diff --git a/joss.06129/10.21105.joss.06129.crossref.xml b/joss.06129/10.21105.joss.06129.crossref.xml
new file mode 100644
index 0000000000..ea21be0836
--- /dev/null
+++ b/joss.06129/10.21105.joss.06129.crossref.xml
@@ -0,0 +1,326 @@
+
+
+
+ 20240717081112-408074357331fb39ed9fca0bf14b1a0226239117
+ 20240717081112
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 07
+ 2024
+
+
+ 9
+
+ 99
+
+
+
+ dms-viz: Structure-informed visualizations for deep
+mutational scanning and other mutation-based datasets
+
+
+
+ William W.
+ Hannon
+ https://orcid.org/0000-0002-6014-4749
+
+
+ Jesse D.
+ Bloom
+ https://orcid.org/0000-0003-1267-3408
+
+
+
+ 07
+ 17
+ 2024
+
+
+ 6129
+
+
+ 10.21105/joss.06129
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.12693853
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6129
+
+
+
+ 10.21105/joss.06129
+ https://joss.theoj.org/papers/10.21105/joss.06129
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06129.pdf
+
+
+
+
+
+ Fitness effects of mutations to SARS-CoV-2
+proteins
+ Bloom
+ Virus Evolution
+ 2
+ 9
+ 10.1093/ve/vead055
+ 2057-1577
+ 2023
+ Bloom, J. D., & Neher, R. A.
+(2023). Fitness effects of mutations to SARS-CoV-2 proteins. Virus
+Evolution, 9(2), vead055.
+https://doi.org/10.1093/ve/vead055
+
+
+ Open Science Discovery of Potent Non-Covalent
+SARS-CoV-2 Main Protease Inhibitors
+ Boby
+ 10.1101/2020.10.29.339317
+ 2023
+ Boby, M. L., Fearon, D., Ferla, M.,
+Filep, M., Koekemoer, L., Robinson, M. C., The COVID Moonshot
+Consortium, Chodera, J. D., Lee, A. A., London, N., von Delft, A., &
+von Delft, F. (2023). Open Science Discovery of Potent Non-Covalent
+SARS-CoV-2 Main Protease Inhibitors (p. 2020.10.29.339317). bioRxiv.
+https://doi.org/10.1101/2020.10.29.339317
+
+
+ A pseudovirus system enables deep mutational
+scanning of the full SARS-CoV-2 spike
+ Dadonaite
+ Cell
+ 6
+ 186
+ 10.1016/j.cell.2023.02.001
+ 1097-4172
+ 2023
+ Dadonaite, B., Crawford, K. H. D.,
+Radford, C. E., Farrell, A. G., Yu, T. C., Hannon, W. W., Zhou, P.,
+Andrabi, R., Burton, D. R., Liu, L., Ho, D. D., Chu, H. Y., Neher, R.
+A., & Bloom, J. D. (2023). A pseudovirus system enables deep
+mutational scanning of the full SARS-CoV-2 spike. Cell, 186(6),
+1263–1278.e20.
+https://doi.org/10.1016/j.cell.2023.02.001
+
+
+ MaveDB: An open-source platform to distribute
+and interpret data from multiplexed assays of variant
+effect
+ Esposito
+ Genome Biology
+ 1
+ 20
+ 10.1186/s13059-019-1845-6
+ 1474-760X
+ 2019
+ Esposito, D., Weile, J., Shendure,
+J., Starita, L. M., Papenfuss, A. T., Roth, F. P., Fowler, D. M., &
+Rubin, A. F. (2019). MaveDB: An open-source platform to distribute and
+interpret data from multiplexed assays of variant effect. Genome
+Biology, 20(1), 223.
+https://doi.org/10.1186/s13059-019-1845-6
+
+
+ An Atlas of Variant Effects to understand the
+genome at nucleotide resolution
+ Fowler
+ Genome Biology
+ 1
+ 24
+ 10.1186/s13059-023-02986-x
+ 1474-760X
+ 2023
+ Fowler, D. M., Adams, D. J., Gloyn,
+A. L., Hahn, W. C., Marks, D. S., Muffley, L. A., Neal, J. T., Roth, F.
+P., Rubin, A. F., Starita, L. M., & Hurles, M. E. (2023). An Atlas
+of Variant Effects to understand the genome at nucleotide resolution.
+Genome Biology, 24(1), 147.
+https://doi.org/10.1186/s13059-023-02986-x
+
+
+ Deep mutational scanning: A new style of
+protein science
+ Fowler
+ Nature Methods
+ 8
+ 11
+ 10.1038/nmeth.3027
+ 1548-7105
+ 2014
+ Fowler, D. M., & Fields, S.
+(2014). Deep mutational scanning: A new style of protein science. Nature
+Methods, 11(8), 801–807.
+https://doi.org/10.1038/nmeth.3027
+
+
+ Dms-view: Interactive visualization tool for
+deep mutational scanning data
+ Hilton
+ Journal of Open Source
+Software
+ 52
+ 5
+ 10.21105/joss.02353
+ 2475-9066
+ 2020
+ Hilton, S. K., Huddleston, J., Black,
+A., North, K., Dingens, A. S., Bedford, T., & Bloom, J. D. (2020).
+Dms-view: Interactive visualization tool for deep mutational scanning
+data. Journal of Open Source Software, 5(52), 2353.
+https://doi.org/10.21105/joss.02353
+
+
+ Deep mutational scanning reveals the
+functional constraints and evolutionary potential of the influenza A
+virus PB1 protein
+ Li
+ 10.1101/2023.08.27.554986
+ 2023
+ Li, Y., Arcos, S., Sabsay, K. R., te
+Velthuis, A. J. W., & Lauring, A. S. (2023). Deep mutational
+scanning reveals the functional constraints and evolutionary potential
+of the influenza A virus PB1 protein (p. 2023.08.27.554986). bioRxiv.
+https://doi.org/10.1101/2023.08.27.554986
+
+
+ Multiplex assessment of protein variant
+abundance by massively parallel sequencing
+ Matreyek
+ Nature Genetics
+ 6
+ 50
+ 10.1038/s41588-018-0122-z
+ 1546-1718
+ 2018
+ Matreyek, K. A., Starita, L. M.,
+Stephany, J. J., Martin, B., Chiasson, M. A., Gray, V. E., Kircher, M.,
+Khechaduri, A., Dines, J. N., Hause, R. J., Bhatia, S., Evans, W. E.,
+Relling, M. V., Yang, W., Shendure, J., & Fowler, D. M. (2018).
+Multiplex assessment of protein variant abundance by massively parallel
+sequencing. Nature Genetics, 50(6), 874–882.
+https://doi.org/10.1038/s41588-018-0122-z
+
+
+ Mapping the neutralizing specificity of human
+anti-HIV serum by deep mutational scanning
+ Radford
+ Cell Host & Microbe
+ 7
+ 31
+ 10.1016/j.chom.2023.05.025
+ 1934-6069
+ 2023
+ Radford, C. E., Schommers, P.,
+Gieselmann, L., Crawford, K. H. D., Dadonaite, B., Yu, T. C., Dingens,
+A. S., Overbaugh, J., Klein, F., & Bloom, J. D. (2023). Mapping the
+neutralizing specificity of human anti-HIV serum by deep mutational
+scanning. Cell Host & Microbe, 31(7), 1200–1215.e9.
+https://doi.org/10.1016/j.chom.2023.05.025
+
+
+ NGL viewer: Web-based molecular graphics for
+large complexes
+ Rose
+ Bioinformatics (Oxford,
+England)
+ 21
+ 34
+ 10.1093/bioinformatics/bty419
+ 1367-4811
+ 2018
+ Rose, A. S., Bradley, A. R.,
+Valasatava, Y., Duarte, J. M., Prlic, A., & Rose, P. W. (2018). NGL
+viewer: Web-based molecular graphics for large complexes. Bioinformatics
+(Oxford, England), 34(21), 3755–3758.
+https://doi.org/10.1093/bioinformatics/bty419
+
+
+ Deep Mutational Scanning of SARS-CoV-2
+Receptor Binding Domain Reveals Constraints on Folding and ACE2
+Binding
+ Starr
+ Cell
+ 5
+ 182
+ 10.1016/j.cell.2020.08.012
+ 1097-4172
+ 2020
+ Starr, T. N., Greaney, A. J., Hilton,
+S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J.,
+Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D.,
+& Bloom, J. D. (2020). Deep Mutational Scanning of SARS-CoV-2
+Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding.
+Cell, 182(5), 1295–1310.e20.
+https://doi.org/10.1016/j.cell.2020.08.012
+
+
+ Prospective mapping of viral mutations that
+escape antibodies used to treat COVID-19
+ Starr
+ Science (New York, N.Y.)
+ 6531
+ 371
+ 10.1126/science.abf9302
+ 1095-9203
+ 2021
+ Starr, T. N., Greaney, A. J.,
+Addetia, A., Hannon, W. W., Choudhary, M. C., Dingens, A. S., Li, J. Z.,
+& Bloom, J. D. (2021). Prospective mapping of viral mutations that
+escape antibodies used to treat COVID-19. Science (New York, N.Y.),
+371(6531), 850–854.
+https://doi.org/10.1126/science.abf9302
+
+
+ A biophysical model of viral escape from
+polyclonal antibodies
+ Yu
+ Virus Evolution
+ 2
+ 8
+ 10.1093/ve/veac110
+ 2057-1577
+ 2022
+ Yu, T. C., Thornton, Z. T., Hannon,
+W. W., DeWitt, W. S., Radford, C. E., Matsen, F. A., & Bloom, J. D.
+(2022). A biophysical model of viral escape from polyclonal antibodies.
+Virus Evolution, 8(2), veac110.
+https://doi.org/10.1093/ve/veac110
+
+
+
+
+
+
diff --git a/joss.06129/10.21105.joss.06129.pdf b/joss.06129/10.21105.joss.06129.pdf
new file mode 100644
index 0000000000..592a782372
Binary files /dev/null and b/joss.06129/10.21105.joss.06129.pdf differ
diff --git a/joss.06129/paper.jats/10.21105.joss.06129.jats b/joss.06129/paper.jats/10.21105.joss.06129.jats
new file mode 100644
index 0000000000..767b3a0648
--- /dev/null
+++ b/joss.06129/paper.jats/10.21105.joss.06129.jats
@@ -0,0 +1,749 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6129
+10.21105/joss.06129
+
+dms-viz: Structure-informed
+visualizations for deep mutational scanning and other mutation-based
+datasets
+
+
+
+https://orcid.org/0000-0002-6014-4749
+
+Hannon
+William W.
+
+
+
+
+
+https://orcid.org/0000-0003-1267-3408
+
+Bloom
+Jesse D.
+
+
+
+
+
+
+
+Molecular and Cellular Biology Graduate Program, University
+of Washington, Seattle, Washington 98109, United States of
+America
+
+
+
+
+Basic Sciences and Computational Biology, Fred Hutchinson
+Cancer Research Center, Seattle, Washington 98109, United States of
+America
+
+
+
+
+Department of Genome Sciences, University of Washington,
+Seattle, Washington 98109, United States of America
+
+
+
+
+Howard Hughes Medical Institute, Seattle, Washington 98109,
+United States of America
+
+
+
+
+26
+10
+2023
+
+9
+99
+6129
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+javascript
+data visualization
+molecular biology
+protein biology
+deep mutational scanning
+
+
+
+
+
+ Summary and Purpose
+
Many biological questions require an understanding of how mutations
+ impact a protein’s functions. Deep mutational scanning (DMS) offers an
+ approach to characterize the impact of a huge number of mutations in
+ parallel
+ (Fowler
+ & Fields, 2014). The wide application of DMS has greatly
+ increased the number of mutation-function datasets
+ (Fowler
+ et al., 2023). For instance, DMS has been used to determine how
+ mutations to viral proteins affect antibody escape
+ (Dadonaite
+ et al., 2023), receptor affinity
+ (Starr
+ et al., 2020), and essential functions such as viral genome
+ transcription and replication
+ (Li
+ et al., 2023). In some cases, the effects of mutations can also
+ be inferred from phylogenies of natural sequences
+ (Bloom
+ & Neher, 2023)
+ ([fig:figure1]).
+
+
Large mutation-associated datasets can be used to map
+ antibody footprints, assess the impact of mutations on protein
+ function, and identify patterns of selection from natural mutation
+ frequencies.
+
+
+
The mutation-based data generated by these approaches is better
+ understood in the context of a protein’s 3D structure. However,
+ current approaches for visualizing mutation data in the context of a
+ protein’s structure are often cumbersome and require multiple steps
+ and software. To streamline the visualization of mutation-associated
+ data in the context of a protein structure, we developed a web-based
+ tool, dms-viz. With
+ dms-viz, users can straightforwardly visualize
+ mutation-based data such as those from DMS experiments in the context
+ of a 3D protein model in an interactive format. Visit
+ https://dms-viz.github.io/
+ to use dms-viz.
+
+
+ Statement of Need
+
We wanted dms-viz to provide the following
+ functionalities:
+
+
+
Provide structural context:
+ dms-viz simplifies the process of
+ visualizing mutation data with structural context by superimposing
+ mutation measurements on a 3D protein structure. Additionally, it
+ provides extensive control over the visual representation of the
+ 3D structure.
+
+
+
Accommodate diverse data types: Although analyzing
+ DMS data is a key goal of dms-viz, there
+ are many types of mutation data. The tool can handle diverse data
+ types via a command line interface that converts data into a
+ common format.
+
+
+
Display multiple conditions: With
+ dms-viz, multiple experimental conditions
+ can be visualized concurrently; for instance, researchers can
+ easily visualize multiple antibody binding footprints from
+ polyclonal sera
+ (Yu
+ et al., 2022).
+
+
+
Maximize customization: Every dataset has specific
+ needs for visual representation. Recognizing this,
+ dms-viz offers customization with filters
+ (which are important for navigating large and possibly noisy
+ datasets), and tooltips, ensuring that nuances are
+ communicated.
+
+
+
Create compact interactive visualizations:
+ dms-viz creates compact interactive views
+ that can be incorporated into HTML presentation slides (e.g.,
+ https://slides.com/).
+
+
+
Share findings with ease: Users of
+ dms-viz can generate shareable URL links to
+ their visualizations. They can also save and share their
+ JSON specification files, ensuring that
+ data can be accessed by others.
+
+
+
Preserve data privacy:
+ dms-viz allows users to visualize
+ proprietary structures and analyze sensitive data in their browser
+ without uploading their datasets to a remote server or storing
+ them in a public repository.
+
+
+
Our group previously created a tool called
+ dms-view
+ (Hilton
+ et al., 2020) that has some of the functionalities listed
+ above. However, we designed dms-viz to be more
+ customizable and comprehensive to handle a wider diversity of
+ experimental designs and questions.
+
+
+ Design and Usage
+
Using dms-viz involves three components.
+ First, using the command line tool
+ configure-dms-viz, available as a Python
+ package on PyPI
+ (https://pypi.org/project/configure-dms-viz/),
+ the user formats their data into a JSON
+ specification file (see the
+ documentation
+ for details on the JSON schema). Then, the user
+ uploads this specification file to
+ dms-viz.github.io, a web-based interface
+ written in Javascript, D3.js, and
+ NGL.js
+ (Rose
+ et al., 2018). Finally, the specification file can either be
+ shared directly or hosted remotely to generate a shareable URL link
+ ([fig:figure2]).
+
+
(1) The user formats their data using the command line
+ tool configure-dms-viz. (2) The user takes
+ the resulting JSON specification file and
+ uploads it to dms-viz.github.io. (3) The user
+ shares their results with a JSON file, a URL
+ link, or a static
+ image.
+
+
+
Upon uploading the specification file to
+ dms-viz, users will see a visualization
+ composed of four components, as illustrated in
+ [fig:figure3].
+
+
+
Context plot: Located at the top
+ of the visualization, it allows users to zoom into specific sites
+ on the Focus plot while maintaining an overview
+ of the entire dataset.
+
+
+
Focus plot: This plot shows a
+ summarized view of the user’s data. Every measured protein site is
+ represented as a point providing a summary statistic of the
+ effects of mutations at that site, and adjacent sites are
+ connected with lines.
+
+
+
Detail heatmap: If the user is
+ interested in the measurements for every mutation at a site, they
+ can click on that site in the Focus plot. This
+ will populate a heatmap with each mutation measurement at that
+ site.
+
+
+
Interactive structure: When the
+ user wants structural context for a given set of sites, they can
+ drag a brush over the corresponding points in the
+ Focus plot. This action will highlight those
+ sites on an interactive 3D protein model.
+
+
+
To ensure the visualization remains compact, all configuration
+ options are tucked away in a collapsible sidebar. See the
+ documentation at
+ https://dms-viz.github.io/dms-viz-docs/
+ for more information about how to use dms-viz
+ along with detailed tutorials and examples.
+
+
dms-viz provides a compact
+ interface for exploring mutation-associated data, in this case,
+ mutation-escape from the constituents of a therapeutic antibody
+ cocktail measured by DMS of the SARS-CoV-2 receptor binding domain
+ (RBD)
+ (Starr
+ et al., 2021). In this example, the structure shown is the
+ SARS-CoV-2 RBD bound to both antibodies in the therapeutic cocktail
+ (PDB:
+ 6XDG).
+
+
+
+
+ Examples
+
For additional scientific background and a walkthrough of the code
+ that generates these visualizations, visit the
+ documentation.
+
+ 1. Mapping the neutralization profile of antibodies and sera
+ against HIV envelope
+
Radford et al.
+ (2023)
+ mapped mutations to HIV envelope (Env) that affect neutralization by
+ polyclonal human serum using a pseudotyping-based deep mutational
+ scanning platform
+ (Radford
+ et al., 2023). See how dms-viz can be
+ used to interactively visualize datasets with multiple antibody
+ footprints on a single summary plot
+ here.
+
+
+ 2. Using mutation-fitness data to augment structure-guided
+ drug design
+
Bloom and Neher estimated the fitness effects of mutations to all
+ SARS-CoV-2 proteins by analyzing millions of human SARS-CoV-2
+ sequences
+ (Bloom
+ & Neher, 2023). See how dms-viz
+ can be used to enhance structure-guided drug design by merging this
+ data with structural views of a viral target like the SARS-CoV-2
+ main protease (Mpro) in complex with a bound ligand such as
+ MAT-POS-e194df51-1 from the COVID Moonshot project
+ (Boby
+ et al., 2023)
+ here.
+
+
+ 3. Visualizing the pathogenicity of genetic variants of an
+ important tumor suppressor
+
Matreyek et al.
+ (2018)
+ used variant abundance by massively parallel sequencing (VAMP-seq)
+ to characterize the effect of thousands of mutations on the
+ intracellular abundance of PTEN, a tumor suppressor that is
+ inactivated in many cancers
+ (Matreyek
+ et al., 2018). See how dms-viz can be
+ used to identify clinically relevant mutations in human proteins
+ here.
+
+
+
+ Conclusion
+
dms-viz is a valuable addition to the suite
+ of computational tools available for analyzing, sharing, and
+ visualizing mutation-based datasets, which includes
+ MaveDB,
+ ProtVar,
+ and many others
+ (Esposito
+ et al., 2019). We designed dms-viz as a
+ practical and user-friendly approach to visualizing
+ mutation-associated data in the context of protein structures. Because
+ dms-viz is capable of handling various data
+ types and has options for both sharing and privacy, it should apply to
+ the visualization of a wide range of datasets.
+
+
+ Code Availability
+
+
+
The visualization is available at
+ https://dms-viz.github.io/
+
+
+
The documentation is available at
+ https://dms-viz.github.io/dms-viz-docs/
+
+
+
The source code for dms-viz.github.io is
+ available at
+ https://github.com/dms-viz/dms-viz.github.io
+
+
+
The source code for configure-dms-viz is
+ available at
+ https://github.com/dms-viz/configure_dms_viz
+
+
+
+
+ Acknowledgements
+
This project was envisioned as the successor to
+ dms-view. Thank you to Dr. Sarah Hilton and
+ Dr. John Huddleston for laying this groundwork and for providing
+ helpful input. Thank you to the Bloom lab for providing data and
+ guidance. The research reported here was supported in part by NIAID of
+ the National Institutes of Health under award number U19AI171399. The
+ content is solely the responsibility of the authors and does not
+ necessarily represent the official views of the National Institutes of
+ Health. The work of JDB was supported in part by the NIH/NIAID under
+ grants R01AI141707 and contract 75N93021C00015. JDB is an Investigator
+ of the Howard Hughes Medical Institute.
+
+
+ Disclosures
+
JDB is on the scientific advisory boards of Apriori Bio, Aerium
+ Therapeutics, Invivyd, and the Vaccine Company. JDB receives royalty
+ payments as an inventor on Fred Hutch licensed patents related to deep
+ mutational scanning of viral proteins.
+
+
+
+
+
+
+
+
+ BloomJesse D.
+ NeherRichard A.
+
+ Fitness effects of mutations to SARS-CoV-2 proteins
+
+ 2023
+ 9
+ 2
+ 2057-1577
+ 10.1093/ve/vead055
+ 37727875
+ vead055
+
+
+
+
+
+
+ BobyMelissa L.
+ FearonDaren
+ FerlaMatteo
+ FilepMihajlo
+ KoekemoerLizbé
+ RobinsonMatthew C.
+ The COVID Moonshot Consortium
+ ChoderaJohn D.
+ LeeAlpha A.
+ LondonNir
+ von DelftAnnette
+ von DelftFrank
+
+ Open Science Discovery of Potent Non-Covalent SARS-CoV-2 Main Protease Inhibitors
+ bioRxiv
+ 202309
+ 20231024
+ 10.1101/2020.10.29.339317
+ 2020.10.29.339317
+
+
+
+
+
+
+ DadonaiteBernadeta
+ CrawfordKatharine H. D.
+ RadfordCaelan E.
+ FarrellAriana G.
+ YuTimothy C.
+ HannonWilliam W.
+ ZhouPanpan
+ AndrabiRaiees
+ BurtonDennis R.
+ LiuLihong
+ HoDavid D.
+ ChuHelen Y.
+ NeherRichard A.
+ BloomJesse D.
+
+ A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike
+
+ 202303
+ 186
+ 6
+ 1097-4172
+ 10.1016/j.cell.2023.02.001
+ 36868218
+ 1263
+ 1278.e20
+
+
+
+
+
+ EspositoDaniel
+ WeileJochen
+ ShendureJay
+ StaritaLea M.
+ PapenfussAnthony T.
+ RothFrederick P.
+ FowlerDouglas M.
+ RubinAlan F.
+
+ MaveDB: An open-source platform to distribute and interpret data from multiplexed assays of variant effect
+
+ 201911
+ 20240515
+ 20
+ 1
+ 1474-760X
+ 10.1186/s13059-019-1845-6
+ 223
+
+
+
+
+
+
+ FowlerDouglas M.
+ AdamsDavid J.
+ GloynAnna L.
+ HahnWilliam C.
+ MarksDebora S.
+ MuffleyLara A.
+ NealJames T.
+ RothFrederick P.
+ RubinAlan F.
+ StaritaLea M.
+ HurlesMatthew E.
+
+ An Atlas of Variant Effects to understand the genome at nucleotide resolution
+
+ 202307
+ 24
+ 1
+ 1474-760X
+ 10.1186/s13059-023-02986-x
+ 37394429
+ 147
+
+
+
+
+
+
+ FowlerDouglas M.
+ FieldsStanley
+
+ Deep mutational scanning: A new style of protein science
+
+ 201408
+ 11
+ 8
+ 1548-7105
+ 10.1038/nmeth.3027
+ 25075907
+ 801
+ 807
+
+
+
+
+
+ HiltonSarah K.
+ HuddlestonJohn
+ BlackAllison
+ NorthKhrystyna
+ DingensAdam S.
+ BedfordTrevor
+ BloomJesse D.
+
+ Dms-view: Interactive visualization tool for deep mutational scanning data
+
+ 2020
+ 5
+ 52
+ 2475-9066
+ 10.21105/joss.02353
+ 34189395
+ 2353
+
+
+
+
+
+
+ LiYuan
+ ArcosSarah
+ SabsayKimberly R.
+ te VelthuisAartjan J. W.
+ LauringAdam S.
+
+ Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein
+ bioRxiv
+ 202308
+ 20231014
+ 10.1101/2023.08.27.554986
+ 2023.08.27.554986
+
+
+
+
+
+
+ MatreyekKenneth A.
+ StaritaLea M.
+ StephanyJason J.
+ MartinBeth
+ ChiassonMelissa A.
+ GrayVanessa E.
+ KircherMartin
+ KhechaduriArineh
+ DinesJennifer N.
+ HauseRonald J.
+ BhatiaSmita
+ EvansWilliam E.
+ RellingMary V.
+ YangWenjian
+ ShendureJay
+ FowlerDouglas M.
+
+ Multiplex assessment of protein variant abundance by massively parallel sequencing
+
+ Nature Publishing Group
+ 201806
+ 20240515
+ 50
+ 6
+ 1546-1718
+ 10.1038/s41588-018-0122-z
+ 874
+ 882
+
+
+
+
+
+ RadfordCaelan E.
+ SchommersPhilipp
+ GieselmannLutz
+ CrawfordKatharine H. D.
+ DadonaiteBernadeta
+ YuTimothy C.
+ DingensAdam S.
+ OverbaughJulie
+ KleinFlorian
+ BloomJesse D.
+
+ Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning
+
+ 202307
+ 31
+ 7
+ 1934-6069
+ 10.1016/j.chom.2023.05.025
+ 37327779
+ 1200
+ 1215.e9
+
+
+
+
+
+ RoseAlexander S.
+ BradleyAnthony R.
+ ValasatavaYana
+ DuarteJose M.
+ PrlicAndreas
+ RosePeter W.
+
+ NGL viewer: Web-based molecular graphics for large complexes
+
+ 201811
+ 34
+ 21
+ 1367-4811
+ 10.1093/bioinformatics/bty419
+ 29850778
+ 3755
+ 3758
+
+
+
+
+
+ StarrTyler N.
+ GreaneyAllison J.
+ HiltonSarah K.
+ EllisDaniel
+ CrawfordKatharine H. D.
+ DingensAdam S.
+ NavarroMary Jane
+ BowenJohn E.
+ TortoriciM. Alejandra
+ WallsAlexandra C.
+ KingNeil P.
+ VeeslerDavid
+ BloomJesse D.
+
+ Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
+
+ 202009
+ 182
+ 5
+ 1097-4172
+ 10.1016/j.cell.2020.08.012
+ 32841599
+ 1295
+ 1310.e20
+
+
+
+
+
+ StarrTyler N.
+ GreaneyAllison J.
+ AddetiaAmin
+ HannonWilliam W.
+ ChoudharyManish C.
+ DingensAdam S.
+ LiJonathan Z.
+ BloomJesse D.
+
+ Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
+
+ 202102
+ 371
+ 6531
+ 1095-9203
+ 10.1126/science.abf9302
+ 33495308
+ 850
+ 854
+
+
+
+
+
+ YuTimothy C.
+ ThorntonZorian T.
+ HannonWilliam W.
+ DeWittWilliam S.
+ RadfordCaelan E.
+ MatsenFrederick A.
+ BloomJesse D.
+
+ A biophysical model of viral escape from polyclonal antibodies
+
+ 2022
+ 8
+ 2
+ 2057-1577
+ 10.1093/ve/veac110
+ 36582502
+ veac110
+
+
+
+
+
+
diff --git a/joss.06129/paper.jats/figure-1.png b/joss.06129/paper.jats/figure-1.png
new file mode 100644
index 0000000000..6840c17bfa
Binary files /dev/null and b/joss.06129/paper.jats/figure-1.png differ
diff --git a/joss.06129/paper.jats/figure-2.png b/joss.06129/paper.jats/figure-2.png
new file mode 100644
index 0000000000..b0a19ac5f9
Binary files /dev/null and b/joss.06129/paper.jats/figure-2.png differ
diff --git a/joss.06129/paper.jats/figure-3.png b/joss.06129/paper.jats/figure-3.png
new file mode 100644
index 0000000000..1707ae149f
Binary files /dev/null and b/joss.06129/paper.jats/figure-3.png differ