diff --git a/joss.06895/10.21105.joss.06895.crossref.xml b/joss.06895/10.21105.joss.06895.crossref.xml new file mode 100644 index 0000000000..1030fea42a --- /dev/null +++ b/joss.06895/10.21105.joss.06895.crossref.xml @@ -0,0 +1,397 @@ + + + + 20240828014251-214fa180d32fc94d42877a2e598c2c4681f6bd4a + 20240828014251 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 08 + 2024 + + + 9 + + 100 + + + + DWBuilder: A code to generate +ferroelectric/ferroelastic domain walls and multi-material atomic +interface structures + + + + Muhammad Z. + Khalid + https://orcid.org/0000-0002-7866-3870 + + + Sverre M. + Selbach + + + + 08 + 28 + 2024 + + + 6895 + + + 10.21105/joss.06895 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.13367853 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6895 + + + + 10.21105/joss.06895 + https://joss.theoj.org/papers/10.21105/joss.06895 + + + https://joss.theoj.org/papers/10.21105/joss.06895.pdf + + + + + + Ferroelectric domain walls for +nanotechnology + Meier + Nature Reviews Materials + 3 + 7 + 10.1038/s41578-021-00375-z + 2022 + Meier, D., & Selbach, S. M. +(2022). Ferroelectric domain walls for nanotechnology. Nature Reviews +Materials, 7(3), 157–173. +https://doi.org/10.1038/s41578-021-00375-z + + + Domain wall nanoelectronics + Catalan + Reviews of Modern Physics + 1 + 84 + 10.1103/RevModPhys.84.119 + 2012 + Catalan, G., Seidel, J., Ramesh, R., +& Scott, J. F. (2012). Domain wall nanoelectronics. Reviews of +Modern Physics, 84(1), 119. +https://doi.org/10.1103/RevModPhys.84.119 + + + Functional domain walls in +multiferroics + Meier + Journal of Physics: Condensed +Matter + 46 + 27 + 10.1088/0953-8984/27/46/463003 + 2015 + Meier, D. (2015). Functional domain +walls in multiferroics. Journal of Physics: Condensed Matter, 27(46), +463003. +https://doi.org/10.1088/0953-8984/27/46/463003 + + + Physics and applications of charged domain +walls + Bednyakov + npj Computational Materials + 1 + 4 + 10.1038/s41524-018-0121-8 + 2018 + Bednyakov, P. S., Sturman, B. I., +Sluka, T., Tagantsev, A. K., & Yudin, P. V. (2018). Physics and +applications of charged domain walls. Npj Computational Materials, 4(1), +1–11. https://doi.org/10.1038/s41524-018-0121-8 + + + A diode for ferroelectric domain-wall +motion + Whyte + Nature Communications + 1 + 6 + 10.1038/ncomms8361 + 2015 + Whyte, J., & Gregg, J. (2015). A +diode for ferroelectric domain-wall motion. Nature Communications, 6(1), +1–5. https://doi.org/10.1038/ncomms8361 + + + Functional electronic inversion layers at +ferroelectric domain walls + Mundy + Nature materials + 6 + 16 + 10.1038/nmat4878 + 2017 + Mundy, J. A., Schaab, J., Kumagai, +Y., Cano, A., Stengel, M., Krug, I. P., Gottlob, D., Doğanay, H., Holtz, +M. E., Held, R., & others. (2017). Functional electronic inversion +layers at ferroelectric domain walls. Nature Materials, 16(6), 622–627. +https://doi.org/10.1038/nmat4878 + + + Nonvolatile ferroelectric domain wall +memory + Sharma + Science advances + 6 + 3 + 10.1126/sciadv.1700512 + 2017 + Sharma, P., Zhang, Q., Sando, D., +Lei, C. H., Liu, Y., Li, J., Nagarajan, V., & Seidel, J. (2017). +Nonvolatile ferroelectric domain wall memory. Science Advances, 3(6), +e1700512. https://doi.org/10.1126/sciadv.1700512 + + + Intrinsic and extrinsic conduction +contributions at nominally neutral domain walls in hexagonal +manganites + Schultheiß + Applied Physics Letters + 26 + 116 + 10.1063/5.0009185 + 2020 + Schultheiß, J., Schaab, J., +Småbråten, D. R., Skjærvø, S. H., Bourret, E., Yan, Z., Selbach, S. M., +& Meier, D. (2020). Intrinsic and extrinsic conduction contributions +at nominally neutral domain walls in hexagonal manganites. Applied +Physics Letters, 116(26), 262903. +https://doi.org/10.1063/5.0009185 + + + Domain wall mobility and roughening in doped +ferroelectric hexagonal manganites + Småbråten + Physical Review Research + 3 + 2 + 10.1103/PhysRevResearch.2.033159 + 2020 + Småbråten, D. R., Holstad, T. S., +Evans, D. M., Yan, Z., Bourret, E., Meier, D., & Selbach, S. M. +(2020). Domain wall mobility and roughening in doped ferroelectric +hexagonal manganites. Physical Review Research, 2(3), 033159. +https://doi.org/10.1103/PhysRevResearch.2.033159 + + + Charged domain walls in improper +ferroelectric hexagonal manganites and gallates + Småbråten + Physical Review Materials + 11 + 2 + 10.1103/PhysRevMaterials.2.114405 + 2018 + Småbråten, D. R., Meier, Q. N., +Skjærvø, S. H., Inzani, K., Meier, D., & Selbach, S. M. (2018). +Charged domain walls in improper ferroelectric hexagonal manganites and +gallates. Physical Review Materials, 2(11), 114405. +https://doi.org/10.1103/PhysRevMaterials.2.114405 + + + Effect of epitaxial strain on the spontaneous +polarization of thin film ferroelectrics + Ederer + Physical review letters + 25 + 95 + 10.1103/PhysRevLett.95.257601 + 2005 + Ederer, C., & Spaldin, N. A. +(2005). Effect of epitaxial strain on the spontaneous polarization of +thin film ferroelectrics. Physical Review Letters, 95(25), 257601. +https://doi.org/10.1103/PhysRevLett.95.257601 + + + Epitaxial BiFeO_3 multiferroic thin film +heterostructures + Wang + science + 5613 + 299 + 10.1126/science.1080615 + 2003 + Wang, J., Neaton, J., Zheng, H., +Nagarajan, V., Ogale, S., Liu, B., Viehland, D., Vaithyanathan, V., +Schlom, D., Waghmare, U., & others. (2003). Epitaxial BiFeO_3 +multiferroic thin film heterostructures. Science, 299(5613), 1719–1722. +https://doi.org/10.1126/science.1080615 + + + Bloch-type domain walls in rhombohedral +BaTiO_3 + Taherinejad + Physical Review B + 15 + 86 + 10.1103/PhysRevB.86.155138 + 2012 + Taherinejad, M., Vanderbilt, D., +Marton, P., Stepkova, V., & Hlinka, J. (2012). Bloch-type domain +walls in rhombohedral BaTiO_3. Physical Review B, 86(15), 155138. +https://doi.org/10.1103/PhysRevB.86.155138 + + + Ab initio study of ferroelectric domain walls +in PbTiO_3 + Meyer + Physical Review B + 10 + 65 + 10.1103/PhysRevB.65.104111 + 2002 + Meyer, B., & Vanderbilt, D. +(2002). Ab initio study of ferroelectric domain walls in PbTiO_3. +Physical Review B, 65(10), 104111. +https://doi.org/10.1103/PhysRevB.65.104111 + + + Improper origin of polar displacements at +CaTiO_3 and CaMnO_3 twin walls + Barone + Physical Review B + 14 + 89 + 10.1103/PhysRevB.89.144104 + 2014 + Barone, P., Di Sante, D., & +Picozzi, S. (2014). Improper origin of polar displacements at CaTiO_3 +and CaMnO_3 twin walls. Physical Review B, 89(14), 144104. +https://doi.org/10.1103/PhysRevB.89.144104 + + + Edge-to-edge matching model for predicting +orientation relationships and habit planes—the +improvements + Zhang + Scripta Materialia + 10 + 52 + 10.1016/j.scriptamat.2005.01.040 + 2005 + Zhang, M.-X., & Kelly, P. (2005). +Edge-to-edge matching model for predicting orientation relationships and +habit planes—the improvements. Scripta Materialia, 52(10), 963–968. +https://doi.org/10.1016/j.scriptamat.2005.01.040 + + + Atomistic modelling of Fe-Al and +\alpha-AlFeSi intermetallic compound interfaces + Khalid + 2020 + Khalid, M. Z. (2020). Atomistic +modelling of Fe-Al and \alpha-AlFeSi intermetallic compound interfaces +[Doctoral thesis]. Norwegian University of Science & Technology +(NTNU), Trondheim, Norway, March 2020. + + + Ab-initio study of atomic structure and +mechanical behaviour of Al/Fe intermetallic interfaces + Khalid + Computational Materials +Science + 174 + 10.1016/j.commatsci.2019.109481 + 2020 + Khalid, M. Z., Friis, J., Ninive, P. +H., Marthinsen, K., & Strandlie, A. (2020). Ab-initio study of +atomic structure and mechanical behaviour of Al/Fe intermetallic +interfaces. Computational Materials Science, 174, 109481. +https://doi.org/10.1016/j.commatsci.2019.109481 + + + First-principles study of tensile and shear +strength of Fe-Al and \alpha-AlFeSi intermetallic compound +interfaces + Khalid + Computational Materials +Science + 187 + 10.1016/j.commatsci.2020.110058 + 2021 + Khalid, M. Z., Friis, J., Ninive, P. +H., Marthinsen, K., & Strandlie, A. (2021). First-principles study +of tensile and shear strength of Fe-Al and \alpha-AlFeSi intermetallic +compound interfaces. Computational Materials Science, 187, 110058. +https://doi.org/10.1016/j.commatsci.2020.110058 + + + First-principles study of tensile and shear +strength of an Fe_2Al_5//Fe interface + Khalid + Computational Materials +Science + 192 + 10.1016/j.commatsci.2021.110319 + 2021 + Khalid, M. Z., Friis, J., Ninive, P. +H., Marthinsen, K., Ringdalen, I. G., & Strandlie, A. (2021). +First-principles study of tensile and shear strength of an Fe_2Al_5//Fe +interface. Computational Materials Science, 192, 110319. +https://doi.org/10.1016/j.commatsci.2021.110319 + + + A first-principles study of the +Al(001)/Fe(0-11) interface + Khalid + Materials science forum + 941 + 10.4028/www.scientific.net/MSF.941.2349 + 2019 + Khalid, M. Z., Friis, J., Ninive, P. +H., Marthinsen, K., & Strandlie, A. (2019). A first-principles study +of the Al(001)/Fe(0-11) interface. Materials Science Forum, 941, +2349–2355. +https://doi.org/10.4028/www.scientific.net/MSF.941.2349 + + + + + + diff --git a/joss.06895/10.21105.joss.06895.pdf b/joss.06895/10.21105.joss.06895.pdf new file mode 100644 index 0000000000..53bbab3ea7 Binary files /dev/null and b/joss.06895/10.21105.joss.06895.pdf differ diff --git a/joss.06895/paper.jats/10.21105.joss.06895.jats b/joss.06895/paper.jats/10.21105.joss.06895.jats new file mode 100644 index 0000000000..254177fc13 --- /dev/null +++ b/joss.06895/paper.jats/10.21105.joss.06895.jats @@ -0,0 +1,829 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6895 +10.21105/joss.06895 + +DWBuilder: A code to generate ferroelectric/ferroelastic +domain walls and multi-material atomic interface +structures + + + +https://orcid.org/0000-0002-7866-3870 + +Khalid +Muhammad Z. + + + + + +Selbach +Sverre M. + + + + + +Department of Materials Science and Engineering, Norwegian +University of Science and Technology, Trondheim, Norway + + + + +22 +4 +2024 + +9 +100 +6895 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +domain walls +crystallography +multi-material inrerfaces +atomistic simulations (VASP, LAMMPS) + + + + + + Summary +

In ferroelectric materials, the order parameter polarization can be + switched by an external electric field. Regions within ferroelectric + materials with uniform polarization are called domains, and the + boundaries between domains with differently aligned polarization + vectors are called domain walls (DWs). These domain walls, which are + only a few nanometers wide, possess unique properties with potential + technological applications. DWs show promise for nanoscale electronic + circuit elements and enable innovative design concepts because they + can be created, erased and moved using applied electric fields + (Bednyakov + et al., 2018; + Catalan + et al., 2012; + Meier, + 2015; + Meier + & Selbach, 2022). DWs can also replicate the functionality + of key electronic components such as diodes + (Whyte + & Gregg, 2015), transistors + (Mundy + et al., 2017), and random access memories (RAM) + (Sharma + et al., 2017).

+

Due to the nanoscale sizes and promising properties of DWs, there + has been significant interest in studying how to control and + manipulate them using atomistic simulations + (Schultheiß + et al., 2020; + Didrik + R. Småbråten et al., 2018; + Didrik + Rene Småbråten et al., 2020). However, developing atomic DW + structures is challenging and requires knowledge of the order + parameter and DW types in ferroelectric materials. DWs can be + ferroelectric, antiferroelectric, and/or ferroelastic, and they can + vary depending on the allowed symmetry of the ferroelectric material. + For instance, ferroelectric BiFeO + + 3 + exists at room temperature as a rhombohedrally distorted perovskite + with space group R3c and spontaneous polarization oriented along the + [111] + + P + axis + (Ederer + & Spaldin, 2005; + Wang + et al., 2003). The symmetry constraints of having the + ferroelectric polarization in BiFeO + + 3 + along <111> directions gives four types of DWs across which the + polarization direction changes by 71°, 109°, or 180° + (Wang + et al., 2003). Similarly, other domain wall types have been + identified in other ferroelectric materials such as + BaTiO + + 3 + (Taherinejad + et al., 2012), PbTiO + + 3 + (Meyer + & Vanderbilt, 2002) and YMnO + + 3 + (Didrik + R. Småbråten et al., 2018), and in ferroelastics like + CaTiO + + 3 + (Barone + et al., 2014).

+

The DWBuilder code is designed as a + command-line tool to create DWs and interface structures from specific + input unit cell geometries, as described in detail in the README file + of the repository. The code comprises two main components: (i) a + domain wall builder for similar materials and (ii) a heterogeneous + interface builder for multi-material atomic interfaces. Figure 1 + explains the structure and workflow of the + DWBuilder package.

+

The first part, handled by the scripts + dwbuilder.py and + dbuilder.py, produces domain walls by first + analyzing the input unit cell geometry and determining the space group + of the structure. The space group is identified using the open-source + Python library Pymatgen. If the space group matches the specified + type, the script offers a range of possible domain wall types and + ultimately creates the DW structures. If the space group of the input + structure does not match, the script allows you to choose a desired + space group type or manually define the domains by specifying lattice + vectors. To generate different domains separately, you can use + dbuilder.py to develop distinct domains, which + can be useful for bulk and surface calculations.

+

The second part of the code involves creating a heterogeneous + interface structure of multi-material compounds, which is handled by + the script hibuilder.py. This script requires + two input structures, named bulk1 and + bulk2. To develop compatible interfaces, you + must define the orientation relationship (OR) between the two bulk + phases. This definition is necessary to address any lattice and + angular mismatches that arise from differences in space groups and/or + atomic structures of the two phases.

+

Currently, the script cannot predict the ORs that would result in a + low lattice mismatch between the two bulk phases. However, theoretical + studies and methods such as edge-to-edge + (Zhang + & Kelly, 2005) and face-to-face + (Khalid, + 2020) matching techniques can help predict low lattice misfit + for interface construction. This script assumes that the user is + already familiar with the appropriate ORs to construct the interface + structure. For instance, the ORs of interfaces reported in referenced + papers + (Khalid + et al., 2019, + 2020, + 2021; + Khalid, + Friis, Ninive, Marthinsen, Ringdalen, et al., 2021) can be + replicated using this script. Additionally, the script can generate + atomic interfaces if you know the OR from experiments, and it can + predict the atomic interface structure and lattice mismatch between + the two bulk phases.

+ +

Structure of the DWBuilder + package.

+ +
+
+ + Statement of need: +

DWBuilder is an interactive toolbox for + developing atomic-scale domain walls and interface structures of + homogeneous and heterogeneous material compounds, making it suitable + for high-throughput calculations. Its target audience includes + students and scientists in materials science and physics at any level + of expertise. DWBuilder utilizes the NumPy + library extensively, which speeds up execution, particularly when + working with large structures. Users are guided through the process of + identifying and creating the desired domain walls in a step-by-step + manner. The code is designed to be user-friendly and educational, with + a focus on plane orientation and electric polarization switching.

+

The DWBuilder code is designed to automate + the creation of atomic interfaces and domain wall structures, allowing + researchers to focus on optimizing and studying material behavior and + properties. The structures generated by this code are compatible with + both first-principles and second-principles calculations. The code + provides ample functionality to support practical research tasks while + remaining lightweight and well-documented. This allows junior + researchers with minimal or no assistance to easily install, use, and + understand the code.

+
+ + Example 1: +

The below example demonstrates the functionality and steps of the + dwbuilder.py script. Running the + dwbuilder script will perform the following + steps:

+ + +

User Input:

+ + +

Specify the script to run on the input structure.

+
+ +

Input the VASP format structure.

+
+
+
+ +

Space Group Determination:

+ + +

The script determines the space group of the provided + structure.

+
+
+
+ +

Allowed Domain Wall Types:

+ + +

Based on the determined space group, the script identifies + the allowed domain wall types.

+
+
+
+ +

Domain Wall and Supercell Size:

+ + +

User inputs the desired domain wall size.

+
+ +

User specifies the supercell size for the domain wall + structures.

+
+
+
+ +

Final Domain Wall Structures:

+ + +

The script generates the final domain wall structures.

+
+ +

It prints any lattice misfit information.

+
+
+
+
+

Figure 2 illustrates an example of P4mm + PbTiO + + 3 + and hexagonal manganite YMnO + + 3 + domain wall structures.

+

For proper ferroelectrics, such as perovskites + (PbTiO + + 3, + BaTiO + + 3, + KNbO + + 3, + etc.), the user only needs to define the primitive unit cell + structure. The DWBuilder automatically + determines the space group and constructs the respective domains and + domain wall structures.

+

In certain cases, if the space group of the input structure does + not match the defined space group type of the domain walls, the user + can manually build the domains. This can be done by defining the + transformation matrix of each domain using either + hibuilder.py or by selecting the manual option + for domain selection in dwbuilder.py.

+

For hexagonal manganites, both domain structures are required to + build domain wall structures, as illustrated in Figure 2.

+
+ + Example 2: +

The following example illustrates the use of the + hibuilder.py script. This script performs the + following steps:

+ + +

Inputs the primitive unit cell structures of the domain or bulk + structures,

+
+ +

Defines the compatible transformation matrices for both input + domains or bulk structures,

+
+ +

Develops the transformed bulk structures,

+
+ +

Stacks the transformed bulk structures to build the final + interface and calculates the lattice and angular misfit.

+
+
+

Figure 3 illustrates an example of the interface structure between + Fe and Fe + + 2Al + + 5. + This example is taken from the study by + (Khalid, + Friis, Ninive, Marthinsen, Ringdalen, et al., 2021).

+ +

Illustration of domain wall structures in + PbTiO + + 3 + and YMnO + + 3 + using the dwbuilder.py script. + PbTiO + + 3, + a proper ferroelectric belonging to the tetragonal P4mm space group, + exhibits a polar axis along the c-axis in the primitive unit cell + structure, as shown in (a). The DWBuilder + script automatically determines the space group and constructs the + (b) T90 and (c) T180 domain wall structures. For + YMnO + + 3, + with two domain structures, (d) am and (e) bp, both exhibiting + polarization along the + + ±c-axis, + the script generates (f) neutral domain walls by stacking the + domains along the b-axis and (g) charged domain walls by stacking + them along the c-axis.

+ +
+ +

Illustration of the hibuilder.py + script used to build the interface structures between (a) Fe and (b) + Fe + + 2Al + + 5. + The transformed bulk structures are shown in (c) and (d) + respectively. The final interface structure is created by stacking + the transformed bulk phases so that Fe + + [222] + is parallel to Fe + + 2Al + + 5 + + [100]. + (e) The interface structure can be further optimized by defining the + optimal distance between the two bulk phases.

+ +
+
+ + Acknowledgements +

Funding from the Norwegian research counsil (Grant agreement + No. 90544501) is gratefully acknowledged.

+
+ + + + + + + + MeierDennis + SelbachSverre M + + Ferroelectric domain walls for nanotechnology + Nature Reviews Materials + Nature Publishing Group UK London + 2022 + 7 + 3 + 10.1038/s41578-021-00375-z + 157 + 173 + + + + + + CatalanGustau + SeidelJ + RameshRamamoorthy + ScottJames F + + Domain wall nanoelectronics + Reviews of Modern Physics + APS + 2012 + 84 + 1 + 10.1103/RevModPhys.84.119 + 119 + + + + + + + MeierDennis + + Functional domain walls in multiferroics + Journal of Physics: Condensed Matter + IOP Publishing + 2015 + 27 + 46 + 10.1088/0953-8984/27/46/463003 + 463003 + + + + + + + BednyakovPetr S + SturmanBoris I + SlukaTomas + TagantsevAlexander K + YudinPetr V + + Physics and applications of charged domain walls + npj Computational Materials + Nature Publishing Group + 2018 + 4 + 1 + 10.1038/s41524-018-0121-8 + 1 + 11 + + + + + + WhyteJR + GreggJM + + A diode for ferroelectric domain-wall motion + Nature Communications + Nature Publishing Group + 2015 + 6 + 1 + 10.1038/ncomms8361 + 1 + 5 + + + + + + MundyJulia A + SchaabJakob + KumagaiYu + CanoAndres + StengelMassimiliano + KrugIngo P + GottlobDM + DoğanayHatice + HoltzMegan E + HeldRainer + others + + Functional electronic inversion layers at ferroelectric domain walls + Nature materials + Nature Publishing Group + 2017 + 16 + 6 + 10.1038/nmat4878 + 622 + 627 + + + + + + SharmaPankaj + ZhangQi + SandoDaniel + LeiChi Hou + LiuYunya + LiJiangyu + NagarajanValanoor + SeidelJan + + Nonvolatile ferroelectric domain wall memory + Science advances + American Association for the Advancement of Science + 2017 + 3 + 6 + 10.1126/sciadv.1700512 + e1700512 + + + + + + + SchultheißJan + SchaabJakob + SmåbråtenDidrik Rene + SkjærvøSandra Helen + BourretEdith + YanZewu + SelbachSverre Magnus + MeierDennis + + Intrinsic and extrinsic conduction contributions at nominally neutral domain walls in hexagonal manganites + Applied Physics Letters + AIP Publishing LLC + 2020 + 116 + 26 + 10.1063/5.0009185 + 262903 + + + + + + + SmåbråtenDidrik Rene + HolstadTheodor Secanell + EvansDonald M + YanZ + BourretEdith + MeierDennis + SelbachSverre Magnus + + Domain wall mobility and roughening in doped ferroelectric hexagonal manganites + Physical Review Research + APS + 2020 + 2 + 3 + 10.1103/PhysRevResearch.2.033159 + 033159 + + + + + + + SmåbråtenDidrik R + MeierQuintin N + SkjærvøSandra H + InzaniKatherine + MeierDennis + SelbachSverre M + + Charged domain walls in improper ferroelectric hexagonal manganites and gallates + Physical Review Materials + APS + 2018 + 2 + 11 + 10.1103/PhysRevMaterials.2.114405 + 114405 + + + + + + + EdererClaude + SpaldinNicola A + + Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics + Physical review letters + APS + 2005 + 95 + 25 + 10.1103/PhysRevLett.95.257601 + 257601 + + + + + + + WangJBNJ + NeatonJB + ZhengH + NagarajanV + OgaleSB + LiuB + ViehlandD + VaithyanathanV + SchlomDG + WaghmareUV + others + + Epitaxial BiFeO_3 multiferroic thin film heterostructures + science + American Association for the Advancement of Science + 2003 + 299 + 5613 + 10.1126/science.1080615 + 1719 + 1722 + + + + + + TaherinejadMaryam + VanderbiltDavid + MartonPavel + StepkovaVilgelmina + HlinkaJiri + + Bloch-type domain walls in rhombohedral BaTiO_3 + Physical Review B + APS + 2012 + 86 + 15 + 10.1103/PhysRevB.86.155138 + 155138 + + + + + + + MeyerB + VanderbiltDavid + + Ab initio study of ferroelectric domain walls in PbTiO_3 + Physical Review B + APS + 2002 + 65 + 10 + 10.1103/PhysRevB.65.104111 + 104111 + + + + + + + BaronePaolo + Di SanteDomenico + PicozziSilvia + + Improper origin of polar displacements at CaTiO_3 and CaMnO_3 twin walls + Physical Review B + APS + 2014 + 89 + 14 + 10.1103/PhysRevB.89.144104 + 144104 + + + + + + + ZhangM-X + KellyPM + + Edge-to-edge matching model for predicting orientation relationships and habit planes—the improvements + Scripta Materialia + Elsevier + 2005 + 52 + 10 + 10.1016/j.scriptamat.2005.01.040 + 963 + 968 + + + + + + KhalidMuhammad Zeeshan + + Atomistic modelling of Fe-Al and \alpha-AlFeSi intermetallic compound interfaces + Norwegian University of Science & Technology (NTNU), Trondheim, Norway, March 2020 + 2020 + + + + + + KhalidMuhammad Zeeshan + FriisJesper + NinivePer Harald + MarthinsenKnut + StrandlieAre + + Ab-initio study of atomic structure and mechanical behaviour of Al/Fe intermetallic interfaces + Computational Materials Science + Elsevier + 2020 + 174 + 10.1016/j.commatsci.2019.109481 + 109481 + + + + + + + KhalidMuhammad Zeeshan + FriisJesper + NinivePer Harald + MarthinsenKnut + StrandlieAre + + First-principles study of tensile and shear strength of Fe-Al and \alpha-AlFeSi intermetallic compound interfaces + Computational Materials Science + Elsevier + 2021 + 187 + 10.1016/j.commatsci.2020.110058 + 110058 + + + + + + + KhalidMuhammad Zeeshan + FriisJesper + NinivePer Harald + MarthinsenKnut + RingdalenInga Gudem + StrandlieAre + + First-principles study of tensile and shear strength of an Fe_2Al_5//Fe interface + Computational Materials Science + Elsevier + 2021 + 192 + 10.1016/j.commatsci.2021.110319 + 110319 + + + + + + + KhalidMuhammad Zeeshan + FriisJesper + NinivePer Harald + MarthinsenKnut + StrandlieAre + + A first-principles study of the Al(001)/Fe(0-11) interface + Materials science forum + Trans Tech Publ + 2019 + 941 + 10.4028/www.scientific.net/MSF.941.2349 + 2349 + 2355 + + + + +
diff --git a/joss.06895/paper.jats/dwbuilder-example.pdf b/joss.06895/paper.jats/dwbuilder-example.pdf new file mode 100644 index 0000000000..b4ba6c8a3b Binary files /dev/null and b/joss.06895/paper.jats/dwbuilder-example.pdf differ diff --git a/joss.06895/paper.jats/dwbuilder.png b/joss.06895/paper.jats/dwbuilder.png new file mode 100644 index 0000000000..1fb06b20a2 Binary files /dev/null and b/joss.06895/paper.jats/dwbuilder.png differ diff --git a/joss.06895/paper.jats/hibuild-example.pdf b/joss.06895/paper.jats/hibuild-example.pdf new file mode 100644 index 0000000000..d1e1f68c66 Binary files /dev/null and b/joss.06895/paper.jats/hibuild-example.pdf differ