-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5195 from openjournals/joss.06294
Merging automatically
- Loading branch information
Showing
4 changed files
with
741 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
<?xml version="1.0" encoding="UTF-8"?> | ||
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" | ||
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" | ||
xmlns:rel="http://www.crossref.org/relations.xsd" | ||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" | ||
version="5.3.1" | ||
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> | ||
<head> | ||
<doi_batch_id>20240330T141705-0ea8bc011eff66513ce82ce067a9b9d231417e15</doi_batch_id> | ||
<timestamp>20240330141705</timestamp> | ||
<depositor> | ||
<depositor_name>JOSS Admin</depositor_name> | ||
<email_address>[email protected]</email_address> | ||
</depositor> | ||
<registrant>The Open Journal</registrant> | ||
</head> | ||
<body> | ||
<journal> | ||
<journal_metadata> | ||
<full_title>Journal of Open Source Software</full_title> | ||
<abbrev_title>JOSS</abbrev_title> | ||
<issn media_type="electronic">2475-9066</issn> | ||
<doi_data> | ||
<doi>10.21105/joss</doi> | ||
<resource>https://joss.theoj.org</resource> | ||
</doi_data> | ||
</journal_metadata> | ||
<journal_issue> | ||
<publication_date media_type="online"> | ||
<month>03</month> | ||
<year>2024</year> | ||
</publication_date> | ||
<journal_volume> | ||
<volume>9</volume> | ||
</journal_volume> | ||
<issue>95</issue> | ||
</journal_issue> | ||
<journal_article publication_type="full_text"> | ||
<titles> | ||
<title>fABBA: A Python library for the fast symbolic | ||
approximation of time series</title> | ||
</titles> | ||
<contributors> | ||
<person_name sequence="first" contributor_role="author"> | ||
<given_name>Xinye</given_name> | ||
<surname>Chen</surname> | ||
<ORCID>https://orcid.org/0000-0003-1778-393X</ORCID> | ||
</person_name> | ||
<person_name sequence="additional" | ||
contributor_role="author"> | ||
<given_name>Stefan</given_name> | ||
<surname>Güttel</surname> | ||
<ORCID>https://orcid.org/0000-0003-1494-4478</ORCID> | ||
</person_name> | ||
</contributors> | ||
<publication_date> | ||
<month>03</month> | ||
<day>30</day> | ||
<year>2024</year> | ||
</publication_date> | ||
<pages> | ||
<first_page>6294</first_page> | ||
</pages> | ||
<publisher_item> | ||
<identifier id_type="doi">10.21105/joss.06294</identifier> | ||
</publisher_item> | ||
<ai:program name="AccessIndicators"> | ||
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> | ||
</ai:program> | ||
<rel:program> | ||
<rel:related_item> | ||
<rel:description>Software archive</rel:description> | ||
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.10885652</rel:inter_work_relation> | ||
</rel:related_item> | ||
<rel:related_item> | ||
<rel:description>GitHub review issue</rel:description> | ||
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6294</rel:inter_work_relation> | ||
</rel:related_item> | ||
</rel:program> | ||
<doi_data> | ||
<doi>10.21105/joss.06294</doi> | ||
<resource>https://joss.theoj.org/papers/10.21105/joss.06294</resource> | ||
<collection property="text-mining"> | ||
<item> | ||
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06294.pdf</resource> | ||
</item> | ||
</collection> | ||
</doi_data> | ||
<citation_list> | ||
<citation key="EG19b"> | ||
<article_title>ABBA: adaptive Brownian bridge-based symbolic | ||
aggregation of time series</article_title> | ||
<author>Elsworth</author> | ||
<journal_title>Data Mining and Knowledge | ||
Discovery</journal_title> | ||
<volume>34</volume> | ||
<doi>10.1007/s10618-020-00689-6</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Elsworth, S., & Güttel, S. | ||
(2020). ABBA: adaptive Brownian bridge-based symbolic aggregation of | ||
time series. Data Mining and Knowledge Discovery, 34, 1175–1200. | ||
https://doi.org/10.1007/s10618-020-00689-6</unstructured_citation> | ||
</citation> | ||
<citation key="1056489"> | ||
<article_title>Least squares quantization in | ||
PCM</article_title> | ||
<author>Lloyd</author> | ||
<journal_title>Transactions on Information | ||
Theory</journal_title> | ||
<volume>28</volume> | ||
<doi>10.1109/tit.1982.1056489</doi> | ||
<cYear>1982</cYear> | ||
<unstructured_citation>Lloyd, S. P. (1982). Least squares | ||
quantization in PCM. Transactions on Information Theory, 28, 129–137. | ||
https://doi.org/10.1109/tit.1982.1056489</unstructured_citation> | ||
</citation> | ||
<citation key="SAX03"> | ||
<article_title>A symbolic representation of time series, | ||
with implications for streaming algorithms</article_title> | ||
<author>Lin</author> | ||
<journal_title>Proceedings of the 8th ACM SIGMOD workshop on | ||
research issues in data mining and knowledge discovery</journal_title> | ||
<doi>10.1145/882082.882086</doi> | ||
<cYear>2003</cYear> | ||
<unstructured_citation>Lin, J., Keogh, E., Lonardi, S., | ||
& Chiu, B. (2003). A symbolic representation of time series, with | ||
implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD | ||
Workshop on Research Issues in Data Mining and Knowledge Discovery, | ||
2–11. https://doi.org/10.1145/882082.882086</unstructured_citation> | ||
</citation> | ||
<citation key="CG22a"> | ||
<article_title>An efficient aggregation method for the | ||
symbolic representation of temporal data</article_title> | ||
<author>Chen</author> | ||
<journal_title>ACM Transactions on Knowledge Discovery from | ||
Data</journal_title> | ||
<issue>1</issue> | ||
<volume>17</volume> | ||
<doi>10.1145/3532622</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Chen, X., & Güttel, S. (2023). An | ||
efficient aggregation method for the symbolic representation of temporal | ||
data. ACM Transactions on Knowledge Discovery from Data, 17(1), 1–22. | ||
https://doi.org/10.1145/3532622</unstructured_citation> | ||
</citation> | ||
<citation key="TAKTAK2024102294"> | ||
<article_title>ECG classification with learning ensemble | ||
based on symbolic discretization</article_title> | ||
<author>Taktak</author> | ||
<journal_title>Information Systems</journal_title> | ||
<volume>120</volume> | ||
<doi>10.1016/j.is.2023.102294</doi> | ||
<cYear>2024</cYear> | ||
<unstructured_citation>Taktak, M., Ltifi, H., & Ayed, M. | ||
B. (2024). ECG classification with learning ensemble based on symbolic | ||
discretization. Information Systems, 120, 102294. | ||
https://doi.org/10.1016/j.is.2023.102294</unstructured_citation> | ||
</citation> | ||
<citation key="10.1007/978-3-031-24378-3_4"> | ||
<article_title>Fast time series classification with random | ||
symbolic subsequences</article_title> | ||
<author>Nguyen</author> | ||
<journal_title>Advanced analytics and learning on temporal | ||
data: 7th ECML PKDD workshop</journal_title> | ||
<doi>10.1007/978-3-031-24378-3_4</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Nguyen, T. L., & Ifrim, G. | ||
(2023). Fast time series classification with random symbolic | ||
subsequences. Advanced Analytics and Learning on Temporal Data: 7th ECML | ||
PKDD Workshop, 50–65. | ||
https://doi.org/10.1007/978-3-031-24378-3_4</unstructured_citation> | ||
</citation> | ||
<citation key="lin2007experiencing"> | ||
<article_title>Experiencing SAX: A novel symbolic | ||
representation of time series</article_title> | ||
<author>Lin</author> | ||
<journal_title>Data Mining and Knowledge | ||
Discovery</journal_title> | ||
<issue>2</issue> | ||
<volume>15</volume> | ||
<doi>10.1007/s10618-007-0064-z</doi> | ||
<cYear>2007</cYear> | ||
<unstructured_citation>Lin, J., Keogh, E., Wei, L., & | ||
Lonardi, S. (2007). Experiencing SAX: A novel symbolic representation of | ||
time series. Data Mining and Knowledge Discovery, 15(2), 107–144. | ||
https://doi.org/10.1007/s10618-007-0064-z</unstructured_citation> | ||
</citation> | ||
<citation key="scikit-learn"> | ||
<article_title>Scikit-learn: Machine learning in | ||
python</article_title> | ||
<author>Pedregosa</author> | ||
<journal_title>Journal of Machine Learning | ||
Research</journal_title> | ||
<issue>85</issue> | ||
<volume>12</volume> | ||
<cYear>2011</cYear> | ||
<unstructured_citation>Pedregosa, F., Varoquaux, G., | ||
Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., | ||
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., | ||
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, Édouard. | ||
(2011). Scikit-learn: Machine learning in python. Journal of Machine | ||
Learning Research, 12(85), 2825–2830. | ||
http://jmlr.org/papers/v12/pedregosa11a.html</unstructured_citation> | ||
</citation> | ||
<citation key="9935005"> | ||
<article_title>Foreseer: Efficiently forecasting malware | ||
event series with long short-term memory</article_title> | ||
<author>Gogineni</author> | ||
<journal_title>IEEE international symposium on secure and | ||
private execution environment design</journal_title> | ||
<doi>10.1109/seed55351.2022.00016</doi> | ||
<cYear>2022</cYear> | ||
<unstructured_citation>Gogineni, K., Derasari, P., & | ||
Venkataramani, G. (2022). Foreseer: Efficiently forecasting malware | ||
event series with long short-term memory. IEEE International Symposium | ||
on Secure and Private Execution Environment Design, 97–108. | ||
https://doi.org/10.1109/seed55351.2022.00016</unstructured_citation> | ||
</citation> | ||
<citation key="EG20b"> | ||
<article_title>Time series forecasting using LSTM networks: | ||
A symbolic approach</article_title> | ||
<author>Elsworth</author> | ||
<doi>10.48550/arXiv.2003.05672</doi> | ||
<cYear>2020</cYear> | ||
<unstructured_citation>Elsworth, S., & Güttel, S. | ||
(2020). Time series forecasting using LSTM networks: A symbolic approach | ||
(No. arXiv:2003.05672v1; p. 12). | ||
https://doi.org/10.48550/arXiv.2003.05672</unstructured_citation> | ||
</citation> | ||
<citation key="WANG2023109123"> | ||
<article_title>Data-driven prognostics based on | ||
time-frequency analysis and symbolic recurrent neural network for fuel | ||
cells under dynamic load</article_title> | ||
<author>Wang</author> | ||
<journal_title>Reliability Engineering & System | ||
Safety</journal_title> | ||
<volume>233</volume> | ||
<doi>10.1016/j.ress.2023.109123</doi> | ||
<cYear>2023</cYear> | ||
<unstructured_citation>Wang, C., Dou, M., Li, Z., Outbib, | ||
R., Zhao, D., Zuo, J., Wang, Y., Liang, B., & Wang, P. (2023). | ||
Data-driven prognostics based on time-frequency analysis and symbolic | ||
recurrent neural network for fuel cells under dynamic load. Reliability | ||
Engineering & System Safety, 233, 109123. | ||
https://doi.org/10.1016/j.ress.2023.109123</unstructured_citation> | ||
</citation> | ||
<citation key="10.1145/3448672"> | ||
<article_title>A framework for generating summaries from | ||
temporal personal health data</article_title> | ||
<author>Harris</author> | ||
<journal_title>ACM Transactions on Computing for | ||
Healthcare</journal_title> | ||
<issue>3</issue> | ||
<volume>2</volume> | ||
<doi>10.1145/3448672</doi> | ||
<cYear>2021</cYear> | ||
<unstructured_citation>Harris, J. J., Chen, C.-H., & | ||
Zaki, M. J. (2021). A framework for generating summaries from temporal | ||
personal health data. ACM Transactions on Computing for Healthcare, | ||
2(3). https://doi.org/10.1145/3448672</unstructured_citation> | ||
</citation> | ||
</citation_list> | ||
</journal_article> | ||
</journal> | ||
</body> | ||
</doi_batch> |
Oops, something went wrong.