diff --git a/joss.05584/10.21105.joss.05584.crossref.xml b/joss.05584/10.21105.joss.05584.crossref.xml new file mode 100644 index 0000000000..86cbc8292e --- /dev/null +++ b/joss.05584/10.21105.joss.05584.crossref.xml @@ -0,0 +1,414 @@ + + + + 20240314T170357-8788a25082fdd2da3072cafdb228438ba7c87459 + 20240314170357 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 03 + 2024 + + + 9 + + 95 + + + + WAVI.jl: Ice Sheet Modelling in Julia + + + + Alexander T. + Bradley + https://orcid.org/0000-0001-8381-5317 + + + Robert J. + Arthern + https://orcid.org/0000-0002-3762-8219 + + + David T. + Bett + https://orcid.org/0000-0003-3118-9902 + + + C. Rosie + Williams + https://orcid.org/0000-0002-8131-4946 + + + James + Byrne + https://orcid.org/0000-0003-3731-2377 + + + + 03 + 14 + 2024 + + + 5584 + + + 10.21105/joss.05584 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10723504 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5584 + + + + 10.21105/joss.05584 + https://joss.theoj.org/papers/10.21105/joss.05584 + + + https://joss.theoj.org/papers/10.21105/joss.05584.pdf + + + + + + Projected land ice contributions to +twenty-first-century sea level rise + Edwards + Nature + 7857 + 593 + 10.1038/s41586-021-03302-y + 2021 + Edwards, T. L., Nowicki, S., +Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. C., +Slater, D. A., Turner, F. E., Smith, C. J., & others. (2021). +Projected land ice contributions to twenty-first-century sea level rise. +Nature, 593(7857), 74–82. +https://doi.org/10.1038/s41586-021-03302-y + + + Retreat of Pine Island Glacier controlled by +marine ice-sheet instability + Favier + Nature Climate Change + 2 + 4 + 10.1038/nclimate2094 + 2014 + Favier, L., Durand, G., Cornford, S. +L., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, +T., Payne, A., & Le Brocq, A. M. (2014). Retreat of Pine Island +Glacier controlled by marine ice-sheet instability. Nature Climate +Change, 4(2), 117–121. +https://doi.org/10.1038/nclimate2094 + + + The Paris Climate Agreement and future +sea-level rise from Antarctica + DeConto + Nature + 7857 + 593 + 10.1038/s41586-021-03427-0 + 2021 + DeConto, R. M., Pollard, D., Alley, +R. B., Velicogna, I., Gasson, E., Gomez, N., Sadai, S., Condron, A., +Gilford, D. M., Ashe, E. L., & others. (2021). The Paris Climate +Agreement and future sea-level rise from Antarctica. Nature, 593(7857), +83–89. +https://doi.org/10.1038/s41586-021-03427-0 + + + Drivers of Pine Island Glacier speed-up +between 1996 and 2016 + De Rydt + The Cryosphere + 1 + 15 + 10.5194/tc-15-113-2021 + 2021 + De Rydt, J., Reese, R., Paolo, F. S., +& Gudmundsson, G. H. (2021). Drivers of Pine Island Glacier speed-up +between 1996 and 2016. The Cryosphere, 15(1), 113–132. +https://doi.org/10.5194/tc-15-113-2021 + + + icepack: glacier flow modeling with the +finite element method in Python + Shapero + 10.5281/zenodo.4318147 + 2020 + Shapero, D., Badgeley, J., Ham, D. +A., Lilien, D., & Hoffman, A. (2020). icepack: glacier flow modeling +with the finite element method in Python (Version v1.0.0). Zenodo. +https://doi.org/10.5281/zenodo.4318147 + + + Ice-shelf retreat drives recent Pine Island +Glacier speedup + Joughin + Science Advances + 24 + 7 + 10.1126/sciadv.abg3080 + 2021 + Joughin, I., Shapero, D., Smith, B., +Dutrieux, P., & Barham, M. (2021). Ice-shelf retreat drives recent +Pine Island Glacier speedup. Science Advances, 7(24), eabg3080. +https://doi.org/10.1126/sciadv.abg3080 + + + Ice sheet grounding line dynamics: Steady +states, stability, and hysteresis + Schoof + Journal of Geophysical Research: Earth +Surface + F3 + 112 + 10.1029/2006JF000664 + 2007 + Schoof, C. (2007). Ice sheet +grounding line dynamics: Steady states, stability, and hysteresis. +Journal of Geophysical Research: Earth Surface, 112(F3). +https://doi.org/10.1029/2006JF000664 + + + Flow speed within the Antarctic ice sheet and +its controls inferred from satellite observations + Arthern + Journal of Geophysical Research: Earth +Surface + 7 + 120 + 10.1002/2014JF003239 + 2015 + Arthern, R. J., Hindmarsh, R. C., +& Williams, C. R. (2015). Flow speed within the Antarctic ice sheet +and its controls inferred from satellite observations. Journal of +Geophysical Research: Earth Surface, 120(7), 1171–1188. +https://doi.org/10.1002/2014JF003239 + + + The sensitivity of West Antarctica to the +submarine melting feedback + Arthern + Geophysical Research Letters + 5 + 44 + 10.1002/2017GL072514 + 2017 + Arthern, R. J., & Williams, C. R. +(2017). The sensitivity of West Antarctica to the submarine melting +feedback. Geophysical Research Letters, 44(5), 2352–2359. +https://doi.org/10.1002/2017GL072514 + + + A variationally derived, depth-integrated +approximation to a higher-order glaciological flow model + Goldberg + Journal of Glaciology + 201 + 57 + 10.3189/002214311795306763 + 2011 + Goldberg, D. N. (2011). A +variationally derived, depth-integrated approximation to a higher-order +glaciological flow model. Journal of Glaciology, 57(201), 157–170. +https://doi.org/10.3189/002214311795306763 + + + Developments in simulating and parameterizing +interactions between the Southern Ocean and the Antarctic ice +sheet + Asay-Davis + Current Climate Change +Reports + 4 + 3 + 10.1007/s40641-017-0071-0 + 2017 + Asay-Davis, X. S., Jourdain, N. C., +& Nakayama, Y. (2017). Developments in simulating and parameterizing +interactions between the Southern Ocean and the Antarctic ice sheet. +Current Climate Change Reports, 3(4), 316–329. +https://doi.org/10.1007/s40641-017-0071-0 + + + Hydrostatic, quasi-hydrostatic, and +nonhydrostatic ocean modeling + Marshall + Journal of Geophysical Research: +Oceans + C3 + 102 + 10.1029/96JC02776 + 1997 + Marshall, J., Hill, C., Perelman, L., +& Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic, and +nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, +102(C3), 5733–5752. +https://doi.org/10.1029/96JC02776 + + + Results of the third Marine Ice Sheet Model +Intercomparison Project (MISMIP+) + Cornford + The Cryosphere + 7 + 14 + 10.5194/tc-14-2283-2020 + 2020 + Cornford, S. L., Seroussi, H., +Asay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C., +Christmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., & +others. (2020). Results of the third Marine Ice Sheet Model +Intercomparison Project (MISMIP+). The Cryosphere, 14(7), 2283–2301. +https://doi.org/10.5194/tc-14-2283-2020 + + + Continental scale, high order, high spatial +resolution, ice sheet modeling using the Ice Sheet System Model +(ISSM) + Larour + Journal of Geophysical Research: Earth +Surface + F1 + 117 + 10.1029/2011JF002140 + 2012 + Larour, E., Seroussi, H., Morlighem, +M., & Rignot, E. (2012). Continental scale, high order, high spatial +resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). +Journal of Geophysical Research: Earth Surface, 117(F1). +https://doi.org/10.1029/2011JF002140 + + + Shallow shelf approximation as a “sliding +law” in a thermomechanically coupled ice sheet model + Bueler + Journal of Geophysical Research: Earth +Surface + F3 + 114 + 10.1029/2008JF001179 + 2009 + Bueler, E., & Brown, J. (2009). +Shallow shelf approximation as a “sliding law” in a thermomechanically +coupled ice sheet model. Journal of Geophysical Research: Earth Surface, +114(F3). https://doi.org/10.1029/2008JF001179 + + + Adaptive mesh, finite volume modeling of +marine ice sheets + Cornford + Journal of Computational +Physics + 1 + 232 + 10.1016/j.jcp.2012.08.037 + 2013 + Cornford, S. L., Martin, D. F., +Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, +A. J., Ng, E. G., & Lipscomb, W. H. (2013). Adaptive mesh, finite +volume modeling of marine ice sheets. Journal of Computational Physics, +232(1), 529–549. +https://doi.org/10.1016/j.jcp.2012.08.037 + + + Capabilities and performance of Elmer/Ice, a +new-generation ice sheet model + Gagliardini + Geoscientific Model +Development + 4 + 6 + 10.5194/gmd-6-1299-2013 + 2013 + Gagliardini, O., Zwinger, T., +Gillet-Chaulet, F., Durand, G., Favier, L., Fleurian, B. de, Greve, R., +Malinen, M., Martı́n, C., Råback, P., & others. (2013). Capabilities +and performance of Elmer/Ice, a new-generation ice sheet model. +Geoscientific Model Development, 6(4), 1299–1318. +https://doi.org/10.5194/gmd-6-1299-2013 + + + Úa: A large-scale ice-flow +model + Gudmundsson + 10.5281/zenodo.3706624 + 2019 + Gudmundsson, H. G. (2019). Úa: A +large-scale ice-flow model. https://github.com/GHilmarG/UaSource. +https://doi.org/10.5281/zenodo.3706624 + + + The land ice contribution to sea level during +the satellite era + Bamber + Environmental Research +Letters + 6 + 13 + 10.1088/1748-9326/aac2f0 + 2018 + Bamber, J. L., Westaway, R. M., +Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea +level during the satellite era. Environmental Research Letters, 13(6), +063008. https://doi.org/10.1088/1748-9326/aac2f0 + + + Antarctic ice-sheet loss driven by basal +melting of ice shelves + Pritchard + Nature + 7395 + 484 + 10.1038/nature10968 + 2012 + Pritchard, H. D., Ligtenberg, S. R. +M., Fricker, H. A., Vaughan, D. G., Broeke, M. R. van den, & Padman, +L. (2012). Antarctic ice-sheet loss driven by basal melting of ice +shelves. Nature, 484(7395), 502–505. +https://doi.org/10.1038/nature10968 + + + + + + diff --git a/joss.05584/10.21105.joss.05584.jats b/joss.05584/10.21105.joss.05584.jats new file mode 100644 index 0000000000..9f62135a16 --- /dev/null +++ b/joss.05584/10.21105.joss.05584.jats @@ -0,0 +1,643 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5584 +10.21105/joss.05584 + +WAVI.jl: Ice Sheet Modelling in Julia + + + +https://orcid.org/0000-0001-8381-5317 + +Bradley +Alexander T. + + + + +https://orcid.org/0000-0002-3762-8219 + +Arthern +Robert J. + + + + +https://orcid.org/0000-0003-3118-9902 + +Bett +David T. + + + + +https://orcid.org/0000-0002-8131-4946 + +Williams +C. Rosie + + + + +https://orcid.org/0000-0003-3731-2377 + +Byrne +James + + + + + +British Antarctic Survey, Cambridge, UK + + + +9 +95 +5584 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Julia +glaciology +ice sheet modelling +ice shelves +Antarctica +Greenland +climate + + + + + + Summary +

Ice sheet models are used to improve our understanding of the past, + present, and future evolution of ice sheets. To do so, they solve the + equations describing the flow of ice when forced by other climate + elements, particularly the atmosphere and oceans. We present + WAVI.jl, an ice sheet model written in Julia. + WAVI.jl is designed to make ice sheet modelling + more accessible to beginners and low-level users, whilst including + sufficient detail to be used for addressing cutting-edge research + questions.

+
+ + Statement of Need +

Ice sheet models allow us to simulate the behaviour and evolution + of ice sheets, which are large masses of glacial land and marine ice. + There are two main uses of ice sheet models: firstly, prognostic use, + which involves making predictions about the future of ice sheets. + Prognostic predictions often relate to sea level rise contributions: + the world’s two largest ice sheets, located in Antarctica and + Greenland, hold enough ice to raise sea levels by approximately 58 and + 7 meters, respectively + (Bamber + et al., 2018); prognostic modelling of these ice sheets enables + us to make predictions on (for example) how much of this ice will be + lost + (Edwards + et al., 2021), to investigate the possibility of runaway ice + loss + (DeConto + et al., 2021), and analyze whether or not such instabilities + have already been initiated + (Favier + et al., 2014). Secondly, ice sheet models are also used + diagnostically, which involves using a model to investigate processes + controlling the behaviour of an ice sheet, such as how loss of ice + shelves – the floating extensions of ice sheets – influences ice flow + speed + (Joughin + et al., 2021), how different bed conditions affect ice sliding + (De + Rydt et al., 2021), and probing the conditions under which + so-called ‘tipping-points’ might be passed + (Schoof, + 2007).

+

On the long (100s of kilometers) length scales that are relevant to + ice sheets, ice behaves approximately as a highly viscous fluid with a + shear-thinning rheology (meaning that as the ice deforms, it becomes + thinner and flows more easily). WAVI.jl + (Wavelet-based Adaptive-grid Vertically-integrated Ice-sheet-model) is + a Julia package for the numerical solution of an accurate + approximation to the Stokes equations, which describe conservation of + mass and momentum in such a fluid. This approximation, which is + appropriate for fluid flows with a high aspect ratio (as is the case + for the vast majority of ice sheets), treats longitudinal and lateral + stresses as depth-independent, but accounts for vertical velocity + gradients in the nonlinear viscosity and in the treatment of basal + stress + (Goldberg, + 2011).

+

Physically, ice sheets do not stand alone, but are forced by other + parts of the climate system. For example, the rapid changes that have + occurred in the West Antarctic Ice Sheet in the previous decades are + understood to have been driven by an increase in oceanic heat content + reaching the floating ice shelves which fringe this region + (Pritchard + et al., 2012). For basal melting in particular, + WAVI.jl includes a broad range of community + melt rate parametrizations + (Asay-Davis + et al., 2017), as well as a developmental coupling with the + ocean general circulation model MITgcm + (Marshall + et al., 1997). More generally, WAVI.jl + leverages Julia’s multiple dispatch paradigm to create a simple, + user-friendly interface for embedding models of other physical + processes, such as accumulation, ice damage, ice shelf calving, and + solid earth effects, into WAVI.jl.

+

WAVI.jl is designed to be usable by anyone + interested in ice sheet modelling, from students with no programming + experience to expert researchers in the field, and everyone in + between. To facilitate detailed research, including simulations at + high spatial and temporal resolution, WAVI.jl + employs a number of tools to improve computational speed, including + multithreading capabilities, an adaptive numerical grid and a + wavelet-based preconditioner + (Arthern + & Williams, 2017). To facilitate accessibility, + WAVI.jl includes a simple, user friendly API, + which is aided by Julia’s convenient syntax. In addition, the GitHub + repository in which the code is stored includes a number of + well-documented examples, which demonstrate the software’s + capabilities in a wide variety of situations.

+ +

Schematic diagram of a marine ice sheet-shelf system, + whose flow may be simulated using WAVI.jl. Labels and text indicate + features of the + software.

+ +
+

WAVI.jl is the successor to a similar code, + written in the proprietary programming language MATLAB, which was + never publicly released. This previous code has been used extensively + as research software [e.g. + (Arthern + & Williams, 2017), + (Arthern + et al., 2015)], as well as having participated in the most + recent ice sheet model intercomparison exercise + (Cornford + et al., 2020), which acts as a benchmark for ice-flow models. + The new version, WAVI.jl, has also been + verified independently against these benchmark experiments.

+

There exists a wide variety of ice sheet models with varying levels + of complexity. Examples include (but are certainly not limited to) the + Ice Sheet System Model + (Larour + et al., 2012), the Parallel Ice Sheet Model + (Bueler + & Brown, 2009), BISICLES + (Cornford + et al., 2013), Elmer/Ice + (Gagliardini + et al., 2013), and Úa + (Gudmundsson, + 2019). Every ice sheet model makes approximations in order to + facilitate the numerical solution of the appropriate governing + equations; since these equations have no analytic solutions, the + intercomparison between ice sheet models is of + paramount importance when assessing the trustworthiness of models; + WAVI.jl contributes to this community of ice + sheet models (a brief overview of the technical differences between + such models can be found in + (Cornford + et al., 2020)). WAVI.jl is also, to our + knowledge, the first ice sheet model written entirely in Julia and, + alongside other accessible ice sheet models such as IcePack + (Shapero + et al., 2020), helps to make ice sheet modelling more + accessible.

+
+ + Acknowledgements +

A.T.B and D.T.B are supported by NERC Grant NE/S010475/1. We would + like to thank Xy Wang and Daniel Goldberg for useful conversations, + which helped to improve both the code and documentation. Thanks also + to Bryony Freer, who designed the WAVI.jl + logo.

+
+ + + + + + + EdwardsTamsin L + NowickiSophie + MarzeionBen + HockRegine + GoelzerHeiko + SeroussiHélène + JourdainNicolas C + SlaterDonald A + TurnerFiona E + SmithChristopher J + others + + Projected land ice contributions to twenty-first-century sea level rise + Nature + Nature Publishing Group + 2021 + 593 + 7857 + 10.1038/s41586-021-03302-y + 74 + 82 + + + + + + FavierLionel + DurandGael + CornfordStephen L + GudmundssonG Hilmar + GagliardiniOlivier + Gillet-ChauletFabien + ZwingerThomas + PayneAJ + Le BrocqAnne M + + Retreat of Pine Island Glacier controlled by marine ice-sheet instability + Nature Climate Change + Nature Publishing Group + 2014 + 4 + 2 + 10.1038/nclimate2094 + 117 + 121 + + + + + + DeContoRobert M + PollardDavid + AlleyRichard B + VelicognaIsabella + GassonEdward + GomezNatalya + SadaiShaina + CondronAlan + GilfordDaniel M + AsheErica L + others + + The Paris Climate Agreement and future sea-level rise from Antarctica + Nature + Nature Publishing Group + 2021 + 593 + 7857 + 10.1038/s41586-021-03427-0 + 83 + 89 + + + + + + De RydtJan + ReeseRonja + PaoloFernando S + GudmundssonG Hilmar + + Drivers of Pine Island Glacier speed-up between 1996 and 2016 + The Cryosphere + Copernicus GmbH + 2021 + 15 + 1 + 10.5194/tc-15-113-2021 + 113 + 132 + + + + + + ShaperoDaniel + BadgeleyJessica + HamDavid A. + LilienDavid + HoffmanAndrew + + icepack: glacier flow modeling with the finite element method in Python + Zenodo + 202012 + https://doi.org/10.5281/zenodo.4318147 + 10.5281/zenodo.4318147 + + + + + + JoughinIan + ShaperoDaniel + SmithBen + DutrieuxPierre + BarhamMark + + Ice-shelf retreat drives recent Pine Island Glacier speedup + Science Advances + American Association for the Advancement of Science + 2021 + 7 + 24 + 10.1126/sciadv.abg3080 + eabg3080 + + + + + + + SchoofChristian + + Ice sheet grounding line dynamics: Steady states, stability, and hysteresis + Journal of Geophysical Research: Earth Surface + Wiley Online Library + 2007 + 112 + F3 + 10.1029/2006JF000664 + + + + + + ArthernRobert J + HindmarshRichard CA + WilliamsC Rosie + + Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations + Journal of Geophysical Research: Earth Surface + Wiley Online Library + 2015 + 120 + 7 + 10.1002/2014JF003239 + 1171 + 1188 + + + + + + ArthernRobert J + WilliamsC Rosie + + The sensitivity of West Antarctica to the submarine melting feedback + Geophysical Research Letters + Wiley Online Library + 2017 + 44 + 5 + 10.1002/2017GL072514 + 2352 + 2359 + + + + + + GoldbergDaniel N + + A variationally derived, depth-integrated approximation to a higher-order glaciological flow model + Journal of Glaciology + Cambridge University Press + 2011 + 57 + 201 + 10.3189/002214311795306763 + 157 + 170 + + + + + + Asay-DavisXylar S + JourdainNicolas C + NakayamaYoshihiro + + Developments in simulating and parameterizing interactions between the Southern Ocean and the Antarctic ice sheet + Current Climate Change Reports + Springer + 2017 + 3 + 4 + 10.1007/s40641-017-0071-0 + 316 + 329 + + + + + + MarshallJohn + HillChris + PerelmanLev + AdcroftAlistair + + Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling + Journal of Geophysical Research: Oceans + Wiley Online Library + 1997 + 102 + C3 + 10.1029/96JC02776 + 5733 + 5752 + + + + + + CornfordStephen L + SeroussiHelene + Asay-DavisXylar S + GudmundssonG Hilmar + ArthernRob + BorstadChris + ChristmannJulia + Dias dos SantosThiago + FeldmannJohannes + GoldbergDaniel + others + + Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+) + The Cryosphere + Copernicus GmbH + 2020 + 14 + 7 + 10.5194/tc-14-2283-2020 + 2283 + 2301 + + + + + + LarourEric + SeroussiHelene + MorlighemMathieu + RignotEric + + Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) + Journal of Geophysical Research: Earth Surface + Wiley Online Library + 2012 + 117 + F1 + 10.1029/2011JF002140 + + + + + + BuelerEd + BrownJed + + Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model + Journal of Geophysical Research: Earth Surface + Wiley Online Library + 2009 + 114 + F3 + 10.1029/2008JF001179 + + + + + + CornfordStephen L + MartinDaniel F + GravesDaniel T + RankenDouglas F + Le BrocqAnne M + GladstoneRupert M + PayneAntony J + NgEsmond G + LipscombWilliam H + + Adaptive mesh, finite volume modeling of marine ice sheets + Journal of Computational Physics + Elsevier + 2013 + 232 + 1 + 10.1016/j.jcp.2012.08.037 + 529 + 549 + + + + + + GagliardiniO + ZwingerT + Gillet-ChauletF + DurandG + FavierL + FleurianB de + GreveR + MalinenM + Martı́nC + RåbackP + others + + Capabilities and performance of Elmer/Ice, a new-generation ice sheet model + Geoscientific Model Development + Copernicus GmbH + 2013 + 6 + 4 + 10.5194/gmd-6-1299-2013 + 1299 + 1318 + + + + + + GudmundssonH G + + Úa: A large-scale ice-flow model + https://github.com/GHilmarG/UaSource + 2019 + 10.5281/zenodo.3706624 + + + + + + BamberJonathan L + WestawayRichard M + MarzeionBen + WoutersBert + + The land ice contribution to sea level during the satellite era + Environmental Research Letters + IOP Publishing + 2018 + 13 + 6 + 10.1088/1748-9326/aac2f0 + 063008 + + + + + + + PritchardHamish D + LigtenbergStefan R M + FrickerHelen A + VaughanDavid G + BroekeMichiel R van den + PadmanLaurence + + Antarctic ice-sheet loss driven by basal melting of ice shelves + Nature + Nature Publishing Group + 2012 + 484 + 7395 + 10.1038/nature10968 + 502 + 505 + + + + +
diff --git a/joss.05584/10.21105.joss.05584.pdf b/joss.05584/10.21105.joss.05584.pdf new file mode 100644 index 0000000000..042e03554c Binary files /dev/null and b/joss.05584/10.21105.joss.05584.pdf differ diff --git a/joss.05584/media/schematic_lores.png b/joss.05584/media/schematic_lores.png new file mode 100644 index 0000000000..e7e9322e9c Binary files /dev/null and b/joss.05584/media/schematic_lores.png differ