diff --git a/joss.06194/10.21105.joss.06194.crossref.xml b/joss.06194/10.21105.joss.06194.crossref.xml new file mode 100644 index 0000000000..3e62f713b6 --- /dev/null +++ b/joss.06194/10.21105.joss.06194.crossref.xml @@ -0,0 +1,274 @@ + + + + 20240815151159-a9e5c8ebdb8d3cb7f7704bcd1d686fd13113ef8d + 20240815151159 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 08 + 2024 + + + 9 + + 100 + + + + mamonca: magnetic Monte Carlo code + + + + Osamu + Waseda + https://orcid.org/0000-0002-1677-4057 + + + Tilmann + Hickel + https://orcid.org/0000-0003-0698-4891 + + + Jörg + Neugebauer + https://orcid.org/0000-0002-7903-2472 + + + + 08 + 15 + 2024 + + + 6194 + + + 10.21105/joss.06194 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.13309692 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6194 + + + + 10.21105/joss.06194 + https://joss.theoj.org/papers/10.21105/joss.06194 + + + https://joss.theoj.org/papers/10.21105/joss.06194.pdf + + + + + + Uppsala atomistic spin dynamics user +guide + Hellsvik + 2011 + Hellsvik, J., Skubic, B., & +Taroni, A. (2011). Uppsala atomistic spin dynamics user +guide. + + + Atomistic spin model simulations of magnetic +nanomaterials + Evans + Journal of Physics: Condensed +Matter + 10 + 26 + 10.1088/0953-8984/26/10/103202 + 2014 + Evans, R. F., Fan, W. J., Chureemart, +P., Ostler, T. A., Ellis, M. O., & Chantrell, R. W. (2014). +Atomistic spin model simulations of magnetic nanomaterials. Journal of +Physics: Condensed Matter, 26(10), 103202. +https://doi.org/10.1088/0953-8984/26/10/103202 + + + TB2J: A python package for computing magnetic +interaction parameters + He + Computer Physics +Communications + 264 + 10.1016/j.cpc.2021.107938 + 2021 + He, X., Helbig, N., Verstraete, M. +J., & Bousquet, E. (2021). TB2J: A python package for computing +magnetic interaction parameters. Computer Physics Communications, 264, +107938. +https://doi.org/10.1016/j.cpc.2021.107938 + + + Quantum lattice model solver +h\Phi + Kawamura + Computer Physics +Communications + 217 + 10.1016/j.cpc.2017.04.006 + 2017 + Kawamura, M., Yoshimi, K., Misawa, +T., Yamaji, Y., Todo, S., & Kawashima, N. (2017). Quantum lattice +model solver h\Phi. Computer Physics Communications, 217, 180–192. +https://doi.org/10.1016/j.cpc.2017.04.006 + + + Le phénomène magnétocalorique + Weiss + J. Phys. Theor. Appl. + 1 + 7 + 10.1051/jphystap:019170070010300 + 1917 + Weiss, P., & Piccard, A. (1917). +Le phénomène magnétocalorique. J. Phys. Theor. Appl., 7(1), 103–109. +https://doi.org/10.1051/jphystap:019170070010300 + + + Ab initio calculation of phase boundaries in +iron along the bcc-fcc transformation path and magnetism of iron +overlayers + Friák + Physical Review B + 5 + 63 + 10.1103/PhysRevB.63.052405 + 2001 + Friák, M., Šob, M., & Vitek, V. +(2001). Ab initio calculation of phase boundaries in iron along the +bcc-fcc transformation path and magnetism of iron overlayers. Physical +Review B, 63(5), 052405. +https://doi.org/10.1103/PhysRevB.63.052405 + + + The ALPS project release 2.0: Open source +software for strongly correlated systems + Bauer + Journal of Statistical Mechanics: Theory and +Experiment + 05 + 2011 + 10.1088/1742-5468/2011/05/P05001 + 2011 + Bauer, B., Carr, L., Evertz, H. G., +Feiguin, A., Freire, J., Fuchs, S., Gamper, L., Gukelberger, J., Gull, +E., Guertler, S., & others. (2011). The ALPS project release 2.0: +Open source software for strongly correlated systems. Journal of +Statistical Mechanics: Theory and Experiment, 2011(05), P05001. +https://doi.org/10.1088/1742-5468/2011/05/P05001 + + + Understanding molecular simulation: From +algorithms to applications + Frenkel + 2023 + Frenkel, D., & Smit, B. (2023). +Understanding molecular simulation: From algorithms to applications. +Elsevier. + + + “Coarse” stability and bifurcation analysis +using time-steppers: A reaction-diffusion example + Theodoropoulos + Proceedings of the National Academy of +Sciences + 18 + 97 + 10.1073/pnas.97.18.9840 + 2000 + Theodoropoulos, C., Qian, Y.-H., +& Kevrekidis, I. G. (2000). “Coarse” stability and bifurcation +analysis using time-steppers: A reaction-diffusion example. Proceedings +of the National Academy of Sciences, 97(18), 9840–9843. +https://doi.org/10.1073/pnas.97.18.9840 + + + The atomic simulation environment—a python +library for working with atoms + Larsen + Journal of Physics: Condensed +Matter + 27 + 29 + 10.1088/1361-648X/aa680e + 2017 + Larsen, A. H., Mortensen, J. J., +Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., +Groves, M. N., Hammer, B., Hargus, C., & others. (2017). The atomic +simulation environment—a python library for working with atoms. Journal +of Physics: Condensed Matter, 29(27), 273002. +https://doi.org/10.1088/1361-648X/aa680e + + + Pyiron: An integrated development environment +for computational materials science + Janssen + Computational Materials +Science + 163 + 10.1016/j.commatsci.2018.07.043 + 2019 + Janssen, J., Surendralal, S., +Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R., & Neugebauer, +J. (2019). Pyiron: An integrated development environment for +computational materials science. Computational Materials Science, 163, +24–36. +https://doi.org/10.1016/j.commatsci.2018.07.043 + + + Ab initio based models for +temperature-dependent magnetochemical interplay in bcc fe-mn +alloys + Schneider + Physical Review B + 2 + 103 + 10.1103/PhysRevB.103.024421 + 2021 + Schneider, A., Fu, C.-C., Waseda, O., +Barreteau, C., & Hickel, T. (2021). Ab initio based models for +temperature-dependent magnetochemical interplay in bcc fe-mn alloys. +Physical Review B, 103(2), 024421. +https://doi.org/10.1103/PhysRevB.103.024421 + + + + + + diff --git a/joss.06194/10.21105.joss.06194.pdf b/joss.06194/10.21105.joss.06194.pdf new file mode 100644 index 0000000000..540e830e51 Binary files /dev/null and b/joss.06194/10.21105.joss.06194.pdf differ diff --git a/joss.06194/paper.jats/10.21105.joss.06194.jats b/joss.06194/paper.jats/10.21105.joss.06194.jats new file mode 100644 index 0000000000..dfc2a43d31 --- /dev/null +++ b/joss.06194/paper.jats/10.21105.joss.06194.jats @@ -0,0 +1,477 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6194 +10.21105/joss.06194 + +mamonca: magnetic Monte Carlo code + + + +https://orcid.org/0000-0002-1677-4057 + +Waseda +Osamu + + +* + + +https://orcid.org/0000-0003-0698-4891 + +Hickel +Tilmann + + + + +https://orcid.org/0000-0002-7903-2472 + +Neugebauer +Jörg + + + + + +Max-Planck-Institut für Eisenforschung, Max-Planck-Straße +1, D-40237 Düsseldorf, Germany + + + + +* E-mail: + + +1 +11 +2023 + +9 +100 +6194 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +Heisenberg-Landau model +Spin dynamics +Metadynamics +Thermodynamic integration + + + + + + Summary +

Magnetic interactions account for a significant portion of free + energy in certain materials, ranging from relatively simple systems + such as iron to complex magneto-caloric effects of Heusler alloys + (Weiss + & Piccard, 1917). More specifically, in the case of iron, + the ground state would be wrongly predicted without considering + magnetic interactions + (Friák + et al., 2001). In Heusler systems, the understanding of + magnetic properties could allow for the development of highly + efficient refrigeration systems. In materials science, the Heisenberg + model is frequently employed to heuristically compute the magnetic + part of the potential energy. There are two main methods to make use + of the Heisenberg model at finite temperature: one is the Monte Carlo + method for an efficient free energy minimization, the other is spin + dynamics for the calculation of spin configuration evolution. The + Monte Carlo method has the advantage of obtaining the free energy + rapidly, while spin dynamics also delivers the kinetics of the system. + mamonca allows for the evaluation of the + Heisenberg Hamiltonian with extended terms using both Monte Carlo + method and spin dynamics.

+
+ + Model +

mamonca is based on the Heisenberg Landau + model of the format:

+

+ + =12ij,κJij,κmi2κ+1mj2κ+1+i,κAi,κmi2κ

+

where + + i + and + + j + go over all atoms and + + κ + is the exponent ( + + κ=1 + and + + Ai,κ=0 + for all + + i + and + + κ + for the classical Heisenberg model) and + + mi + is the magnetic moment of the atom + + i. + These parameters can be set independently via + mamonca.set_landau_parameters for the + longitudinal parameters + + Ai,κ + and mamonca.set_heisenberg_parameters for the + Heisenberg parameters + + Jij,κ. + The evaluation takes place either via Metropolis Monte Carlo method or + spin dynamics. More technical details and simple examples are given in + notebooks/first_steps.ipynb.

+
+ + Statement of need +

mamonca is a C++-based python software + package for the computation of magnetic interactions in solid + materials. Its interactive and modular nature makes it for a user who + wants to obtain the magnetic behavior of simple to complex systems as + well as combining it with other tools on the fly. All inputs and + outputs are given by setters (starting with + set_) and getters (starting with + get_), in order for + mamonca to spare file-reading and writing, in + strong contrast to other existing software packages + (Bauer + et al., 2011; + Evans + et al., 2014; + Hellsvik + et al., 2011; + Kawamura + et al., 2017). As a result, it has excellent interactivity, as + the parameters can be changed on the fly, as well as the outputs can + be retrieved at any interval chosen by the user. With + mamonca, the user can analyse any structure + that can be defined by other software packages such as Atomic + Structure Environment (ASE) + (Larsen + et al., 2017) or pyiron + (Janssen + et al., 2019), as mamonca takes only the + exchange parameters and does not require the knowledge of the + structure, which is a strong contrast to existing software packages + (Bauer + et al., 2011; + Kawamura + et al., 2017). mamonca has also high + flexibility in defining the Hamiltonian, as it allows the user to + define not only the classical Heisenberg model, but higher order + components including the longitudinal variation, as it has been + employed for Fe-Mn systems + (Schneider + et al., 2021). In order to validate the code, a comparison of + results produced with mamonca with those + obtained in + (Schneider + et al., 2021) is given in the notebook + notebooks/first_steps.ipynb. The input + parameters for the Hamiltonian can be straightforwardly obtained using + a workflow tool such as pyiron, or other calculation software packages + such as TB2J + (He + et al., 2021). A typical workflow with pyiron would consist of + a general set of physical parameters (chemical element, lattice + parameter etc.), is given in the notebook + notebooks/first_steps.ipynb, which is then + evaluated by the software of user’s choice. The results can be + straightforwardly evaluated to obtain the exchange parameters with the + existing tools inside pyiron. Finally, mamonca + can run to deliver the finite temperature effects of the magnetic + part. A full workflow example including the acquisition of magnetic + interaction parameters is given in the notebook + notebooks/fitting.ipynb. This means, the user + in principle needs only to insert physical parameters to obtain the + magnetic finite temperature behaviour they are interested in. In + addition to the classical Monte Carlo and spin-dynamics, + mamonca allows also for an addition of + Metadynamics + (Theodoropoulos + et al., 2000) and magnetic thermodynamic integration (Chap. 9 + (Frenkel + & Smit, 2023)), which can deliver the free energy + variation. It is crucial to include these features within the code, as + they have to be applied at each step of the simulation and cannot be + evaluated in the post-processing. To authors’ knowledge, it is the + only one code that is able to run Monte Carlo calculations with + Metadynamics and magnetic thermodynamic integration. Both + thermodynamic integration and Metadynamics are shown in the notebook + notebooks/first_steps.ipynb for simple + systems.

+
+ + Acknowledgements +

We gratefully acknowledge the financial support from the German + Research Foundation (DFG) under grant HI 1300/15-1 within the DFG-ANR + project C-TRAM.

+
+ + + + + + + + HellsvikJohan + SkubicBjörn + TaroniAndrea + + Uppsala atomistic spin dynamics user guide + 2011 + + + + + + EvansRichard FL + FanWeijia J + ChureemartPhanwadee + OstlerThomas A + EllisMatthew OA + ChantrellRoy W + + Atomistic spin model simulations of magnetic nanomaterials + Journal of Physics: Condensed Matter + IOP Publishing + 2014 + 26 + 10 + 10.1088/0953-8984/26/10/103202 + 103202 + + + + + + + HeXu + HelbigNicole + VerstraeteMatthieu J + BousquetEric + + TB2J: A python package for computing magnetic interaction parameters + Computer Physics Communications + Elsevier + 2021 + 264 + 10.1016/j.cpc.2021.107938 + 107938 + + + + + + + KawamuraMitsuaki + YoshimiKazuyoshi + MisawaTakahiro + YamajiYouhei + TodoSynge + KawashimaNaoki + + Quantum lattice model solver h\Phi + Computer Physics Communications + Elsevier + 2017 + 217 + 10.1016/j.cpc.2017.04.006 + 180 + 192 + + + + + + WeissPierre + PiccardAuguste + + Le phénomène magnétocalorique + J. Phys. Theor. Appl. + 1917 + 7 + 1 + 10.1051/jphystap:019170070010300 + 103 + 109 + + + + + + FriákMartin + ŠobMojmı́r + VitekVaclav + + Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers + Physical Review B + APS + 2001 + 63 + 5 + 10.1103/PhysRevB.63.052405 + 052405 + + + + + + + BauerBela + CarrLD + EvertzHans Gerd + FeiguinAdrian + FreireJ + FuchsSebastian + GamperLukas + GukelbergerJan + GullEmanuel + GuertlerSiegfried + others + + The ALPS project release 2.0: Open source software for strongly correlated systems + Journal of Statistical Mechanics: Theory and Experiment + IOP Publishing + 2011 + 2011 + 05 + 10.1088/1742-5468/2011/05/P05001 + P05001 + + + + + + + FrenkelDaan + SmitBerend + + Understanding molecular simulation: From algorithms to applications + Elsevier + 2023 + + + + + + TheodoropoulosConstantinos + QianYue-Hong + KevrekidisIoannis G + + “Coarse” stability and bifurcation analysis using time-steppers: A reaction-diffusion example + Proceedings of the National Academy of Sciences + National Acad Sciences + 2000 + 97 + 18 + 10.1073/pnas.97.18.9840 + 9840 + 9843 + + + + + + LarsenAsk Hjorth + MortensenJens Jørgen + BlomqvistJakob + CastelliIvano E + ChristensenRune + DułakMarcin + FriisJesper + GrovesMichael N + HammerBjørk + HargusCory + others + + The atomic simulation environment—a python library for working with atoms + Journal of Physics: Condensed Matter + IOP Publishing + 2017 + 29 + 27 + 10.1088/1361-648X/aa680e + 273002 + + + + + + + JanssenJan + SurendralalSudarsan + LysogorskiyYury + TodorovaMira + HickelTilmann + DrautzRalf + NeugebauerJörg + + Pyiron: An integrated development environment for computational materials science + Computational Materials Science + Elsevier + 2019 + 163 + 10.1016/j.commatsci.2018.07.043 + 24 + 36 + + + + + + SchneiderAnton + FuChu-Chun + WasedaOsamu + BarreteauCyrille + HickelTilmann + + Ab initio based models for temperature-dependent magnetochemical interplay in bcc fe-mn alloys + Physical Review B + APS + 2021 + 103 + 2 + 10.1103/PhysRevB.103.024421 + 024421 + + + + + +