diff --git a/joss.07085/10.21105.joss.07085.crossref.xml b/joss.07085/10.21105.joss.07085.crossref.xml
new file mode 100644
index 0000000000..5adbc987de
--- /dev/null
+++ b/joss.07085/10.21105.joss.07085.crossref.xml
@@ -0,0 +1,254 @@
+
+
+
+ 20241021074950-86b7b35a79e7bf983fc86a579dad89c9ec888be3
+ 20241021074950
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 10
+ 2024
+
+
+ 9
+
+ 102
+
+
+
+ ASIMTools: A lightweight framework for scalable and
+reproducible atomic simulations
+
+
+
+ Mgcini Keith
+ Phuthi
+ https://orcid.org/0000-0002-0982-8635
+
+
+ Emil
+ Annevelink
+ https://orcid.org/0000-0001-5035-7807
+
+
+ Venkatasubramanian
+ Viswanathan
+ https://orcid.org/0000-0003-1060-5495
+
+
+
+ 10
+ 21
+ 2024
+
+
+ 7085
+
+
+ 10.21105/joss.07085
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.13952433
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/7085
+
+
+
+ 10.21105/joss.07085
+ https://joss.theoj.org/papers/10.21105/joss.07085
+
+
+ https://joss.theoj.org/papers/10.21105/joss.07085.pdf
+
+
+
+
+
+ Atomic Simulation Recipes: A Python framework
+and library for automated workflows
+ Gjerding
+ Computational Materials
+Science
+ 199
+ 10.1016/j.commatsci.2021.110731
+ 0927-0256
+ 2021
+ Gjerding, M., Skovhus, T., Rasmussen,
+A., Bertoldo, F., Larsen, A. H., Mortensen, J. J., & Thygesen, K. S.
+(2021). Atomic Simulation Recipes: A Python framework and library for
+automated workflows. Computational Materials Science, 199, 110731.
+https://doi.org/10.1016/j.commatsci.2021.110731
+
+
+ LAMMPS - a flexible simulation tool for
+particle-based materials modeling at the atomic, meso, and continuum
+scales
+ Thompson
+ Comp. Phys. Comm.
+ 271
+ 10.1016/j.cpc.2021.108171
+ 2022
+ Thompson, A. P., Aktulga, H. M.,
+Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P.
+J. in ’t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens,
+M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS -
+a flexible simulation tool for particle-based materials modeling at the
+atomic, meso, and continuum scales. Comp. Phys. Comm., 271, 108171.
+https://doi.org/10.1016/j.cpc.2021.108171
+
+
+ Open computational materials
+science
+ Walsh
+ Nature Materials
+ 1
+ 23
+ 10.1038/s41563-023-01699-7
+ 1476-4660
+ 2024
+ Walsh, A. (2024). Open computational
+materials science. Nature Materials, 23(1), 16–17.
+https://doi.org/10.1038/s41563-023-01699-7
+
+
+ FireWorks: A dynamic workflow system designed
+for high-throughput applications
+ Jain
+ Concurrency and Computation: Practice and
+Experience
+ 17
+ 27
+ 10.1002/cpe.3505
+ 1532-0634
+ 2015
+ Jain, A., Ong, S. P., Chen, W.,
+Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese,
+G.-M., Hautier, G., Gunter, D., & Persson, K. A. (2015). FireWorks:
+A dynamic workflow system designed for high-throughput applications.
+Concurrency and Computation: Practice and Experience, 27(17), 5037–5059.
+https://doi.org/10.1002/cpe.3505
+
+
+ Python Materials Genomics (pymatgen): A
+robust, open-source python library for materials
+analysis
+ Ong
+ Computational Materials
+Science
+ 68
+ 10.1016/j.commatsci.2012.10.028
+ 0927-0256
+ 2013
+ Ong, S. P., Richards, W. D., Jain,
+A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
+Persson, K. A., & Ceder, G. (2013). Python Materials Genomics
+(pymatgen): A robust, open-source python library for materials analysis.
+Computational Materials Science, 68, 314–319.
+https://doi.org/10.1016/j.commatsci.2012.10.028
+
+
+ The atomic simulation environment—a Python
+library for working with atoms
+ Larsen
+ Journal of Physics: Condensed
+Matter
+ 27
+ 29
+ 10.1088/1361-648X/aa680e
+ 0953-8984
+ 2017
+ Larsen, A. H., Mortensen, J. J.,
+Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J.,
+Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C.,
+Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J.,
+Kaasbjerg, K., Lysgaard, S., … Jacobsen, K. W. (2017). The atomic
+simulation environment—a Python library for working with atoms. Journal
+of Physics: Condensed Matter, 29(27), 273002.
+https://doi.org/10.1088/1361-648X/aa680e
+
+
+ AiiDA 1.0, a scalable computational
+infrastructure for automated reproducible workflows and data
+provenance
+ Huber
+ Scientific Data
+ 1
+ 7
+ 10.1038/s41597-020-00638-4
+ 2052-4463
+ 2020
+ Huber, S. P., Zoupanos, S., Uhrin,
+M., Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T.,
+Yakutovich, A. V., Andersen, C. W., Ramirez, F. F., Adorf, C. S.,
+Gargiulo, F., Kumbhar, S., Passaro, E., Johnston, C., Merkys, A.,
+Cepellotti, A., Mounet, N., … Pizzi, G. (2020). AiiDA 1.0, a scalable
+computational infrastructure for automated reproducible workflows and
+data provenance. Scientific Data, 7(1), 300.
+https://doi.org/10.1038/s41597-020-00638-4
+
+
+ Accurate Surface and Finite-Temperature Bulk
+Properties of Lithium Metal at Large Scales Using Machine Learning
+Interaction Potentials
+ Phuthi
+ ACS Omega
+ 9
+ 9
+ 10.1021/acsomega.3c10014
+ 2024
+ Phuthi, M. K., Yao, A. M., Batzner,
+S., Musaelian, A., Guan, P., Kozinsky, B., Cubuk, E. D., &
+Viswanathan, V. (2024). Accurate Surface and Finite-Temperature Bulk
+Properties of Lithium Metal at Large Scales Using Machine Learning
+Interaction Potentials. ACS Omega, 9(9), 10904–10912.
+https://doi.org/10.1021/acsomega.3c10014
+
+
+ Vibrational Entropy and Free Energy of Solid
+Lithium using Covariance of Atomic Displacements Enabled by Machine
+Learning
+ Phuthi
+ 2024
+ Phuthi, M. K., Huang, Y., Widom, M.,
+& Viswanathan, V. (2024). Vibrational Entropy and Free Energy of
+Solid Lithium using Covariance of Atomic Displacements Enabled by
+Machine Learning. arXiv.
+http://arxiv.org/abs/2406.15491
+
+
+
+
+
+
diff --git a/joss.07085/10.21105.joss.07085.pdf b/joss.07085/10.21105.joss.07085.pdf
new file mode 100644
index 0000000000..2d3c9e275c
Binary files /dev/null and b/joss.07085/10.21105.joss.07085.pdf differ
diff --git a/joss.07085/paper.jats/10.21105.joss.07085.jats b/joss.07085/paper.jats/10.21105.joss.07085.jats
new file mode 100644
index 0000000000..8944b5b962
--- /dev/null
+++ b/joss.07085/paper.jats/10.21105.joss.07085.jats
@@ -0,0 +1,481 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+7085
+10.21105/joss.07085
+
+ASIMTools: A lightweight framework for scalable and
+reproducible atomic simulations
+
+
+
+https://orcid.org/0000-0002-0982-8635
+
+Phuthi
+Mgcini Keith
+
+
+
+
+https://orcid.org/0000-0001-5035-7807
+
+Annevelink
+Emil
+
+
+
+
+https://orcid.org/0000-0003-1060-5495
+
+Viswanathan
+Venkatasubramanian
+
+
+
+
+
+University of Michigan, United States
+
+
+
+
+Carnegie Mellon University, United States
+
+
+
+
+17
+6
+2024
+
+9
+102
+7085
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+atomic simulation
+density functional theory
+workflow
+
+
+
+
+
+ Summary
+
Atomic SIMulation Tools (ASIMTools) is a
+ lightweight workflow and simulation manager for reproducible atomistic
+ simulations on Unix-based systems. Within the framework, simulations
+ can be transferred across computing environments, DFT codes,
+ interatomic potentials and atomic structures. By using in-built or
+ user-defined python modules (called asimmodules) and utilities, users
+ can run simulation protocols and automatically scale them on slurm
+ based clusters or locally on their console. The core idea is to
+ separate the dependence of the atomistic potential/calculator, the
+ computing environment and the simulation protocol thereby allowing the
+ same simulation to be run with different calculators, atomic
+ structures or on different computers with just a change of one
+ parameter in an input file after initial setup. This is increasingly
+ necessary as benchmarking Machine Learning Interatomic Potentials has
+ become a core part of computational materials science. Input and
+ output files follow a simple standard format, usually yaml, providing
+ a simple interface that also acts as a record of the parameters used
+ in a simulation without having to edit python scripts. The minimal set
+ of requirements means any materials science codes can be incorporated
+ into an ASIMTools workflow in a unified way.
+
+
+ Statement of need
+
Atomic simulations are a key component of modern day materials
+ science in both academia and industry. However, simulation protocols
+ and workflows used by researchers are typically difficult to transfer
+ to systems using different inputs, codes and computing environments.
+ It often involves rewriting entire scripts in different languages to
+ change from one type of atomistic potential or atomic structure to
+ another. This leads to poor reproducibility and inefficient transfer
+ of code from one researcher to the next. In addition, there exists a
+ zoo of tools and packages for atomic simulation with more being
+ developed every day
+ (Walsh,
+ 2024). There is however no unifying framework that can
+ encompass all these tools without significant software development
+ effort. Significant effort should not be necessary because while the
+ source of the fundamental outputs of atomistic potentials such as
+ energy, forces etc. may differ, simulation protocols built on these
+ outputs should converge towards the most accurate and computationally
+ efficient. ASIMTools focuses on this last aspect by introducing
+ asimmodules which are simply Python functions that act as simulation
+ protocols which have no dependence on a specific atomistic potential
+ or computational environment or atomic structure. Through iteration
+ and community input, these simulation protocols will hopefully
+ converge towards best practice and ensure reproducibility of
+ simulation results.
+
ASIMTools is for users interested in
+ performing atomistic calculations on UNIX-like operating systems
+ and/or on slurm-based High Performance Computing clusters. By defining
+ simulation protocols as “asimmodules”, they can be easily added to the
+ library of provided asimmodules and iterated on. The flexibility of
+ ASIMTools allows integration of any kind of simulation tools such as
+ the heavily used Atomic Simulation Environment
+ (Larsen
+ et al., 2017) pymatgen
+ (Ong
+ et al., 2013), LAMMPS
+ (Thompson
+ et al., 2022) etc. with examples provided. With the asimmodules
+ defined, users only need to provide a set of inputs in the form of
+ yaml files that define the parameters used for each simulation and are
+ therefore a concrete record of used parameters.
+
+
+ State of the Field
+
There exist a number of popular workflow tools for atomistic
+ simulations such as Aiida
+ (Huber
+ et al., 2020), Fireworks
+ (Jain
+ et al., 2015) and many more. These tools provide frameworks for
+ constructing complex workflows with different underlying principles.
+ Some managers enforce strict rules that ensure that data obeys FAIR
+ principles and emphasizes data provenance and reproducibility. These
+ methods however tend to be fairly large packages with steep learning
+ curves. ASIMTools provides a simple interface as a starting point that
+ can transform any code into ASIMTools compatible code by simply
+ wrapping it in a function that returns a Python dictionary. Any such
+ code can work in ASIMTools and with a few extra steps, the protocol
+ can be made to support an arbitrary calculator and input atomic
+ structure.
+
In some workflow managers, such as Atomic Simulation Recipes
+ (Gjerding
+ et al., 2021), once workflows are built, it can often be
+ difficult to quickly change and iterate over key parameters such as
+ the choice of atomistic calculator or structure as they are
+ intrinsically built into the code. This is particularly challenging in
+ an age where machine learning models are becoming more popular.
+ Workflows involving machine learning interatomic potentials tend to
+ require the ability to repeat the same calculations on different
+ examples, using different calculators on different hardware
+ iteratively. This is where the value of ASIMTools lies in contrast to
+ more established workflows. ASIMTools is not designed to replace the
+ more powerful workflow managers but rather to supplement them. This is
+ achieved by providing unified inputs that can be easily integrated
+ into, for example, Aiida as Python functions/asimmodules while also
+ being a stand-alone lightweight workflow manager for simpler
+ cases.
+
+
+ Usage To-Date
+
ASIMTools has been used in the benchmarking Machine Learning
+ Interatomic Potentials
+ (Phuthi,
+ Yao, et al., 2024) and creating a workflow for calculation of
+ vibrational properties of solids calculations
+ (Phuthi,
+ Huang, et al., 2024).
+
+
+ Conclusion and Availability
+
The ASIMTools package is a powerful tool for building and executing
+ atomic simulation protocols locally and at scale on slurm-based HPC
+ infrastructure. The code is hosted on a public Github repository
+ (https://github.com/BattModels/asimtools) with a number of examples.
+ Asimmodules for common calculations are also implemented with
+ examples. Interested users are encouraged to submit issues, contact
+ developers and make pull requests, particularly for adding new
+ simulation protocols to the library.
+
+
+ Author Contribution Statement
+
Conceptualization by Keith Phuthi. Coding and development by Keith
+ Phuthi and Emil Annevelink. Paper writing by Keith Phuthi. Project
+ management by all.
+
+
+ Acknowledgements
+
We acknowledge feedback from Kian Pu, Lance Kavalsky, Hancheng Zhao
+ and Ziqi Wang.
+
+
+
+
+
+
+
+
+ GjerdingMorten
+ SkovhusThorbjørn
+ RasmussenAsbjørn
+ BertoldoFabian
+ LarsenAsk Hjorth
+ MortensenJens Jørgen
+ ThygesenKristian Sommer
+
+ Atomic Simulation Recipes: A Python framework and library for automated workflows
+
+ 202111
+ 20231023
+ 199
+ 0927-0256
+ https://www.sciencedirect.com/science/article/pii/S0927025621004584
+ 10.1016/j.commatsci.2021.110731
+ 110731
+
+
+
+
+
+
+ ThompsonA. P.
+ AktulgaH. M.
+ BergerR.
+ BolintineanuD. S.
+ BrownW. M.
+ CrozierP. S.
+ VeldP. J. in ’t
+ KohlmeyerA.
+ MooreS. G.
+ NguyenT. D.
+ ShanR.
+ StevensM. J.
+ TranchidaJ.
+ TrottC.
+ PlimptonS. J.
+
+ LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
+
+ 2022
+ 271
+ 10.1016/j.cpc.2021.108171
+ 108171
+
+
+
+
+
+
+ WalshAron
+
+ Open computational materials science
+
+ 202401
+ 20240111
+ 23
+ 1
+ 1476-4660
+ https://www.nature.com/articles/s41563-023-01699-7
+ 10.1038/s41563-023-01699-7
+ 16
+ 17
+
+
+
+
+
+ JainAnubhav
+ OngShyue Ping
+ ChenWei
+ MedasaniBharat
+ QuXiaohui
+ KocherMichael
+ BrafmanMiriam
+ PetrettoGuido
+ RignaneseGian-Marco
+ HautierGeoffroy
+ GunterDaniel
+ PerssonKristin A.
+
+ FireWorks: A dynamic workflow system designed for high-throughput applications
+
+ 2015
+ 27
+ 17
+ 1532-0634
+ http://dx.doi.org/10.1002/cpe.3505
+ 10.1002/cpe.3505
+ 5037
+ 5059
+
+
+
+
+
+ OngShyue Ping
+ RichardsWilliam Davidson
+ JainAnubhav
+ HautierGeoffroy
+ KocherMichael
+ CholiaShreyas
+ GunterDan
+ ChevrierVincent L.
+ PerssonKristin A.
+ CederGerbrand
+
+ Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
+
+ 201302
+ 20240517
+ 68
+ 0927-0256
+ https://www.sciencedirect.com/science/article/pii/S0927025612006295
+ 10.1016/j.commatsci.2012.10.028
+ 314
+ 319
+
+
+
+
+
+ LarsenAsk Hjorth
+ MortensenJens Jørgen
+ BlomqvistJakob
+ CastelliIvano E.
+ ChristensenRune
+ DułakMarcin
+ FriisJesper
+ GrovesMichael N.
+ HammerBjørk
+ HargusCory
+ HermesEric D.
+ JenningsPaul C.
+ JensenPeter Bjerre
+ KermodeJames
+ KitchinJohn R.
+ KolsbjergEsben Leonhard
+ KubalJoseph
+ KaasbjergKristen
+ LysgaardSteen
+ MaronssonJón Bergmann
+ MaxsonTristan
+ OlsenThomas
+ PastewkaLars
+ PetersonAndrew
+ RostgaardCarsten
+ SchiøtzJakob
+ SchüttOle
+ StrangeMikkel
+ ThygesenKristian S.
+ VeggeTejs
+ VilhelmsenLasse
+ WalterMichael
+ ZengZhenhua
+ JacobsenKarsten W.
+
+ The atomic simulation environment—a Python library for working with atoms
+
+ 201706
+ 20240517
+ 29
+ 27
+ 0953-8984
+ https://dx.doi.org/10.1088/1361-648X/aa680e
+ 10.1088/1361-648X/aa680e
+ 273002
+
+
+
+
+
+
+ HuberSebastiaan P.
+ ZoupanosSpyros
+ UhrinMartin
+ TalirzLeopold
+ KahleLeonid
+ HäuselmannRico
+ GreschDominik
+ MüllerTiziano
+ YakutovichAliaksandr V.
+ AndersenCasper W.
+ RamirezFrancisco F.
+ AdorfCarl S.
+ GargiuloFernando
+ KumbharSnehal
+ PassaroElsa
+ JohnstonConrad
+ MerkysAndrius
+ CepellottiAndrea
+ MounetNicolas
+ MarzariNicola
+ KozinskyBoris
+ PizziGiovanni
+
+ AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
+
+ 202009
+ 20231023
+ 7
+ 1
+ 2052-4463
+ https://www.nature.com/articles/s41597-020-00638-4
+ 10.1038/s41597-020-00638-4
+ 300
+
+
+
+
+
+
+ PhuthiMgcini Keith
+ YaoArchie Mingze
+ BatznerSimon
+ MusaelianAlbert
+ GuanPinwen
+ KozinskyBoris
+ CubukEkin Dogus
+ ViswanathanVenkatasubramanian
+
+ Accurate Surface and Finite-Temperature Bulk Properties of Lithium Metal at Large Scales Using Machine Learning Interaction Potentials
+
+ 202403
+ 20240315
+ 9
+ 9
+ https://doi.org/10.1021/acsomega.3c10014
+ 10.1021/acsomega.3c10014
+ 10904
+ 10912
+
+
+
+
+
+ PhuthiMgcini Keith
+ HuangYang
+ WidomMichael
+ ViswanathanVenkatasubramanian
+
+ Vibrational Entropy and Free Energy of Solid Lithium using Covariance of Atomic Displacements Enabled by Machine Learning
+ arXiv
+ 202406
+ 20240625
+ http://arxiv.org/abs/2406.15491
+
+
+
+
+