicole R.
+ GelinLuiz Fernando Fracassi
+ MahaphanitWasita
+ McGrathMary C.
+ Dastin-van RijnEvan M.
+ FanYunshu
+ DharRashi
+ FrankMichael J.
+ RestrepoMaria I.
+ GoodmanWayne K.
+ BortonDavid A.
+
+ Honeycomb: A template for reproducible psychophysiological tasks for clinic, laboratory, and home use
+
+ 202107
+ 20240117
+ 44
+ 1516-4446
+ https://www.scielo.br/j/rbp/a/XFbqkbZKfG65BwTxmnrHgZh/
+ 10.1590/1516-4446-2020-1675
+ 147
+ 155
+
+
+
+
+
+ Dastin-van RijnEvan M.
+ SachseElizabeth
+ IacobucciFrancesca
+ MensingerMegan
+ WidgeAlik S.
+
+ OSCAR: An open-source controller for animal research
+ bioRxiv
+ 202302
+ 20240118
+ https://www.biorxiv.org/content/10.1101/2023.02.03.527033v1
+ 10.1101/2023.02.03.527033
+
+
+
+
+
+ SachseElizabeth
+ RijnEvan M. Dastin-van
+ MensingerMegan E.
+ IacobucciFrancesca A.
+ ReimerAdriano E.
+ WidgeAlik S.
+
+ 534. Optogenetic Deep Brain Stimulation of mPFC Axons in Mid-Striatum Improves Cognitive Flexibility
+
+ 202305
+ 20240118
+ 93
+ 9
+ 0006-3223
+ https://www.biologicalpsychiatryjournal.com/article/S0006-3223(23)00848-X/fulltext
+ 10.1016/j.biopsych.2023.02.774
+ S310
+
+
+
+
+
+
+ MensingerMegan
+ WaldAaron
+ SachseElizabeth M.
+ RijnEvan M. Dastin-van
+ ReimerAdriano E.
+ WidgeAlik S.
+
+ 462. Deep Brain Stimulation Does Not Affect Impulsivity in a Rodent 5-Choice Serial Reaction Time Task
+
+ 202305
+ 20240118
+ 93
+ 9
+ 0006-3223
+ https://www.biologicalpsychiatryjournal.com/article/S0006-3223(23)00776-X/fulltext
+ 10.1016/j.biopsych.2023.02.702
+ S281
+ S282
+
+
+
+
+
+ LopesGonçalo
+ BonacchiNiccolò
+ FrazãoJoão
+ NetoJoana P.
+ AtallahBassam V.
+ SoaresSofia
+ MoreiraLuís
+ MatiasSara
+ ItskovPavel M.
+ CorreiaPatrícia A.
+ MedinaRoberto E.
+ CalcaterraLorenza
+ DreostiElena
+ PatonJoseph J.
+ KampffAdam R.
+
+ Bonsai: An event-based framework for processing and controlling data streams
+
+ 2015
+ 20240119
+ 9
+ 1662-5196
+ https://www.frontiersin.org/articles/10.3389/fninf.2015.00007
+ 10.3389/fninf.2015.00007
+
+
+
+
+
+ CardinalRudolf N.
+ AitkenMichael R. F.
+
+ Whisker: A client–server high-performance multimedia research control system
+
+ 2010
+ 42
+ 4
+ 1554-3528
+ 10.3758/BRM.42.4.1059
+ 1059
+ 1071
+
+
+
+
+
diff --git a/joss.06515/paper.jats/framework.png b/joss.06515/paper.jats/framework.png
new file mode 100644
index 0000000000..945b41e9fc
Binary files /dev/null and b/joss.06515/paper.jats/framework.png differ