diff --git a/joss.06346/10.21105.joss.06346.crossref.xml b/joss.06346/10.21105.joss.06346.crossref.xml
new file mode 100644
index 0000000000..5d509fa23e
--- /dev/null
+++ b/joss.06346/10.21105.joss.06346.crossref.xml
@@ -0,0 +1,602 @@
+
+
+
+ 20240718234024-9422a33353cc0e3b1ed4567df8ac8fc285a37baf
+ 20240718234024
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 07
+ 2024
+
+
+ 9
+
+ 99
+
+
+
+ TelescopeML – I. An End-to-End Python Package for
+Interpreting Telescope Datasets through Training Machine Learning
+Models, Generating Statistical Reports, and Visualizing Results
+
+
+
+ Ehsan (Sam)
+ Gharib-Nezhad
+ https://orcid.org/0000-0002-4088-7262
+
+
+ Natasha E.
+ Batalha
+ https://orcid.org/0000-0003-1240-6844
+
+
+ Hamed
+ Valizadegan
+ https://orcid.org/0000-0001-6732-0840
+
+
+ Miguel J. S.
+ Martinho
+ https://orcid.org/0000-0002-2188-0807
+
+
+ Mahdi
+ Habibi
+ https://orcid.org/0000-0001-8530-7746
+
+
+ Gopal
+ Nookula
+
+
+
+ 07
+ 18
+ 2024
+
+
+ 6346
+
+
+ 10.21105/joss.06346
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.11553655
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6346
+
+
+
+ 10.21105/joss.06346
+ https://joss.theoj.org/papers/10.21105/joss.06346
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06346.pdf
+
+
+
+
+
+ 1D convolutional neural networks and
+applications: A survey
+ Kiranyaz
+ Mechanical Systems and Signal
+Processing
+ 151
+ 10.1016/j.ymssp.2020.107398
+ 0888-3270
+ 2021
+ Kiranyaz, S., Avci, O., Abdeljaber,
+O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional
+neural networks and applications: A survey. Mechanical Systems and
+Signal Processing, 151, 107398.
+https://doi.org/10.1016/j.ymssp.2020.107398
+
+
+ Deep learning
+ Goodfellow
+ 2016
+ Goodfellow, I., Bengio, Y., &
+Courville, A. (2016). Deep learning. MIT Press.
+
+
+ ExoGAN: Retrieving Exoplanetary Atmospheres
+Using Deep Convolutional Generative Adversarial Networks
+ Zingales
+ The Astronomical Journal
+ 6
+ 156
+ 10.3847/1538-3881/aae77c
+ 2018
+ Zingales, T., & Waldmann, I. P.
+(2018). ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep
+Convolutional Generative Adversarial Networks. The Astronomical Journal,
+156(6), 268.
+https://doi.org/10.3847/1538-3881/aae77c
+
+
+ The JWST Early-release Science Program for
+Direct Observations of Exoplanetary Systems II: A 1 to 20 \mum Spectrum
+of the Planetary-mass Companion VHS 1256-1257 b
+ Miles
+ The Astrophysical Journal
+Letters
+ 1
+ 946
+ 10.3847/2041-8213/acb04a
+ 2023
+ Miles, B. E., Biller, B. A., Patapis,
+P., Worthen, K., Rickman, E., Hoch, K. K. W., Skemer, A., Perrin, M. D.,
+Whiteford, N., Chen, C. H., Sargent, B., Mukherjee, S., Morley, C. V.,
+Moran, S. E., Bonnefoy, M., Petrus, S., Carter, A. L., Choquet, E.,
+Hinkley, S., … Zhang, Z. (2023). The JWST Early-release Science Program
+for Direct Observations of Exoplanetary Systems II: A 1 to 20 \mum
+Spectrum of the Planetary-mass Companion VHS 1256-1257 b. The
+Astrophysical Journal Letters, 946(1), L6.
+https://doi.org/10.3847/2041-8213/acb04a
+
+
+ Early Release Science of the exoplanet
+WASP-39b with JWST NIRSpec G395H
+ Alderson
+ Nature
+ 7949
+ 614
+ 10.1038/s41586-022-05591-3
+ 2023
+ Alderson, L., Wakeford, H. R., Alam,
+M. K., Batalha, N. E., Lothringer, J. D., Adams Redai, J., Barat, S.,
+Brande, J., Damiano, M., Daylan, T., Espinoza, N., Flagg, L., Goyal, J.
+M., Grant, D., Hu, R., Inglis, J., Lee, E. K. H., Mikal-Evans, T.,
+Ramos-Rosado, L., … Zhang, X. (2023). Early Release Science of the
+exoplanet WASP-39b with JWST NIRSpec G395H. Nature, 614(7949), 664–669.
+https://doi.org/10.1038/s41586-022-05591-3
+
+
+ The James Webb Space Telescope
+Mission
+ Gardner
+ Publications of the Astronomical Society of
+the Pacific
+ 1048
+ 135
+ 10.1088/1538-3873/acd1b5
+ 2023
+ Gardner, J. P., Mather, J. C.,
+Abbott, R., Abell, J. S., Abernathy, M., Abney, F. E., Abraham, J. G.,
+Abraham, R., Abul-Huda, Y. M., Acton, S., & al., et. (2023). The
+James Webb Space Telescope Mission. Publications of the Astronomical
+Society of the Pacific, 135(1048), 068001.
+https://doi.org/10.1088/1538-3873/acd1b5
+
+
+ SpectRes: A Fast Spectral Resampling Tool in
+Python
+ Carnall
+ arXiv e-prints
+ 10.48550/arXiv.1705.05165
+ 2017
+ Carnall, A. C. (2017). SpectRes: A
+Fast Spectral Resampling Tool in Python. arXiv e-Prints,
+arXiv:1705.05165.
+https://doi.org/10.48550/arXiv.1705.05165
+
+
+ SciPy 1.0: Fundamental Algorithms for
+Scientific Computing in Python
+ Virtanen
+ Nature Methods
+ 17
+ 10.1038/s41592-019-0686-2
+ 2020
+ Virtanen, P., Gommers, R., Oliphant,
+T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
+P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
+J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
+Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental
+Algorithms for Scientific Computing in Python. Nature Methods, 17,
+261–272.
+https://doi.org/10.1038/s41592-019-0686-2
+
+
+ Bokeh: Python library for interactive
+visualization
+ Bokeh Development Team
+ 2018
+ Bokeh Development Team. (2018).
+Bokeh: Python library for interactive visualization.
+https://bokeh.pydata.org/en/latest/
+
+
+ Seaborn: Statistical data
+visualization
+ Waskom
+ Journal of Open Source
+Software
+ 60
+ 6
+ 10.21105/joss.03021
+ 2021
+ Waskom, M. L. (2021). Seaborn:
+Statistical data visualization. Journal of Open Source Software, 6(60),
+3021. https://doi.org/10.21105/joss.03021
+
+
+ Matplotlib: A 2D graphics
+environment
+ Hunter
+ Computing in Science &
+Engineering
+ 3
+ 9
+ 10.1109/MCSE.2007.55
+ 2007
+ Hunter, J. D. (2007). Matplotlib: A
+2D graphics environment. Computing in Science & Engineering, 9(3),
+90–95. https://doi.org/10.1109/MCSE.2007.55
+
+
+ Array programming with NumPy
+ Harris
+ Nature
+ 7825
+ 585
+ 10.1038/s41586-020-2649-2
+ 2020
+ Harris, C. R., Millman, K. J., Walt,
+S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
+Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
+Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M.,
+Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.
+Nature, 585(7825), 357–362.
+https://doi.org/10.1038/s41586-020-2649-2
+
+
+ Pandas-dev/pandas: pandas
+ The pandas development team
+ 10.5281/zenodo.3509134
+ 2020
+ The pandas development team. (2020).
+Pandas-dev/pandas: pandas (latest). Zenodo.
+https://doi.org/10.5281/zenodo.3509134
+
+
+ The Astropy Project: Sustaining and Growing a
+Community-oriented Open-source Project and the Latest Major Release
+(v5.0) of the Core Package
+ Astropy Collaboration
+ The Astrophysical Journal
+ 2
+ 935
+ 10.3847/1538-4357/ac7c74
+ 2022
+ Astropy Collaboration, Price-Whelan,
+A. M., Lim, P. L., Earl, N., Starkman, N., Bradley, L., Shupe, D. L.,
+Patil, A. A., Corrales, L., Brasseur, C. E., N"othe, M., Donath, A.,
+Tollerud, E., Morris, B. M., Ginsburg, A., Vaher, E., Weaver, B. A.,
+Tocknell, J., Jamieson, W., … Astropy Project Contributors. (2022). The
+Astropy Project: Sustaining and Growing a Community-oriented Open-source
+Project and the Latest Major Release (v5.0) of the Core Package. The
+Astrophysical Journal, 935(2), 167.
+https://doi.org/10.3847/1538-4357/ac7c74
+
+
+ TensorFlow: Large-scale machine learning on
+heterogeneous systems
+ Abadi
+ 2015
+ Abadi, M., Agarwal, A., Barham, P.,
+Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
+Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
+M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015).
+TensorFlow: Large-scale machine learning on heterogeneous systems.
+https://www.tensorflow.org/
+
+
+ Scikit-learn: Machine learning in
+Python
+ Pedregosa
+ Journal of Machine Learning
+Research
+ 12
+ 2011
+ Pedregosa, F., Varoquaux, G.,
+Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
+Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
+Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011).
+Scikit-learn: Machine learning in Python. Journal of Machine Learning
+Research, 12, 2825–2830.
+
+
+ The NEMESIS planetary atmosphere radiative
+transfer and retrieval tool
+ Irwin
+ Journal of Quantitative Spectroscopy and
+Radiative Transfer
+ 109
+ 10.1016/j.jqsrt.2007.11.006
+ 2008
+ Irwin, P. G. J., Teanby, N. A., de
+Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., Wilson, C.
+F., Calcutt, S. B., Nixon, C. A., & Parrish, P. D. (2008). The
+NEMESIS planetary atmosphere radiative transfer and retrieval tool.
+Journal of Quantitative Spectroscopy and Radiative Transfer, 109,
+1136–1150.
+https://doi.org/10.1016/j.jqsrt.2007.11.006
+
+
+ The PYRAT BAY framework for exoplanet
+atmospheric modelling: a population study of Hubble/WFC3 transmission
+spectra
+ Cubillos
+ Monthly Notices of the Royal Astronomical
+Society
+ 2
+ 505
+ 10.1093/mnras/stab1405
+ 2021
+ Cubillos, P. E., & Blecic, J.
+(2021). The PYRAT BAY framework for exoplanet atmospheric modelling: a
+population study of Hubble/WFC3 transmission spectra. Monthly Notices of
+the Royal Astronomical Society, 505(2), 2675–2702.
+https://doi.org/10.1093/mnras/stab1405
+
+
+ Tau-REx I: A Next Generation Retrieval Code
+for Exoplanetary Atmospheres
+ Waldmann
+ The Astrophysical Journal
+ 2
+ 802
+ 10.1088/0004-637X/802/2/107
+ 2015
+ Waldmann, I. P., Tinetti, G.,
+Rocchetto, M., Barton, E. J., Yurchenko, S. N., & Tennyson, J.
+(2015). Tau-REx I: A Next Generation Retrieval Code for Exoplanetary
+Atmospheres. The Astrophysical Journal, 802(2), 107.
+https://doi.org/10.1088/0004-637X/802/2/107
+
+
+ Forward Modeling and Retrievals with PLATON,
+a Fast Open-source Tool
+ Zhang
+ Publications of the Astronomical Society of
+the Pacific
+ 997
+ 131
+ 10.1088/1538-3873/aaf5ad
+ 2019
+ Zhang, M., Chachan, Y., Kempton, E.
+M.-R., & Knutson, H. A. (2019). Forward Modeling and Retrievals with
+PLATON, a Fast Open-source Tool. Publications of the Astronomical
+Society of the Pacific, 131(997), 034501.
+https://doi.org/10.1088/1538-3873/aaf5ad
+
+
+ petitRADTRANS. A Python radiative transfer
+package for exoplanet characterization and retrieval
+ Mollière
+ Astronomy & Astrophysics
+ 627
+ 10.1051/0004-6361/201935470
+ 2019
+ Mollière, P., Wardenier, J. P., van
+Boekel, R., Henning, Th., Molaverdikhani, K., & Snellen, I. A. G.
+(2019). petitRADTRANS. A Python radiative transfer package for exoplanet
+characterization and retrieval. Astronomy & Astrophysics, 627, A67.
+https://doi.org/10.1051/0004-6361/201935470
+
+
+ A Systematic Retrieval Analysis of Secondary
+Eclipse Spectra. I. A Comparison of Atmospheric Retrieval
+Techniques
+ Line
+ The Astrophysical Journal
+ 2
+ 775
+ 10.1088/0004-637X/775/2/137
+ 2013
+ Line, M. R., Wolf, A. S., Zhang, X.,
+Knutson, H., Kammer, J. A., Ellison, E., Deroo, P., Crisp, D., &
+Yung, Y. L. (2013). A Systematic Retrieval Analysis of Secondary Eclipse
+Spectra. I. A Comparison of Atmospheric Retrieval Techniques. The
+Astrophysical Journal, 775(2), 137.
+https://doi.org/10.1088/0004-637X/775/2/137
+
+
+ POSEIDON: A multidimensional atmospheric
+retrieval code for exoplanet spectra
+ MacDonald
+ Journal of Open Source
+Software
+ 81
+ 8
+ 10.21105/joss.04873
+ 2023
+ MacDonald, R. J. (2023). POSEIDON: A
+multidimensional atmospheric retrieval code for exoplanet spectra.
+Journal of Open Source Software, 8(81), 4873.
+https://doi.org/10.21105/joss.04873
+
+
+ Supervised machine learning for analysing
+spectra of exoplanetary atmospheres
+ Márquez-Neila
+ Nature Astronomy
+ 2
+ 10.1038/s41550-018-0504-2
+ 2018
+ Márquez-Neila, P., Fisher, C.,
+Sznitman, R., & Heng, K. (2018). Supervised machine learning for
+analysing spectra of exoplanetary atmospheres. Nature Astronomy, 2,
+719–724.
+https://doi.org/10.1038/s41550-018-0504-2
+
+
+ Constructing a Flexible Likelihood Function
+for Spectroscopic Inference
+ Czekala
+ The Astrophysical Journal
+ 2
+ 812
+ 10.1088/0004-637X/812/2/128
+ 2015
+ Czekala, I., Andrews, S. M., Mandel,
+K. S., Hogg, D. W., & Green, G. M. (2015). Constructing a Flexible
+Likelihood Function for Spectroscopic Inference. The Astrophysical
+Journal, 812(2), 128.
+https://doi.org/10.1088/0004-637X/812/2/128
+
+
+ The sonora brown dwarf atmosphere and
+evolution models. I. Model description and application to cloudless
+atmospheres in rainout chemical equilibrium
+ Marley
+ The Astrophysical Journal
+ 2
+ 920
+ 10.3847/1538-4357/ac141d
+ 2021
+ Marley, M. S., Saumon, D., Visscher,
+C., Lupu, R., Freedman, R., Morley, C., Fortney, J. J., Seay, C., Smith,
+A. J., Teal, D., & others. (2021). The sonora brown dwarf atmosphere
+and evolution models. I. Model description and application to cloudless
+atmospheres in rainout chemical equilibrium. The Astrophysical Journal,
+920(2), 85.
+https://doi.org/10.3847/1538-4357/ac141d
+
+
+ On the Cool Side: Modeling the Atmospheres of
+Brown Dwarfs and Giant Planets
+ Marley
+ Annual Review of Astronomy and
+Astrophysics
+ 53
+ 10.1146/annurev-astro-082214-122522
+ 2015
+ Marley, M. S., & Robinson, T. D.
+(2015). On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and
+Giant Planets. Annual Review of Astronomy and Astrophysics, 53, 279–323.
+https://doi.org/10.1146/annurev-astro-082214-122522
+
+
+ A systematic retrieval analysis of secondary
+eclipse spectra. II. A uniform analysis of nine planets and their c to o
+ratios
+ Line
+ The Astrophysical Journal
+ 2
+ 783
+ 10.1088/0004-637x/783/2/70
+ 2014
+ Line, M. R., Knutson, H., Wolf, A.
+S., & Yung, Y. L. (2014). A systematic retrieval analysis of
+secondary eclipse spectra. II. A uniform analysis of nine planets and
+their c to o ratios. The Astrophysical Journal, 783(2), 70.
+https://doi.org/10.1088/0004-637x/783/2/70
+
+
+ The SPHINX M-dwarf Spectral Grid. I.
+Benchmarking New Model Atmospheres to Derive Fundamental M-dwarf
+Properties
+ Iyer
+ The Astrophysical Journal
+ 1
+ 944
+ 10.3847/1538-4357/acabc2
+ 2023
+ Iyer, A. R., Line, M. R., Muirhead,
+P. S., Fortney, J. J., & Gharib-Nezhad, E. (2023). The SPHINX
+M-dwarf Spectral Grid. I. Benchmarking New Model Atmospheres to Derive
+Fundamental M-dwarf Properties. The Astrophysical Journal, 944(1), 41.
+https://doi.org/10.3847/1538-4357/acabc2
+
+
+ Exoplanet reflected-light spectroscopy with
+PICASO
+ Batalha
+ The Astrophysical Journal
+ 1
+ 878
+ 10.3847/1538-4357/ab1b51
+ 2019
+ Batalha, N. E., Marley, M. S., Lewis,
+N. K., & Fortney, J. J. (2019). Exoplanet reflected-light
+spectroscopy with PICASO. The Astrophysical Journal, 878(1), 70.
+https://doi.org/10.3847/1538-4357/ab1b51
+
+
+ ExoMiner: A Highly Accurate and Explainable
+Deep Learning Classifier That Validates 301 New
+Exoplanets
+ Valizadegan
+ The Astrophysical Journal
+ 2
+ 926
+ 10.3847/1538-4357/ac4399
+ 2022
+ Valizadegan, H., Martinho, M. J. S.,
+Wilkens, L. S., Jenkins, J. M., Smith, J. C., Caldwell, D. A., Twicken,
+J. D., Gerum, P. C. L., Walia, N., Hausknecht, K., Lubin, N. Y., Bryson,
+S. T., & Oza, N. C. (2022). ExoMiner: A Highly Accurate and
+Explainable Deep Learning Classifier That Validates 301 New Exoplanets.
+The Astrophysical Journal, 926(2), 120.
+https://doi.org/10.3847/1538-4357/ac4399
+
+
+ Intercomparison of Brown Dwarf Model Grids
+and Atmospheric Retrieval Using Machine Learning
+ Lueber
+ The Astrophysical Journal
+ 1
+ 954
+ 10.3847/1538-4357/ace530
+ 2023
+ Lueber, A., Kitzmann, D., Fisher, C.
+E., Bowler, B. P., Burgasser, A. J., Marley, M., & Heng, K. (2023).
+Intercomparison of Brown Dwarf Model Grids and Atmospheric Retrieval
+Using Machine Learning. The Astrophysical Journal, 954(1), 22.
+https://doi.org/10.3847/1538-4357/ace530
+
+
+
+
+
+
diff --git a/joss.06346/10.21105.joss.06346.pdf b/joss.06346/10.21105.joss.06346.pdf
new file mode 100644
index 0000000000..3877dff11b
Binary files /dev/null and b/joss.06346/10.21105.joss.06346.pdf differ
diff --git a/joss.06346/paper.jats/10.21105.joss.06346.jats b/joss.06346/paper.jats/10.21105.joss.06346.jats
new file mode 100644
index 0000000000..848201b08c
--- /dev/null
+++ b/joss.06346/paper.jats/10.21105.joss.06346.jats
@@ -0,0 +1,1534 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6346
+10.21105/joss.06346
+
+TelescopeML – I. An End-to-End Python Package for
+Interpreting Telescope Datasets through Training Machine Learning
+Models, Generating Statistical Reports, and Visualizing
+Results
+
+
+
+https://orcid.org/0000-0002-4088-7262
+
+Gharib-Nezhad
+Ehsan (Sam)
+
+
+
+
+
+https://orcid.org/0000-0003-1240-6844
+
+Batalha
+Natasha E.
+
+
+
+
+https://orcid.org/0000-0001-6732-0840
+
+Valizadegan
+Hamed
+
+
+
+
+
+https://orcid.org/0000-0002-2188-0807
+
+Martinho
+Miguel J. S.
+
+
+
+
+
+https://orcid.org/0000-0001-8530-7746
+
+Habibi
+Mahdi
+
+
+
+
+
+Nookula
+Gopal
+
+
+
+
+
+Space Science and Astrobiology Division, NASA Ames Research
+Center, Moffett Field, CA, 94035 USA
+
+
+
+
+Bay Area Environmental Research Institute, NASA Research
+Park, Moffett Field, CA 94035, USA
+
+
+
+
+Universities Space Research Association (USRA), Mountain
+View, CA 94043, USA
+
+
+
+
+Intelligent Systems Division, NASA Ames Research Center,
+Moffett Field, CA 94035, USA
+
+
+
+
+Institute for Radiation Physics, Helmholtz-Zentrum
+Dresden-Rossendorf, Dresden 01328, Germany
+
+
+
+
+Department of Computer Science, University of California,
+Riverside, Riverside, CA 92507 USA
+
+
+
+
+10
+6
+2024
+
+9
+99
+6346
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+Astronomy
+Exoplanets
+Brown dwarfs
+Spectroscopy
+Atmospheric retrieval
+Atmospheric models
+Machine learning
+Convolutional Neural Network
+Telescope datasets
+
+
+
+
+
+ Summary
+
We are in the verge of a revolutionary era in space exploration,
+ thanks to advancements in telescopes such as the James Webb Space
+ Telescope (JWST). High-resolution, high
+ Signal-to-Noise spectra from exoplanet and brown dwarf atmospheres
+ have been collected over the past few decades, requiring the
+ development of accurate and reliable pipelines and tools for their
+ analysis. Accurately and swiftly determining the spectroscopic
+ parameters from the observational spectra of these objects is crucial
+ for understanding their atmospheric composition and guiding future
+ follow-up observations. TelescopeML is a Python
+ package developed to perform three main tasks: (i) Process the
+ synthetic astronomical datasets for training a CNN model and prepare
+ the observational dataset for later use for prediction; (ii) Train a
+ CNN model by implementing the optimal hyperparameters; and (iii)
+ Deploy the trained CNN models on the actual observational data to
+ derive the output spectroscopic parameters.
+
The implications and scientific outcomes from the trained CNN
+ models and this package are under revision for The Astrophysical
+ Journal under the title TelescopeML – II: Convolutional Neural
+ Networks for Predicting Brown Dwarf Atmospheric
+ Parameters.
+
+
+ Statement of Need
+
We are on in a new era of space exploration, thanks to advancements
+ in ground- and space-based telescopes, such as the James Webb Space
+ Telescope (e.g.,
+ Gardner
+ et al., 2023) and CRIRES. These remarkable instruments collect
+ high-resolution, high-signal-to-noise spectra from extrasolar planets
+ (e.g.,
+ Alderson
+ et al., 2023), and brown dwarfs (e.g.,
+ Miles
+ et al., 2023) atmospheres. Without accurate interpretation of
+ this data, the main objectives of space missions will not be fully
+ accomplished. Different analytical and statistical methods, such as
+ the chi-squared-test, Bayesian statistics as well as
+ radiative-transfer atmospheric modeling packages have been developed
+ (e.g.,
+ Batalha
+ et al., 2019;
+ MacDonald,
+ 2023) to interpret the spectra. They utilize either forward-
+ and/or retrieval-radiative transfer modeling to analyze the spectra
+ and extract physical information, such as atmospheric temperature,
+ metallicity, carbon-to-oxygen ratio, and surface gravity
+ (Iyer
+ et al., 2023;
+ Line
+ et al., 2014;
+ Marley
+ & Robinson, 2015). These atmospheric models rely on
+ generating the physics and chemistry of these atmospheres for a wide
+ range of thermal structures and compositions. In addition to
+ Bayesian-based techniques, machine learning and deep learning methods
+ have been developed in recent years for various astronomical problems,
+ including confirming the classification of light curves for exoplanet
+ validation (e.g.,
+ Valizadegan
+ et al., 2022), recognizing molecular features
+ (Zingales
+ & Waldmann, 2018) as well as interpreting brown dwarfs
+ spectra using Random Forest technique (e.g.,
+ Lueber
+ et al., 2023). Here, we present one of the first applications
+ of deep learning and convolutional neural networks on the
+ interpretation of brown dwarf atmospheric datasets. The configuration
+ of a CNN and the key concepts can be found in
+ (Goodfellow
+ et al., 2016;
+ Kiranyaz
+ et al., 2021).
+
With the continuous observation of these objects and the increasing
+ amount of data, there is a critical need for a systematic pipeline to
+ quickly explore the datasets and extract important physical parameters
+ from them. In the future we can expand our pipeline to exoplanet
+ atmospheres, and use it to provide insights about the diversity of
+ exoplanets and brown dwarfs’ atmospheric compositions. Ultimately,
+ TelescopeML will help facilitate the long-term
+ analysis of this data in research. TelescopeML
+ is an ML Python package with Sphinx-ed user-friendly documentation
+ that provides both trained ML models and ML tools for interpreting
+ observational data captured by telescopes.
+
+
+ Functionality and Key Features
+
TelescopeML is a Python package comprising a
+ series of modules, each equipped with specialized machine learning and
+ statistical capabilities for conducting Convolutional Neural Networks
+ (CNN) or Machine Learning (ML) training on datasets captured from the
+ atmospheres of extrasolar planets and brown dwarfs. The tasks executed
+ by the TelescopeML modules are outlined below
+ and visualized in the following Figure:
+
+
+
DataMaster module: Performs various tasks to
+ process the datasets, including:
+
+
+
Load the training dataset (i.e., atmospheric fluxes) in CSV
+ format
+
+
+
Split the dataset into training, validation, and test sets
+ to pass it to the CNN model
+
+
+
Scale/normalize the dataset column-wise or row-wise
+
+
+
Visualize the training sets in each of the processing steps
+ for more insights
+
+
+
Perform feature engineering by extracting the Min and Max
+ values from each flux to improve the ML training
+ performance
+
+
+
+
+
DeepTrainer module: Utilizes different
+ methods/packages such as TensorFlow to:
+
+
+
Load the processed dataset from the DataMaster
+ module
+
+
+
Build Convolutional Neural Networks (CNNs) model using the
+ tuned hyperparameters
+
+
+
Fit/train the CNN models given the epochs, learning rate,
+ and other parameters
+
+
+
Visualize the loss and training history, as well as the
+ trained model’s performance
+
+
+
+
+
Predictor module: Implements the following tasks
+ to predict atmospheric parameters:
+
+
+
Perform Scale/normalize processes on the observational
+ fluxes
Visualize the processed observational dataset and the
+ uncertainty in the predicted results
+
+
+
+
+
StatVisAnalyzer module: Provides a set of
+ functions to perform the following tasks:
+
+
+
Explore and processes the synthetic datasets
+
+
+
Perform the chi-square test to evaluate the similarity
+ between two datasets
+
+
+
Calculate confidence intervals and standard errors
+
+
+
+
+
+
+ Details on the synthetic dataset
+
The training dataset (or synthetic spectra) in this study is
+ computed using the open-source atmospheric radiative transfer Python
+ package,
+ PICASO
+ (e.g.,
+ Batalha
+ et al., 2019), based on the
+ Sonora-Bobcat model grid generated for
+ cloudless brown dwarf atmospheres by
+ (Marley
+ et al., 2021). This set encompasses 30,888 synthetic spectra,
+ each including 104 wavelengths (i.e., 0.897, 0.906, …, 2.512 μm) and
+ their corresponding flux values. Each of these spectra has four output
+ variables attached to it: effective temperature, gravity,
+ carbon-to-oxygen ratio, and metallicity. These synthetic spectra are
+ utilized to interpret observational datasets and derive these four
+ atmospheric parameters. An example of the synthetic and observational
+ dataset is shown in the following figure.
+
+
+ Details on the CNN methodology for Multi-output Regression
+ problem
+
Each row in the synthetic spectra has 104 input variables. The
+ order of these data points and their magnitude are crucial to
+ interpret the telescope data. For this purpose, we implemented a
+ Convolutional Neural Network (CNN) method with 1-D convolutional
+ layers. CNN is a powerful technique for this study because it extracts
+ the dominant features from these spectra and then passes them to the
+ fully connected hidden layers to learn the patterns. The output layer
+ predicts the four atmospheric targets. An example of the CNN
+ architecture is depicted in the following figure.
+
+
TelescopeML main modules to manipulate the training
+ example, build the ML model, train and tune it, and ultimately
+ extract the target features from the observational
+ data.
+
+
+
+
+ Documentation
+
TelescopeML is available and being
+ maintained as a GitHub repository at
+ github.com/EhsanGharibNezhad/TelescopeML.
+ Online documentation is hosted with Sphinx using
+ ReadtheDocs tools and includes several instructions
+ and tutorials as follows:
+
+
+
Main page:
+ ehsangharibnezhad.github.io/TelescopeML/
Tutorials and examples:
+ ehsangharibnezhad.github.io/TelescopeML/tutorials.html
+
+
+
The code:
+ ehsangharibnezhad.github.io/TelescopeML/code.html
+
+
+
+
+ Users and Future Developments
+
Astrophysicists with no prior machine learning knowledge can deploy
+ the TelescopeML package and download the
+ pre-trained ML or CNN models to interpret their observational data. In
+ this scenario, pre-trained ML models, as well as the PyPI package, can
+ be installed and deployed following the online instructions. Tutorials
+ in the Sphinx documentation include examples for testing the code and
+ also serve as a starting point. For this purpose, a basic knowledge of
+ Python programming is required to install the code, run the tutorials,
+ deploy the modules, and extract astronomical features from their
+ datasets. The necessary machine learning background and a detailed
+ guide for package installation, along with links to further Python
+ details, are provided to help understand the steps and outputs.
+
Astrophysicists with machine learning expertise and data scientists
+ can also benefit from this package by developing and fine-tuning the
+ modules and pre-trained models to accommodate more complex datasets
+ from various telescopes. This effort could also involve the
+ utilization of new ML and deep learning algorithms, adding new
+ capabilities such as feature engineering methods, and further
+ optimization of hyperparameters using different and more efficient
+ statistical techniques. The ultimate outcome from these two groups
+ would be the creation of more advanced models with higher performance
+ and robustness, as well as the extension of the package to apply to a
+ wider range of telescope datasets.
+
+
+ Similar Tools
+
The following open-source tools are available to either perform
+ forward modeling (χ²-based test) or retrievals (based on Bayesian
+ statistics and posterior distribution):
+ Starfish
+ (Czekala
+ et al., 2015),
+ petitRADTRANS
+ (Mollière
+ et al., 2019),
+ POSEIDON
+ (MacDonald,
+ 2023),
+ PLATON
+ (Zhang
+ et al., 2019),
+ CHIMERA
+ (Line
+ et al., 2013),
+ TauRex
+ (Waldmann
+ et al., 2015),
+ NEMESIS
+ (Irwin
+ et al., 2008), and
+ Pyrat Bay
+ (Cubillos
+ & Blecic, 2021).
+
In addition, the following package implements random forest to
+ predict the atmospheric parameters:
+ HELA
+ (Márquez-Neila
+ et al., 2018)
+
+
+ Utilized Underlying Packages
+
For processing datasets and training ML models in
+ TelescopeML, the following software/packages
+ are employed: Scikit-learn
+ (Pedregosa
+ et al., 2011), TensorFlow
+ (Abadi
+ et al., 2015), AstroPy
+ (Astropy
+ Collaboration et al., 2022), SpectRes
+ (Carnall,
+ 2017), Pandas
+ (The
+ pandas development team, 2020), NumPy
+ (Harris
+ et al., 2020), SciPy
+ (Virtanen
+ et al., 2020), Matplotlib
+ (Hunter,
+ 2007), Seaborn
+ (Waskom,
+ 2021), Bokeh
+ (Bokeh
+ Development Team, 2018). Additionally, for generating training
+ astronomical datasets, Picaso
+ (Batalha
+ et al., 2019) is implemented.
+
+
+ Acknowledgements
+
EGN and GN would like to thank OSTEM internships and funding
+ through the NASA with contract number 80NSSC22DA010. EGN acknowledges
+ ChatGPT 3.5 for proofreading some of the functions. EGN is grateful to
+ Olivier Parisot and Mike Walmsley for helpful referee reports, and to
+ the JOSS editorial staff, Paul La Plante and Dan Foreman-Mackey, for
+ their tireless efforts to encourage new people to join the open source
+ community in astronomy.
+
+
+
+
+
+
+
+
+ KiranyazSerkan
+ AvciOnur
+ AbdeljaberOsama
+ InceTurker
+ GabboujMoncef
+ InmanDaniel J.
+
+ 1D convolutional neural networks and applications: A survey
+
+ 2021
+ 151
+ 0888-3270
+ https://www.sciencedirect.com/science/article/pii/S0888327020307846
+ 10.1016/j.ymssp.2020.107398
+ 107398
+
+
+
+
+
+
+ GoodfellowIan
+ BengioYoshua
+ CourvilleAaron
+
+
+ MIT Press
+ 2016
+
+
+
+
+
+ ZingalesTiziano
+ WaldmannIngo P.
+
+ ExoGAN: Retrieving Exoplanetary Atmospheres Using Deep Convolutional Generative Adversarial Networks
+
+ 201812
+ 156
+ 6
+ https://arxiv.org/abs/1806.02906
+ 10.3847/1538-3881/aae77c
+ 268
+
+
+
+
+
+
+ MilesBrittany E.
+ BillerBeth A.
+ PatapisPolychronis
+ WorthenKadin
+ RickmanEmily
+ HochKielan K. W.
+ SkemerAndrew
+ PerrinMarshall D.
+ WhitefordNiall
+ ChenChristine H.
+ SargentB.
+ MukherjeeSagnick
+ MorleyCaroline V.
+ MoranSarah E.
+ BonnefoyMickael
+ PetrusSimon
+ CarterAarynn L.
+ ChoquetElodie
+ HinkleySasha
+ Ward-DuongKimberly
+ LeisenringJarron M.
+ Millar-BlanchaerMaxwell A.
+ PueyoLaurent
+ RayShrishmoy
+ SallumSteph
+ StapelfeldtKarl R.
+ StoneJordan M.
+ WangJason J.
+ AbsilOlivier
+ BalmerWilliam O.
+ BoccalettiAnthony
+ BonavitaMariangela
+ BoothMark
+ BowlerBrendan P.
+ ChauvinGael
+ ChristiaensValentin
+ CurrieThayne
+ DanielskiCamilla
+ FortneyJonathan J.
+ GirardJulien H.
+ GradyCarol A.
+ GreenbaumAlexandra Z.
+ HenningThomas
+ HinesDean C.
+ JansonMarkus
+ KalasPaul
+ KammererJens
+ KennedyGrant M.
+ KenworthyMatthew A.
+ KervellaPierre
+ LagagePierre-Olivier
+ LewBen W. P.
+ LiuMichael C.
+ MacintoshBruce
+ MarinoSebastian
+ MarleyMark S.
+ MaroisChristian
+ MatthewsElisabeth C.
+ MatthewsBrenda C.
+ MawetDimitri
+ McElwainMichael W.
+ MetchevStanimir
+ MeyerMichael R.
+ MollierePaul
+ PantinEric
+ QuirrenbachAndreas
+ RebollidoIsabel
+ RenBin B.
+ SchneiderGlenn
+ VasistMalavika
+ WyattMark C.
+ ZhouYifan
+ BriesemeisterZackery W.
+ BryanMarta L.
+ CalissendorffPer
+ CantalloubeFaustine
+ CugnoGabriele
+ De FurioMatthew
+ DupuyTrent J.
+ FactorSamuel M.
+ FahertyJacqueline K.
+ FitzgeraldMichael P.
+ FransonKyle
+ GonzalesEileen C.
+ HoodCallie E.
+ HoweAlex R.
+ KrausAdam L.
+ KuzuharaMasayuki
+ LagrangeAnne-Marie
+ LawsonKellen
+ LazzoniCecilia
+ LiuPengyu
+ Llop-SaysonJorge
+ LloydJames P.
+ MartinezRaquel A.
+ MazoyerJohan
+ QuanzSascha P.
+ RedaiJea Adams
+ SamlandMatthias
+ SchliederJoshua E.
+ TamuraMotohide
+ TanXianyu
+ UyamaTaichi
+ ViganArthur
+ VosJohanna M.
+ WagnerKevin
+ WolffSchuyler G.
+ YgoufMarie
+ ZhangXi
+ ZhangKeming
+ ZhangZhoujian
+
+ The JWST Early-release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 \mum Spectrum of the Planetary-mass Companion VHS 1256-1257 b
+
+ 202303
+ 946
+ 1
+ https://arxiv.org/abs/2209.00620
+ 10.3847/2041-8213/acb04a
+ L6
+
+
+
+
+
+
+ AldersonLili
+ WakefordHannah R.
+ AlamMunazza K.
+ BatalhaNatasha E.
+ LothringerJoshua D.
+ Adams RedaiJea
+ BaratSaugata
+ BrandeJonathan
+ DamianoMario
+ DaylanTansu
+ EspinozaNéstor
+ FlaggLaura
+ GoyalJayesh M.
+ GrantDavid
+ HuRenyu
+ InglisJulie
+ LeeElspeth K. H.
+ Mikal-EvansThomas
+ Ramos-RosadoLakeisha
+ RoyPierre-Alexis
+ WallackNicole L.
+ BatalhaNatalie M.
+ BeanJacob L.
+ BennekeBjörn
+ Berta-ThompsonZachory K.
+ CarterAarynn L.
+ ChangeatQuentin
+ ColónKnicole D.
+ CrossfieldIan J. M.
+ DésertJean-Michel
+ Foreman-MackeyDaniel
+ GibsonNeale P.
+ KreidbergLaura
+ LineMichael R.
+ López-MoralesMercedes
+ MolaverdikhaniKaran
+ MoranSarah E.
+ MorelloGiuseppe
+ MosesJulianne I.
+ MukherjeeSagnick
+ SchlawinEverett
+ SingDavid K.
+ StevensonKevin B.
+ TaylorJake
+ AggarwalKeshav
+ AhrerEva-Maria
+ AllenNatalie H.
+ BarstowJoanna K.
+ BellTaylor J.
+ BlecicJasmina
+ CasewellSarah L.
+ ChubbKaty L.
+ CrouzetNicolas
+ CubillosPatricio E.
+ DecinLeen
+ FeinsteinAdina D.
+ FortneyJoanthan J.
+ HarringtonJoseph
+ HengKevin
+ IroNicolas
+ KemptonEliza M. -R.
+ KirkJames
+ KnutsonHeather A.
+ KrickJessica
+ LeconteJérémy
+ LendlMonika
+ MacDonaldRyan J.
+ ManciniLuigi
+ MansfieldMegan
+ MayErin M.
+ MayneNathan J.
+ MiguelYamila
+ NikolovNikolay K.
+ OhnoKazumasa
+ PalleEnric
+ ParmentierVivien
+ Petit dit de la RocheDominique J. M.
+ PiauletCaroline
+ PowellDiana
+ RackhamBenjamin V.
+ RedfieldSeth
+ RogersLaura K.
+ RustamkulovZafar
+ TanXianyu
+ TremblinP.
+ TsaiShang-Min
+ TurnerJake D.
+ de Val-BorroMiguel
+ VenotOlivia
+ WelbanksLuis
+ WheatleyPeter J.
+ ZhangXi
+
+ Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H
+
+ 202302
+ 614
+ 7949
+ https://arxiv.org/abs/2211.10488
+ 10.1038/s41586-022-05591-3
+ 664
+ 669
+
+
+
+
+
+ GardnerJonathan P.
+ MatherJohn C.
+ AbbottRandy
+ AbellJames S.
+ AbernathyMark
+ AbneyFaith E.
+ AbrahamJohn G.
+ AbrahamRoberto
+ Abul-HudaYasin M.
+ ActonScott
+ al.
+
+ The James Webb Space Telescope Mission
+
+ 202306
+ 135
+ 1048
+ https://arxiv.org/abs/2304.04869
+ 10.1088/1538-3873/acd1b5
+ 068001
+
+
+
+
+
+
+ CarnallA. C.
+
+ SpectRes: A Fast Spectral Resampling Tool in Python
+
+ 201705
+ https://arxiv.org/abs/1705.05165
+ 10.48550/arXiv.1705.05165
+ arXiv:1705.05165
+
+
+
+
+
+
+ VirtanenPauli
+ GommersRalf
+ OliphantTravis E.
+ HaberlandMatt
+ ReddyTyler
+ CournapeauDavid
+ BurovskiEvgeni
+ PetersonPearu
+ WeckesserWarren
+ BrightJonathan
+ van der WaltStéfan J.
+ BrettMatthew
+ WilsonJoshua
+ MillmanK. Jarrod
+ MayorovNikolay
+ NelsonAndrew R. J.
+ JonesEric
+ KernRobert
+ LarsonEric
+ CareyC J
+ Polatİlhan
+ FengYu
+ MooreEric W.
+ VanderPlasJake
+ LaxaldeDenis
+ PerktoldJosef
+ CimrmanRobert
+ HenriksenIan
+ QuinteroE. A.
+ HarrisCharles R.
+ ArchibaldAnne M.
+ RibeiroAntônio H.
+ PedregosaFabian
+ van MulbregtPaul
+ SciPy 1.0 Contributors
+
+ SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
+
+ 2020
+ 17
+ 10.1038/s41592-019-0686-2
+ 261
+ 272
+
+
+
+
+
+ Bokeh Development Team
+
+
+ 2018
+ https://bokeh.pydata.org/en/latest/
+
+
+
+
+
+ WaskomMichael L.
+
+ Seaborn: Statistical data visualization
+
+ The Open Journal
+ 2021
+ 6
+ 60
+ https://doi.org/10.21105/joss.03021
+ 10.21105/joss.03021
+ 3021
+
+
+
+
+
+
+ HunterJ. D.
+
+ Matplotlib: A 2D graphics environment
+
+ IEEE COMPUTER SOC
+ 2007
+ 9
+ 3
+ 10.1109/MCSE.2007.55
+ 90
+ 95
+
+
+
+
+
+ HarrisCharles R.
+ MillmanK. Jarrod
+ WaltStéfan J. van der
+ GommersRalf
+ VirtanenPauli
+ CournapeauDavid
+ WieserEric
+ TaylorJulian
+ BergSebastian
+ SmithNathaniel J.
+ KernRobert
+ PicusMatti
+ HoyerStephan
+ KerkwijkMarten H. van
+ BrettMatthew
+ HaldaneAllan
+ RíoJaime Fernández del
+ WiebeMark
+ PetersonPearu
+ Gérard-MarchantPierre
+ SheppardKevin
+ ReddyTyler
+ WeckesserWarren
+ AbbasiHameer
+ GohlkeChristoph
+ OliphantTravis E.
+
+ Array programming with NumPy
+
+ Springer Science; Business Media LLC
+ 202009
+ 585
+ 7825
+ https://doi.org/10.1038/s41586-020-2649-2
+ 10.1038/s41586-020-2649-2
+ 357
+ 362
+
+
+
+
+
+ The pandas development team
+
+ Pandas-dev/pandas: pandas
+ Zenodo
+ 202002
+ https://doi.org/10.5281/zenodo.3509134
+ 10.5281/zenodo.3509134
+
+
+
+
+
+ Astropy Collaboration
+ Price-WhelanAdrian M.
+ LimPey Lian
+ EarlNicholas
+ StarkmanNathaniel
+ BradleyLarry
+ ShupeDavid L.
+ PatilAarya A.
+ CorralesLia
+ BrasseurC. E.
+ N"otheMaximilian
+ DonathAxel
+ TollerudErik
+ MorrisBrett M.
+ GinsburgAdam
+ VaherEero
+ WeaverBenjamin A.
+ TocknellJames
+ JamiesonWilliam
+ van KerkwijkMarten H.
+ RobitailleThomas P.
+ MerryBruce
+ BachettiMatteo
+ G"untherH. Moritz
+ AldcroftThomas L.
+ Alvarado-MontesJaime A.
+ ArchibaldAnne M.
+ B’odiAttila
+ BapatShreyas
+ BarentsenGeert
+ Baz’anJuanjo
+ BiswasManish
+ BoquienM’ed’eric
+ BurkeD. J.
+ CaraDaria
+ CaraMihai
+ ConroyKyle E.
+ ConseilSimon
+ CraigMatthew W.
+ CrossRobert M.
+ CruzKelle L.
+ D’EugenioFrancesco
+ DenchevaNadia
+ DevillepoixHadrien A. R.
+ DietrichJ"org P.
+ EigenbrotArthur Davis
+ ErbenThomas
+ FerreiraLeonardo
+ Foreman-MackeyDaniel
+ FoxRyan
+ FreijNabil
+ GargSuyog
+ GedaRobel
+ GlattlyLauren
+ GondhalekarYash
+ GordonKarl D.
+ GrantDavid
+ GreenfieldPerry
+ GroenerAusten M.
+ GuestSteve
+ GurovichSebastian
+ HandbergRasmus
+ HartAkeem
+ Hatfield-DoddsZac
+ HomeierDerek
+ HosseinzadehGriffin
+ JennessTim
+ JonesCraig K.
+ JosephPrajwel
+ KalmbachJ. Bryce
+ KaramehmetogluEmir
+ Kaluszy’nskiMikolaj
+ KelleyMichael S. P.
+ KernNicholas
+ KerzendorfWolfgang E.
+ KochEric W.
+ KulumaniShankar
+ LeeAntony
+ LyChun
+ MaZhiyuan
+ MacBrideConor
+ MaljaarsJakob M.
+ MunaDemitri
+ MurphyN. A.
+ NormanHenrik
+ O’SteenRichard
+ OmanKyle A.
+ PacificiCamilla
+ PascualSergio
+ Pascual-GranadoJ.
+ PatilRohit R.
+ PerrenGabriel I.
+ PickeringTimothy E.
+ RastogiTanuj
+ RoulstonBenjamin R.
+ RyanDaniel F.
+ RykoffEli S.
+ SabaterJose
+ SakurikarParikshit
+ SalgadoJes’us
+ SanghiAniket
+ SaundersNicholas
+ SavchenkoVolodymyr
+ SchwardtLudwig
+ Seifert-EckertMichael
+ ShihAlbert Y.
+ JainAnany Shrey
+ ShuklaGyanendra
+ SickJonathan
+ SimpsonChris
+ SinganamallaSudheesh
+ SingerLeo P.
+ SinghalJaladh
+ SinhaManodeep
+ SipHoczBrigitta M.
+ SpitlerLee R.
+ StansbyDavid
+ StreicherOle
+ SumakJani
+ SwinbankJohn D.
+ TaranuDan S.
+ TewaryNikita
+ TremblayGrant R.
+ Val-BorroMiguel de
+ Van KootenSamuel J.
+ Vasovi’cZlatan
+ VermaShresth
+ de Miranda CardosoJos’e Vin’icius
+ WilliamsPeter K. G.
+ WilsonTom J.
+ WinkelBenjamin
+ Wood-VaseyW. M.
+ XueRui
+ YoachimPeter
+ ZhangChen
+ ZoncaAndrea
+ Astropy Project Contributors
+
+ The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package
+
+ 202208
+ 935
+ 2
+ https://arxiv.org/abs/2206.14220
+ 10.3847/1538-4357/ac7c74
+ 167
+
+
+
+
+
+
+ AbadiMartín
+ AgarwalAshish
+ BarhamPaul
+ BrevdoEugene
+ ChenZhifeng
+ CitroCraig
+ CorradoGreg S.
+ DavisAndy
+ DeanJeffrey
+ DevinMatthieu
+ GhemawatSanjay
+ GoodfellowIan
+ HarpAndrew
+ IrvingGeoffrey
+ IsardMichael
+ JiaYangqing
+ JozefowiczRafal
+ KaiserLukasz
+ KudlurManjunath
+ LevenbergJosh
+ ManéDandelion
+ MongaRajat
+ MooreSherry
+ MurrayDerek
+ OlahChris
+ SchusterMike
+ ShlensJonathon
+ SteinerBenoit
+ SutskeverIlya
+ TalwarKunal
+ TuckerPaul
+ VanhouckeVincent
+ VasudevanVijay
+ ViégasFernanda
+ VinyalsOriol
+ WardenPete
+ WattenbergMartin
+ WickeMartin
+ YuYuan
+ ZhengXiaoqiang
+
+ TensorFlow: Large-scale machine learning on heterogeneous systems
+ 2015
+ https://www.tensorflow.org/
+
+
+
+
+
+ PedregosaF.
+ VaroquauxG.
+ GramfortA.
+ MichelV.
+ ThirionB.
+ GriselO.
+ BlondelM.
+ PrettenhoferP.
+ WeissR.
+ DubourgV.
+ VanderplasJ.
+ PassosA.
+ CournapeauD.
+ BrucherM.
+ PerrotM.
+ DuchesnayE.
+
+ Scikit-learn: Machine learning in Python
+
+ 2011
+ 12
+ 2825
+ 2830
+
+
+
+
+
+ IrwinP. G. J.
+ TeanbyN. A.
+ de KokR.
+ FletcherL. N.
+ HowettC. J. A.
+ TsangC. C. C.
+ WilsonC. F.
+ CalcuttS. B.
+ NixonC. A.
+ ParrishP. D.
+
+ The NEMESIS planetary atmosphere radiative transfer and retrieval tool
+
+ 200804
+ 109
+ 10.1016/j.jqsrt.2007.11.006
+ 1136
+ 1150
+
+
+
+
+
+ CubillosPatricio E.
+ BlecicJasmina
+
+ The PYRAT BAY framework for exoplanet atmospheric modelling: a population study of Hubble/WFC3 transmission spectra
+
+ 202108
+ 505
+ 2
+ https://arxiv.org/abs/2105.05598
+ 10.1093/mnras/stab1405
+ 2675
+ 2702
+
+
+
+
+
+ WaldmannI. P.
+ TinettiG.
+ RocchettoM.
+ BartonE. J.
+ YurchenkoS. N.
+ TennysonJ.
+
+ Tau-REx I: A Next Generation Retrieval Code for Exoplanetary Atmospheres
+
+ 201504
+ 802
+ 2
+ https://arxiv.org/abs/1409.2312
+ 10.1088/0004-637X/802/2/107
+ 107
+
+
+
+
+
+
+ ZhangMichael
+ ChachanYayaati
+ KemptonEliza M. -R.
+ KnutsonHeather A.
+
+ Forward Modeling and Retrievals with PLATON, a Fast Open-source Tool
+
+ 201903
+ 131
+ 997
+ https://arxiv.org/abs/1811.11761
+ 10.1088/1538-3873/aaf5ad
+ 034501
+
+
+
+
+
+
+ MollièreP.
+ WardenierJ. P.
+ van BoekelR.
+ HenningTh.
+ MolaverdikhaniK.
+ SnellenI. A. G.
+
+ petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval
+
+ 201907
+ 627
+ https://arxiv.org/abs/1904.11504
+ 10.1051/0004-6361/201935470
+ A67
+
+
+
+
+
+
+ LineMichael R.
+ WolfAaron S.
+ ZhangXi
+ KnutsonHeather
+ KammerJoshua A.
+ EllisonElias
+ DerooPieter
+ CrispDave
+ YungYuk L.
+
+ A Systematic Retrieval Analysis of Secondary Eclipse Spectra. I. A Comparison of Atmospheric Retrieval Techniques
+
+ 201310
+ 775
+ 2
+ https://arxiv.org/abs/1304.5561
+ 10.1088/0004-637X/775/2/137
+ 137
+
+
+
+
+
+
+ MacDonaldRyan J.
+
+ POSEIDON: A multidimensional atmospheric retrieval code for exoplanet spectra
+
+ The Open Journal
+ 2023
+ 8
+ 81
+ https://doi.org/10.21105/joss.04873
+ 10.21105/joss.04873
+ 4873
+
+
+
+
+
+
+ Márquez-NeilaPablo
+ FisherChloe
+ SznitmanRaphael
+ HengKevin
+
+ Supervised machine learning for analysing spectra of exoplanetary atmospheres
+
+ 201806
+ 2
+ https://arxiv.org/abs/1806.03944
+ 10.1038/s41550-018-0504-2
+ 719
+ 724
+
+
+
+
+
+ CzekalaIan
+ AndrewsSean M.
+ MandelKaisey S.
+ HoggDavid W.
+ GreenGregory M.
+
+ Constructing a Flexible Likelihood Function for Spectroscopic Inference
+
+ 201510
+ 812
+ 2
+ https://arxiv.org/abs/1412.5177
+ 10.1088/0004-637X/812/2/128
+ 128
+
+
+
+
+
+
+ MarleyMark S.
+ SaumonDidier
+ VisscherChannon
+ LupuRoxana
+ FreedmanRichard
+ MorleyCaroline
+ FortneyJonathan J
+ SeayChristopher
+ SmithAdam JRW
+ TealDJ
+ others
+
+ The sonora brown dwarf atmosphere and evolution models. I. Model description and application to cloudless atmospheres in rainout chemical equilibrium
+
+ IOP Publishing
+ 2021
+ 920
+ 2
+ 10.3847/1538-4357/ac141d
+ 85
+
+
+
+
+
+
+ MarleyMark S.
+ RobinsonT. D.
+
+ On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets
+
+ 201508
+ 53
+ https://arxiv.org/abs/1410.6512
+ 10.1146/annurev-astro-082214-122522
+ 279
+ 323
+
+
+
+
+
+ LineMichael R.
+ KnutsonHeather
+ WolfAaron S
+ YungYuk L
+
+ A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their c to o ratios
+
+ IOP Publishing
+ 2014
+ 783
+ 2
+ 10.1088/0004-637x/783/2/70
+ 70
+
+
+
+
+
+
+ IyerAishwarya R.
+ LineMichael R.
+ MuirheadPhilip S.
+ FortneyJonathan J.
+ Gharib-NezhadEhsan
+
+ The SPHINX M-dwarf Spectral Grid. I. Benchmarking New Model Atmospheres to Derive Fundamental M-dwarf Properties
+
+ 202302
+ 944
+ 1
+ https://arxiv.org/abs/2206.12010
+ 10.3847/1538-4357/acabc2
+ 41
+
+
+
+
+
+
+ BatalhaNatasha E
+ MarleyMark S
+ LewisNikole K
+ FortneyJonathan J
+
+ Exoplanet reflected-light spectroscopy with PICASO
+
+ IOP Publishing
+ 2019
+ 878
+ 1
+ 10.3847/1538-4357/ab1b51
+ 70
+
+
+
+
+
+
+ ValizadeganHamed
+ MartinhoMiguel J. S.
+ WilkensLaurent S.
+ JenkinsJon M.
+ SmithJeffrey C.
+ CaldwellDouglas A.
+ TwickenJoseph D.
+ GerumPedro C. L.
+ WaliaNikash
+ HausknechtKaylie
+ LubinNoa Y.
+ BrysonStephen T.
+ OzaNikunj C.
+
+ ExoMiner: A Highly Accurate and Explainable Deep Learning Classifier That Validates 301 New Exoplanets
+
+ 202202
+ 926
+ 2
+ https://arxiv.org/abs/2111.10009
+ 10.3847/1538-4357/ac4399
+ 120
+
+
+
+
+
+
+ LueberAnna
+ KitzmannDaniel
+ FisherChloe E.
+ BowlerBrendan P.
+ BurgasserAdam J.
+ MarleyMark
+ HengKevin
+
+ Intercomparison of Brown Dwarf Model Grids and Atmospheric Retrieval Using Machine Learning
+
+ 202309
+ 954
+ 1
+ https://arxiv.org/abs/2305.07719
+ 10.3847/1538-4357/ace530
+ 22
+
+
+
+
+
+
diff --git a/joss.06346/paper.jats/TelescopeML_Modules_Infograph_v2.jpg b/joss.06346/paper.jats/TelescopeML_Modules_Infograph_v2.jpg
new file mode 100644
index 0000000000..af624beff4
Binary files /dev/null and b/joss.06346/paper.jats/TelescopeML_Modules_Infograph_v2.jpg differ