diff --git a/joss.06917/10.21105.joss.06917.crossref.xml b/joss.06917/10.21105.joss.06917.crossref.xml
new file mode 100644
index 0000000000..a9d42124cc
--- /dev/null
+++ b/joss.06917/10.21105.joss.06917.crossref.xml
@@ -0,0 +1,262 @@
+
+
+
+ 20240905125739-c7c2df597ef8eecf141ab6944856700bdbf72423
+ 20240905125739
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 09
+ 2024
+
+
+ 9
+
+ 101
+
+
+
+ DataInterpolations.jl: Fast Interpolations of 1D
+data
+
+
+
+ Sathvik
+ Bhagavan
+ https://orcid.org/0000-0003-0785-3586
+
+
+ Bart
+ de Koning
+ https://orcid.org/0009-0005-6134-6608
+
+
+ Shubham
+ Maddhashiya
+
+
+ Christopher
+ Rackauckas
+ https://orcid.org/0000-0001-5850-0663
+
+
+
+ 09
+ 05
+ 2024
+
+
+ 6917
+
+
+ 10.21105/joss.06917
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.13384954
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6917
+
+
+
+ 10.21105/joss.06917
+ https://joss.theoj.org/papers/10.21105/joss.06917
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06917.pdf
+
+
+
+
+
+ Julia: A fresh approach to numerical
+computing
+ Bezanson
+ SIAM Review
+ 1
+ 59
+ 10.1137/141000671
+ 2017
+ Bezanson, J., Edelman, A., Karpinski,
+S., & Shah, V. B. (2017). Julia: A fresh approach to numerical
+computing. SIAM Review, 59(1), 65–98.
+https://doi.org/10.1137/141000671
+
+
+ High-performance symbolic-numerics via
+multiple dispatch
+ Gowda
+ ACM Commun. Comput. Algebra
+ 3
+ 55
+ 10.1145/3511528.3511535
+ 1932-2240
+ 2022
+ Gowda, S., Ma, Y., Cheli, A.,
+Gwóźzdź, M., Shah, V. B., Edelman, A., & Rackauckas, C. (2022).
+High-performance symbolic-numerics via multiple dispatch. ACM Commun.
+Comput. Algebra, 55(3), 92–96.
+https://doi.org/10.1145/3511528.3511535
+
+
+ ModelingToolkit: A composable graph
+transformation system for equation-based modeling
+ Ma
+ 10.48550/arXiv.2103.05244
+ 2021
+ Ma, Y., Gowda, S., Anantharaman, R.,
+Laughman, C., Shah, V., & Rackauckas, C. (2021). ModelingToolkit: A
+composable graph transformation system for equation-based modeling.
+https://doi.org/10.48550/arXiv.2103.05244
+
+
+ On the stability of inverse
+problems
+ Tikhonov
+ Proceedings of the USSR Academy of
+Sciences
+ 39
+ 1943
+ Tikhonov, A. N. (1943). On the
+stability of inverse problems. Proceedings of the USSR Academy of
+Sciences, 39, 195–198.
+https://api.semanticscholar.org/CorpusID:202866372
+
+
+ Revisiting matrix-based inversion of scanning
+mobility particle sizer (SMPS) and humidified tandem differential
+mobility analyzer (HTDMA) data
+ Petters
+ Atmospheric Measurement
+Techniques
+ 12
+ 14
+ 10.5194/amt-14-7909-2021
+ 2021
+ Petters, M. D. (2021). Revisiting
+matrix-based inversion of scanning mobility particle sizer (SMPS) and
+humidified tandem differential mobility analyzer (HTDMA) data.
+Atmospheric Measurement Techniques, 14(12), 7909–7928.
+https://doi.org/10.5194/amt-14-7909-2021
+
+
+ On pólya frequency functions IV: The
+fundamental spline functions and their limits
+ Curry
+ I. J. Schoenberg selected
+papers
+ 10.1007/978-1-4899-0433-1_17
+ 978-1-4899-0433-1
+ 1988
+ Curry, H. B., & Schoenberg, I. J.
+(1988). On pólya frequency functions IV: The fundamental spline
+functions and their limits. In C. de Boor (Ed.), I. J. Schoenberg
+selected papers (pp. 347–383). Birkhäuser Boston.
+https://doi.org/10.1007/978-1-4899-0433-1_17
+
+
+ On calculating with b-splines
+ de Boor
+ Journal of Approximation
+Theory
+ 1
+ 6
+ 10.1016/0021-9045(72)90080-9
+ 0021-9045
+ 1972
+ de Boor, C. (1972). On calculating
+with b-splines. Journal of Approximation Theory, 6(1), 50–62.
+https://doi.org/10.1016/0021-9045(72)90080-9
+
+
+ A new method of interpolation and smooth
+curve fitting based on local procedures
+ Akima
+ J. ACM
+ 4
+ 17
+ 10.1145/321607.321609
+ 0004-5411
+ 1970
+ Akima, H. (1970). A new method of
+interpolation and smooth curve fitting based on local procedures. J.
+ACM, 17(4), 589–602.
+https://doi.org/10.1145/321607.321609
+
+
+ Contributions to the problem of approximation
+of equidistant data by analytic functions
+ Schoenberg
+ I. J. Schoenberg selected
+papers
+ 10.1007/978-1-4899-0433-1_1
+ 978-1-4899-0433-1
+ 1988
+ Schoenberg, I. J. (1988).
+Contributions to the problem of approximation of equidistant data by
+analytic functions. In C. de Boor (Ed.), I. J. Schoenberg selected
+papers (pp. 3–57). Birkhäuser Boston.
+https://doi.org/10.1007/978-1-4899-0433-1_1
+
+
+ Lectures on elementary mathematics, by joseph
+louis lagrange; tr. By thomas j. McCormack
+ Lagrange
+ 1898
+ Lagrange, J. L. (1898). Lectures on
+elementary mathematics, by joseph louis lagrange; tr. By thomas j.
+McCormack. Open court publishing Company.
+https://books.google.co.in/books?id=7h9G0AEACAAJ
+
+
+ A method for constructing local monotone
+piecewise cubic interpolants
+ Fritsch
+ SIAM Journal on Scientific and Statistical
+Computing
+ 2
+ 5
+ 10.1137/0905021
+ 1984
+ Fritsch, F. N., & Butland, J.
+(1984). A method for constructing local monotone piecewise cubic
+interpolants. SIAM Journal on Scientific and Statistical Computing,
+5(2), 300–304. https://doi.org/10.1137/0905021
+
+
+
+
+
+
diff --git a/joss.06917/10.21105.joss.06917.pdf b/joss.06917/10.21105.joss.06917.pdf
new file mode 100644
index 0000000000..f8ff1ff6a6
Binary files /dev/null and b/joss.06917/10.21105.joss.06917.pdf differ
diff --git a/joss.06917/paper.jats/10.21105.joss.06917.jats b/joss.06917/paper.jats/10.21105.joss.06917.jats
new file mode 100644
index 0000000000..6b557d6a67
--- /dev/null
+++ b/joss.06917/paper.jats/10.21105.joss.06917.jats
@@ -0,0 +1,466 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6917
+10.21105/joss.06917
+
+DataInterpolations.jl: Fast Interpolations of 1D
+data
+
+
+
+https://orcid.org/0000-0003-0785-3586
+
+Bhagavan
+Sathvik
+
+
+*
+
+
+https://orcid.org/0009-0005-6134-6608
+
+de Koning
+Bart
+
+
+
+
+
+Maddhashiya
+Shubham
+
+
+
+
+https://orcid.org/0000-0001-5850-0663
+
+Rackauckas
+Christopher
+
+
+
+
+
+
+
+JuliaHub
+
+
+
+
+Deltares
+
+
+
+
+Pumas-AI
+
+
+
+
+Massachusetts Institute of Technology
+
+
+
+
+* E-mail:
+
+
+6
+6
+2024
+
+9
+101
+6917
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+julia
+interpolations
+
+
+
+
+
+ Summary
+
Interpolations are used to estimate values between known data
+ points using an approximate continuous function. DataInterpolations.jl
+ is a Julia
+ (Bezanson
+ et al., 2017) package containing 1D implementations of some of
+ the most commonly used interpolation functions. These include:
and a continually growing list. Along with these, the package also
+ has methods to fit parameterized curves with the data points and
+ Tikhonov regularization
+ (Tikhonov,
+ 1943)
+ (Petters,
+ 2021) for obtaining smooth curves. The package also provides
+ functionality to compute integrals and derivatives upto second order
+ for those interpolations methods. It is also automatic differentiation
+ friendly. It can also be used symbolically with Symbolics.jl
+ (Gowda
+ et al., 2022) and plugged into models defined using
+ ModelingToolkit.jl
+ (Ma
+ et al., 2021).
+
+
+ Statement of need
+
Interpolations are a very important component of many modeling
+ workflows. Often, sampled or measured inputs need to be transformed
+ into continuous functions or smooth curves for simulation purposes. In
+ many scientific machine learning workflows, interpolating data is
+ essential to learn continuous models. DataInterpolations.jl can be
+ used for facilitating these types of workflows. Several interpolation
+ packages already exist in Julia, such as
+ Interpolations.jl,
+ which primarily specializes in B-Splines and uniformly spaced data
+ with some support for irregularly spaced data. In contrast,
+ DataInterpolations.jl does not assume any specific structure in the
+ data, offering greater flexibility for diverse datasets.
+ Interpolations.jl
+ also doesn’t offer methods like Quadratic Interpolation, Lagrange
+ Interpolation, Hermite Splines etc.
+ BasicInterpolators.jl
+ is more similar to DataInterpolations.jl, although it doesn’t offer
+ methods like B-Splines. Rest of the interpolation packages focus on
+ particular methods like
+ BSplineKit.jl
+ for B-Splines,
+ FastChebInterp.jl
+ for Chebyshev interpolation,
+ PCHIPInterpolation
+ for PCHIP interpolation etc. Additionally, DataInterpolations.jl
+ includes many novel techniques for accelerating the interpolation
+ searches with specialized caching, quasi-linear guessing, and more to
+ improve the performance algorithmically, beyond the simple
+ computational optimizations. In summary, DataInterpolations.jl is more
+ generic from other packages and offers many fast interpolation methods
+ for arbitrarily spaced 1D data, all within a consistent and simple
+ interface.
+
+
+ Example
+
The following tutorials are provided in the documentation:
+
+
+
Tutorial
+ 1 provides how to define each of the interpolation
+ methods and compute the value at any point.
+
+
+
Tutorial
+ 2 provides explanation for using the interface and
+ interpolated objects for evaluating at any point, computing the
+ derivative at any point and computing the integral between any two
+ points.
+
+
+
Tutorial
+ 3 provides how to use interpolation objects with
+ Symbolics.jl and ModelingToolkit.jl.
+
+
+
A simple demonstration here:
+ using DataInterpolations
+
+# Dependent variable
+u = [14.7, 11.51, 10.41, 14.95, 12.24, 11.22]
+
+# Independent variable
+t = [0.0, 62.25, 109.66, 162.66, 205.8, 252.3]
+
+A1 = CubicSpline(u, t)
+
+# For interpolation do, A(t)
+A1(100.0)
+
+# derivative
+## first order
+DataInterpolations.derivative(A1, 1.0, 1)
+
+## second order
+DataInterpolations.derivative(A1, 1.0, 2)
+
+# integral
+DataInterpolations.integral(A1, 1.0, 5.0)
+
+
+
+
+
+
+
+
+ BezansonJeff
+ EdelmanAlan
+ KarpinskiStefan
+ ShahViral B.
+
+ Julia: A fresh approach to numerical computing
+
+ 2017
+ 59
+ 1
+ https://doi.org/10.1137/141000671
+ 10.1137/141000671
+ 65
+ 98
+
+
+
+
+
+ GowdaShashi
+ MaYingbo
+ CheliAlessandro
+ GwóźzdźMaja
+ ShahViral B.
+ EdelmanAlan
+ RackauckasChristopher
+
+ High-performance symbolic-numerics via multiple dispatch
+
+ Association for Computing Machinery
+ New York, NY, USA
+ 202201
+ 55
+ 3
+ 1932-2240
+ https://doi.org/10.1145/3511528.3511535
+ 10.1145/3511528.3511535
+ 92
+ 96
+
+
+
+
+
+ MaYingbo
+ GowdaShashi
+ AnantharamanRanjan
+ LaughmanChris
+ ShahViral
+ RackauckasChris
+
+ ModelingToolkit: A composable graph transformation system for equation-based modeling
+ 2021
+ https://doi.org/10.48550/arXiv.2103.05244
+ 10.48550/arXiv.2103.05244
+
+
+
+
+
+ TikhonovA. N.
+
+ On the stability of inverse problems
+
+ 1943
+ 39
+ https://api.semanticscholar.org/CorpusID:202866372
+ 195
+ 198
+
+
+
+
+
+ PettersM. D.
+
+ Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data
+
+ 2021
+ 14
+ 12
+ https://amt.copernicus.org/articles/14/7909/2021/
+ 10.5194/amt-14-7909-2021
+ 7909
+ 7928
+
+
+
+
+
+ CurryH. B.
+ SchoenbergI. J.
+
+ On pólya frequency functions IV: The fundamental spline functions and their limits
+
+
+ BoorCarl de
+
+ Birkhäuser Boston
+ Boston, MA
+ 1988
+ 978-1-4899-0433-1
+ https://doi.org/10.1007/978-1-4899-0433-1_17
+ 10.1007/978-1-4899-0433-1_17
+ 347
+ 383
+
+
+
+
+
+ de BoorCarl
+
+ On calculating with b-splines
+
+ 1972
+ 6
+ 1
+ 0021-9045
+ https://www.sciencedirect.com/science/article/pii/0021904572900809
+ 10.1016/0021-9045(72)90080-9
+ 50
+ 62
+
+
+
+
+
+ AkimaHiroshi
+
+ A new method of interpolation and smooth curve fitting based on local procedures
+
+ Association for Computing Machinery
+ New York, NY, USA
+ 197010
+ 17
+ 4
+ 0004-5411
+ https://doi.org/10.1145/321607.321609
+ 10.1145/321607.321609
+ 589
+ 602
+
+
+
+
+
+ SchoenbergI. J.
+
+ Contributions to the problem of approximation of equidistant data by analytic functions
+
+
+ BoorCarl de
+
+ Birkhäuser Boston
+ Boston, MA
+ 1988
+ 978-1-4899-0433-1
+ https://doi.org/10.1007/978-1-4899-0433-1_1
+ 10.1007/978-1-4899-0433-1_1
+ 3
+ 57
+
+
+
+
+
+ LagrangeJ. L.
+
+
+ Open court publishing Company
+ 1898
+ https://books.google.co.in/books?id=7h9G0AEACAAJ
+
+
+
+
+
+ FritschF. N.
+ ButlandJ.
+
+ A method for constructing local monotone piecewise cubic interpolants
+
+ 1984
+ 5
+ 2
+ https://doi.org/10.1137/0905021
+ 10.1137/0905021
+ 300
+ 304
+
+
+
+
+