Skip to content

Latest commit

 

History

History

conda-deeplearning

One-Off Coder Logo

Purpose

The purpose of this container is to create a Deep Learning Conda environment with Jupyter Lab.

Here are some Deep Learning packages installed.

Note that this container requires nvidia-docker2. You will also need CUDA 10.0, cuDNN 7, and NCCL 2.3 installed on your host computer.

Ubuntu

On Ubuntu 19+, nvidia-docker2 is not yet published. You need to do the following.

distribution=ubuntu18.04
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
    sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
 
# check runtime hook is installed
which nvidia-container-runtime-hook
 
# make sure container detects gpu
docker run --gpus all --rm nvidia/cuda nvidia-smi

Docker Hub

Image

Docker

Build it.

./build.sh

Run it.

docker run -it \
    --shm-size=5g \
    --gpus all \
    -p 8888:8888 \
    -p 6006:6006 \
    conda-deeplearning:local

Run it with a mounted host folder.

docker run -it \
    -v $HOME/git/docker-containers/conda-deeplearning/ipynb:/root/ipynb \
    -p 8888:8888 \
    -p 6006:6006 \
    --shm-size=5g \
    --gpus all \
    conda-deeplearning:local

Run it with password protection.

docker run -it \
    -v $HOME/git/docker-containers/conda-deeplearning/ipynb:/root/ipynb \
    -p 8888:8888 \
    -p 6006:6006 \
    -e NOTEBOOK_PASSWORD=sha1:6676da7235c8:9c7d402c01e330b9368fa9e1637233748be11cc5 \
    --shm-size=5g \
    --gpus all \
    conda-deeplearning:local

Observe it.

Links

Take a Look!

Check out Alonzo Church.

Citation

@misc{oneoffcoder_conda_deeplearning_2019, 
title={Docker container for Deep Learning with Jupyter Lab}, 
url={https://github.com/oneoffcoder/docker-containers/tree/master/conda-deeplearning}, 
journal={GitHub},
author={One-Off Coder}, 
year={2019}, 
month={Jul}}