diff --git a/joss.06369/10.21105.joss.06369.crossref.xml b/joss.06369/10.21105.joss.06369.crossref.xml
new file mode 100644
index 0000000000..4f1dda77fb
--- /dev/null
+++ b/joss.06369/10.21105.joss.06369.crossref.xml
@@ -0,0 +1,1215 @@
+
+
+
+ 20240608130016-f44e4e40f575cc0d4cab64ecf4a29f1d45d7e4c5
+ 20240608130016
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 06
+ 2024
+
+
+ 9
+
+ 98
+
+
+
+ GRFolres: A code for modified gravity simulations in
+strong gravity
+
+
+
+ Llibert Aresté
+ Saló
+ https://orcid.org/0000-0002-3812-8523
+
+
+ Sam E.
+ Brady
+ https://orcid.org/0009-0000-5568-839X
+
+
+ Katy
+ Clough
+ https://orcid.org/0000-0001-8841-1522
+
+
+ Daniela
+ Doneva
+ https://orcid.org/0000-0001-6519-000X
+
+
+ Tamara
+ Evstafyeva
+ https://orcid.org/0000-0002-2818-701X
+
+
+ Pau
+ Figueras
+ https://orcid.org/0000-0001-6438-315X
+
+
+ Tiago
+ França
+ https://orcid.org/0000-0002-1718-151X
+
+
+ Lorenzo
+ Rossi
+ https://orcid.org/0000-0001-9653-7088
+
+
+ Shunhui
+ Yao
+ https://orcid.org/0009-0003-8207-0335
+
+
+
+ 06
+ 08
+ 2024
+
+
+ 6369
+
+
+ 10.21105/joss.06369
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.11500210
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6369
+
+
+
+ 10.21105/joss.06369
+ https://joss.theoj.org/papers/10.21105/joss.06369
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06369.pdf
+
+
+
+
+
+ Evolution of Einstein-scalar-Gauss-Bonnet
+gravity using a modified harmonic formulation
+ East
+ Phys. Rev. D
+ 4
+ 103
+ 10.1103/PhysRevD.103.044040
+ 2021
+ East, W. E., & Ripley, J. L.
+(2021). Evolution of Einstein-scalar-Gauss-Bonnet gravity using a
+modified harmonic formulation. Phys. Rev. D, 103(4), 044040.
+https://doi.org/10.1103/PhysRevD.103.044040
+
+
+ Dynamics of Spontaneous Black Hole
+Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet
+Gravity
+ East
+ Phys. Rev. Lett.
+ 10
+ 127
+ 10.1103/PhysRevLett.127.101102
+ 2021
+ East, W. E., & Ripley, J. L.
+(2021). Dynamics of Spontaneous Black Hole Scalarization and Mergers in
+Einstein-Scalar-Gauss-Bonnet Gravity. Phys. Rev. Lett., 127(10), 101102.
+https://doi.org/10.1103/PhysRevLett.127.101102
+
+
+ Well-Posed Formulation of Scalar-Tensor
+Effective Field Theory
+ Kovács
+ Phys. Rev. Lett.
+ 22
+ 124
+ 10.1103/PhysRevLett.124.221101
+ 2020
+ Kovács, Á. D., & Reall, H. S.
+(2020). Well-Posed Formulation of Scalar-Tensor Effective Field Theory.
+Phys. Rev. Lett., 124(22), 221101.
+https://doi.org/10.1103/PhysRevLett.124.221101
+
+
+ Well-posed formulation of Lovelock and
+Horndeski theories
+ Kovács
+ Phys. Rev. D
+ 12
+ 101
+ 10.1103/PhysRevD.101.124003
+ 2020
+ Kovács, Á. D., & Reall, H. S.
+(2020). Well-posed formulation of Lovelock and Horndeski theories. Phys.
+Rev. D, 101(12), 124003.
+https://doi.org/10.1103/PhysRevD.101.124003
+
+
+ Gravitational Collapse in Cubic Horndeski
+Theories
+ Figueras
+ Class. Quant. Grav.
+ 22
+ 37
+ 10.1088/1361-6382/abb693
+ 2020
+ Figueras, P., & França, T.
+(2020). Gravitational Collapse in Cubic Horndeski Theories. Class.
+Quant. Grav., 37(22), 225009.
+https://doi.org/10.1088/1361-6382/abb693
+
+
+ Black hole binaries in cubic Horndeski
+theories
+ Figueras
+ Phys. Rev. D
+ 12
+ 105
+ 10.1103/PhysRevD.105.124004
+ 2022
+ Figueras, P., & França, T.
+(2022). Black hole binaries in cubic Horndeski theories. Phys. Rev. D,
+105(12), 124004.
+https://doi.org/10.1103/PhysRevD.105.124004
+
+
+ GRChombo : Numerical Relativity with Adaptive
+Mesh Refinement
+ Clough
+ Class. Quant. Grav.
+ 24
+ 32
+ 10.1088/0264-9381/32/24/245011
+ 2015
+ Clough, K., Figueras, P., Finkel, H.,
+Kunesch, M., Lim, E. A., & Tunyasuvunakool, S. (2015). GRChombo :
+Numerical Relativity with Adaptive Mesh Refinement. Class. Quant. Grav.,
+32(24), 245011.
+https://doi.org/10.1088/0264-9381/32/24/245011
+
+
+ General Relativistic Collapse to Black Holes
+and Gravitational Waves from Black Holes
+ Nakamura
+ Prog. Theor. Phys. Suppl.
+ 90
+ 10.1143/PTPS.90.1
+ 1987
+ Nakamura, T., Oohara, K., &
+Kojima, Y. (1987). General Relativistic Collapse to Black Holes and
+Gravitational Waves from Black Holes. Prog. Theor. Phys. Suppl., 90,
+1–218. https://doi.org/10.1143/PTPS.90.1
+
+
+ Evolution of three-dimensional gravitational
+waves: Harmonic slicing case
+ Shibata
+ Phys. Rev. D
+ 52
+ 10.1103/PhysRevD.52.5428
+ 1995
+ Shibata, M., & Nakamura, T.
+(1995). Evolution of three-dimensional gravitational waves: Harmonic
+slicing case. Phys. Rev. D, 52, 5428–5444.
+https://doi.org/10.1103/PhysRevD.52.5428
+
+
+ On the numerical integration of Einstein’s
+field equations
+ Baumgarte
+ Phys. Rev. D
+ 59
+ 10.1103/PhysRevD.59.024007
+ 1998
+ Baumgarte, T. W., & Shapiro, S.
+L. (1998). On the numerical integration of Einstein’s field equations.
+Phys. Rev. D, 59, 024007.
+https://doi.org/10.1103/PhysRevD.59.024007
+
+
+ General covariant evolution formalism for
+numerical relativity
+ Bona
+ Phys. Rev. D
+ 67
+ 10.1103/PhysRevD.67.104005
+ 2003
+ Bona, C., Ledvinka, T., Palenzuela,
+C., & Zacek, M. (2003). General covariant evolution formalism for
+numerical relativity. Phys. Rev. D, 67, 104005.
+https://doi.org/10.1103/PhysRevD.67.104005
+
+
+ Constraint violation in free evolution
+schemes: Comparing BSSNOK with a conformal decomposition of
+Z4
+ Bernuzzi
+ Phys. Rev. D
+ 81
+ 10.1103/PhysRevD.81.084003
+ 2010
+ Bernuzzi, S., & Hilditch, D.
+(2010). Constraint violation in free evolution schemes: Comparing BSSNOK
+with a conformal decomposition of Z4. Phys. Rev. D, 81, 084003.
+https://doi.org/10.1103/PhysRevD.81.084003
+
+
+ Conformal and covariant formulation of the Z4
+system with constraint-violation damping
+ Alic
+ Phys. Rev. D
+ 85
+ 10.1103/PhysRevD.85.064040
+ 2012
+ Alic, D., Bona-Casas, C., Bona, C.,
+Rezzolla, L., & Palenzuela, C. (2012). Conformal and covariant
+formulation of the Z4 system with constraint-violation damping. Phys.
+Rev. D, 85, 064040.
+https://doi.org/10.1103/PhysRevD.85.064040
+
+
+ Constraint damping of the conformal and
+covariant formulation of the Z4 system in simulations of binary neutron
+stars
+ Alic
+ Phys. Rev. D
+ 6
+ 88
+ 10.1103/PhysRevD.88.064049
+ 2013
+ Alic, D., Kastaun, W., &
+Rezzolla, L. (2013). Constraint damping of the conformal and covariant
+formulation of the Z4 system in simulations of binary neutron stars.
+Phys. Rev. D, 88(6), 064049.
+https://doi.org/10.1103/PhysRevD.88.064049
+
+
+ Accurate evolutions of orbiting black-hole
+binaries without excision
+ Campanelli
+ Phys. Rev. Lett.
+ 96
+ 10.1103/PhysRevLett.96.111101
+ 2006
+ Campanelli, M., Lousto, C. O.,
+Marronetti, P., & Zlochower, Y. (2006). Accurate evolutions of
+orbiting black-hole binaries without excision. Phys. Rev. Lett., 96,
+111101.
+https://doi.org/10.1103/PhysRevLett.96.111101
+
+
+ Gravitational wave extraction from an
+inspiraling configuration of merging black holes
+ Baker
+ Phys. Rev. Lett.
+ 96
+ 10.1103/PhysRevLett.96.111102
+ 2006
+ Baker, J. G., Centrella, J., Choi,
+D.-I., Koppitz, M., & Meter, J. van. (2006). Gravitational wave
+extraction from an inspiraling configuration of merging black holes.
+Phys. Rev. Lett., 96, 111102.
+https://doi.org/10.1103/PhysRevLett.96.111102
+
+
+ New horizons for fundamental physics with
+LISA
+ Arun
+ Living Rev. Rel.
+ 1
+ 25
+ 10.1007/s41114-022-00036-9
+ 2022
+ Arun, K. G., & others. (2022).
+New horizons for fundamental physics with LISA. Living Rev. Rel., 25(1),
+4. https://doi.org/10.1007/s41114-022-00036-9
+
+
+ Investigating the relation between
+gravitational wave tests of general relativity
+ Johnson-McDaniel
+ Phys. Rev. D
+ 4
+ 105
+ 10.1103/PhysRevD.105.044020
+ 2022
+ Johnson-McDaniel, N. K., Ghosh, A.,
+Ghonge, S., Saleem, M., Krishnendu, N. V., & Clark, J. A. (2022).
+Investigating the relation between gravitational wave tests of general
+relativity. Phys. Rev. D, 105(4), 044020.
+https://doi.org/10.1103/PhysRevD.105.044020
+
+
+ Gravitational wave inference on a
+numerical-relativity simulation of a black hole merger beyond general
+relativity
+ Okounkova
+ Phys. Rev. D
+ 2
+ 107
+ 10.1103/PhysRevD.107.024046
+ 2023
+ Okounkova, M., Isi, M.,
+Chatziioannou, K., & Farr, W. M. (2023). Gravitational wave
+inference on a numerical-relativity simulation of a black hole merger
+beyond general relativity. Phys. Rev. D, 107(2), 024046.
+https://doi.org/10.1103/PhysRevD.107.024046
+
+
+ Testing General Relativity with Gravitational
+Waves: An Overview
+ Krishnendu
+ Universe
+ 12
+ 7
+ 10.3390/universe7120497
+ 2021
+ Krishnendu, N. V., & Ohme, F.
+(2021). Testing General Relativity with Gravitational Waves: An
+Overview. Universe, 7(12), 497.
+https://doi.org/10.3390/universe7120497
+
+
+ Tests of General Relativity with
+GWTC-3
+ Abbott
+ 10.48550/arXiv.2112.06861
+ 2021
+ Abbott, R., & others. (2021).
+Tests of General Relativity with GWTC-3.
+https://doi.org/10.48550/arXiv.2112.06861
+
+
+ Post-Newtonian gravitational and scalar waves
+in scalar-GaussBonnet gravity
+ Shiralilou
+ Class. Quant. Grav.
+ 3
+ 39
+ 10.1088/1361-6382/ac4196
+ 2022
+ Shiralilou, B., Hinderer, T.,
+Nissanke, S. M., Ortiz, N., & Witek, H. (2022). Post-Newtonian
+gravitational and scalar waves in scalar-GaussBonnet gravity. Class.
+Quant. Grav., 39(3), 035002.
+https://doi.org/10.1088/1361-6382/ac4196
+
+
+ Numerical relativity simulation of GW150914
+in Einstein dilaton Gauss-Bonnet gravity
+ Okounkova
+ Phys. Rev. D
+ 8
+ 102
+ 10.1103/PhysRevD.102.084046
+ 2020
+ Okounkova, M. (2020). Numerical
+relativity simulation of GW150914 in Einstein dilaton Gauss-Bonnet
+gravity. Phys. Rev. D, 102(8), 084046.
+https://doi.org/10.1103/PhysRevD.102.084046
+
+
+ Numerical relativity simulation of GW150914
+beyond general relativity
+ Okounkova
+ Phys. Rev. D
+ 10
+ 101
+ 10.1103/PhysRevD.101.104016
+ 2020
+ Okounkova, M., Stein, L. C., Moxon,
+J., Scheel, M. A., & Teukolsky, S. A. (2020). Numerical relativity
+simulation of GW150914 beyond general relativity. Phys. Rev. D, 101(10),
+104016.
+https://doi.org/10.1103/PhysRevD.101.104016
+
+
+ Numerical binary black hole collisions in
+dynamical Chern-Simons gravity
+ Okounkova
+ Phys. Rev. D
+ 10
+ 100
+ 10.1103/PhysRevD.100.104026
+ 2019
+ Okounkova, M., Stein, L. C., Scheel,
+M. A., & Teukolsky, S. A. (2019). Numerical binary black hole
+collisions in dynamical Chern-Simons gravity. Phys. Rev. D, 100(10),
+104026.
+https://doi.org/10.1103/PhysRevD.100.104026
+
+
+ Spin-induced dynamical scalarization,
+descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a
+black hole coalescence
+ Elley
+ Phys. Rev. D
+ 4
+ 106
+ 10.1103/PhysRevD.106.044018
+ 2022
+ Elley, M., Silva, H. O., Witek, H.,
+& Yunes, N. (2022). Spin-induced dynamical scalarization,
+descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a
+black hole coalescence. Phys. Rev. D, 106(4), 044018.
+https://doi.org/10.1103/PhysRevD.106.044018
+
+
+ Dynamical descalarization with a jump during
+a black hole merger
+ Doneva
+ Phys. Rev. D
+ 6
+ 106
+ 10.1103/PhysRevD.106.L061502
+ 2022
+ Doneva, D. D., Vañó-Viñuales, A.,
+& Yazadjiev, S. S. (2022). Dynamical descalarization with a jump
+during a black hole merger. Phys. Rev. D, 106(6), L061502.
+https://doi.org/10.1103/PhysRevD.106.L061502
+
+
+ Improved gravitational-wave constraints on
+higher-order curvature theories of gravity
+ Perkins
+ Phys. Rev. D
+ 2
+ 104
+ 10.1103/PhysRevD.104.024060
+ 2021
+ Perkins, S. E., Nair, R., Silva, H.
+O., & Yunes, N. (2021). Improved gravitational-wave constraints on
+higher-order curvature theories of gravity. Phys. Rev. D, 104(2),
+024060.
+https://doi.org/10.1103/PhysRevD.104.024060
+
+
+ Probing Einstein-dilaton Gauss-Bonnet Gravity
+with the inspiral and ringdown of gravitational waves
+ Carson
+ Phys. Rev. D
+ 10
+ 101
+ 10.1103/PhysRevD.101.104030
+ 2020
+ Carson, Z., & Yagi, K. (2020).
+Probing Einstein-dilaton Gauss-Bonnet Gravity with the inspiral and
+ringdown of gravitational waves. Phys. Rev. D, 101(10), 104030.
+https://doi.org/10.1103/PhysRevD.101.104030
+
+
+ Probing string-inspired gravity with the
+inspiralmergerringdown consistency tests of gravitational
+waves
+ Carson
+ Class. Quant. Grav.
+ 21
+ 37
+ 10.1088/1361-6382/aba221
+ 2020
+ Carson, Z., & Yagi, K. (2020).
+Probing string-inspired gravity with the inspiralmergerringdown
+consistency tests of gravitational waves. Class. Quant. Grav., 37(21),
+215007. https://doi.org/10.1088/1361-6382/aba221
+
+
+ Black holes and binary mergers in scalar
+Gauss-Bonnet gravity: scalar field dynamics
+ Witek
+ Phys. Rev. D
+ 6
+ 99
+ 10.1103/PhysRevD.99.064035
+ 2019
+ Witek, H., Gualtieri, L., Pani, P.,
+& Sotiriou, T. P. (2019). Black holes and binary mergers in scalar
+Gauss-Bonnet gravity: scalar field dynamics. Phys. Rev. D, 99(6),
+064035.
+https://doi.org/10.1103/PhysRevD.99.064035
+
+
+ Black holes, gravitational waves and
+fundamental physics: a roadmap
+ Barack
+ Class. Quant. Grav.
+ 14
+ 36
+ 10.1088/1361-6382/ab0587
+ 2019
+ Barack, L., & others. (2019).
+Black holes, gravitational waves and fundamental physics: a roadmap.
+Class. Quant. Grav., 36(14), 143001.
+https://doi.org/10.1088/1361-6382/ab0587
+
+
+ Dynamical Descalarization in Binary Black
+Hole Mergers
+ Silva
+ Phys. Rev. Lett.
+ 3
+ 127
+ 10.1103/PhysRevLett.127.031101
+ 2021
+ Silva, H. O., Witek, H., Elley, M.,
+& Yunes, N. (2021). Dynamical Descalarization in Binary Black Hole
+Mergers. Phys. Rev. Lett., 127(3), 031101.
+https://doi.org/10.1103/PhysRevLett.127.031101
+
+
+ Bounding alternative theories of gravity with
+multiband GW observations
+ Gnocchi
+ Phys. Rev. D
+ 6
+ 100
+ 10.1103/PhysRevD.100.064024
+ 2019
+ Gnocchi, G., Maselli, A.,
+Abdelsalhin, T., Giacobbo, N., & Mapelli, M. (2019). Bounding
+alternative theories of gravity with multiband GW observations. Phys.
+Rev. D, 100(6), 064024.
+https://doi.org/10.1103/PhysRevD.100.064024
+
+
+ Second-order scalar-tensor field equations in
+a four-dimensional space
+ Horndeski
+ Int. J. Theor. Phys.
+ 10
+ 10.1007/BF01807638
+ 1974
+ Horndeski, G. W. (1974). Second-order
+scalar-tensor field equations in a four-dimensional space. Int. J.
+Theor. Phys., 10, 363–384.
+https://doi.org/10.1007/BF01807638
+
+
+ Binary neutron star mergers in
+Einstein-scalar-Gauss-Bonnet gravity
+ East
+ Phys. Rev. D
+ 10
+ 106
+ 10.1103/PhysRevD.106.104055
+ 2022
+ East, W. E., & Pretorius, F.
+(2022). Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet
+gravity. Phys. Rev. D, 106(10), 104055.
+https://doi.org/10.1103/PhysRevD.106.104055
+
+
+ Nonlinear studies of binary black hole
+mergers in Einstein-scalar-Gauss-Bonnet gravity
+ Corman
+ Phys. Rev. D
+ 2
+ 107
+ 10.1103/PhysRevD.107.024014
+ 2023
+ Corman, M., Ripley, J. L., &
+East, W. E. (2023). Nonlinear studies of binary black hole mergers in
+Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D, 107(2), 024014.
+https://doi.org/10.1103/PhysRevD.107.024014
+
+
+ Prospects for Fundamental Physics with
+LISA
+ Barausse
+ Gen. Rel. Grav.
+ 8
+ 52
+ 10.1007/s10714-020-02691-1
+ 2020
+ Barausse, E., & others. (2020).
+Prospects for Fundamental Physics with LISA. Gen. Rel. Grav., 52(8), 81.
+https://doi.org/10.1007/s10714-020-02691-1
+
+
+ Probing Fundamental Physics with
+Gravitational Waves: The Next Generation
+ Perkins
+ Phys. Rev. D
+ 4
+ 103
+ 10.1103/PhysRevD.103.044024
+ 2021
+ Perkins, S. E., Yunes, N., &
+Berti, E. (2021). Probing Fundamental Physics with Gravitational Waves:
+The Next Generation. Phys. Rev. D, 103(4), 044024.
+https://doi.org/10.1103/PhysRevD.103.044024
+
+
+ Linking Tests of Gravity On All Scales: from
+the Strong-Field Regime to Cosmology
+ Baker
+ Astrophys. J.
+ 802
+ 10.1088/0004-637X/802/1/63
+ 2015
+ Baker, T., Psaltis, D., &
+Skordis, C. (2015). Linking Tests of Gravity On All Scales: from the
+Strong-Field Regime to Cosmology. Astrophys. J., 802, 63.
+https://doi.org/10.1088/0004-637X/802/1/63
+
+
+ Dynamical scalarization during neutron star
+mergers in scalar-Gauss-Bonnet theory
+ Kuan
+ Phys. Rev. D
+ 6
+ 108
+ 10.1103/PhysRevD.108.063033
+ 2023
+ Kuan, H.-J., Lam, A. T.-L., Doneva,
+D. D., Yazadjiev, S. S., Shibata, M., & Kiuchi, K. (2023). Dynamical
+scalarization during neutron star mergers in scalar-Gauss-Bonnet theory.
+Phys. Rev. D, 108(6), 063033.
+https://doi.org/10.1103/PhysRevD.108.063033
+
+
+ Spontaneous scalarization
+ Doneva
+ Rev. Mod. Phys.
+ 1
+ 96
+ 10.1103/RevModPhys.96.015004
+ 2024
+ Doneva, D. D., Ramazanoğlu, F. M.,
+Silva, H. O., Sotiriou, T. P., & Yazadjiev, S. S. (2024).
+Spontaneous scalarization. Rev. Mod. Phys., 96(1), 015004.
+https://doi.org/10.1103/RevModPhys.96.015004
+
+
+ Black holes in massive dynamical Chern-Simons
+gravity: Scalar hair and quasibound states at decoupling
+ Richards
+ Phys. Rev. D
+ 4
+ 108
+ 10.1103/PhysRevD.108.044078
+ 2023
+ Richards, C., Dima, A., & Witek,
+H. (2023). Black holes in massive dynamical Chern-Simons gravity: Scalar
+hair and quasibound states at decoupling. Phys. Rev. D, 108(4), 044078.
+https://doi.org/10.1103/PhysRevD.108.044078
+
+
+ How do axisymmetric black holes grow monopole
+and dipole hair?
+ R.
+ Phys. Rev. D
+ 10
+ 107
+ 10.1103/PhysRevD.107.104047
+ 2023
+ R., A. H. K., Most, E. R., Noronha,
+J., Witek, H., & Yunes, N. (2023). How do axisymmetric black holes
+grow monopole and dipole hair? Phys. Rev. D, 107(10), 104047.
+https://doi.org/10.1103/PhysRevD.107.104047
+
+
+ Tests of general relativity in the nonlinear
+regime: A parametrized plunge-merger-ringdown gravitational waveform
+model
+ Maggio
+ Phys. Rev. D
+ 2
+ 108
+ 10.1103/PhysRevD.108.024043
+ 2023
+ Maggio, E., Silva, H. O., Buonanno,
+A., & Ghosh, A. (2023). Tests of general relativity in the nonlinear
+regime: A parametrized plunge-merger-ringdown gravitational waveform
+model. Phys. Rev. D, 108(2), 024043.
+https://doi.org/10.1103/PhysRevD.108.024043
+
+
+ Gravitational Wave Tests of General
+Relativity with the Parameterized Post-Einsteinian
+Framework
+ Cornish
+ Phys. Rev. D
+ 84
+ 10.1103/PhysRevD.84.062003
+ 2011
+ Cornish, N., Sampson, L., Yunes, N.,
+& Pretorius, F. (2011). Gravitational Wave Tests of General
+Relativity with the Parameterized Post-Einsteinian Framework. Phys. Rev.
+D, 84, 062003.
+https://doi.org/10.1103/PhysRevD.84.062003
+
+
+ Parametrized and inspiral-merger-ringdown
+consistency tests of gravity with multiband gravitational wave
+observations
+ Carson
+ Phys. Rev. D
+ 4
+ 101
+ 10.1103/PhysRevD.101.044047
+ 2020
+ Carson, Z., & Yagi, K. (2020).
+Parametrized and inspiral-merger-ringdown consistency tests of gravity
+with multiband gravitational wave observations. Phys. Rev. D, 101(4),
+044047.
+https://doi.org/10.1103/PhysRevD.101.044047
+
+
+ Where and why does
+Einstein-scalar-Gauss-Bonnet theory break down?
+ R
+ Phys. Rev. D
+ 4
+ 107
+ 10.1103/PhysRevD.107.044044
+ 2023
+ R, A. H. K., Ripley, J. L., &
+Yunes, N. (2023). Where and why does Einstein-scalar-Gauss-Bonnet theory
+break down? Phys. Rev. D, 107(4), 044044.
+https://doi.org/10.1103/PhysRevD.107.044044
+
+
+ Solving the initial conditions problem for
+modified gravity theories
+ Brady
+ Phys. Rev. D
+ 10
+ 108
+ 10.1103/PhysRevD.108.104022
+ 2023
+ Brady, S. E., Aresté Saló, L.,
+Clough, K., Figueras, P., & S., A. P. (2023). Solving the initial
+conditions problem for modified gravity theories. Phys. Rev. D, 108(10),
+104022.
+https://doi.org/10.1103/PhysRevD.108.104022
+
+
+ CTTK: a new method to solve the initial data
+constraints in numerical relativity
+ Aurrekoetxea
+ Class. Quant. Grav.
+ 7
+ 40
+ 10.1088/1361-6382/acb883
+ 2023
+ Aurrekoetxea, J. C., Clough, K.,
+& Lim, E. A. (2023). CTTK: a new method to solve the initial data
+constraints in numerical relativity. Class. Quant. Grav., 40(7), 075003.
+https://doi.org/10.1088/1361-6382/acb883
+
+
+ Testing the limits of scalar-Gauss-Bonnet
+gravity through nonlinear evolutions of spin-induced
+scalarization
+ Doneva
+ Phys. Rev. D
+ 8
+ 108
+ 10.1103/PhysRevD.108.084017
+ 2023
+ Doneva, D. D., Aresté Saló, L.,
+Clough, K., Figueras, P., & Yazadjiev, S. S. (2023). Testing the
+limits of scalar-Gauss-Bonnet gravity through nonlinear evolutions of
+spin-induced scalarization. Phys. Rev. D, 108(8), 084017.
+https://doi.org/10.1103/PhysRevD.108.084017
+
+
+ Puncture gauge formulation for
+Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories
+in d+1 spacetime dimensions
+ Aresté Saló
+ Phys. Rev. D
+ 8
+ 108
+ 10.1103/PhysRevD.108.084018
+ 2023
+ Aresté Saló, L., Clough, K., &
+Figueras, P. (2023). Puncture gauge formulation for
+Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories
+in d+1 spacetime dimensions. Phys. Rev. D, 108(8), 084018.
+https://doi.org/10.1103/PhysRevD.108.084018
+
+
+ Well-Posedness of the Four-Derivative
+Scalar-Tensor Theory of Gravity in Singularity Avoiding
+Coordinates
+ Aresté Saló
+ Phys. Rev. Lett.
+ 26
+ 129
+ 10.1103/PhysRevLett.129.261104
+ 2022
+ Aresté Saló, L., Clough, K., &
+Figueras, P. (2022). Well-Posedness of the Four-Derivative Scalar-Tensor
+Theory of Gravity in Singularity Avoiding Coordinates. Phys. Rev. Lett.,
+129(26), 261104.
+https://doi.org/10.1103/PhysRevLett.129.261104
+
+
+ Evidence for violations of Weak Cosmic
+Censorship in black hole collisions in higher dimensions
+ Andrade
+ JHEP
+ 03
+ 10.1007/JHEP03(2022)111
+ 2022
+ Andrade, T., Figueras, P., &
+Sperhake, U. (2022). Evidence for violations of Weak Cosmic Censorship
+in black hole collisions in higher dimensions. JHEP, 03, 111.
+https://doi.org/10.1007/JHEP03(2022)111
+
+
+ SENR/NRPy+: Numerical Relativity in Singular
+Curvilinear Coordinate Systems
+ Ruchlin
+ Phys. Rev. D
+ 6
+ 97
+ 10.1103/PhysRevD.97.064036
+ 2018
+ Ruchlin, I., Etienne, Z. B., &
+Baumgarte, T. W. (2018). SENR/NRPy+: Numerical Relativity in Singular
+Curvilinear Coordinate Systems. Phys. Rev. D, 97(6), 064036.
+https://doi.org/10.1103/PhysRevD.97.064036
+
+
+ Chombo software package for AMR applications
+- design document
+ Adams
+ 2015
+ Adams, M., & others. (2015).
+Chombo software package for AMR applications - design
+document.
+
+
+ Hydrodynamics in full general relativity with
+conservative AMR
+ East
+ Phys. Rev. D
+ 85
+ 10.1103/PhysRevD.85.124010
+ 2012
+ East, W. E., Pretorius, F., &
+Stephens, B. C. (2012). Hydrodynamics in full general relativity with
+conservative AMR. Phys. Rev. D, 85, 124010.
+https://doi.org/10.1103/PhysRevD.85.124010
+
+
+ The Einstein Toolkit: A Community
+Computational Infrastructure for Relativistic
+Astrophysics
+ Loffler
+ Class. Quant. Grav.
+ 29
+ 10.1088/0264-9381/29/11/115001
+ 2012
+ Loffler, F., & others. (2012).
+The Einstein Toolkit: A Community Computational Infrastructure for
+Relativistic Astrophysics. Class. Quant. Grav., 29, 115001.
+https://doi.org/10.1088/0264-9381/29/11/115001
+
+
+ Adaptive Mesh Refinement and Relativistic
+MHD
+ Neilsen
+ 11th Marcel Grossmann Meeting on General
+Relativity
+ 10.1142/9789812834300_0200
+ 2007
+ Neilsen, D., Hirschmann, E. W.,
+Anderson, M., & Liebling, S. L. (2007). Adaptive Mesh Refinement and
+Relativistic MHD. 11th Marcel Grossmann Meeting on General Relativity,
+1579–1581.
+https://doi.org/10.1142/9789812834300_0200
+
+
+ Kranc: A Mathematica application to generate
+numerical codes for tensorial evolution equations
+ Husa
+ Comput. Phys. Commun.
+ 174
+ 10.1016/j.cpc.2006.02.002
+ 2006
+ Husa, S., Hinder, I., & Lechner,
+C. (2006). Kranc: A Mathematica application to generate numerical codes
+for tensorial evolution equations. Comput. Phys. Commun., 174, 983–1004.
+https://doi.org/10.1016/j.cpc.2006.02.002
+
+
+ Evolutions in 3-D numerical relativity using
+fixed mesh refinement
+ Schnetter
+ Class. Quant. Grav.
+ 21
+ 10.1088/0264-9381/21/6/014
+ 2004
+ Schnetter, E., Hawley, S. H., &
+Hawke, I. (2004). Evolutions in 3-D numerical relativity using fixed
+mesh refinement. Class. Quant. Grav., 21, 1465–1488.
+https://doi.org/10.1088/0264-9381/21/6/014
+
+
+ A Multidomain spectral method for solving
+elliptic equations
+ Pfeiffer
+ Comput. Phys. Commun.
+ 152
+ 10.1016/S0010-4655(02)00847-0
+ 2003
+ Pfeiffer, H. P., Kidder, L. E.,
+Scheel, M. A., & Teukolsky, S. A. (2003). A Multidomain spectral
+method for solving elliptic equations. Comput. Phys. Commun., 152,
+253–273.
+https://doi.org/10.1016/S0010-4655(02)00847-0
+
+
+ Adaptive Mesh Refinement for Hyperbolic
+Partial Differential Equations
+ Berger
+ J. Comput. Phys.
+ 53
+ 10.1016/0021-9991(84)90073-1
+ 1984
+ Berger, M. J., & Oliger, J.
+(1984). Adaptive Mesh Refinement for Hyperbolic Partial Differential
+Equations. J. Comput. Phys., 53, 484.
+https://doi.org/10.1016/0021-9991(84)90073-1
+
+
+ An algorithm for point clustering and grid
+generation
+ Berger
+ IEEE Transactions on Systems, Man, and
+Cybernetics
+ 5
+ 21
+ 10.1109/21.120081
+ 1991
+ Berger, M., & Rigoutsos, I.
+(1991). An algorithm for point clustering and grid generation. IEEE
+Transactions on Systems, Man, and Cybernetics, 21(5), 1278–1286.
+https://doi.org/10.1109/21.120081
+
+
+ Dynamics of a \mathbb Z_2 symmetric EdGB
+gravity in spherical symmetry
+ Ripley
+ Class. Quant. Grav.
+ 15
+ 37
+ 10.1088/1361-6382/ab9bbb
+ 2020
+ Ripley, J. L., & Pretorius, F.
+(2020). Dynamics of a \mathbb Z_2 symmetric EdGB gravity in spherical
+symmetry. Class. Quant. Grav., 37(15), 155003.
+https://doi.org/10.1088/1361-6382/ab9bbb
+
+
+ Gravitational collapse in Einstein
+dilaton-GaussBonnet gravity
+ Ripley
+ Class. Quant. Grav.
+ 13
+ 36
+ 10.1088/1361-6382/ab2416
+ 2019
+ Ripley, J. L., & Pretorius, F.
+(2019). Gravitational collapse in Einstein dilaton-GaussBonnet gravity.
+Class. Quant. Grav., 36(13), 134001.
+https://doi.org/10.1088/1361-6382/ab2416
+
+
+ Hyperbolicity in Spherical Gravitational
+Collapse in a Horndeski Theory
+ Ripley
+ Phys. Rev. D
+ 8
+ 99
+ 10.1103/PhysRevD.99.084014
+ 2019
+ Ripley, J. L., & Pretorius, F.
+(2019). Hyperbolicity in Spherical Gravitational Collapse in a Horndeski
+Theory. Phys. Rev. D, 99(8), 084014.
+https://doi.org/10.1103/PhysRevD.99.084014
+
+
+ Scalarized Black Hole dynamics in Einstein
+dilaton Gauss-Bonnet Gravity
+ Ripley
+ Phys. Rev. D
+ 4
+ 101
+ 10.1103/PhysRevD.101.044015
+ 2020
+ Ripley, J. L., & Pretorius, F.
+(2020). Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet
+Gravity. Phys. Rev. D, 101(4), 044015.
+https://doi.org/10.1103/PhysRevD.101.044015
+
+
+ Measuring the ringdown scalar polarization of
+gravitational waves in Einstein-scalar-Gauss-Bonnet
+gravity
+ Evstafyeva
+ Phys. Rev. D
+ 12
+ 107
+ 10.1103/PhysRevD.107.124010
+ 2023
+ Evstafyeva, T., Agathos, M., &
+Ripley, J. L. (2023). Measuring the ringdown scalar polarization of
+gravitational waves in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev.
+D, 107(12), 124010.
+https://doi.org/10.1103/PhysRevD.107.124010
+
+
+ Simulating coalescing compact binaries by a
+new code SACRA
+ Yamamoto
+ Phys. Rev. D
+ 78
+ 10.1103/PhysRevD.78.064054
+ 2008
+ Yamamoto, T., Shibata, M., &
+Taniguchi, K. (2008). Simulating coalescing compact binaries by a new
+code SACRA. Phys. Rev. D, 78, 064054.
+https://doi.org/10.1103/PhysRevD.78.064054
+
+
+ Sub-radian-accuracy gravitational waveforms
+of coalescing binary neutron stars in numerical
+relativity
+ Kiuchi
+ Phys. Rev. D
+ 8
+ 96
+ 10.1103/PhysRevD.96.084060
+ 2017
+ Kiuchi, K., Kawaguchi, K., Kyutoku,
+K., Sekiguchi, Y., Shibata, M., & Taniguchi, K. (2017).
+Sub-radian-accuracy gravitational waveforms of coalescing binary neutron
+stars in numerical relativity. Phys. Rev. D, 96(8), 084060.
+https://doi.org/10.1103/PhysRevD.96.084060
+
+
+ A New Open-Source Code for
+Spherically-Symmetric Stellar Collapse to Neutron Stars and Black
+Holes
+ O’Connor
+ Class. Quant. Grav.
+ 27
+ 10.1088/0264-9381/27/11/114103
+ 2010
+ O’Connor, E., & Ott, C. D.
+(2010). A New Open-Source Code for Spherically-Symmetric Stellar
+Collapse to Neutron Stars and Black Holes. Class. Quant. Grav., 27,
+114103.
+https://doi.org/10.1088/0264-9381/27/11/114103
+
+
+ Numerical simulations of stellar collapse in
+scalar-tensor theories of gravity
+ Gerosa
+ Class. Quant. Grav.
+ 13
+ 33
+ 10.1088/0264-9381/33/13/135002
+ 2016
+ Gerosa, D., Sperhake, U., & Ott,
+C. D. (2016). Numerical simulations of stellar collapse in scalar-tensor
+theories of gravity. Class. Quant. Grav., 33(13), 135002.
+https://doi.org/10.1088/0264-9381/33/13/135002
+
+
+ What is the Fate of Hawking Evaporation in
+Gravity Theories with Higher Curvature Terms?
+ Corelli
+ Phys. Rev. Lett.
+ 9
+ 130
+ 10.1103/PhysRevLett.130.091501
+ 2023
+ Corelli, F., De Amicis, M., Ikeda,
+T., & Pani, P. (2023). What is the Fate of Hawking Evaporation in
+Gravity Theories with Higher Curvature Terms? Phys. Rev. Lett., 130(9),
+091501.
+https://doi.org/10.1103/PhysRevLett.130.091501
+
+
+ Nonperturbative gedanken experiments in
+Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests
+of the cosmic censorship beyond general relativity
+ Corelli
+ Phys. Rev. D
+ 4
+ 107
+ 10.1103/PhysRevD.107.044061
+ 2023
+ Corelli, F., De Amicis, M., Ikeda,
+T., & Pani, P. (2023). Nonperturbative gedanken experiments in
+Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests
+of the cosmic censorship beyond general relativity. Phys. Rev. D,
+107(4), 044061.
+https://doi.org/10.1103/PhysRevD.107.044061
+
+
+ Canuda: a public numerical relativity library
+to probe fundamental physics
+ Witek
+ 10.5281/zenodo.7791842
+ 2023
+ Witek, H., Zilhao, M., Bozzola, G.,
+Cheng, C.-H., Dima, A., Elley, M., Ficarra, G., Ikeda, T., Luna, R.,
+Richards, C., Sanchis-Gual, N., & Silva, H. (2023). Canuda: a public
+numerical relativity library to probe fundamental physics. Zenodo.
+https://doi.org/10.5281/zenodo.7791842
+
+
+
+
+
+
diff --git a/joss.06369/10.21105.joss.06369.pdf b/joss.06369/10.21105.joss.06369.pdf
new file mode 100644
index 0000000000..4476215d5f
Binary files /dev/null and b/joss.06369/10.21105.joss.06369.pdf differ
diff --git a/joss.06369/paper.jats/10.21105.joss.06369.jats b/joss.06369/paper.jats/10.21105.joss.06369.jats
new file mode 100644
index 0000000000..05dab127bd
--- /dev/null
+++ b/joss.06369/paper.jats/10.21105.joss.06369.jats
@@ -0,0 +1,2043 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6369
+10.21105/joss.06369
+
+GRFolres: A code for modified gravity simulations in
+strong gravity
+
+
+
+https://orcid.org/0000-0002-3812-8523
+
+Saló
+Llibert Aresté
+
+
+
+
+https://orcid.org/0009-0000-5568-839X
+
+Brady
+Sam E.
+
+
+
+
+https://orcid.org/0000-0001-8841-1522
+
+Clough
+Katy
+
+
+
+
+https://orcid.org/0000-0001-6519-000X
+
+Doneva
+Daniela
+
+
+
+
+https://orcid.org/0000-0002-2818-701X
+
+Evstafyeva
+Tamara
+
+
+
+
+https://orcid.org/0000-0001-6438-315X
+
+Figueras
+Pau
+
+
+
+
+https://orcid.org/0000-0002-1718-151X
+
+França
+Tiago
+
+
+
+
+https://orcid.org/0000-0001-9653-7088
+
+Rossi
+Lorenzo
+
+
+
+
+https://orcid.org/0009-0003-8207-0335
+
+Yao
+Shunhui
+
+
+
+
+
+School of Mathematical Sciences, Queen Mary University of
+London, Mile End Road, London E1 4NS, United Kingdom
+
+
+
+
+Department of Applied Mathematics and Theoretical Physics
+(DAMTP), University of Cambridge, Centre for Mathematical Sciences,
+Wilberforce Road, Cambridge CB3 0WA, United Kingdom
+
+
+
+
+Theoretical Astrophysics, Eberhard Karls University of
+Tübingen, Tübingen 72076, Germany
+
+
+
+9
+98
+6369
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+C++
+MPI
+Open MP
+vector intrinsics
+gravity
+general relativity
+numerical relativity
+
+
+
+
+
The following brief overview has been prepared as part of the
+submission of the GRFolres code1 to
+the Journal of Open Source Software.
+
+ Summary
+
Gravitational waves (GWs) are generated by the mergers of dense,
+ compact objects like black holes (BHs) and neutron stars (NSs). This
+ provides an opportunity to study the strong field, highly dynamical
+ regime of Einstein’s theory of general relativity (GR) at higher
+ curvature scales than previous observations
+ (Arun
+ & others, 2022;
+ T.
+ Baker et al., 2015;
+ Barack
+ & others, 2019;
+ Barausse
+ & others, 2020;
+ Gnocchi
+ et al., 2019;
+ Perkins,
+ Yunes, et al., 2021). It is possible that at such scales
+ modifications to GR may start to manifest. However, in order to detect
+ such modifications, we need to understand what deviations could look
+ like in theories beyond GR, in particular in the merger section of the
+ signal in near equal mass binaries, which are key targets of the
+ LIGO-Virgo-KAGRA network of detectors (and their future 3G
+ successors). Such predictions necessitate the use of numerical
+ relativity (NR), in which the (modified) equations of GR are evolved
+ from an initial configuration several orbits before merger, through
+ the merger period and the subsequent “ringdown”, during which the
+ gravitational wave signal can be extracted near the computational
+ boundary.
+
Current waveforms are tested for consistency with GR by measuring
+ parameterised deviations to the merger, inspiral and ringdown phases
+ (Abbott
+ & others, 2021;
+ Carson
+ & Yagi, 2020a;
+ Cornish
+ et al., 2011;
+ Krishnendu
+ & Ohme, 2021;
+ Maggio
+ et al., 2023), and not by comparison to any particular
+ theories. If we obtain predictions for specific models, we can check
+ whether such parameterised deviations are well-motivated and
+ consistent in alternative theories of gravity
+ (Arun
+ & others, 2022;
+ Carson
+ & Yagi, 2020b,
+ 2020c;
+ Johnson-McDaniel
+ et al., 2022;
+ Okounkova
+ et al., 2023;
+ Perkins,
+ Nair, et al., 2021;
+ Shiralilou
+ et al., 2022), and the potential to extract model parameters
+ from data.
+
There are many ways to modify GR, one of the simplest being to
+ couple an additional scalar degree of freedom, which may (if certain
+ conditions are satisfied) result in so-called “hairy” stationary black
+ hole solutions; that is, black holes with a stable, non trivial
+ configuration of the scalar field around them (see
+ (Doneva
+ et al., 2024) for a review). An example of this is the class of
+ Horndeski models
+ (Horndeski,
+ 1974). Cubic Horndeski theories have been studied in Figueras
+ & França
+ (2022)
+ and an implementation of this is included in GRFolres. Another more
+ general example within the Horndeski models is the four-derivative
+ scalar-tensor theory (
+
+ 4∂ST),
+ which is the most general theory with up to fourth powers of the
+ derivatives (but still second order equations of motion). Despite
+ their relative simplicity, they have lacked well-posed (and thus
+ numerically stable) formulations until relatively recently.
+
An important breakthrough was made in 2020 by Kov'acs and Reall,
+ who showed that Horndeski theories are indeed well-posed in a modified
+ version of the harmonic gauge
+ (Kovács
+ & Reall, 2020b,
+ 2020a)
+ – a particular coordinate system already used in NR. Subsequently,
+ several specific theories within these classes were probed in their
+ highly dynamical and fully non-linear regimes
+ (Corman
+ et al., 2023;
+ East
+ & Pretorius, 2022;
+ East
+ & Ripley, 2021b,
+ 2021a).
+ The extension of the results of
+ (Kovács
+ & Reall, 2020b,
+ 2020a)
+ to the alternative “singularity avoiding” coordinates in
+ (Aresté
+ Saló et al., 2022,
+ 2023;
+ Doneva
+ et al., 2023) offers an alternative gauge in which to probe
+ questions of hyperbolicity, and may offer stability advantages for
+ certain cases such as unequal mass ratios, as studied in
+ (Corman
+ et al., 2023). Numerical work on these theories is still in the
+ early stages of development and many technical details on their
+ numerical implementation need to be further investigated. Equally,
+ many scientific questions, concerning our accurate understanding of
+ binary—black-hole phenomenology in alternative theories of gravity and
+ their implications for tests of GR, also remain unanswered.
+
The goal of GRFolres is to meet this need for further research, and
+ to provide a model code to help others develop and test their own
+ implementations. The code is based on the publicly available NR code
+ GRChombo
+ (Andrade
+ et al., 2022;
+ Clough
+ et al., 2015), which itself uses the open source Chombo
+ framework
+ (Adams
+ & others, 2015) for solving partial differential equations
+ (PDEs).
+
In the following sections we discuss the key features, motivations,
+ and applications of the code.
+
+
+ Key features
+
GRFolres inherits many of the features of GRChombo and Chombo. Here
+ we list the key features.
+
+
+
Stable gauge evolution - The code implements the modified
+ moving puncture gauge that ensures a well-posed evolution in the
+ weak coupling regime, as proposed in
+ (Aresté
+ Saló et al., 2022). The precise form of the gauge and its
+ parameters can be changed and the standard moving puncture gauge
+ is safely recovered by setting certain parameters to zero.
+
+
+
Modified gravity theories - The currently available theories in
+ the code are 4
+
+ ∂ST
+ and cubic Horndeski. The code is templated over the theory (in the
+ same way that GRChombo is templated over a matter class) so that
+ it can easily be changed without major code modifications. The
+ code also provides an implementation of
+ 4
+
+ ∂ST
+ without backreaction onto the metric (but including the
+ possibility of using the new gauge), to enable comparison with
+ previous works using the decoupling limit approximation.
+
+
+
Accuracy - The fields are evolved with a 4th order Runge-Kutta
+ time integration and their derivatives calculated with the same
+ finite difference stencils used in GRChombo (4th and 6th order are
+ currently available).
+
+
+
Boundary Conditions - GRFolres inherits all the available
+ boundary conditions in GRChombo, namely, extrapolating, Sommerfeld
+ (radiative), reflective and periodic.
+
+
+
Initial Conditions - The current examples use solutions that
+ approximately or trivially solve the modified energy and momentum
+ constraints of the theory. An elliptic solver for more general
+ configurations is under development, using a modified CTTK
+ formalism
+ (Aurrekoetxea
+ et al., 2023;
+ Brady
+ et al., 2023).
+
+
+
Diagnostics - GRFolres has routines for monitoring the
+ constraint violation and calculating the energy densities
+ associated with the different scalar terms in the action, as
+ discussed in
+ (Aresté
+ Saló et al., 2022,
+ 2023;
+ Doneva
+ et al., 2023). Other diagnostics can be added as required.
+ We also extract data for the tensor and scalar gravitational
+ waveforms.
+
+
+
C++ class structure - Following the structure of GRChombo, the
+ GRFolres code is also written in C++ and uses object oriented
+ programming (OOP) and templating.
+
+
+
Parallelism - GRChombo uses hybrid OpenMP/MPI parallelism with
+ explicit vectorisation of the evolution equations via intrinsics,
+ and is AVX-512 compliant.
+
+
+
Adaptive Mesh Refinement - The code inherits the flexible AMR
+ grid structure of Chombo, which provides Berger-Oliger style
+ (M.
+ J. Berger & Oliger, 1984) AMR with block-structured
+ Berger-Rigoutsos grid generation
+ (M.
+ Berger & Rigoutsos, 1991). Depending on the problem,
+ the user may specify the refinement to be triggered by the
+ additional degrees of freedom, i.e. the scalar field, or those of
+ the metric tensor.
+
+
+
+
+ Statement of Need
+
As far as we are aware there is currently no other publicly
+ available code that implements the
+
+ 4∂ST
+ theory of modified gravity or the cubic Horndeski theory in
+ (3+1)-dimensional numerical relativity.
+
There is at least one private code, based on the PAMR/AMRD and HAD
+ (East
+ et al., 2012;
+ Neilsen
+ et al., 2007) infrastructure, that was used in the first works
+ to successfully implement the modified general harmonic gauge for
+
+
+ 4∂ST
+ (Corman
+ et al., 2023;
+ East
+ & Pretorius, 2022;
+ East
+ & Ripley, 2021b,
+ 2021a).
+ Since this code uses a Generalised Harmonic Coordinates (GHC)
+ formulation, it necessitates excision of the interior of black holes,
+ which can be difficult to implement in practice. As a consequence,
+ many groups in the numerical relativity community have opted to use
+ singularity avoiding coordinates such as the BSSN
+ (Baumgarte
+ & Shapiro, 1998;
+ Nakamura
+ et al., 1987;
+ Shibata
+ & Nakamura, 1995), Z4C
+ (Bernuzzi
+ & Hilditch, 2010;
+ Bona
+ et al., 2003) or CCZ4
+ (Alic
+ et al., 2012,
+ 2013)
+ formulations in the puncture gauge
+ (J.
+ G. Baker et al., 2006;
+ Campanelli
+ et al., 2006), which do not require the excision of the
+ interior of black holes from the computational domain. In GRFolres, we
+ use the results of
+ (Aresté
+ Saló et al., 2022,
+ 2023;
+ Doneva
+ et al., 2023) to extend the well-posed formulations of modified
+ gravity to singularity avoiding coordinates. This provides an
+ alternative gauge to the modified GHC one used by other groups. Not
+ only does this provide a valuable comparison to their work, but also
+ eliminates the need for excision.
+
There are also a number of (3+1)-dimensional codes that implement
+ the equations for the additional scalar degree of freedom in
+ Einstein-scalar-Gauss-Bonnet without backreaction onto the metric
+ tensor, including one implementation using GRChombo
+ (Evstafyeva
+ et al., 2023), which we have integrated into GRFolres to enable
+ comparison between the methods. In particular, Canuda
+ (https://bitbucket.org/canuda)
+ (Witek
+ et al., 2019,
+ 2023)
+ which uses the Einstein Toolkit (http://einsteintoolkit.org/), with
+ its related Cactus (http://cactuscode.org)
+ (Loffler
+ & others, 2012;
+ Schnetter
+ et al., 2004) and Kranc (http://kranccode.org)
+ (Husa
+ et al., 2006) infrastructure, was used in
+ (Elley
+ et al., 2022;
+ R.
+ et al., 2023;
+ Richards
+ et al., 2023;
+ Silva
+ et al., 2021;
+ Witek
+ et al., 2019). Another implementation is based on the Spectral
+ Einstein Code or SpEC (http://www.black-holes.org/SpEC.html)
+ (Pfeiffer
+ et al., 2003), as used in
+ (Okounkova,
+ 2020). A neutron star background was considered in
+ (Kuan
+ et al., 2023) with a modification of SACRA-MPI code
+ (Kiuchi
+ et al., 2017;
+ Yamamoto
+ et al., 2008). Whilst order-reduced methods like those in
+ (Doneva
+ et al., 2022;
+ Elley
+ et al., 2022;
+ Evstafyeva
+ et al., 2023;
+ Okounkova
+ et al., 2019,
+ 2020,
+ 2023;
+ Okounkova,
+ 2020;
+ R.
+ et al., 2023;
+ Richards
+ et al., 2023;
+ Silva
+ et al., 2021;
+ Witek
+ et al., 2019) provide an estimate of the scalar dynamics and
+ associated energy losses, they may miss information about the fully
+ non-linear impact on the metric and suffer from the accumulation of
+ secular errors over long inspirals.
+
In spherical symmetry several codes have been developed that
+ implement Einstein-scalar-Gauss-Bonnet (a subset of the
+
+
+ 4∂ST
+ theory that we include as an example in GRFolres). In particular,
+ using the NRPy framework (http://astro.phys.wvu.edu/bhathome)
+ (Ruchlin
+ et al., 2018) in
+ (Doneva
+ et al., 2022), and the private code of Ripley & Pretorius
+ in
+ (R
+ et al., 2023;
+ Ripley
+ & Pretorius, 2019a,
+ 2019b,
+ 2020a,
+ 2020b),
+ and a modification of the GR1D code
+ (Gerosa
+ et al., 2016;
+ O’Connor
+ & Ott, 2010). There is also the fully nonlinear spherical
+ code developed in
+ (Corelli
+ et al., 2023b,
+ 2023a).
+ Spherical codes provide a useful testing ground in which coordinate
+ ambiguities can be avoided
+ (R
+ et al., 2023), but lack the generality required to study
+ objects with angular momentum, or binary mergers.
+
+
+ Research projects to date using GRFolres
+
So far the code has been used to study a range of fundamental
+ physics problems, as listed here.
+
+
+
The test field case was used in
+ (Evstafyeva
+ et al., 2023) to model the scalar waves produced during the
+ ringdown stage of binary black hole coalescence in
+ Einstein-scalar-Gauss-Bonnet, and quantify the extent to which
+ current and future gravitational wave detectors could observe the
+ spectrum of scalar radiation emitted.
+
+
+
+
Contour plot of network signal-to-noise ratio (SNR) for
+ the scalar ringdown of a binary black hole (BBH) in
+ Einstein-scalar-Gauss-Bonnet gravity at 1 Gpc as observed by the
+ Virgo, Livingston and Hanford network of detectors at design
+ sensitivity. Taken from
+ (Evstafyeva
+ et al.,
+ 2023).
+
+
+
+
+
The regime of validity of effective field theory in collapse
+ and binary evolutions in cubic Horndeski theories were studied in
+ (Figueras
+ & França, 2020,
+ 2022).
+ It was found that the mismatch of the gravitational wave strain
+ can be as large as 10%–13% in the Advanced LIGO mass range for
+ such theories.
+
+
+
+
Energy density (in blue) of the scalar field surrounding
+ the binary black holes for the Horndeski theory at a representative
+ instant of time during the inspiral phase. The apparent horizon of
+ the black holes is shown in orange. The region where the weak
+ coupling conditions are larger than one is depicted in brown. Taken
+ from
+ (Figueras
+ & França,
+ 2022).
+
+
+
+
+
In
+ (Aresté
+ Saló et al., 2022), the code was developed and tested, with
+ waveforms for shift-symmetric theories of
+ Einstein-scalar-Gauss-Bonnet gravity produced for equal mass
+ binaries.
+
+
+
+
Modified gravity waveforms in
+
+
+ 4∂ST
+ with a shift-symmetric coupling. Taken from
+ (Aresté
+ Saló et al.,
+ 2022).
+
+
+
+
+
In
+ (Aresté
+ Saló et al., 2023), the studies were extended to binary
+ mergers in theories with spin-induced scalarisation. The clouds
+ formed are dumbbell-like in shape.
+
+
+
+
The time evolution of the density of the scalar cloud
+ that develops in Einstein-scalar-Gauss-Bonnet gravity with an
+ exponential coupling, resulting in spin-induced scalarisation. Taken
+ from
+ (Aresté
+ Saló et al.,
+ 2023).
+
+
+
+
+
In
+ (Doneva
+ et al., 2023), the dependence of the conditions for
+ hyperbolicity and weak coupling were studied for spin-induced
+ scalarisation, and the critical thresholds found for a number of
+ cases.
+
+
+
+
The time evolution of the determinant of the effective
+ metric in a case of spin-induced scalarisation. When the determinant
+ is negative (in black) outside the apparent horizon (depicted with a
+ dashed white line), the theory has become ill-posed. Taken from
+ (Doneva
+ et al.,
+ 2023).
+
+
+
+
+ Acknowledgements
+
We thank the entire GRChombo (www.grchombo.org) collaboration for
+ their support and code development work. PF and KC are supported by an
+ STFC Research Grant ST/X000931/1 (Astronomy at Queen Mary 2023-2026).
+ PF is supported by a Royal Society University Research Fellowship
+ No. URF\R\201026, and No. RF\ERE\210291. KC is supported by an STFC
+ Ernest Rutherford fellowship, project reference ST/V003240/1. LAS is
+ supported by a QMUL Ph.D. scholarship. SB is supported by a QMUL
+ Principal studentship. DD acknowledges financial support via an Emmy
+ Noether Research Group funded by the German Research Foundation (DFG)
+ under grant no. DO 1771/1-1. LR is supported by a Royal Society
+ Renewal Grant, No. URF\R\201026, and a Research Expenses Enhancement
+ Award, No. RF\ERE\210291. TE is supported by the Centre for Doctoral
+ Training (CDT) at the University of Cambridge funded through STFC. SY
+ acknowledges the support from China Scholarship Council.
+
Development of the code used in this work utilised the ARCHER2 UK
+ National Supercomputing Service (https://www.archer2.ac.uk) under the
+ EPSRC HPC project no. E775, the CSD3 cluster in Cambridge under
+ Projects No. DP128. The Cambridge Service for Data Driven Discovery
+ (CSD3), partially operated by the University of Cambridge Research
+ Computing on behalf of the STFC DiRAC HPC Facility. The DiRAC
+ component of CSD3 is funded by BEIS capital via STFC capital Grants
+ No. ST/P002307/1 and No. ST/ R002452/1 and STFC operations Grant
+ No. ST/R00689X/1. DiRAC is part of the National e-Infrastructure
+ (www.dirac.ac.uk). Calculations were also performed using the Sulis
+ Tier 2 HPC platform hosted by the Scientific Computing Research
+ Technology Platform at the University of Warwick. Sulis is funded by
+ EPSRC Grant EP/T022108/1 and the HPC Midlands+ consortium. This
+ research has also utilised Queen Mary’s Apocrita HPC facility,
+ supported by QMUL Research-IT. This study is in part financed by the
+ European Union-NextGenerationEU, through the National Recovery and
+ Resilience Plan of the Republic of Bulgaria, project
+ No. BG-RRP-2.004-0008-C01. We acknowledge Discoverer PetaSC and
+ EuroHPC JU for awarding this project access to Discoverer
+ supercomputer resources.
+
+
+
+
+
+
+
+
+ EastWilliam E.
+ RipleyJustin L.
+
+ Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation
+
+ 2021
+ 103
+ 4
+ https://arxiv.org/abs/2011.03547
+ 10.1103/PhysRevD.103.044040
+ 044040
+
+
+
+
+
+
+ EastWilliam E.
+ RipleyJustin L.
+
+ Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity
+
+ 2021
+ 127
+ 10
+ https://arxiv.org/abs/2105.08571
+ 10.1103/PhysRevLett.127.101102
+ 101102
+
+
+
+
+
+
+ KovácsÁron D.
+ ReallHarvey S.
+
+ Well-Posed Formulation of Scalar-Tensor Effective Field Theory
+
+ 2020
+ 124
+ 22
+ https://arxiv.org/abs/2003.04327
+ 10.1103/PhysRevLett.124.221101
+ 221101
+
+
+
+
+
+
+ KovácsÁron D.
+ ReallHarvey S.
+
+ Well-posed formulation of Lovelock and Horndeski theories
+
+ 2020
+ 101
+ 12
+ https://arxiv.org/abs/2003.08398
+ 10.1103/PhysRevD.101.124003
+ 124003
+
+
+
+
+
+
+ FiguerasPau
+ FrançaTiago
+
+ Gravitational Collapse in Cubic Horndeski Theories
+
+ 2020
+ 37
+ 22
+ https://arxiv.org/abs/2006.09414
+ 10.1088/1361-6382/abb693
+ 225009
+
+
+
+
+
+
+ FiguerasPau
+ FrançaTiago
+
+ Black hole binaries in cubic Horndeski theories
+
+ 2022
+ 105
+ 12
+ https://arxiv.org/abs/2112.15529
+ 10.1103/PhysRevD.105.124004
+ 124004
+
+
+
+
+
+
+ CloughKaty
+ FiguerasPau
+ FinkelHal
+ KuneschMarkus
+ LimEugene A.
+ TunyasuvunakoolSaran
+
+ GRChombo : Numerical Relativity with Adaptive Mesh Refinement
+
+ 2015
+ 32
+ 24
+ https://arxiv.org/abs/1503.03436
+ 10.1088/0264-9381/32/24/245011
+ 245011
+
+
+
+
+
+
+ NakamuraT.
+ OoharaK.
+ KojimaY.
+
+ General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes
+
+ 1987
+ 90
+ 10.1143/PTPS.90.1
+ 1
+ 218
+
+
+
+
+
+ ShibataMasaru
+ NakamuraTakashi
+
+ Evolution of three-dimensional gravitational waves: Harmonic slicing case
+
+ 1995
+ 52
+ 10.1103/PhysRevD.52.5428
+ 5428
+ 5444
+
+
+
+
+
+ BaumgarteThomas W.
+ ShapiroStuart L.
+
+ On the numerical integration of Einstein’s field equations
+
+ 1998
+ 59
+ https://arxiv.org/abs/gr-qc/9810065
+ 10.1103/PhysRevD.59.024007
+ 024007
+
+
+
+
+
+
+ BonaC.
+ LedvinkaT.
+ PalenzuelaC.
+ ZacekM.
+
+ General covariant evolution formalism for numerical relativity
+
+ 2003
+ 67
+ https://arxiv.org/abs/gr-qc/0302083
+ 10.1103/PhysRevD.67.104005
+ 104005
+
+
+
+
+
+
+ BernuzziSebastiano
+ HilditchDavid
+
+ Constraint violation in free evolution schemes: Comparing BSSNOK with a conformal decomposition of Z4
+
+ 2010
+ 81
+ https://arxiv.org/abs/0912.2920
+ 10.1103/PhysRevD.81.084003
+ 084003
+
+
+
+
+
+
+ AlicDaniela
+ Bona-CasasCarles
+ BonaCarles
+ RezzollaLuciano
+ PalenzuelaCarlos
+
+ Conformal and covariant formulation of the Z4 system with constraint-violation damping
+
+ 2012
+ 85
+ https://arxiv.org/abs/1106.2254
+ 10.1103/PhysRevD.85.064040
+ 064040
+
+
+
+
+
+
+ AlicDaniela
+ KastaunWolfgang
+ RezzollaLuciano
+
+ Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars
+
+ 2013
+ 88
+ 6
+ https://arxiv.org/abs/1307.7391
+ 10.1103/PhysRevD.88.064049
+ 064049
+
+
+
+
+
+
+ CampanelliManuela
+ LoustoC. O.
+ MarronettiP.
+ ZlochowerY.
+
+ Accurate evolutions of orbiting black-hole binaries without excision
+
+ 2006
+ 96
+ https://arxiv.org/abs/gr-qc/0511048
+ 10.1103/PhysRevLett.96.111101
+ 111101
+
+
+
+
+
+
+ BakerJohn G.
+ CentrellaJoan
+ ChoiDae-Il
+ KoppitzMichael
+ MeterJames van
+
+ Gravitational wave extraction from an inspiraling configuration of merging black holes
+
+ 2006
+ 96
+ https://arxiv.org/abs/gr-qc/0511103
+ 10.1103/PhysRevLett.96.111102
+ 111102
+
+
+
+
+
+
+ ArunK. G.
+ others
+
+ New horizons for fundamental physics with LISA
+
+ 2022
+ 25
+ 1
+ https://arxiv.org/abs/2205.01597
+ 10.1007/s41114-022-00036-9
+ 4
+
+
+
+
+
+
+ Johnson-McDanielNathan K.
+ GhoshAbhirup
+ GhongeSudarshan
+ SaleemMuhammed
+ KrishnenduN. V.
+ ClarkJames A.
+
+ Investigating the relation between gravitational wave tests of general relativity
+
+ 2022
+ 105
+ 4
+ https://arxiv.org/abs/2109.06988
+ 10.1103/PhysRevD.105.044020
+ 044020
+
+
+
+
+
+
+ OkounkovaMaria
+ IsiMaximiliano
+ ChatziioannouKaterina
+ FarrWill M.
+
+ Gravitational wave inference on a numerical-relativity simulation of a black hole merger beyond general relativity
+
+ 2023
+ 107
+ 2
+ https://arxiv.org/abs/2208.02805
+ 10.1103/PhysRevD.107.024046
+ 024046
+
+
+
+
+
+
+ KrishnenduN. V.
+ OhmeFrank
+
+ Testing General Relativity with Gravitational Waves: An Overview
+
+ 2021
+ 7
+ 12
+ https://arxiv.org/abs/2201.05418
+ 10.3390/universe7120497
+ 497
+
+
+
+
+
+
+ AbbottR.
+ others
+
+ Tests of General Relativity with GWTC-3
+
+ 202112
+ https://arxiv.org/abs/2112.06861
+ 10.48550/arXiv.2112.06861
+
+
+
+
+
+ ShiralilouBanafsheh
+ HindererTanja
+ NissankeSamaya M.
+ OrtizNéstor
+ WitekHelvi
+
+ Post-Newtonian gravitational and scalar waves in scalar-GaussBonnet gravity
+
+ 2022
+ 39
+ 3
+ https://arxiv.org/abs/2105.13972
+ 10.1088/1361-6382/ac4196
+ 035002
+
+
+
+
+
+
+ OkounkovaMaria
+
+ Numerical relativity simulation of GW150914 in Einstein dilaton Gauss-Bonnet gravity
+
+ 2020
+ 102
+ 8
+ https://arxiv.org/abs/2001.03571
+ 10.1103/PhysRevD.102.084046
+ 084046
+
+
+
+
+
+
+ OkounkovaMaria
+ SteinLeo C.
+ MoxonJordan
+ ScheelMark A.
+ TeukolskySaul A.
+
+ Numerical relativity simulation of GW150914 beyond general relativity
+
+ 2020
+ 101
+ 10
+ https://arxiv.org/abs/1911.02588
+ 10.1103/PhysRevD.101.104016
+ 104016
+
+
+
+
+
+
+ OkounkovaMaria
+ SteinLeo C.
+ ScheelMark A.
+ TeukolskySaul A.
+
+ Numerical binary black hole collisions in dynamical Chern-Simons gravity
+
+ 2019
+ 100
+ 10
+ https://arxiv.org/abs/1906.08789
+ 10.1103/PhysRevD.100.104026
+ 104026
+
+
+
+
+
+
+ ElleyMatthew
+ SilvaHector O.
+ WitekHelvi
+ YunesNicolás
+
+ Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence
+
+ 2022
+ 106
+ 4
+ https://arxiv.org/abs/2205.06240
+ 10.1103/PhysRevD.106.044018
+ 044018
+
+
+
+
+
+
+ DonevaDaniela D.
+ Vañó-ViñualesAlex
+ YazadjievStoytcho S.
+
+ Dynamical descalarization with a jump during a black hole merger
+
+ 2022
+ 106
+ 6
+ https://arxiv.org/abs/2204.05333
+ 10.1103/PhysRevD.106.L061502
+ L061502
+
+
+
+
+
+
+ PerkinsScott E.
+ NairRemya
+ SilvaHector O.
+ YunesNicolas
+
+ Improved gravitational-wave constraints on higher-order curvature theories of gravity
+
+ 2021
+ 104
+ 2
+ https://arxiv.org/abs/2104.11189
+ 10.1103/PhysRevD.104.024060
+ 024060
+
+
+
+
+
+
+ CarsonZack
+ YagiKent
+
+ Probing Einstein-dilaton Gauss-Bonnet Gravity with the inspiral and ringdown of gravitational waves
+
+ 2020
+ 101
+ 10
+ https://arxiv.org/abs/2003.00286
+ 10.1103/PhysRevD.101.104030
+ 104030
+
+
+
+
+
+
+ CarsonZack
+ YagiKent
+
+ Probing string-inspired gravity with the inspiralmergerringdown consistency tests of gravitational waves
+
+ 2020
+ 37
+ 21
+ https://arxiv.org/abs/2002.08559
+ 10.1088/1361-6382/aba221
+ 215007
+
+
+
+
+
+
+ WitekHelvi
+ GualtieriLeonardo
+ PaniPaolo
+ SotiriouThomas P.
+
+ Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics
+
+ 2019
+ 99
+ 6
+ https://arxiv.org/abs/1810.05177
+ 10.1103/PhysRevD.99.064035
+ 064035
+
+
+
+
+
+
+ BarackLeor
+ others
+
+ Black holes, gravitational waves and fundamental physics: a roadmap
+
+ 2019
+ 36
+ 14
+ https://arxiv.org/abs/1806.05195
+ 10.1088/1361-6382/ab0587
+ 143001
+
+
+
+
+
+
+ SilvaHector O.
+ WitekHelvi
+ ElleyMatthew
+ YunesNicolás
+
+ Dynamical Descalarization in Binary Black Hole Mergers
+
+ 2021
+ 127
+ 3
+ https://arxiv.org/abs/2012.10436
+ 10.1103/PhysRevLett.127.031101
+ 031101
+
+
+
+
+
+
+ GnocchiGiuseppe
+ MaselliAndrea
+ AbdelsalhinTiziano
+ GiacobboNicola
+ MapelliMichela
+
+ Bounding alternative theories of gravity with multiband GW observations
+
+ 2019
+ 100
+ 6
+ https://arxiv.org/abs/1905.13460
+ 10.1103/PhysRevD.100.064024
+ 064024
+
+
+
+
+
+
+ HorndeskiGregory Walter
+
+ Second-order scalar-tensor field equations in a four-dimensional space
+
+ 1974
+ 10
+ 10.1007/BF01807638
+ 363
+ 384
+
+
+
+
+
+ EastWilliam E.
+ PretoriusFrans
+
+ Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet gravity
+
+ 2022
+ 106
+ 10
+ https://arxiv.org/abs/2208.09488
+ 10.1103/PhysRevD.106.104055
+ 104055
+
+
+
+
+
+
+ CormanMaxence
+ RipleyJustin L.
+ EastWilliam E.
+
+ Nonlinear studies of binary black hole mergers in Einstein-scalar-Gauss-Bonnet gravity
+
+ 2023
+ 107
+ 2
+ https://arxiv.org/abs/2210.09235
+ 10.1103/PhysRevD.107.024014
+ 024014
+
+
+
+
+
+
+ BarausseEnrico
+ others
+
+ Prospects for Fundamental Physics with LISA
+
+ 2020
+ 52
+ 8
+ https://arxiv.org/abs/2001.09793
+ 10.1007/s10714-020-02691-1
+ 81
+
+
+
+
+
+
+ PerkinsScott E.
+ YunesNicolás
+ BertiEmanuele
+
+ Probing Fundamental Physics with Gravitational Waves: The Next Generation
+
+ 2021
+ 103
+ 4
+ https://arxiv.org/abs/2010.09010
+ 10.1103/PhysRevD.103.044024
+ 044024
+
+
+
+
+
+
+ BakerTessa
+ PsaltisDimitrios
+ SkordisConstantinos
+
+ Linking Tests of Gravity On All Scales: from the Strong-Field Regime to Cosmology
+
+ 2015
+ 802
+ https://arxiv.org/abs/1412.3455
+ 10.1088/0004-637X/802/1/63
+ 63
+
+
+
+
+
+
+ KuanHao-Jui
+ LamAlan Tsz-Lok
+ DonevaDaniela D.
+ YazadjievStoytcho S.
+ ShibataMasaru
+ KiuchiKenta
+
+ Dynamical scalarization during neutron star mergers in scalar-Gauss-Bonnet theory
+
+ 2023
+ 108
+ 6
+ https://arxiv.org/abs/2302.11596
+ 10.1103/PhysRevD.108.063033
+ 063033
+
+
+
+
+
+
+ DonevaDaniela D.
+ RamazanoğluFethi M.
+ SilvaHector O.
+ SotiriouThomas P.
+ YazadjievStoytcho S.
+
+ Spontaneous scalarization
+
+ 2024
+ 96
+ 1
+ https://arxiv.org/abs/2211.01766
+ 10.1103/RevModPhys.96.015004
+ 015004
+
+
+
+
+
+
+ RichardsChloe
+ DimaAlexandru
+ WitekHelvi
+
+ Black holes in massive dynamical Chern-Simons gravity: Scalar hair and quasibound states at decoupling
+
+ 2023
+ 108
+ 4
+ https://arxiv.org/abs/2305.07704
+ 10.1103/PhysRevD.108.044078
+ 044078
+
+
+
+
+
+
+ R.Abhishek Hegade K.
+ MostElias R.
+ NoronhaJorge
+ WitekHelvi
+ YunesNicolás
+
+ How do axisymmetric black holes grow monopole and dipole hair?
+
+ 2023
+ 107
+ 10
+ https://arxiv.org/abs/2212.02039
+ 10.1103/PhysRevD.107.104047
+ 104047
+
+
+
+
+
+
+ MaggioElisa
+ SilvaHector O.
+ BuonannoAlessandra
+ GhoshAbhirup
+
+ Tests of general relativity in the nonlinear regime: A parametrized plunge-merger-ringdown gravitational waveform model
+
+ 2023
+ 108
+ 2
+ https://arxiv.org/abs/2212.09655
+ 10.1103/PhysRevD.108.024043
+ 024043
+
+
+
+
+
+
+ CornishNeil
+ SampsonLaura
+ YunesNicolas
+ PretoriusFrans
+
+ Gravitational Wave Tests of General Relativity with the Parameterized Post-Einsteinian Framework
+
+ 2011
+ 84
+ https://arxiv.org/abs/1105.2088
+ 10.1103/PhysRevD.84.062003
+ 062003
+
+
+
+
+
+
+ CarsonZack
+ YagiKent
+
+ Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations
+
+ 2020
+ 101
+ 4
+ https://arxiv.org/abs/1911.05258
+ 10.1103/PhysRevD.101.044047
+ 044047
+
+
+
+
+
+
+ RAbhishek Hegade K.
+ RipleyJustin L.
+ YunesNicolás
+
+ Where and why does Einstein-scalar-Gauss-Bonnet theory break down?
+
+ 2023
+ 107
+ 4
+ https://arxiv.org/abs/2211.08477
+ 10.1103/PhysRevD.107.044044
+ 044044
+
+
+
+
+
+
+ BradySam E.
+ Aresté SalóLlibert
+ CloughKaty
+ FiguerasPau
+ S.Annamalai P.
+
+ Solving the initial conditions problem for modified gravity theories
+
+ 2023
+ 108
+ 10
+ https://arxiv.org/abs/2308.16791
+ 10.1103/PhysRevD.108.104022
+ 104022
+
+
+
+
+
+
+ AurrekoetxeaJosu C.
+ CloughKaty
+ LimEugene A.
+
+ CTTK: a new method to solve the initial data constraints in numerical relativity
+
+ 2023
+ 40
+ 7
+ https://arxiv.org/abs/2207.03125
+ 10.1088/1361-6382/acb883
+ 075003
+
+
+
+
+
+
+ DonevaDaniela D.
+ Aresté SalóLlibert
+ CloughKaty
+ FiguerasPau
+ YazadjievStoytcho S.
+
+ Testing the limits of scalar-Gauss-Bonnet gravity through nonlinear evolutions of spin-induced scalarization
+
+ 2023
+ 108
+ 8
+ https://arxiv.org/abs/2307.06474
+ 10.1103/PhysRevD.108.084017
+ 084017
+
+
+
+
+
+
+ Aresté SalóLlibert
+ CloughKaty
+ FiguerasPau
+
+ Puncture gauge formulation for Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories in d+1 spacetime dimensions
+
+ 2023
+ 108
+ 8
+ https://arxiv.org/abs/2306.14966
+ 10.1103/PhysRevD.108.084018
+ 084018
+
+
+
+
+
+
+ Aresté SalóLlibert
+ CloughKaty
+ FiguerasPau
+
+ Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates
+
+ 2022
+ 129
+ 26
+ https://arxiv.org/abs/2208.14470
+ 10.1103/PhysRevLett.129.261104
+ 261104
+
+
+
+
+
+
+ AndradeTomas
+ FiguerasPau
+ SperhakeUlrich
+
+ Evidence for violations of Weak Cosmic Censorship in black hole collisions in higher dimensions
+
+ 2022
+ 03
+ https://arxiv.org/abs/2011.03049
+ 10.1007/JHEP03(2022)111
+ 111
+
+
+
+
+
+
+ RuchlinIan
+ EtienneZachariah B.
+ BaumgarteThomas W.
+
+ SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems
+
+ 2018
+ 97
+ 6
+ https://arxiv.org/abs/1712.07658
+ 10.1103/PhysRevD.97.064036
+ 064036
+
+
+
+
+
+
+ AdamsM.
+ others
+
+ Chombo software package for AMR applications - design document
+
+ 201512
+
+
+
+
+
+ EastWilliam E.
+ PretoriusFrans
+ StephensBranson C.
+
+ Hydrodynamics in full general relativity with conservative AMR
+
+ 2012
+ 85
+ https://arxiv.org/abs/1112.3094
+ 10.1103/PhysRevD.85.124010
+ 124010
+
+
+
+
+
+
+ LofflerFrank
+ others
+
+ The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics
+
+ 2012
+ 29
+ https://arxiv.org/abs/1111.3344
+ 10.1088/0264-9381/29/11/115001
+ 115001
+
+
+
+
+
+
+ NeilsenDavid
+ HirschmannEric W.
+ AndersonMatthew
+ LieblingSteven L.
+
+ Adaptive Mesh Refinement and Relativistic MHD
+
+ 200702
+ https://arxiv.org/abs/gr-qc/0702035
+ 10.1142/9789812834300_0200
+ 1579
+ 1581
+
+
+
+
+
+ HusaSascha
+ HinderIan
+ LechnerChristiane
+
+ Kranc: A Mathematica application to generate numerical codes for tensorial evolution equations
+
+ 2006
+ 174
+ https://arxiv.org/abs/gr-qc/0404023
+ 10.1016/j.cpc.2006.02.002
+ 983
+ 1004
+
+
+
+
+
+ SchnetterErik
+ HawleyScott H.
+ HawkeIan
+
+ Evolutions in 3-D numerical relativity using fixed mesh refinement
+
+ 2004
+ 21
+ https://arxiv.org/abs/gr-qc/0310042
+ 10.1088/0264-9381/21/6/014
+ 1465
+ 1488
+
+
+
+
+
+ PfeifferHarald P.
+ KidderLawrence E.
+ ScheelMark A.
+ TeukolskySaul A.
+
+ A Multidomain spectral method for solving elliptic equations
+
+ 2003
+ 152
+ https://arxiv.org/abs/gr-qc/0202096
+ 10.1016/S0010-4655(02)00847-0
+ 253
+ 273
+
+
+
+
+
+ BergerMarsha J.
+ OligerJoseph
+
+ Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
+
+ 1984
+ 53
+ 10.1016/0021-9991(84)90073-1
+ 484
+
+
+
+
+
+
+ BergerM.
+ RigoutsosI.
+
+ An algorithm for point clustering and grid generation
+
+ 1991
+ 21
+ 5
+ 10.1109/21.120081
+ 1278
+ 1286
+
+
+
+
+
+ RipleyJustin L.
+ PretoriusFrans
+
+ Dynamics of a \mathbb Z_2 symmetric EdGB gravity in spherical symmetry
+
+ 2020
+ 37
+ 15
+ https://arxiv.org/abs/2005.05417
+ 10.1088/1361-6382/ab9bbb
+ 155003
+
+
+
+
+
+
+ RipleyJustin L.
+ PretoriusFrans
+
+ Gravitational collapse in Einstein dilaton-GaussBonnet gravity
+
+ 2019
+ 36
+ 13
+ https://arxiv.org/abs/1903.07543
+ 10.1088/1361-6382/ab2416
+ 134001
+
+
+
+
+
+
+ RipleyJustin L.
+ PretoriusFrans
+
+ Hyperbolicity in Spherical Gravitational Collapse in a Horndeski Theory
+
+ 2019
+ 99
+ 8
+ https://arxiv.org/abs/1902.01468
+ 10.1103/PhysRevD.99.084014
+ 084014
+
+
+
+
+
+
+ RipleyJustin L.
+ PretoriusFrans
+
+ Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet Gravity
+
+ 2020
+ 101
+ 4
+ https://arxiv.org/abs/1911.11027
+ 10.1103/PhysRevD.101.044015
+ 044015
+
+
+
+
+
+
+ EvstafyevaTamara
+ AgathosMichalis
+ RipleyJustin L.
+
+ Measuring the ringdown scalar polarization of gravitational waves in Einstein-scalar-Gauss-Bonnet gravity
+
+ 2023
+ 107
+ 12
+ https://arxiv.org/abs/2212.11359
+ 10.1103/PhysRevD.107.124010
+ 124010
+
+
+
+
+
+
+ YamamotoTetsuro
+ ShibataMasaru
+ TaniguchiKeisuke
+
+ Simulating coalescing compact binaries by a new code SACRA
+
+ 2008
+ 78
+ https://arxiv.org/abs/0806.4007
+ 10.1103/PhysRevD.78.064054
+ 064054
+
+
+
+
+
+
+ KiuchiKenta
+ KawaguchiKyohei
+ KyutokuKoutarou
+ SekiguchiYuichiro
+ ShibataMasaru
+ TaniguchiKeisuke
+
+ Sub-radian-accuracy gravitational waveforms of coalescing binary neutron stars in numerical relativity
+
+ 2017
+ 96
+ 8
+ https://arxiv.org/abs/1708.08926
+ 10.1103/PhysRevD.96.084060
+ 084060
+
+
+
+
+
+
+ O’ConnorEvan
+ OttChristian D.
+
+ A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes
+
+
+ OttChristian D.
+ PethickC. J.
+ RezzollaLuciano
+
+ 2010
+ 27
+ https://arxiv.org/abs/0912.2393
+ 10.1088/0264-9381/27/11/114103
+ 114103
+
+
+
+
+
+
+ GerosaDavide
+ SperhakeUlrich
+ OttChristian D.
+
+ Numerical simulations of stellar collapse in scalar-tensor theories of gravity
+
+ 2016
+ 33
+ 13
+ https://arxiv.org/abs/1602.06952
+ 10.1088/0264-9381/33/13/135002
+ 135002
+
+
+
+
+
+
+ CorelliFabrizio
+ De AmicisMarina
+ IkedaTaishi
+ PaniPaolo
+
+ What is the Fate of Hawking Evaporation in Gravity Theories with Higher Curvature Terms?
+
+ 2023
+ 130
+ 9
+ https://arxiv.org/abs/2205.13006
+ 10.1103/PhysRevLett.130.091501
+ 091501
+
+
+
+
+
+
+ CorelliFabrizio
+ De AmicisMarina
+ IkedaTaishi
+ PaniPaolo
+
+ Nonperturbative gedanken experiments in Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests of the cosmic censorship beyond general relativity
+
+ 2023
+ 107
+ 4
+ https://arxiv.org/abs/2205.13007
+ 10.1103/PhysRevD.107.044061
+ 044061
+
+
+
+
+
+
+ WitekHelvi
+ ZilhaoMiguel
+ BozzolaGabriele
+ ChengCheng-Hsin
+ DimaAlexandru
+ ElleyMatthew
+ FicarraGiuseppe
+ IkedaTaishi
+ LunaRaimon
+ RichardsChloe
+ Sanchis-GualNicolas
+ SilvaHector
+
+ Canuda: a public numerical relativity library to probe fundamental physics
+ Zenodo
+ 202305
+ https://doi.org/10.5281/zenodo.7791842
+ 10.5281/zenodo.7791842
+
+
+
+
+
+
Folres (pronounced fol-res) is a
+ word meaning covers or linings in the Catalan language. It has a
+ specific application in the tradition of Castells
+ (Human Towers), denoting the second layers of reinforcement above
+ the base pinya. We use it here in analogy to our
+ understanding of effective field theories (EFTs) of gravity as an
+ infinite sum of terms organised as a derivative expansion, in which
+ the first one corresponds to GR (with up to 2 derivatives), and the
+ second one to modified theories up to 4 derivatives, which are those
+ that we are able to simulate with GRFolres.
+
+
+
+
diff --git a/joss.06369/paper.jats/EnergyDensity_and_WFC.png b/joss.06369/paper.jats/EnergyDensity_and_WFC.png
new file mode 100644
index 0000000000..162c242fac
Binary files /dev/null and b/joss.06369/paper.jats/EnergyDensity_and_WFC.png differ
diff --git a/joss.06369/paper.jats/SNR_network.png b/joss.06369/paper.jats/SNR_network.png
new file mode 100644
index 0000000000..07b13beaf1
Binary files /dev/null and b/joss.06369/paper.jats/SNR_network.png differ
diff --git a/joss.06369/paper.jats/all_waves.png b/joss.06369/paper.jats/all_waves.png
new file mode 100644
index 0000000000..065f4b5973
Binary files /dev/null and b/joss.06369/paper.jats/all_waves.png differ
diff --git a/joss.06369/paper.jats/discriminant_beta200.png b/joss.06369/paper.jats/discriminant_beta200.png
new file mode 100644
index 0000000000..04945365b0
Binary files /dev/null and b/joss.06369/paper.jats/discriminant_beta200.png differ
diff --git a/joss.06369/paper.jats/rhophi.png b/joss.06369/paper.jats/rhophi.png
new file mode 100644
index 0000000000..e64436e616
Binary files /dev/null and b/joss.06369/paper.jats/rhophi.png differ