diff --git a/joss.06943/10.21105.joss.06943.crossref.xml b/joss.06943/10.21105.joss.06943.crossref.xml new file mode 100644 index 0000000000..9f3df96473 --- /dev/null +++ b/joss.06943/10.21105.joss.06943.crossref.xml @@ -0,0 +1,781 @@ + + + + 20240923093211-54aaeea787cac5813238c894af8f84894824df6b + 20240923093211 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 09 + 2024 + + + 9 + + 101 + + + + DendroPy 5: a mature Python library for phylogenetic +computing + + + + Matthew Andres + Moreno + https://orcid.org/0000-0003-4726-4479 + + + Mark T. + Holder + https://orcid.org/0000-0001-5575-0536 + + + Jeet + Sukumaran + https://orcid.org/0000-0002-9222-9608 + + + + 09 + 23 + 2024 + + + 6943 + + + 10.21105/joss.06943 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.13340136 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6943 + + + + 10.21105/joss.06943 + https://joss.theoj.org/papers/10.21105/joss.06943 + + + https://joss.theoj.org/papers/10.21105/joss.06943.pdf + + + + + + The genomic landscape of mexican indigenous +populations brings insights into the peopling of the +americas + García-Ortiz + Nature Communications + 1 + 12 + 10.1038/s41467-021-26188-w + 2041-1723 + 2021 + García-Ortiz, H., Barajas-Olmos, F., +Contreras-Cubas, C., Cid-Soto, M. Á., Córdova, E. J., Centeno-Cruz, F., +Mendoza-Caamal, E., Cicerón-Arellano, I., Flores-Huacuja, M., Baca, P., +Bolnick, D. A., Snow, M., Flores-Martínez, S. E., Ortiz-Lopez, R., +Reynolds, A. W., Blanchet, A., Morales-Marín, M., Velázquez-Cruz, R., +Kostic, A. D., … Orozco, L. (2021). The genomic landscape of mexican +indigenous populations brings insights into the peopling of the +americas. Nature Communications, 12(1). +https://doi.org/10.1038/s41467-021-26188-w + + + Whole-genome analyses resolve early branches +in the tree of life of modern birds + Jarvis + Science + 6215 + 346 + 10.1126/science.1253451 + 1095-9203 + 2014 + Jarvis, E. D., Mirarab, S., Aberer, +A. J., Li, B., Houde, P., Li, C., Ho, S. Y. W., Faircloth, B. C., +Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., Fonseca, R. R. da, +Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., … Zhang, G. +(2014). Whole-genome analyses resolve early branches in the tree of life +of modern birds. Science, 346(6215), 1320–1331. +https://doi.org/10.1126/science.1253451 + + + Molecular evolution of zika virus during its +emergence in the 20th century + Faye + PLoS Neglected Tropical +Diseases + 1 + 8 + 10.1371/journal.pntd.0002636 + 1935-2735 + 2014 + Faye, O., Freire, C. C. M., Iamarino, +A., Faye, O., Oliveira, J. V. C. de, Diallo, M., Zanotto, P. M. A., +& Sall, A. A. (2014). Molecular evolution of zika virus during its +emergence in the 20th century. PLoS Neglected Tropical Diseases, 8(1), +e2636. +https://doi.org/10.1371/journal.pntd.0002636 + + + Extending and improving metagenomic taxonomic +profiling with uncharacterized species using MetaPhlAn 4 + Blanco-Míguez + Nature Biotechnology + 11 + 41 + 10.1038/s41587-023-01688-w + 1546-1696 + 2023 + Blanco-Míguez, A., Beghini, F., +Cumbo, F., McIver, L. J., Thompson, K. N., Zolfo, M., Manghi, P., +Dubois, L., Huang, K. D., Thomas, A. M., Nickols, W. A., Piccinno, G., +Piperni, E., Punčochář, M., Valles-Colomer, M., Tett, A., Giordano, F., +Davies, R., Wolf, J., … Segata, N. (2023). Extending and improving +metagenomic taxonomic profiling with uncharacterized species using +MetaPhlAn 4. Nature Biotechnology, 41(11), 1633–1644. +https://doi.org/10.1038/s41587-023-01688-w + + + BEAST 2: A software platform for bayesian +evolutionary analysis + Bouckaert + PLOS Computational Biology + 4 + 10 + 10.1371/journal.pcbi.1003537 + 2014 + Bouckaert, J. A. K., Remco AND Heled. +(2014). BEAST 2: A software platform for bayesian evolutionary analysis. +PLOS Computational Biology, 10(4), 1–6. +https://doi.org/10.1371/journal.pcbi.1003537 + + + Biopython: Freely available python tools for +computational molecular biology and bioinformatics + Cock + Bioinformatics + 11 + 25 + 10.1093/bioinformatics/btp163 + 1367-4803 + 2009 + Cock, P. J. A., Antao, T., Chang, J. +T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., +Kauff, F., Wilczynski, B., & Hoon, M. J. L. de. (2009). Biopython: +Freely available python tools for computational molecular biology and +bioinformatics. Bioinformatics, 25(11), 1422–1423. +https://doi.org/10.1093/bioinformatics/btp163 + + + Phylotrack: C++ and python libraries for in +silico phylogenetic tracking + Dolson + 10.48550/arxiv.2405.09389 + 2024 + Dolson, E., Rodriguez-Papa, S., & +Moreno, M. A. (2024). Phylotrack: C++ and python libraries for in silico +phylogenetic tracking. arXiv. +https://doi.org/10.48550/arxiv.2405.09389 + + + Conservation evaluation and phylogenetic +diversity + Faith + Biological Conservation + 1 + 61 + 10.1016/0006-3207(92)91201-3 + 1992 + Faith, D. P. (1992). Conservation +evaluation and phylogenetic diversity. Biological Conservation, 61(1), +1–10. +https://doi.org/10.1016/0006-3207(92)91201-3 + + + Evolutionary trees from DNA sequences: A +maximum likelihood approach + Felsenstein + Journal of Molecular +Evolution + 6 + 17 + 10.1007/bf01734359 + 1432-1432 + 1981 + Felsenstein, J. (1981). Evolutionary +trees from DNA sequences: A maximum likelihood approach. Journal of +Molecular Evolution, 17(6), 368–376. +https://doi.org/10.1007/bf01734359 + + + Inference of transmission network structure +from HIV phylogenetic trees + Giardina + PLOS Computational Biology + 1 + 13 + 10.1371/journal.pcbi.1005316 + 1553-7358 + 2017 + Giardina, F., Romero-Severson, E. O., +Albert, J., Britton, T., & Leitner, T. (2017). Inference of +transmission network structure from HIV phylogenetic trees. PLOS +Computational Biology, 13(1), e1005316. +https://doi.org/10.1371/journal.pcbi.1005316 + + + What can phylogenetic metrics tell us about +useful diversity in evolutionary algorithms? + Hernandez + Genetic programming theory and practice +XVIII + 10.1007/978-981-16-8113-4_4 + 1932-0175 + 9789811681134 + 2022 + Hernandez, J. G., Lalejini, A., & +Dolson, E. (2022). What can phylogenetic metrics tell us about useful +diversity in evolutionary algorithms? In Genetic programming theory and +practice XVIII (pp. 63–82). Springer Nature Singapore. +https://doi.org/10.1007/978-981-16-8113-4_4 + + + ETE 3: Reconstruction, analysis, and +visualization of phylogenomic data + Huerta-Cepas + Molecular Biology and +Evolution + 6 + 33 + 10.1093/molbev/msw046 + 0737-4038 + 2016 + Huerta-Cepas, J., Serra, F., & +Bork, P. (2016). ETE 3: Reconstruction, analysis, and visualization of +phylogenomic data. Molecular Biology and Evolution, 33(6), 1635–1638. +https://doi.org/10.1093/molbev/msw046 + + + Efficient pedigree recording for fast +population genetics simulation + Kelleher + PLOS Computational Biology + 11 + 14 + 10.1371/journal.pcbi.1006581 + 1553-7358 + 2018 + Kelleher, J., Thornton, K. R., +Ashander, J., & Ralph, P. L. (2018). Efficient pedigree recording +for fast population genetics simulation. PLOS Computational Biology, +14(11), e1006581. +https://doi.org/10.1371/journal.pcbi.1006581 + + + Discovery of a new source of rifamycin +antibiotics in marine sponge actinobacteria by phylogenetic +prediction + Kim + Applied and Environmental +Microbiology + 3 + 72 + 10.1128/aem.72.3.2118-2125.2006 + 1098-5336 + 2006 + Kim, T. K., Hewavitharana, A. K., +Shaw, P. N., & Fuerst, J. A. (2006). Discovery of a new source of +rifamycin antibiotics in marine sponge actinobacteria by phylogenetic +prediction. Applied and Environmental Microbiology, 72(3), 2118–2125. +https://doi.org/10.1128/aem.72.3.2118-2125.2006 + + + PyCogent: A toolkit for making sense from +sequence + Knight + Genome Biology + 8 + 8 + 10.1186/gb-2007-8-8-r171 + 1465-6906 + 2007 + Knight, R., Maxwell, P., Birmingham, +A., Carnes, J., Caporaso, J. G., Easton, B. C., Eaton, M., Hamady, M., +Lindsay, H., Liu, Z., Lozupone, C., McDonald, D., Robeson, M., Sammut, +R., Smit, S., Wakefield, M. J., Widmann, J., Wikman, S., Wilson, S., … +Huttley, G. A. (2007). PyCogent: A toolkit for making sense from +sequence. Genome Biology, 8(8), R171. +https://doi.org/10.1186/gb-2007-8-8-r171 + + + Statistical phylogeography + Knowles + Molecular Ecology + 12 + 11 + 10.1046/j.1365-294x.2002.01410.x + 1545-2069 + 2002 + Knowles, L. L., & Maddison, W. P. +(2002). Statistical phylogeography. Molecular Ecology, 11(12), +2623–2635. +https://doi.org/10.1046/j.1365-294x.2002.01410.x + + + Phylogeny-informed fitness estimation for +test-based parent selection + Lalejini + Genetic and evolutionary +computation + 10.1007/978-981-99-8413-8_13 + 1932-0175 + 9789819984138 + 2024 + Lalejini, A., Moreno, M. A., +Hernandez, J. G., & Dolson, E. (2024). Phylogeny-informed fitness +estimation for test-based parent selection. In Genetic and evolutionary +computation (pp. 241–261). Springer Nature Singapore. +https://doi.org/10.1007/978-981-99-8413-8_13 + + + The evolutionary origin of complex +features + Lenski + Nature + 6936 + 423 + 10.1038/nature01568 + 1476-4687 + 2003 + Lenski, R. E., Ofria, C., Pennock, R. +T., & Adami, C. (2003). The evolutionary origin of complex features. +Nature, 423(6936), 139–144. +https://doi.org/10.1038/nature01568 + + + State-dependent evolutionary models reveal +modes of solid tumour growth + Lewinsohn + Nature Ecology & +Evolution + 4 + 7 + 10.1038/s41559-023-02000-4 + 2023 + Lewinsohn, M. A., Bedford, T., +Müller, N. F., & Feder, A. F. (2023). State-dependent evolutionary +models reveal modes of solid tumour growth. Nature Ecology &Amp; +Evolution, 7(4), 581–596. +https://doi.org/10.1038/s41559-023-02000-4 + + + Rapid and sensitive protein similarity +searches + Lipman + Science + 4693 + 227 + 10.1126/science.2983426 + 1095-9203 + 1985 + Lipman, D. J., & Pearson, W. R. +(1985). Rapid and sensitive protein similarity searches. Science, +227(4693), 1435–1441. +https://doi.org/10.1126/science.2983426 + + + Nexus: An extensible file format for +systematic information + Maddison + Systematic Biology + 4 + 46 + 10.1093/sysbio/46.4.590 + 1063-5157 + 1997 + Maddison, D. R., Swofford, D. L., +& Maddison, W. P. (1997). Nexus: An extensible file format for +systematic information. Systematic Biology, 46(4), 590–621. +https://doi.org/10.1093/sysbio/46.4.590 + + + PASTA: Ultra-large multiple sequence +alignment + Mirarab + Research in computational molecular +biology + 10.1007/978-3-319-05269-4_15 + 1611-3349 + 9783319052694 + 2014 + Mirarab, S., Nguyen, N., & +Warnow, T. (2014). PASTA: Ultra-large multiple sequence alignment. In +Research in computational molecular biology (pp. 177–191). Springer +International Publishing. +https://doi.org/10.1007/978-3-319-05269-4_15 + + + Hstrat: A python package for phylogenetic +inference on distributed digital evolution populations + Moreno + Journal of Open Source +Software + 80 + 7 + 10.21105/joss.04866 + 2475-9066 + 2022 + Moreno, M. A., Dolson, E., & +Ofria, C. (2022). Hstrat: A python package for phylogenetic inference on +distributed digital evolution populations. Journal of Open Source +Software, 7(80), 4866. +https://doi.org/10.21105/joss.04866 + + + Toward phylogenetic inference of evolutionary +dynamics at scale + Moreno + The 2023 conference on artificial +life + 10.1162/isal_a_00694 + 2023 + Moreno, M. A., Dolson, E., & +Rodriguez-Papa, S. (2023). Toward phylogenetic inference of evolutionary +dynamics at scale. The 2023 Conference on Artificial Life. +https://doi.org/10.1162/isal_a_00694 + + + TreeSwift: A massively scalable python tree +package + Moshiri + SoftwareX + 11 + 10.1016/j.softx.2020.100436 + 2352-7110 + 2020 + Moshiri, N. (2020). TreeSwift: A +massively scalable python tree package. SoftwareX, 11, 100436. +https://doi.org/10.1016/j.softx.2020.100436 + + + SuchTree: Fast, thread-safe computations with +phylogenetic trees + Y. Neches + Journal of Open Source +Software + 27 + 3 + 10.21105/joss.00678 + 2475-9066 + 2018 + Y. Neches, R., & Scott, C. +(2018). SuchTree: Fast, thread-safe computations with phylogenetic +trees. Journal of Open Source Software, 3(27), 678. +https://doi.org/10.21105/joss.00678 + + + Newick’s 8:45 Tree Format +Standard + Olsen + 1990 + Olsen, G. (1990). Newick’s 8:45 Tree +Format Standard. +https://phylipweb.github.io/phylip/newick_doc.html. + + + Ape 5.0: An environment for modern +phylogenetics and evolutionary analyses in R + Paradis + Bioinformatics + 35 + 10.1093/bioinformatics/bty633 + 2019 + Paradis, E., & Schliep, K. +(2019). Ape 5.0: An environment for modern phylogenetics and +evolutionary analyses in R. Bioinformatics, 35, 526–528. +https://doi.org/10.1093/bioinformatics/bty633 + + + Espalier: Efficient tree reconciliation and +ancestral recombination graphs reconstruction using maximum agreement +forests + Rasmussen + Systematic Biology + 5 + 72 + 10.1093/sysbio/syad040 + 1063-5157 + 2023 + Rasmussen, D. A., & Guo, F. +(2023). Espalier: Efficient tree reconciliation and ancestral +recombination graphs reconstruction using maximum agreement forests. +Systematic Biology, 72(5), 1154–1170. +https://doi.org/10.1093/sysbio/syad040 + + + Scikit-bio/scikit-bio: Scikit-bio +0.6.0 + Jai Ram Rideout + 10.5281/zenodo.593387 + 2024 + Jai Ram Rideout, Greg Caporaso, Evan +Bolyen, Daniel McDonald, Yoshiki Vázquez Baeza, Jorge Cañardo Alastuey, +Anders Pitman, Jamie Morton, Jose Navas, Kestrel Gorlick, Justine +Debelius, Zech Xu, llcooljohn, Qiyun Zhu, Joshua Shorenstein, Matt Aton, +Laurent Luce, Will Van Treuren, charudatta-navare, … Johannes Radinger. +(2024). Scikit-bio/scikit-bio: Scikit-bio 0.6.0. Zenodo. +https://doi.org/10.5281/zenodo.593387 + + + MrBayes 3.2: Efficient bayesian phylogenetic +inference and model choice across a large model space + Ronquist + Systematic Biology + 3 + 61 + 10.1093/sysbio/sys029 + 1063-5157 + 2012 + Ronquist, F., Teslenko, M., Mark, P. +van der, Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., +Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient +bayesian phylogenetic inference and model choice across a large model +space. Systematic Biology, 61(3), 539–542. +https://doi.org/10.1093/sysbio/sys029 + + + Long-term experimental evolution in +escherichia coli. XIII. Phylogenetic history of a balanced +polymorphism + Rozen + Journal of Molecular +Evolution + 2 + 61 + 10.1007/s00239-004-0322-2 + 1432-1432 + 2005 + Rozen, D. E., Schneider, D., & +Lenski, R. E. (2005). Long-term experimental evolution in escherichia +coli. XIII. Phylogenetic history of a balanced polymorphism. Journal of +Molecular Evolution, 61(2), 171–180. +https://doi.org/10.1007/s00239-004-0322-2 + + + Physcraper: A python package for continually +updated phylogenetic trees using the open tree of life + Sánchez-Reyes + BMC Bioinformatics + 1 + 22 + 10.1186/s12859-021-04274-6 + 1471-2105 + 2021 + Sánchez-Reyes, L. L., Kandziora, M., +& McTavish, E. J. (2021). Physcraper: A python package for +continually updated phylogenetic trees using the open tree of life. BMC +Bioinformatics, 22(1). +https://doi.org/10.1186/s12859-021-04274-6 + + + Untangling phylogenetic diversity’s role in +evolutionary computation using a suite of diagnostic fitness +landscapes + Shahbandegan + Proceedings of the genetic and evolutionary +computation conference companion + 10.1145/3520304.3534028 + 2022 + Shahbandegan, S., Hernandez, J. G., +Lalejini, A., & Dolson, E. (2022, July). Untangling phylogenetic +diversity’s role in evolutionary computation using a suite of diagnostic +fitness landscapes. Proceedings of the Genetic and Evolutionary +Computation Conference Companion. +https://doi.org/10.1145/3520304.3534028 + + + RAxML version 8: A tool for phylogenetic +analysis and post-analysis of large phylogenies + Stamatakis + Bioinformatics + 9 + 30 + 10.1093/bioinformatics/btu033 + 1367-4803 + 2014 + Stamatakis, A. (2014). RAxML version +8: A tool for phylogenetic analysis and post-analysis of large +phylogenies. Bioinformatics, 30(9), 1312–1313. +https://doi.org/10.1093/bioinformatics/btu033 + + + DendroPy: A python library for phylogenetic +computing + Sukumaran + Bioinformatics + 12 + 26 + 10.1093/bioinformatics/btq228 + 1367-4803 + 2010 + Sukumaran, J., & Holder, M. T. +(2010). DendroPy: A python library for phylogenetic computing. +Bioinformatics, 26(12), 1569–1571. +https://doi.org/10.1093/bioinformatics/btq228 + + + The macroevolutionary singularity of +snakes + Title + Science + 6685 + 383 + 10.1126/science.adh2449 + 1095-9203 + 2024 + Title, P. O., Singhal, S., Grundler, +M. C., Costa, G. C., Pyron, R. A., Colston, T. J., Grundler, M. R., +Prates, I., Stepanova, N., Jones, M. E. H., Cavalcanti, L. B. Q., Colli, +G. R., Di-Poï, N., Donnellan, S. C., Moritz, C., Mesquita, D. O., +Pianka, E. R., Smith, S. A., Vitt, L. J., & Rabosky, D. L. (2024). +The macroevolutionary singularity of snakes. Science, 383(6685), +918–923. https://doi.org/10.1126/science.adh2449 + + + NeXML: Rich, extensible, and verifiable +representation of comparative data and metadata + Vos + Systematic Biology + 4 + 61 + 10.1093/sysbio/sys025 + 1063-5157 + 2012 + Vos, R. A., Balhoff, J. P., Caravas, +J. A., Holder, M. T., Lapp, H., Maddison, W. P., Midford, P. E., Priyam, +A., Sukumaran, J., Xia, X., & Stoltzfus, A. (2012). NeXML: Rich, +extensible, and verifiable representation of comparative data and +metadata. Systematic Biology, 61(4), 675–689. +https://doi.org/10.1093/sysbio/sys025 + + + Deep learning from phylogenies to uncover the +epidemiological dynamics of outbreaks + Voznica + Nature Communications + 1 + 13 + 10.1038/s41467-022-31511-0 + 2041-1723 + 2022 + Voznica, J., Zhukova, A., Boskova, +V., Saulnier, E., Lemoine, F., Moslonka-Lefebvre, M., & Gascuel, O. +(2022). Deep learning from phylogenies to uncover the epidemiological +dynamics of outbreaks. Nature Communications, 13(1). +https://doi.org/10.1038/s41467-022-31511-0 + + + Inferring evolutionary trees with +PAUP* + Wilgenbusch + Current Protocols in +Bioinformatics + 1 + 00 + 10.1002/0471250953.bi0604s00 + 2003 + Wilgenbusch, J. C., & Swofford, +D. (2003). Inferring evolutionary trees with PAUP*. Current Protocols in +Bioinformatics, 00(1). +https://doi.org/10.1002/0471250953.bi0604s00 + + + A supertree pipeline for summarizing +phylogenetic and taxonomic information for millions of +species + Redelings + PeerJ + 5 + 10.7717/peerj.3058 + 2167-8359 + 2017 + Redelings, B. D., & Holder, M. T. +(2017). A supertree pipeline for summarizing phylogenetic and taxonomic +information for millions of species. PeerJ, 5, e3058. +https://doi.org/10.7717/peerj.3058 + + + Incorporating the speciation process into +species delimitation + Sukumaran + PLOS Computational Biology + 5 + 17 + 10.1371/journal.pcbi.1008924 + 1553-7358 + 2021 + Sukumaran, J., Holder, M. T., & +Knowles, L. L. (2021). Incorporating the speciation process into species +delimitation. PLOS Computational Biology, 17(5), e1008924. +https://doi.org/10.1371/journal.pcbi.1008924 + + + Machine learning biogeographic processes from +biotic patterns: A new trait-dependent dispersal and diversification +model with model choice by simulation-trained discriminant +analysis + Sukumaran + Systematic Biology + 3 + 65 + 10.1093/sysbio/syv121 + 1063-5157 + 2015 + Sukumaran, J., Economo, E. P., & +Lacey Knowles, L. (2015). Machine learning biogeographic processes from +biotic patterns: A new trait-dependent dispersal and diversification +model with model choice by simulation-trained discriminant analysis. +Systematic Biology, 65(3), 525–545. +https://doi.org/10.1093/sysbio/syv121 + + + + + +