diff --git a/joss.07062/10.21105.joss.07062.crossref.xml b/joss.07062/10.21105.joss.07062.crossref.xml new file mode 100644 index 000000000..2e75794df --- /dev/null +++ b/joss.07062/10.21105.joss.07062.crossref.xml @@ -0,0 +1,349 @@ + + + + 20241220233411-4511ba04ff6ef563b2f2dcf5dc646df444142ba0 + 20241220233411 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 12 + 2024 + + + 9 + + 104 + + + + Desalination and brine treatment systems integrated modelling framework: simulation and evaluation of water and resource recovery + + + + Rodoula + Ktori + + Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands + + + + Fabrizio + Vassallo + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Giovanni + Virruso + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Carmelo + Morgante + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Andrea + Culcasi + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Dionysia + Diamantidou + + Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The Netherlands + + + + Niels Van + Linden + + Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The Netherlands + + + + Alessandro + Trezzi + + Sofinter S.p.A, Piazza Francesco Buffoni, 3, 21013 Gallarate VA, Italy + + + + Adithya + Krishnan + + Water & Energy Intelligence BV, the Netherlands + + + + Andrea + Cipollina + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Giorgio + Micale + + Dipartimento di Ingegneria, Università degli Studi di Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + Mark C. M. + van Loosdrecht + + Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands + + + + Dimitrios + Xevgenos + + Technology Policy & Management faculty, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands + + + + + 12 + 20 + 2024 + + + 7062 + + + 10.21105/joss.07062 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.14499653 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/7062 + + + + 10.21105/joss.07062 + https://joss.theoj.org/papers/10.21105/joss.07062 + + + https://joss.theoj.org/papers/10.21105/joss.07062.pdf + + + + + + Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India + Abraham + Desalination + 1-3 + 268 + 10.1016/j.desal.2010.10.035 + 2011 + Abraham, T., & Luthra, A. (2011). Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India. Desalination, 268(1-3), 238–248. https://doi.org/10.1016/j.desal.2010.10.035 + + + On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations + Bilton + Renewable Energy + 12 + 36 + 10.1016/j.renene.2011.03.040 + 2011 + Bilton, A. M., Wiesman, R., Arif, A., Zubair, S. M., & Dubowsky, S. (2011). On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations. Renewable Energy, 36(12), 3246–3256. https://doi.org/10.1016/j.renene.2011.03.040 + + + Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale + Cassaro + ACS Sustainable Chemistry & Engineering + 7 + 11 + 10.1021/acssuschemeng.2c06636 + 2023 + Cassaro, C., Virruso, G., Culcasi, A., Cipollina, A., Tamburini, A., & Micale, G. (2023). Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale. ACS Sustainable Chemistry & Engineering, 11(7), 2989–3000. https://doi.org/10.1021/acssuschemeng.2c06636 + + + A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment + Chen + Desalination + 502 + 10.1016/j.desal.2020.114928 + 2021 + Chen, Q., Burhan, M., Shahzad, M. W., Ybyraiymkul, D., Akhtar, F. H., Li, Y., & Ng, K. C. (2021). A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment. Desalination, 502, 114928. https://doi.org/10.1016/j.desal.2020.114928 + + + Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis + Choi + Membranes + 1 + 6 + 10.3390/membranes6010003 + 2015 + Choi, Y., Cho, H., Shin, Y., Jang, Y., & Lee, S. (2015). Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis. Membranes, 6(1), 3. https://doi.org/10.3390/membranes6010003 + + + Fundamentals of Salt Water Desalination + El-Dessouky + 10.1016/B978-0-444-50810-2.50018-X + 2002 + El-Dessouky, H. T., & Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier. https://doi.org/10.1016/B978-0-444-50810-2.50018-X + + + Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation + Kesieme + Desalination + 323 + 10.1016/j.desal.2013.03.033 + 2013 + Kesieme, U. K., Milne, N., Aral, H., Cheng, C. Y., & Duke, M. (2013). Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 323, 66–74. https://doi.org/10.1016/j.desal.2013.03.033 + + + Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents + Micari + Journal of cleaner production + 270 + 10.1016/j.jclepro.2020.122472 + 2020 + Micari, M., Cipollina, A., Tamburini, A., Moser, M., Bertsch, V., & Micale, G. (2020). Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents. Journal of Cleaner Production, 270, 122472. https://doi.org/10.1016/j.jclepro.2020.122472 + + + Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives + Morgante + Desalination + 542 + 10.1016/j.desal.2022.116005 + 2022 + Morgante, C., Vassallo, F., Xevgenos, D., Cipollina, A., Micari, M., Tamburini, A., & Micale, G. (2022). Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives. Desalination, 542, 116005. https://doi.org/10.1016/j.desal.2022.116005 + + + Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production + Nayar + Desalination + 456 + 10.1016/j.desal.2018.11.018 + 2019 + Nayar, K. G., Fernandes, J., McGovern, R. K., Dominguez, K. P., McCance, A., Al-Anzi, B. S., & others. (2019). Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production. Desalination, 456, 97–120. https://doi.org/10.1016/j.desal.2018.11.018 + + + Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation + Panagopoulos + Journal of Environmental Chemical Engineering + 4 + 9 + 10.1016/j.jece.2021.105338 + 2021 + Panagopoulos, A. (2021). Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation. Journal of Environmental Chemical Engineering, 9(4), 105338. https://doi.org/10.1016/j.jece.2021.105338 + + + Plant design and economics for chemical engineers + Peters + 2003 + Peters, M. S., & Timmerhaus, K. D. (2003). Plant design and economics for chemical engineers (5th ed.). McGraw-Hill Chemical Engineering Series. + + + Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge + Poirier + Separations + 10 + 9 + 10.3390/separations9100295 + 2022 + Poirier, K., Al Mhanna, N., & Patchigolla, K. (2022). Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge. Separations, 9(10), 295. https://doi.org/10.3390/separations9100295 + + + Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation + Xevgenos + Desalination and Water Treatment + 12 + 53 + 10.1080/19443994.2014.948660 + 2015 + Xevgenos, D., Michailidis, P., Dimopoulos, K., Krokida, M., & Loizidou, M. (2015). Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation. Desalination and Water Treatment, 53(12), 3407–3417. https://doi.org/10.1080/19443994.2014.948660 + + + Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island + Morgante + Desalination + 10.1016/j.desal.2024.117562 + 2024 + Morgante, C., Vassallo, F., Cassaro, C., Virruso, G., Diamantidou, D., Van Linden, N., Trezzi, A., Xenogianni, C., Ktori, R., Rodriguez, M., & others. (2024). Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island. Desalination, 117562. https://doi.org/10.1016/j.desal.2024.117562 + + + Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2 + Xevgenos + 2023 + Xevgenos, D., Ktori, R., Gils, E. van, Diamantidou, D., Linden, N. van, Vassalo, F., Morgante, C., Culcasi, A., Rodrigues Pascual, M., Avramidi, M., Trezzi, A., Krishnan, A., Nauta, J. T., Cipollina, A., & Micale, G. (2023). Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2. https://www.watermining.eu + + + WAVE water treatment design software + Dupont + 2024 + Dupont. (2024). WAVE water treatment design software. https://www.dupont.com/water/resources/design-software.html + + + A value-sensitive approach for integrated seawater desalination and brine treatment + Ktori + Sustainable Production and Consumption + 10.1016/j.spc.2024.11.006 + 2024 + Ktori, R., Parada, M. P., Rodriguez-Pascual, M., Loosdrecht, M. C. van, & Xevgenos, D. (2024). A value-sensitive approach for integrated seawater desalination and brine treatment. Sustainable Production and Consumption. https://doi.org/10.1016/j.spc.2024.11.006 + + + WaterTAP: An open-source water treatment model library (version 0.6) + Energy + 2024 + Energy, U. S. Dept. of. (2024). WaterTAP: An open-source water treatment model library (version 0.6). https://github.com/watertap-org/watertap + + + + + + diff --git a/joss.07062/10.21105.joss.07062.pdf b/joss.07062/10.21105.joss.07062.pdf new file mode 100644 index 000000000..66dfba225 Binary files /dev/null and b/joss.07062/10.21105.joss.07062.pdf differ diff --git a/joss.07062/paper.jats/10.21105.joss.07062.jats b/joss.07062/paper.jats/10.21105.joss.07062.jats new file mode 100644 index 000000000..3af31cdba --- /dev/null +++ b/joss.07062/paper.jats/10.21105.joss.07062.jats @@ -0,0 +1,676 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +7062 +10.21105/joss.07062 + +Desalination and brine treatment systems integrated +modelling framework: simulation and evaluation of water and resource +recovery + + + + +Ktori +Rodoula + + + + + +Vassallo +Fabrizio + + + + + +Virruso +Giovanni + + + + + +Morgante +Carmelo + + + + + +Culcasi +Andrea + + + + + +Diamantidou +Dionysia + + + + + +Linden +Niels Van + + + + + +Trezzi +Alessandro + + + + + +Krishnan +Adithya + + + + + +Cipollina +Andrea + + + + + +Micale +Giorgio + + + + + +van Loosdrecht +Mark C. M. + + + + + +Xevgenos +Dimitrios + + + + + +Department of Biotechnology, Delft University of +Technology, Van der Maasweg 9, 2629 HZ, Delft, The +Netherlands + + + + +Dipartimento di Ingegneria, Università degli Studi di +Palermo - viale delle Scienze Ed.6, 90128 Palermo, Italy + + + + +Lenntech BV, Distributieweg 3, 2645 EG Delfgauw, The +Netherlands + + + + +Sofinter S.p.A, Piazza Francesco Buffoni, 3, 21013 +Gallarate VA, Italy + + + + +Water & Energy Intelligence BV, the +Netherlands + + + + +Technology Policy & Management faculty, Delft +University of Technology, Jaffalaan 5, 2628 BX Delft, The +Netherlands + + + +9 +104 +7062 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2024 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +Desalination +Brine treatment +resource recovery +Techno-economic assessment + + + + + + Summary +

Desalination plays a crucial role in addressing the growing + challenges of water scarcity. In recent years, the integration of + desalination and brine treatment technologies has been increasingly + studied, aiming to develop sustainable solutions for resource recovery + from seawater. However, designing treatment trains and optimizing + these processes for maximum efficiency, sustainability, and + cost-effectiveness are complex tasks that require data, sophisticated + analysis and decision-making strategies. Our software offers a + comprehensive modelling framework for simulating desalination and + mineral recovery systems. Integrating technical process models with + economic and environmental analysis provides valuable insights into + the integration of these technologies and their impact on production + efficiency, energy consumption, and environmental performance. Through + our software’s simulations, researchers, engineers, and policymakers + gain the power to evaluate the resource recovery potential, economics, + and greenhouse gas emissions associated with different configuration + combinations. This empowerment with crucial information for + early-stage design and strategic planning is a significant step toward + fostering more sustainable water management practices.

+
+ + Statement of need +

Traditionally, simulation models were developed to evaluate the + influence of certain parameters on the characteristics of the + recovered products and the performance of the technology in terms of + energy, chemicals, and water consumption. However, in the desalination + field, open-access simulation tools are notably lacking. While + commercial software programs, like WAVE + (Dupont, + 2024), exist for membranes, and numerous publications discuss + techno-economic models for desalination + (El-Dessouky + & Ettouney, 2002) and brine treatment technologies + (Chen + et al., 2021; + Micari + et al., 2020; + Morgante + et al., 2022; + Panagopoulos, + 2021; + Poirier + et al., 2022; + Dimitrios + Xevgenos et al., 2015), there is a noticeable absence of + open-access simulation tools in the literature. The WaterTAP platform + (Energy, + 2024) offers an open-source library for modelling water + treatment technologies like reverse osmosis and electrodialysis. While + it provides valuable simulation capabilities, it mainly focuses on + desalination technologies and lacks several important brine treatment + technologies such as chemical precipitation and crystallization.

+

With the shift towards circular systems and integrated desalination + and brine treatment technologies for resource recovery, there is a + need for a unified tool. Our software, Desalsim addresses this need by + integrating a diverse range of technologies—reverse osmosis, + nanofiltration, multi-effect distillation, chemical precipitation, + eutectic freeze crystallization, electrodialysis, and thermal + crystallization—into a comprehensive platform. This platform not only + models these processes but also provides detailed techno-economic and + environmental analyses.

+

Though WaterTAP is powerful, it requires considerable expertise in + Python programming and numerical methods. Desalsim is designed to be + more accessible, making it easier for researchers without advanced + programming skills to perform simulations and analyze results. This + ease of use makes Desalsim particularly valuable for researchers + exploring desalination and brine treatment technologies. It is + especially useful when detailed techno-economic and environmental + assessments are required. The software provides a variety of examples + to help modellers design and evaluate different technical + configurations.

+

By offering transparent and accessible models, DesalSim aims to + enhance the credibility, repeatability, and comparability of + desalination studies, supporting informed design and decision-making + in the field of desalination and resource recovery.

+
+ + Limitations +

The proposed software is not designed to replace detailed physical + models or system dynamics approaches. For applications requiring + highly detailed process representations, the software may need to be + enhanced to provide more detailed results and optimization + opportunities. This work highlights that the proposed software is + particularly valuable for evaluating the integration of different + processes and preliminary designs, capturing the technical, economic, + and environmental impacts of technology integration.

+
+ + Acknowledgements +

The software was developed by Rodoula Ktori, with theoretical + support from all co-authors. Technological experts conducted the + validation of each simulation model for the respective technology: + Nanofiltration: Dionysia Diamantidou, Niels van Linden; Multi-effect + Distillation: Alessandro Trezzi; MF-PFR: Fabrizio Vassallo, Carmelo + Morgante, Andrea Cipollina; EDBM: Giovanni Virruso, Andrea Culcasi; + EFC: Marcos Rodriguez Pascual.

+

The technical process models were developed based on the report + from + (D. + Xevgenos et al., 2023) and the following literature + (Cassaro + et al., 2023; + Morgante + et al., 2022; + Nayar + et al., 2019). Then they were validated with experimental + results from + (Morgante + et al., 2024). The development of economic models were + influenced by + (Abraham + & Luthra, 2011; + Bilton + et al., 2011; + Choi + et al., 2015; + Kesieme + et al., 2013; + Peters + & Timmerhaus, 2003). The analysis and comparison were + developed based on + (Ktori + et al., 2024). Detailed mathematical descriptions of the + simulation equations and economic models are provided in the + Mathematical + Description.

+

This work was supported by the EU within the WATER MINING (Next + generation water-smart management systems: large scale demonstrations + for a circular economy and society) - Horizon 2020 research and + innovation programme under grant agreement No 869474.

+
+ + + + + + + + AbrahamTinu + LuthraAmit + + Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India + Desalination + Elsevier + 2011 + 268 + 1-3 + https://doi.org/10.1016/j.desal.2010.10.035 + 10.1016/j.desal.2010.10.035 + 238 + 248 + + + + + + BiltonAmy M + WiesmanRichard + ArifAFM + ZubairSyed M + DubowskySteven + + On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations + Renewable Energy + Elsevier + 2011 + 36 + 12 + https://doi.org/10.1016/j.renene.2011.03.040 + 10.1016/j.renene.2011.03.040 + 3246 + 3256 + + + + + + CassaroCalogero + VirrusoGiovanni + CulcasiAndrea + CipollinaAndrea + TamburiniAlessandro + MicaleGiorgio + + Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale + ACS Sustainable Chemistry & Engineering + ACS Publications + 2023 + 11 + 7 + https://doi.org/10.1021/acssuschemeng.2c06636 + 10.1021/acssuschemeng.2c06636 + 2989 + 3000 + + + + + + ChenQian + BurhanMuhammad + ShahzadMuhammad Wakil + YbyraiymkulDoskhan + AkhtarFaheem Hassan + LiYong + NgKim Choon + + A Zero Liquid Discharge system integrating Multi-effect Distillation and Evaporative Crystallization for Desalination Brine Treatment + Desalination + Elsevier + 2021 + 502 + https://doi.org/10.1016/j.desal.2020.114928 + 10.1016/j.desal.2020.114928 + 114928 + + + + + + + ChoiYongjun + ChoHyeongrak + ShinYonghyun + JangYongsun + LeeSangho + + Economic evaluation of a hybrid desalination system combining Forward and Reverse Osmosis + Membranes + MDPI + 2015 + 6 + 1 + https://doi.10.3390/membranes6010003 + 10.3390/membranes6010003 + 3 + + + + + + + El-DessoukyHisham T + EttouneyHisham Mohamed + + Fundamentals of Salt Water Desalination + Elsevier + 2002 + 10.1016/B978-0-444-50810-2.50018-X + + + + + + KesiemeUchenna K + MilneNicholas + AralHal + ChengChu Yong + DukeMikel + + Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation + Desalination + Elsevier + 2013 + 323 + https://doi.org/10.1016/j.desal.2013.03.033 + 10.1016/j.desal.2013.03.033 + 66 + 74 + + + + + + MicariMarina + CipollinaA + TamburiniA + MoserM + BertschValentin + MicaleGiorgio + + Techno-economic Analysis of Integrated Processes for the Treatment and Valorisation of Neutral Coal Mine Effluents + Journal of cleaner production + Elsevier + 2020 + 270 + https://doi.org/10.1016/j.jclepro.2020.122472 + 10.1016/j.jclepro.2020.122472 + 122472 + + + + + + + MorganteC + VassalloF + XevgenosDimitris + CipollinaA + MicariM + TamburiniA + MicaleG + + Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives + Desalination + Elsevier + 2022 + 542 + https://doi.org/10.1016/j.desal.2022.116005 + 10.1016/j.desal.2022.116005 + 116005 + + + + + + + NayarKishor G + FernandesJenifer + McGovernRonan K + DominguezKyle P + McCanceAdriene + Al-AnziBader S + others + + Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production + Desalination + Elsevier + 2019 + 456 + https://doi.org/10.1016/j.desal.2018.11.018 + 10.1016/j.desal.2018.11.018 + 97 + 120 + + + + + + PanagopoulosArgyris + + Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation + Journal of Environmental Chemical Engineering + Elsevier + 2021 + 9 + 4 + https://doi.org/10.1016/j.jece.2021.105338 + 10.1016/j.jece.2021.105338 + 105338 + + + + + + + PetersMax Stone + TimmerhausKlaus D + + Plant design and economics for chemical engineers + McGraw-Hill Chemical Engineering Series + 2003 + 5th + + + + + + PoirierKristofer + Al MhannaNajah + PatchigollaKumar + + Techno-economic analysis of brine treatment by multi-crystallization separation process for zero liquid discharge + Separations + MDPI + 2022 + 9 + 10 + https://doi.org/10.3390/separations9100295 + 10.3390/separations9100295 + 295 + + + + + + + XevgenosDimitrios + MichailidisP + DimopoulosKonstantinos + KrokidaM + LoizidouM + + Design of an innovative vacuum evaporator system for brine concentration assisted by software tool simulation + Desalination and Water Treatment + Taylor & Francis + 2015 + 53 + 12 + https://doi.org/10.1080/19443994.2014.948660 + 10.1080/19443994.2014.948660 + 3407 + 3417 + + + + + + MorganteC + VassalloF + CassaroC + VirrusoG + DiamantidouD + Van LindenN + TrezziA + XenogianniC + KtoriR + RodriguezM + others + + Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island + Desalination + Elsevier + 2024 + https://doi.org/10.1016/j.desal.2024.117562 + 10.1016/j.desal.2024.117562 + 117562 + + + + + + + XevgenosD. + KtoriR. + GilsE. van + DiamantidouD. + LindenN. van + VassaloF. + MorganteC. + CulcasiA. + Rodrigues PascualM. + AvramidiM. + TrezziA. + KrishnanA. + NautaJ. T. + CipollinaA. + MicaleG. + + Deliverable 3.1 report on the design procedure including bench-scale tests for CS1 and CS2 + 2023 + https://www.watermining.eu + + + + + + Dupont + + WAVE water treatment design software + 2024 + https://www.dupont.com/water/resources/design-software.html + + + + + + KtoriRodoula + ParadaMar Palmeros + Rodriguez-PascualMarcos + LoosdrechtMark CM van + XevgenosDimitrios + + A value-sensitive approach for integrated seawater desalination and brine treatment + Sustainable Production and Consumption + Elsevier + 2024 + https://doi.org/10.1016/j.spc.2024.11.006 + 10.1016/j.spc.2024.11.006 + + + + + + EnergyU. S. Dept. of + + WaterTAP: An open-source water treatment model library (version 0.6) + 2024 + https://github.com/watertap-org/watertap + + + + +