diff --git a/joss.06025/10.21105.joss.06025.crossref.xml b/joss.06025/10.21105.joss.06025.crossref.xml new file mode 100644 index 0000000000..44300ce0b2 --- /dev/null +++ b/joss.06025/10.21105.joss.06025.crossref.xml @@ -0,0 +1,455 @@ + + + + 20240524T210328-f710f13931bf242933710a8492d85f823378720a + 20240524210328 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 05 + 2024 + + + 9 + + 97 + + + + CRNPy: An Open-Source Python Library for Cosmic-Ray +Neutron Probe Data Processing + + + + Joaquin A. + Peraza Rud + https://orcid.org/0009-0007-9337-830X + + + Tyson E. + Ochsner + https://orcid.org/0000-0003-0875-4491 + + + Andres + Patrignani + https://orcid.org/0000-0001-5955-5877 + + + + 05 + 24 + 2024 + + + 6025 + + + 10.21105/joss.06025 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.11090077 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6025 + + + + 10.21105/joss.06025 + https://joss.theoj.org/papers/10.21105/joss.06025 + + + https://joss.theoj.org/papers/10.21105/joss.06025.pdf + + + + + + COSMOS: The cosmic-ray soil moisture +observing system + Zreda + Hydrology and Earth System +Sciences + 11 + 16 + 10.5194/hess-16-4079-2012 + 2012 + Zreda, M., Shuttleworth, W., Zeng, +X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). +COSMOS: The cosmic-ray soil moisture observing system. Hydrology and +Earth System Sciences, 16(11), 4079–4099. +https://doi.org/10.5194/hess-16-4079-2012 + + + The effect of atmospheric water vapor on +neutron count in the cosmic-ray soil moisture observing +system + Rosolem + Journal of Hydrometeorology + 5 + 14 + 10.1175/JHM-D-12-0120.1 + 2013 + Rosolem, R., Shuttleworth, W. J., +Zreda, M., Franz, T. E., Zeng, X., & Kurc, S. A. (2013). The effect +of atmospheric water vapor on neutron count in the cosmic-ray soil +moisture observing system. Journal of Hydrometeorology, 14(5), +1659–1671. +https://doi.org/10.1175/JHM-D-12-0120.1 + + + Status and perspectives on the cosmic-ray +neutron method for soil moisture estimation and other environmental +science applications + Andreasen + Vadose Zone Journal + 8 + 16 + 10.2136/vzj2017.04.0086 + 2017 + Andreasen, M., Jensen, K. H., +Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. +(2017). Status and perspectives on the cosmic-ray neutron method for +soil moisture estimation and other environmental science applications. +Vadose Zone Journal, 16(8), 1–11. +https://doi.org/10.2136/vzj2017.04.0086 + + + WWW.NMDB.EU: The real-time Neutron Monitor +database + Klein + EGU general assembly conference +abstracts + 2009 + Klein, K.-L., Steigies, C., & +NMDB Team. (2009). WWW.NMDB.EU: The real-time Neutron Monitor database. +EGU General Assembly Conference Abstracts, 5633. + + + Volume 16: How to detect and handle +outliers + Iglewicz + 1993 + Iglewicz, B., & Hoaglin, D. C. +(1993). Volume 16: How to detect and handle outliers. Quality +Press. + + + Nature’s neutron probe: Land surface +hydrology at an elusive scale with cosmic rays + Desilets + Water Resources Research + 11 + 46 + 10.1029/2009WR008726 + 2010 + Desilets, D., Zreda, M., & Ferré, +T. P. (2010). Nature’s neutron probe: Land surface hydrology at an +elusive scale with cosmic rays. Water Resources Research, 46(11). +https://doi.org/10.1029/2009WR008726 + + + An empirical vegetation correction for soil +water content quantification using cosmic ray probes + Baatz + Water Resources Research + 4 + 51 + 10.1002/2014WR016443 + 2015 + Baatz, R., Bogena, H., Hendricks +Franssen, H.-J., Huisman, J., Montzka, C., & Vereecken, H. (2015). +An empirical vegetation correction for soil water content quantification +using cosmic ray probes. Water Resources Research, 51(4), 2030–2046. +https://doi.org/10.1002/2014WR016443 + + + In situ destructive sampling + Wahbi + Cosmic Ray Neutron Sensing: Estimation of +Agricultural Crop Biomass Water Equivalent + 10.1007/978-3-319-69539-6_2 + 2018 + Wahbi, A., Heng, L., Dercon, G., +Wahbi, A., & Avery, W. (2018). In situ destructive sampling. Cosmic +Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water +Equivalent, 5–9. +https://doi.org/10.1007/978-3-319-69539-6_2 + + + Cosmic-ray neutron rover surveys of field +soil moisture and the influence of roads + Schrön + Water Resources Research + 9 + 54 + 10.1029/2017WR021719 + 2018 + Schrön, M., Rosolem, R., Köhli, M., +Piussi, L., Schröter, I., Iwema, J., Kögler, S., Oswald, S. E., +Wollschläger, U., Samaniego, L., Dietrich, P., & Zacharias, S. +(2018). Cosmic-ray neutron rover surveys of field soil moisture and the +influence of roads. Water Resources Research, 54(9), 6441–6459. +https://doi.org/10.1029/2017WR021719 + + + Geomagnetic cutoff rigidity computer program: +Theory, software description and example + Smart + 2001 + Smart, D., & Shea, M. (2001). +Geomagnetic cutoff rigidity computer program: Theory, software +description and example. + + + Measurement depth of the cosmic ray soil +moisture probe affected by hydrogen from various sources + Franz + Water Resources Research + 8 + 48 + 10.1029/2012WR011871 + 2012 + Franz, T. E., Zreda, M., Ferre, T., +Rosolem, R., Zweck, C., Stillman, S., Zeng, X., & Shuttleworth, W. +(2012). Measurement depth of the cosmic ray soil moisture probe affected +by hydrogen from various sources. Water Resources Research, 48(8). +https://doi.org/10.1029/2012WR011871 + + + Practical data products from cosmic-ray +neutron sensing for hydrological applications + Franz + Frontiers in Water + 2 + 10.3389/frwa.2020.00009 + 2020 + Franz, T. E., Wahbi, A., Zhang, J., +Vreugdenhil, M., Heng, L., Dercon, G., Strauss, P., Brocca, L., & +Wagner, W. (2020). Practical data products from cosmic-ray neutron +sensing for hydrological applications. Frontiers in Water, 2, 9. +https://doi.org/10.3389/frwa.2020.00009 + + + From near-surface to root-zone soil moisture +using an exponential filter: An assessment of the method based on +in-situ observations and model simulations + Albergel + Hydrology and Earth System +Sciences + 6 + 12 + 10.5194/hess-12-1323-2008 + 2008 + Albergel, C., Rüdiger, C., Pellarin, +T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., +Piguet, B., & Martin, E. (2008). From near-surface to root-zone soil +moisture using an exponential filter: An assessment of the method based +on in-situ observations and model simulations. Hydrology and Earth +System Sciences, 12(6), 1323–1337. +https://doi.org/10.5194/hess-12-1323-2008 + + + Predicting rootzone soil moisture from +surface observations in cropland using an exponential +filter + Rossini + Soil Science Society of America +Journal + 6 + 85 + 10.1002/saj2.20319 + 2021 + Rossini, P., & Patrignani, A. +(2021). Predicting rootzone soil moisture from surface observations in +cropland using an exponential filter. Soil Science Society of America +Journal, 85(6), 1894–1902. +https://doi.org/10.1002/saj2.20319 + + + Error estimation for soil moisture +measurements with cosmic ray neutron sensing and implications for rover +surveys + Jakobi + Frontiers in water + 2 + 10.3389/frwa.2020.00010 + 2020 + Jakobi, J., Huisman, J. A., Schrön, +M., Fiedler, J., Brogi, C., Vereecken, H., & Bogena, H. R. (2020). +Error estimation for soil moisture measurements with cosmic ray neutron +sensing and implications for rover surveys. Frontiers in Water, 2, 10. +https://doi.org/10.3389/frwa.2020.00010 + + + Improving calibration and validation of +cosmic-ray neutron sensors in the light of spatial +sensitivity + Schrön + Hydrology and Earth System +Sciences + 10 + 21 + 10.5194/hess-21-5009-2017 + 2017 + Schrön, M., Köhli, M., Scheiffele, +L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, +R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., +Dietrich, P., Schmidt, U., & Zacharias, S. (2017). Improving +calibration and validation of cosmic-ray neutron sensors in the light of +spatial sensitivity. Hydrology and Earth System Sciences, 21(10), +5009–5030. +https://doi.org/10.5194/hess-21-5009-2017 + + + Calibration and correction procedures for +cosmic-ray neutron soil moisture probes located across +Australia + Hawdon + Water Resources Research + 6 + 50 + 10.1002/2013WR015138 + 2014 + Hawdon, A., McJannet, D., & +Wallace, J. (2014). Calibration and correction procedures for cosmic-ray +neutron soil moisture probes located across Australia. Water Resources +Research, 50(6), 5029–5043. +https://doi.org/10.1002/2013WR015138 + + + Incoming neutron flux corrections for +cosmic-ray soil and snow sensors using the global neutron monitor +network + McJannet + Water Resources Research + 4 + 59 + 10.1029/2022WR033889 + 2023 + McJannet, D., & Desilets, D. +(2023). Incoming neutron flux corrections for cosmic-ray soil and snow +sensors using the global neutron monitor network. Water Resources +Research, 59(4), e2022WR033889. +https://doi.org/10.1029/2022WR033889 + + + Cosmic-ray neutron sensor PYthon tool (crspy +1.2. 1): An open-source tool for the processing of cosmic-ray neutron +and soil moisture data + Power + Geoscientific Model +Development + 12 + 14 + 10.5194/gmd-14-7287-2021 + 2021 + Power, D., Rico-Ramirez, M. A., +Desilets, S., Desilets, D., & Rosolem, R. (2021). Cosmic-ray neutron +sensor PYthon tool (crspy 1.2. 1): An open-source tool for the +processing of cosmic-ray neutron and soil moisture data. Geoscientific +Model Development, 14(12), 7287–7307. +https://doi.org/10.5194/gmd-14-7287-2021 + + + CORNish PASDy - COsmic-ray neutron flavored +PASDy + Schrön + Schrön, M. (Accessed: 2024). CORNish +PASDy - COsmic-ray neutron flavored PASDy. +https://git.ufz.de/CRNS/cornish_pasdy. + + + Array programming with NumPy + Harris + Nature + 7825 + 585 + 10.1038/s41586-020-2649-2 + 2020 + Harris, C. R., Millman, K. J., Van +Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., +Taylor, J., Berg, S., Smith, N. J., & others. (2020). Array +programming with NumPy. Nature, 585(7825), 357–362. +https://doi.org/10.1038/s41586-020-2649-2 + + + Data Structures for Statistical Computing in +Python + McKinney + Proceedings of the 9th Python in Science +Conference + 10.25080/Majora-92bf1922-00a + 2010 + McKinney, Wes. (2010). Data +Structures for Statistical Computing in Python. In Stéfan van der Walt +& Jarrod Millman (Eds.), Proceedings of the 9th Python in Science +Conference (pp. 56–61). +https://doi.org/10.25080/Majora-92bf1922-00a + + + SciPy 1.0: Fundamental algorithms for +scientific computing in Python + Virtanen + Nature methods + 3 + 17 + 10.1038/s41592-019-0686-2 + 2020 + Virtanen, P., Gommers, R., Oliphant, +T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, +P., Weckesser, W., Bright, J., & others. (2020). SciPy 1.0: +Fundamental algorithms for scientific computing in Python. Nature +Methods, 17(3), 261–272. +https://doi.org/10.1038/s41592-019-0686-2 + + + Matplotlib: A 2D graphics +environment + Hunter + Computing in Science & +Engineering + 3 + 9 + 10.1109/MCSE.2007.55 + 2007 + Hunter, J. D. (2007). Matplotlib: A +2D graphics environment. Computing in Science & Engineering, 9(3), +90–95. https://doi.org/10.1109/MCSE.2007.55 + + + + + + diff --git a/joss.06025/10.21105.joss.06025.pdf b/joss.06025/10.21105.joss.06025.pdf new file mode 100644 index 0000000000..446a069628 Binary files /dev/null and b/joss.06025/10.21105.joss.06025.pdf differ diff --git a/joss.06025/paper.jats/10.21105.joss.06025.jats b/joss.06025/paper.jats/10.21105.joss.06025.jats new file mode 100644 index 0000000000..5dc68a014f --- /dev/null +++ b/joss.06025/paper.jats/10.21105.joss.06025.jats @@ -0,0 +1,772 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6025 +10.21105/joss.06025 + +CRNPy: An Open-Source Python Library for Cosmic-Ray +Neutron Probe Data Processing + + + +https://orcid.org/0009-0007-9337-830X + +Peraza Rud +Joaquin A. + + + + +https://orcid.org/0000-0003-0875-4491 + +Ochsner +Tyson E. + + + + +https://orcid.org/0000-0001-5955-5877 + +Patrignani +Andres + + + + + +Department of Agronomy, Kansas State University, Manhattan, +KS, USA. + + + + +Department of Plant and Soil Sciences, Oklahoma State +University, Stillwater, OK, USA. + + + + +1 +6 +2023 + +9 +97 +6025 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +Cosmic-Ray Neutron Probes +Soil Moisture +Data Processing + + + + + + Summary +

CRNPy is a Python library that facilitates the processing, + analysis, and conversion of raw neutron counts obtained with + stationary and roving cosmic-ray neutron probes (CRNP) into volumetric + soil water content. The CRNPy library includes routines for + atmospheric, biomass, and road corrections, along with one-dimensional + and two-dimensional filtering. The library extends its utility by + offering horizontal and vertical footprint determination, uncertainty + estimation, depth extrapolation operators, and routines to assist + users with field calibration. The design of the CRNPy library + prioritizes reproducibility, ease of use, and compatibility across + instruments, facilitating its adoption by instrument manufacturers, + researchers, and end users aiming to integrate non-invasive soil + moisture sensing in agricultural and hydrological applications.

+
+ + Statement of Need +

Cosmic-ray neutron probes (CRNP) are non-invasive sensors that + bridge the gap between point-level and satellite soil moisture + sensing. However, the conversion of raw CRNP data into soil moisture + requires multiple corrections and filtering steps that are described + across various peer-reviewed articles. To circumvent this limitation + and enhance reproducibility, Python packages such as crspy + (Power + et al., 2021) and corny + (Schrön, + Accessed: 2024) were previously developed. In this study we + present CRNPy, an alternative solution to support CRNP data processing + that offers a simple, modular, lightweight (~70 KB), and + instrument-agnostic solution that facilitates integration and + reproducibility within CRNP data analysis pipelines. The CRNPy library + has a straightforward installation using the Python Package Index and + minimal dependencies that are mostly included within the Anaconda + open-source ecosystem. CRNPy’s web documentation includes actual + datasets and tutorials in the form of Jupyter notebooks that provide + new users with an easily accessible entry point for CRNP data + processing. The simple structure of the CRNPy library enables easy + maintenance and community-driven improvements since users can expand + its capabilities by adding regular Python functions to the core + module. The compact size of the CRNPy library can also enable future + integration into cloud-based services, IoT sensors, and system-on-chip + technologies, broadening its use and customization potential.

+
+ + Library features +

The CRNPy library integrates standard routines for processing CRNP + data, with features including:

+ + +

Utilization of core scientific Python libraries like Numpy + (Harris + et al., 2020), Pandas + (McKinney, + 2010), SciPy + (Virtanen + et al., 2020), and Matplotlib + (Hunter, + 2007), that are readily available within the Anaconda + environment. All CRNPy functions are compatible with Numpy arrays + or Pandas series for robust data science functionality.

+
+ +

Utility functions for obtaining site-specific lattice water, + geomagnetic cutoff rigidity + (Smart + & Shea, 2001), and neutron monitor references + (Klein + et al., 2009), which are required for pre-processing raw + neutron counts.

+
+ +

Flexible input data handling from delimited text files without + stringent naming conventions for column names, which keeps scripts + simpler, increases reproducibility, and minimizes human error. + This aspect also enables a more versatile, modular, and + customizable workflow + ([fig:workflow_stationary] + [fig:workflow_rover]) + that adapts to instrument outputs from different + manufacturers.

+
+ +

Detection of possible outliers based on user-provided lower and + upper boundaries, interquartile range, z-scores, and a scaled mean + absolute difference + (Iglewicz + & Hoaglin, 1993).

+
+ +

Corrections for atmospheric pressure as described by Zreda et + al. + (2012), + air humidity as described by Rosolem et al. + (2013), + and incoming neutron flux following the guidelines from Zreda et + al. + (2012); + Hawdon et al. + (2014); + McJannet & Desilets + (2023). + The article by Andreasen et al. + (2017) + provides an overall description of these correction methods + included in CRNPy + ([fig:output_stationary]a + and + [fig:output_stationary]b).

+
+ +

Corrections to account for additional hydrogen pools in above- + and below-ground plant biomass + (Baatz + et al., 2015; + Wahbi + et al., 2018).

+
+ +

Corrections to account for the impact of road soil moisture + conditions during roving surveys + (Schrön + et al., 2018).

+
+ +

Conversion of corrected counts into volumetric soil water + content following the approach suggested by Desilets et al. + (2010).

+
+ +

Determination of neutron count uncertainty following the method + detailed in Jakobi et al. + (2020) + (see + [fig:output_stationary]c).

+
+ +

Estimation of sensing depth by determining the volume that + accounts for 86% of the origin of the counted neutrons + (Franz + et al., 2012; + Schrön + et al., 2017).

+
+ +

An exponential filter operator + (Albergel + et al., 2008) to extend near-surface soil moisture + conditions to the rootzone + (Franz + et al., 2020; + Rossini + & Patrignani, 2021), see + [fig:output_stationary]d.

+
+ +

Utility functions for spatial filtering and basic interpolation + routines required to process CRNP rover surveys (see + [fig:output_rover])

+
+ +

Additional functions for temporal interpolation and filtering + required to process time series from stationary CRNP (see + [fig:output_stationary]).

+
+
+ +

Example workflow for stationary CRNP, dashed lines + represent optional + steps.

+ +
+ +

Example workflow for roving CRNP, dashed lines represent + optional + steps.

+ +
+ +

Outputs of a stationary device in each of the steps of + the workflow, A) Impact of each factor in the correction process. B) + Difference between raw and corrected counts. C) Resulting volumetric + water content time series with the propageted neutron count + uncertainity. D) Depth that accounts for the 86% of the observed + counts. +

+ +
+ +

Contour plot of the roving transect spatial output. Each + marker represents the estimated center of the + observation.

+ +
+
+ + Acknowledgements +

This work was supported by the USDA National Institute of Food and + Agriculture through the Agriculture and Food Research Initiative + Competitive Grant no. 2019-68012-29888 and through Multistate project + W4188. The authors declare no competing interests. This is + contribution no. 24-179-J of the Kansas Agricultural Experiment + Station.

+
+ + + + + + + ZredaMarek + ShuttleworthWJ + ZengXubin + ZweckChris + DesiletsD + FranzT + RosolemR + + COSMOS: The cosmic-ray soil moisture observing system + Hydrology and Earth System Sciences + Copernicus GmbH + 2012 + 16 + 11 + 10.5194/hess-16-4079-2012 + 4079 + 4099 + + + + + + RosolemR. + ShuttleworthW. J. + ZredaM. + FranzT. E. + ZengX. + KurcS. A. + + The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system + Journal of Hydrometeorology + American Meteorological Society + Boston MA, USA + 2013 + 14 + 5 + https://journals.ametsoc.org/view/journals/hydr/14/5/jhm-d-12-0120_1.xml + 10.1175/JHM-D-12-0120.1 + 1659 + 1671 + + + + + + AndreasenMie + JensenKarsten H + DesiletsDarin + FranzTrenton E + ZredaMarek + BogenaHeye R + LoomsMajken C + + Status and perspectives on the cosmic-ray neutron method for soil moisture estimation and other environmental science applications + Vadose Zone Journal + Wiley Online Library + 2017 + 16 + 8 + 10.2136/vzj2017.04.0086 + 1 + 11 + + + + + + KleinK. -L. + SteigiesC. + NMDB Team + + WWW.NMDB.EU: The real-time Neutron Monitor database + EGU general assembly conference abstracts + 200904 + 5633 + + + + + + + IglewiczBoris + HoaglinDavid C + + Volume 16: How to detect and handle outliers + Quality Press + 1993 + + + + + + DesiletsDarin + ZredaMarek + FerréTy PA + + Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays + Water Resources Research + Wiley Online Library + 2010 + 46 + 11 + 10.1029/2009WR008726 + + + + + + BaatzR + BogenaHR + Hendricks FranssenH-J + HuismanJA + MontzkaC + VereeckenH + + An empirical vegetation correction for soil water content quantification using cosmic ray probes + Water Resources Research + Wiley Online Library + 2015 + 51 + 4 + 10.1002/2014WR016443 + 2030 + 2046 + + + + + + WahbiAmmar + HengLee + DerconGerd + WahbiA + AveryW + + In situ destructive sampling + Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent + Springer International Publishing + 2018 + 10.1007/978-3-319-69539-6_2 + 5 + 9 + + + + + + SchrönM. + RosolemR. + KöhliM. + PiussiL. + SchröterI. + IwemaJ. + KöglerS. + OswaldS. E. + WollschlägerU. + SamaniegoL. + DietrichP. + ZachariasS. + + Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads + Water Resources Research + 2018 + 54 + 9 + https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017WR021719 + 10.1029/2017WR021719 + 6441 + 6459 + + + + + + SmartDF + SheaMA + + Geomagnetic cutoff rigidity computer program: Theory, software description and example + 2001 + + + + + + FranzTrenton E + ZredaM + FerreTPA + RosolemR + ZweckC + StillmanS + ZengX + ShuttleworthWJ + + Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources + Water Resources Research + Wiley Online Library + 2012 + 48 + 8 + 10.1029/2012WR011871 + + + + + + FranzTrenton E + WahbiAmmar + ZhangJie + VreugdenhilMariette + HengLee + DerconGerd + StraussPeter + BroccaLuca + WagnerWolfgang + + Practical data products from cosmic-ray neutron sensing for hydrological applications + Frontiers in Water + Frontiers Media SA + 2020 + 2 + 10.3389/frwa.2020.00009 + 9 + + + + + + + AlbergelClément + RüdigerChristoph + PellarinThierry + CalvetJ-C + FritzNoureddine + FroissardFrancis + SuquiaDavid + PetitpaAlain + PiguetBruno + MartinEric + + From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations + Hydrology and Earth System Sciences + Copernicus Publications Göttingen, Germany + 2008 + 12 + 6 + 10.5194/hess-12-1323-2008 + 1323 + 1337 + + + + + + RossiniPedro + PatrignaniAndres + + Predicting rootzone soil moisture from surface observations in cropland using an exponential filter + Soil Science Society of America Journal + Wiley Online Library + 2021 + 85 + 6 + 10.1002/saj2.20319 + 1894 + 1902 + + + + + + JakobiJannis + HuismanJohan A + SchrönMartin + FiedlerJustus + BrogiCosimo + VereeckenHarry + BogenaHeye R + + Error estimation for soil moisture measurements with cosmic ray neutron sensing and implications for rover surveys + Frontiers in water + Frontiers Media SA + 2020 + 2 + 10.3389/frwa.2020.00010 + 10 + + + + + + + SchrönM. + KöhliM. + ScheiffeleL. + IwemaJ. + BogenaH. R. + LvL. + MartiniE. + BaroniG. + RosolemR. + WeimarJ. + MaiJ. + CuntzM. + RebmannC. + OswaldS. E. + DietrichP. + SchmidtU. + ZachariasS. + + Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity + Hydrology and Earth System Sciences + 2017 + 21 + 10 + https://hess.copernicus.org/articles/21/5009/2017/ + 10.5194/hess-21-5009-2017 + 5009 + 5030 + + + + + + HawdonAaron + McJannetDavid + WallaceJim + + Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia + Water Resources Research + Wiley Online Library + 2014 + 50 + 6 + 10.1002/2013WR015138 + 5029 + 5043 + + + + + + McJannetDL + DesiletsD + + Incoming neutron flux corrections for cosmic-ray soil and snow sensors using the global neutron monitor network + Water Resources Research + Wiley Online Library + 2023 + 59 + 4 + 10.1029/2022WR033889 + e2022WR033889 + + + + + + + PowerDaniel + Rico-RamirezMiguel Angel + DesiletsSharon + DesiletsDarin + RosolemRafael + + Cosmic-ray neutron sensor PYthon tool (crspy 1.2. 1): An open-source tool for the processing of cosmic-ray neutron and soil moisture data + Geoscientific Model Development + Copernicus GmbH + 2021 + 14 + 12 + 10.5194/gmd-14-7287-2021 + 7287 + 7307 + + + + + + SchrönM. + + CORNish PASDy - COsmic-ray neutron flavored PASDy + https://git.ufz.de/CRNS/cornish_pasdy + + + + + + HarrisCharles R + MillmanK Jarrod + Van Der WaltStéfan J + GommersRalf + VirtanenPauli + CournapeauDavid + WieserEric + TaylorJulian + BergSebastian + SmithNathaniel J + others + + Array programming with NumPy + Nature + Nature Publishing Group UK London + 2020 + 585 + 7825 + 10.1038/s41586-020-2649-2 + 357 + 362 + + + + + + McKinney + + Data Structures for Statistical Computing in Python + Proceedings of the 9th Python in Science Conference + + Walt + Millman + + 2010 + 10.25080/Majora-92bf1922-00a + 56 + 61 + + + + + + VirtanenPauli + GommersRalf + OliphantTravis E + HaberlandMatt + ReddyTyler + CournapeauDavid + BurovskiEvgeni + PetersonPearu + WeckesserWarren + BrightJonathan + others + + SciPy 1.0: Fundamental algorithms for scientific computing in Python + Nature methods + Nature Publishing Group + 2020 + 17 + 3 + 10.1038/s41592-019-0686-2 + 261 + 272 + + + + + + HunterJ. D. + + Matplotlib: A 2D graphics environment + Computing in Science & Engineering + IEEE COMPUTER SOC + 2007 + 9 + 3 + 10.1109/MCSE.2007.55 + 90 + 95 + + + + +
diff --git a/joss.06025/paper.jats/rover.png b/joss.06025/paper.jats/rover.png new file mode 100644 index 0000000000..cfb17abcdd Binary files /dev/null and b/joss.06025/paper.jats/rover.png differ diff --git a/joss.06025/paper.jats/timeseries.png b/joss.06025/paper.jats/timeseries.png new file mode 100644 index 0000000000..09a2f00398 Binary files /dev/null and b/joss.06025/paper.jats/timeseries.png differ diff --git a/joss.06025/paper.jats/workflow_hydroinnova.png b/joss.06025/paper.jats/workflow_hydroinnova.png new file mode 100644 index 0000000000..ed8a0fae84 Binary files /dev/null and b/joss.06025/paper.jats/workflow_hydroinnova.png differ diff --git a/joss.06025/paper.jats/workflow_rdt.png b/joss.06025/paper.jats/workflow_rdt.png new file mode 100644 index 0000000000..2b6c3216b9 Binary files /dev/null and b/joss.06025/paper.jats/workflow_rdt.png differ