diff --git a/joss.06714/10.21105.joss.06714.crossref.xml b/joss.06714/10.21105.joss.06714.crossref.xml new file mode 100644 index 0000000000..4184c8c412 --- /dev/null +++ b/joss.06714/10.21105.joss.06714.crossref.xml @@ -0,0 +1,661 @@ + + + + 20240613160226-38764826cdc45d4001214b323eca0122a6a52e7f + 20240613160226 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 06 + 2024 + + + 9 + + 98 + + + + PAPRECA: A parallel hybrid off-lattice kinetic Monte +Carlo/molecular dynamics simulator + + + + Stavros + Ntioudis + https://orcid.org/0009-0000-8095-1727 + + + James P. + Ewen + https://orcid.org/0000-0001-5110-6970 + + + Daniele + Dini + https://orcid.org/0000-0002-5518-499X + + + C. Heath + Turner + https://orcid.org/0000-0002-5707-9480 + + + + 06 + 13 + 2024 + + + 6714 + + + 10.21105/joss.06714 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.11550493 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6714 + + + + 10.21105/joss.06714 + https://joss.theoj.org/papers/10.21105/joss.06714 + + + https://joss.theoj.org/papers/10.21105/joss.06714.pdf + + + + + + Papreca + Ntioudis + 2024 + Ntioudis, S., Ewen, J. P., Dini, D., +& Turner, C. H. (2024). Papreca. +https://github.com/sntioudis/papreca + + + A hybrid off-lattice kinetic Monte +Carlo/molecular dynamics method for amorphous thin film +growth + Ntioudis + Computational Materials +Science + 229 + 10.1016/j.commatsci.2023.112421 + 0927-0256 + 2023 + Ntioudis, S., Ewen, J. P., Dini, D., +& Turner, C. H. (2023). A hybrid off-lattice kinetic Monte +Carlo/molecular dynamics method for amorphous thin film growth. +Computational Materials Science, 229, 112421. +https://doi.org/10.1016/j.commatsci.2023.112421 + + + LAMMPS - a flexible simulation tool for +particle-based materials modeling at the atomic, meso, and continuum +scales + Thompson + Computational Physics +Communications + 271 + 10.1016/j.cpc.2021.108171 + 0010-4655 + 2022 + Thompson, A. P., Aktulga, H. M., +Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., In ’t +Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., +Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). +LAMMPS - a flexible simulation tool for particle-based materials +modeling at the atomic, meso, and continuum scales. Computational +Physics Communications, 271, 108171. +https://doi.org/10.1016/j.cpc.2021.108171 + + + Fast multiscale kinetic Monte Carlo +simulations of three-dimensional self-assembled quantum dot +islands + Zhu + Physical Review B + 20 + 75 + 10.1103/PhysRevB.75.205339 + 2469-9969 + 2007 + Zhu, R., Pan, E., & Chung, P. W. +(2007). Fast multiscale kinetic Monte Carlo simulations of +three-dimensional self-assembled quantum dot islands. Physical Review B, +75(20), 205339. +https://doi.org/10.1103/PhysRevB.75.205339 + + + Kinetically Corrected Monte CarloMolecular +Dynamics Simulations of Solid Electrolyte Interphase +Growth + Abbott + Journal of Chemical Theory and +Computation + 2 + 18 + 10.1021/acs.jctc.1c00921 + 1549-9618 + 2022 + Abbott, J. W., & Hanke, F. +(2022). Kinetically Corrected Monte CarloMolecular Dynamics Simulations +of Solid Electrolyte Interphase Growth. Journal of Chemical Theory and +Computation, 18(2), 925–934. +https://doi.org/10.1021/acs.jctc.1c00921 + + + The Kinetic Monte Carlo Method as a Way To +Solve the Master Equation for Interstellar Grain +Chemistry + Cuppen + Chemical Reviews + 12 + 113 + 10.1021/cr400234a + 0009-2665 + 2013 + Cuppen, H. M., Karssemeijer, L. J., +& Lamberts, T. (2013). The Kinetic Monte Carlo Method as a Way To +Solve the Master Equation for Interstellar Grain Chemistry. Chemical +Reviews, 113(12), 8840–8871. +https://doi.org/10.1021/cr400234a + + + Kinetic Monte Carlo simulation of titin +unfolding + Makarov + Journal of Chemical Physics + 21 + 114 + 10.1063/1.1369622 + 0021-9606 + 2001 + Makarov, D. E., Hansma, P. K., & +Metiu, H. (2001). Kinetic Monte Carlo simulation of titin unfolding. +Journal of Chemical Physics, 114(21), 9663–9673. +https://doi.org/10.1063/1.1369622 + + + A constant-time kinetic Monte Carlo algorithm +for simulation of large biochemical reaction networks + Slepoy + Journal of Chemical Physics + 20 + 128 + 10.1063/1.2919546 + 0021-9606 + 2008 + Slepoy, A., Thompson, A. P., & +Plimpton, S. J. (2008). A constant-time kinetic Monte Carlo algorithm +for simulation of large biochemical reaction networks. Journal of +Chemical Physics, 128(20). +https://doi.org/10.1063/1.2919546 + + + Massively parallel kinetic Monte Carlo +simulations of charge carrier transport in organic +semiconductors + Kaap + Journal of Computational +Physics + 307 + 10.1016/j.jcp.2015.12.001 + 0021-9991 + 2016 + Kaap, N. J. van der, & Koster, L. +J. A. (2016). Massively parallel kinetic Monte Carlo simulations of +charge carrier transport in organic semiconductors. Journal of +Computational Physics, 307, 321–332. +https://doi.org/10.1016/j.jcp.2015.12.001 + + + Unraveling the Complexity of Catalytic +Reactions via Kinetic Monte Carlo Simulation: Current Status and +Frontiers + Stamatakis + ACS Catalysis + 12 + 2 + 10.1021/cs3005709 + 2012 + Stamatakis, M., & Vlachos, D. G. +(2012). Unraveling the Complexity of Catalytic Reactions via Kinetic +Monte Carlo Simulation: Current Status and Frontiers. ACS Catalysis, +2(12), 2648–2663. +https://doi.org/10.1021/cs3005709 + + + Modeling the atomistic growth behavior of +gold nanoparticles in solution + Turner + Nanoscale + 17 + 8 + 10.1039/C6NR01881E + 2040-3364 + 2016 + Turner, C. H., Lei, Y., & Bao, Y. +(2016). Modeling the atomistic growth behavior of gold nanoparticles in +solution. Nanoscale, 8(17), 9354–9365. +https://doi.org/10.1039/C6NR01881E + + + Theoretical foundations of dynamical Monte +Carlo simulations + Fichthorn + Journal of Chemical Physics + 2 + 95 + 10.1063/1.461138 + 0021-9606 + 1991 + Fichthorn, K. A., & Weinberg, W. +H. (1991). Theoretical foundations of dynamical Monte Carlo simulations. +Journal of Chemical Physics, 95(2), 1090–1096. +https://doi.org/10.1063/1.461138 + + + A general method for numerically simulating +the stochastic time evolution of coupled chemical +reactions + Gillespie + Journal of Computational +Physics + 4 + 22 + 10.1016/0021-9991(76)90041-3 + 0021-9991 + 1976 + Gillespie, D. T. (1976). A general +method for numerically simulating the stochastic time evolution of +coupled chemical reactions. Journal of Computational Physics, 22(4), +403–434. +https://doi.org/10.1016/0021-9991(76)90041-3 + + + lattice\_mc: A Python Lattice-Gas Monte Carlo +Module + Morgan + Journal of Open Source +Software + 13 + 2 + 10.21105/joss.00247 + 2475-9066 + 2017 + Morgan, B. J. (2017). lattice\_mc: A +Python Lattice-Gas Monte Carlo Module. Journal of Open Source Software, +2(13), 247. https://doi.org/10.21105/joss.00247 + + + KMC\\\_Lattice v2.0: An Object-Oriented +C\\texttt\lbrace++\rbrace Library for Custom Kinetic Monte Carlo +Simulations + Heiber + Journal of Open Source +Software + 33 + 4 + 10.21105/joss.01168 + 2475-9066 + 2019 + Heiber, M. C. (2019). KMC\\\_Lattice +v2.0: An Object-Oriented C\\texttt\lbrace++\rbrace Library for Custom +Kinetic Monte Carlo Simulations. Journal of Open Source Software, 4(33), +1168. https://doi.org/10.21105/joss.01168 + + + Excimontec v1.0: An Open-Source Software Tool +for Kinetic Monte Carlo Simulations of Organic Electronic +Devices + Heiber + Journal of Open Source +Software + 53 + 5 + 10.21105/joss.02307 + 2475-9066 + 2020 + Heiber, M. C. (2020). Excimontec +v1.0: An Open-Source Software Tool for Kinetic Monte Carlo Simulations +of Organic Electronic Devices. Journal of Open Source Software, 5(53), +2307. https://doi.org/10.21105/joss.02307 + + + Parallel simulation via SPPARKS of on-lattice +kinetic and Metropolis Monte Carlo models for materials +processing + Mitchell + Modeling and Simulation in Materials Science +and Engineering + 5 + 31 + 10.1088/1361-651X/accc4b + 0965-0393 + 2023 + Mitchell, J. A., Abdeljawad, F., +Battaile, C., Garcia-Cardona, C., Holm, E. A., Homer, E. R., Madison, +J., Rodgers, T. M., Thompson, A. P., Tikare, V., Webb, E., & +Plimpton, S. J. (2023). Parallel simulation via SPPARKS of on-lattice +kinetic and Metropolis Monte Carlo models for materials processing. +Modeling and Simulation in Materials Science and Engineering, 31(5), +055001. https://doi.org/10.1088/1361-651X/accc4b + + + KMCLib: A general framework for lattice +kinetic Monte Carlo (KMC) simulations + Leetmaa + Computional Physics +Communications + 9 + 185 + 10.1016/j.cpc.2014.04.017 + 0010-4655 + 2014 + Leetmaa, M., & Skorodumova, N. V. +(2014). KMCLib: A general framework for lattice kinetic Monte Carlo +(KMC) simulations. Computional Physics Communications, 185(9), +2340–2349. +https://doi.org/10.1016/j.cpc.2014.04.017 + + + Kmcos: Kinetic monte carlo of +systems + Reuter + 2020 + Reuter, K., Savara, Aditya, Hoffmann, +M. J., Matera, S., Lorenzi, J. M., Andersen, M., Bajdich, M., & +Garhammer, Andreas. (2020). Kmcos: Kinetic monte carlo of systems. +https://github.com/kmcos/kmcos + + + Python-based Charge Dynamics +(PyCD) + Pasumarthi + 2017 + Pasumarthi, V. (2017). Python-based +Charge Dynamics (PyCD). +https://github.com/vpasumarthi/PyCD/ + + + KIMERA: A Kinetic Montecarlo Code for Mineral +Dissolution + Martin + Minerals + 9 + 10 + 10.3390/min10090825 + 2075-163X + 2020 + Martin, P., Gaitero, J. J., Dolado, +J. S., & Manzano, H. (2020). KIMERA: A Kinetic Montecarlo Code for +Mineral Dissolution. Minerals, 10(9), 825. +https://doi.org/10.3390/min10090825 + + + MonteCoffee: A programmable kinetic Monte +Carlo framework + Jørgensen + Journal of Chemical Physics + 11 + 149 + 10.1063/1.5046635 + 0021-9606 + 2018 + Jørgensen, M., & Grönbeck, H. +(2018). MonteCoffee: A programmable kinetic Monte Carlo framework. +Journal of Chemical Physics, 149(11). +https://doi.org/10.1063/1.5046635 + + + VIS-A-VIS: agent-based simulator of viral +infection spread and viral infection self-containment in a monolayer of +cell + Grabowski + 2022 + Grabowski, F., & Kochanczyk, M. +(2022). VIS-A-VIS: agent-based simulator of viral infection spread and +viral infection self-containment in a monolayer of cell. +https://github.com/grfrederic/visavis + + + MulSKIPS: A Kinetic Monte Carlo super-Lattice +code + Helleboid + 2021 + Helleboid, R. (2021). MulSKIPS: A +Kinetic Monte Carlo super-Lattice code. +https://github.com/MulSKIPS/MulSKIPS + + + Kimocs - Kinetic Monte Carlo for +Surfaces + Jansson + 2016 + Jansson, V. (2016). Kimocs - Kinetic +Monte Carlo for Surfaces. +https://gitlab.com/vjansson/Kimocs + + + KSOME: Kinetic Simulations of Microstructural +Evolution + Nandipati + 2021 + Nandipati, G. (2021). KSOME: Kinetic +Simulations of Microstructural Evolution. +https://gitlab.osti.gov/giridharnandipati/ksome + + + kMCpy: Kinetic Monte Carlo Simulation using +Python + Deng + 2022 + Deng, Z. (2022). kMCpy: Kinetic Monte +Carlo Simulation using Python. +https://github.com/caneparesearch/kMCpy + + + Morphokinetics + Alberdi + 2018 + Alberdi, J., & Albi, J. (2018). +Morphokinetics. +https://github.com/dipc-cc/Morphokinetics + + + EON: software for long time simulations of +atomic scale systems + Chill + Modeling and Simulation in Materials Science +and Engineering + 5 + 22 + 10.1088/0965-0393/22/5/055002 + 0965-0393 + 2014 + Chill, S. T., Welborn, M., Terrell, +R., Zhang, L., Berthet, J.-C., Pedersen, A., Jónsson, H., & +Henkelman, G. (2014). EON: software for long time simulations of atomic +scale systems. Modeling and Simulation in Materials Science and +Engineering, 22(5), 055002. +https://doi.org/10.1088/0965-0393/22/5/055002 + + + Long time scale kinetic Monte Carlo +simulations without lattice approximation and predefined event +table + Henkelman + Journal of Chemical Physics + 21 + 115 + 10.1063/1.1415500 + 0021-9606 + 2001 + Henkelman, G., & Jónsson, H. +(2001). Long time scale kinetic Monte Carlo simulations without lattice +approximation and predefined event table. Journal of Chemical Physics, +115(21), 9657–9666. +https://doi.org/10.1063/1.1415500 + + + A Practical Guide to Surface Kinetic Monte +Carlo Simulations + Andersen + Frontiers in Chemistry + 7 + 10.3389/fchem.2019.00202 + 2296-2646 + 2019 + Andersen, M., Panosetti, C., & +Reuter, K. (2019). A Practical Guide to Surface Kinetic Monte Carlo +Simulations. Frontiers in Chemistry, 7, 434159. +https://doi.org/10.3389/fchem.2019.00202 + + + Deformation in nanocrystalline +metals + Van Swygenhoven + Materials Today + 5 + 9 + 10.1016/S1369-7021(06)71494-8 + 1369-7021 + 2006 + Van Swygenhoven, H., & Weertman, +J. R. (2006). Deformation in nanocrystalline metals. Materials Today, +9(5), 24–31. +https://doi.org/10.1016/S1369-7021(06)71494-8 + + + py-MCMD: Python Software for Performing +Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and +NAMD + Barhaghi + Journal of Chemical Theory and +Computation + 8 + 18 + 10.1021/acs.jctc.1c00911 + 1549-9618 + 2022 + Barhaghi, M. S., Crawford, B., +Schwing, G., Hardy, D. J., Stone, J. E., Schwiebert, L., Potoff, J., +& Tajkhorshid, E. (2022). py-MCMD: Python Software for Performing +Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD. +Journal of Chemical Theory and Computation, 18(8), 4983–4994. +https://doi.org/10.1021/acs.jctc.1c00911 + + + Scalable molecular dynamics on CPU and GPU +architectures with NAMD + Phillips + Journal of Chemical Physics + 4 + 153 + 10.1063/5.0014475 + 0021-9606 + 2020 + Phillips, J. C., Hardy, D. J., Maia, +J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., +Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, +B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., +Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular +dynamics on CPU and GPU architectures with NAMD. Journal of Chemical +Physics, 153(4). +https://doi.org/10.1063/5.0014475 + + + GOMC: GPU Optimized Monte Carlo for the +simulation of phase equilibria and physical properties of complex +fluids + Nejahi + SoftwareX + 9 + 10.1016/j.softx.2018.11.005 + 2352-7110 + 2019 + Nejahi, Y., Barhaghi, M. S., Mick, +J., Jackman, B., Rushaidat, K., Li, Y., Schwiebert, L., & Potoff, J. +(2019). GOMC: GPU Optimized Monte Carlo for the simulation of phase +equilibria and physical properties of complex fluids. SoftwareX, 9, +20–27. +https://doi.org/10.1016/j.softx.2018.11.005 + + + Novel Configurational-Bias Monte Carlo Method +for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. +United-Atom Description of Branched Alkanes + Martin + Journal of Physical Chemistry +B + 21 + 103 + 10.1021/jp984742e + 1520-6106 + 1999 + Martin, M. G., & Siepmann, J. I. +(1999). Novel Configurational-Bias Monte Carlo Method for Branched +Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom +Description of Branched Alkanes. Journal of Physical Chemistry B, +103(21), 4508–4517. +https://doi.org/10.1021/jp984742e + + + Generalized Metropolis acceptance criterion +for hybrid non-equilibrium molecular dynamics—Monte Carlo +simulations + Chen + Journal of Chemical Physics + 2 + 142 + 10.1063/1.4904889 + 0021-9606 + 2015 + Chen, Y., & Roux, B. (2015). +Generalized Metropolis acceptance criterion for hybrid non-equilibrium +molecular dynamics—Monte Carlo simulations. Journal of Chemical Physics, +142(2). https://doi.org/10.1063/1.4904889 + + + + + + diff --git a/joss.06714/10.21105.joss.06714.pdf b/joss.06714/10.21105.joss.06714.pdf new file mode 100644 index 0000000000..cff30c38b0 Binary files /dev/null and b/joss.06714/10.21105.joss.06714.pdf differ diff --git a/joss.06714/paper.jats/10.21105.joss.06714.jats b/joss.06714/paper.jats/10.21105.joss.06714.jats new file mode 100644 index 0000000000..1482a91b19 --- /dev/null +++ b/joss.06714/paper.jats/10.21105.joss.06714.jats @@ -0,0 +1,1037 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6714 +10.21105/joss.06714 + +PAPRECA: A parallel hybrid off-lattice kinetic Monte +Carlo/molecular dynamics simulator + + + +https://orcid.org/0009-0000-8095-1727 + +Ntioudis +Stavros + + +* + + +https://orcid.org/0000-0001-5110-6970 + +Ewen +James P. + + + + +https://orcid.org/0000-0002-5518-499X + +Dini +Daniele + + + + +https://orcid.org/0000-0002-5707-9480 + +Turner +C. Heath + + + + + +Department of Mechanical Engineering, Imperial College +London, London, SW7 2BX, United Kingdom + + + + +Department of Chemical and Biological Engineering, +University of Alabama, Tuscaloosa, Alabama 35487, United States of +America + + + + +* E-mail: + + +25 +3 +2024 + +9 +98 +6714 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +C++ +Large-scale Atomic/Molecular Massively Parallel Simulator +(LAMMPS) +Message Passing Interface (MPI) +Computational Materials Science +Off-lattice kinetic Monte Carlo +Molecular Dynamics + + + + + + Summary +

Kinetic Monte Carlo (kMC) is an atomistic and stochastic simulation + technique that captures the temporal evolution of various systems in + materials science, chemistry, physics, biology, and engineering. + Several open-source kMC packages are currently distributed online. + Nevertheless, such implementations are typically lattice-based and are + mostly designed to study ordered, crystalline materials. In this work, + we present PArallel PREdefined CAtalog + (PAPRECA), an easy-to-use and completely + lattice-free open-source kMC software suitable for simulations on + amorphous materials or systems characterized by a low degree of + crystallinity. PAPRECA is a parallel C++ + software using the Message Passing Interface (MPI) protocol and + coupled with the Large-scale Atomic/Molecular Massively Parallel + Simulator (LAMMPS) + (Thompson + et al., 2022) to enable pure kMC runs as well as hybrid + kMC/Molecular Dynamics (MD) simulations.

+
+ + Statement of need +

KMC models have been deployed to investigate non-equilibrium + dynamics and properties of thin films + (Ntioudis + et al., 2023), nanoparticles + (Turner + et al., 2016), quantum dots + (Zhu + et al., 2007), semiconductors + (Kaap + & Koster, 2016), catalysts + (Stamatakis + & Vlachos, 2012), energy-storage devices + (Abbott + & Hanke, 2022), interstellar grain chemistry + (Cuppen + et al., 2013), protein folding + (Makarov + et al., 2001), and enzyme reactions + (Slepoy + et al., 2008). Overall, kMC techniques are, on one hand, less + accurate, but on the other hand, more computationally efficient than + MD. This is justified by the fact that kMC does not describe atomic + vibrations explicitly but evolves the system through discrete + elementary processes (e.g., diffusion, deposition, reactions etc.) + (Fichthorn + & Weinberg, 1991; + Gillespie, + 1976). In any case, the efficiency of kMC models unlocks the + possibility for long-timescale simulations with molecular-level + resolution beyond the timescales accessible to MD. Note that efficient + MD algorithms can be used to simulate systems with + + + 104- + + 106 + atoms from ps to + + μs + (Thompson + et al., 2022)).

+

Typically, on-lattice kMC models select atomistic events from a + predefined table and execute them on fixed lattice sites + (Andersen + et al., 2019). The use of fixed lattice sites contributes to + the computational efficiency of on-lattice algorithms but introduces + obstacles associated with the study of unordered materials. Several + lattice-based open-source kMC software are available, examples include + the KMCLib + (Leetmaa + & Skorodumova, 2014), lattice_mc + (Morgan, + 2017), KMC_Lattice v2.0 + (Heiber, + 2019), Excimontec v1.0 + (Heiber, + 2020), MonteCoffee + (Jørgensen + & Grönbeck, 2018), and KIMERA + (P. + Martin et al., 2020). Additionally, the Stochastic Parallel + PARticle Kinetic Simulator (SPPARKS) + (Mitchell + et al., 2023) offers solely on-lattice kMC modeling + capabilities, since the only currently available off-lattice solver is + a Metropolis Monte Carlo relaxation scheme. Furthermore, a wide range + of on-lattice kMC packages such as kmcos + (Reuter + et al., 2020), PyCD + (Pasumarthi, + 2017), VIS-A-VIS + (Grabowski + & Kochanczyk, 2022), MulSKIPS + (Helleboid, + 2021), Kimocs + (Jansson, + 2016), KSOME + (Nandipati, + 2021), kMCpy + (Deng, + 2022), and Morphokinetics + (Alberdi + & Albi, 2018) are available in open-source software + repositories.

+

EON + (Chill + et al., 2014) is the only identified off-lattice package + distributed under an open-source license. This is an Adaptive kinetic + Monte Carlo (AkMC) software that discovers as well as stores + atomic-scale processes (e.g., reactions, diffusion) throughout the + simulation instead of stochastically selecting transition events from + a predefined table + (Henkelman + & Jónsson, 2001). Such feature elevates the accuracy of + AkMC approaches but decreases their computational efficiency as well + as increases their implementation complexity compared to predefined + table kMC schemes.

+

To the best of our knowledge, a completely lattice-free kMC code + with predefined table of events is currently unavailable in + open-source repositories. PAPRECA aims to fill + that gap by providing the scientific community with a general and + easy-to-use solution for performing long-timescale atomistic + simulations on complex materials science, chemistry, physics, biology, + and engineering problems involving amorphous materials or + non-crystalline systems.

+

PAPRECA (in its initial version) is a + parallelized software (uses the MPI protocol) that can capture four + distinct classes of predefined transition events: 1) reactions + (bonding and scission), 2) deposition (of molecules and atoms), 3) + diffusion, and 4) monoatomic desorption. Virtually any system whose + temporal evolution can be described by these atomic-scale processes + can be effectively simulated by PAPRECA. + Example applications of PAPRECA include but are + not limited to: adsorption/desorption on catalytic surfaces, amorphous + thin films (e.g., phosphate films, solid electrolyte interphases, + oxide layers), and modeling self-diffusion of gases. Furthermore, + PAPRECA allows for the extension of the source + code to include other classes of transition events (e.g., reaction + chains).

+

For accurate simulations of molecular-level resolution, it becomes + necessary to model elementary steps of high frequency + ( + + 1013- + + 1014 + Hz and above + (Van + Swygenhoven & Weertman, 2006)) such as atomic vibrations. + These events cannot be explicitly included in the table of predefined + events because they would dominate the system, thus preventing the + simulation from reaching timescales beyond the limits of MD. This can + be explained by considering that the higher the rate of a predefined + elementary step, the greater its kMC selection probability + (Fichthorn + & Weinberg, 1991). To circumvent this issue, + PAPRECA couples an off-lattice kMC solver with + a MD solver (LAMMPS + (Thompson + et al., 2022)) to enable hybrid off-lattice kMC/MD simulations. + Effectively, atomistic processes of elevated activation energies are + captured via the off-lattice kMC stage, while fast atomic-scale + processes are treated by the MD stage.

+

py-MCMD + (Barhaghi + et al., 2022) is a different hybrid MC/MD workflow available in + open-source repositories. py-MCMD is a Python-based communication + interface between the MC software + GOMC(Nejahi + et al., 2019) and the MD code + NAMD(Phillips + et al., 2020). The central difference between + PAPRECA and py-MCMD is that the former + implements a kMC approach, while the latter utilizes a Metropolis + Monte Carlo (MMC) scheme. Effectively, in the kMC stage of + PAPRECA predefined event probabilities are + calculated based on their rates and an elementary process is selected + and executed to overcome a high energy barrier. On the other hand, + during the MC phase of py-MCMD, trial moves (e.g., rigid-body + displacements/rotations, intra-box swaps + (M. + G. Martin & Siepmann, 1999)) are attempted and accepted or + rejected based on the Metropolis acceptance criterion + (Chen + & Roux, 2015).

+
+ + Scalability of PAPRECA +

The scalability of PAPRECA was investigated + by performing hybrid kMC/MD simulations on thin films grown from the + decomposition of lubricant additive tricresyl phosphate (TCP) + molecules on an Fe(110) substrate. For further information regarding + the system setup refer to the + PAPRECA + documentation (Example Applications section) and our + previous study + (Ntioudis + et al., 2023).

+

Two independent scalability tests were performed. The first + scalability test was conducted locally, on a personal computer (CPU: + Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz, RAM: 128 Gb DDR4 + @ 3200 MHz). Four runs were performed with 1, + 4, 9, and 16 MPI processes, respectively. The local tests simulated + 1000 PAPRECA steps, with a + PAPRECA step comprising a kMC stage where a + predefined event is executed, followed by an MD stage where the system + is relaxed. The second scalability test was performed on the CX3 + cluster managed by the Research Computing Service at Imperial College + London (CPU: 2xAMD EPYC 7742 with 128 cores per node, RAM: 1TB per + node, interconnect: 100GbE ethernet). This scalability test was + conducted with the same parameters as the local one but with a + different number of total PAPRECA steps (i.e., + 9000 instead of 1000). Also, five runs were performed with 1, 4, 16, + 64, and 144 MPI processes. Since the phosphate thin film grew along + the z-direction of the simulation box, an NxNx1 processor grid (along + the x-, y-, and z-directions, respectively) was utilized for all local + and HPC tests. Figure + [scalability] + illustrates the results of both tests:

+ +

Hybrid kMC/MD scalability tests of PAPRECA for TCP on + Fe(110) conducted on a workstation (left) and on the CX3 cluster at + Imperial College. (right).

+ +
+

Where the speedup value of N MPI processes was calculated as + + + tN=T1TN, + with + + T1 + being the total walltime of 1 MPI process. For this specific system + (i.e., phosphates example), it can be observed that the kMC stage does + not scale as effectively as the MD stage (performed in LAMMPS). + Nonetheless, the total speedup (i.e., combined kMC and MD) of a hybrid + PAPRECA run is comparable to the MD stage + speedup. This can be justified by the fact that the kMC stages require + significantly less CPU time than the MD stages, regardless of the + number of MPI processes. For instance, the total walltimes of the kMC + and MD stages of the 64 MPI processes example (second scalability test + on the CX3 cluster) were 0.226 and 2.71 hours, respectively. Overall, + improving the scalability of the kMC stage will be prioritized in the + upcoming versions of PAPRECA.

+
+ + Data availability +

Scalability test data is available on our + software + repository + (Ntioudis + et al., 2024).

+
+ + Acknowledgements +

S.N., J.P.E., and D.D. thank Shell and the Engineering and Physical + Sciences Research Council, United Kingdom (EPSRC) for funding via the + InFUSE Prosperity Partnership (EP/V038044/1). J.P.E. acknowledges the + support of the Royal Academy of Engineering (RAEng) for support + through their Research Fellowship scheme. D.D. acknowledges a + Shell/RAEng Research Chair in Complex Engineering Interfaces. We + acknowledge computational resources and support provided by the + Imperial + College Research Computing Service.

+
+ + + + + + + + NtioudisStavros + EwenJames P. + DiniDaniele + TurnerC. Heath + + Papreca + 2024 + https://github.com/sntioudis/papreca + + + + + + NtioudisStavros + EwenJames P. + DiniDaniele + TurnerC. Heath + + A hybrid off-lattice kinetic Monte Carlo/molecular dynamics method for amorphous thin film growth + Computational Materials Science + Elsevier + 202310 + 229 + 0927-0256 + 10.1016/j.commatsci.2023.112421 + 112421 + + + + + + + ThompsonAidan P. + AktulgaH. Metin + BergerRichard + BolintineanuDan S. + BrownW. Michael + CrozierPaul S. + In ’t VeldPieter J. + KohlmeyerAxel + MooreStan G. + NguyenTrung Dac + ShanRay + StevensMark J. + TranchidaJulien + TrottChristian + PlimptonSteven J. + + LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales + Computational Physics Communications + North-Holland + 202202 + 271 + 0010-4655 + 10.1016/j.cpc.2021.108171 + 108171 + + + + + + + ZhuR. + PanE. + ChungP. W. + + Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands + Physical Review B + American Physical Society + 200705 + 75 + 20 + 2469-9969 + 10.1103/PhysRevB.75.205339 + 205339 + + + + + + + AbbottJoseph W. + HankeFelix + + Kinetically Corrected Monte CarloMolecular Dynamics Simulations of Solid Electrolyte Interphase Growth + Journal of Chemical Theory and Computation + American Chemical Society + 202202 + 18 + 2 + 1549-9618 + 10.1021/acs.jctc.1c00921 + 925 + 934 + + + + + + CuppenH. M. + KarssemeijerL. J. + LambertsT. + + The Kinetic Monte Carlo Method as a Way To Solve the Master Equation for Interstellar Grain Chemistry + Chemical Reviews + American Chemical Society + 201312 + 113 + 12 + 0009-2665 + 10.1021/cr400234a + 8840 + 8871 + + + + + + MakarovDmitrii E. + HansmaPaul K. + MetiuHoria + + Kinetic Monte Carlo simulation of titin unfolding + Journal of Chemical Physics + AIP Publishing + 200106 + 114 + 21 + 0021-9606 + 10.1063/1.1369622 + 9663 + 9673 + + + + + + SlepoyAlexander + ThompsonAidan P. + PlimptonSteven J. + + A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks + Journal of Chemical Physics + AIP Publishing + 200805 + 128 + 20 + 0021-9606 + 10.1063/1.2919546 + + + + + + KaapN. J. van der + KosterL. J. A. + + Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors + Journal of Computational Physics + Academic Press + 201602 + 307 + 0021-9991 + 10.1016/j.jcp.2015.12.001 + 321 + 332 + + + + + + StamatakisMichail + VlachosDionisios G. + + Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers + ACS Catalysis + American Chemical Society + 201212 + 2 + 12 + 10.1021/cs3005709 + 2648 + 2663 + + + + + + TurnerC. Heath + LeiYu + BaoYuping + + Modeling the atomistic growth behavior of gold nanoparticles in solution + Nanoscale + The Royal Society of Chemistry + 201604 + 8 + 17 + 2040-3364 + 10.1039/C6NR01881E + 9354 + 9365 + + + + + + FichthornKristen A. + WeinbergW. H. + + Theoretical foundations of dynamical Monte Carlo simulations + Journal of Chemical Physics + AIP Publishing + 199107 + 95 + 2 + 0021-9606 + 10.1063/1.461138 + 1090 + 1096 + + + + + + GillespieDaniel T. + + A general method for numerically simulating the stochastic time evolution of coupled chemical reactions + Journal of Computational Physics + Academic Press + 197612 + 22 + 4 + 0021-9991 + 10.1016/0021-9991(76)90041-3 + 403 + 434 + + + + + + MorganBenjamin J. + + lattice\_mc: A Python Lattice-Gas Monte Carlo Module + Journal of Open Source Software + 201705 + 2 + 13 + 2475-9066 + 10.21105/joss.00247 + 247 + + + + + + + HeiberMichael C. + + KMC\\\_Lattice v2.0: An Object-Oriented C\\texttt\lbrace++\rbrace Library for Custom Kinetic Monte Carlo Simulations + Journal of Open Source Software + 201901 + 4 + 33 + 2475-9066 + 10.21105/joss.01168 + 1168 + + + + + + + HeiberMichael C. + + Excimontec v1.0: An Open-Source Software Tool for Kinetic Monte Carlo Simulations of Organic Electronic Devices + Journal of Open Source Software + 202009 + 5 + 53 + 2475-9066 + 10.21105/joss.02307 + 2307 + + + + + + + MitchellJohn A. + AbdeljawadFadi + BattaileCorbett + Garcia-CardonaCristina + HolmElizabeth A. + HomerEric R. + MadisonJon + RodgersTheron M. + ThompsonAidan P. + TikareVeena + WebbEd + PlimptonSteven J. + + Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing + Modeling and Simulation in Materials Science and Engineering + IOP Publishing + 202305 + 31 + 5 + 0965-0393 + 10.1088/1361-651X/accc4b + 055001 + + + + + + + LeetmaaMikael + SkorodumovaNatalia V. + + KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations + Computional Physics Communications + North-Holland + 201409 + 185 + 9 + 0010-4655 + 10.1016/j.cpc.2014.04.017 + 2340 + 2349 + + + + + + ReuterKarsten + SavaraAditya + HoffmannMax J. + MateraSebastian + LorenziJuan M. + AndersenMie + BajdichMichal + GarhammerAndreas. + + Kmcos: Kinetic monte carlo of systems + 2020 + https://github.com/kmcos/kmcos + + + + + + PasumarthiViswanath + + Python-based Charge Dynamics (PyCD) + 2017 + https://github.com/vpasumarthi/PyCD/ + + + + + + MartinPablo + GaiteroJuan J. + DoladoJorge S. + ManzanoHegoi + + KIMERA: A Kinetic Montecarlo Code for Mineral Dissolution + Minerals + Multidisciplinary Digital Publishing Institute + 202009 + 10 + 9 + 2075-163X + 10.3390/min10090825 + 825 + + + + + + + JørgensenMikkel + GrönbeckHenrik + + MonteCoffee: A programmable kinetic Monte Carlo framework + Journal of Chemical Physics + AIP Publishing + 201809 + 149 + 11 + 0021-9606 + 10.1063/1.5046635 + + + + + + GrabowskiFrederic + KochanczykMarek + + VIS-A-VIS: agent-based simulator of viral infection spread and viral infection self-containment in a monolayer of cell + 2022 + https://github.com/grfrederic/visavis + + + + + + HelleboidRemi + + MulSKIPS: A Kinetic Monte Carlo super-Lattice code + 2021 + https://github.com/MulSKIPS/MulSKIPS + + + + + + JanssonVille + + Kimocs - Kinetic Monte Carlo for Surfaces + 2016 + https://gitlab.com/vjansson/Kimocs + + + + + + NandipatiGiridhar + + KSOME: Kinetic Simulations of Microstructural Evolution + 2021 + https://gitlab.osti.gov/giridharnandipati/ksome + + + + + + DengZeyu + + kMCpy: Kinetic Monte Carlo Simulation using Python + 2022 + https://github.com/caneparesearch/kMCpy + + + + + + AlberdiJoseba + AlbiJulen + + Morphokinetics + 2018 + https://github.com/dipc-cc/Morphokinetics + + + + + + ChillSamuel T. + WelbornMatthew + TerrellRye + ZhangLiang + BerthetJean-Claude + PedersenAndreas + JónssonHannes + HenkelmanGraeme + + EON: software for long time simulations of atomic scale systems + Modeling and Simulation in Materials Science and Engineering + IOP Publishing + 201405 + 22 + 5 + 0965-0393 + 10.1088/0965-0393/22/5/055002 + 055002 + + + + + + + HenkelmanGraeme + JónssonHannes + + Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table + Journal of Chemical Physics + AIP Publishing + 200112 + 115 + 21 + 0021-9606 + 10.1063/1.1415500 + 9657 + 9666 + + + + + + AndersenMie + PanosettiChiara + ReuterKarsten + + A Practical Guide to Surface Kinetic Monte Carlo Simulations + Frontiers in Chemistry + Frontiers + 201904 + 7 + 2296-2646 + 10.3389/fchem.2019.00202 + 434159 + + + + + + + Van SwygenhovenHelena + WeertmanJulia R. + + Deformation in nanocrystalline metals + Materials Today + Elsevier + 200605 + 9 + 5 + 1369-7021 + 10.1016/S1369-7021(06)71494-8 + 24 + 31 + + + + + + BarhaghiMohammad Soroush + CrawfordBrad + SchwingGregory + HardyDavid J. + StoneJohn E. + SchwiebertLoren + PotoffJeffrey + TajkhorshidEmad + + py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD + Journal of Chemical Theory and Computation + American Chemical Society + 202208 + 18 + 8 + 1549-9618 + 10.1021/acs.jctc.1c00911 + 4983 + 4994 + + + + + + PhillipsJames C. + HardyDavid J. + MaiaJulio D. C. + StoneJohn E. + RibeiroJoão V. + BernardiRafael C. + BuchRonak + FiorinGiacomo + HéninJérôme + JiangWei + McGreevyRyan + MeloMarcelo C. R. + RadakBrian K. + SkeelRobert D. + SingharoyAbhishek + WangYi + RouxBenoı̂t + AksimentievAleksei + Luthey-SchultenZaida + KaléLaxmikant V. + SchultenKlaus + ChipotChristophe + TajkhorshidEmad + + Scalable molecular dynamics on CPU and GPU architectures with NAMD + Journal of Chemical Physics + AIP Publishing + 202007 + 153 + 4 + 0021-9606 + 10.1063/5.0014475 + + + + + + NejahiYounes + BarhaghiMohammad Soroush + MickJason + JackmanBrock + RushaidatKamel + LiYuanzhe + SchwiebertLoren + PotoffJeffrey + + GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids + SoftwareX + 2019 + 9 + 2352-7110 + https://www.sciencedirect.com/science/article/pii/S2352711018301171 + 10.1016/j.softx.2018.11.005 + 20 + 27 + + + + + + MartinMarcus G. + SiepmannJ. Ilja + + Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes + Journal of Physical Chemistry B + American Chemical Society + 199905 + 103 + 21 + 1520-6106 + 10.1021/jp984742e + 4508 + 4517 + + + + + + ChenYunjie + RouxBenoı̂t + + Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations + Journal of Chemical Physics + AIP Publishing + 201501 + 142 + 2 + 0021-9606 + 10.1063/1.4904889 + + + + +
diff --git a/joss.06714/paper.jats/scalability.jpg b/joss.06714/paper.jats/scalability.jpg new file mode 100644 index 0000000000..446435e971 Binary files /dev/null and b/joss.06714/paper.jats/scalability.jpg differ