-
Notifications
You must be signed in to change notification settings - Fork 547
/
ShapeTensor.hpp
264 lines (204 loc) · 8.54 KB
/
ShapeTensor.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <NvInfer.h>
#include <cassert>
#include <iosfwd>
#include <vector>
namespace onnx2trt
{
class ImporterContext;
class TensorOrWeights;
//! Represents a 0D or 1D tensor of int64_t.
class ShapeTensor
{
public:
//! Create undefined ShapeTensor.
ShapeTensor() = default;
//! Create ShapeTensor with known rank and int64_t values.
ShapeTensor(int32_t rank_, std::vector<int64_t>&& values_);
//! Create ShapeTensor with known rank and float values.
ShapeTensor(int32_t rank_, std::vector<float>&& values_);
//! Create ShapeTensor representing value of TensorOrWeights.
ShapeTensor(ImporterContext* ctx, TensorOrWeights& t);
//! Construct ShapeTensor equivalent to applying IShapeLayer depth times.
//! The depth may be in [0,3].
explicit ShapeTensor(nvinfer1::ITensor& t, int depth = 0);
//! True if rank is known.
bool rankKnown() const
{
return mRank != kRANK_UNKNOWN;
}
//! Number of dimensions. Always 0 or 1.
int32_t rank() const
{
assert(rankKnown());
return mRank;
}
//! True if number of elements in tensor is known.
bool sizeKnown() const
{
return mSize != kSIZE_UNKNOWN;
}
//! Number of elements in the tensor. Asserts that sizeKnown()==true.
int32_t size() const
{
assert(sizeKnown());
return mSize;
}
//! True if tensor is known to be an empty vector.
bool isEmpty() const
{
// No need to check rank because if rank is 0, then mSize==1,
// and if rank is unknown, mSize = kSIZE_UNKNOWN.
return mSize == 0;
}
//! True if all element values are known.
bool allValuesKnown() const
{
return mAllValuesKnown;
}
//! True if all element values equal the given value.
bool isAll(int64_t value) const;
//! True if floating-point shape tensor.
bool isFloat() const
{
return mIsFloat;
}
using const_iterator = std::vector<int64_t>::const_iterator;
//! Iterator pointing to beginning of sequence of element values.
//! Requires that allValuesKnown() is true.
const_iterator begin() const
{
assert(mAllValuesKnown);
return mValues.begin();
}
//! Iterator pointing to end of sequence of element values.
//! Requires that allValuesKnown() is true.
const_iterator end() const
{
assert(mAllValuesKnown);
return mValues.end();
}
//! True if operator[](k) is valid.
bool valueKnown(int k) const;
//! Return kth value.
//! For a 0D tensor, k must be 0.
//! Requires that valueKnown(k) is true.
int64_t operator[](int k) const
{
assert(valueKnown(k));
return mValues[k];
}
//! Return true if x and y always have the same value.
friend bool operator==(const ShapeTensor& x, const ShapeTensor& y);
friend ShapeTensor shapeOf(const ShapeTensor& t);
//! Get TensorRT tensor representation.
nvinfer1::ITensor& tensor(ImporterContext* ctx) const;
private:
//! Number of IShapeLayer to apply to mTensor to get ITensor representing value of *this.
//! -1 for undefined *this, a value in [0,2] otherwise.
//! 0: *this represents value of the tensor (always 0D or 1D)
//! 1: *this represents shape of mTensor (always 1D)
//! 2: *this represents rank of mTensor (always 1D tensor of length 1)
mutable int8_t mDepth{-1};
//! True if all values are known.
bool mAllValuesKnown{false};
static constexpr int kRANK_UNKNOWN = -1;
static constexpr int kSIZE_UNKNOWN = -1;
//! Rank of *this.
//! Always -1, 0 or 1.
int8_t mRank{kRANK_UNKNOWN};
//! Number of elements in the tensor, or -1 if unknown.
int32_t mSize{kSIZE_UNKNOWN};
//! Must be non-null if mAllValuesKnown.
mutable nvinfer1::ITensor* mTensor{nullptr};
//! Values of elements if some might be known.
//! mValues.size() is always zero or equal to mSize.
//! When mAllValuesKnown==true, all the values in mValues are correct
//! and mValues.size() == mSize.
//! When mAllValuesKnown==false, only the non-negative values in mValues
//! are guaranteed to be correct, and only so if mValues.size() == mSize.
std::vector<int64_t> mValues{};
bool mIsFloat{false};
};
//! Print ShapeTensor. Unknown values are printed as _.
std::ostream& operator<<(std::ostream& stream, const ShapeTensor& x);
//! Create 1D ShapeTensor of length n filled with value.
//! count must be 1D ShapeTensor of size 1.
ShapeTensor fillShapeVector(ImporterContext* ctx, int64_t value, const ShapeTensor& count);
//! Create 1D ShapeTensor of length 1 containing given value.
ShapeTensor shapeVector(int64_t value);
//! Create 0D ShapeTensor containing the given value.
ShapeTensor shapeScalar(int64_t value);
//! Create 1D ShapeTensor containing [0,n).
ShapeTensor iotaShapeVector(int32_t n);
//! Create ShapeTensor filled with value that has same shape as exemplar.
//! The exemplar must be 1D.
ShapeTensor similar(ImporterContext* ctx, const ShapeTensor& exemplar, int64_t value);
//! Elementwise addition
ShapeTensor add(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise subtraction
ShapeTensor sub(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise multiplication
ShapeTensor mul(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise min
ShapeTensor min(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise max
ShapeTensor max(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise floor division
ShapeTensor floorDiv(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise f, for a partial function f defined by:
//! f(x,x) = x
//! f(1,x) = x
//! f(x,1) = x
//! Undefined otherwise or if x < 0.
ShapeTensor broadcast(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Return product of x[i] for i in [first..last), as 0D or one-element 1D tensor of given rank.
ShapeTensor product(ImporterContext* ctx, const ShapeTensor& x, int first, int last, int rank);
//! Gather where data is 1D tensor and indices can be 0D or 1D
ShapeTensor gather(ImporterContext* ctx, const ShapeTensor& data, const ShapeTensor& indices);
//! Concatenation of two 1D tensors
ShapeTensor concat(ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Cast to int32_t shape tensor.
ShapeTensor castToInt32(ImporterContext* ctx, ShapeTensor const& x);
//! Cast to int64_t shape tensor.
ShapeTensor castToInt64(ImporterContext* ctx, ShapeTensor const& x);
//! Return gather(concat(x,y),subscripts)
inline ShapeTensor interlace(
ImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y, const ShapeTensor& subscripts)
{
return gather(ctx, concat(ctx, x, y), subscripts);
}
//! Return shape of a tensor.
ShapeTensor shapeOf(nvinfer1::ITensor& tensor);
ShapeTensor shapeOf(const ShapeTensor& tensor);
ShapeTensor shapeOf(TensorOrWeights& t);
//! Reshape 0D tensor to 1D tensor.
ShapeTensor convertTo1D(ImporterContext* ctx, const ShapeTensor& tensor);
//! Reshape single value 1D tensor to a 0D tensor.
ShapeTensor convertTo0D(ImporterContext* ctx, const ShapeTensor& tensor);
//! Convert ShapeTensor to Dims, with bounds checking.
nvinfer1::Dims shapeTensorToDims(const ShapeTensor& x, const char* what, int32_t minAllowed, int32_t maxAllowed);
//! Add an ISliceLayer.
nvinfer1::ISliceLayer* addSlice(ImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& starts,
const ShapeTensor& sizes, const ShapeTensor& strides);
//! Add an IShuffleLayer.
//! If the result does not need to have its parameters changed, and
//! optimizing the no-op case away is okay, use function reshape instead.
//!
//! In general the default zeroIsPlaceholder=false should be used so
//! that reshaping to empty tensors works correctly. Calling with
//! zeroIsPlaceholder=true should happen only when replicating the
//! semantics of the ONNX Reshape operator.
nvinfer1::IShuffleLayer* addShuffle(
ImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& reshapeDims, bool zeroIsPlaceholder = false);
//! Add an IFillLayer.
nvinfer1::IFillLayer* addFill(ImporterContext* ctx, const ShapeTensor& shape, nvinfer1::FillOperation op);
//! Reshape a tensor.
//!
//! Treats any zeros in newShape as dimensions, not placeholders.
//! Implementation note: does not insert shuffle if it's a no-op.
nvinfer1::ITensor& reshape(ImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& newShape);
} // namespace onnx2trt