- 20240119T173053-5c56efb2ae82adbfd1388a0f546d19631a4e9d42
- 20240119173053
+ 20240701090541-5c56efb2ae82adbfd1388a0f546d19631a4e9d42
+ 20240701090541JOSS Adminadmin@theoj.org
@@ -413,15 +413,16 @@ https://doi.org/10.1146/annurev-publhealth-112810-151726
FEBio: Finite elements for
biomechanics
- S. A. Maas
+ MaasJ Biomech Eng113410.1115/1.40056942012
- S. A. Maas, G. A. A., B. J. Ellis.
-(2012). FEBio: Finite elements for biomechanics. J Biomech Eng, 134(1),
-011005. https://doi.org/10.1115/1.4005694
+ Maas, S. A., Ellis, B. J., Ateshian,
+G. A., & Weiss, J. A. (2012). FEBio: Finite elements for
+biomechanics. J Biomech Eng, 134(1), 011005.
+https://doi.org/10.1115/1.4005694Fluid-solid coupling for the investigation of
diff --git a/joss.05744/10.21105.joss.05744.pdf b/joss.05744/10.21105.joss.05744.pdf
index 18532f7b32..49e6a99f40 100644
Binary files a/joss.05744/10.21105.joss.05744.pdf and b/joss.05744/10.21105.joss.05744.pdf differ
diff --git a/joss.05744/paper.jats/10.21105.joss.05744.jats b/joss.05744/paper.jats/10.21105.joss.05744.jats
new file mode 100644
index 0000000000..f5af395793
--- /dev/null
+++ b/joss.05744/paper.jats/10.21105.joss.05744.jats
@@ -0,0 +1,892 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5744
+10.21105/joss.05744
+
+Ambit – A FEniCS-based cardiovascular multi-physics
+solver
+
+
+
+https://orcid.org/0000-0002-4575-9120
+
+Hirschvogel
+Marc
+
+
+
+
+
+
+Department of Biomedical Engineering, School of Biomedical
+Engineering & Imaging Sciences, King’s College London, London,
+United Kingdom
+
+
+
+
+MOX, Dipartimento di Matematica, Politecnico di Milano,
+Milan, Italy
+
+
+
+
+7
+7
+2023
+
+9
+93
+5744
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+cardiovascular mechanics
+finite strain solid mechanics
+nonlinear elastodynamics
+fluid dynamics
+0D lumped models
+fluid-solid interaction
+fsi
+multi-physics coupling
+
+
+
+
+
+ Summary
+
Ambit is an open-source multi-physics finite element solver written
+ in Python, supporting solid and fluid mechanics, fluid-structure
+ interaction (FSI), and lumped-parameter models. It is tailored towards
+ solving problems in cardiac mechanics, but may also be used for more
+ general nonlinear finite element analysis. The code encompasses
+ re-implementations and generalizations of methods developed by the
+ author for his PhD thesis
+ (Hirschvogel,
+ 2019) and beyond. Ambit makes use of the open-source finite
+ element library
+ FEniCS/dolfinx
+ (Logg
+ et al., 2012) along with the linear algebra package
+ PETSc
+ (Balay
+ et al., 2022), hence guaranteeing a state-of-the-art finite
+ element and linear algebra backend. It is constantly updated to ensure
+ compatibility with a recent dolfinx development version. I/O routines
+ are designed such that the user only needs to provide input files that
+ define parameters through Python dictionaries, hence no programming or
+ in-depth knowledge of any library-specific syntax is required.
+
Ambit provides general nonlinear (compressible or incompressible)
+ finite strain solid dynamics
+ (Holzapfel,
+ 2000), implementing a range of hyperelastic, viscous, and
+ active material models. Specifically, the well-known anisotropic
+ Holzapfel-Ogden
+ (Holzapfel
+ & Ogden, 2009) and Guccione models
+ (Guccione
+ et al., 1995) for structural description of the myocardium are
+ provided, along with a bunch of other models. It further implements
+ strain- and stress-mediated volumetric growth models
+ (Göktepe
+ et al., 2010) that allow to model (maladaptive) ventricular
+ shape and size changes. Inverse mechanics approaches to imprint loads
+ into a reference state are implemented using the so-called
+ prestressing method
+ (Gee et
+ al., 2010) in displacement formulation
+ (Schein
+ & Gee, 2021).
+
Furthermore, fluid dynamics in terms of incompressible
+ Navier-Stokes/Stokes equations – either in Eulerian or Arbitrary
+ Lagrangian-Eulerian (ALE) reference frames – are implemented.
+ Taylor-Hood elements or equal-order approximations with SUPG/PSPG
+ stabilization
+ (Tezduyar
+ & Osawa, 2000) can be used.
+
A variety of reduced 0D lumped models targeted at blood circulation
+ modeling are implemented, including 3- and 4-element Windkessel models
+ (Westerhof
+ et al., 2009) as well as closed-loop full circulation
+ (Hirschvogel
+ et al., 2017) and coronary flow models
+ (Arthurs
+ et al., 2016).
+
Monolithic fluid-solid interaction (FSI)
+ (Nordsletten
+ et al., 2011) in ALE formulation using a Lagrange multiplier
+ field is supported, along with coupling of 3D and 0D models (solid or
+ fluid with 0D lumped circulation systems) such that cardiovascular
+ simulations with realistic boundary conditions can be performed.
+
Implementations for a recently proposed novel physics- and
+ projection-based model reduction for FSI, denoted as
+ fluid-reduced-solid interaction (FrSI)
+ (Hirschvogel
+ et al., 2022), are provided, along with POD-based Galerkin
+ model reduction techniques
+ (Farhat
+ et al., 2014) using full or boundary subspaces.
+
The nonlinear (single- or multi-field) problems are solved with a
+ customized Newton solver with PTC
+ (Gee et
+ al., 2009) adaptivity in case of divergence, providing
+ robustness for numerically challenging problems. Linear solvers and
+ preconditioners can be chosen from the PETSc repertoire, and specific
+ block preconditioners are made available for coupled problems.
+
Avenues for future functionality include cardiac electrophysiology,
+ scalar transport, or finite strain plasticity.
+
+
+ Statement of need
+
Cardiovascular disease entities are the most prevalent ones in the
+ industrialized world
+ (Dimmeler,
+ 2011;
+ Luepker,
+ 2011) and a leading cause of death worldwide. Therefore, models
+ that promote a better understanding of cardiac diseases and their
+ progression represent a valuable tool to guide or assist therapy
+ planning, support device dimensioning and design
+ (Hirschvogel
+ et al., 2019), or help predict intervention planning
+ (Bonini
+ et al., 2022;
+ Taylor
+ et al., 2013).
+
Software packages that are tailored towards cardiac modeling have
+ been provided to the open source community. Amongst them are the
+ cardiovascular FSI solver svFSI
+ (Zhu
+ et al., 2022) along with SimVascular
+ (Updegrove
+ et al., 2017), providing a full medical image-to-model
+ pipeline, as well as FEBio
+ (Maas
+ et al., 2012), focusing on advanced structural mechanics of
+ soft tissue. FEniCS-based open-source solvers are pulse
+ (Finsberg,
+ 2019) for cardiac solid mechanics and cbcbeat
+ (Rognes
+ et al., 2017) for cardiac electrophysiology, both fused to a
+ combined toolkit for cardiac electro-mechanics named simcardems
+ (Finsberg
+ et al., 2023). Another framework for simulating cardiac
+ electrophysiology is openCARP
+ (Plank
+ et al., 2021), and CRIMSON
+ (Arthurs
+ et al., 2021) provides a modeling suite for 3D and
+ reduced-dimensional hemodynamics in arteries. A general purpose
+ library that provides the building blocks for cardiac modeling is
+ lifex
+ (Africa,
+ 2022), and a FEniCS-based monolithic FSI solver for general
+ applications is turtleFSI
+ (Bergersen
+ et al., 2020).
+
Ambit represents a complete open-source code for simulating cardiac
+ mechanics, encompassing advanced structural mechanics of the
+ myocardium, ventricular fluid dynamics, reduced-dimensional blood
+ flow, and multi-physics coupling. Therefore, a wide range of
+ mechanical problems can be simulated, and the code structure allows
+ easy and straightforward extensibility (e.g. implementations of new
+ constitutive models) without the need for low-level library-specific
+ syntax or advanced programming. Due to its simple design in terms of
+ clearly organized input files, Ambit is easy to use and hence
+ represents a valuable tool for novices or advanced researchers who
+ want to address cardiovascular mechanics problems.
+
+
+ Basic code structure
+
[fig:codedesign]
+ represents a basic sketch of the main building blocks of Ambit.
+ Depending on the physics of interest, the respective problem class is
+ instantiated along with all the necessary input parameters, including
+ boundary conditions (Dirichlet, Neumann, Robin), load curves,
+ specification of coupling interfaces, etc. Single-physics problems
+ like nonlinear elastodynamics (problem type
+ solid) or fluid mechanics (problem type
+ fluid) as well as 0D blood flow (problem type
+ flow0d) can be solved as standalone problems.
+ Additionally, FSI (problem type fsi) and 3D-0D
+ coupling for 0D flow to 3D solid or fluid domains is supported
+ (problem types solid_flow0d and
+ fluid_flow0d), as well as fluid mechanics in
+ ALE description (problem type fluid_ale), plus
+ coupling to 0D models (problem types
+ fluid_ale_flow0d and
+ fsi_flow0d).
+
The (coupled) problem object then is passed to a solver class,
+ which calls the main routine to solve the nonlinear problem. This
+ routine implements a time stepping scheme and a monolithic Newton
+ solver which solves the (coupled multi-physics or single-field)
+ problem and updates all variables simultaneously.
+
+
Basic sketch of Ambit code structure: Problem class,
+ solver class, and main code execution flow. Single-physics problems
+ that can be solved encompass solid mechanics
+ (solid), fluid mechanics
+ (fluid), or 0D models
+ (flow0d). Two-physics problems like 3D-0D
+ coupling (solid_flow0d,
+ fluid_flow0d), as well as fluid in ALE
+ description (fluid_ale) are defined by
+ instantiating the respective single-physics problems. Three-physics
+ problems arise for coupling of ALE fluid to 0D models
+ (fluid_ale_flow0d) or for fluid-solid
+ interaction (fsi), whereas four-physics
+ problems would encompass FSI linked to 0D models
+ (fsi_flow0d). Note that the single-physics
+ problem ale just mimics a dummy linear
+ elastic solid and would be irrelevant as a standalone
+ problem.
+
+
+
+
+
+
+
+
+
+
+ AfricaP. C.
+
+ lifex: A flexible, high performance library for the numerical solution of complex finite element problems
+
+ 2022
+
+
+ 10.1016/j.softx.2022.101252
+ 101252
+
+
+
+
+
+
+ ArthursC. J.
+ LauK. D.
+ AsrressK. N.
+ RedwoodS. R.
+ FigueroaC. A.
+
+ A mathematical model of coronary blood flow control: Simulation of patient-specific three-dimensional hemodynamics during exercise
+
+ 2016
+ 310
+ 9
+ 10.1152/ajpheart.00517.2015
+ H1242
+ H1258
+
+
+
+
+
+ ArthursC. J.
+ KhlebnikovR.
+ MelvilleA.
+ MarčanM.
+ GomezA.
+ Dillon-MurphyD.
+ CuomoF.
+ 1M. Silva Vieira
+ SchollenbergerJ.
+ LynchS. R.
+ Tossas-BetancourtC.
+ IyerK.
+ HopperS.
+ LivingstonE.
+ YoussefiP.
+ 1A. Noorani
+ AhmedS. Ben
+ NautaF. J. H.
+ BakelT. M. J. van
+ AhmedY.
+ BakelP. A. J. van
+ MynardJ.
+ AchilleP. Di
+ GharahiH.
+ LauK. D.
+ FilonovaV.
+ AguirreM.
+ NamaN.
+ XiaoN.
+ BaekS.
+ GarikipatiK.
+ SahniO.
+ NordslettenD.
+ FigueroaC. A.
+
+ CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation
+
+ 2021
+ 17
+ 5
+ 10.1371/journal.pcbi.1008881
+ e1008881
+
+
+
+
+
+
+ BalayS.
+ AbhyankarS.
+ AdamsM. F.
+ BensonS.
+ BrownJ.
+ BruneP.
+ BuschelmanK.
+ ConstantinescuE.
+ DalcinL.
+ DenerA.
+ EijkhoutV.
+ GroppW. D.
+ HaplaV.
+ IsaacT.
+ JolivetP.
+ KarpeevD.
+ KaushikD.
+ KnepleyM. G.
+ KongF.
+ KrugerS.
+ MayD. A.
+ McInnesL. C.
+ MillsR. T.
+ MitchellL.
+ MunsonT.
+ RomanJ. E.
+ RuppK.
+ SananP.
+ SarichJ.
+ SmithB. F.
+ ZampiniS.
+ ZhangH.
+ ZhangH.
+ ZhangJ.
+
+ PETSc/TAO users manual
+ Argonne National Laboratory
+ 2022
+
+
+
+
+
+ BergersenAslak W.
+ SlyngstadA.
+ GjertsenS.
+ SoucheA.
+ Valen-SendstadK.
+
+ turtleFSI: A robust and monolithic FEniCS-based fluid-structure interaction solver
+
+ 2020
+ 5
+ 50
+ 10.21105/joss.02089
+ 2089
+
+
+
+
+
+
+ BoniniM.
+ HirschvogelM.
+ AhmedY.
+ XuH.
+ YoungA.
+ TangP. C.
+ NordslettenD.
+
+ Hemodynamic modeling for mitral regurgitation
+
+ 2022
+ 41
+ 4 (Supplement)
+ 10.1016/j.healun.2022.01.1685
+ S218
+ S219
+
+
+
+
+
+ DimmelerS.
+
+ Cardiovascular disease review series
+
+ 2011
+ 3
+ 12
+ 10.1002/emmm.201100182
+ 697
+
+
+
+
+
+
+ FarhatC.
+ AveryP.
+ ChapmanT.
+ CortialJ.
+
+ Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency
+
+ 2014
+ 98
+ 9
+ 10.1002/nme.4668
+ 625
+ 662
+
+
+
+
+
+ FinsbergH. N. T.
+
+ pulse: A python package based on FEniCS for solving problems in cardiac mechanics
+
+ 2019
+ 4
+ 41
+ 10.21105/joss.01539
+ 1539
+
+
+
+
+
+
+ FinsbergH. N. T.
+ HerckI. G. M. van
+ Daversin-CattyC.
+ ArevaloH.
+ WallS.
+
+ simcardems: A FEniCS-based cardiac electro-mechanics solver
+
+ 2023
+ 8
+ 81
+ 10.21105/joss.04753
+ 4753
+
+
+
+
+
+
+ GeeM. W.
+ KelleyC. T.
+ LehoucqR. B.
+
+ Pseudo-transient continuation for nonlinear transient elasticity
+
+ 2009
+ 78
+ 10
+ 10.1002/nme.2527
+ 1209
+ 1219
+
+
+
+
+
+ GeeM. W.
+ FörsterCh.
+ WallW. A.
+
+ A computational strategy for prestressing patient-specific biomechanical problems under finite deformation
+
+ 2010
+ 26
+ 1
+ 10.1002/cnm.1236
+ 52
+ 72
+
+
+
+
+
+ GöktepeS.
+ AbilezO. J.
+ ParkerK. K.
+ KuhlE.
+
+ A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis
+
+ 2010
+ 265
+ 3
+ 10.1016/j.jtbi.2010.04.023
+ 433
+ 442
+
+
+
+
+
+ GuccioneJ. M.
+ CostaK. D.
+ McCullochA. D.
+
+ Finite element stress analysis of left ventricular mechanics in the beating dog heart
+
+ 1995
+ 28
+ 10
+ 10.1016/0021-9290(94)00174-3
+ 1167
+ 1177
+
+
+
+
+
+ HirschvogelM.
+ BassiliousM.
+ JagschiesL.
+ WildhirtS. M.
+ GeeM. W.
+
+ A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics
+
+ 2017
+ 33
+ 8
+ 10.1002/cnm.2842
+ e2842
+
+
+
+
+
+
+ HirschvogelM.
+
+
+ Verlag Dr. Hut, MediaTUM
+ 2019
+ 1
+ https://mediatum.ub.tum.de/1445317
+
+
+
+
+
+ HirschvogelM.
+ JagschiesL.
+ MaierA.
+ WildhirtS. M.
+ GeeM. W.
+
+ An in-silico twin for epicardial augmentation of the failing heart
+
+ 2019
+ 35
+ 10
+ 10.1002/cnm.3233
+ e3233
+
+
+
+
+
+
+ HirschvogelM.
+ BalmusM.
+ BoniniM.
+ NordslettenD.
+
+ Fluid-reduced-solid interaction (FrSI): Physics- and projection-based model reduction for cardiovascular applications
+
+ 2022
+
+
+ https://ssrn.com/abstract=4281317
+ 10.2139/ssrn.4281317
+
+
+
+
+
+
+
+ HolzapfelG. A.
+
+
+ Wiley Press Chichester
+ 2000
+
+
+
+
+
+ HolzapfelG. A.
+ OgdenR. W.
+
+ Constitutive modelling of passive myocardium: A structurally based framework for material characterization
+
+ 2009
+ 367
+ 1902
+ 10.1098/rsta.2009.0091
+ 3445
+ 3475
+
+
+
+
+
+
+ LoggA.
+ MardalK.-A.
+ WellsG. N.
+
+ Springer
+ 2012
+ 978-3-642-23098-1
+ 10.1007/978-3-642-23099-8
+
+
+
+
+
+ LuepkerR. V.
+
+ Cardiovascular disease: Rise, fall, and future prospects
+
+ 2011
+ 32
+ 12
+ 10.1146/annurev-publhealth-112810-151726
+ 1
+ 3
+
+
+
+
+
+ MaasS. A.
+ EllisB. J.
+ AteshianG. A.
+ WeissJ. A.
+
+ FEBio: Finite elements for biomechanics
+
+ 2012
+ 134
+ 1
+ 10.1115/1.4005694
+ 011005
+
+
+
+
+
+
+ NordslettenD. A.
+ McCormickM.
+ KilnerP. J.
+ HunterP.
+ KayD.
+ SmithN. P.
+
+ Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function
+
+ 2011
+ 27
+ 7
+ 10.1002/cnm.1405
+ 1017
+ 1039
+
+
+
+
+
+ PlankG.
+ LoeweA.
+ NeicA.
+ AugustinC.
+ HuangY.-L.
+ GsellM. A. F.
+ KarabelasE.
+ NothsteinM.
+ PrasslA. J.
+ SánchezJ.
+ SeemannG.
+ VigmondE. J.
+
+ The openCARP simulation environment for cardiac electrophysiology
+
+ 2021
+ 208
+
+ 10.1016/j.cmpb.2021.106223
+ 106223
+
+
+
+
+
+
+ RognesM. E.
+ FarrellP. E.
+ FunkeS. W.
+ HakeJ. E.
+ MaleckarM. M. C.
+
+ cbcbeat: An adjoint-enabled framework for computational cardiac electrophysiology
+
+ 2017
+ 2
+ 13
+ 10.21105/joss.00224
+ 224
+
+
+
+
+
+
+ ScheinA.
+ GeeM. W.
+
+ Greedy maximin distance sampling based model order reduction of prestressed and parametrized abdominal aortic aneurysms
+
+ 2021
+ 8
+ 18
+ 10.1186/s40323-021-00203-7
+
+
+
+
+
+
+
+ TaylorC. A.
+ FonteT. A.
+ MinJ. K.
+
+ Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve
+
+ 2013
+ 61
+ 22
+ 10.1016/j.jacc.2012.11.083
+ 2233
+ 2241
+
+
+
+
+
+ TezduyarT. E.
+ OsawaY.
+
+ Finite element stabilization parameters computed from element matrices and vectors
+
+ 2000
+ 190
+ 3–4
+ 10.1016/S0045-7825(00)00211-5
+ 411
+ 430
+
+
+
+
+
+ UpdegroveA.
+ WilsonN. M.
+ MerkowJ.
+ LanH.
+ MarsdenA. L.
+ ShaddenS. C.
+
+ SimVascular: An open source pipeline for cardiovascular simulation
+
+ 2017
+ 45
+ 3
+ 10.1007/s10439-016-1762-8
+ 525
+ 541
+
+
+
+
+
+ WesterhofN.
+ LankhaarJ.-W.
+ WesterhofB. E.
+
+ The arterial Windkessel
+
+ 2009
+ 47
+ 2
+ 10.1007/s11517-008-0359-2
+ H81
+ H88
+
+
+
+
+
+ ZhuC.
+ VedulaV.
+ ParkerD.
+ WilsonN.
+ ShaddenS.
+ MarsdenA.
+
+ svFSI: A multiphysics package for integrated cardiac modeling
+
+ 2022
+ 7
+ 78
+ 10.21105/joss.04118
+ 4118
+
+
+
+
+
+