Skip to content

Commit

Permalink
Merge pull request #5191 from openjournals/joss.06156
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Mar 28, 2024
2 parents 4f1d204 + 92fe48d commit 98c6ddf
Show file tree
Hide file tree
Showing 6 changed files with 1,325 additions and 0 deletions.
390 changes: 390 additions & 0 deletions joss.06156/10.21105.joss.06156.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,390 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240328T112659-923a9a4ed5fa96b8fb2d478d3cbf089ac5b4f3c3</doi_batch_id>
<timestamp>20240328112659</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>95</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>simChef: High-quality data science simulations in
R</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>James</given_name>
<surname>Duncan</surname>
<ORCID>https://orcid.org/0000-0003-3297-681X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Tiffany</given_name>
<surname>Tang</surname>
<ORCID>https://orcid.org/0000-0002-8079-6867</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Corrine F.</given_name>
<surname>Elliott</surname>
<ORCID>https://orcid.org/0000-0001-7935-9945</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Philippe</given_name>
<surname>Boileau</surname>
<ORCID>https://orcid.org/0000-0002-4850-2507</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bin</given_name>
<surname>Yu</surname>
<ORCID>https://orcid.org/0000-0002-8888-4060</ORCID>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>28</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6156</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06156</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10845638</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6156</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06156</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06156</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06156.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="yu-veridical-2020">
<article_title>Veridical data science</article_title>
<author>Yu</author>
<journal_title>Proceedings of the National Academy of
Sciences</journal_title>
<issue>8</issue>
<volume>117</volume>
<doi>10.1073/pnas.1901326117</doi>
<issn>0027-8424</issn>
<cYear>2020</cYear>
<unstructured_citation>Yu, B., &amp; Kumbier, K. (2020).
Veridical data science. Proceedings of the National Academy of Sciences,
117(8), 3920–3929.
https://doi.org/10.1073/pnas.1901326117</unstructured_citation>
</citation>
<citation key="lang-batchtools-2017">
<article_title>batchtools: Tools for R to work on batch
systems</article_title>
<author>Lang</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>10</issue>
<volume>2</volume>
<doi>10.21105/joss.00135</doi>
<issn>2475-9066</issn>
<cYear>2017</cYear>
<unstructured_citation>Lang, M., Bischl, B., &amp; Surmann,
D. (2017). batchtools: Tools for R to work on batch systems. Journal of
Open Source Software, 2(10), 135.
https://doi.org/10.21105/joss.00135</unstructured_citation>
</citation>
<citation key="wickham-welcome-2019">
<article_title>Welcome to the Tidyverse</article_title>
<author>Wickham</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>43</issue>
<volume>4</volume>
<doi>10.21105/joss.01686</doi>
<issn>2475-9066</issn>
<cYear>2019</cYear>
<unstructured_citation>Wickham, H., Averick, M., Bryan, J.,
Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A.,
Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S.
M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., …
Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source
Software, 4(43), 1686.
https://doi.org/10.21105/joss.01686</unstructured_citation>
</citation>
<citation key="bengtsson-unifying-2021">
<article_title>A Unifying Framework for Parallel and
Distributed Processing in R using Futures</article_title>
<author>Bengtsson</author>
<journal_title>The R Journal</journal_title>
<issue>2</issue>
<volume>13</volume>
<doi>10.32614/RJ-2021-048</doi>
<issn>2073-4859</issn>
<cYear>2021</cYear>
<unstructured_citation>Bengtsson, H. (2021). A Unifying
Framework for Parallel and Distributed Processing in R using Futures.
The R Journal, 13(2), 208.
https://doi.org/10.32614/RJ-2021-048</unstructured_citation>
</citation>
<citation key="chang-r6-2022">
<volume_title>R6: Encapsulated Classes with Reference
Semantics</volume_title>
<author>Chang</author>
<cYear>2022</cYear>
<unstructured_citation>Chang, W. (2022). R6: Encapsulated
Classes with Reference Semantics.
https://r6.r-lib.org</unstructured_citation>
</citation>
<citation key="chalmers-simdesign-2020">
<article_title>Writing Effective and Reliable Monte Carlo
Simulations with the SimDesign Package</article_title>
<author>Chalmers</author>
<journal_title>The Quantitative Methods for
Psychology</journal_title>
<issue>4</issue>
<volume>16</volume>
<doi>10.20982/tqmp.16.4.p248</doi>
<cYear>2020</cYear>
<unstructured_citation>Chalmers, M. C., R. Philip AND
Adkins. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology,
16(4), 248–280.
https://doi.org/10.20982/tqmp.16.4.p248</unstructured_citation>
</citation>
<citation key="kenny-simengine-2024">
<article_title>SimEngine: A Modular Framework for
Statistical Simulations in R</article_title>
<author>Kenny</author>
<doi>10.48550/arXiv.2403.05698</doi>
<cYear>2024</cYear>
<unstructured_citation>Kenny, A., &amp; Wolock, C. J.
(2024). SimEngine: A Modular Framework for Statistical Simulations in R.
https://doi.org/10.48550/arXiv.2403.05698</unstructured_citation>
</citation>
<citation key="brown-simpr-2023">
<volume_title>simpr: Flexible ’Tidyverse’-Friendly
Simulations</volume_title>
<author>Brown</author>
<cYear>2023</cYear>
<unstructured_citation>Brown, E. (2023). simpr: Flexible
’Tidyverse’-Friendly Simulations.
https://statisfactions.github.io/simpr/</unstructured_citation>
</citation>
<citation key="gasparini-rsimsum-2018">
<article_title>rsimsum: Summarise results from Monte Carlo
simulation studies</article_title>
<author>Gasparini</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>26</issue>
<volume>3</volume>
<doi>10.21105/joss.00739</doi>
<cYear>2018</cYear>
<unstructured_citation>Gasparini, A. (2018). rsimsum:
Summarise results from Monte Carlo simulation studies. Journal of Open
Source Software, 3(26), 739.
https://doi.org/10.21105/joss.00739</unstructured_citation>
</citation>
<citation key="blair-declaredesign-2019">
<article_title>Declaring and Diagnosing Research
Designs</article_title>
<author>Blair</author>
<journal_title>American Political Science
Review</journal_title>
<issue>3</issue>
<volume>113</volume>
<doi>10.1017/S0003055419000194</doi>
<cYear>2019</cYear>
<unstructured_citation>Blair, G., Cooper, J., Coppock, A.,
&amp; Humphreys, M. (2019). Declaring and Diagnosing Research Designs.
American Political Science Review, 113(3), 838–859.
https://doi.org/10.1017/S0003055419000194</unstructured_citation>
</citation>
<citation key="joshi-simhelpers-2024">
<volume_title>simhelpers: Helper Functions for Simulation
Studies</volume_title>
<author>Joshi</author>
<cYear>2024</cYear>
<unstructured_citation>Joshi, M., &amp; Pustejovsky, J.
(2024). simhelpers: Helper Functions for Simulation Studies.
https://meghapsimatrix.github.io/simhelpers/index.html</unstructured_citation>
</citation>
<citation key="scheer-simTool-2020">
<volume_title>simTool: Conduct Simulation Studies with a
Minimal Amount of Source Code</volume_title>
<author>Scheer</author>
<cYear>2020</cYear>
<unstructured_citation>Scheer, M. (2020). simTool: Conduct
Simulation Studies with a Minimal Amount of Source Code.
https://CRAN.R-project.org/packages=simTool</unstructured_citation>
</citation>
<citation key="epskamp-parSim-2024">
<volume_title>parSim: Parallel Simulation
Studies</volume_title>
<author>Epskamp</author>
<cYear>2023</cYear>
<unstructured_citation>Epskamp, S. (2023). parSim: Parallel
Simulation Studies.
https://CRAN.R-project.org/package=parSim</unstructured_citation>
</citation>
<citation key="shilane-simitation-2023">
<volume_title>simitation: Simplified
Simulations</volume_title>
<author>Shilane</author>
<cYear>2023</cYear>
<unstructured_citation>Shilane, D., Budugutta, S., &amp;
Bansal, M. (2023). simitation: Simplified Simulations.
https://CRAN.R-project.org/package=simitation</unstructured_citation>
</citation>
<citation key="linner-tidyMC-2022">
<volume_title>tidyMC: Monte Carlo Simulations Made Easy and
Tidy</volume_title>
<author>Linner</author>
<cYear>2022</cYear>
<unstructured_citation>Linner, S., Moreira Lara, I., &amp;
Lehmann, K. (2022). tidyMC: Monte Carlo Simulations Made Easy and Tidy.
https://github.com/stefanlinner/tidyMC</unstructured_citation>
</citation>
<citation key="ucar-simmer-2019">
<article_title>simmer: Discrete-event simulation for
R</article_title>
<author>Ucar</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>2</issue>
<volume>90</volume>
<doi>10.18637/jss.v090.i02</doi>
<cYear>2019</cYear>
<unstructured_citation>Ucar, I., Smeets, B., &amp; Azcorra,
A. (2019). simmer: Discrete-event simulation for R. Journal of
Statistical Software, 90(2), 1–30.
https://doi.org/10.18637/jss.v090.i02</unstructured_citation>
</citation>
<citation key="fatih-MonteCarloSEM-2021">
<article_title>MonteCarloSEM: An R Package to Simulate Data
for SEM</article_title>
<author>Orcan</author>
<journal_title>International Journal of Assessment Tools in
Education</journal_title>
<issue>3</issue>
<volume>8</volume>
<doi>10.21449/ijate.804203</doi>
<cYear>2021</cYear>
<unstructured_citation>Orcan, F. (2021). MonteCarloSEM: An R
Package to Simulate Data for SEM. International Journal of Assessment
Tools in Education, 8(3), 704–713.
https://doi.org/10.21449/ijate.804203</unstructured_citation>
</citation>
<citation key="parsons-simMetric-2022">
<article_title>simMetric: Metrics (with Uncertainty) for
Simulation Studies that Evaluate Statistical Methods</article_title>
<author>Parsons</author>
<doi>10.25912/RDF_1665114451679</doi>
<cYear>2022</cYear>
<unstructured_citation>Parsons, R. (2022). simMetric:
Metrics (with Uncertainty) for Simulation Studies that Evaluate
Statistical Methods. Queensland University of Technology.
https://doi.org/10.25912/RDF_1665114451679</unstructured_citation>
</citation>
<citation key="bien-simulator-2016">
<article_title>The Simulator: An Engine to Streamline
Simulations</article_title>
<author>Bien</author>
<doi>10.48550/arXiv.1607.00021</doi>
<cYear>2016</cYear>
<unstructured_citation>Bien, J. (2016). The Simulator: An
Engine to Streamline Simulations.
https://doi.org/10.48550/arXiv.1607.00021</unstructured_citation>
</citation>
<citation key="couch-infer-2021">
<article_title>infer: An R package for tidyverse-friendly
statistical inference</article_title>
<author>Couch</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>65</issue>
<volume>6</volume>
<doi>10.21105/joss.03661</doi>
<cYear>2021</cYear>
<unstructured_citation>Couch, S. P., Bray, A. P., Ismay, C.,
Chasnovski, E., Baumer, B. S., &amp; Çetinkaya-Rundel, M. (2021). infer:
An R package for tidyverse-friendly statistical inference. Journal of
Open Source Software, 6(65), 3661.
https://doi.org/10.21105/joss.03661</unstructured_citation>
</citation>
<citation key="hofert-simsalapar-2016">
<article_title>Parallel and Other Simulations in R Made
Easy: An End-to-End Study</article_title>
<author>Hofert</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>4</issue>
<volume>69</volume>
<doi>10.18637/jss.v069.i04</doi>
<cYear>2016</cYear>
<unstructured_citation>Hofert, M., &amp; Mächler, M. (2016).
Parallel and Other Simulations in R Made Easy: An End-to-End Study.
Journal of Statistical Software, 69(4), 1–44.
https://doi.org/10.18637/jss.v069.i04</unstructured_citation>
</citation>
<citation key="elliott-designing-2024">
<article_title>Designing a data science simulation with
MERITS: A primer</article_title>
<author>Elliott</author>
<doi>10.48550/arXiv.2403.08971</doi>
<cYear>2024</cYear>
<unstructured_citation>Elliott, C. F., Duncan, J., Tang, T.
M., Behr, M., Kumbier, K., &amp; Yu, B. (2024). Designing a data science
simulation with MERITS: A primer.
https://doi.org/10.48550/arXiv.2403.08971</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 98c6ddf

Please sign in to comment.