diff --git a/joss.06369/10.21105.joss.06369.crossref.xml b/joss.06369/10.21105.joss.06369.crossref.xml new file mode 100644 index 0000000000..4f1dda77fb --- /dev/null +++ b/joss.06369/10.21105.joss.06369.crossref.xml @@ -0,0 +1,1215 @@ + + + + 20240608130016-f44e4e40f575cc0d4cab64ecf4a29f1d45d7e4c5 + 20240608130016 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 06 + 2024 + + + 9 + + 98 + + + + GRFolres: A code for modified gravity simulations in +strong gravity + + + + Llibert Aresté + Saló + https://orcid.org/0000-0002-3812-8523 + + + Sam E. + Brady + https://orcid.org/0009-0000-5568-839X + + + Katy + Clough + https://orcid.org/0000-0001-8841-1522 + + + Daniela + Doneva + https://orcid.org/0000-0001-6519-000X + + + Tamara + Evstafyeva + https://orcid.org/0000-0002-2818-701X + + + Pau + Figueras + https://orcid.org/0000-0001-6438-315X + + + Tiago + França + https://orcid.org/0000-0002-1718-151X + + + Lorenzo + Rossi + https://orcid.org/0000-0001-9653-7088 + + + Shunhui + Yao + https://orcid.org/0009-0003-8207-0335 + + + + 06 + 08 + 2024 + + + 6369 + + + 10.21105/joss.06369 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.11500210 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6369 + + + + 10.21105/joss.06369 + https://joss.theoj.org/papers/10.21105/joss.06369 + + + https://joss.theoj.org/papers/10.21105/joss.06369.pdf + + + + + + Evolution of Einstein-scalar-Gauss-Bonnet +gravity using a modified harmonic formulation + East + Phys. Rev. D + 4 + 103 + 10.1103/PhysRevD.103.044040 + 2021 + East, W. E., & Ripley, J. L. +(2021). Evolution of Einstein-scalar-Gauss-Bonnet gravity using a +modified harmonic formulation. Phys. Rev. D, 103(4), 044040. +https://doi.org/10.1103/PhysRevD.103.044040 + + + Dynamics of Spontaneous Black Hole +Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet +Gravity + East + Phys. Rev. Lett. + 10 + 127 + 10.1103/PhysRevLett.127.101102 + 2021 + East, W. E., & Ripley, J. L. +(2021). Dynamics of Spontaneous Black Hole Scalarization and Mergers in +Einstein-Scalar-Gauss-Bonnet Gravity. Phys. Rev. Lett., 127(10), 101102. +https://doi.org/10.1103/PhysRevLett.127.101102 + + + Well-Posed Formulation of Scalar-Tensor +Effective Field Theory + Kovács + Phys. Rev. Lett. + 22 + 124 + 10.1103/PhysRevLett.124.221101 + 2020 + Kovács, Á. D., & Reall, H. S. +(2020). Well-Posed Formulation of Scalar-Tensor Effective Field Theory. +Phys. Rev. Lett., 124(22), 221101. +https://doi.org/10.1103/PhysRevLett.124.221101 + + + Well-posed formulation of Lovelock and +Horndeski theories + Kovács + Phys. Rev. D + 12 + 101 + 10.1103/PhysRevD.101.124003 + 2020 + Kovács, Á. D., & Reall, H. S. +(2020). Well-posed formulation of Lovelock and Horndeski theories. Phys. +Rev. D, 101(12), 124003. +https://doi.org/10.1103/PhysRevD.101.124003 + + + Gravitational Collapse in Cubic Horndeski +Theories + Figueras + Class. Quant. Grav. + 22 + 37 + 10.1088/1361-6382/abb693 + 2020 + Figueras, P., & França, T. +(2020). Gravitational Collapse in Cubic Horndeski Theories. Class. +Quant. Grav., 37(22), 225009. +https://doi.org/10.1088/1361-6382/abb693 + + + Black hole binaries in cubic Horndeski +theories + Figueras + Phys. Rev. D + 12 + 105 + 10.1103/PhysRevD.105.124004 + 2022 + Figueras, P., & França, T. +(2022). Black hole binaries in cubic Horndeski theories. Phys. Rev. D, +105(12), 124004. +https://doi.org/10.1103/PhysRevD.105.124004 + + + GRChombo : Numerical Relativity with Adaptive +Mesh Refinement + Clough + Class. Quant. Grav. + 24 + 32 + 10.1088/0264-9381/32/24/245011 + 2015 + Clough, K., Figueras, P., Finkel, H., +Kunesch, M., Lim, E. A., & Tunyasuvunakool, S. (2015). GRChombo : +Numerical Relativity with Adaptive Mesh Refinement. Class. Quant. Grav., +32(24), 245011. +https://doi.org/10.1088/0264-9381/32/24/245011 + + + General Relativistic Collapse to Black Holes +and Gravitational Waves from Black Holes + Nakamura + Prog. Theor. Phys. Suppl. + 90 + 10.1143/PTPS.90.1 + 1987 + Nakamura, T., Oohara, K., & +Kojima, Y. (1987). General Relativistic Collapse to Black Holes and +Gravitational Waves from Black Holes. Prog. Theor. Phys. Suppl., 90, +1–218. https://doi.org/10.1143/PTPS.90.1 + + + Evolution of three-dimensional gravitational +waves: Harmonic slicing case + Shibata + Phys. Rev. D + 52 + 10.1103/PhysRevD.52.5428 + 1995 + Shibata, M., & Nakamura, T. +(1995). Evolution of three-dimensional gravitational waves: Harmonic +slicing case. Phys. Rev. D, 52, 5428–5444. +https://doi.org/10.1103/PhysRevD.52.5428 + + + On the numerical integration of Einstein’s +field equations + Baumgarte + Phys. Rev. D + 59 + 10.1103/PhysRevD.59.024007 + 1998 + Baumgarte, T. W., & Shapiro, S. +L. (1998). On the numerical integration of Einstein’s field equations. +Phys. Rev. D, 59, 024007. +https://doi.org/10.1103/PhysRevD.59.024007 + + + General covariant evolution formalism for +numerical relativity + Bona + Phys. Rev. D + 67 + 10.1103/PhysRevD.67.104005 + 2003 + Bona, C., Ledvinka, T., Palenzuela, +C., & Zacek, M. (2003). General covariant evolution formalism for +numerical relativity. Phys. Rev. D, 67, 104005. +https://doi.org/10.1103/PhysRevD.67.104005 + + + Constraint violation in free evolution +schemes: Comparing BSSNOK with a conformal decomposition of +Z4 + Bernuzzi + Phys. Rev. D + 81 + 10.1103/PhysRevD.81.084003 + 2010 + Bernuzzi, S., & Hilditch, D. +(2010). Constraint violation in free evolution schemes: Comparing BSSNOK +with a conformal decomposition of Z4. Phys. Rev. D, 81, 084003. +https://doi.org/10.1103/PhysRevD.81.084003 + + + Conformal and covariant formulation of the Z4 +system with constraint-violation damping + Alic + Phys. Rev. D + 85 + 10.1103/PhysRevD.85.064040 + 2012 + Alic, D., Bona-Casas, C., Bona, C., +Rezzolla, L., & Palenzuela, C. (2012). Conformal and covariant +formulation of the Z4 system with constraint-violation damping. Phys. +Rev. D, 85, 064040. +https://doi.org/10.1103/PhysRevD.85.064040 + + + Constraint damping of the conformal and +covariant formulation of the Z4 system in simulations of binary neutron +stars + Alic + Phys. Rev. D + 6 + 88 + 10.1103/PhysRevD.88.064049 + 2013 + Alic, D., Kastaun, W., & +Rezzolla, L. (2013). Constraint damping of the conformal and covariant +formulation of the Z4 system in simulations of binary neutron stars. +Phys. Rev. D, 88(6), 064049. +https://doi.org/10.1103/PhysRevD.88.064049 + + + Accurate evolutions of orbiting black-hole +binaries without excision + Campanelli + Phys. Rev. Lett. + 96 + 10.1103/PhysRevLett.96.111101 + 2006 + Campanelli, M., Lousto, C. O., +Marronetti, P., & Zlochower, Y. (2006). Accurate evolutions of +orbiting black-hole binaries without excision. Phys. Rev. Lett., 96, +111101. +https://doi.org/10.1103/PhysRevLett.96.111101 + + + Gravitational wave extraction from an +inspiraling configuration of merging black holes + Baker + Phys. Rev. Lett. + 96 + 10.1103/PhysRevLett.96.111102 + 2006 + Baker, J. G., Centrella, J., Choi, +D.-I., Koppitz, M., & Meter, J. van. (2006). Gravitational wave +extraction from an inspiraling configuration of merging black holes. +Phys. Rev. Lett., 96, 111102. +https://doi.org/10.1103/PhysRevLett.96.111102 + + + New horizons for fundamental physics with +LISA + Arun + Living Rev. Rel. + 1 + 25 + 10.1007/s41114-022-00036-9 + 2022 + Arun, K. G., & others. (2022). +New horizons for fundamental physics with LISA. Living Rev. Rel., 25(1), +4. https://doi.org/10.1007/s41114-022-00036-9 + + + Investigating the relation between +gravitational wave tests of general relativity + Johnson-McDaniel + Phys. Rev. D + 4 + 105 + 10.1103/PhysRevD.105.044020 + 2022 + Johnson-McDaniel, N. K., Ghosh, A., +Ghonge, S., Saleem, M., Krishnendu, N. V., & Clark, J. A. (2022). +Investigating the relation between gravitational wave tests of general +relativity. Phys. Rev. D, 105(4), 044020. +https://doi.org/10.1103/PhysRevD.105.044020 + + + Gravitational wave inference on a +numerical-relativity simulation of a black hole merger beyond general +relativity + Okounkova + Phys. Rev. D + 2 + 107 + 10.1103/PhysRevD.107.024046 + 2023 + Okounkova, M., Isi, M., +Chatziioannou, K., & Farr, W. M. (2023). Gravitational wave +inference on a numerical-relativity simulation of a black hole merger +beyond general relativity. Phys. Rev. D, 107(2), 024046. +https://doi.org/10.1103/PhysRevD.107.024046 + + + Testing General Relativity with Gravitational +Waves: An Overview + Krishnendu + Universe + 12 + 7 + 10.3390/universe7120497 + 2021 + Krishnendu, N. V., & Ohme, F. +(2021). Testing General Relativity with Gravitational Waves: An +Overview. Universe, 7(12), 497. +https://doi.org/10.3390/universe7120497 + + + Tests of General Relativity with +GWTC-3 + Abbott + 10.48550/arXiv.2112.06861 + 2021 + Abbott, R., & others. (2021). +Tests of General Relativity with GWTC-3. +https://doi.org/10.48550/arXiv.2112.06861 + + + Post-Newtonian gravitational and scalar waves +in scalar-GaussBonnet gravity + Shiralilou + Class. Quant. Grav. + 3 + 39 + 10.1088/1361-6382/ac4196 + 2022 + Shiralilou, B., Hinderer, T., +Nissanke, S. M., Ortiz, N., & Witek, H. (2022). Post-Newtonian +gravitational and scalar waves in scalar-GaussBonnet gravity. Class. +Quant. Grav., 39(3), 035002. +https://doi.org/10.1088/1361-6382/ac4196 + + + Numerical relativity simulation of GW150914 +in Einstein dilaton Gauss-Bonnet gravity + Okounkova + Phys. Rev. D + 8 + 102 + 10.1103/PhysRevD.102.084046 + 2020 + Okounkova, M. (2020). Numerical +relativity simulation of GW150914 in Einstein dilaton Gauss-Bonnet +gravity. Phys. Rev. D, 102(8), 084046. +https://doi.org/10.1103/PhysRevD.102.084046 + + + Numerical relativity simulation of GW150914 +beyond general relativity + Okounkova + Phys. Rev. D + 10 + 101 + 10.1103/PhysRevD.101.104016 + 2020 + Okounkova, M., Stein, L. C., Moxon, +J., Scheel, M. A., & Teukolsky, S. A. (2020). Numerical relativity +simulation of GW150914 beyond general relativity. Phys. Rev. D, 101(10), +104016. +https://doi.org/10.1103/PhysRevD.101.104016 + + + Numerical binary black hole collisions in +dynamical Chern-Simons gravity + Okounkova + Phys. Rev. D + 10 + 100 + 10.1103/PhysRevD.100.104026 + 2019 + Okounkova, M., Stein, L. C., Scheel, +M. A., & Teukolsky, S. A. (2019). Numerical binary black hole +collisions in dynamical Chern-Simons gravity. Phys. Rev. D, 100(10), +104026. +https://doi.org/10.1103/PhysRevD.100.104026 + + + Spin-induced dynamical scalarization, +descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a +black hole coalescence + Elley + Phys. Rev. D + 4 + 106 + 10.1103/PhysRevD.106.044018 + 2022 + Elley, M., Silva, H. O., Witek, H., +& Yunes, N. (2022). Spin-induced dynamical scalarization, +descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a +black hole coalescence. Phys. Rev. D, 106(4), 044018. +https://doi.org/10.1103/PhysRevD.106.044018 + + + Dynamical descalarization with a jump during +a black hole merger + Doneva + Phys. Rev. D + 6 + 106 + 10.1103/PhysRevD.106.L061502 + 2022 + Doneva, D. D., Vañó-Viñuales, A., +& Yazadjiev, S. S. (2022). Dynamical descalarization with a jump +during a black hole merger. Phys. Rev. D, 106(6), L061502. +https://doi.org/10.1103/PhysRevD.106.L061502 + + + Improved gravitational-wave constraints on +higher-order curvature theories of gravity + Perkins + Phys. Rev. D + 2 + 104 + 10.1103/PhysRevD.104.024060 + 2021 + Perkins, S. E., Nair, R., Silva, H. +O., & Yunes, N. (2021). Improved gravitational-wave constraints on +higher-order curvature theories of gravity. Phys. Rev. D, 104(2), +024060. +https://doi.org/10.1103/PhysRevD.104.024060 + + + Probing Einstein-dilaton Gauss-Bonnet Gravity +with the inspiral and ringdown of gravitational waves + Carson + Phys. Rev. D + 10 + 101 + 10.1103/PhysRevD.101.104030 + 2020 + Carson, Z., & Yagi, K. (2020). +Probing Einstein-dilaton Gauss-Bonnet Gravity with the inspiral and +ringdown of gravitational waves. Phys. Rev. D, 101(10), 104030. +https://doi.org/10.1103/PhysRevD.101.104030 + + + Probing string-inspired gravity with the +inspiralmergerringdown consistency tests of gravitational +waves + Carson + Class. Quant. Grav. + 21 + 37 + 10.1088/1361-6382/aba221 + 2020 + Carson, Z., & Yagi, K. (2020). +Probing string-inspired gravity with the inspiralmergerringdown +consistency tests of gravitational waves. Class. Quant. Grav., 37(21), +215007. https://doi.org/10.1088/1361-6382/aba221 + + + Black holes and binary mergers in scalar +Gauss-Bonnet gravity: scalar field dynamics + Witek + Phys. Rev. D + 6 + 99 + 10.1103/PhysRevD.99.064035 + 2019 + Witek, H., Gualtieri, L., Pani, P., +& Sotiriou, T. P. (2019). Black holes and binary mergers in scalar +Gauss-Bonnet gravity: scalar field dynamics. Phys. Rev. D, 99(6), +064035. +https://doi.org/10.1103/PhysRevD.99.064035 + + + Black holes, gravitational waves and +fundamental physics: a roadmap + Barack + Class. Quant. Grav. + 14 + 36 + 10.1088/1361-6382/ab0587 + 2019 + Barack, L., & others. (2019). +Black holes, gravitational waves and fundamental physics: a roadmap. +Class. Quant. Grav., 36(14), 143001. +https://doi.org/10.1088/1361-6382/ab0587 + + + Dynamical Descalarization in Binary Black +Hole Mergers + Silva + Phys. Rev. Lett. + 3 + 127 + 10.1103/PhysRevLett.127.031101 + 2021 + Silva, H. O., Witek, H., Elley, M., +& Yunes, N. (2021). Dynamical Descalarization in Binary Black Hole +Mergers. Phys. Rev. Lett., 127(3), 031101. +https://doi.org/10.1103/PhysRevLett.127.031101 + + + Bounding alternative theories of gravity with +multiband GW observations + Gnocchi + Phys. Rev. D + 6 + 100 + 10.1103/PhysRevD.100.064024 + 2019 + Gnocchi, G., Maselli, A., +Abdelsalhin, T., Giacobbo, N., & Mapelli, M. (2019). Bounding +alternative theories of gravity with multiband GW observations. Phys. +Rev. D, 100(6), 064024. +https://doi.org/10.1103/PhysRevD.100.064024 + + + Second-order scalar-tensor field equations in +a four-dimensional space + Horndeski + Int. J. Theor. Phys. + 10 + 10.1007/BF01807638 + 1974 + Horndeski, G. W. (1974). Second-order +scalar-tensor field equations in a four-dimensional space. Int. J. +Theor. Phys., 10, 363–384. +https://doi.org/10.1007/BF01807638 + + + Binary neutron star mergers in +Einstein-scalar-Gauss-Bonnet gravity + East + Phys. Rev. D + 10 + 106 + 10.1103/PhysRevD.106.104055 + 2022 + East, W. E., & Pretorius, F. +(2022). Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet +gravity. Phys. Rev. D, 106(10), 104055. +https://doi.org/10.1103/PhysRevD.106.104055 + + + Nonlinear studies of binary black hole +mergers in Einstein-scalar-Gauss-Bonnet gravity + Corman + Phys. Rev. D + 2 + 107 + 10.1103/PhysRevD.107.024014 + 2023 + Corman, M., Ripley, J. L., & +East, W. E. (2023). Nonlinear studies of binary black hole mergers in +Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D, 107(2), 024014. +https://doi.org/10.1103/PhysRevD.107.024014 + + + Prospects for Fundamental Physics with +LISA + Barausse + Gen. Rel. Grav. + 8 + 52 + 10.1007/s10714-020-02691-1 + 2020 + Barausse, E., & others. (2020). +Prospects for Fundamental Physics with LISA. Gen. Rel. Grav., 52(8), 81. +https://doi.org/10.1007/s10714-020-02691-1 + + + Probing Fundamental Physics with +Gravitational Waves: The Next Generation + Perkins + Phys. Rev. D + 4 + 103 + 10.1103/PhysRevD.103.044024 + 2021 + Perkins, S. E., Yunes, N., & +Berti, E. (2021). Probing Fundamental Physics with Gravitational Waves: +The Next Generation. Phys. Rev. D, 103(4), 044024. +https://doi.org/10.1103/PhysRevD.103.044024 + + + Linking Tests of Gravity On All Scales: from +the Strong-Field Regime to Cosmology + Baker + Astrophys. J. + 802 + 10.1088/0004-637X/802/1/63 + 2015 + Baker, T., Psaltis, D., & +Skordis, C. (2015). Linking Tests of Gravity On All Scales: from the +Strong-Field Regime to Cosmology. Astrophys. J., 802, 63. +https://doi.org/10.1088/0004-637X/802/1/63 + + + Dynamical scalarization during neutron star +mergers in scalar-Gauss-Bonnet theory + Kuan + Phys. Rev. D + 6 + 108 + 10.1103/PhysRevD.108.063033 + 2023 + Kuan, H.-J., Lam, A. T.-L., Doneva, +D. D., Yazadjiev, S. S., Shibata, M., & Kiuchi, K. (2023). Dynamical +scalarization during neutron star mergers in scalar-Gauss-Bonnet theory. +Phys. Rev. D, 108(6), 063033. +https://doi.org/10.1103/PhysRevD.108.063033 + + + Spontaneous scalarization + Doneva + Rev. Mod. Phys. + 1 + 96 + 10.1103/RevModPhys.96.015004 + 2024 + Doneva, D. D., Ramazanoğlu, F. M., +Silva, H. O., Sotiriou, T. P., & Yazadjiev, S. S. (2024). +Spontaneous scalarization. Rev. Mod. Phys., 96(1), 015004. +https://doi.org/10.1103/RevModPhys.96.015004 + + + Black holes in massive dynamical Chern-Simons +gravity: Scalar hair and quasibound states at decoupling + Richards + Phys. Rev. D + 4 + 108 + 10.1103/PhysRevD.108.044078 + 2023 + Richards, C., Dima, A., & Witek, +H. (2023). Black holes in massive dynamical Chern-Simons gravity: Scalar +hair and quasibound states at decoupling. Phys. Rev. D, 108(4), 044078. +https://doi.org/10.1103/PhysRevD.108.044078 + + + How do axisymmetric black holes grow monopole +and dipole hair? + R. + Phys. Rev. D + 10 + 107 + 10.1103/PhysRevD.107.104047 + 2023 + R., A. H. K., Most, E. R., Noronha, +J., Witek, H., & Yunes, N. (2023). How do axisymmetric black holes +grow monopole and dipole hair? Phys. Rev. D, 107(10), 104047. +https://doi.org/10.1103/PhysRevD.107.104047 + + + Tests of general relativity in the nonlinear +regime: A parametrized plunge-merger-ringdown gravitational waveform +model + Maggio + Phys. Rev. D + 2 + 108 + 10.1103/PhysRevD.108.024043 + 2023 + Maggio, E., Silva, H. O., Buonanno, +A., & Ghosh, A. (2023). Tests of general relativity in the nonlinear +regime: A parametrized plunge-merger-ringdown gravitational waveform +model. Phys. Rev. D, 108(2), 024043. +https://doi.org/10.1103/PhysRevD.108.024043 + + + Gravitational Wave Tests of General +Relativity with the Parameterized Post-Einsteinian +Framework + Cornish + Phys. Rev. D + 84 + 10.1103/PhysRevD.84.062003 + 2011 + Cornish, N., Sampson, L., Yunes, N., +& Pretorius, F. (2011). Gravitational Wave Tests of General +Relativity with the Parameterized Post-Einsteinian Framework. Phys. Rev. +D, 84, 062003. +https://doi.org/10.1103/PhysRevD.84.062003 + + + Parametrized and inspiral-merger-ringdown +consistency tests of gravity with multiband gravitational wave +observations + Carson + Phys. Rev. D + 4 + 101 + 10.1103/PhysRevD.101.044047 + 2020 + Carson, Z., & Yagi, K. (2020). +Parametrized and inspiral-merger-ringdown consistency tests of gravity +with multiband gravitational wave observations. Phys. Rev. D, 101(4), +044047. +https://doi.org/10.1103/PhysRevD.101.044047 + + + Where and why does +Einstein-scalar-Gauss-Bonnet theory break down? + R + Phys. Rev. D + 4 + 107 + 10.1103/PhysRevD.107.044044 + 2023 + R, A. H. K., Ripley, J. L., & +Yunes, N. (2023). Where and why does Einstein-scalar-Gauss-Bonnet theory +break down? Phys. Rev. D, 107(4), 044044. +https://doi.org/10.1103/PhysRevD.107.044044 + + + Solving the initial conditions problem for +modified gravity theories + Brady + Phys. Rev. D + 10 + 108 + 10.1103/PhysRevD.108.104022 + 2023 + Brady, S. E., Aresté Saló, L., +Clough, K., Figueras, P., & S., A. P. (2023). Solving the initial +conditions problem for modified gravity theories. Phys. Rev. D, 108(10), +104022. +https://doi.org/10.1103/PhysRevD.108.104022 + + + CTTK: a new method to solve the initial data +constraints in numerical relativity + Aurrekoetxea + Class. Quant. Grav. + 7 + 40 + 10.1088/1361-6382/acb883 + 2023 + Aurrekoetxea, J. C., Clough, K., +& Lim, E. A. (2023). CTTK: a new method to solve the initial data +constraints in numerical relativity. Class. Quant. Grav., 40(7), 075003. +https://doi.org/10.1088/1361-6382/acb883 + + + Testing the limits of scalar-Gauss-Bonnet +gravity through nonlinear evolutions of spin-induced +scalarization + Doneva + Phys. Rev. D + 8 + 108 + 10.1103/PhysRevD.108.084017 + 2023 + Doneva, D. D., Aresté Saló, L., +Clough, K., Figueras, P., & Yazadjiev, S. S. (2023). Testing the +limits of scalar-Gauss-Bonnet gravity through nonlinear evolutions of +spin-induced scalarization. Phys. Rev. D, 108(8), 084017. +https://doi.org/10.1103/PhysRevD.108.084017 + + + Puncture gauge formulation for +Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories +in d+1 spacetime dimensions + Aresté Saló + Phys. Rev. D + 8 + 108 + 10.1103/PhysRevD.108.084018 + 2023 + Aresté Saló, L., Clough, K., & +Figueras, P. (2023). Puncture gauge formulation for +Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories +in d+1 spacetime dimensions. Phys. Rev. D, 108(8), 084018. +https://doi.org/10.1103/PhysRevD.108.084018 + + + Well-Posedness of the Four-Derivative +Scalar-Tensor Theory of Gravity in Singularity Avoiding +Coordinates + Aresté Saló + Phys. Rev. Lett. + 26 + 129 + 10.1103/PhysRevLett.129.261104 + 2022 + Aresté Saló, L., Clough, K., & +Figueras, P. (2022). Well-Posedness of the Four-Derivative Scalar-Tensor +Theory of Gravity in Singularity Avoiding Coordinates. Phys. Rev. Lett., +129(26), 261104. +https://doi.org/10.1103/PhysRevLett.129.261104 + + + Evidence for violations of Weak Cosmic +Censorship in black hole collisions in higher dimensions + Andrade + JHEP + 03 + 10.1007/JHEP03(2022)111 + 2022 + Andrade, T., Figueras, P., & +Sperhake, U. (2022). Evidence for violations of Weak Cosmic Censorship +in black hole collisions in higher dimensions. JHEP, 03, 111. +https://doi.org/10.1007/JHEP03(2022)111 + + + SENR/NRPy+: Numerical Relativity in Singular +Curvilinear Coordinate Systems + Ruchlin + Phys. Rev. D + 6 + 97 + 10.1103/PhysRevD.97.064036 + 2018 + Ruchlin, I., Etienne, Z. B., & +Baumgarte, T. W. (2018). SENR/NRPy+: Numerical Relativity in Singular +Curvilinear Coordinate Systems. Phys. Rev. D, 97(6), 064036. +https://doi.org/10.1103/PhysRevD.97.064036 + + + Chombo software package for AMR applications +- design document + Adams + 2015 + Adams, M., & others. (2015). +Chombo software package for AMR applications - design +document. + + + Hydrodynamics in full general relativity with +conservative AMR + East + Phys. Rev. D + 85 + 10.1103/PhysRevD.85.124010 + 2012 + East, W. E., Pretorius, F., & +Stephens, B. C. (2012). Hydrodynamics in full general relativity with +conservative AMR. Phys. Rev. D, 85, 124010. +https://doi.org/10.1103/PhysRevD.85.124010 + + + The Einstein Toolkit: A Community +Computational Infrastructure for Relativistic +Astrophysics + Loffler + Class. Quant. Grav. + 29 + 10.1088/0264-9381/29/11/115001 + 2012 + Loffler, F., & others. (2012). +The Einstein Toolkit: A Community Computational Infrastructure for +Relativistic Astrophysics. Class. Quant. Grav., 29, 115001. +https://doi.org/10.1088/0264-9381/29/11/115001 + + + Adaptive Mesh Refinement and Relativistic +MHD + Neilsen + 11th Marcel Grossmann Meeting on General +Relativity + 10.1142/9789812834300_0200 + 2007 + Neilsen, D., Hirschmann, E. W., +Anderson, M., & Liebling, S. L. (2007). Adaptive Mesh Refinement and +Relativistic MHD. 11th Marcel Grossmann Meeting on General Relativity, +1579–1581. +https://doi.org/10.1142/9789812834300_0200 + + + Kranc: A Mathematica application to generate +numerical codes for tensorial evolution equations + Husa + Comput. Phys. Commun. + 174 + 10.1016/j.cpc.2006.02.002 + 2006 + Husa, S., Hinder, I., & Lechner, +C. (2006). Kranc: A Mathematica application to generate numerical codes +for tensorial evolution equations. Comput. Phys. Commun., 174, 983–1004. +https://doi.org/10.1016/j.cpc.2006.02.002 + + + Evolutions in 3-D numerical relativity using +fixed mesh refinement + Schnetter + Class. Quant. Grav. + 21 + 10.1088/0264-9381/21/6/014 + 2004 + Schnetter, E., Hawley, S. H., & +Hawke, I. (2004). Evolutions in 3-D numerical relativity using fixed +mesh refinement. Class. Quant. Grav., 21, 1465–1488. +https://doi.org/10.1088/0264-9381/21/6/014 + + + A Multidomain spectral method for solving +elliptic equations + Pfeiffer + Comput. Phys. Commun. + 152 + 10.1016/S0010-4655(02)00847-0 + 2003 + Pfeiffer, H. P., Kidder, L. E., +Scheel, M. A., & Teukolsky, S. A. (2003). A Multidomain spectral +method for solving elliptic equations. Comput. Phys. Commun., 152, +253–273. +https://doi.org/10.1016/S0010-4655(02)00847-0 + + + Adaptive Mesh Refinement for Hyperbolic +Partial Differential Equations + Berger + J. Comput. Phys. + 53 + 10.1016/0021-9991(84)90073-1 + 1984 + Berger, M. J., & Oliger, J. +(1984). Adaptive Mesh Refinement for Hyperbolic Partial Differential +Equations. J. Comput. Phys., 53, 484. +https://doi.org/10.1016/0021-9991(84)90073-1 + + + An algorithm for point clustering and grid +generation + Berger + IEEE Transactions on Systems, Man, and +Cybernetics + 5 + 21 + 10.1109/21.120081 + 1991 + Berger, M., & Rigoutsos, I. +(1991). An algorithm for point clustering and grid generation. IEEE +Transactions on Systems, Man, and Cybernetics, 21(5), 1278–1286. +https://doi.org/10.1109/21.120081 + + + Dynamics of a \mathbb Z_2 symmetric EdGB +gravity in spherical symmetry + Ripley + Class. Quant. Grav. + 15 + 37 + 10.1088/1361-6382/ab9bbb + 2020 + Ripley, J. L., & Pretorius, F. +(2020). Dynamics of a \mathbb Z_2 symmetric EdGB gravity in spherical +symmetry. Class. Quant. Grav., 37(15), 155003. +https://doi.org/10.1088/1361-6382/ab9bbb + + + Gravitational collapse in Einstein +dilaton-GaussBonnet gravity + Ripley + Class. Quant. Grav. + 13 + 36 + 10.1088/1361-6382/ab2416 + 2019 + Ripley, J. L., & Pretorius, F. +(2019). Gravitational collapse in Einstein dilaton-GaussBonnet gravity. +Class. Quant. Grav., 36(13), 134001. +https://doi.org/10.1088/1361-6382/ab2416 + + + Hyperbolicity in Spherical Gravitational +Collapse in a Horndeski Theory + Ripley + Phys. Rev. D + 8 + 99 + 10.1103/PhysRevD.99.084014 + 2019 + Ripley, J. L., & Pretorius, F. +(2019). Hyperbolicity in Spherical Gravitational Collapse in a Horndeski +Theory. Phys. Rev. D, 99(8), 084014. +https://doi.org/10.1103/PhysRevD.99.084014 + + + Scalarized Black Hole dynamics in Einstein +dilaton Gauss-Bonnet Gravity + Ripley + Phys. Rev. D + 4 + 101 + 10.1103/PhysRevD.101.044015 + 2020 + Ripley, J. L., & Pretorius, F. +(2020). Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet +Gravity. Phys. Rev. D, 101(4), 044015. +https://doi.org/10.1103/PhysRevD.101.044015 + + + Measuring the ringdown scalar polarization of +gravitational waves in Einstein-scalar-Gauss-Bonnet +gravity + Evstafyeva + Phys. Rev. D + 12 + 107 + 10.1103/PhysRevD.107.124010 + 2023 + Evstafyeva, T., Agathos, M., & +Ripley, J. L. (2023). Measuring the ringdown scalar polarization of +gravitational waves in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. +D, 107(12), 124010. +https://doi.org/10.1103/PhysRevD.107.124010 + + + Simulating coalescing compact binaries by a +new code SACRA + Yamamoto + Phys. Rev. D + 78 + 10.1103/PhysRevD.78.064054 + 2008 + Yamamoto, T., Shibata, M., & +Taniguchi, K. (2008). Simulating coalescing compact binaries by a new +code SACRA. Phys. Rev. D, 78, 064054. +https://doi.org/10.1103/PhysRevD.78.064054 + + + Sub-radian-accuracy gravitational waveforms +of coalescing binary neutron stars in numerical +relativity + Kiuchi + Phys. Rev. D + 8 + 96 + 10.1103/PhysRevD.96.084060 + 2017 + Kiuchi, K., Kawaguchi, K., Kyutoku, +K., Sekiguchi, Y., Shibata, M., & Taniguchi, K. (2017). +Sub-radian-accuracy gravitational waveforms of coalescing binary neutron +stars in numerical relativity. Phys. Rev. D, 96(8), 084060. +https://doi.org/10.1103/PhysRevD.96.084060 + + + A New Open-Source Code for +Spherically-Symmetric Stellar Collapse to Neutron Stars and Black +Holes + O’Connor + Class. Quant. Grav. + 27 + 10.1088/0264-9381/27/11/114103 + 2010 + O’Connor, E., & Ott, C. D. +(2010). A New Open-Source Code for Spherically-Symmetric Stellar +Collapse to Neutron Stars and Black Holes. Class. Quant. Grav., 27, +114103. +https://doi.org/10.1088/0264-9381/27/11/114103 + + + Numerical simulations of stellar collapse in +scalar-tensor theories of gravity + Gerosa + Class. Quant. Grav. + 13 + 33 + 10.1088/0264-9381/33/13/135002 + 2016 + Gerosa, D., Sperhake, U., & Ott, +C. D. (2016). Numerical simulations of stellar collapse in scalar-tensor +theories of gravity. Class. Quant. Grav., 33(13), 135002. +https://doi.org/10.1088/0264-9381/33/13/135002 + + + What is the Fate of Hawking Evaporation in +Gravity Theories with Higher Curvature Terms? + Corelli + Phys. Rev. Lett. + 9 + 130 + 10.1103/PhysRevLett.130.091501 + 2023 + Corelli, F., De Amicis, M., Ikeda, +T., & Pani, P. (2023). What is the Fate of Hawking Evaporation in +Gravity Theories with Higher Curvature Terms? Phys. Rev. Lett., 130(9), +091501. +https://doi.org/10.1103/PhysRevLett.130.091501 + + + Nonperturbative gedanken experiments in +Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests +of the cosmic censorship beyond general relativity + Corelli + Phys. Rev. D + 4 + 107 + 10.1103/PhysRevD.107.044061 + 2023 + Corelli, F., De Amicis, M., Ikeda, +T., & Pani, P. (2023). Nonperturbative gedanken experiments in +Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests +of the cosmic censorship beyond general relativity. Phys. Rev. D, +107(4), 044061. +https://doi.org/10.1103/PhysRevD.107.044061 + + + Canuda: a public numerical relativity library +to probe fundamental physics + Witek + 10.5281/zenodo.7791842 + 2023 + Witek, H., Zilhao, M., Bozzola, G., +Cheng, C.-H., Dima, A., Elley, M., Ficarra, G., Ikeda, T., Luna, R., +Richards, C., Sanchis-Gual, N., & Silva, H. (2023). Canuda: a public +numerical relativity library to probe fundamental physics. Zenodo. +https://doi.org/10.5281/zenodo.7791842 + + + + + + diff --git a/joss.06369/10.21105.joss.06369.pdf b/joss.06369/10.21105.joss.06369.pdf new file mode 100644 index 0000000000..4476215d5f Binary files /dev/null and b/joss.06369/10.21105.joss.06369.pdf differ diff --git a/joss.06369/paper.jats/10.21105.joss.06369.jats b/joss.06369/paper.jats/10.21105.joss.06369.jats new file mode 100644 index 0000000000..05dab127bd --- /dev/null +++ b/joss.06369/paper.jats/10.21105.joss.06369.jats @@ -0,0 +1,2043 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6369 +10.21105/joss.06369 + +GRFolres: A code for modified gravity simulations in +strong gravity + + + +https://orcid.org/0000-0002-3812-8523 + +Saló +Llibert Aresté + + + + +https://orcid.org/0009-0000-5568-839X + +Brady +Sam E. + + + + +https://orcid.org/0000-0001-8841-1522 + +Clough +Katy + + + + +https://orcid.org/0000-0001-6519-000X + +Doneva +Daniela + + + + +https://orcid.org/0000-0002-2818-701X + +Evstafyeva +Tamara + + + + +https://orcid.org/0000-0001-6438-315X + +Figueras +Pau + + + + +https://orcid.org/0000-0002-1718-151X + +França +Tiago + + + + +https://orcid.org/0000-0001-9653-7088 + +Rossi +Lorenzo + + + + +https://orcid.org/0009-0003-8207-0335 + +Yao +Shunhui + + + + + +School of Mathematical Sciences, Queen Mary University of +London, Mile End Road, London E1 4NS, United Kingdom + + + + +Department of Applied Mathematics and Theoretical Physics +(DAMTP), University of Cambridge, Centre for Mathematical Sciences, +Wilberforce Road, Cambridge CB3 0WA, United Kingdom + + + + +Theoretical Astrophysics, Eberhard Karls University of +Tübingen, Tübingen 72076, Germany + + + +9 +98 +6369 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +C++ +MPI +Open MP +vector intrinsics +gravity +general relativity +numerical relativity + + + + +

The following brief overview has been prepared as part of the +submission of the GRFolres code1 to +the Journal of Open Source Software.

+ + Summary +

Gravitational waves (GWs) are generated by the mergers of dense, + compact objects like black holes (BHs) and neutron stars (NSs). This + provides an opportunity to study the strong field, highly dynamical + regime of Einstein’s theory of general relativity (GR) at higher + curvature scales than previous observations + (Arun + & others, 2022; + T. + Baker et al., 2015; + Barack + & others, 2019; + Barausse + & others, 2020; + Gnocchi + et al., 2019; + Perkins, + Yunes, et al., 2021). It is possible that at such scales + modifications to GR may start to manifest. However, in order to detect + such modifications, we need to understand what deviations could look + like in theories beyond GR, in particular in the merger section of the + signal in near equal mass binaries, which are key targets of the + LIGO-Virgo-KAGRA network of detectors (and their future 3G + successors). Such predictions necessitate the use of numerical + relativity (NR), in which the (modified) equations of GR are evolved + from an initial configuration several orbits before merger, through + the merger period and the subsequent “ringdown”, during which the + gravitational wave signal can be extracted near the computational + boundary.

+

Current waveforms are tested for consistency with GR by measuring + parameterised deviations to the merger, inspiral and ringdown phases + (Abbott + & others, 2021; + Carson + & Yagi, 2020a; + Cornish + et al., 2011; + Krishnendu + & Ohme, 2021; + Maggio + et al., 2023), and not by comparison to any particular + theories. If we obtain predictions for specific models, we can check + whether such parameterised deviations are well-motivated and + consistent in alternative theories of gravity + (Arun + & others, 2022; + Carson + & Yagi, 2020b, + 2020c; + Johnson-McDaniel + et al., 2022; + Okounkova + et al., 2023; + Perkins, + Nair, et al., 2021; + Shiralilou + et al., 2022), and the potential to extract model parameters + from data.

+

There are many ways to modify GR, one of the simplest being to + couple an additional scalar degree of freedom, which may (if certain + conditions are satisfied) result in so-called “hairy” stationary black + hole solutions; that is, black holes with a stable, non trivial + configuration of the scalar field around them (see + (Doneva + et al., 2024) for a review). An example of this is the class of + Horndeski models + (Horndeski, + 1974). Cubic Horndeski theories have been studied in Figueras + & França + (2022) + and an implementation of this is included in GRFolres. Another more + general example within the Horndeski models is the four-derivative + scalar-tensor theory ( + + 4ST), + which is the most general theory with up to fourth powers of the + derivatives (but still second order equations of motion). Despite + their relative simplicity, they have lacked well-posed (and thus + numerically stable) formulations until relatively recently.

+

An important breakthrough was made in 2020 by Kov'acs and Reall, + who showed that Horndeski theories are indeed well-posed in a modified + version of the harmonic gauge + (Kovács + & Reall, 2020b, + 2020a) + – a particular coordinate system already used in NR. Subsequently, + several specific theories within these classes were probed in their + highly dynamical and fully non-linear regimes + (Corman + et al., 2023; + East + & Pretorius, 2022; + East + & Ripley, 2021b, + 2021a). + The extension of the results of + (Kovács + & Reall, 2020b, + 2020a) + to the alternative “singularity avoiding” coordinates in + (Aresté + Saló et al., 2022, + 2023; + Doneva + et al., 2023) offers an alternative gauge in which to probe + questions of hyperbolicity, and may offer stability advantages for + certain cases such as unequal mass ratios, as studied in + (Corman + et al., 2023). Numerical work on these theories is still in the + early stages of development and many technical details on their + numerical implementation need to be further investigated. Equally, + many scientific questions, concerning our accurate understanding of + binary—black-hole phenomenology in alternative theories of gravity and + their implications for tests of GR, also remain unanswered.

+

The goal of GRFolres is to meet this need for further research, and + to provide a model code to help others develop and test their own + implementations. The code is based on the publicly available NR code + GRChombo + (Andrade + et al., 2022; + Clough + et al., 2015), which itself uses the open source Chombo + framework + (Adams + & others, 2015) for solving partial differential equations + (PDEs).

+

In the following sections we discuss the key features, motivations, + and applications of the code.

+
+ + Key features +

GRFolres inherits many of the features of GRChombo and Chombo. Here + we list the key features.

+ + +

Stable gauge evolution - The code implements the modified + moving puncture gauge that ensures a well-posed evolution in the + weak coupling regime, as proposed in + (Aresté + Saló et al., 2022). The precise form of the gauge and its + parameters can be changed and the standard moving puncture gauge + is safely recovered by setting certain parameters to zero.

+
+ +

Modified gravity theories - The currently available theories in + the code are 4 + + ST + and cubic Horndeski. The code is templated over the theory (in the + same way that GRChombo is templated over a matter class) so that + it can easily be changed without major code modifications. The + code also provides an implementation of + 4 + + ST + without backreaction onto the metric (but including the + possibility of using the new gauge), to enable comparison with + previous works using the decoupling limit approximation.

+
+ +

Accuracy - The fields are evolved with a 4th order Runge-Kutta + time integration and their derivatives calculated with the same + finite difference stencils used in GRChombo (4th and 6th order are + currently available).

+
+ +

Boundary Conditions - GRFolres inherits all the available + boundary conditions in GRChombo, namely, extrapolating, Sommerfeld + (radiative), reflective and periodic.

+
+ +

Initial Conditions - The current examples use solutions that + approximately or trivially solve the modified energy and momentum + constraints of the theory. An elliptic solver for more general + configurations is under development, using a modified CTTK + formalism + (Aurrekoetxea + et al., 2023; + Brady + et al., 2023).

+
+ +

Diagnostics - GRFolres has routines for monitoring the + constraint violation and calculating the energy densities + associated with the different scalar terms in the action, as + discussed in + (Aresté + Saló et al., 2022, + 2023; + Doneva + et al., 2023). Other diagnostics can be added as required. + We also extract data for the tensor and scalar gravitational + waveforms.

+
+ +

C++ class structure - Following the structure of GRChombo, the + GRFolres code is also written in C++ and uses object oriented + programming (OOP) and templating.

+
+ +

Parallelism - GRChombo uses hybrid OpenMP/MPI parallelism with + explicit vectorisation of the evolution equations via intrinsics, + and is AVX-512 compliant.

+
+ +

Adaptive Mesh Refinement - The code inherits the flexible AMR + grid structure of Chombo, which provides Berger-Oliger style + (M. + J. Berger & Oliger, 1984) AMR with block-structured + Berger-Rigoutsos grid generation + (M. + Berger & Rigoutsos, 1991). Depending on the problem, + the user may specify the refinement to be triggered by the + additional degrees of freedom, i.e. the scalar field, or those of + the metric tensor.

+
+
+
+ + Statement of Need +

As far as we are aware there is currently no other publicly + available code that implements the + + 4ST + theory of modified gravity or the cubic Horndeski theory in + (3+1)-dimensional numerical relativity.

+

There is at least one private code, based on the PAMR/AMRD and HAD + (East + et al., 2012; + Neilsen + et al., 2007) infrastructure, that was used in the first works + to successfully implement the modified general harmonic gauge for + + + 4ST + (Corman + et al., 2023; + East + & Pretorius, 2022; + East + & Ripley, 2021b, + 2021a). + Since this code uses a Generalised Harmonic Coordinates (GHC) + formulation, it necessitates excision of the interior of black holes, + which can be difficult to implement in practice. As a consequence, + many groups in the numerical relativity community have opted to use + singularity avoiding coordinates such as the BSSN + (Baumgarte + & Shapiro, 1998; + Nakamura + et al., 1987; + Shibata + & Nakamura, 1995), Z4C + (Bernuzzi + & Hilditch, 2010; + Bona + et al., 2003) or CCZ4 + (Alic + et al., 2012, + 2013) + formulations in the puncture gauge + (J. + G. Baker et al., 2006; + Campanelli + et al., 2006), which do not require the excision of the + interior of black holes from the computational domain. In GRFolres, we + use the results of + (Aresté + Saló et al., 2022, + 2023; + Doneva + et al., 2023) to extend the well-posed formulations of modified + gravity to singularity avoiding coordinates. This provides an + alternative gauge to the modified GHC one used by other groups. Not + only does this provide a valuable comparison to their work, but also + eliminates the need for excision.

+

There are also a number of (3+1)-dimensional codes that implement + the equations for the additional scalar degree of freedom in + Einstein-scalar-Gauss-Bonnet without backreaction onto the metric + tensor, including one implementation using GRChombo + (Evstafyeva + et al., 2023), which we have integrated into GRFolres to enable + comparison between the methods. In particular, Canuda + (https://bitbucket.org/canuda) + (Witek + et al., 2019, + 2023) + which uses the Einstein Toolkit (http://einsteintoolkit.org/), with + its related Cactus (http://cactuscode.org) + (Loffler + & others, 2012; + Schnetter + et al., 2004) and Kranc (http://kranccode.org) + (Husa + et al., 2006) infrastructure, was used in + (Elley + et al., 2022; + R. + et al., 2023; + Richards + et al., 2023; + Silva + et al., 2021; + Witek + et al., 2019). Another implementation is based on the Spectral + Einstein Code or SpEC (http://www.black-holes.org/SpEC.html) + (Pfeiffer + et al., 2003), as used in + (Okounkova, + 2020). A neutron star background was considered in + (Kuan + et al., 2023) with a modification of SACRA-MPI code + (Kiuchi + et al., 2017; + Yamamoto + et al., 2008). Whilst order-reduced methods like those in + (Doneva + et al., 2022; + Elley + et al., 2022; + Evstafyeva + et al., 2023; + Okounkova + et al., 2019, + 2020, + 2023; + Okounkova, + 2020; + R. + et al., 2023; + Richards + et al., 2023; + Silva + et al., 2021; + Witek + et al., 2019) provide an estimate of the scalar dynamics and + associated energy losses, they may miss information about the fully + non-linear impact on the metric and suffer from the accumulation of + secular errors over long inspirals.

+

In spherical symmetry several codes have been developed that + implement Einstein-scalar-Gauss-Bonnet (a subset of the + + + 4ST + theory that we include as an example in GRFolres). In particular, + using the NRPy framework (http://astro.phys.wvu.edu/bhathome) + (Ruchlin + et al., 2018) in + (Doneva + et al., 2022), and the private code of Ripley & Pretorius + in + (R + et al., 2023; + Ripley + & Pretorius, 2019a, + 2019b, + 2020a, + 2020b), + and a modification of the GR1D code + (Gerosa + et al., 2016; + O’Connor + & Ott, 2010). There is also the fully nonlinear spherical + code developed in + (Corelli + et al., 2023b, + 2023a). + Spherical codes provide a useful testing ground in which coordinate + ambiguities can be avoided + (R + et al., 2023), but lack the generality required to study + objects with angular momentum, or binary mergers.

+
+ + Research projects to date using GRFolres +

So far the code has been used to study a range of fundamental + physics problems, as listed here.

+ + +

The test field case was used in + (Evstafyeva + et al., 2023) to model the scalar waves produced during the + ringdown stage of binary black hole coalescence in + Einstein-scalar-Gauss-Bonnet, and quantify the extent to which + current and future gravitational wave detectors could observe the + spectrum of scalar radiation emitted.

+
+
+ +

Contour plot of network signal-to-noise ratio (SNR) for + the scalar ringdown of a binary black hole (BBH) in + Einstein-scalar-Gauss-Bonnet gravity at 1 Gpc as observed by the + Virgo, Livingston and Hanford network of detectors at design + sensitivity. Taken from + (Evstafyeva + et al., + 2023).

+ +
+ + +

The regime of validity of effective field theory in collapse + and binary evolutions in cubic Horndeski theories were studied in + (Figueras + & França, 2020, + 2022). + It was found that the mismatch of the gravitational wave strain + can be as large as 10%–13% in the Advanced LIGO mass range for + such theories.

+
+
+ +

Energy density (in blue) of the scalar field surrounding + the binary black holes for the Horndeski theory at a representative + instant of time during the inspiral phase. The apparent horizon of + the black holes is shown in orange. The region where the weak + coupling conditions are larger than one is depicted in brown. Taken + from + (Figueras + & França, + 2022).

+ +
+ + +

In + (Aresté + Saló et al., 2022), the code was developed and tested, with + waveforms for shift-symmetric theories of + Einstein-scalar-Gauss-Bonnet gravity produced for equal mass + binaries.

+
+
+ +

Modified gravity waveforms in + + + 4ST + with a shift-symmetric coupling. Taken from + (Aresté + Saló et al., + 2022).

+ +
+ + +

In + (Aresté + Saló et al., 2023), the studies were extended to binary + mergers in theories with spin-induced scalarisation. The clouds + formed are dumbbell-like in shape.

+
+
+ +

The time evolution of the density of the scalar cloud + that develops in Einstein-scalar-Gauss-Bonnet gravity with an + exponential coupling, resulting in spin-induced scalarisation. Taken + from + (Aresté + Saló et al., + 2023).

+ +
+ + +

In + (Doneva + et al., 2023), the dependence of the conditions for + hyperbolicity and weak coupling were studied for spin-induced + scalarisation, and the critical thresholds found for a number of + cases.

+
+
+ +

The time evolution of the determinant of the effective + metric in a case of spin-induced scalarisation. When the determinant + is negative (in black) outside the apparent horizon (depicted with a + dashed white line), the theory has become ill-posed. Taken from + (Doneva + et al., + 2023).

+ +
+
+ + Acknowledgements +

We thank the entire GRChombo (www.grchombo.org) collaboration for + their support and code development work. PF and KC are supported by an + STFC Research Grant ST/X000931/1 (Astronomy at Queen Mary 2023-2026). + PF is supported by a Royal Society University Research Fellowship + No. URF\R\201026, and No. RF\ERE\210291. KC is supported by an STFC + Ernest Rutherford fellowship, project reference ST/V003240/1. LAS is + supported by a QMUL Ph.D. scholarship. SB is supported by a QMUL + Principal studentship. DD acknowledges financial support via an Emmy + Noether Research Group funded by the German Research Foundation (DFG) + under grant no. DO 1771/1-1. LR is supported by a Royal Society + Renewal Grant, No. URF\R\201026, and a Research Expenses Enhancement + Award, No. RF\ERE\210291. TE is supported by the Centre for Doctoral + Training (CDT) at the University of Cambridge funded through STFC. SY + acknowledges the support from China Scholarship Council.

+

Development of the code used in this work utilised the ARCHER2 UK + National Supercomputing Service (https://www.archer2.ac.uk) under the + EPSRC HPC project no. E775, the CSD3 cluster in Cambridge under + Projects No. DP128. The Cambridge Service for Data Driven Discovery + (CSD3), partially operated by the University of Cambridge Research + Computing on behalf of the STFC DiRAC HPC Facility. The DiRAC + component of CSD3 is funded by BEIS capital via STFC capital Grants + No. ST/P002307/1 and No. ST/ R002452/1 and STFC operations Grant + No. ST/R00689X/1. DiRAC is part of the National e-Infrastructure + (www.dirac.ac.uk). Calculations were also performed using the Sulis + Tier 2 HPC platform hosted by the Scientific Computing Research + Technology Platform at the University of Warwick. Sulis is funded by + EPSRC Grant EP/T022108/1 and the HPC Midlands+ consortium. This + research has also utilised Queen Mary’s Apocrita HPC facility, + supported by QMUL Research-IT. This study is in part financed by the + European Union-NextGenerationEU, through the National Recovery and + Resilience Plan of the Republic of Bulgaria, project + No. BG-RRP-2.004-0008-C01. We acknowledge Discoverer PetaSC and + EuroHPC JU for awarding this project access to Discoverer + supercomputer resources.

+
+ + + + + + + + EastWilliam E. + RipleyJustin L. + + Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation + Phys. Rev. D + 2021 + 103 + 4 + https://arxiv.org/abs/2011.03547 + 10.1103/PhysRevD.103.044040 + 044040 + + + + + + + EastWilliam E. + RipleyJustin L. + + Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity + Phys. Rev. Lett. + 2021 + 127 + 10 + https://arxiv.org/abs/2105.08571 + 10.1103/PhysRevLett.127.101102 + 101102 + + + + + + + KovácsÁron D. + ReallHarvey S. + + Well-Posed Formulation of Scalar-Tensor Effective Field Theory + Phys. Rev. Lett. + 2020 + 124 + 22 + https://arxiv.org/abs/2003.04327 + 10.1103/PhysRevLett.124.221101 + 221101 + + + + + + + KovácsÁron D. + ReallHarvey S. + + Well-posed formulation of Lovelock and Horndeski theories + Phys. Rev. D + 2020 + 101 + 12 + https://arxiv.org/abs/2003.08398 + 10.1103/PhysRevD.101.124003 + 124003 + + + + + + + FiguerasPau + FrançaTiago + + Gravitational Collapse in Cubic Horndeski Theories + Class. Quant. Grav. + 2020 + 37 + 22 + https://arxiv.org/abs/2006.09414 + 10.1088/1361-6382/abb693 + 225009 + + + + + + + FiguerasPau + FrançaTiago + + Black hole binaries in cubic Horndeski theories + Phys. Rev. D + 2022 + 105 + 12 + https://arxiv.org/abs/2112.15529 + 10.1103/PhysRevD.105.124004 + 124004 + + + + + + + CloughKaty + FiguerasPau + FinkelHal + KuneschMarkus + LimEugene A. + TunyasuvunakoolSaran + + GRChombo : Numerical Relativity with Adaptive Mesh Refinement + Class. Quant. Grav. + 2015 + 32 + 24 + https://arxiv.org/abs/1503.03436 + 10.1088/0264-9381/32/24/245011 + 245011 + + + + + + + NakamuraT. + OoharaK. + KojimaY. + + General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes + Prog. Theor. Phys. Suppl. + 1987 + 90 + 10.1143/PTPS.90.1 + 1 + 218 + + + + + + ShibataMasaru + NakamuraTakashi + + Evolution of three-dimensional gravitational waves: Harmonic slicing case + Phys. Rev. D + 1995 + 52 + 10.1103/PhysRevD.52.5428 + 5428 + 5444 + + + + + + BaumgarteThomas W. + ShapiroStuart L. + + On the numerical integration of Einstein’s field equations + Phys. Rev. D + 1998 + 59 + https://arxiv.org/abs/gr-qc/9810065 + 10.1103/PhysRevD.59.024007 + 024007 + + + + + + + BonaC. + LedvinkaT. + PalenzuelaC. + ZacekM. + + General covariant evolution formalism for numerical relativity + Phys. Rev. D + 2003 + 67 + https://arxiv.org/abs/gr-qc/0302083 + 10.1103/PhysRevD.67.104005 + 104005 + + + + + + + BernuzziSebastiano + HilditchDavid + + Constraint violation in free evolution schemes: Comparing BSSNOK with a conformal decomposition of Z4 + Phys. Rev. D + 2010 + 81 + https://arxiv.org/abs/0912.2920 + 10.1103/PhysRevD.81.084003 + 084003 + + + + + + + AlicDaniela + Bona-CasasCarles + BonaCarles + RezzollaLuciano + PalenzuelaCarlos + + Conformal and covariant formulation of the Z4 system with constraint-violation damping + Phys. Rev. D + 2012 + 85 + https://arxiv.org/abs/1106.2254 + 10.1103/PhysRevD.85.064040 + 064040 + + + + + + + AlicDaniela + KastaunWolfgang + RezzollaLuciano + + Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars + Phys. Rev. D + 2013 + 88 + 6 + https://arxiv.org/abs/1307.7391 + 10.1103/PhysRevD.88.064049 + 064049 + + + + + + + CampanelliManuela + LoustoC. O. + MarronettiP. + ZlochowerY. + + Accurate evolutions of orbiting black-hole binaries without excision + Phys. Rev. Lett. + 2006 + 96 + https://arxiv.org/abs/gr-qc/0511048 + 10.1103/PhysRevLett.96.111101 + 111101 + + + + + + + BakerJohn G. + CentrellaJoan + ChoiDae-Il + KoppitzMichael + MeterJames van + + Gravitational wave extraction from an inspiraling configuration of merging black holes + Phys. Rev. Lett. + 2006 + 96 + https://arxiv.org/abs/gr-qc/0511103 + 10.1103/PhysRevLett.96.111102 + 111102 + + + + + + + ArunK. G. + others + + New horizons for fundamental physics with LISA + Living Rev. Rel. + 2022 + 25 + 1 + https://arxiv.org/abs/2205.01597 + 10.1007/s41114-022-00036-9 + 4 + + + + + + + Johnson-McDanielNathan K. + GhoshAbhirup + GhongeSudarshan + SaleemMuhammed + KrishnenduN. V. + ClarkJames A. + + Investigating the relation between gravitational wave tests of general relativity + Phys. Rev. D + 2022 + 105 + 4 + https://arxiv.org/abs/2109.06988 + 10.1103/PhysRevD.105.044020 + 044020 + + + + + + + OkounkovaMaria + IsiMaximiliano + ChatziioannouKaterina + FarrWill M. + + Gravitational wave inference on a numerical-relativity simulation of a black hole merger beyond general relativity + Phys. Rev. D + 2023 + 107 + 2 + https://arxiv.org/abs/2208.02805 + 10.1103/PhysRevD.107.024046 + 024046 + + + + + + + KrishnenduN. V. + OhmeFrank + + Testing General Relativity with Gravitational Waves: An Overview + Universe + 2021 + 7 + 12 + https://arxiv.org/abs/2201.05418 + 10.3390/universe7120497 + 497 + + + + + + + AbbottR. + others + + Tests of General Relativity with GWTC-3 + + 202112 + https://arxiv.org/abs/2112.06861 + 10.48550/arXiv.2112.06861 + + + + + + ShiralilouBanafsheh + HindererTanja + NissankeSamaya M. + OrtizNéstor + WitekHelvi + + Post-Newtonian gravitational and scalar waves in scalar-GaussBonnet gravity + Class. Quant. Grav. + 2022 + 39 + 3 + https://arxiv.org/abs/2105.13972 + 10.1088/1361-6382/ac4196 + 035002 + + + + + + + OkounkovaMaria + + Numerical relativity simulation of GW150914 in Einstein dilaton Gauss-Bonnet gravity + Phys. Rev. D + 2020 + 102 + 8 + https://arxiv.org/abs/2001.03571 + 10.1103/PhysRevD.102.084046 + 084046 + + + + + + + OkounkovaMaria + SteinLeo C. + MoxonJordan + ScheelMark A. + TeukolskySaul A. + + Numerical relativity simulation of GW150914 beyond general relativity + Phys. Rev. D + 2020 + 101 + 10 + https://arxiv.org/abs/1911.02588 + 10.1103/PhysRevD.101.104016 + 104016 + + + + + + + OkounkovaMaria + SteinLeo C. + ScheelMark A. + TeukolskySaul A. + + Numerical binary black hole collisions in dynamical Chern-Simons gravity + Phys. Rev. D + 2019 + 100 + 10 + https://arxiv.org/abs/1906.08789 + 10.1103/PhysRevD.100.104026 + 104026 + + + + + + + ElleyMatthew + SilvaHector O. + WitekHelvi + YunesNicolás + + Spin-induced dynamical scalarization, descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole coalescence + Phys. Rev. D + 2022 + 106 + 4 + https://arxiv.org/abs/2205.06240 + 10.1103/PhysRevD.106.044018 + 044018 + + + + + + + DonevaDaniela D. + Vañó-ViñualesAlex + YazadjievStoytcho S. + + Dynamical descalarization with a jump during a black hole merger + Phys. Rev. D + 2022 + 106 + 6 + https://arxiv.org/abs/2204.05333 + 10.1103/PhysRevD.106.L061502 + L061502 + + + + + + + PerkinsScott E. + NairRemya + SilvaHector O. + YunesNicolas + + Improved gravitational-wave constraints on higher-order curvature theories of gravity + Phys. Rev. D + 2021 + 104 + 2 + https://arxiv.org/abs/2104.11189 + 10.1103/PhysRevD.104.024060 + 024060 + + + + + + + CarsonZack + YagiKent + + Probing Einstein-dilaton Gauss-Bonnet Gravity with the inspiral and ringdown of gravitational waves + Phys. Rev. D + 2020 + 101 + 10 + https://arxiv.org/abs/2003.00286 + 10.1103/PhysRevD.101.104030 + 104030 + + + + + + + CarsonZack + YagiKent + + Probing string-inspired gravity with the inspiralmergerringdown consistency tests of gravitational waves + Class. Quant. Grav. + 2020 + 37 + 21 + https://arxiv.org/abs/2002.08559 + 10.1088/1361-6382/aba221 + 215007 + + + + + + + WitekHelvi + GualtieriLeonardo + PaniPaolo + SotiriouThomas P. + + Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics + Phys. Rev. D + 2019 + 99 + 6 + https://arxiv.org/abs/1810.05177 + 10.1103/PhysRevD.99.064035 + 064035 + + + + + + + BarackLeor + others + + Black holes, gravitational waves and fundamental physics: a roadmap + Class. Quant. Grav. + 2019 + 36 + 14 + https://arxiv.org/abs/1806.05195 + 10.1088/1361-6382/ab0587 + 143001 + + + + + + + SilvaHector O. + WitekHelvi + ElleyMatthew + YunesNicolás + + Dynamical Descalarization in Binary Black Hole Mergers + Phys. Rev. Lett. + 2021 + 127 + 3 + https://arxiv.org/abs/2012.10436 + 10.1103/PhysRevLett.127.031101 + 031101 + + + + + + + GnocchiGiuseppe + MaselliAndrea + AbdelsalhinTiziano + GiacobboNicola + MapelliMichela + + Bounding alternative theories of gravity with multiband GW observations + Phys. Rev. D + 2019 + 100 + 6 + https://arxiv.org/abs/1905.13460 + 10.1103/PhysRevD.100.064024 + 064024 + + + + + + + HorndeskiGregory Walter + + Second-order scalar-tensor field equations in a four-dimensional space + Int. J. Theor. Phys. + 1974 + 10 + 10.1007/BF01807638 + 363 + 384 + + + + + + EastWilliam E. + PretoriusFrans + + Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet gravity + Phys. Rev. D + 2022 + 106 + 10 + https://arxiv.org/abs/2208.09488 + 10.1103/PhysRevD.106.104055 + 104055 + + + + + + + CormanMaxence + RipleyJustin L. + EastWilliam E. + + Nonlinear studies of binary black hole mergers in Einstein-scalar-Gauss-Bonnet gravity + Phys. Rev. D + 2023 + 107 + 2 + https://arxiv.org/abs/2210.09235 + 10.1103/PhysRevD.107.024014 + 024014 + + + + + + + BarausseEnrico + others + + Prospects for Fundamental Physics with LISA + Gen. Rel. Grav. + 2020 + 52 + 8 + https://arxiv.org/abs/2001.09793 + 10.1007/s10714-020-02691-1 + 81 + + + + + + + PerkinsScott E. + YunesNicolás + BertiEmanuele + + Probing Fundamental Physics with Gravitational Waves: The Next Generation + Phys. Rev. D + 2021 + 103 + 4 + https://arxiv.org/abs/2010.09010 + 10.1103/PhysRevD.103.044024 + 044024 + + + + + + + BakerTessa + PsaltisDimitrios + SkordisConstantinos + + Linking Tests of Gravity On All Scales: from the Strong-Field Regime to Cosmology + Astrophys. J. + 2015 + 802 + https://arxiv.org/abs/1412.3455 + 10.1088/0004-637X/802/1/63 + 63 + + + + + + + KuanHao-Jui + LamAlan Tsz-Lok + DonevaDaniela D. + YazadjievStoytcho S. + ShibataMasaru + KiuchiKenta + + Dynamical scalarization during neutron star mergers in scalar-Gauss-Bonnet theory + Phys. Rev. D + 2023 + 108 + 6 + https://arxiv.org/abs/2302.11596 + 10.1103/PhysRevD.108.063033 + 063033 + + + + + + + DonevaDaniela D. + RamazanoğluFethi M. + SilvaHector O. + SotiriouThomas P. + YazadjievStoytcho S. + + Spontaneous scalarization + Rev. Mod. Phys. + 2024 + 96 + 1 + https://arxiv.org/abs/2211.01766 + 10.1103/RevModPhys.96.015004 + 015004 + + + + + + + RichardsChloe + DimaAlexandru + WitekHelvi + + Black holes in massive dynamical Chern-Simons gravity: Scalar hair and quasibound states at decoupling + Phys. Rev. D + 2023 + 108 + 4 + https://arxiv.org/abs/2305.07704 + 10.1103/PhysRevD.108.044078 + 044078 + + + + + + + R.Abhishek Hegade K. + MostElias R. + NoronhaJorge + WitekHelvi + YunesNicolás + + How do axisymmetric black holes grow monopole and dipole hair? + Phys. Rev. D + 2023 + 107 + 10 + https://arxiv.org/abs/2212.02039 + 10.1103/PhysRevD.107.104047 + 104047 + + + + + + + MaggioElisa + SilvaHector O. + BuonannoAlessandra + GhoshAbhirup + + Tests of general relativity in the nonlinear regime: A parametrized plunge-merger-ringdown gravitational waveform model + Phys. Rev. D + 2023 + 108 + 2 + https://arxiv.org/abs/2212.09655 + 10.1103/PhysRevD.108.024043 + 024043 + + + + + + + CornishNeil + SampsonLaura + YunesNicolas + PretoriusFrans + + Gravitational Wave Tests of General Relativity with the Parameterized Post-Einsteinian Framework + Phys. Rev. D + 2011 + 84 + https://arxiv.org/abs/1105.2088 + 10.1103/PhysRevD.84.062003 + 062003 + + + + + + + CarsonZack + YagiKent + + Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations + Phys. Rev. D + 2020 + 101 + 4 + https://arxiv.org/abs/1911.05258 + 10.1103/PhysRevD.101.044047 + 044047 + + + + + + + RAbhishek Hegade K. + RipleyJustin L. + YunesNicolás + + Where and why does Einstein-scalar-Gauss-Bonnet theory break down? + Phys. Rev. D + 2023 + 107 + 4 + https://arxiv.org/abs/2211.08477 + 10.1103/PhysRevD.107.044044 + 044044 + + + + + + + BradySam E. + Aresté SalóLlibert + CloughKaty + FiguerasPau + S.Annamalai P. + + Solving the initial conditions problem for modified gravity theories + Phys. Rev. D + 2023 + 108 + 10 + https://arxiv.org/abs/2308.16791 + 10.1103/PhysRevD.108.104022 + 104022 + + + + + + + AurrekoetxeaJosu C. + CloughKaty + LimEugene A. + + CTTK: a new method to solve the initial data constraints in numerical relativity + Class. Quant. Grav. + 2023 + 40 + 7 + https://arxiv.org/abs/2207.03125 + 10.1088/1361-6382/acb883 + 075003 + + + + + + + DonevaDaniela D. + Aresté SalóLlibert + CloughKaty + FiguerasPau + YazadjievStoytcho S. + + Testing the limits of scalar-Gauss-Bonnet gravity through nonlinear evolutions of spin-induced scalarization + Phys. Rev. D + 2023 + 108 + 8 + https://arxiv.org/abs/2307.06474 + 10.1103/PhysRevD.108.084017 + 084017 + + + + + + + Aresté SalóLlibert + CloughKaty + FiguerasPau + + Puncture gauge formulation for Einstein-Gauss-Bonnet gravity and four-derivative scalar-tensor theories in d+1 spacetime dimensions + Phys. Rev. D + 2023 + 108 + 8 + https://arxiv.org/abs/2306.14966 + 10.1103/PhysRevD.108.084018 + 084018 + + + + + + + Aresté SalóLlibert + CloughKaty + FiguerasPau + + Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates + Phys. Rev. Lett. + 2022 + 129 + 26 + https://arxiv.org/abs/2208.14470 + 10.1103/PhysRevLett.129.261104 + 261104 + + + + + + + AndradeTomas + FiguerasPau + SperhakeUlrich + + Evidence for violations of Weak Cosmic Censorship in black hole collisions in higher dimensions + JHEP + 2022 + 03 + https://arxiv.org/abs/2011.03049 + 10.1007/JHEP03(2022)111 + 111 + + + + + + + RuchlinIan + EtienneZachariah B. + BaumgarteThomas W. + + SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems + Phys. Rev. D + 2018 + 97 + 6 + https://arxiv.org/abs/1712.07658 + 10.1103/PhysRevD.97.064036 + 064036 + + + + + + + AdamsM. + others + + Chombo software package for AMR applications - design document + + 201512 + + + + + + EastWilliam E. + PretoriusFrans + StephensBranson C. + + Hydrodynamics in full general relativity with conservative AMR + Phys. Rev. D + 2012 + 85 + https://arxiv.org/abs/1112.3094 + 10.1103/PhysRevD.85.124010 + 124010 + + + + + + + LofflerFrank + others + + The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics + Class. Quant. Grav. + 2012 + 29 + https://arxiv.org/abs/1111.3344 + 10.1088/0264-9381/29/11/115001 + 115001 + + + + + + + NeilsenDavid + HirschmannEric W. + AndersonMatthew + LieblingSteven L. + + Adaptive Mesh Refinement and Relativistic MHD + 11th Marcel Grossmann Meeting on General Relativity + 200702 + https://arxiv.org/abs/gr-qc/0702035 + 10.1142/9789812834300_0200 + 1579 + 1581 + + + + + + HusaSascha + HinderIan + LechnerChristiane + + Kranc: A Mathematica application to generate numerical codes for tensorial evolution equations + Comput. Phys. Commun. + 2006 + 174 + https://arxiv.org/abs/gr-qc/0404023 + 10.1016/j.cpc.2006.02.002 + 983 + 1004 + + + + + + SchnetterErik + HawleyScott H. + HawkeIan + + Evolutions in 3-D numerical relativity using fixed mesh refinement + Class. Quant. Grav. + 2004 + 21 + https://arxiv.org/abs/gr-qc/0310042 + 10.1088/0264-9381/21/6/014 + 1465 + 1488 + + + + + + PfeifferHarald P. + KidderLawrence E. + ScheelMark A. + TeukolskySaul A. + + A Multidomain spectral method for solving elliptic equations + Comput. Phys. Commun. + 2003 + 152 + https://arxiv.org/abs/gr-qc/0202096 + 10.1016/S0010-4655(02)00847-0 + 253 + 273 + + + + + + BergerMarsha J. + OligerJoseph + + Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations + J. Comput. Phys. + 1984 + 53 + 10.1016/0021-9991(84)90073-1 + 484 + + + + + + + BergerM. + RigoutsosI. + + An algorithm for point clustering and grid generation + IEEE Transactions on Systems, Man, and Cybernetics + 1991 + 21 + 5 + 10.1109/21.120081 + 1278 + 1286 + + + + + + RipleyJustin L. + PretoriusFrans + + Dynamics of a \mathbb Z_2 symmetric EdGB gravity in spherical symmetry + Class. Quant. Grav. + 2020 + 37 + 15 + https://arxiv.org/abs/2005.05417 + 10.1088/1361-6382/ab9bbb + 155003 + + + + + + + RipleyJustin L. + PretoriusFrans + + Gravitational collapse in Einstein dilaton-GaussBonnet gravity + Class. Quant. Grav. + 2019 + 36 + 13 + https://arxiv.org/abs/1903.07543 + 10.1088/1361-6382/ab2416 + 134001 + + + + + + + RipleyJustin L. + PretoriusFrans + + Hyperbolicity in Spherical Gravitational Collapse in a Horndeski Theory + Phys. Rev. D + 2019 + 99 + 8 + https://arxiv.org/abs/1902.01468 + 10.1103/PhysRevD.99.084014 + 084014 + + + + + + + RipleyJustin L. + PretoriusFrans + + Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet Gravity + Phys. Rev. D + 2020 + 101 + 4 + https://arxiv.org/abs/1911.11027 + 10.1103/PhysRevD.101.044015 + 044015 + + + + + + + EvstafyevaTamara + AgathosMichalis + RipleyJustin L. + + Measuring the ringdown scalar polarization of gravitational waves in Einstein-scalar-Gauss-Bonnet gravity + Phys. Rev. D + 2023 + 107 + 12 + https://arxiv.org/abs/2212.11359 + 10.1103/PhysRevD.107.124010 + 124010 + + + + + + + YamamotoTetsuro + ShibataMasaru + TaniguchiKeisuke + + Simulating coalescing compact binaries by a new code SACRA + Phys. Rev. D + 2008 + 78 + https://arxiv.org/abs/0806.4007 + 10.1103/PhysRevD.78.064054 + 064054 + + + + + + + KiuchiKenta + KawaguchiKyohei + KyutokuKoutarou + SekiguchiYuichiro + ShibataMasaru + TaniguchiKeisuke + + Sub-radian-accuracy gravitational waveforms of coalescing binary neutron stars in numerical relativity + Phys. Rev. D + 2017 + 96 + 8 + https://arxiv.org/abs/1708.08926 + 10.1103/PhysRevD.96.084060 + 084060 + + + + + + + O’ConnorEvan + OttChristian D. + + A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes + Class. Quant. Grav. + + OttChristian D. + PethickC. J. + RezzollaLuciano + + 2010 + 27 + https://arxiv.org/abs/0912.2393 + 10.1088/0264-9381/27/11/114103 + 114103 + + + + + + + GerosaDavide + SperhakeUlrich + OttChristian D. + + Numerical simulations of stellar collapse in scalar-tensor theories of gravity + Class. Quant. Grav. + 2016 + 33 + 13 + https://arxiv.org/abs/1602.06952 + 10.1088/0264-9381/33/13/135002 + 135002 + + + + + + + CorelliFabrizio + De AmicisMarina + IkedaTaishi + PaniPaolo + + What is the Fate of Hawking Evaporation in Gravity Theories with Higher Curvature Terms? + Phys. Rev. Lett. + 2023 + 130 + 9 + https://arxiv.org/abs/2205.13006 + 10.1103/PhysRevLett.130.091501 + 091501 + + + + + + + CorelliFabrizio + De AmicisMarina + IkedaTaishi + PaniPaolo + + Nonperturbative gedanken experiments in Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions and tests of the cosmic censorship beyond general relativity + Phys. Rev. D + 2023 + 107 + 4 + https://arxiv.org/abs/2205.13007 + 10.1103/PhysRevD.107.044061 + 044061 + + + + + + + WitekHelvi + ZilhaoMiguel + BozzolaGabriele + ChengCheng-Hsin + DimaAlexandru + ElleyMatthew + FicarraGiuseppe + IkedaTaishi + LunaRaimon + RichardsChloe + Sanchis-GualNicolas + SilvaHector + + Canuda: a public numerical relativity library to probe fundamental physics + Zenodo + 202305 + https://doi.org/10.5281/zenodo.7791842 + 10.5281/zenodo.7791842 + + + + + +

Folres (pronounced fol-res) is a + word meaning covers or linings in the Catalan language. It has a + specific application in the tradition of Castells + (Human Towers), denoting the second layers of reinforcement above + the base pinya. We use it here in analogy to our + understanding of effective field theories (EFTs) of gravity as an + infinite sum of terms organised as a derivative expansion, in which + the first one corresponds to GR (with up to 2 derivatives), and the + second one to modified theories up to 4 derivatives, which are those + that we are able to simulate with GRFolres.

+
+
+
+
diff --git a/joss.06369/paper.jats/EnergyDensity_and_WFC.png b/joss.06369/paper.jats/EnergyDensity_and_WFC.png new file mode 100644 index 0000000000..162c242fac Binary files /dev/null and b/joss.06369/paper.jats/EnergyDensity_and_WFC.png differ diff --git a/joss.06369/paper.jats/SNR_network.png b/joss.06369/paper.jats/SNR_network.png new file mode 100644 index 0000000000..07b13beaf1 Binary files /dev/null and b/joss.06369/paper.jats/SNR_network.png differ diff --git a/joss.06369/paper.jats/all_waves.png b/joss.06369/paper.jats/all_waves.png new file mode 100644 index 0000000000..065f4b5973 Binary files /dev/null and b/joss.06369/paper.jats/all_waves.png differ diff --git a/joss.06369/paper.jats/discriminant_beta200.png b/joss.06369/paper.jats/discriminant_beta200.png new file mode 100644 index 0000000000..04945365b0 Binary files /dev/null and b/joss.06369/paper.jats/discriminant_beta200.png differ diff --git a/joss.06369/paper.jats/rhophi.png b/joss.06369/paper.jats/rhophi.png new file mode 100644 index 0000000000..e64436e616 Binary files /dev/null and b/joss.06369/paper.jats/rhophi.png differ