diff --git a/joss.07062/10.21105.joss.07062.crossref.xml b/joss.07062/10.21105.joss.07062.crossref.xml
new file mode 100644
index 000000000..2e75794df
--- /dev/null
+++ b/joss.07062/10.21105.joss.07062.crossref.xml
@@ -0,0 +1,349 @@
+
+
+
+ 20241220233411-4511ba04ff6ef563b2f2dcf5dc646df444142ba0
+ 20241220233411
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 12
+ 2024
+
+
+ 9
+
+ 104
+
+
+
+ Desalination and brine treatment systems integrated modelling framework: simulation and evaluation of water and resource recovery
+
+
+
+ Rodoula
+ Ktori
+
+ Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
+
+
+
+ Fabrizio
+ Vassallo
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Giovanni
+ Virruso
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Carmelo
+ Morgante
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Andrea
+ Culcasi
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Dionysia
+ Diamantidou
+
+ Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The Netherlands
+
+
+
+ Niels Van
+ Linden
+
+ Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The Netherlands
+
+
+
+ Alessandro
+ Trezzi
+
+ Sofinter S.p.A, Piazza Francesco Buffoni, 3, 21013 Gallarate VA, Italy
+
+
+
+ Adithya
+ Krishnan
+
+ Water & Energy Intelligence BV, the Netherlands
+
+
+
+ Andrea
+ Cipollina
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Giorgio
+ Micale
+
+ Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+ Mark C. M.
+ van Loosdrecht
+
+ Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
+
+
+
+ Dimitrios
+ Xevgenos
+
+ Technology Policy & Management faculty, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
+
+
+
+
+ 12
+ 20
+ 2024
+
+
+ 7062
+
+
+ 10.21105/joss.07062
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.14499653
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/7062
+
+
+
+ 10.21105/joss.07062
+ https://joss.theoj.org/papers/10.21105/joss.07062
+
+
+ https://joss.theoj.org/papers/10.21105/joss.07062.pdf
+
+
+
+
+
+ Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India
+ Abraham
+ Desalination
+ 1-3
+ 268
+ 10.1016/j.desal.2010.10.035
+ 2011
+ Abraham, T., & Luthra, A. (2011). Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India. Desalination, 268(1-3), 238–248. https://doi.org/10.1016/j.desal.2010.10.035
+
+
+ On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations
+ Bilton
+ Renewable Energy
+ 12
+ 36
+ 10.1016/j.renene.2011.03.040
+ 2011
+ Bilton, A. M., Wiesman, R., Arif, A., Zubair, S. M., & Dubowsky, S. (2011). On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations. Renewable Energy, 36(12), 3246–3256. https://doi.org/10.1016/j.renene.2011.03.040
+
+
+ Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale
+ Cassaro
+ ACS Sustainable Chemistry & Engineering
+ 7
+ 11
+ 10.1021/acssuschemeng.2c06636
+ 2023
+ Cassaro, C., Virruso, G., Culcasi, A., Cipollina, A., Tamburini, A., & Micale, G. (2023). Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale. ACS Sustainable Chemistry & Engineering, 11(7), 2989–3000. https://doi.org/10.1021/acssuschemeng.2c06636
+
+
+ A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment
+ Chen
+ Desalination
+ 502
+ 10.1016/j.desal.2020.114928
+ 2021
+ Chen, Q., Burhan, M., Shahzad, M. W., Ybyraiymkul, D., Akhtar, F. H., Li, Y., & Ng, K. C. (2021). A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment. Desalination, 502, 114928. https://doi.org/10.1016/j.desal.2020.114928
+
+
+ Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis
+ Choi
+ Membranes
+ 1
+ 6
+ 10.3390/membranes6010003
+ 2015
+ Choi, Y., Cho, H., Shin, Y., Jang, Y., & Lee, S. (2015). Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis. Membranes, 6(1), 3. https://doi.org/10.3390/membranes6010003
+
+
+ Fundamentals of Salt Water Desalination
+ El-Dessouky
+ 10.1016/B978-0-444-50810-2.50018-X
+ 2002
+ El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier. https://doi.org/10.1016/B978-0-444-50810-2.50018-X
+
+
+ Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation
+ Kesieme
+ Desalination
+ 323
+ 10.1016/j.desal.2013.03.033
+ 2013
+ Kesieme, U. K., Milne, N., Aral, H., Cheng, C. Y., & Duke, M. (2013). Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 323, 66–74. https://doi.org/10.1016/j.desal.2013.03.033
+
+
+ Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents
+ Micari
+ Journal of cleaner production
+ 270
+ 10.1016/j.jclepro.2020.122472
+ 2020
+ Micari, M., Cipollina, A., Tamburini, A., Moser, M., Bertsch, V., & Micale, G. (2020). Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents. Journal of Cleaner Production, 270, 122472. https://doi.org/10.1016/j.jclepro.2020.122472
+
+
+ Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives
+ Morgante
+ Desalination
+ 542
+ 10.1016/j.desal.2022.116005
+ 2022
+ Morgante, C., Vassallo, F., Xevgenos, D., Cipollina, A., Micari, M., Tamburini, A., & Micale, G. (2022). Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives. Desalination, 542, 116005. https://doi.org/10.1016/j.desal.2022.116005
+
+
+ Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production
+ Nayar
+ Desalination
+ 456
+ 10.1016/j.desal.2018.11.018
+ 2019
+ Nayar, K. G., Fernandes, J., McGovern, R. K., Dominguez, K. P., McCance, A., Al-Anzi, B. S., & others. (2019). Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production. Desalination, 456, 97–120. https://doi.org/10.1016/j.desal.2018.11.018
+
+
+ Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation
+ Panagopoulos
+ Journal of Environmental Chemical Engineering
+ 4
+ 9
+ 10.1016/j.jece.2021.105338
+ 2021
+ Panagopoulos, A. (2021). Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation. Journal of Environmental Chemical Engineering, 9(4), 105338. https://doi.org/10.1016/j.jece.2021.105338
+
+
+ Plant design and economics for chemical engineers
+ Peters
+ 2003
+ Peters, M. S., & Timmerhaus, K. D. (2003). Plant design and economics for chemical engineers (5th ed.). McGraw-Hill Chemical Engineering Series.
+
+
+ Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge
+ Poirier
+ Separations
+ 10
+ 9
+ 10.3390/separations9100295
+ 2022
+ Poirier, K., Al Mhanna, N., & Patchigolla, K. (2022). Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge. Separations, 9(10), 295. https://doi.org/10.3390/separations9100295
+
+
+ Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation
+ Xevgenos
+ Desalination and Water Treatment
+ 12
+ 53
+ 10.1080/19443994.2014.948660
+ 2015
+ Xevgenos, D., Michailidis, P., Dimopoulos, K., Krokida, M., & Loizidou, M. (2015). Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation. Desalination and Water Treatment, 53(12), 3407–3417. https://doi.org/10.1080/19443994.2014.948660
+
+
+ Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island
+ Morgante
+ Desalination
+ 10.1016/j.desal.2024.117562
+ 2024
+ Morgante, C., Vassallo, F., Cassaro, C., Virruso, G., Diamantidou, D., Van Linden, N., Trezzi, A., Xenogianni, C., Ktori, R., Rodriguez, M., & others. (2024). Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island. Desalination, 117562. https://doi.org/10.1016/j.desal.2024.117562
+
+
+ Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2
+ Xevgenos
+ 2023
+ Xevgenos, D., Ktori, R., Gils, E. van, Diamantidou, D., Linden, N. van, Vassalo, F., Morgante, C., Culcasi, A., Rodrigues Pascual, M., Avramidi, M., Trezzi, A., Krishnan, A., Nauta, J. T., Cipollina, A., & Micale, G. (2023). Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2. https://www.watermining.eu
+
+
+ WAVE water treatment design software
+ Dupont
+ 2024
+ Dupont. (2024). WAVE water treatment design software. https://www.dupont.com/water/resources/design-software.html
+
+
+ A value-sensitive approach for integrated seawater desalination and brine treatment
+ Ktori
+ Sustainable Production and Consumption
+ 10.1016/j.spc.2024.11.006
+ 2024
+ Ktori, R., Parada, M. P., Rodriguez-Pascual, M., Loosdrecht, M. C. van, & Xevgenos, D. (2024). A value-sensitive approach for integrated seawater desalination and brine treatment. Sustainable Production and Consumption. https://doi.org/10.1016/j.spc.2024.11.006
+
+
+ WaterTAP: An open-source water treatment model library (version 0.6)
+ Energy
+ 2024
+ Energy, U. S. Dept. of. (2024). WaterTAP: An open-source water treatment model library (version 0.6). https://github.com/watertap-org/watertap
+
+
+
+
+
+
diff --git a/joss.07062/10.21105.joss.07062.pdf b/joss.07062/10.21105.joss.07062.pdf
new file mode 100644
index 000000000..66dfba225
Binary files /dev/null and b/joss.07062/10.21105.joss.07062.pdf differ
diff --git a/joss.07062/paper.jats/10.21105.joss.07062.jats b/joss.07062/paper.jats/10.21105.joss.07062.jats
new file mode 100644
index 000000000..3af31cdba
--- /dev/null
+++ b/joss.07062/paper.jats/10.21105.joss.07062.jats
@@ -0,0 +1,676 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+7062
+10.21105/joss.07062
+
+Desalination and brine treatment systems integrated
+modelling framework: simulation and evaluation of water and resource
+recovery
+
+
+
+
+Ktori
+Rodoula
+
+
+
+
+
+Vassallo
+Fabrizio
+
+
+
+
+
+Virruso
+Giovanni
+
+
+
+
+
+Morgante
+Carmelo
+
+
+
+
+
+Culcasi
+Andrea
+
+
+
+
+
+Diamantidou
+Dionysia
+
+
+
+
+
+Linden
+Niels Van
+
+
+
+
+
+Trezzi
+Alessandro
+
+
+
+
+
+Krishnan
+Adithya
+
+
+
+
+
+Cipollina
+Andrea
+
+
+
+
+
+Micale
+Giorgio
+
+
+
+
+
+van Loosdrecht
+Mark C. M.
+
+
+
+
+
+Xevgenos
+Dimitrios
+
+
+
+
+
+Department of Biotechnology, Delft University of
+Technology, Van der Maasweg 9, 2629 HZ, Delft, The
+Netherlands
+
+
+
+
+Dipartimento di Ingegneria, Università degli Studi di
+Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy
+
+
+
+
+Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The
+Netherlands
+
+
+
+
+Sofinter S.p.A, Piazza Francesco Buffoni, 3, 21013
+Gallarate VA, Italy
+
+
+
+
+Water & Energy Intelligence BV, the
+Netherlands
+
+
+
+
+Technology Policy & Management faculty, Delft
+University of Technology, Jaffalaan 5, 2628 BX Delft, The
+Netherlands
+
+
+
+9
+104
+7062
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2024
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+Desalination
+Brine treatment
+resource recovery
+Techno-economic assessment
+
+
+
+
+
+ Summary
+
Desalination plays a crucial role in addressing the growing
+ challenges of water scarcity. In recent years, the integration of
+ desalination and brine treatment technologies has been increasingly
+ studied, aiming to develop sustainable solutions for resource recovery
+ from seawater. However, designing treatment trains and optimizing
+ these processes for maximum efficiency, sustainability, and
+ cost-effectiveness are complex tasks that require data, sophisticated
+ analysis and decision-making strategies. Our software offers a
+ comprehensive modelling framework for simulating desalination and
+ mineral recovery systems. Integrating technical process models with
+ economic and environmental analysis provides valuable insights into
+ the integration of these technologies and their impact on production
+ efficiency, energy consumption, and environmental performance. Through
+ our software’s simulations, researchers, engineers, and policymakers
+ gain the power to evaluate the resource recovery potential, economics,
+ and greenhouse gas emissions associated with different configuration
+ combinations. This empowerment with crucial information for
+ early-stage design and strategic planning is a significant step toward
+ fostering more sustainable water management practices.
+
+
+ Statement of need
+
Traditionally, simulation models were developed to evaluate the
+ influence of certain parameters on the characteristics of the
+ recovered products and the performance of the technology in terms of
+ energy, chemicals, and water consumption. However, in the desalination
+ field, open-access simulation tools are notably lacking. While
+ commercial software programs, like WAVE
+ (Dupont,
+ 2024), exist for membranes, and numerous publications discuss
+ techno-economic models for desalination
+ (El-Dessouky
+ & Ettouney, 2002) and brine treatment technologies
+ (Chen
+ et al., 2021;
+ Micari
+ et al., 2020;
+ Morgante
+ et al., 2022;
+ Panagopoulos,
+ 2021;
+ Poirier
+ et al., 2022;
+ Dimitrios
+ Xevgenos et al., 2015), there is a noticeable absence of
+ open-access simulation tools in the literature. The WaterTAP platform
+ (Energy,
+ 2024) offers an open-source library for modelling water
+ treatment technologies like reverse osmosis and electrodialysis. While
+ it provides valuable simulation capabilities, it mainly focuses on
+ desalination technologies and lacks several important brine treatment
+ technologies such as chemical precipitation and crystallization.
+
With the shift towards circular systems and integrated desalination
+ and brine treatment technologies for resource recovery, there is a
+ need for a unified tool. Our software, Desalsim addresses this need by
+ integrating a diverse range of technologies—reverse osmosis,
+ nanofiltration, multi-effect distillation, chemical precipitation,
+ eutectic freeze crystallization, electrodialysis, and thermal
+ crystallization—into a comprehensive platform. This platform not only
+ models these processes but also provides detailed techno-economic and
+ environmental analyses.
+
Though WaterTAP is powerful, it requires considerable expertise in
+ Python programming and numerical methods. Desalsim is designed to be
+ more accessible, making it easier for researchers without advanced
+ programming skills to perform simulations and analyze results. This
+ ease of use makes Desalsim particularly valuable for researchers
+ exploring desalination and brine treatment technologies. It is
+ especially useful when detailed techno-economic and environmental
+ assessments are required. The software provides a variety of examples
+ to help modellers design and evaluate different technical
+ configurations.
+
By offering transparent and accessible models, DesalSim aims to
+ enhance the credibility, repeatability, and comparability of
+ desalination studies, supporting informed design and decision-making
+ in the field of desalination and resource recovery.
+
+
+ Limitations
+
The proposed software is not designed to replace detailed physical
+ models or system dynamics approaches. For applications requiring
+ highly detailed process representations, the software may need to be
+ enhanced to provide more detailed results and optimization
+ opportunities. This work highlights that the proposed software is
+ particularly valuable for evaluating the integration of different
+ processes and preliminary designs, capturing the technical, economic,
+ and environmental impacts of technology integration.
+
+
+ Acknowledgements
+
The software was developed by Rodoula Ktori, with theoretical
+ support from all co-authors. Technological experts conducted the
+ validation of each simulation model for the respective technology:
+ Nanofiltration: Dionysia Diamantidou, Niels van Linden; Multi-effect
+ Distillation: Alessandro Trezzi; MF-PFR: Fabrizio Vassallo, Carmelo
+ Morgante, Andrea Cipollina; EDBM: Giovanni Virruso, Andrea Culcasi;
+ EFC: Marcos Rodriguez Pascual.
+
The technical process models were developed based on the report
+ from
+ (D.
+ Xevgenos et al., 2023) and the following literature
+ (Cassaro
+ et al., 2023;
+ Morgante
+ et al., 2022;
+ Nayar
+ et al., 2019). Then they were validated with experimental
+ results from
+ (Morgante
+ et al., 2024). The development of economic models were
+ influenced by
+ (Abraham
+ & Luthra, 2011;
+ Bilton
+ et al., 2011;
+ Choi
+ et al., 2015;
+ Kesieme
+ et al., 2013;
+ Peters
+ & Timmerhaus, 2003). The analysis and comparison were
+ developed based on
+ (Ktori
+ et al., 2024). Detailed mathematical descriptions of the
+ simulation equations and economic models are provided in the
+ Mathematical
+ Description.
+
This work was supported by the EU within the WATER MINING (Next
+ generation water-smart management systems: large scale demonstrations
+ for a circular economy and society) - Horizon 2020 research and
+ innovation programme under grant agreement No 869474.
+
+
+
+
+
+
+
+
+ AbrahamTinu
+ LuthraAmit
+
+ Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India
+
+ Elsevier
+ 2011
+ 268
+ 1-3
+ https://doi.org/10.1016/j.desal.2010.10.035
+ 10.1016/j.desal.2010.10.035
+ 238
+ 248
+
+
+
+
+
+ BiltonAmy M
+ WiesmanRichard
+ ArifAFM
+ ZubairSyed M
+ DubowskySteven
+
+ On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations
+
+ Elsevier
+ 2011
+ 36
+ 12
+ https://doi.org/10.1016/j.renene.2011.03.040
+ 10.1016/j.renene.2011.03.040
+ 3246
+ 3256
+
+
+
+
+
+ CassaroCalogero
+ VirrusoGiovanni
+ CulcasiAndrea
+ CipollinaAndrea
+ TamburiniAlessandro
+ MicaleGiorgio
+
+ Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale
+
+ ACS Publications
+ 2023
+ 11
+ 7
+ https://doi.org/10.1021/acssuschemeng.2c06636
+ 10.1021/acssuschemeng.2c06636
+ 2989
+ 3000
+
+
+
+
+
+ ChenQian
+ BurhanMuhammad
+ ShahzadMuhammad Wakil
+ YbyraiymkulDoskhan
+ AkhtarFaheem Hassan
+ LiYong
+ NgKim Choon
+
+ A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment
+
+ Elsevier
+ 2021
+ 502
+ https://doi.org/10.1016/j.desal.2020.114928
+ 10.1016/j.desal.2020.114928
+ 114928
+
+
+
+
+
+
+ ChoiYongjun
+ ChoHyeongrak
+ ShinYonghyun
+ JangYongsun
+ LeeSangho
+
+ Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis
+
+ MDPI
+ 2015
+ 6
+ 1
+ https://doi.10.3390/membranes6010003
+ 10.3390/membranes6010003
+ 3
+
+
+
+
+
+
+ El-DessoukyHisham T
+ EttouneyHisham Mohamed
+
+
+ Elsevier
+ 2002
+ 10.1016/B978-0-444-50810-2.50018-X
+
+
+
+
+
+ KesiemeUchenna K
+ MilneNicholas
+ AralHal
+ ChengChu Yong
+ DukeMikel
+
+ Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation
+
+ Elsevier
+ 2013
+ 323
+ https://doi.org/10.1016/j.desal.2013.03.033
+ 10.1016/j.desal.2013.03.033
+ 66
+ 74
+
+
+
+
+
+ MicariMarina
+ CipollinaA
+ TamburiniA
+ MoserM
+ BertschValentin
+ MicaleGiorgio
+
+ Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents
+
+ Elsevier
+ 2020
+ 270
+ https://doi.org/10.1016/j.jclepro.2020.122472
+ 10.1016/j.jclepro.2020.122472
+ 122472
+
+
+
+
+
+
+ MorganteC
+ VassalloF
+ XevgenosDimitris
+ CipollinaA
+ MicariM
+ TamburiniA
+ MicaleG
+
+ Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives
+
+ Elsevier
+ 2022
+ 542
+ https://doi.org/10.1016/j.desal.2022.116005
+ 10.1016/j.desal.2022.116005
+ 116005
+
+
+
+
+
+
+ NayarKishor G
+ FernandesJenifer
+ McGovernRonan K
+ DominguezKyle P
+ McCanceAdriene
+ Al-AnziBader S
+ others
+
+ Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production
+
+ Elsevier
+ 2019
+ 456
+ https://doi.org/10.1016/j.desal.2018.11.018
+ 10.1016/j.desal.2018.11.018
+ 97
+ 120
+
+
+
+
+
+ PanagopoulosArgyris
+
+ Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation
+
+ Elsevier
+ 2021
+ 9
+ 4
+ https://doi.org/10.1016/j.jece.2021.105338
+ 10.1016/j.jece.2021.105338
+ 105338
+
+
+
+
+
+
+ PetersMax Stone
+ TimmerhausKlaus D
+
+
+ McGraw-Hill Chemical Engineering Series
+ 2003
+ 5th
+
+
+
+
+
+ PoirierKristofer
+ Al MhannaNajah
+ PatchigollaKumar
+
+ Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge
+
+ MDPI
+ 2022
+ 9
+ 10
+ https://doi.org/10.3390/separations9100295
+ 10.3390/separations9100295
+ 295
+
+
+
+
+
+
+ XevgenosDimitrios
+ MichailidisP
+ DimopoulosKonstantinos
+ KrokidaM
+ LoizidouM
+
+ Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation
+
+ Taylor & Francis
+ 2015
+ 53
+ 12
+ https://doi.org/10.1080/19443994.2014.948660
+ 10.1080/19443994.2014.948660
+ 3407
+ 3417
+
+
+
+
+
+ MorganteC
+ VassalloF
+ CassaroC
+ VirrusoG
+ DiamantidouD
+ Van LindenN
+ TrezziA
+ XenogianniC
+ KtoriR
+ RodriguezM
+ others
+
+ Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island
+
+ Elsevier
+ 2024
+ https://doi.org/10.1016/j.desal.2024.117562
+ 10.1016/j.desal.2024.117562
+ 117562
+
+
+
+
+
+
+ XevgenosD.
+ KtoriR.
+ GilsE. van
+ DiamantidouD.
+ LindenN. van
+ VassaloF.
+ MorganteC.
+ CulcasiA.
+ Rodrigues PascualM.
+ AvramidiM.
+ TrezziA.
+ KrishnanA.
+ NautaJ. T.
+ CipollinaA.
+ MicaleG.
+
+ Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2
+ 2023
+ https://www.watermining.eu
+
+
+
+
+
+ Dupont
+
+ WAVE water treatment design software
+ 2024
+ https://www.dupont.com/water/resources/design-software.html
+
+
+
+
+
+ KtoriRodoula
+ ParadaMar Palmeros
+ Rodriguez-PascualMarcos
+ LoosdrechtMark CM van
+ XevgenosDimitrios
+
+ A value-sensitive approach for integrated seawater desalination and brine treatment
+
+ Elsevier
+ 2024
+ https://doi.org/10.1016/j.spc.2024.11.006
+ 10.1016/j.spc.2024.11.006
+
+
+
+
+
+ EnergyU. S. Dept. of
+
+ WaterTAP: An open-source water treatment model library (version 0.6)
+ 2024
+ https://github.com/watertap-org/watertap
+
+
+
+
+