diff --git a/joss.05877/10.21105.joss.05877.crossref.xml b/joss.05877/10.21105.joss.05877.crossref.xml
new file mode 100644
index 0000000000..c2f519491c
--- /dev/null
+++ b/joss.05877/10.21105.joss.05877.crossref.xml
@@ -0,0 +1,613 @@
+
+
+
+ 20240502T100433-62c9fbfb5f26d615e340358cc5a7c64e0df1fe92
+ 20240502100433
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 05
+ 2024
+
+
+ 9
+
+ 97
+
+
+
+ GIRFReco.jl: An Open-Source Pipeline for Spiral
+Magnetic Resonance Image (MRI) Reconstruction in Julia
+
+
+
+ Alexander
+ Jaffray
+ https://orcid.org/0000-0002-9571-1838
+
+
+ Zhe
+ Wu
+ https://orcid.org/0000-0002-2079-5977
+
+
+ S. Johanna
+ Vannesjo
+ https://orcid.org/0000-0003-2432-4192
+
+
+ Kâmil
+ Uludağ
+ https://orcid.org/0000-0002-2813-5930
+
+
+ Lars
+ Kasper
+ https://orcid.org/0000-0001-7667-603X
+
+
+
+ 05
+ 02
+ 2024
+
+
+ 5877
+
+
+ 10.21105/joss.05877
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.11075548
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5877
+
+
+
+ 10.21105/joss.05877
+ https://joss.theoj.org/papers/10.21105/joss.05877
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05877.pdf
+
+
+
+
+
+ Comparison of gradient impulse response
+functions measured with a dynamic field camera and a phantom-based
+technique
+ Graedel
+ 2017
+ Graedel, N. N., Hurley, S. A., Clare,
+S., Miller, K. L., Pruessmann, K. P., & Vannesjo, S. J. (2017).
+Comparison of gradient impulse response functions measured with a
+dynamic field camera and a phantom-based technique.
+378.
+
+
+ Open-source model-based reconstruction in
+Julia: A pipeline for spiral diffusion imaging
+ Jaffray
+ Proc. Intl. Soc. Mag. Reson. Med.
+30
+ 10.58530/2022/2435
+ 2022
+ Jaffray, A., Wu, Z., Uludağ, K.,
+& Kasper, L. (2022). Open-source model-based reconstruction in
+Julia: A pipeline for spiral diffusion imaging. Proc. Intl. Soc. Mag.
+Reson. Med. 30, 2435.
+https://doi.org/10.58530/2022/2435
+
+
+ MR System Stability and Quality Control using
+Gradient Impulse Response Functions (GIRF)
+ Wu
+ Proc. Intl. Soc. Mag. Reson. Med.
+30
+ 10.58530/2022/0641
+ 2022
+ Wu, Z., Jaffray, A., Vannesjo, S. J.,
+Uludağ, K., & Kasper, L. (2022). MR System Stability and Quality
+Control using Gradient Impulse Response Functions (GIRF). Proc. Intl.
+Soc. Mag. Reson. Med. 30, 0641.
+https://doi.org/10.58530/2022/0641
+
+
+ Simple method for MR gradient system
+characterization and k-space trajectory estimation
+ Addy
+ Magnetic Resonance in
+Medicine
+ 1
+ 68
+ 10.1002/mrm.23217
+ 1522-2594
+ 2012
+ Addy, N. O., Wu, H. H., &
+Nishimura, D. G. (2012). Simple method for MR gradient system
+characterization and k-space trajectory estimation. Magnetic Resonance
+in Medicine, 68(1), 120–129.
+https://doi.org/10.1002/mrm.23217
+
+
+ Gradient system characterization by impulse
+response measurements with a dynamic field camera: Gradient System
+Characterization with a Dynamic Field Camera
+ Vannesjo
+ Magnetic Resonance in
+Medicine
+ 2
+ 69
+ 10.1002/mrm.24263
+ 2013
+ Vannesjo, S. J., Haeberlin, M.,
+Kasper, L., Pavan, M., Wilm, B. J., Barmet, C., & Pruessmann, K. P.
+(2013). Gradient system characterization by impulse response
+measurements with a dynamic field camera: Gradient System
+Characterization with a Dynamic Field Camera. Magnetic Resonance in
+Medicine, 69(2), 583–593.
+https://doi.org/10.1002/mrm.24263
+
+
+ On the signal‐to‐noise ratio benefit of
+spiral acquisition in diffusion MRI
+ Lee
+ Magnetic Resonance in
+Medicine
+ 4
+ 85
+ 10.1002/mrm.28554
+ 0740-3194
+ 2021
+ Lee, Y., Wilm, B. J., Brunner, D. O.,
+Gross, S., Schmid, T., Nagy, Z., & Pruessmann, K. P. (2021). On the
+signal‐to‐noise ratio benefit of spiral acquisition in diffusion MRI.
+Magnetic Resonance in Medicine, 85(4), 1924–1937.
+https://doi.org/10.1002/mrm.28554
+
+
+ Spiral imaging: A critical
+appraisal
+ Block
+ Journal of Magnetic Resonance
+Imaging
+ 6
+ 21
+ 10.1002/jmri.20320
+ 1053-1807
+ 2005
+ Block, K. T., & Frahm, J. (2005).
+Spiral imaging: A critical appraisal. Journal of Magnetic Resonance
+Imaging, 21(6), 657–668.
+https://doi.org/10.1002/jmri.20320
+
+
+ Fast, iterative image reconstruction for MRI
+in the presence of field inhomogeneities
+ Sutton
+ IEEE Transactions on Medical
+Imaging
+ 2
+ 22
+ 10.1109/TMI.2002.808360
+ 0278-0062
+ 2003
+ Sutton, B. P., Noll, D. C., &
+Fessler, J. A. (2003). Fast, iterative image reconstruction for MRI in
+the presence of field inhomogeneities. IEEE Transactions on Medical
+Imaging, 22(2), 178–188.
+https://doi.org/10.1109/TMI.2002.808360
+
+
+ Higher order reconstruction for MRI in the
+presence of spatiotemporal field perturbations: Higher Order
+Reconstruction for MRI
+ Wilm
+ Magnetic Resonance in
+Medicine
+ 6
+ 65
+ 10.1002/mrm.22767
+ 2011
+ Wilm, B. J., Barmet, C., Pavan, M.,
+& Pruessmann, K. P. (2011). Higher order reconstruction for MRI in
+the presence of spatiotemporal field perturbations: Higher Order
+Reconstruction for MRI. Magnetic Resonance in Medicine, 65(6),
+1690–1701. https://doi.org/10.1002/mrm.22767
+
+
+ Diffusion MRI with concurrent magnetic field
+monitoring: Diffusion MRI with Concurrent Magnetic Field
+Monitoring
+ Wilm
+ Magnetic Resonance in
+Medicine
+ 4
+ 74
+ 10.1002/mrm.25827
+ 2015
+ Wilm, B. J., Nagy, Z., Barmet, C.,
+Vannesjo, S. J., Kasper, L., Haeberlin, M., Gross, S., Dietrich, B. E.,
+Brunner, D. O., Schmid, T., & Pruessmann, K. P. (2015). Diffusion
+MRI with concurrent magnetic field monitoring: Diffusion MRI with
+Concurrent Magnetic Field Monitoring. Magnetic Resonance in Medicine,
+74(4), 925–933.
+https://doi.org/10.1002/mrm.25827
+
+
+ Advances in sensitivity encoding with
+arbitrary k -space trajectories: SENSE With Arbitrary k -Space
+Trajectories
+ Pruessmann
+ Magnetic Resonance in
+Medicine
+ 4
+ 46
+ 10.1002/mrm.1241
+ 2001
+ Pruessmann, K. P., Weiger, M.,
+Börnert, P., & Boesiger, P. (2001). Advances in sensitivity encoding
+with arbitrary k -space trajectories: SENSE With Arbitrary k -Space
+Trajectories. Magnetic Resonance in Medicine, 46(4), 638–651.
+https://doi.org/10.1002/mrm.1241
+
+
+ Julia: A Fresh Approach to Numerical
+Computing
+ Bezanson
+ SIAM Review
+ 1
+ 59
+ 10.1137/141000671
+ 0036-1445
+ 2017
+ Bezanson, J., Edelman, A., Karpinski,
+S., & Shah, V. B. (2017). Julia: A Fresh Approach to Numerical
+Computing. SIAM Review, 59(1), 65–98.
+https://doi.org/10.1137/141000671
+
+
+ ISMRM Raw data format: A proposed standard
+for MRI raw datasets
+ Inati
+ Magnetic Resonance in
+Medicine
+ 1
+ 77
+ 10.1002/mrm.26089
+ 0740-3194
+ 2017
+ Inati, S. J., Naegele, J. D., Zwart,
+N. R., Roopchansingh, V., Lizak, M. J., Hansen, D. C., Liu, C.,
+Atkinson, D., Kellman, P., Kozerke, S., Xue, H., Campbell‐Washburn, A.
+E., Sørensen, T. S., & Hansen, M. S. (2017). ISMRM Raw data format:
+A proposed standard for MRI raw datasets. Magnetic Resonance in
+Medicine, 77(1), 411–421.
+https://doi.org/10.1002/mrm.26089
+
+
+ Image reconstruction using a gradient impulse
+response model for trajectory prediction: GIRF-Based Image
+Reconstruction
+ Vannesjo
+ Magnetic Resonance in
+Medicine
+ 1
+ 76
+ 10.1002/mrm.25841
+ 2016
+ Vannesjo, S. J., Graedel, N. N.,
+Kasper, L., Gross, S., Busch, J., Haeberlin, M., Barmet, C., &
+Pruessmann, K. P. (2016). Image reconstruction using a gradient impulse
+response model for trajectory prediction: GIRF-Based Image
+Reconstruction. Magnetic Resonance in Medicine, 76(1), 45–58.
+https://doi.org/10.1002/mrm.25841
+
+
+ Gadgetron: An open source framework for
+medical image reconstruction: Gadgetron
+ Hansen
+ Magnetic Resonance in
+Medicine
+ 6
+ 69
+ 10.1002/mrm.24389
+ 2013
+ Hansen, M. S., & Sørensen, T. S.
+(2013). Gadgetron: An open source framework for medical image
+reconstruction: Gadgetron. Magnetic Resonance in Medicine, 69(6),
+1768–1776. https://doi.org/10.1002/mrm.24389
+
+
+ Mrirecon/bart: Version 0.8.00
+ Blumenthal
+ 10.5281/ZENODO.592960
+ 2022
+ Blumenthal, M., Holme, C., Roeloffs,
+V., Rosenzweig, S., Schaten, P., Scholand, N., Tamir, J., Wang, X.,
+& Uecker, M. (2022). Mrirecon/bart: Version 0.8.00. Zenodo.
+https://doi.org/10.5281/ZENODO.592960
+
+
+ Open‐source MR imaging and reconstruction
+workflow
+ Veldmann
+ Magnetic Resonance in
+Medicine
+ 6
+ 88
+ 10.1002/mrm.29384
+ 0740-3194
+ 2022
+ Veldmann, M., Ehses, P., Chow, K.,
+Nielsen, J., Zaitsev, M., & Stöcker, T. (2022). Open‐source MR
+imaging and reconstruction workflow. Magnetic Resonance in Medicine,
+88(6), 2395–2407.
+https://doi.org/10.1002/mrm.29384
+
+
+ MRIReco.jl: An MRI reconstruction framework
+written in Julia
+ Knopp
+ Magnetic Resonance in
+Medicine
+ 3
+ 86
+ 10.1002/mrm.28792
+ 0740-3194
+ 2021
+ Knopp, T., & Grosser, M. (2021).
+MRIReco.jl: An MRI reconstruction framework written in Julia. Magnetic
+Resonance in Medicine, 86(3), 1633–1646.
+https://doi.org/10.1002/mrm.28792
+
+
+ ESPIRiT-an eigenvalue approach to
+autocalibrating parallel MRI: Where SENSE meets GRAPPA
+ Uecker
+ Magnetic Resonance in
+Medicine
+ 3
+ 71
+ 10.1002/mrm.24751
+ 2014
+ Uecker, M., Lai, P., Murphy, M. J.,
+Virtue, P., Elad, M., Pauly, J. M., Vasanawala, S. S., & Lustig, M.
+(2014). ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI:
+Where SENSE meets GRAPPA. Magnetic Resonance in Medicine, 71(3),
+990–1001. https://doi.org/10.1002/mrm.24751
+
+
+ Iterative Off-Resonance and Signal Decay
+Estimation and Correction for Multi-Echo MRI
+ Knopp
+ IEEE Transactions on Medical
+Imaging
+ 3
+ 28
+ 10.1109/TMI.2008.2006526
+ 0278-0062
+ 2009
+ Knopp, T., Eggers, H., Dahnke, H.,
+Prestin, J., & Senegas, J. (2009). Iterative Off-Resonance and
+Signal Decay Estimation and Correction for Multi-Echo MRI. IEEE
+Transactions on Medical Imaging, 28(3), 394–404.
+https://doi.org/10.1109/TMI.2008.2006526
+
+
+ Regularized Field Map Estimation in
+MRI
+ Funai
+ IEEE Transactions on Medical
+Imaging
+ 10
+ 27
+ 10.1109/TMI.2008.923956
+ 0278-0062
+ 2008
+ Funai, A. K., Fessler, J. A., Yeo, D.
+T. B., Olafsson, V. T., & Noll, D. C. (2008). Regularized Field Map
+Estimation in MRI. IEEE Transactions on Medical Imaging, 27(10),
+1484–1494.
+https://doi.org/10.1109/TMI.2008.923956
+
+
+ Correction of B _{\textrm{0}} eddy current
+effects in spiral MRI
+ Robison
+ Magnetic Resonance in
+Medicine
+ 4
+ 81
+ 10.1002/mrm.27583
+ 0740-3194
+ 2019
+ Robison, R. K., Li, Z., Wang, D.,
+Ooi, M. B., & Pipe, J. G. (2019). Correction of B _{\textrm{0}} eddy
+current effects in spiral MRI. Magnetic Resonance in Medicine, 81(4),
+2501–2513. https://doi.org/10.1002/mrm.27583
+
+
+ Efficient regularized field map estimation in
+3D MRI
+ Lin
+ IEEE Transactions on Computational
+Imaging
+ 6
+ 10.1109/TCI.2020.3031082
+ 2333-9403
+ 2020
+ Lin, C. Y., & Fessler, J. A.
+(2020). Efficient regularized field map estimation in 3D MRI. IEEE
+Transactions on Computational Imaging, 6, 1451–1458.
+https://doi.org/10.1109/TCI.2020.3031082
+
+
+ NIfTI Data Format
+ NIfTI
+ 2003
+ NIfTI. (2003, September 2). NIfTI
+Data Format [National Institute of Mental Health Website]. Neuroimaging
+Informatics Technology Initiative.
+https://nifti.nimh.nih.gov/
+
+
+ MRI-gradient / GIRF
+ Vannesjo
+ 2020
+ Vannesjo, S. J., & Graedel, N. N.
+(2020). MRI-gradient / GIRF. MRI-gradient.
+https://github.com/MRI-gradient/GIRF
+
+
+ Concomitant gradient terms in phase contrast
+MR: Analysis and correction
+ Bernstein
+ Magnetic Resonance in
+Medicine
+ 2
+ 39
+ 10.1002/mrm.1910390218
+ 1522-2594
+ 1998
+ Bernstein, M. A., Zhou, X. J.,
+Polzin, J. A., King, K. F., Ganin, A., Pelc, N. J., & Glover, G. H.
+(1998). Concomitant gradient terms in phase contrast MR: Analysis and
+correction. Magnetic Resonance in Medicine, 39(2), 300–308.
+https://doi.org/10.1002/mrm.1910390218
+
+
+ Data Supplement: Open-source model-based
+reconstruction in Julia (ISMRM 2022)
+ Jaffray
+ 10.5281/zenodo.6510021
+ 2022
+ Jaffray, A., Wu, Z. (Tim)., Uludağ,
+K., & Kasper, L. (2022). Data Supplement: Open-source model-based
+reconstruction in Julia (ISMRM 2022) [Data set]. Zenodo.
+https://doi.org/10.5281/zenodo.6510021
+
+
+ Single-shot spiral imaging at 7
+T
+ Engel
+ Magnetic Resonance in
+Medicine
+ 5
+ 80
+ 10.1002/mrm.27176
+ 1522-2594
+ 2018
+ Engel, M., Kasper, L., Barmet, C.,
+Schmid, T., Vionnet, L., Wilm, B., & Pruessmann, K. P. (2018).
+Single-shot spiral imaging at 7 T. Magnetic Resonance in Medicine,
+80(5), 1836–1846.
+https://doi.org/10.1002/mrm.27176
+
+
+ Feasibility of spiral diffusion imaging on a
+clinical 3T MR system
+ Kasper
+ Proc. Intl. Soc. Mag. Reson. Med.
+31
+ 2023
+ Kasper, L., Wu, Z., Jaffray, A.,
+Kashyap, S., & Uludağ, K. (2023). Feasibility of spiral diffusion
+imaging on a clinical 3T MR system. Proc. Intl. Soc. Mag. Reson. Med.
+31, 4164.
+https://index.mirasmart.com/ISMRM2023/PDFfiles/4164.html
+
+
+ Feasibility of spiral fMRI based on an LTI
+gradient model
+ Graedel
+ NeuroImage
+ 245
+ 10.1016/j.neuroimage.2021.118674
+ 1053-8119
+ 2021
+ Graedel, N. N., Kasper, L., Engel,
+M., Nussbaum, J., Wilm, B. J., Pruessmann, K. P., & Vannesjo, S. J.
+(2021). Feasibility of spiral fMRI based on an LTI gradient model.
+NeuroImage, 245, 118674.
+https://doi.org/10.1016/j.neuroimage.2021.118674
+
+
+ Rapid anatomical brain imaging using spiral
+acquisition and an expanded signal model
+ Kasper
+ NeuroImage
+ 168
+ 10.1016/j.neuroimage.2017.07.062
+ 1053-8119
+ 2018
+ Kasper, L., Engel, M., Barmet, C.,
+Haeberlin, M., Wilm, B. J., Dietrich, B. E., Schmid, T., Gross, S.,
+Brunner, D. O., Stephan, K. E., & Pruessmann, K. P. (2018). Rapid
+anatomical brain imaging using spiral acquisition and an expanded signal
+model. NeuroImage, 168, 88–100.
+https://doi.org/10.1016/j.neuroimage.2017.07.062
+
+
+ Advances in spiral fMRI: A high-resolution
+study with single-shot acquisition
+ Kasper
+ NeuroImage
+ 246
+ 10.1016/j.neuroimage.2021.118738
+ 2022
+ Kasper, L., Engel, M., Heinzle, J.,
+Mueller-Schrader, M., Graedel, N. N., Reber, J., Schmid, T., Barmet, C.,
+Wilm, B. J., Stephan, K. E., & Pruessmann, K. P. (2022). Advances in
+spiral fMRI: A high-resolution study with single-shot acquisition.
+NeuroImage, 246, 118738.
+https://doi.org/10.1016/j.neuroimage.2021.118738
+
+
+ Michigan Image Reconstruction
+Toolbox
+ Fessler
+ Fessler, J. A. (n.d.). Michigan Image
+Reconstruction Toolbox. Retrieved May 17, 2023, from
+https://github.com/JeffFessler/mirt
+
+
+
+
+
+
diff --git a/joss.05877/10.21105.joss.05877.jats b/joss.05877/10.21105.joss.05877.jats
new file mode 100644
index 0000000000..641f1167d2
--- /dev/null
+++ b/joss.05877/10.21105.joss.05877.jats
@@ -0,0 +1,1300 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5877
+10.21105/joss.05877
+
+GIRFReco.jl: An Open-Source Pipeline for Spiral Magnetic
+Resonance Image (MRI) Reconstruction in Julia
+
+
+
+https://orcid.org/0000-0002-9571-1838
+
+Jaffray
+Alexander
+
+
+
+*
+
+
+https://orcid.org/0000-0002-2079-5977
+
+Wu
+Zhe
+
+
+*
+
+
+https://orcid.org/0000-0003-2432-4192
+
+Vannesjo
+S. Johanna
+
+
+
+
+https://orcid.org/0000-0002-2813-5930
+
+Uludağ
+Kâmil
+
+
+
+
+
+
+https://orcid.org/0000-0001-7667-603X
+
+Kasper
+Lars
+
+
+
+
+
+Krembil Research Institute, University Health Network,
+Ontario, Canada
+
+
+
+
+MRI Research Centre, University of British Columbia,
+Vancouver, Canada
+
+
+
+
+Department of Physics, Norwegian University of Science and
+Technology, Trondheim, Norway
+
+
+
+
+Department of Medical Biophysics, University of Toronto,
+Canada
+
+
+
+
+Physical Sciences, Sunnybrook Research Institute,
+Sunnybrook Health Sciences Centre, Toronto, ON, Canada
+
+
+
+
+* E-mail:
+* E-mail:
+
+
+26
+4
+2024
+
+9
+97
+5877
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Julia
+Magnetic Resonance Imaging
+Non-Cartesian Image Reconstruction
+Gradient Impulse Response Function (GIRF)
+Off-resonance Correction
+
+
+
+
+
+ Summary
+
Magnetic Resonance Imaging (MRI) acquires data in the frequency
+ domain (k-space), with the sampling pattern traversed by a path known
+ as the k-space trajectory. It is desirable to implement MRI data
+ sampling using k-space trajectories with high acquisition efficiency
+ (i.e., a fast coverage of k-space). Traditional Cartesian MRI
+ traverses k-space by acquiring individual lines of the k-space, each
+ requiring an excitation, a phase-encoding step, and a short readout
+ gradient. However, it is possible to traverse k-space with an
+ arbitrary trajectory, achieved by a long sequence of readout
+ gradients, thus presenting the opportunity to acquire more sampling
+ points per excitation. Spiral trajectories are a popular and efficient
+ method for traversing k-space with a long readout, as well as
+ classical echo-planar imaging (EPI) trajectories. Non-Cartesian
+ trajectories, such as spiral trajectories, yield significant
+ reductions in the number of excitations required for the acquisition
+ of an image, thus offering considerable acceleration and improvements
+ in signal-to-noise ratio (SNR) per unit time at the cost of
+ reconstruction complexity. These improvements are particularly
+ beneficial in diffusion MRI due to sequence timing constraints
+ (Lee
+ et al., 2021).
+
The actual k-space trajectory applied during the MRI experiment can
+ differ from the nominal trajectory due to hardware imperfections,
+ resulting in image artifacts such as ghosting, blurring or geometric
+ distortion. This problem is exacerbated in many non-Cartesian
+ trajectories, such as spirals, because these fast imaging protocols
+ place high demands on the gradient hardware of the MRI system
+ (Block
+ & Frahm, 2005). Accurate characterization of the system
+ hardware is necessary and can be used for k-space trajectory
+ correction, for example via a gradient impulse response function
+ (GIRF)
+ (Addy
+ et al., 2012;
+ Vannesjo
+ et al., 2013).
+
The high acquisition efficiency of non-Cartesian trajectories
+ originates, in part, from the prolonged readout duration which allows
+ for more samples to be acquired per excitation (single-shot or
+ few-interleave scanning). However, when using such long readouts, the
+ image encoding scheme is susceptible to static off-resonance (or field
+ inhomogeneity, B0), resulting in image artifacts that scale
+ with readout duration. For non-Cartesian trajectories, these artifacts
+ are difficult to correct in post-processing, but can be effectively
+ addressed during image reconstruction by incorporating spatial
+ off-resonance measurements into the signal model
+ (Sutton
+ et al., 2003).
+
Therefore, recent spiral imaging approaches often rely on an
+ expanded signal model incorporating system imperfections and
+ off-resonance maps
+ (Engel
+ et al., 2018;
+ Graedel
+ et al., 2021;
+ Kasper
+ et al., 2018;
+ Kasper
+ et al., 2022;
+ Lee
+ et al., 2021;
+ Robison
+ et al., 2019;
+ Vannesjo
+ et al., 2016;
+ Wilm
+ et al., 2011,
+ 2015),
+ in combination with parallel imaging acceleration using multiple
+ receiver coils and iterative non-Cartesian image reconstruction
+ algorithms, e.g., CG-SENSE
+ (Pruessmann
+ et al., 2001).
+
Here, we introduce the open-source
+ GIRFReco.jl reconstruction pipeline, which
+ provides a single ecosystem implementation of this state-of-the-art
+ approach to non-Cartesian MRI in the programming language Julia
+ (Bezanson
+ et al., 2017). The core reconstruction routines rely upon the
+ public Julia package MRIReco.jl, a
+ comprehensive open-source image reconstruction toolbox. To enable
+ robust, accessible and fast MRI with spiral gradient waveforms,
+ GIRFReco.jl is designed as an end-to-end signal
+ processing pipeline, from open-standard raw MR data ([ISMR]MRD
+ (Inati
+ et al., 2017)) to final reconstructed images (NIfTI neuroimage
+ data format
+ (NIfTI,
+ 2003)). It integrates system characterization information via
+ GIRF correction for accurate representation of the encoding fields,
+ relevant calibration data (coil sensitivity and static off-resonance
+ maps) and iterative parallel imaging reconstruction for non-Cartesian
+ k-space sampling patterns, including spiral trajectories.
+
+
+ Statement of Need
+
Existing open-source solutions for the correction of system
+ imperfections and static off-resonance in MRI are often implemented
+ within the framework of mature image reconstruction suites such as
+ BART
+ (Blumenthal
+ et al., 2022), Gadgetron
+ (Hansen
+ & Sørensen, 2013) and MIRT
+ (Fessler,
+ n.d.).
+
However, the aforementioned complexity of the image reconstruction
+ task for spiral MRI currently necessitates the integration of tools
+ from multiple of these software suites in order to establish a
+ performant and comprehensive image reconstruction workflow (e.g.,
+ (Veldmann
+ et al., 2022)). With each tool being developed in different
+ programming languages (C for BART; C++ for Gadgetron; MATLAB, C++ and
+ C for MIRT, etc.), maintaining and extending such an image
+ reconstruction pipeline then requires cross-language expertise, adding
+ significant overhead and complexity to development. This presents a
+ significant barrier to efficient and reproducible image reconstruction
+ and limits software accessibility and sustainability, especially for
+ users without software engineering backgrounds.
+
The programming language Julia
+ (Bezanson
+ et al., 2017) provides a practical solution to this
+ multiple-language problem by using a high-level interface to low-level
+ compiled code, i.e., enabling fast prototyping with limited resources
+ in an academic setting, while delivering a near-industrial-level
+ efficiency of code execution, all within a single development
+ environment.
+
In this work, we introduce GIRFReco.jl
+ (initial version presented at the annual meeting of ISMRM 2022
+ (Jaffray
+ et al., 2022b)), which implements an end-to-end, self-contained
+ processing and image reconstruction pipeline for spiral MR data
+ completely in Julia. Based on the established
+ MRIReco.jl package,
+ GIRFReco.jl incorporates model-based
+ corrections
+ (Sutton
+ et al., 2003;
+ Vannesjo
+ et al., 2016;
+ Wilm
+ et al., 2011,
+ 2015)
+ to achieve high-quality spiral MRI reconstructions. Specifically, this
+ reconstruction pipeline combines several major steps: (1) ESPIRiT coil
+ sensitivity map estimation
+ (Uecker
+ et al., 2014); (2) Robust off-resonance (B0) map
+ estimation
+ (Funai
+ et al., 2008;
+ Lin
+ & Fessler, 2020); (3) Computation of the applied
+ non-Cartesian k-space trajectory using GIRF correction
+ (Vannesjo
+ et al., 2013,
+ 2016);
+ (4) Iterative non-Cartesian MRI reconstruction (CG-SENSE) with
+ off-resonance correction
+ (Knopp
+ et al., 2009;
+ Pruessmann
+ et al., 2001). Considering software reusability and
+ sustainability, (1) and (4) of the abovementioned steps are handled by
+ MRIReco.jl, a comprehensive modular open-source
+ image reconstruction toolbox in Julia. Step (2), the B0 map
+ estimation, was developed as a Julia package
+ MRIFieldmaps.jl by the original authors
+ (Lin
+ & Fessler, 2020) with our contribution of implementing an
+ alternative algorithm
+ (Funai
+ et al., 2008) in Julia. Finally, we implemented step (3), the
+ GIRF correction, in an original Julia package
+ MRIGradients.jl
+ (Jaffray
+ et al., 2022b), porting and refactoring the MATLAB code of the
+ original authors
+ (Vannesjo
+ & Graedel, 2020).
+
+
+ Functionality
+
+ Required Inputs
+
GIRFReco.jl requires raw MRI (k-space)
+ data (in [ISMR]MRD format
+ (Inati
+ et al., 2017)) of the following scans as input:
must include at least two echo times (e.g., 4.92 ms and
+ 7.38 ms at 3T)
+
+
+
+
+
Spiral scan
+
+
+
single or multi-interleave
+
+
+
+
+
At the moment, the slice geometry (thickness, field-of-view, and
+ direction) of the Cartesian and spiral scans must be congruent,
+ while the resolution does not need to be identical or isotropic.
+
+
+ Overview of Components
+
The following components are utilized within the spiral
+ reconstruction pipeline of GIRFReco.jl (Fig.
+ 1), and called from their respective packages. We indicate where the
+ authors of GIRFReco.jl provided original
+ contributions to the components by bold font.
+
+
+
Core iterative image reconstruction, using the Julia package
+ MRIReco.jl
+
+
+
CG-SENSE
+ (Pruessmann
+ et al., 2001) algorithm for iterative non-Cartesian
+ image reconstruction
+
+
+
ESPIRiT
+ (Uecker
+ et al., 2014) for sensitivity map estimation
Smoothed B0 map estimation, using an
+ implementation of
+ (Funai
+ et al., 2008) and
+ MRIFieldMaps.jl
+ (Lin
+ & Fessler, 2020)
+
+
+
Static B0 map correction, accelerated by a
+ time-segmented implementation
+ (Knopp
+ et al., 2009) in
+ MRIReco.jl
+ (Knopp
+ & Grosser, 2021)
+
+
+
+
+
Encoding field (trajectory) correction via Gradient
+ impulse response function (GIRF)
+ (Vannesjo
+ et al., 2013)
+
+
+
Measurement with a phantom-based technique
+ (Addy
+ et al., 2012;
+ Graedel
+ et al., 2017;
+ Robison
+ et al., 2019)
+
+
+
Estimation using open-source code
+ (Wu
+ et al., 2022)
+
+
+
Prediction via
+ MRIGradients.jl
+ (Jaffray
+ et al., 2022b)
+
+
+
+
+
+
+
+ Figure 1
+ Figure 1. Overview of the
+ GIRFReco.jl signal processing and
+ reconstruction pipeline. Depicted is the workflow from raw acquired
+ k-space data to the final reconstructed images with the respective
+ tasks (parallelogram), in/output data (rectangles) and the location
+ of the processing components within different packages
+ (colours).
+
+
+ Detailed Processing Pipeline
+
GIRFReco.jl executes the steps required
+ (depicted in Figure 1) for spiral diffusion reconstruction in the
+ following order:
+
+
+
Conversion of proprietary, vendor-specific raw image data to
+ an open-source raw data format ([ISMR]MRD,
+ (Inati
+ et al., 2017)).
+
+
+
Reading of the trajectory or gradient sequence and
+ synchronization of the k-space trajectory onto the time course
+ of the sampled k-space data to resolve any sampling rate
+ differences.
+
+
+
Model-based correction of the k-space sampling points (linear
+ gradient self-terms) and data (k0 eddy currents)
+ using the gradient impulse response function (GIRF
+ (Vannesjo
+ et al., 2013), MRIGradients.jl
+ (Jaffray
+ et al., 2022b)).
+
+
+
Iterative reconstruction of Cartesian multi-echo gradient
+ echo (GRE) scan.
+
+
+
Coil sensitivity map estimation (ESPIRiT
+ (Uecker
+ et al., 2014), MRIReco.jl) from
+ the first echo of multi-echo Cartesian GRE data.
+
+
+
Off-resonance (B0) map estimation and processing
+ (MRIFieldmaps.jl,
+ (Funai
+ et al., 2008;
+ Lin
+ & Fessler, 2020)) based on multi-echo Cartesian GRE
+ data.
+
+
+
Non-Cartesian, iterative parallel image reconstruction
+ (cgSENSE) with off-resonance correction
+ ((Knopp
+ et al., 2009;
+ Pruessmann
+ et al., 2001), MRIReco.jl
+ (Knopp
+ & Grosser, 2021)).
+
+
+
Via dedicated configuration files, individual steps can be
+ selectively applied or skipped during reconstruction, enabling
+ assessment of the impact of different model-based corrections on
+ final image quality. We demonstrate this use case by providing
+ example reconstructions obtained from the
+ GIRFReco.jl pipeline for a
+ T2-weighted four-interleave spiral acquisition of a
+ geometric structure phantom by the American College of Radiology
+ (ACR). Reconstructions of both fully sampled and accelerated (using
+ 1 of 4 interleaves, R = 4) datasets are depicted in Figure 2.
+ In vivo brain images reconstructed from a
+ T2-weighted single-interleave (R=4) spiral acquisition
+ are presented in Figure 3
+ (Kasper
+ et al., 2023). In all cases, improved image quality was
+ obtained by successively increasing the complexity of the applied
+ model-based corrections (nominal trajectory, added B0
+ correction, GIRF-correction of gradients, GIRF correction of
+ k0 eddy currents). The improvements in quality are best
+ seen when looking at high-contrast features of the images such as
+ edges and corners, with subsequent corrections creating sharper edge
+ contrast and reducing blurring of small features.
+
Note that the reconstruction results from the phantom experiments
+ (both R = 1 and R = 4 reconstructions in Figure 2) can be fully
+ reproduced using GIRFReco.jl and the
+ corresponding dataset made publicly available
+ (Jaffray
+ et al., 2022a). For details, see the “Getting Started”
+ section below.
+
+ Figure 2
+ Figure 2. Reconstructed four-interleave
+ (R=1) and single-interleave (R=4) spiral images of a selected slice
+ of the ACR phantom. Top row, from left to right: Images
+ reconstructed from the nominal spiral gradient waveforms (“No
+ Correction”), with correction for static off-resonance
+ (“B0 Correction”), B0 + GIRF correction of the
+ k-space trajectory (“B0+GIRF Correction”), and additional
+ correction for GIRF k0 eddy currents
+ (“B0+GIRF+k0 Correction”). Bottom row:
+ Stepwise difference images between subsequent
+ corrections.
+
+ Figure 3
+ Figure 3. Reconstructed in-vivo spiral
+ images of a human brain images (single interleave, undersampling
+ factor R=4). Top row: Images reconstructed from the nominal spiral
+ gradient waveform (“No correction”), with correction for static
+ off-resonance (“B0 map”), B0 + GIRF correction
+ of the k-space trajectory (“GIRF kxyz”), and additional
+ correction for GIRF k0 eddy currents (“Full Correction”).
+ Bottom row: Consecutive absolute difference images of top-row
+ reconstructions (5x scaled, i.e., +/- 20 % max image intensity; or
+ 50x scaled, i.e., +/- 2% max image intensity). A Cartesian image
+ (echo 1 from the B0 map scan) is used as the reference;
+ its edges are overlaid to assess geometric congruency of the spiral
+ images.
+
+
+ Quality of Life Features
+
In addition to providing an end-to-end reconstruction workflow,
+ GIRFReco.jl offers methods for plotting
+ images and calibration data at intermediate steps throughout the
+ pipeline using PlotlyJS. Furthermore, intermediate reconstruction
+ results, such as calculated coil sensitivity maps and B0
+ maps are optionally stored as NIfTI files, a common neuroimaging
+ data format supported by various analysis and visualization packages
+ (NIfTI,
+ 2003).
+
+
+
+ Getting Started
+
Up-to-date information about how to install
+ GIRFReco.jl, run example reconstructions (e.g.,
+ reproducing Figure 2) and apply it to your own data can be found in
+ the
+ README.md
+ provided in the GitHub repository. Further example scripts and
+ technical documentation of GIRFReco.jl’s API,
+ including its current feature set, is provided at
+ ‘https://brain-to.github.io/GIRFReco.jl’,
+ automatically generated by
+ Documenter.jl.
+
+
+ Conclusion and Outlook
+
The presented pipeline, GIRFReco.jl, is an
+ open-source end-to-end solution for spiral MRI reconstruction. It is
+ developed in Julia, and allows users to obtain final images directly
+ from raw MR data acquired by spiral k-space trajectories. Following
+ best practices of software sustainability and accessibility, we rely
+ on the established MR image reconstruction package
+ MRIReco.jl in our pipeline, while extending its
+ capability to handle the more complex use case of multiple model-based
+ corrections, necessary for high-quality spiral MRI. Beyond spirals,
+ GIRFReco.jl can be readily utilized for data
+ acquired under arbitrary non-Cartesian k-space trajectories; its
+ features of model-based MRI reconstruction with GIRF and off-resonance
+ corrections generalize to such sampling patterns in both 2D and 3D.
+ Furthermore, GIRFReco.jl can be extended to
+ handle additional model-based corrections (e.g., concomitant or
+ higher-order encoding fields,
+ (Bernstein
+ et al., 1998;
+ Vannesjo
+ et al., 2016;
+ Wilm
+ et al., 2011,
+ 2015)),
+ and act as a self-contained template for generalized image
+ reconstruction from raw scan and calibration data to interpretable and
+ accessible images in Julia.
+
+
+
+
+
+
+
+ GraedelNadine N.
+ HurleyS. A.
+ ClareStuart
+ MillerKarla L.
+ PruessmannKlaas P.
+ VannesjoS. Johanna
+
+ Comparison of gradient impulse response functions measured with a dynamic field camera and a phantom-based technique
+ Barcelona/ES
+ 2017
+ 378
+
+
+
+
+
+
+ JaffrayAlexander
+ WuZhe
+ UludağKâmil
+ KasperLars
+
+ Open-source model-based reconstruction in Julia: A pipeline for spiral diffusion imaging
+
+ London, England
+ 2022
+ https://index.mirasmart.com/ISMRM2022/PDFfiles/2435.html
+ 10.58530/2022/2435
+ 2435
+
+
+
+
+
+
+ WuZhe
+ JaffrayAlexander
+ VannesjoS. Johanna
+ UludağKâmil
+ KasperLars
+
+ MR System Stability and Quality Control using Gradient Impulse Response Functions (GIRF)
+
+ London, UK
+ 2022
+ https://index.mirasmart.com/ISMRM2022/PDFfiles/0641.html
+ 10.58530/2022/0641
+ 0641
+
+
+
+
+
+
+ AddyNii Okai
+ WuHolden H.
+ NishimuraDwight G.
+
+ Simple method for MR gradient system characterization and k-space trajectory estimation
+
+ 2012
+ 20230517
+ 68
+ 1
+ 1522-2594
+ https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.23217
+ 10.1002/mrm.23217
+ 120
+ 129
+
+
+
+
+
+ VannesjoS. Johanna
+ HaeberlinMaximilan
+ KasperLars
+ PavanMatteo
+ WilmBertram J.
+ BarmetChristoph
+ PruessmannKlaas P.
+
+ Gradient system characterization by impulse response measurements with a dynamic field camera: Gradient System Characterization with a Dynamic Field Camera
+
+ 201302
+ 20230124
+ 69
+ 2
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.24263
+ 10.1002/mrm.24263
+ 583
+ 593
+
+
+
+
+
+ LeeYoojin
+ WilmBertram J.
+ BrunnerDavid O.
+ GrossSimon
+ SchmidThomas
+ NagyZoltan
+ PruessmannKlaas P.
+
+ On the signal‐to‐noise ratio benefit of spiral acquisition in diffusion MRI
+
+ 202104
+ 20230124
+ 85
+ 4
+ 0740-3194
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.28554
+ 10.1002/mrm.28554
+ 1924
+ 1937
+
+
+
+
+
+ BlockKai Tobias
+ FrahmJens
+
+ Spiral imaging: A critical appraisal
+
+ 200506
+ 20230124
+ 21
+ 6
+ 1053-1807
+ https://onlinelibrary.wiley.com/doi/10.1002/jmri.20320
+ 10.1002/jmri.20320
+ 657
+ 668
+
+
+
+
+
+ SuttonB. P.
+ NollD. C.
+ FesslerJ. A.
+
+ Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities
+
+ 200302
+ 20230124
+ 22
+ 2
+ 0278-0062
+ http://ieeexplore.ieee.org/document/1194628/
+ 10.1109/TMI.2002.808360
+ 178
+ 188
+
+
+
+
+
+ WilmBertram J.
+ BarmetChristoph
+ PavanMatteo
+ PruessmannKlaas P.
+
+ Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations: Higher Order Reconstruction for MRI
+
+ 201106
+ 20230124
+ 65
+ 6
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.22767
+ 10.1002/mrm.22767
+ 1690
+ 1701
+
+
+
+
+
+ WilmBertram J.
+ NagyZoltan
+ BarmetChristoph
+ VannesjoS. Johanna
+ KasperLars
+ HaeberlinMax
+ GrossSimon
+ DietrichBenjamin E.
+ BrunnerDavid O.
+ SchmidThomas
+ PruessmannKlaas P.
+
+ Diffusion MRI with concurrent magnetic field monitoring: Diffusion MRI with Concurrent Magnetic Field Monitoring
+
+ 201510
+ 20230124
+ 74
+ 4
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.25827
+ 10.1002/mrm.25827
+ 925
+ 933
+
+
+
+
+
+ PruessmannKlaas P.
+ WeigerMarkus
+ BörnertPeter
+ BoesigerPeter
+
+ Advances in sensitivity encoding with arbitrary k -space trajectories: SENSE With Arbitrary k -Space Trajectories
+
+ 200110
+ 20230124
+ 46
+ 4
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.1241
+ 10.1002/mrm.1241
+ 638
+ 651
+
+
+
+
+
+ BezansonJeff
+ EdelmanAlan
+ KarpinskiStefan
+ ShahViral B.
+
+ Julia: A Fresh Approach to Numerical Computing
+
+ 201701
+ 20230124
+ 59
+ 1
+ 0036-1445
+ https://epubs.siam.org/doi/10.1137/141000671
+ 10.1137/141000671
+ 65
+ 98
+
+
+
+
+
+ InatiSouheil J.
+ NaegeleJoseph D.
+ ZwartNicholas R.
+ RoopchansinghVinai
+ LizakMartin J.
+ HansenDavid C.
+ LiuChia‐Ying
+ AtkinsonDavid
+ KellmanPeter
+ KozerkeSebastian
+ XueHui
+ Campbell‐WashburnAdrienne E.
+ SørensenThomas S.
+ HansenMichael S.
+
+ ISMRM Raw data format: A proposed standard for MRI raw datasets
+
+ 201701
+ 20230124
+ 77
+ 1
+ 0740-3194
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.26089
+ 10.1002/mrm.26089
+ 411
+ 421
+
+
+
+
+
+ VannesjoS. Johanna
+ GraedelNadine N.
+ KasperLars
+ GrossSimon
+ BuschJulia
+ HaeberlinMaximilian
+ BarmetChristoph
+ PruessmannKlaas P.
+
+ Image reconstruction using a gradient impulse response model for trajectory prediction: GIRF-Based Image Reconstruction
+
+ 201607
+ 20230124
+ 76
+ 1
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.25841
+ 10.1002/mrm.25841
+ 45
+ 58
+
+
+
+
+
+ HansenMichael Schacht
+ SørensenThomas Sangild
+
+ Gadgetron: An open source framework for medical image reconstruction: Gadgetron
+
+ 201306
+ 20230124
+ 69
+ 6
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.24389
+ 10.1002/mrm.24389
+ 1768
+ 1776
+
+
+
+
+
+ BlumenthalMoritz
+ HolmeChristian
+ RoeloffsVolkert
+ RosenzweigSebastian
+ SchatenPhilip
+ ScholandNick
+ TamirJon
+ WangXiaoqing
+ UeckerMartin
+
+ Mrirecon/bart: Version 0.8.00
+ Zenodo
+ 202209
+ 20230124
+ https://zenodo.org/record/592960
+ 10.5281/ZENODO.592960
+
+
+
+
+
+ VeldmannMarten
+ EhsesPhilipp
+ ChowKelvin
+ NielsenJon‐Fredrik
+ ZaitsevMaxim
+ StöckerTony
+
+ Open‐source MR imaging and reconstruction workflow
+
+ 202212
+ 20230124
+ 88
+ 6
+ 0740-3194
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.29384
+ 10.1002/mrm.29384
+ 2395
+ 2407
+
+
+
+
+
+ KnoppTobias
+ GrosserMirco
+
+ MRIReco.jl: An MRI reconstruction framework written in Julia
+
+ 202109
+ 20230124
+ 86
+ 3
+ 0740-3194
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.28792
+ 10.1002/mrm.28792
+ 1633
+ 1646
+
+
+
+
+
+ UeckerMartin
+ LaiPeng
+ MurphyMark J.
+ VirtuePatrick
+ EladMichael
+ PaulyJohn M.
+ VasanawalaShreyas S.
+ LustigMichael
+
+ ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA
+
+ 201403
+ 20230124
+ 71
+ 3
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.24751
+ 10.1002/mrm.24751
+ 990
+ 1001
+
+
+
+
+
+ KnoppTobias
+ EggersH.
+ DahnkeH.
+ PrestinJ.
+ SenegasJ.
+
+ Iterative Off-Resonance and Signal Decay Estimation and Correction for Multi-Echo MRI
+
+ 200903
+ 20230124
+ 28
+ 3
+ 0278-0062
+ http://ieeexplore.ieee.org/document/4637872/
+ 10.1109/TMI.2008.2006526
+ 394
+ 404
+
+
+
+
+
+ FunaiAmanda K.
+ FesslerJeffrey A.
+ YeoDesmond T. B.
+ OlafssonValur T.
+ NollDouglas C.
+
+ Regularized Field Map Estimation in MRI
+
+ 200810
+ 20230124
+ 27
+ 10
+ 0278-0062
+ http://ieeexplore.ieee.org/document/4494386/
+ 10.1109/TMI.2008.923956
+ 1484
+ 1494
+
+
+
+
+
+ RobisonRyan K.
+ LiZhiqiang
+ WangDinghui
+ OoiMelvyn B.
+ PipeJames G.
+
+ Correction of B _{\textrm{0}} eddy current effects in spiral MRI
+
+ 201904
+ 20230124
+ 81
+ 4
+ 0740-3194
+ https://onlinelibrary.wiley.com/doi/10.1002/mrm.27583
+ 10.1002/mrm.27583
+ 2501
+ 2513
+
+
+
+
+
+ LinClaire Yilin
+ FesslerJeffrey A.
+
+ Efficient regularized field map estimation in 3D MRI
+
+ 2020
+ 6
+ 2333-9403
+ 10.1109/TCI.2020.3031082
+ 1451
+ 1458
+
+
+
+
+
+ NIfTI
+
+ NIfTI Data Format
+ Neuroimaging Informatics Technology Initiative
+ 20030902
+ 20230216
+ https://nifti.nimh.nih.gov/
+
+
+
+
+
+ VannesjoS. Johanna
+ GraedelNadine N.
+
+ MRI-gradient / GIRF
+ MRI-gradient
+ 20201216
+ 20230216
+ https://github.com/MRI-gradient/GIRF
+
+
+
+
+
+ BernsteinMat A.
+ ZhouXiaohong Joe
+ PolzinJason A.
+ KingKevin F.
+ GaninAlexander
+ PelcNorbert J.
+ GloverGary H.
+
+ Concomitant gradient terms in phase contrast MR: Analysis and correction
+
+ 1998
+ 39
+ 2
+ 1522-2594
+ http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910390218/abstract
+ 10.1002/mrm.1910390218
+ 300
+ 308
+
+
+
+
+
+ JaffrayAlexander
+ WuZhe (Tim)
+ UludağKâmil
+ KasperLars
+
+ Data Supplement: Open-source model-based reconstruction in Julia (ISMRM 2022)
+ Zenodo
+ 20220501
+ 20230216
+ https://zenodo.org/record/6510021
+ 10.5281/zenodo.6510021
+
+
+
+
+
+ EngelMaria
+ KasperLars
+ BarmetChristoph
+ SchmidThomas
+ VionnetLaetitia
+ WilmBertram
+ PruessmannKlaas P.
+
+ Single-shot spiral imaging at 7 T
+
+ 20181101
+ 20180828
+ 80
+ 5
+ 1522-2594
+ https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27176
+ 10.1002/mrm.27176
+ 1836
+ 1846
+
+
+
+
+
+ KasperLars
+ WuZhe
+ JaffrayAlexander
+ KashyapSriranga
+ UludağKâmil
+
+ Feasibility of spiral diffusion imaging on a clinical 3T MR system
+
+ Toronto, Canada
+ 2023
+ https://index.mirasmart.com/ISMRM2023/PDFfiles/4164.html
+ 4164
+
+
+
+
+
+
+ GraedelNadine N.
+ KasperLars
+ EngelMaria
+ NussbaumJennifer
+ WilmBertram J.
+ PruessmannKlaas P.
+ VannesjoS. Johanna
+
+ Feasibility of spiral fMRI based on an LTI gradient model
+
+ 20211215
+ 20230418
+ 245
+ 1053-8119
+ https://www.sciencedirect.com/science/article/pii/S1053811921009472
+ 10.1016/j.neuroimage.2021.118674
+ 118674
+
+
+
+
+
+
+ KasperLars
+ EngelMaria
+ BarmetChristoph
+ HaeberlinMaximilian
+ WilmBertram J.
+ DietrichBenjamin E.
+ SchmidThomas
+ GrossSimon
+ BrunnerDavid O.
+ StephanKlaas E.
+ PruessmannKlaas P.
+
+ Rapid anatomical brain imaging using spiral acquisition and an expanded signal model
+
+ 20180301
+ 20180317
+ 168
+ 1053-8119
+ http://www.sciencedirect.com/science/article/pii/S1053811917306432
+ 10.1016/j.neuroimage.2017.07.062
+ 88
+ 100
+
+
+
+
+
+ KasperLars
+ EngelMaria
+ HeinzleJakob
+ Mueller-SchraderMatthias
+ GraedelNadine N.
+ ReberJonas
+ SchmidThomas
+ BarmetChristoph
+ WilmBertram J.
+ StephanKlaas Enno
+ PruessmannKlaas P.
+
+ Advances in spiral fMRI: A high-resolution study with single-shot acquisition
+
+ 202202
+ 20211214
+ 246
+ https://linkinghub.elsevier.com/retrieve/pii/S1053811921010107
+ 10.1016/j.neuroimage.2021.118738
+ 118738
+
+
+
+
+
+
+ FesslerJeffrey A.
+
+ Michigan Image Reconstruction Toolbox
+ 20230517
+ https://github.com/JeffFessler/mirt
+
+
+
+
+
diff --git a/joss.05877/10.21105.joss.05877.pdf b/joss.05877/10.21105.joss.05877.pdf
new file mode 100644
index 0000000000..17bbfd2045
Binary files /dev/null and b/joss.05877/10.21105.joss.05877.pdf differ
diff --git a/joss.05877/media/figs/Fig_1.png b/joss.05877/media/figs/Fig_1.png
new file mode 100644
index 0000000000..8e17b774e7
Binary files /dev/null and b/joss.05877/media/figs/Fig_1.png differ
diff --git a/joss.05877/media/figs/Fig_2.png b/joss.05877/media/figs/Fig_2.png
new file mode 100644
index 0000000000..376d85dcdd
Binary files /dev/null and b/joss.05877/media/figs/Fig_2.png differ
diff --git a/joss.05877/media/figs/Fig_3.png b/joss.05877/media/figs/Fig_3.png
new file mode 100644
index 0000000000..b4af98eb69
Binary files /dev/null and b/joss.05877/media/figs/Fig_3.png differ