forked from soeaver/Pytorch_Mask_RCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
149 lines (115 loc) · 5.19 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import time
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from config import Config
from network.mask_rcnn import MaskRCNN
from postprocess import visualize
from tasks.merge_task import final_detections, unmold_detections
from preprocess.InputProcess import (compose_image_meta, mold_image,
mold_inputs, parse_image_meta,
resize_image)
class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
class InferenceConfig(Config):
"""Configuration for training on MS COCO.
Derives from the base Config class and overrides values specific
to the COCO dataset.
"""
# Give the configuration a recognizable name
NAME = "coco"
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 80 # COCO has 80 classes
def to_variable(numpy_data, volatile=False):
numpy_data = numpy_data.astype(np.float32)
torch_data = torch.from_numpy(numpy_data).float()
variable = Variable(torch_data, volatile=volatile)
return variable
def run_demo(image_path, save_path, model):
start = time.time()
oriImg = cv2.imread(image_path)
image = cv2.cvtColor(oriImg, cv2.COLOR_BGR2RGB)
molded_image, image_metas, windows = mold_inputs([image], config)
inputs = molded_image.transpose((0, 3, 1, 2))
inputs = torch.from_numpy(inputs).float()
inputs = Variable(inputs, volatile=True).cuda()
outputs = model(inputs)
rpn_class_logits, rpn_class, rpn_bbox,\
rpn_rois, mrcnn_class_logits, mrcnn_class,\
mrcnn_bbox, mrcnn_masks_logits = outputs
mrcnn_class = mrcnn_class.cpu().data.numpy()
mrcnn_bbox = mrcnn_bbox.cpu().data.numpy()
rois = rpn_rois.cpu().data.numpy() / 1024.
rois = rois[:, :, [1, 0, 3, 2]]
detections = final_detections(
rois, mrcnn_class, mrcnn_bbox, image_metas, config)
mask_rois = detections[..., :4][..., [1, 0, 3, 2]]
mask_rois = to_variable(mask_rois, volatile=True).cuda()
mrcnn_mask = model.rpn_mask(model.mrcnn_feature_maps, mask_rois)
mrcnn_mask = F.sigmoid(mrcnn_mask)
mrcnn_mask = mrcnn_mask.cpu().data.numpy()
mrcnn_mask = mrcnn_mask.transpose(0, 1, 3, 4, 2)
final_rois, final_class_ids, final_scores, final_masks =\
unmold_detections(detections[0], mrcnn_mask[0],
oriImg.shape, windows[0])
reslut = {
"rois": final_rois,
"class_ids": final_class_ids,
"scores": final_scores,
"masks": final_masks,
}
visualize.display_instances(image, reslut['rois'], reslut['masks'], reslut['class_ids'],
class_names, save_path, reslut['scores'])
end = time.time()
print('spend time', end - start)
def directory_demo(image_source_path, image_save_path, model):
images = os.listdir(image_source_path)
for i, image_path in enumerate(images):
if i % 10 == 0:
print('Processed %d images' % i)
one_source_path = os.path.join(image_source_path, image_path)
one_save_path = os.path.join(
image_save_path, image_path).rsplit('.', 1)[0] + '.png'
run_demo(one_source_path, one_save_path, model)
if __name__ == "__main__":
config = InferenceConfig()
config.display()
pretrained_weight = "./models/mrcnn.pth"
state_dict = torch.load(pretrained_weight)
model = MaskRCNN(config=config, mode='inference')
model.load_state_dict(state_dict)
model.cuda()
model.eval()
cudnn.benchmark = True
image_path = 'README/santas.jpg'
save_path = 'README/santas_output.png'
run_demo(image_path, save_path, model)
# directory demo, inference on images of one directory and save the result
# image_source_dir = '/DATA/high_resolution'
# image_save_dir = '/DATA/high_resolution_result'
# directory_demo(image_source_dir, image_save_dir, model)