diff --git a/joss.05610/10.21105.joss.05610.crossref.xml b/joss.05610/10.21105.joss.05610.crossref.xml
new file mode 100644
index 0000000000..a977e2e608
--- /dev/null
+++ b/joss.05610/10.21105.joss.05610.crossref.xml
@@ -0,0 +1,413 @@
+
+
+
+ 20240112T221014-ee78979829443840087bf1da0c3c99433a95de76
+ 20240112221014
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 01
+ 2024
+
+
+ 9
+
+ 93
+
+
+
+ cellanneal: A user-friendly deconvolution software for
+transcriptomics data
+
+
+
+ Lisa
+ Buchauer
+ https://orcid.org/0000-0002-4722-8390
+
+
+ Shalev
+ Itzkovitz
+ https://orcid.org/0000-0003-0685-2522
+
+
+
+ 01
+ 12
+ 2024
+
+
+ 5610
+
+
+ 10.21105/joss.05610
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.10405043
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5610
+
+
+
+ 10.21105/joss.05610
+ https://joss.theoj.org/papers/10.21105/joss.05610
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05610.pdf
+
+
+
+
+
+ Benchmarking of cell type deconvolution
+pipelines for transcriptomics data
+ Cobos
+ Nature communications
+ 1
+ 11
+ 10.1038/s41467-020-19015-1
+ 2020
+ Cobos, F. A., Alquicira-Hernandez,
+J., Powell, J. E., Mestdagh, P., & De Preter, K. (2020).
+Benchmarking of cell type deconvolution pipelines for transcriptomics
+data. Nature Communications, 11(1), 1–14.
+https://doi.org/10.1038/s41467-020-19015-1
+
+
+ Comprehensive evaluation of
+transcriptome-based cell-type quantification methods for
+immuno-oncology
+ Sturm
+ Bioinformatics
+ 14
+ 35
+ 10.1093/bioinformatics/btz363
+ 1367-4803
+ 2019
+ Sturm, G., Finotello, F., Petitprez,
+F., Zhang, J. D., Baumbach, J., Fridman, W. H., List, M., &
+Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based
+cell-type quantification methods for immuno-oncology. Bioinformatics,
+35(14), i436–i445.
+https://doi.org/10.1093/bioinformatics/btz363
+
+
+ Simultaneous enumeration of cancer and immune
+cell types from bulk tumor gene expression data
+ Racle
+ eLife
+ 6
+ 10.7554/eLife.26476
+ 2017
+ Racle, J., Jonge, K. de,
+Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous
+enumeration of cancer and immune cell types from bulk tumor gene
+expression data. eLife, 6, e26476.
+https://doi.org/10.7554/eLife.26476
+
+
+ Bulk tissue cell type deconvolution with
+multi-subject single-cell expression reference
+ Wang
+ Nature communications
+ 1
+ 10
+ 10.1038/s41467-018-08023-x
+ 2019
+ Wang, X., Park, J., Susztak, K.,
+Zhang, N. R., & Li, M. (2019). Bulk tissue cell type deconvolution
+with multi-subject single-cell expression reference. Nature
+Communications, 10(1), 1–9.
+https://doi.org/10.1038/s41467-018-08023-x
+
+
+ Likelihood-based deconvolution of bulk gene
+expression data using single-cell references
+ Erdmann-Pham
+ Genome Research
+ 10
+ 31
+ 10.1101/gr.272344.120
+ 2021
+ Erdmann-Pham, D. D., Fischer, J.,
+Hong, J., & Song, Y. S. (2021). Likelihood-based deconvolution of
+bulk gene expression data using single-cell references. Genome Research,
+31(10), 1794–1806.
+https://doi.org/10.1101/gr.272344.120
+
+
+ Accurate estimation of cell composition in
+bulk expression through robust integration of single-cell
+information
+ Jew
+ Nature communications
+ 1
+ 11
+ 10.1038/s41467-020-15816-6
+ 2020
+ Jew, B., Alvarez, M., Rahmani, E.,
+Miao, Z., Ko, A., Garske, K. M., Sul, J. H., Pietiläinen, K. H.,
+Pajukanta, P., & Halperin, E. (2020). Accurate estimation of cell
+composition in bulk expression through robust integration of single-cell
+information. Nature Communications, 11(1), 1–11.
+https://doi.org/10.1038/s41467-020-15816-6
+
+
+ Fast and robust deconvolution of tumor
+infiltrating lymphocyte from expression profiles using least trimmed
+squares
+ Hao
+ PLoS computational biology
+ 5
+ 15
+ 10.1371/journal.pcbi.1006976
+ 2019
+ Hao, Y., Yan, M., Heath, B. R., Lei,
+Y. L., & Xie, Y. (2019). Fast and robust deconvolution of tumor
+infiltrating lymphocyte from expression profiles using least trimmed
+squares. PLoS Computational Biology, 15(5), e1006976.
+https://doi.org/10.1371/journal.pcbi.1006976
+
+
+ Robust enumeration of cell subsets from
+tissue expression profiles
+ Newman
+ Nature methods
+ 5
+ 12
+ 10.1038/nmeth.3337
+ 2015
+ Newman, A. M., Liu, C. L., Green, M.
+R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., &
+Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue
+expression profiles. Nature Methods, 12(5), 453–457.
+https://doi.org/10.1038/nmeth.3337
+
+
+ Determining cell type abundance and
+expression from bulk tissues with digital cytometry
+ Newman
+ Nature biotechnology
+ 7
+ 37
+ 10.1038/s41587-019-0114-2
+ 2019
+ Newman, A. M., Steen, C. B., Liu, C.
+L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., Khodadoust, M. S.,
+Esfahani, M. S., Luca, B. A., Steiner, D., & others. (2019).
+Determining cell type abundance and expression from bulk tissues with
+digital cytometry. Nature Biotechnology, 37(7), 773–782.
+https://doi.org/10.1038/s41587-019-0114-2
+
+
+ AutoGeneS: Automatic gene selection using
+multi-objective optimization for RNA-seq deconvolution
+ Aliee
+ Cell Systems
+ 7
+ 12
+ 10.1016/j.cels.2021.05.006
+ 2405-4712
+ 2021
+ Aliee, H., & Theis, F. J. (2021).
+AutoGeneS: Automatic gene selection using multi-objective optimization
+for RNA-seq deconvolution. Cell Systems, 12(7), 706–715.e4.
+https://doi.org/10.1016/j.cels.2021.05.006
+
+
+ Comprehensive analyses of tumor immunity:
+Implications for cancer immunotherapy
+ Li
+ Genome biology
+ 1
+ 17
+ 10.1186/s13059-016-1028-7
+ 2016
+ Li, B., Severson, E., Pignon, J.-C.,
+Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J. C., Rodig,
+S., & others. (2016). Comprehensive analyses of tumor immunity:
+Implications for cancer immunotherapy. Genome Biology, 17(1), 1–16.
+https://doi.org/10.1186/s13059-016-1028-7
+
+
+ Global quantification of mammalian gene
+expression control
+ Schwanhäusser
+ Nature
+ 7347
+ 473
+ 10.1038/nature10098
+ 2011
+ Schwanhäusser, B., Busse, D., Li, N.,
+Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., & Selbach, M.
+(2011). Global quantification of mammalian gene expression control.
+Nature, 473(7347), 337–342.
+https://doi.org/10.1038/nature10098
+
+
+ Optimization by simulated
+annealing
+ Kirkpatrick
+ science
+ 4598
+ 220
+ 10.1126/science.220.4598.671
+ 1983
+ Kirkpatrick, S., Gelatt, C. D., &
+Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
+220(4598), 671–680.
+https://doi.org/10.1126/science.220.4598.671
+
+
+ SciPy 1.0: Fundamental Algorithms for
+Scientific Computing in Python
+ Virtanen
+ Nature Methods
+ 17
+ 10.1038/s41592-019-0686-2
+ 2020
+ Virtanen, P., Gommers, R., Oliphant,
+T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
+P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
+J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
+Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
+Algorithms for Scientific Computing in Python. Nature Methods, 17,
+261–272.
+https://doi.org/10.1038/s41592-019-0686-2
+
+
+ Array programming with NumPy
+ Harris
+ Nature
+ 7825
+ 585
+ 10.1038/s41586-020-2649-2
+ 2020
+ Harris, C. R., Millman, K. J., Walt,
+S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
+Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
+Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M.,
+Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.
+Nature, 585(7825), 357–362.
+https://doi.org/10.1038/s41586-020-2649-2
+
+
+ Pandas-dev/pandas: pandas
+ Pandas Development Team
+ 10.5281/zenodo.3509134
+ 2020
+ Pandas Development Team. (2020).
+Pandas-dev/pandas: pandas (latest). Zenodo.
+https://doi.org/10.5281/zenodo.3509134
+
+
+ Seaborn: Statistical data
+visualization
+ Waskom
+ Journal of Open Source
+Software
+ 60
+ 6
+ 10.21105/joss.03021
+ 2021
+ Waskom, M. L. (2021). Seaborn:
+Statistical data visualization. Journal of Open Source Software, 6(60),
+3021. https://doi.org/10.21105/joss.03021
+
+
+ Matplotlib: A 2D graphics
+environment
+ Hunter
+ Computing in Science &
+Engineering
+ 3
+ 9
+ 10.1109/MCSE.2007.55
+ 2007
+ Hunter, J. D. (2007). Matplotlib: A
+2D graphics environment. Computing in Science & Engineering, 9(3),
+90–95. https://doi.org/10.1109/MCSE.2007.55
+
+
+ Single-cell atlas of the human neonatal small
+intestine affected by necrotizing enterocolitis
+ Egozi
+ PloS Biology
+ 5
+ 21
+ 10.1371/journal.pbio.3002124
+ 2023
+ Egozi, A., Olaloye, O., Werner, L.,
+Silva, T., McCourt, B., Pierce, R. W., An, X., Wang, F., Chen, K.,
+Pober, J. S., & others. (2023). Single-cell atlas of the human
+neonatal small intestine affected by necrotizing enterocolitis. PloS
+Biology, 21(5), e3002124.
+https://doi.org/10.1371/journal.pbio.3002124
+
+
+ Terminal differentiation of villus-tip
+enterocytes is governed by distinct members of tgf\beta
+superfamily
+ Berková
+ bioRxiv
+ 10.1101/2022.11.11.516138
+ 2022
+ Berková, L., Fazilaty, H., Yang, Q.,
+Kubovčiak, J., Stastna, M., Hrckulak, D., Vojtechova, M., Brügger, M.
+D., Hausmann, G., Liberali, P., & others. (2022). Terminal
+differentiation of villus-tip enterocytes is governed by distinct
+members of tgf\beta superfamily. bioRxiv, 2022–2011.
+https://doi.org/10.1101/2022.11.11.516138
+
+
+ A single cell atlas of the human liver tumor
+microenvironment
+ Massalha
+ Mol. Syst. Biol.
+ 12
+ 16
+ 10.15252/msb.20209682
+ 2020
+ Massalha, H., Bahar Halpern, K.,
+Abu-Gazala, S., Jana, T., Massasa, E. E., Moor, A. E., Buchauer, L.,
+Rozenberg, M., Pikarsky, E., Amit, I., Zamir, G., & Itzkovitz, S.
+(2020). A single cell atlas of the human liver tumor microenvironment.
+Mol. Syst. Biol., 16(12), e9682.
+https://doi.org/10.15252/msb.20209682
+
+
+
+
+
+
diff --git a/joss.05610/10.21105.joss.05610.jats b/joss.05610/10.21105.joss.05610.jats
new file mode 100644
index 0000000000..d5b7b521d1
--- /dev/null
+++ b/joss.05610/10.21105.joss.05610.jats
@@ -0,0 +1,812 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5610
+10.21105/joss.05610
+
+cellanneal: A user-friendly
+deconvolution software for transcriptomics data
+
+
+
+https://orcid.org/0000-0002-4722-8390
+
+Buchauer
+Lisa
+
+
+
+*
+
+
+https://orcid.org/0000-0003-0685-2522
+
+Itzkovitz
+Shalev
+
+
+
+
+
+Department of Molecular Cell Biology, Weizmann Institute of
+Science, Rehovot, Israel
+
+
+
+
+Department of Infectious Diseases and Respiratory Medicine,
+Charité-Universitätsmedizin Berlin, Berlin, Germany
+
+
+
+
+* E-mail:
+
+
+12
+6
+2023
+
+9
+93
+5610
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+bioinformatics
+computational biology
+mixture deconvolution
+bulk deconvolution
+transcriptomics
+RNA sequencing
+omics methods
+
+
+
+
+
+ Summary
+
Single-cell sequencing methods enable precise characterization of
+ gene expression patterns in individual cells. However, they may
+ provide inaccurate information about the cell type composition of
+ samples, as required preprocessing procedures such as tissue
+ dissociation or cell sorting affect viability of different cell types
+ to varying extent
+ (Erdmann-Pham
+ et al., 2021). Further, especially in the clinical context,
+ single-cell sequencing of patient samples is currently not routinely
+ applied because of high cost and required expertise, while bulk
+ sequencing is more prevalent.
+
For these reasons, computational deconvolution methods are gaining
+ popularity in basic and clinical research. Computational deconvolution
+ approaches infer the cell type proportions constituting a given bulk
+ RNA sample based on separately obtained cell type reference data.
+ Several computational deconvolution methods have been developed in the
+ last decade and have contributed to our understanding of tissue
+ composition
+ (Cobos
+ et al., 2020;
+ Sturm
+ et al., 2019). Generally, during deconvolution, the
+ computational mixture is constructed from a set of cell type fractions
+ and reference gene expression vectors for each of the participating
+ cell types, most commonly derived from single-cell data. The cell type
+ fractions are then iteratively changed until agreement between the
+ in silico gene expression vector and the observed
+ bulk sample gene expression vector is optimal by a measure of choice.
+ Here, published methods rely almost exclusively on minimizing the sum
+ of squared residuals between bulk and computationally mixed vectors.
+ Algorithms for such optimization problems are readily available and
+ include variants of least squares regression (e.g. weighted least
+ squares regression
+ (Racle
+ et al., 2017), non-negative least squares regression
+ (Jew
+ et al., 2020;
+ Wang
+ et al., 2019) or least trimmed squares
+ (Hao
+ et al., 2019)) and support vector regression
+ (Newman
+ et al., 2015,
+ 2019).
+
However, least squares-based optimization is faced with a
+ particular challenge in bulk RNAseq deconvolution because of the
+ highly skewed nature of mRNA copy number distributions, ranging from
+ less than 1 to more than 10,000 average mRNA copies per cell
+ (Li
+ et al., 2016;
+ Schwanhäusser
+ et al., 2011). In such settings, optimization results may be
+ strongly influenced by few highly expressed genes and are thus not
+ robust to noise or platform effects influencing the readout of these
+ genes. Support vector regression based models like CIBERSORT
+ (Newman
+ et al., 2015) perform gene feature selection out of a
+ user-defined signature gene list, the contents of which can strongly
+ affect the cell proportion estimates. Overall, identifying the right
+ genes for deconvolution becomes a task in itself
+ (Aliee
+ & Theis, 2021). As a result, deconvolution methods may
+ yield inferred mixed gene expression vectors that do not correlate
+ well with measured bulk gene expression.
+
Here, we introduce cellanneal, a
+ python-based software for deconvolving bulk RNA sequencing data.
+ cellanneal relies on the optimization of
+ Spearman’s rank correlation coefficient between experimental and
+ computational mixture gene expression vectors using simulated
+ annealing. Transforming gene expression values into ranks prior to
+ optimization allows genes of different expression magnitudes to
+ contribute similarly to deconvolution; further,
+ cellanneal employs a permissive gene selection
+ procedure that includes as many informative genes as possible.
+ Together, these approaches limit the influence of highly expressed
+ genes on the one hand and reduce dependency on specific gene list
+ choices. cellanneal can be used as a python
+ package or via a command line interface, but importantly also provides
+ a simple graphical user interface which is distributed as a single
+ executable file for user convenience.
+
+
+ Statement of need
+
Making sense of bulk RNA sequencing datasets often requires
+ analysis of the cell type composition of the samples. This is
+ particularly relevant in clinical samples that analyze the
+ transcriptome of tissues or tumors which consist of epithelial,
+ stromal and immune cell types. In parallel, publicly available
+ single-cell data sets enable precise characterization of the
+ expression signature of multiple individual cell types. However,
+ software tools for computational bulk deconvolution are often slow,
+ non-robust and not easy to use. Some existing methods address the
+ aspect of user-friendliness by providing graphical web interfaces, but
+ submitting sensitive medical data to an external web server is not
+ always compatible with privacy legislation.
+
To address these challenges, we have developed
+ cellanneal, a deconvolution approach that uses
+ Spearman’s rank correlation coefficient between synthetic and bulk
+ gene expression vectors as the optimization procedure’s objective
+ function. Because this correlation measure is calculated from ranks
+ rather than absolute data values, each gene influences the
+ optimization result to a similar extent. Users are encouraged to
+ include as many informative genes as possible in the analysis.
+ cellanneal optimizes cell type fractions by
+ simulated annealing, a flexible, rapid and robust algorithm for global
+ optimization
+ (Kirkpatrick
+ et al., 1983;
+ Virtanen
+ et al., 2020). cellanneal can be used as
+ a python package, via its command line interface or via a
+ user-friendly graphical software which runs locally. Its typical
+ processing time for one mixture sample is below one minute on a
+ desktop machine (MacBook Pro 2020, 2.3 GHz Quad-Core Intel Core i7, 16
+ GB RAM).
+
+
+ Availability and Features
+
The python package and command line interface are available at
+ https://github.com/LiBuchauer/cellanneal
+ and can be installed using pip. The graphical
+ software for Microsoft Windows and MacOS can be downloaded at
+ http://shalevlab.weizmann.ac.il/resources
+ and does not require installation. Instructions for installation and
+ use as well as general documentation is available at
+ https://github.com/LiBuchauer/cellanneal.
+
The python package provides functions for the three main steps of a
+ deconvolution analysis with cellanneal:
+ identification of a gene set for deconvolution, deconvolution using
+ simulated annealing, and plotting the results. A quick start workflow
+ is available as part of the documentation. For the command line
+ interface and the graphical user interface, these three steps are
+ combined into one call (click).
+
cellanneal runs which were started from
+ either the command line or the graphical user interface produce a
+ collection of result files including tabular deconvolution results
+ (cell type fractions for each sample) and figures illustrating these
+ cell type distributions. Further, cellanneal
+ computes and stores the gene-wise fold change between the observed
+ bulk expression and the estimated expression based on the inferred
+ cell type composition. This enables identifying genes for which
+ expression may be specifically induced or inhibited in the bulk sample
+ compared to the single cell reference. Such genes may be of biological
+ or medical interest.
+ Figures produced by cellanneal include a
+ heatmap showing sample compositions
+ ([fig:heatmap]),
+ pie charts showing sample compositions
+ ([fig:pie]), and
+ scatter plots showing correlation between experimental bulk gene
+ expression values and their cellanneal-derived
+ counterparts from the best identified computational mixture
+ ([fig:scatter]).
+ The examples presented in this manuscript use data from
+ (Massalha
+ et al., 2020).
+
+
A heatmap produced by cellanneal.
+ Constituting cell types are on the y-axis, deconvolved bulk sample
+ names on the x-axis. The colour scale shows the fractional presence
+ of cell type in each
+ bulk.
+
+
+
+
Pie charts produced by
+ cellanneal. Each pie corresponds to one
+ deconvolved bulk sample from the input
+ data.
+
+
+
+
Gene correlation scatter plots produced by
+ cellanneal Each panel corresponds to one
+ deconvolved bulk sample from the input data. Each dot represents a
+ gene used during deconvolution. The x-axis shows the experimentally
+ measured expression of each gene after normalizing so that the total
+ count sum is 1. The y-axis shows the normalized expression of each
+ gene in the best identified synthetic bulk mixed from cell type
+ signature data
+ .
+
+
+
cellanneal relies on the python packages
+ scipy
+ (Virtanen
+ et al., 2020), numpy
+ (Harris
+ et al., 2020), pandas
+ (Pandas
+ Development Team, 2020), seaborn
+ (Waskom,
+ 2021) and matplotlib
+ (Hunter,
+ 2007).
+
+
+ Citations
+
Examples of published research projects using cellanneal include
+ (Egozi
+ et al., 2023) and
+ (Berková
+ et al., 2022).
+
+
+ Acknowledgements
+
We thank all members of the Itzkovitz lab for valuable feedback and
+ for testing the software.
+
L.B. was supported by the European Molecular Biology Organization
+ under EMBO Long-Term Fellowship ALTF 724-2019. S.I. is supported by
+ the Wolfson Family Charitable Trust, the Edmond de Rothschild
+ Foundations, the Fannie Sherr Fund, the Helen and Martin Kimmel
+ Institute for Stem Cell Research grant, the Minerva Stiftung grant,
+ the Israel Science Foundation grant No. 1486/16, the Broad
+ Institute‐Israel Science Foundation grant No. 2615/18, the European
+ Research Council (ERC) under the European Union’s Horizon 2020
+ research and innovation program grant No. 768956, the Chan Zuckerberg
+ Initiative grant No. CZF2019‐002434, the Bert L. and N. Kuggie Vallee
+ Foundation and the Howard Hughes Medical Institute (HHMI)
+ international research scholar award.
+
+
+
+
+
+
+
+ CobosFrancisco Avila
+ Alquicira-HernandezJosé
+ PowellJoseph E
+ MestdaghPieter
+ De PreterKatleen
+
+ Benchmarking of cell type deconvolution pipelines for transcriptomics data
+
+ Nature Publishing Group
+ 2020
+ 11
+ 1
+ 10.1038/s41467-020-19015-1
+ 1
+ 14
+
+
+
+
+
+ SturmGregor
+ FinotelloFrancesca
+ PetitprezFlorent
+ ZhangJitao David
+ BaumbachJan
+ FridmanWolf H
+ ListMarkus
+ AneichykTatsiana
+
+ Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology
+
+ 201907
+ 35
+ 14
+ 1367-4803
+ https://doi.org/10.1093/bioinformatics/btz363
+ 10.1093/bioinformatics/btz363
+ i436
+ i445
+
+
+
+
+
+ RacleJulien
+ JongeKaat de
+ BaumgaertnerPetra
+ SpeiserDaniel E
+ GfellerDavid
+
+ Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data
+
+ eLife Sciences Publications Limited
+ 2017
+ 6
+ 10.7554/eLife.26476
+ e26476
+
+
+
+
+
+
+ WangXuran
+ ParkJihwan
+ SusztakKatalin
+ ZhangNancy R
+ LiMingyao
+
+ Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
+
+ Nature Publishing Group
+ 2019
+ 10
+ 1
+ 10.1038/s41467-018-08023-x
+ 1
+ 9
+
+
+
+
+
+ Erdmann-PhamDan D
+ FischerJonathan
+ HongJustin
+ SongYun S
+
+ Likelihood-based deconvolution of bulk gene expression data using single-cell references
+
+ Cold Spring Harbor Lab
+ 2021
+ 31
+ 10
+ 10.1101/gr.272344.120
+ 1794
+ 1806
+
+
+
+
+
+ JewBrandon
+ AlvarezMarcus
+ RahmaniElior
+ MiaoZong
+ KoArthur
+ GarskeKristina M
+ SulJae Hoon
+ PietiläinenKirsi H
+ PajukantaPäivi
+ HalperinEran
+
+ Accurate estimation of cell composition in bulk expression through robust integration of single-cell information
+
+ Nature Publishing Group
+ 2020
+ 11
+ 1
+ 10.1038/s41467-020-15816-6
+ 1
+ 11
+
+
+
+
+
+ HaoYuning
+ YanMing
+ HeathBlake R
+ LeiYu L
+ XieYuying
+
+ Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares
+
+ Public Library of Science San Francisco, CA USA
+ 2019
+ 15
+ 5
+ 10.1371/journal.pcbi.1006976
+ e1006976
+
+
+
+
+
+
+ NewmanAaron M
+ LiuChih Long
+ GreenMichael R
+ GentlesAndrew J
+ FengWeiguo
+ XuYue
+ HoangChuong D
+ DiehnMaximilian
+ AlizadehAsh A
+
+ Robust enumeration of cell subsets from tissue expression profiles
+
+ Nature Publishing Group
+ 2015
+ 12
+ 5
+ 10.1038/nmeth.3337
+ 453
+ 457
+
+
+
+
+
+ NewmanAaron M
+ SteenChloé B
+ LiuChih Long
+ GentlesAndrew J
+ ChaudhuriAadel A
+ SchererFlorian
+ KhodadoustMichael S
+ EsfahaniMohammad S
+ LucaBogdan A
+ SteinerDavid
+ others
+
+ Determining cell type abundance and expression from bulk tissues with digital cytometry
+
+ Nature Publishing Group
+ 2019
+ 37
+ 7
+ 10.1038/s41587-019-0114-2
+ 773
+ 782
+
+
+
+
+
+ AlieeHananeh
+ TheisFabian J.
+
+ AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution
+
+ 2021
+ 12
+ 7
+ 2405-4712
+ https://www.sciencedirect.com/science/article/pii/S2405471221001927
+ 10.1016/j.cels.2021.05.006
+ 706
+ 715.e4
+
+
+
+
+
+ LiBo
+ SeversonEric
+ PignonJean-Christophe
+ ZhaoHaoquan
+ LiTaiwen
+ NovakJesse
+ JiangPeng
+ ShenHui
+ AsterJon C
+ RodigScott
+ others
+
+ Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy
+
+ BioMed Central
+ 2016
+ 17
+ 1
+ 10.1186/s13059-016-1028-7
+ 1
+ 16
+
+
+
+
+
+ SchwanhäusserBjörn
+ BusseDorothea
+ LiNa
+ DittmarGunnar
+ SchuchhardtJohannes
+ WolfJana
+ ChenWei
+ SelbachMatthias
+
+ Global quantification of mammalian gene expression control
+
+ Nature Publishing Group
+ 2011
+ 473
+ 7347
+ 10.1038/nature10098
+ 337
+ 342
+
+
+
+
+
+ KirkpatrickScott
+ GelattC Daniel
+ VecchiMario P
+
+ Optimization by simulated annealing
+
+ American association for the advancement of science
+ 1983
+ 220
+ 4598
+ 10.1126/science.220.4598.671
+ 671
+ 680
+
+
+
+
+
+ VirtanenPauli
+ GommersRalf
+ OliphantTravis E.
+ HaberlandMatt
+ ReddyTyler
+ CournapeauDavid
+ BurovskiEvgeni
+ PetersonPearu
+ WeckesserWarren
+ BrightJonathan
+ van der WaltStéfan J.
+ BrettMatthew
+ WilsonJoshua
+ MillmanK. Jarrod
+ MayorovNikolay
+ NelsonAndrew R. J.
+ JonesEric
+ KernRobert
+ LarsonEric
+ CareyC J
+ Polatİlhan
+ FengYu
+ MooreEric W.
+ VanderPlasJake
+ LaxaldeDenis
+ PerktoldJosef
+ CimrmanRobert
+ HenriksenIan
+ QuinteroE. A.
+ HarrisCharles R.
+ ArchibaldAnne M.
+ RibeiroAntônio H.
+ PedregosaFabian
+ van MulbregtPaul
+ SciPy 1.0 Contributors
+
+ SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
+
+ 2020
+ 17
+ 10.1038/s41592-019-0686-2
+ 261
+ 272
+
+
+
+
+
+ HarrisCharles R.
+ MillmanK. Jarrod
+ WaltStéfan J. van der
+ GommersRalf
+ VirtanenPauli
+ CournapeauDavid
+ WieserEric
+ TaylorJulian
+ BergSebastian
+ SmithNathaniel J.
+ KernRobert
+ PicusMatti
+ HoyerStephan
+ KerkwijkMarten H. van
+ BrettMatthew
+ HaldaneAllan
+ RíoJaime Fernández del
+ WiebeMark
+ PetersonPearu
+ Gérard-MarchantPierre
+ SheppardKevin
+ ReddyTyler
+ WeckesserWarren
+ AbbasiHameer
+ GohlkeChristoph
+ OliphantTravis E.
+
+ Array programming with NumPy
+
+ Springer Science; Business Media LLC
+ 202009
+ 585
+ 7825
+ https://doi.org/10.1038/s41586-020-2649-2
+ 10.1038/s41586-020-2649-2
+ 357
+ 362
+
+
+
+
+
+ Pandas Development Team
+
+ Pandas-dev/pandas: pandas
+ Zenodo
+ 202002
+ https://doi.org/10.5281/zenodo.3509134
+ 10.5281/zenodo.3509134
+
+
+
+
+
+ WaskomMichael L.
+
+ Seaborn: Statistical data visualization
+
+ The Open Journal
+ 2021
+ 6
+ 60
+ https://doi.org/10.21105/joss.03021
+ 10.21105/joss.03021
+ 3021
+
+
+
+
+
+
+ HunterJ. D.
+
+ Matplotlib: A 2D graphics environment
+
+ IEEE COMPUTER SOC
+ 2007
+ 9
+ 3
+ 10.1109/MCSE.2007.55
+ 90
+ 95
+
+
+
+
+
+ EgoziAdi
+ OlaloyeOluwabunmi
+ WernerLael
+ SilvaTatiana
+ McCourtBlake
+ PierceRichard W
+ AnXiaojing
+ WangFujing
+ ChenKong
+ PoberJordan S
+ others
+
+ Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis
+
+ Public Library of Science San Francisco, CA USA
+ 2023
+ 21
+ 5
+ 10.1371/journal.pbio.3002124
+ e3002124
+
+
+
+
+
+
+ BerkováLinda
+ FazilatyHassan
+ YangQiutan
+ KubovčiakJan
+ StastnaMonika
+ HrckulakDusan
+ VojtechovaMartina
+ BrüggerMichael David
+ HausmannGeorge
+ LiberaliPrisca
+ others
+
+ Terminal differentiation of villus-tip enterocytes is governed by distinct members of tgf\beta superfamily
+
+ Cold Spring Harbor Laboratory
+ 2022
+ 10.1101/2022.11.11.516138
+ 2022
+ 11
+
+
+
+
+
+ MassalhaHassan
+ Bahar HalpernKeren
+ Abu-GazalaSamir
+ JanaTamar
+ MassasaEfi E
+ MoorAndreas E
+ BuchauerLisa
+ RozenbergMilena
+ PikarskyEli
+ AmitIdo
+ ZamirGideon
+ ItzkovitzShalev
+
+ A single cell atlas of the human liver tumor microenvironment
+
+ 202012
+ 16
+ 12
+ 10.15252/msb.20209682
+ e9682
+
+
+
+
+
+
diff --git a/joss.05610/10.21105.joss.05610.pdf b/joss.05610/10.21105.joss.05610.pdf
new file mode 100644
index 0000000000..729c4dd24b
Binary files /dev/null and b/joss.05610/10.21105.joss.05610.pdf differ
diff --git a/joss.05610/media/heatmap_example.png b/joss.05610/media/heatmap_example.png
new file mode 100644
index 0000000000..050e1f19f0
Binary files /dev/null and b/joss.05610/media/heatmap_example.png differ
diff --git a/joss.05610/media/piechart_example.png b/joss.05610/media/piechart_example.png
new file mode 100644
index 0000000000..32d8b547de
Binary files /dev/null and b/joss.05610/media/piechart_example.png differ
diff --git a/joss.05610/media/scatter_example.png b/joss.05610/media/scatter_example.png
new file mode 100644
index 0000000000..dfd9fcd332
Binary files /dev/null and b/joss.05610/media/scatter_example.png differ