diff --git a/joss.06264/10.21105.joss.06264.crossref.xml b/joss.06264/10.21105.joss.06264.crossref.xml
new file mode 100644
index 0000000000..08efcc7b18
--- /dev/null
+++ b/joss.06264/10.21105.joss.06264.crossref.xml
@@ -0,0 +1,373 @@
+
+
+
+ 20240306T173143-5195558cb2f517b68f83a032bf32550dcb69585c
+ 20240306173143
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 03
+ 2024
+
+
+ 9
+
+ 95
+
+
+
+ calorine: A Python package for constructing and
+sampling neuroevolution potential models
+
+
+
+ Eric
+ Lindgren
+ https://orcid.org/0000-0002-8549-6839
+
+
+ Magnus
+ Rahm
+ https://orcid.org/0000-0002-6777-0371
+
+
+ Erik
+ Fransson
+ https://orcid.org/0000-0001-5262-3339
+
+
+ Fredrik
+ Eriksson
+ https://orcid.org/0000-0002-7945-5483
+
+
+ Nicklas
+ Österbacka
+ https://orcid.org/0000-0002-6043-4607
+
+
+ Zheyong
+ Fan
+ https://orcid.org/0000-0002-2253-8210
+
+
+ Paul
+ Erhart
+ https://orcid.org/0000-0002-2516-6061
+
+
+
+ 03
+ 06
+ 2024
+
+
+ 6264
+
+
+ 10.21105/joss.06264
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.10723374
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6264
+
+
+
+ 10.21105/joss.06264
+ https://joss.theoj.org/papers/10.21105/joss.06264
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06264.pdf
+
+
+
+
+
+ Interatomic potentials: Achievements and
+challenges
+ Müser
+ Advances in Physics: X
+ 1
+ 8
+ 10.1080/23746149.2022.2093129
+ 2023
+ Müser, M. H., Sukhomlinov, S. V.,
+& Pastewka, L. (2023). Interatomic potentials: Achievements and
+challenges. Advances in Physics: X, 8(1), 2093129.
+https://doi.org/10.1080/23746149.2022.2093129
+
+
+ Machine Learning Force Fields
+ Unke
+ Chemical Reviews
+ 16
+ 121
+ 10.1021/acs.chemrev.0c01111
+ 0009-2665
+ 2021
+ Unke, O. T., Chmiela, S., Sauceda, H.
+E., Gastegger, M., Poltavsky, I., Schütt, K. T., Tkatchenko, A., &
+Müller, K.-R. (2021). Machine Learning Force Fields. Chemical Reviews,
+121(16), 10142–10186.
+https://doi.org/10.1021/acs.chemrev.0c01111
+
+
+ Neuroevolution machine learning potentials:
+Combining high accuracy and low cost in atomistic simulations and
+application to heat transport
+ Fan
+ Physical Review B
+ 10
+ 104
+ 10.1103/PhysRevB.104.104309
+ 2021
+ Fan, Z., Zeng, Z., Zhang, C., Wang,
+Y., Song, K., Dong, H., Chen, Y., & Ala-Nissila, T. (2021).
+Neuroevolution machine learning potentials: Combining high accuracy and
+low cost in atomistic simulations and application to heat transport.
+Physical Review B, 104(10), 104309.
+https://doi.org/10.1103/PhysRevB.104.104309
+
+
+ Improving the accuracy of the neuroevolution
+machine learning potential for multi-component systems
+ Fan
+ Journal of Physics: Condensed
+Matter
+ 12
+ 34
+ 10.1088/1361-648X/ac462b
+ 0953-8984
+ 2022
+ Fan, Z. (2022). Improving the
+accuracy of the neuroevolution machine learning potential for
+multi-component systems. Journal of Physics: Condensed Matter, 34(12),
+125902. https://doi.org/10.1088/1361-648X/ac462b
+
+
+ GPUMD: A package for constructing accurate
+machine-learned potentials and performing highly efficient atomistic
+simulations
+ Fan
+ The Journal of Chemical
+Physics
+ 11
+ 157
+ 10.1063/5.0106617
+ 0021-9606
+ 2022
+ Fan, Z., Wang, Y., Ying, P., Song,
+K., Wang, J., Wang, Y., Zeng, Z., Xu, K., Lindgren, E., Rahm, J. M.,
+Gabourie, A. J., Liu, J., Dong, H., Wu, J., Chen, Y., Zhong, Z., Sun,
+J., Erhart, P., Su, Y., & Ala-Nissila, T. (2022). GPUMD: A package
+for constructing accurate machine-learned potentials and performing
+highly efficient atomistic simulations. The Journal of Chemical Physics,
+157(11), 114801.
+https://doi.org/10.1063/5.0106617
+
+
+ Large-scale machine-learning molecular
+dynamics simulation of primary radiation damage in
+tungsten
+ Liu
+ Physical Review B
+ 5
+ 108
+ 10.1103/PhysRevB.108.054312
+ 2023
+ Liu, J., Byggmästar, J., Fan, Z.,
+Qian, P., & Su, Y. (2023). Large-scale machine-learning molecular
+dynamics simulation of primary radiation damage in tungsten. Physical
+Review B, 108(5), 054312.
+https://doi.org/10.1103/PhysRevB.108.054312
+
+
+ Phase transitions in inorganic halide
+perovskites from machine-learned potentials
+ Fransson
+ The Journal of Physical Chemistry
+C
+ 28
+ 127
+ 10.1021/acs.jpcc.3c01542
+ 2023
+ Fransson, E., Wiktor, J., &
+Erhart, P. (2023). Phase transitions in inorganic halide perovskites
+from machine-learned potentials. The Journal of Physical Chemistry C,
+127(28), 13773–13781.
+https://doi.org/10.1021/acs.jpcc.3c01542
+
+
+ Limits of the phonon quasi-particle picture
+at the cubic-to-tetragonal phase transition in halide
+perovskites
+ Fransson
+ Communications Physics
+ 1
+ 6
+ 10.1038/s42005-023-01297-8
+ 2399-3650
+ 2023
+ Fransson, E., Rosander, P., Eriksson,
+F., Rahm, J. M., Tadano, T., & Erhart, P. (2023). Limits of the
+phonon quasi-particle picture at the cubic-to-tetragonal phase
+transition in halide perovskites. Communications Physics, 6(1), 1–7.
+https://doi.org/10.1038/s42005-023-01297-8
+
+
+ Phonon thermal transport in two-dimensional
+PbTe monolayers via extensive molecular dynamics simulations with a
+neuroevolution potential
+ Sha
+ Materials Today Physics
+ 34
+ 10.1016/j.mtphys.2023.101066
+ 2542-5293
+ 2023
+ Sha, W., Dai, X., Chen, S., Yin, B.,
+& Guo, F. (2023). Phonon thermal transport in two-dimensional PbTe
+monolayers via extensive molecular dynamics simulations with a
+neuroevolution potential. Materials Today Physics, 34, 101066.
+https://doi.org/10.1016/j.mtphys.2023.101066
+
+
+ The atomic simulation environmenta Python
+library for working with atoms
+ Larsen
+ Journal of Physics: Condensed
+Matter
+ 27
+ 29
+ 10.1088/1361-648X/aa680e
+ 0953-8984
+ 2017
+ Larsen, A. H., Mortensen, J. J.,
+Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J.,
+Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C.,
+Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J.,
+Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic
+simulation environmenta Python library for working with atoms. Journal
+of Physics: Condensed Matter, 29(27), 273002.
+https://doi.org/10.1088/1361-648X/aa680e
+
+
+ The Hiphive Package for the Extraction of
+High-Order Force Constants by Machine Learning
+ Eriksson
+ Advanced Theory and
+Simulations
+ 5
+ 2
+ 10.1002/adts.201800184
+ 2513-0390
+ 2019
+ Eriksson, F., Fransson, E., &
+Erhart, P. (2019). The Hiphive Package for the Extraction of High-Order
+Force Constants by Machine Learning. Advanced Theory and Simulations,
+2(5), 1800184.
+https://doi.org/10.1002/adts.201800184
+
+
+ First-principles Phonon Calculations with
+Phonopy and Phono3py
+ Togo
+ Journal of the Physical Society of
+Japan
+ 1
+ 92
+ 10.7566/JPSJ.92.012001
+ 0031-9015
+ 2023
+ Togo, A. (2023). First-principles
+Phonon Calculations with Phonopy and Phono3py. Journal of the Physical
+Society of Japan, 92(1), 012001.
+https://doi.org/10.7566/JPSJ.92.012001
+
+
+ Implementation strategies in phonopy and
+Phono3py
+ Togo
+ Journal of Physics: Condensed
+Matter
+ 35
+ 35
+ 10.1088/1361-648X/acd831
+ 0953-8984
+ 2023
+ Togo, A., Chaput, L., Tadano, T.,
+& Tanaka, I. (2023). Implementation strategies in phonopy and
+Phono3py. Journal of Physics: Condensed Matter, 35(35), 353001.
+https://doi.org/10.1088/1361-648X/acd831
+
+
+ PyNEP
+ Wang
+ 2023
+ Wang, J. (2023). PyNEP.
+https://pynep.readthedocs.io/en/latest/
+
+
+ Gpyumd
+ Gabourie
+ 2023
+ Gabourie, A. J. (2023). Gpyumd.
+https://gpyumd.readthedocs.io
+
+
+ Tuning the through-plane lattice thermal
+conductivity in van der waals structures through rotational
+(dis)ordering
+ Eriksson
+ ACS Nano
+ 24
+ 17
+ 10.1021/acsnano.3c09717
+ 2023
+ Eriksson, F., Fransson, E.,
+Linderälv, C., Fan, Z., & Erhart, P. (2023). Tuning the
+through-plane lattice thermal conductivity in van der waals structures
+through rotational (dis)ordering. ACS Nano, 17(24), 25565–25574.
+https://doi.org/10.1021/acsnano.3c09717
+
+
+
+
+
+
diff --git a/joss.06264/10.21105.joss.06264.jats b/joss.06264/10.21105.joss.06264.jats
new file mode 100644
index 0000000000..c95da37a07
--- /dev/null
+++ b/joss.06264/10.21105.joss.06264.jats
@@ -0,0 +1,602 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6264
+10.21105/joss.06264
+
+calorine: A Python package for constructing and sampling
+neuroevolution potential models
+
+
+
+https://orcid.org/0000-0002-8549-6839
+
+Lindgren
+Eric
+
+
+
+
+https://orcid.org/0000-0002-6777-0371
+
+Rahm
+Magnus
+
+
+
+
+https://orcid.org/0000-0001-5262-3339
+
+Fransson
+Erik
+
+
+
+
+https://orcid.org/0000-0002-7945-5483
+
+Eriksson
+Fredrik
+
+
+
+
+https://orcid.org/0000-0002-6043-4607
+
+Österbacka
+Nicklas
+
+
+
+
+https://orcid.org/0000-0002-2253-8210
+
+Fan
+Zheyong
+
+
+
+
+https://orcid.org/0000-0002-2516-6061
+
+Erhart
+Paul
+
+
+*
+
+
+
+Department of Physics, Chalmers University of Technology,
+Gothenburg 412 96, Sweden
+
+
+
+
+College of Physical Science and Technology, Bohai
+University, Jinzhou 121013, P. R. China
+
+
+
+
+* E-mail:
+
+
+20
+10
+2023
+
+9
+95
+6264
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+condensed matter
+machine learning
+interatomic potentials
+force fields
+molecular dynamics
+neuroevolution
+neural network
+
+
+
+
+
+ Summary
+
Molecular dynamics (MD) simulations are a key tool in computational
+ chemistry, physics, and materials science, aiding the understanding of
+ microscopic processes but also guiding the development of novel
+ materials. A MD simulation requires a model for the interatomic
+ interactions. To this end, one traditionally often uses empirical
+ interatomic potentials or force fields, which are fast but inaccurate,
+ or ab-initio methods based on electronic structure theory such as
+ density functional theory, which are accurate but computationally very
+ expensive
+ (Müser
+ et al., 2023). Machine-learned interatomic potentials (MLIPs)
+ have in recent years emerged as an alternative to these approaches,
+ combining the speed of heuristic force fields with the accuracy of
+ ab-initio techniques
+ (Unke
+ et al., 2021). Neuroevolution potentials (NEPs), implemented in
+ the GPUMD package, in particular, are a highly
+ accurate and efficient class of MLIPs
+ (Fan
+ et al., 2021,
+ 2022;
+ Fan,
+ 2022). NEP models have already been used to study a variety of
+ properties in a range of materials, with recent examples including
+ radiation damage in tungsten
+ (Liu
+ et al., 2023), phase transitions
+ (Fransson,
+ Wiktor, et al., 2023) and dynamics of halide perovskites
+ (Fransson,
+ Rosander, et al., 2023) as well as thermal transport in
+ two-dimensional materials
+ (Sha
+ et al., 2023). Here, we present
+ calorine, a Python package that simplifies the
+ construction, analysis and use of NEP models via
+ GPUMD.
+
+
+ Statement of need
+
GPUMD is a package written in C++/CUDA that
+ enables MD simulations as well as the construction of NEP models, with
+ all computations running on a discrete GPU. For efficiency reasons
+ this package uses a set of text based input and output files.
+ calorine provides a Python interface that makes
+ it easy to access the functionality of GPUMD
+ and integrate it in Python based workflows. This includes but is not
+ limited to managing the construction of NEP models as well as setting
+ up and analyzing MD simulations.
+
calorine also exposes two
+ ASE Calculator objects
+ (Larsen
+ et al., 2017), one using the CPU and one using the GPU. This
+ has the expressed purpose of making NEP models transferable for use
+ outside of GPUMD, since the calculators can be
+ used by other codes, as well as on machines without discrete GPUs.
+ Examples of such use cases include calculating force constants using
+ hiphive
+ (Eriksson
+ et al., 2019) and phonon dispersions using
+ phonopy
+ (Togo,
+ 2023;
+ Togo
+ et al., 2023).
+
The full documentation for calorine in
+ addition to examples and tutorials can be found at
+ https://calorine.materialsmodeling.org/.
+
+
+ Related software and recent work
+
Two other software packages that serve as companion software for
+ GPUMD are PyNEP
+ (Wang,
+ 2023) and GPYUMD
+ (Gabourie,
+ 2023), focusing on NEP construction and
+ MD simulations within GPUMD respectively.
+ calorine differs from these two by having a
+ broader scope, encompassing both NEP
+ construction and sampling with MD simulations. Additionally,
+ calorine exposes an interface for modifying
+ potential files, further improving the transferability of
+ NEP.
+
Examples of recently published work supported by
+ calorine include a study of the through-plane
+ lattice thermal conductivity in van-der-Waals structures
+ (Eriksson
+ et al., 2023), and a study of dynamic modes in halide
+ perovskites under a continous-order phase transition
+ (Fransson,
+ Rosander, et al., 2023).
+
+
+ Acknowledgements
+
We acknowledge and greatly appreciate contributions made by Petter
+ Rosander. This work was funded by the Swedish Research Council (Grant
+ Nos. 2018-06482, 2020-04935, and 2021-05072) as well as the Swedish
+ Foundation for Strategic Research (SSF) via the SwedNess program
+ (Grant No. GSn15-0008), and enabled by computational resources
+ provided by the National Academic Infrastructure for Supercomputing in
+ Sweden (NAISS) and the Swedish National Infrastructure for Computing
+ (SNIC) at C3SE, UPPMAX, and HPC2N partially funded by the Swedish
+ Research Council (Grant Nos. 2018-05973 and 2022-06725).
+
+
+
+
+
+
+
+ MüserMartin H.
+ SukhomlinovSergey V.
+ PastewkaLars
+
+ Interatomic potentials: Achievements and challenges
+
+ Taylor & Francis
+ 202312
+ 20231020
+ 8
+ 1
+ 10.1080/23746149.2022.2093129
+ 2093129
+
+
+
+
+
+
+ UnkeOliver T.
+ ChmielaStefan
+ SaucedaHuziel E.
+ GasteggerMichael
+ PoltavskyIgor
+ SchüttKristof T.
+ TkatchenkoAlexandre
+ MüllerKlaus-Robert
+
+ Machine Learning Force Fields
+
+ 202108
+ 20211018
+ 121
+ 16
+ 0009-2665
+ 10.1021/acs.chemrev.0c01111
+ 10142
+ 10186
+
+
+
+
+
+ FanZheyong
+ ZengZezhu
+ ZhangCunzhi
+ WangYanzhou
+ SongKeke
+ DongHaikuan
+ ChenYue
+ Ala-NissilaTapio
+
+ Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport
+
+ American Physical Society
+ 202109
+ 20211217
+ 104
+ 10
+ 10.1103/PhysRevB.104.104309
+ 104309
+
+
+
+
+
+
+ FanZheyong
+
+ Improving the accuracy of the neuroevolution machine learning potential for multi-component systems
+
+ IOP Publishing
+ 202201
+ 20220208
+ 34
+ 12
+ 0953-8984
+ 10.1088/1361-648X/ac462b
+ 125902
+
+
+
+
+
+
+ FanZheyong
+ WangYanzhou
+ YingPenghua
+ SongKeke
+ WangJunjie
+ WangYong
+ ZengZezhu
+ XuKe
+ LindgrenEric
+ RahmJ. Magnus
+ GabourieAlexander J.
+ LiuJiahui
+ DongHaikuan
+ WuJianyang
+ ChenYue
+ ZhongZheng
+ SunJian
+ ErhartPaul
+ SuYanjing
+ Ala-NissilaTapio
+
+ GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
+
+ American Institute of Physics
+ 202209
+ 20230221
+ 157
+ 11
+ 0021-9606
+ 10.1063/5.0106617
+ 114801
+
+
+
+
+
+
+ LiuJiahui
+ ByggmästarJesper
+ FanZheyong
+ QianPing
+ SuYanjing
+
+ Large-scale machine-learning molecular dynamics simulation of primary radiation damage in tungsten
+
+ American Physical Society
+ 202308
+ 20230920
+ 108
+ 5
+ 10.1103/PhysRevB.108.054312
+ 054312
+
+
+
+
+
+
+ FranssonErik
+ WiktorJulia
+ ErhartPaul
+
+ Phase transitions in inorganic halide perovskites from machine-learned potentials
+
+ 2023
+ 127
+ 28
+
+ https://doi.org/10.1021/acs.jpcc.3c01542
+
+ 10.1021/acs.jpcc.3c01542
+ 13773
+ 13781
+
+
+
+
+
+ FranssonErik
+ RosanderPetter
+ ErikssonFredrik
+ RahmJ. Magnus
+ TadanoTerumasa
+ ErhartPaul
+
+ Limits of the phonon quasi-particle picture at the cubic-to-tetragonal phase transition in halide perovskites
+
+ Nature Publishing Group
+ 202307
+ 20231020
+ 6
+ 1
+ 2399-3650
+ 10.1038/s42005-023-01297-8
+ 1
+ 7
+
+
+
+
+
+ ShaWenhao
+ DaiXuan
+ ChenSiyu
+ YinBinglun
+ GuoFenglin
+
+ Phonon thermal transport in two-dimensional PbTe monolayers via extensive molecular dynamics simulations with a neuroevolution potential
+
+ 202305
+ 20230920
+ 34
+ 2542-5293
+ 10.1016/j.mtphys.2023.101066
+ 101066
+
+
+
+
+
+
+ LarsenAsk Hjorth
+ MortensenJens Jørgen
+ BlomqvistJakob
+ CastelliIvano E.
+ ChristensenRune
+ DułakMarcin
+ FriisJesper
+ GrovesMichael N.
+ HammerBjørk
+ HargusCory
+ HermesEric D.
+ JenningsPaul C.
+ JensenPeter Bjerre
+ KermodeJames
+ KitchinJohn R.
+ KolsbjergEsben Leonhard
+ KubalJoseph
+ KaasbjergKristen
+ LysgaardSteen
+ MaronssonJón Bergmann
+ MaxsonTristan
+ OlsenThomas
+ PastewkaLars
+ PetersonAndrew
+ RostgaardCarsten
+ SchiøtzJakob
+ SchüttOle
+ StrangeMikkel
+ ThygesenKristian S.
+ VeggeTejs
+ VilhelmsenLasse
+ WalterMichael
+ ZengZhenhua
+ JacobsenKarsten W.
+
+ The atomic simulation environmenta Python library for working with atoms
+
+ IOP Publishing
+ 201706
+ 20230404
+ 29
+ 27
+ 0953-8984
+ 10.1088/1361-648X/aa680e
+ 273002
+
+
+
+
+
+
+ ErikssonFredrik
+ FranssonErik
+ ErhartPaul
+
+ The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning
+
+ 2019
+ 20230920
+ 2
+ 5
+ 2513-0390
+ 10.1002/adts.201800184
+ 1800184
+
+
+
+
+
+
+ TogoAtsushi
+
+ First-principles Phonon Calculations with Phonopy and Phono3py
+
+ The Physical Society of Japan
+ 202301
+ 20230920
+ 92
+ 1
+ 0031-9015
+ 10.7566/JPSJ.92.012001
+ 012001
+
+
+
+
+
+
+ TogoAtsushi
+ ChaputLaurent
+ TadanoTerumasa
+ TanakaIsao
+
+ Implementation strategies in phonopy and Phono3py
+
+ IOP Publishing
+ 202306
+ 20230920
+ 35
+ 35
+ 0953-8984
+ 10.1088/1361-648X/acd831
+ 353001
+
+
+
+
+
+
+ WangJunji
+
+ PyNEP
+ 202310
+ 20231020
+ https://pynep.readthedocs.io/en/latest/
+
+
+
+
+
+ GabourieAlexander J.
+
+ Gpyumd
+ 202310
+ 20231020
+ https://gpyumd.readthedocs.io
+
+
+
+
+
+ ErikssonFredrik
+ FranssonErik
+ LinderälvChristopher
+ FanZheyong
+ ErhartPaul
+
+ Tuning the through-plane lattice thermal conductivity in van der waals structures through rotational (dis)ordering
+
+ 2023
+ 17
+ 24
+
+ https://doi.org/10.1021/acsnano.3c09717
+
+ 10.1021/acsnano.3c09717
+ 25565
+ 25574
+
+
+
+
+
diff --git a/joss.06264/10.21105.joss.06264.pdf b/joss.06264/10.21105.joss.06264.pdf
new file mode 100644
index 0000000000..282b4315a7
Binary files /dev/null and b/joss.06264/10.21105.joss.06264.pdf differ