diff --git a/joss.05610/10.21105.joss.05610.crossref.xml b/joss.05610/10.21105.joss.05610.crossref.xml new file mode 100644 index 0000000000..a977e2e608 --- /dev/null +++ b/joss.05610/10.21105.joss.05610.crossref.xml @@ -0,0 +1,413 @@ + + + + 20240112T221014-ee78979829443840087bf1da0c3c99433a95de76 + 20240112221014 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 01 + 2024 + + + 9 + + 93 + + + + cellanneal: A user-friendly deconvolution software for +transcriptomics data + + + + Lisa + Buchauer + https://orcid.org/0000-0002-4722-8390 + + + Shalev + Itzkovitz + https://orcid.org/0000-0003-0685-2522 + + + + 01 + 12 + 2024 + + + 5610 + + + 10.21105/joss.05610 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10405043 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5610 + + + + 10.21105/joss.05610 + https://joss.theoj.org/papers/10.21105/joss.05610 + + + https://joss.theoj.org/papers/10.21105/joss.05610.pdf + + + + + + Benchmarking of cell type deconvolution +pipelines for transcriptomics data + Cobos + Nature communications + 1 + 11 + 10.1038/s41467-020-19015-1 + 2020 + Cobos, F. A., Alquicira-Hernandez, +J., Powell, J. E., Mestdagh, P., & De Preter, K. (2020). +Benchmarking of cell type deconvolution pipelines for transcriptomics +data. Nature Communications, 11(1), 1–14. +https://doi.org/10.1038/s41467-020-19015-1 + + + Comprehensive evaluation of +transcriptome-based cell-type quantification methods for +immuno-oncology + Sturm + Bioinformatics + 14 + 35 + 10.1093/bioinformatics/btz363 + 1367-4803 + 2019 + Sturm, G., Finotello, F., Petitprez, +F., Zhang, J. D., Baumbach, J., Fridman, W. H., List, M., & +Aneichyk, T. (2019). Comprehensive evaluation of transcriptome-based +cell-type quantification methods for immuno-oncology. Bioinformatics, +35(14), i436–i445. +https://doi.org/10.1093/bioinformatics/btz363 + + + Simultaneous enumeration of cancer and immune +cell types from bulk tumor gene expression data + Racle + eLife + 6 + 10.7554/eLife.26476 + 2017 + Racle, J., Jonge, K. de, +Baumgaertner, P., Speiser, D. E., & Gfeller, D. (2017). Simultaneous +enumeration of cancer and immune cell types from bulk tumor gene +expression data. eLife, 6, e26476. +https://doi.org/10.7554/eLife.26476 + + + Bulk tissue cell type deconvolution with +multi-subject single-cell expression reference + Wang + Nature communications + 1 + 10 + 10.1038/s41467-018-08023-x + 2019 + Wang, X., Park, J., Susztak, K., +Zhang, N. R., & Li, M. (2019). Bulk tissue cell type deconvolution +with multi-subject single-cell expression reference. Nature +Communications, 10(1), 1–9. +https://doi.org/10.1038/s41467-018-08023-x + + + Likelihood-based deconvolution of bulk gene +expression data using single-cell references + Erdmann-Pham + Genome Research + 10 + 31 + 10.1101/gr.272344.120 + 2021 + Erdmann-Pham, D. D., Fischer, J., +Hong, J., & Song, Y. S. (2021). Likelihood-based deconvolution of +bulk gene expression data using single-cell references. Genome Research, +31(10), 1794–1806. +https://doi.org/10.1101/gr.272344.120 + + + Accurate estimation of cell composition in +bulk expression through robust integration of single-cell +information + Jew + Nature communications + 1 + 11 + 10.1038/s41467-020-15816-6 + 2020 + Jew, B., Alvarez, M., Rahmani, E., +Miao, Z., Ko, A., Garske, K. M., Sul, J. H., Pietiläinen, K. H., +Pajukanta, P., & Halperin, E. (2020). Accurate estimation of cell +composition in bulk expression through robust integration of single-cell +information. Nature Communications, 11(1), 1–11. +https://doi.org/10.1038/s41467-020-15816-6 + + + Fast and robust deconvolution of tumor +infiltrating lymphocyte from expression profiles using least trimmed +squares + Hao + PLoS computational biology + 5 + 15 + 10.1371/journal.pcbi.1006976 + 2019 + Hao, Y., Yan, M., Heath, B. R., Lei, +Y. L., & Xie, Y. (2019). Fast and robust deconvolution of tumor +infiltrating lymphocyte from expression profiles using least trimmed +squares. PLoS Computational Biology, 15(5), e1006976. +https://doi.org/10.1371/journal.pcbi.1006976 + + + Robust enumeration of cell subsets from +tissue expression profiles + Newman + Nature methods + 5 + 12 + 10.1038/nmeth.3337 + 2015 + Newman, A. M., Liu, C. L., Green, M. +R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & +Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue +expression profiles. Nature Methods, 12(5), 453–457. +https://doi.org/10.1038/nmeth.3337 + + + Determining cell type abundance and +expression from bulk tissues with digital cytometry + Newman + Nature biotechnology + 7 + 37 + 10.1038/s41587-019-0114-2 + 2019 + Newman, A. M., Steen, C. B., Liu, C. +L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., Khodadoust, M. S., +Esfahani, M. S., Luca, B. A., Steiner, D., & others. (2019). +Determining cell type abundance and expression from bulk tissues with +digital cytometry. Nature Biotechnology, 37(7), 773–782. +https://doi.org/10.1038/s41587-019-0114-2 + + + AutoGeneS: Automatic gene selection using +multi-objective optimization for RNA-seq deconvolution + Aliee + Cell Systems + 7 + 12 + 10.1016/j.cels.2021.05.006 + 2405-4712 + 2021 + Aliee, H., & Theis, F. J. (2021). +AutoGeneS: Automatic gene selection using multi-objective optimization +for RNA-seq deconvolution. Cell Systems, 12(7), 706–715.e4. +https://doi.org/10.1016/j.cels.2021.05.006 + + + Comprehensive analyses of tumor immunity: +Implications for cancer immunotherapy + Li + Genome biology + 1 + 17 + 10.1186/s13059-016-1028-7 + 2016 + Li, B., Severson, E., Pignon, J.-C., +Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J. C., Rodig, +S., & others. (2016). Comprehensive analyses of tumor immunity: +Implications for cancer immunotherapy. Genome Biology, 17(1), 1–16. +https://doi.org/10.1186/s13059-016-1028-7 + + + Global quantification of mammalian gene +expression control + Schwanhäusser + Nature + 7347 + 473 + 10.1038/nature10098 + 2011 + Schwanhäusser, B., Busse, D., Li, N., +Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., & Selbach, M. +(2011). Global quantification of mammalian gene expression control. +Nature, 473(7347), 337–342. +https://doi.org/10.1038/nature10098 + + + Optimization by simulated +annealing + Kirkpatrick + science + 4598 + 220 + 10.1126/science.220.4598.671 + 1983 + Kirkpatrick, S., Gelatt, C. D., & +Vecchi, M. P. (1983). Optimization by simulated annealing. Science, +220(4598), 671–680. +https://doi.org/10.1126/science.220.4598.671 + + + SciPy 1.0: Fundamental Algorithms for +Scientific Computing in Python + Virtanen + Nature Methods + 17 + 10.1038/s41592-019-0686-2 + 2020 + Virtanen, P., Gommers, R., Oliphant, +T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, +P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, +J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., +Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental +Algorithms for Scientific Computing in Python. Nature Methods, 17, +261–272. +https://doi.org/10.1038/s41592-019-0686-2 + + + Array programming with NumPy + Harris + Nature + 7825 + 585 + 10.1038/s41586-020-2649-2 + 2020 + Harris, C. R., Millman, K. J., Walt, +S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., +Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., +Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., +Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. +Nature, 585(7825), 357–362. +https://doi.org/10.1038/s41586-020-2649-2 + + + Pandas-dev/pandas: pandas + Pandas Development Team + 10.5281/zenodo.3509134 + 2020 + Pandas Development Team. (2020). +Pandas-dev/pandas: pandas (latest). Zenodo. +https://doi.org/10.5281/zenodo.3509134 + + + Seaborn: Statistical data +visualization + Waskom + Journal of Open Source +Software + 60 + 6 + 10.21105/joss.03021 + 2021 + Waskom, M. L. (2021). Seaborn: +Statistical data visualization. Journal of Open Source Software, 6(60), +3021. https://doi.org/10.21105/joss.03021 + + + Matplotlib: A 2D graphics +environment + Hunter + Computing in Science & +Engineering + 3 + 9 + 10.1109/MCSE.2007.55 + 2007 + Hunter, J. D. (2007). Matplotlib: A +2D graphics environment. Computing in Science & Engineering, 9(3), +90–95. https://doi.org/10.1109/MCSE.2007.55 + + + Single-cell atlas of the human neonatal small +intestine affected by necrotizing enterocolitis + Egozi + PloS Biology + 5 + 21 + 10.1371/journal.pbio.3002124 + 2023 + Egozi, A., Olaloye, O., Werner, L., +Silva, T., McCourt, B., Pierce, R. W., An, X., Wang, F., Chen, K., +Pober, J. S., & others. (2023). Single-cell atlas of the human +neonatal small intestine affected by necrotizing enterocolitis. PloS +Biology, 21(5), e3002124. +https://doi.org/10.1371/journal.pbio.3002124 + + + Terminal differentiation of villus-tip +enterocytes is governed by distinct members of tgf\beta +superfamily + Berková + bioRxiv + 10.1101/2022.11.11.516138 + 2022 + Berková, L., Fazilaty, H., Yang, Q., +Kubovčiak, J., Stastna, M., Hrckulak, D., Vojtechova, M., Brügger, M. +D., Hausmann, G., Liberali, P., & others. (2022). Terminal +differentiation of villus-tip enterocytes is governed by distinct +members of tgf\beta superfamily. bioRxiv, 2022–2011. +https://doi.org/10.1101/2022.11.11.516138 + + + A single cell atlas of the human liver tumor +microenvironment + Massalha + Mol. Syst. Biol. + 12 + 16 + 10.15252/msb.20209682 + 2020 + Massalha, H., Bahar Halpern, K., +Abu-Gazala, S., Jana, T., Massasa, E. E., Moor, A. E., Buchauer, L., +Rozenberg, M., Pikarsky, E., Amit, I., Zamir, G., & Itzkovitz, S. +(2020). A single cell atlas of the human liver tumor microenvironment. +Mol. Syst. Biol., 16(12), e9682. +https://doi.org/10.15252/msb.20209682 + + + + + + diff --git a/joss.05610/10.21105.joss.05610.jats b/joss.05610/10.21105.joss.05610.jats new file mode 100644 index 0000000000..d5b7b521d1 --- /dev/null +++ b/joss.05610/10.21105.joss.05610.jats @@ -0,0 +1,812 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5610 +10.21105/joss.05610 + +cellanneal: A user-friendly +deconvolution software for transcriptomics data + + + +https://orcid.org/0000-0002-4722-8390 + +Buchauer +Lisa + + + +* + + +https://orcid.org/0000-0003-0685-2522 + +Itzkovitz +Shalev + + + + + +Department of Molecular Cell Biology, Weizmann Institute of +Science, Rehovot, Israel + + + + +Department of Infectious Diseases and Respiratory Medicine, +Charité-Universitätsmedizin Berlin, Berlin, Germany + + + + +* E-mail: + + +12 +6 +2023 + +9 +93 +5610 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +bioinformatics +computational biology +mixture deconvolution +bulk deconvolution +transcriptomics +RNA sequencing +omics methods + + + + + + Summary +

Single-cell sequencing methods enable precise characterization of + gene expression patterns in individual cells. However, they may + provide inaccurate information about the cell type composition of + samples, as required preprocessing procedures such as tissue + dissociation or cell sorting affect viability of different cell types + to varying extent + (Erdmann-Pham + et al., 2021). Further, especially in the clinical context, + single-cell sequencing of patient samples is currently not routinely + applied because of high cost and required expertise, while bulk + sequencing is more prevalent.

+

For these reasons, computational deconvolution methods are gaining + popularity in basic and clinical research. Computational deconvolution + approaches infer the cell type proportions constituting a given bulk + RNA sample based on separately obtained cell type reference data. + Several computational deconvolution methods have been developed in the + last decade and have contributed to our understanding of tissue + composition + (Cobos + et al., 2020; + Sturm + et al., 2019). Generally, during deconvolution, the + computational mixture is constructed from a set of cell type fractions + and reference gene expression vectors for each of the participating + cell types, most commonly derived from single-cell data. The cell type + fractions are then iteratively changed until agreement between the + in silico gene expression vector and the observed + bulk sample gene expression vector is optimal by a measure of choice. + Here, published methods rely almost exclusively on minimizing the sum + of squared residuals between bulk and computationally mixed vectors. + Algorithms for such optimization problems are readily available and + include variants of least squares regression (e.g. weighted least + squares regression + (Racle + et al., 2017), non-negative least squares regression + (Jew + et al., 2020; + Wang + et al., 2019) or least trimmed squares + (Hao + et al., 2019)) and support vector regression + (Newman + et al., 2015, + 2019).

+

However, least squares-based optimization is faced with a + particular challenge in bulk RNAseq deconvolution because of the + highly skewed nature of mRNA copy number distributions, ranging from + less than 1 to more than 10,000 average mRNA copies per cell + (Li + et al., 2016; + Schwanhäusser + et al., 2011). In such settings, optimization results may be + strongly influenced by few highly expressed genes and are thus not + robust to noise or platform effects influencing the readout of these + genes. Support vector regression based models like CIBERSORT + (Newman + et al., 2015) perform gene feature selection out of a + user-defined signature gene list, the contents of which can strongly + affect the cell proportion estimates. Overall, identifying the right + genes for deconvolution becomes a task in itself + (Aliee + & Theis, 2021). As a result, deconvolution methods may + yield inferred mixed gene expression vectors that do not correlate + well with measured bulk gene expression.

+

Here, we introduce cellanneal, a + python-based software for deconvolving bulk RNA sequencing data. + cellanneal relies on the optimization of + Spearman’s rank correlation coefficient between experimental and + computational mixture gene expression vectors using simulated + annealing. Transforming gene expression values into ranks prior to + optimization allows genes of different expression magnitudes to + contribute similarly to deconvolution; further, + cellanneal employs a permissive gene selection + procedure that includes as many informative genes as possible. + Together, these approaches limit the influence of highly expressed + genes on the one hand and reduce dependency on specific gene list + choices. cellanneal can be used as a python + package or via a command line interface, but importantly also provides + a simple graphical user interface which is distributed as a single + executable file for user convenience.

+
+ + Statement of need +

Making sense of bulk RNA sequencing datasets often requires + analysis of the cell type composition of the samples. This is + particularly relevant in clinical samples that analyze the + transcriptome of tissues or tumors which consist of epithelial, + stromal and immune cell types. In parallel, publicly available + single-cell data sets enable precise characterization of the + expression signature of multiple individual cell types. However, + software tools for computational bulk deconvolution are often slow, + non-robust and not easy to use. Some existing methods address the + aspect of user-friendliness by providing graphical web interfaces, but + submitting sensitive medical data to an external web server is not + always compatible with privacy legislation.

+

To address these challenges, we have developed + cellanneal, a deconvolution approach that uses + Spearman’s rank correlation coefficient between synthetic and bulk + gene expression vectors as the optimization procedure’s objective + function. Because this correlation measure is calculated from ranks + rather than absolute data values, each gene influences the + optimization result to a similar extent. Users are encouraged to + include as many informative genes as possible in the analysis. + cellanneal optimizes cell type fractions by + simulated annealing, a flexible, rapid and robust algorithm for global + optimization + (Kirkpatrick + et al., 1983; + Virtanen + et al., 2020). cellanneal can be used as + a python package, via its command line interface or via a + user-friendly graphical software which runs locally. Its typical + processing time for one mixture sample is below one minute on a + desktop machine (MacBook Pro 2020, 2.3 GHz Quad-Core Intel Core i7, 16 + GB RAM).

+
+ + Availability and Features +

The python package and command line interface are available at + https://github.com/LiBuchauer/cellanneal + and can be installed using pip. The graphical + software for Microsoft Windows and MacOS can be downloaded at + http://shalevlab.weizmann.ac.il/resources + and does not require installation. Instructions for installation and + use as well as general documentation is available at + https://github.com/LiBuchauer/cellanneal.

+

The python package provides functions for the three main steps of a + deconvolution analysis with cellanneal: + identification of a gene set for deconvolution, deconvolution using + simulated annealing, and plotting the results. A quick start workflow + is available as part of the documentation. For the command line + interface and the graphical user interface, these three steps are + combined into one call (click).

+

cellanneal runs which were started from + either the command line or the graphical user interface produce a + collection of result files including tabular deconvolution results + (cell type fractions for each sample) and figures illustrating these + cell type distributions. Further, cellanneal + computes and stores the gene-wise fold change between the observed + bulk expression and the estimated expression based on the inferred + cell type composition. This enables identifying genes for which + expression may be specifically induced or inhibited in the bulk sample + compared to the single cell reference. Such genes may be of biological + or medical interest. + Figures produced by cellanneal include a + heatmap showing sample compositions + ([fig:heatmap]), + pie charts showing sample compositions + ([fig:pie]), and + scatter plots showing correlation between experimental bulk gene + expression values and their cellanneal-derived + counterparts from the best identified computational mixture + ([fig:scatter]). + The examples presented in this manuscript use data from + (Massalha + et al., 2020).

+ +

A heatmap produced by cellanneal. + Constituting cell types are on the y-axis, deconvolved bulk sample + names on the x-axis. The colour scale shows the fractional presence + of cell type in each + bulk.

+ +
+ +

Pie charts produced by + cellanneal. Each pie corresponds to one + deconvolved bulk sample from the input + data.

+ +
+ +

Gene correlation scatter plots produced by + cellanneal Each panel corresponds to one + deconvolved bulk sample from the input data. Each dot represents a + gene used during deconvolution. The x-axis shows the experimentally + measured expression of each gene after normalizing so that the total + count sum is 1. The y-axis shows the normalized expression of each + gene in the best identified synthetic bulk mixed from cell type + signature data + .

+ +
+

cellanneal relies on the python packages + scipy + (Virtanen + et al., 2020), numpy + (Harris + et al., 2020), pandas + (Pandas + Development Team, 2020), seaborn + (Waskom, + 2021) and matplotlib + (Hunter, + 2007).

+
+ + Citations +

Examples of published research projects using cellanneal include + (Egozi + et al., 2023) and + (Berková + et al., 2022).

+
+ + Acknowledgements +

We thank all members of the Itzkovitz lab for valuable feedback and + for testing the software.

+

L.B. was supported by the European Molecular Biology Organization + under EMBO Long-Term Fellowship ALTF 724-2019. S.I. is supported by + the Wolfson Family Charitable Trust, the Edmond de Rothschild + Foundations, the Fannie Sherr Fund, the Helen and Martin Kimmel + Institute for Stem Cell Research grant, the Minerva Stiftung grant, + the Israel Science Foundation grant No. 1486/16, the Broad + Institute‐Israel Science Foundation grant No. 2615/18, the European + Research Council (ERC) under the European Union’s Horizon 2020 + research and innovation program grant No. 768956, the Chan Zuckerberg + Initiative grant No. CZF2019‐002434, the Bert L. and N. Kuggie Vallee + Foundation and the Howard Hughes Medical Institute (HHMI) + international research scholar award.

+
+ + + + + + + CobosFrancisco Avila + Alquicira-HernandezJosé + PowellJoseph E + MestdaghPieter + De PreterKatleen + + Benchmarking of cell type deconvolution pipelines for transcriptomics data + Nature communications + Nature Publishing Group + 2020 + 11 + 1 + 10.1038/s41467-020-19015-1 + 1 + 14 + + + + + + SturmGregor + FinotelloFrancesca + PetitprezFlorent + ZhangJitao David + BaumbachJan + FridmanWolf H + ListMarkus + AneichykTatsiana + + Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology + Bioinformatics + 201907 + 35 + 14 + 1367-4803 + https://doi.org/10.1093/bioinformatics/btz363 + 10.1093/bioinformatics/btz363 + i436 + i445 + + + + + + RacleJulien + JongeKaat de + BaumgaertnerPetra + SpeiserDaniel E + GfellerDavid + + Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data + eLife + eLife Sciences Publications Limited + 2017 + 6 + 10.7554/eLife.26476 + e26476 + + + + + + + WangXuran + ParkJihwan + SusztakKatalin + ZhangNancy R + LiMingyao + + Bulk tissue cell type deconvolution with multi-subject single-cell expression reference + Nature communications + Nature Publishing Group + 2019 + 10 + 1 + 10.1038/s41467-018-08023-x + 1 + 9 + + + + + + Erdmann-PhamDan D + FischerJonathan + HongJustin + SongYun S + + Likelihood-based deconvolution of bulk gene expression data using single-cell references + Genome Research + Cold Spring Harbor Lab + 2021 + 31 + 10 + 10.1101/gr.272344.120 + 1794 + 1806 + + + + + + JewBrandon + AlvarezMarcus + RahmaniElior + MiaoZong + KoArthur + GarskeKristina M + SulJae Hoon + PietiläinenKirsi H + PajukantaPäivi + HalperinEran + + Accurate estimation of cell composition in bulk expression through robust integration of single-cell information + Nature communications + Nature Publishing Group + 2020 + 11 + 1 + 10.1038/s41467-020-15816-6 + 1 + 11 + + + + + + HaoYuning + YanMing + HeathBlake R + LeiYu L + XieYuying + + Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares + PLoS computational biology + Public Library of Science San Francisco, CA USA + 2019 + 15 + 5 + 10.1371/journal.pcbi.1006976 + e1006976 + + + + + + + NewmanAaron M + LiuChih Long + GreenMichael R + GentlesAndrew J + FengWeiguo + XuYue + HoangChuong D + DiehnMaximilian + AlizadehAsh A + + Robust enumeration of cell subsets from tissue expression profiles + Nature methods + Nature Publishing Group + 2015 + 12 + 5 + 10.1038/nmeth.3337 + 453 + 457 + + + + + + NewmanAaron M + SteenChloé B + LiuChih Long + GentlesAndrew J + ChaudhuriAadel A + SchererFlorian + KhodadoustMichael S + EsfahaniMohammad S + LucaBogdan A + SteinerDavid + others + + Determining cell type abundance and expression from bulk tissues with digital cytometry + Nature biotechnology + Nature Publishing Group + 2019 + 37 + 7 + 10.1038/s41587-019-0114-2 + 773 + 782 + + + + + + AlieeHananeh + TheisFabian J. + + AutoGeneS: Automatic gene selection using multi-objective optimization for RNA-seq deconvolution + Cell Systems + 2021 + 12 + 7 + 2405-4712 + https://www.sciencedirect.com/science/article/pii/S2405471221001927 + 10.1016/j.cels.2021.05.006 + 706 + 715.e4 + + + + + + LiBo + SeversonEric + PignonJean-Christophe + ZhaoHaoquan + LiTaiwen + NovakJesse + JiangPeng + ShenHui + AsterJon C + RodigScott + others + + Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy + Genome biology + BioMed Central + 2016 + 17 + 1 + 10.1186/s13059-016-1028-7 + 1 + 16 + + + + + + SchwanhäusserBjörn + BusseDorothea + LiNa + DittmarGunnar + SchuchhardtJohannes + WolfJana + ChenWei + SelbachMatthias + + Global quantification of mammalian gene expression control + Nature + Nature Publishing Group + 2011 + 473 + 7347 + 10.1038/nature10098 + 337 + 342 + + + + + + KirkpatrickScott + GelattC Daniel + VecchiMario P + + Optimization by simulated annealing + science + American association for the advancement of science + 1983 + 220 + 4598 + 10.1126/science.220.4598.671 + 671 + 680 + + + + + + VirtanenPauli + GommersRalf + OliphantTravis E. + HaberlandMatt + ReddyTyler + CournapeauDavid + BurovskiEvgeni + PetersonPearu + WeckesserWarren + BrightJonathan + van der WaltStéfan J. + BrettMatthew + WilsonJoshua + MillmanK. Jarrod + MayorovNikolay + NelsonAndrew R. J. + JonesEric + KernRobert + LarsonEric + CareyC J + Polatİlhan + FengYu + MooreEric W. + VanderPlasJake + LaxaldeDenis + PerktoldJosef + CimrmanRobert + HenriksenIan + QuinteroE. A. + HarrisCharles R. + ArchibaldAnne M. + RibeiroAntônio H. + PedregosaFabian + van MulbregtPaul + SciPy 1.0 Contributors + + SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python + Nature Methods + 2020 + 17 + 10.1038/s41592-019-0686-2 + 261 + 272 + + + + + + HarrisCharles R. + MillmanK. Jarrod + WaltStéfan J. van der + GommersRalf + VirtanenPauli + CournapeauDavid + WieserEric + TaylorJulian + BergSebastian + SmithNathaniel J. + KernRobert + PicusMatti + HoyerStephan + KerkwijkMarten H. van + BrettMatthew + HaldaneAllan + RíoJaime Fernández del + WiebeMark + PetersonPearu + Gérard-MarchantPierre + SheppardKevin + ReddyTyler + WeckesserWarren + AbbasiHameer + GohlkeChristoph + OliphantTravis E. + + Array programming with NumPy + Nature + Springer Science; Business Media LLC + 202009 + 585 + 7825 + https://doi.org/10.1038/s41586-020-2649-2 + 10.1038/s41586-020-2649-2 + 357 + 362 + + + + + + Pandas Development Team + + Pandas-dev/pandas: pandas + Zenodo + 202002 + https://doi.org/10.5281/zenodo.3509134 + 10.5281/zenodo.3509134 + + + + + + WaskomMichael L. + + Seaborn: Statistical data visualization + Journal of Open Source Software + The Open Journal + 2021 + 6 + 60 + https://doi.org/10.21105/joss.03021 + 10.21105/joss.03021 + 3021 + + + + + + + HunterJ. D. + + Matplotlib: A 2D graphics environment + Computing in Science & Engineering + IEEE COMPUTER SOC + 2007 + 9 + 3 + 10.1109/MCSE.2007.55 + 90 + 95 + + + + + + EgoziAdi + OlaloyeOluwabunmi + WernerLael + SilvaTatiana + McCourtBlake + PierceRichard W + AnXiaojing + WangFujing + ChenKong + PoberJordan S + others + + Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis + PloS Biology + Public Library of Science San Francisco, CA USA + 2023 + 21 + 5 + 10.1371/journal.pbio.3002124 + e3002124 + + + + + + + BerkováLinda + FazilatyHassan + YangQiutan + KubovčiakJan + StastnaMonika + HrckulakDusan + VojtechovaMartina + BrüggerMichael David + HausmannGeorge + LiberaliPrisca + others + + Terminal differentiation of villus-tip enterocytes is governed by distinct members of tgf\beta superfamily + bioRxiv + Cold Spring Harbor Laboratory + 2022 + 10.1101/2022.11.11.516138 + 2022 + 11 + + + + + + MassalhaHassan + Bahar HalpernKeren + Abu-GazalaSamir + JanaTamar + MassasaEfi E + MoorAndreas E + BuchauerLisa + RozenbergMilena + PikarskyEli + AmitIdo + ZamirGideon + ItzkovitzShalev + + A single cell atlas of the human liver tumor microenvironment + Mol. Syst. Biol. + 202012 + 16 + 12 + 10.15252/msb.20209682 + e9682 + + + + + +
diff --git a/joss.05610/10.21105.joss.05610.pdf b/joss.05610/10.21105.joss.05610.pdf new file mode 100644 index 0000000000..729c4dd24b Binary files /dev/null and b/joss.05610/10.21105.joss.05610.pdf differ diff --git a/joss.05610/media/heatmap_example.png b/joss.05610/media/heatmap_example.png new file mode 100644 index 0000000000..050e1f19f0 Binary files /dev/null and b/joss.05610/media/heatmap_example.png differ diff --git a/joss.05610/media/piechart_example.png b/joss.05610/media/piechart_example.png new file mode 100644 index 0000000000..32d8b547de Binary files /dev/null and b/joss.05610/media/piechart_example.png differ diff --git a/joss.05610/media/scatter_example.png b/joss.05610/media/scatter_example.png new file mode 100644 index 0000000000..dfd9fcd332 Binary files /dev/null and b/joss.05610/media/scatter_example.png differ