From 21ecee09e2e2deaec8f5a1e5772ac05e6d74e4ec Mon Sep 17 00:00:00 2001 From: "Oddvar Lia (ST MSU GEO)" Date: Thu, 16 Nov 2023 01:03:06 +0100 Subject: [PATCH] Removed use of global settings object --- tests/jobs/localisation/example_case/README | 8 +- .../example_case/example_test_config_A.yml | 6 +- .../example_test_config_A_with_actnum.yml | 6 +- .../example_case/example_test_config_B.yml | 6 +- .../example_case/example_test_config_C.yml | 6 +- .../example_case/example_test_config_D.yml | 6 +- .../example_case/scripts/common_functions.py | 295 ++++++++++-------- .../example_case/scripts/init_test_case.py | 205 +++++++----- .../example_case/scripts/sim_fields.py | 75 ++++- 9 files changed, 368 insertions(+), 245 deletions(-) diff --git a/tests/jobs/localisation/example_case/README b/tests/jobs/localisation/example_case/README index bdfba08e6..15f160dcd 100644 --- a/tests/jobs/localisation/example_case/README +++ b/tests/jobs/localisation/example_case/README @@ -25,14 +25,14 @@ ​ ### Typical Workflow: ​ -1. **Preparation:** Prepare ERT config input by running `scripts/init_test_case.py`. -2. Directories for observations are created automatically according to the default settings. +1. **Preparation:** Prepare ERT config input by running `scripts/init_test_case.py` with a config file in yaml format as input. +2. Directories for observations are created automatically according to the default settings or settings in config file.. 3. Activate or deactivate localisation in ERT config file (`HOOK_WORKFLOW LOAD_WORKFLOW` for localisation). 4. Now ready to run ERT. ​ ### What the Script `sim_fields.py` Does: -​ -1. Get iteration and realisation number from ERT using ERT environment variables `_ERT_ITERATION_NUMBER` and `_ERT_REALIZATION_NUMBER`. If running with an old Komodo version, the script will require iteration and realisation_number as command line input. +​1. Require 3 input arguments: iteration number, realization_number, config file. +1. Get iteration and realisation number from ERT. 2. If iteration = 0, then: - Simulate field and export to file to be used in `FIELD` keyword in ERT config file. - Upscale field and optionally export to file for QC purpose. diff --git a/tests/jobs/localisation/example_case/example_test_config_A.yml b/tests/jobs/localisation/example_case/example_test_config_A.yml index 8ba596332..c9536fbdc 100644 --- a/tests/jobs/localisation/example_case/example_test_config_A.yml +++ b/tests/jobs/localisation/example_case/example_test_config_A.yml @@ -1,9 +1,7 @@ # ROFF format standard Eclipse origo settings: - grid_size: - xsize: 7500.0 - ysize: 12500.0 - zsize: 50.0 + model_size: + size: [ 7500.0, 12500.0, 50.0 ] use_eclipse_grid_index_origo: True field: diff --git a/tests/jobs/localisation/example_case/example_test_config_A_with_actnum.yml b/tests/jobs/localisation/example_case/example_test_config_A_with_actnum.yml index daec97eb7..061c9ad14 100644 --- a/tests/jobs/localisation/example_case/example_test_config_A_with_actnum.yml +++ b/tests/jobs/localisation/example_case/example_test_config_A_with_actnum.yml @@ -1,9 +1,7 @@ # ROFF format standard Eclipse origo settings: - grid_size: - xsize: 7500.0 - ysize: 12500.0 - zsize: 50.0 + model_size: + size: [ 7500.0, 12500.0, 50.0 ] use_eclipse_grid_index_origo: True polygon_file: "Polygons.txt" diff --git a/tests/jobs/localisation/example_case/example_test_config_B.yml b/tests/jobs/localisation/example_case/example_test_config_B.yml index ffa215495..ad9b39ccb 100644 --- a/tests/jobs/localisation/example_case/example_test_config_B.yml +++ b/tests/jobs/localisation/example_case/example_test_config_B.yml @@ -1,9 +1,7 @@ # GRDECL format standard Eclipse origo settings: - grid_size: - xsize: 7500.0 - ysize: 12500.0 - zsize: 50.0 + model_size: + size: [ 7500.0, 12500.0, 50.0 ] use_eclipse_grid_index_origo: True field: diff --git a/tests/jobs/localisation/example_case/example_test_config_C.yml b/tests/jobs/localisation/example_case/example_test_config_C.yml index 87c6a8276..159248992 100644 --- a/tests/jobs/localisation/example_case/example_test_config_C.yml +++ b/tests/jobs/localisation/example_case/example_test_config_C.yml @@ -1,9 +1,7 @@ # ROFF format standard RMS origo settings: - grid_size: - xsize: 7500.0 - ysize: 12500.0 - zsize: 50.0 + model_size: + size: [ 7500.0, 12500.0, 50.0 ] use_eclipse_grid_index_origo: False field: diff --git a/tests/jobs/localisation/example_case/example_test_config_D.yml b/tests/jobs/localisation/example_case/example_test_config_D.yml index 2fa36cd1c..baf921741 100644 --- a/tests/jobs/localisation/example_case/example_test_config_D.yml +++ b/tests/jobs/localisation/example_case/example_test_config_D.yml @@ -1,9 +1,7 @@ # GRDECL format standard RMS origo settings: - grid_size: - xsize: 7500.0 - ysize: 12500.0 - zsize: 50.0 + model_size: + size: [ 7500.0, 12500.0, 50.0 ] use_eclipse_grid_index_origo: False field: diff --git a/tests/jobs/localisation/example_case/scripts/common_functions.py b/tests/jobs/localisation/example_case/scripts/common_functions.py index 42719921c..86153f4ee 100644 --- a/tests/jobs/localisation/example_case/scripts/common_functions.py +++ b/tests/jobs/localisation/example_case/scripts/common_functions.py @@ -1,6 +1,7 @@ """ Common functions used by the scripts: init_test_case.py and sim_field.py """ +import copy import math import os from dataclasses import dataclass @@ -18,7 +19,7 @@ # Settings for the test case in the following dataclasses @dataclass -class GridSize: +class ModelSize: """ Length, width, thickness of a box containing the field Same size is used for both fine scale grid with @@ -26,11 +27,7 @@ class GridSize: containing upscaled values of the simulated field. """ - xsize: float = 7500.0 - ysize: float = 12500.0 - # xsize: float = 7500.0 - # ysize: float = 7500.0 - zsize: float = 50.0 + size: Tuple[float] = (7500.0, 12500.0, 50.0) polygon_file: str = None use_eclipse_grid_index_origo: bool = True @@ -132,7 +129,7 @@ class Settings: Settings for the test case """ - grid_size: GridSize = GridSize() + model_size: ModelSize = ModelSize() field: Field = Field() response: Response = Response() observation: Observation = Observation() @@ -140,17 +137,17 @@ class Settings: optional: Optional = Optional() -settings = Settings() - - -def read_config_file(config_file_name=None): +def read_config_file(config_file_name): # Modify default settings if config_file exists - if config_file_name: - if os.path.exists(config_file_name): - with open(config_file_name, "r", encoding="utf-8") as yml_file: - settings_yml = yaml.safe_load(yml_file) + settings = Settings() + if os.path.exists(config_file_name): + with open(config_file_name, "r", encoding="utf-8") as yml_file: + settings_yml = yaml.safe_load(yml_file) - update_settings(settings_yml) + updated_settings = update_settings(settings, settings_yml) + return updated_settings + + raise IOError("Missing config file ") def update_key(key, default_value, settings_dict, parent_key=None): @@ -163,12 +160,12 @@ def update_key(key, default_value, settings_dict, parent_key=None): return value -def update_settings(config_dict: dict): +def update_settings(settings_original: Settings, config_dict: dict): # pylint: disable=too-many-branches, too-many-statements settings_dict = config_dict["settings"] - + settings = copy.deepcopy(settings_original) valid_keys = [ - "grid_size", + "model_size", "field", "response", "observation", @@ -179,18 +176,16 @@ def update_settings(config_dict: dict): if key not in valid_keys: raise KeyError(f"Unknown keyword {key} in 'settings' ") - key = "grid_size" - grid_size_dict = settings_dict[key] if key in settings_dict else None + key = "model_size" + model_size_dict = settings_dict[key] if key in settings_dict else None valid_keys = [ - "xsize", - "ysize", - "zsize", + "size", "polygon_file", "use_eclipse_grid_index_origo", ] - if grid_size_dict: + if model_size_dict: err_msg = [] - for sub_key in grid_size_dict: + for sub_key in model_size_dict: if sub_key not in valid_keys: err_msg.append(f" {sub_key}") if len(err_msg) > 0: @@ -199,23 +194,17 @@ def update_settings(config_dict: dict): print(text) raise KeyError("Unknown keywords") - grid_size_object = settings.grid_size - grid_size_object.xsize = update_key( - "xsize", grid_size_object.xsize, grid_size_dict, key + model_size_object = settings.model_size + model_size_object.size = update_key( + "size", model_size_object.size, model_size_dict, key ) - grid_size_object.ysize = update_key( - "ysize", grid_size_object.ysize, grid_size_dict, key + model_size_object.polygon_file = update_key( + "polygon_file", model_size_object.polygon_file, model_size_dict, key ) - grid_size_object.zsize = update_key( - "zsize", grid_size_object.zsize, grid_size_dict, key - ) - grid_size_object.polygon_file = update_key( - "polygon_file", grid_size_object.polygon_file, grid_size_dict, key - ) - grid_size_object.use_eclipse_grid_index_origo = update_key( + model_size_object.use_eclipse_grid_index_origo = update_key( "use_eclipse_grid_index_origo", - grid_size_object.use_eclipse_grid_index_origo, - grid_size_dict, + model_size_object.use_eclipse_grid_index_origo, + model_size_dict, key, ) @@ -424,35 +413,83 @@ def update_settings(config_dict: dict): optional_dict, key, ) - - -def generate_field_and_upscale(real_number): - seed_file_name = settings.field.seed_file - relative_std = settings.field.trend_relstd - use_trend = settings.field.trend_use - algorithm_method = settings.field.algorithm + return settings + + +def generate_field_and_upscale( + # pylint: disable=too-many-arguments + real_number: int, + iteration: int, + seed_file_name: str, + algorithm_method: str, + field_name: str, + field_file_name: str, + file_format: str, + grid_dimension: tuple, + model_size: tuple, + variogram_name: str, + corr_ranges: tuple, + azimuth: float, + dip: float, + alpha: float, + use_trend: bool, + trend_params: tuple, + relative_std: float, + upscale_name: str, + response_function: str, + upscaled_file_name: str, + grid_dimension_upscaled: tuple, + write_upscaled_field: bool, + use_standard_grid_index_origo: bool, +): start_seed = get_seed(seed_file_name, real_number) if algorithm_method == "gstools": print(f"Use algorithm: {algorithm_method}") - residual_field = simulate_field_using_gstools(start_seed) + residual_field = simulate_field_using_gstools( + start_seed, + variogram_name, + corr_ranges, + azimuth, + grid_dimension, + model_size, + use_standard_grid_index_origo, + ) else: print("Use algorithm: gaussianfft") - residual_field = simulate_field(start_seed) - if use_trend == 1: - trend_field = trend() + residual_field = simulate_field( + start_seed, + variogram_name, + corr_ranges, + azimuth, + dip, + alpha, + grid_dimension, + model_size, + use_standard_grid_index_origo, + ) + if use_trend: + trend_field = trend(grid_dimension, model_size, trend_params) field3D = trend_field + relative_std * residual_field - else: field3D = residual_field # Write field parameter for fine scale grid - field_object = export_field(field3D) + field_object = export_field( + field3D, field_name, field_file_name, file_format, grid_dimension + ) + field_values = field_object.values # Calculate upscaled values for selected coarse grid cells upscaled_values = upscaling( field_values, - iteration=0, + response_function, + file_format, + upscale_name, + write_upscaled_field, + upscaled_file_name, + grid_dimension_upscaled, + iteration, ) return upscaled_values @@ -471,16 +508,22 @@ def get_seed(seed_file_name, r_number): return seed_value -def upscaling(field_values, iteration=0): +def upscaling( + # pylint: disable=too-many-arguments + field_values, + response_function_name: str, + file_format: str, + upscaled_field_name: str, + write_upscaled_field: bool, + upscaled_file_name: str, + dimension: tuple, + iteration: int = 0, +): """ Calculate upscaled values and optionally write upscaled values to file. Return upscaled values """ - response_function_name = settings.response.response_function - file_format = settings.response.file_format - upscaled_field_name = settings.response.name - write_upscaled_field = settings.response.write_upscaled_field - NX, NY, NZ = settings.response.grid_dimension + NX, NY, NZ = dimension upscaled_values = np.zeros((NX, NY, NZ), dtype=np.float32, order="F") upscaled_values[:, :, :] = -999 @@ -491,7 +534,6 @@ def upscaling(field_values, iteration=0): ) if write_upscaled_field: - upscaled_file_name = settings.response.upscaled_file_name if iteration == 0: upscaled_file_name = "init_files/" + upscaled_file_name @@ -538,7 +580,7 @@ def write_upscaled_field_to_file( # Grid index order to xtgeo must be c-order masked array selected_upscaled_values = np.ma.zeros((nx, ny, nz), dtype=np.float32) selected_upscaled_values[:, :, :] = -1 - nobs = get_nobs() + nobs = get_nobs(selected_cell_index_list) for obs_number in range(nobs): (Iindx, Jindx, Kindx) = get_cell_indices( obs_number, nobs, selected_cell_index_list @@ -596,15 +638,14 @@ def upscale_average(field_values, upscaled_values): return upscaled_values -def trend(): +def trend(grid_dimension: tuple, model_size: tuple, trend_params: tuple): """ Return 3D numpy array with values following a linear trend scaled to take values between 0 and 1. """ - nx, ny, nz = settings.field.grid_dimension - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - a, b = settings.field.trend_params + nx, ny, nz = grid_dimension + xsize, ysize, _ = model_size + a, b = trend_params x0 = 0.0 y0 = 0.0 @@ -629,26 +670,25 @@ def trend(): return val_normalized -def simulate_field(start_seed): +def simulate_field( + start_seed: int, + variogram_name: str, + corr_ranges: tuple, + azimuth: float, + dip: float, + alpha: float, + grid_dimension: tuple, + model_size: tuple, + use_standard_grid_index_origo: bool, +): # pylint: disable=import-outside-toplevel # This function will not be available untill gaussianfft is available on python 3.10 # import gaussianfft as sim # isort: skip # dummy code to avoid pylint complaining in github actions sim = None - - variogram_name = settings.field.variogram - corr_ranges = settings.field.correlation_range - azimuth = settings.field.correlation_azimuth - dip = settings.field.correlation_dip - alpha = settings.field.correlation_exponent - nx, ny, nz = settings.field.grid_dimension - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - zsize = settings.grid_size.zsize - - xrange = corr_ranges[0] - yrange = corr_ranges[1] - zrange = corr_ranges[2] + nx, ny, nz = grid_dimension + xrange, yrange, zrange = corr_ranges + xsize, ysize, zsize = model_size dx = xsize / nx dy = ysize / ny @@ -671,7 +711,7 @@ def simulate_field(start_seed): # gaussianfft.simulate will save the values in F-order field1D = sim.simulate(variogram, nx, dx, ny, dy, nz, dz) field_sim = field1D.reshape((nx, ny, nz), order="F") - if settings.grid_size.use_eclipse_grid_index_origo: + if use_standard_grid_index_origo: field_c_order = np.ma.zeros((nx, ny, nz), dtype=np.float32) j_indices = -np.arange(ny) + ny - 1 # Flip j index and use c-order @@ -683,20 +723,19 @@ def simulate_field(start_seed): return field_c_order -def simulate_field_using_gstools(start_seed): +def simulate_field_using_gstools( + start_seed: int, + variogram_name: str, + corr_ranges: tuple, + azimuth: float, + grid_dimension: tuple, + model_size: tuple, + use_standard_grid_index_origo: bool, +): # pylint: disable=no-member, - - variogram_name = settings.field.variogram - corr_ranges = settings.field.correlation_range - azimuth = settings.field.correlation_azimuth - xrange = corr_ranges[0] - yrange = corr_ranges[1] - zrange = corr_ranges[2] - - nx, ny, nz = settings.field.grid_dimension - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - zsize = settings.grid_size.zsize + xrange, yrange, zrange = corr_ranges + xsize, ysize, zsize = model_size + nx, ny, nz = grid_dimension dx = xsize / nx dy = ysize / ny @@ -740,7 +779,7 @@ def simulate_field_using_gstools(start_seed): # print(f"Field nugget: {srf.nugget} ") # print(f"Field opt arg: {srf.opt_arg}") field = field_srf.reshape((nx, ny, nz)) - if settings.grid_size.use_eclipse_grid_index_origo: + if use_standard_grid_index_origo: field_flip_j_index = np.ma.zeros((nx, ny, nz), dtype=np.float32) j_indices = -np.arange(ny) + ny - 1 field_flip_j_index[:, j_indices, :] = field[:, :, :] @@ -749,21 +788,21 @@ def simulate_field_using_gstools(start_seed): return field -def export_field(field3D): +def export_field( + field3D, + field_name: str, + field_file_name: str, + file_format: str, + grid_dimension: tuple, +): """ Export initial realization of field to roff format Input field3D should be C-index order since xtgeo requires that """ - - # nx, ny, nz = settings.field.grid_dimension - field_name = settings.field.name - field_file_name = settings.field.initial_file_name - file_format = settings.field.file_format - nx, ny, nz = settings.field.grid_dimension + nx, ny, nz = grid_dimension field_object = xtgeo.grid3d.GridProperty( ncol=nx, nrow=ny, nlay=nz, values=field3D, discrete=False, name=field_name ) - if file_format.upper() == "GRDECL": fullfilename = field_file_name + ".GRDECL" field_object.to_file(fullfilename, fformat="grdecl", dtype="float32") @@ -776,16 +815,14 @@ def export_field(field3D): return field_object -def read_field_from_file(): +def read_field_from_file( + input_file_name: str, name: str, file_format: str, grid_file_name: str +): """ Read field from roff formatted file and return xtgeo property object """ - - input_file_name = settings.field.updated_file_name - name = settings.field.name - file_format = settings.field.file_format if file_format.upper() == "GRDECL": - grid = xtgeo.grid_from_file(settings.field.grid_file_name, fformat="egrid") + grid = xtgeo.grid_from_file(grid_file_name, fformat="egrid") fullfilename = input_file_name + ".GRDECL" field_object = xtgeo.grid3d.GridProperty( fullfilename, fformat="grdecl", grid=grid, name=name @@ -800,40 +837,39 @@ def read_field_from_file(): return field_object -def read_obs_field_from_file(): +def read_obs_field_from_file( + file_format: str, pred_obs_file_name: str, grid_file_name: str, field_name: str +): """ Read field parameter containing parameter with observed values for selected grid cells """ - - file_format = settings.response.file_format - pred_obs_file_name = settings.observation.reference_param_file if file_format.upper() == "ROFF": fullfilename = pred_obs_file_name + ".roff" obs_field_object = xtgeo.gridproperty_from_file(fullfilename, fformat="roff") elif file_format.upper() == "GRDECL": - grid = xtgeo.grid_from_file(settings.response.grid_file_name, fformat="egrid") + grid = xtgeo.grid_from_file(grid_file_name, fformat="egrid") fullfilename = pred_obs_file_name + ".GRDECL" obs_field_object = xtgeo.gridproperty_from_file( - fullfilename, - fformat="grdecl", - grid=grid, - name=settings.observation.reference_field_name, + fullfilename, fformat="grdecl", grid=grid, name=field_name ) else: raise IOError(f"Unknown file format:{file_format} ") return obs_field_object -def read_upscaled_field_from_file(iteration): +def read_upscaled_field_from_file( + iteration: int, + input_file_name: str, + file_format: str, + upscaled_field_name: str, + grid_file_name: str, +): """ Read upscaled field parameter either from initial ensemble or updated ensemble. Return xtgeo property object """ - input_file_name = settings.response.upscaled_file_name - file_format = settings.response.file_format - upscaled_field_name = settings.response.name if iteration == 0: filename = "init_files/" + input_file_name else: @@ -842,7 +878,7 @@ def read_upscaled_field_from_file(iteration): fullfilename = filename + ".roff" field_object = xtgeo.gridproperty_from_file(fullfilename, fformat="roff") elif file_format.upper() == "GRDECL": - grid = xtgeo.grid_from_file(settings.response.grid_file_name, fformat="egrid") + grid = xtgeo.grid_from_file(grid_file_name, fformat="egrid") fullfilename = filename + ".GRDECL" field_object = xtgeo.gridproperty_from_file( fullfilename, fformat="grdecl", grid=grid, name=upscaled_field_name @@ -852,7 +888,9 @@ def read_upscaled_field_from_file(iteration): return field_object -def write_obs_pred_diff_field(upscaled_field_object, observation_field_object): +def write_obs_pred_diff_field( + upscaled_field_object, observation_field_object, file_format: str +): """ Get xtgeo property objects for predicted values for observables and observation values. @@ -860,7 +898,6 @@ def write_obs_pred_diff_field(upscaled_field_object, observation_field_object): """ nx, ny, nz = upscaled_field_object.dimensions values_diff = upscaled_field_object.values - observation_field_object.values - file_format = settings.response.file_format diff_object = xtgeo.grid3d.GridProperty( ncol=nx, @@ -900,13 +937,13 @@ def get_cell_indices(obs_number, nobs, cell_indx_list): return (Iindx, Jindx, Kindx) -def get_nobs(): +def get_nobs(cell_indx_list: list): """ Check if cell_indx_list is a single tuple (i,j,k) or a list of tuples of type (i,j,k). Return number of cell indices found in list """ - cell_indx_list = settings.observation.selected_grid_cells + is_list_of_ints = all(isinstance(indx, int) for indx in cell_indx_list) if is_list_of_ints: nobs = 1 diff --git a/tests/jobs/localisation/example_case/scripts/init_test_case.py b/tests/jobs/localisation/example_case/scripts/init_test_case.py index 9f3a1bf91..0cee4e994 100755 --- a/tests/jobs/localisation/example_case/scripts/init_test_case.py +++ b/tests/jobs/localisation/example_case/scripts/init_test_case.py @@ -15,7 +15,6 @@ get_cell_indices, get_nobs, read_config_file, - settings, write_upscaled_field_to_file, ) @@ -24,26 +23,29 @@ def generate_seed_file( + file_name: str, start_seed: int = 9828862224, number_of_seeds: int = 1000, ): - seed_file_name = settings.field.seed_file - print(f"Generate random seed file: {seed_file_name}") + print(f"Generate random seed file: {file_name}") random.seed(start_seed) - with open(seed_file_name, "w", encoding="utf8") as file: + with open(file_name, "w", encoding="utf8") as file: for _ in range(number_of_seeds): file.write(f"{random.randint(1, 999999999)}\n") -def obs_positions(): - NX, NY, _ = settings.response.grid_dimension - use_eclipse_origo = settings.grid_size.use_eclipse_grid_index_origo +def obs_positions( + grid_dimension_upscaled: tuple, + model_size: tuple, + cell_indx_list: list, + use_eclipse_origo: bool, +): + nx, ny, _ = grid_dimension_upscaled + xsize, ysize, _ = model_size + + dx = xsize / nx + dy = ysize / ny - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - dx = xsize / NX - dy = ysize / NY - cell_indx_list = settings.observation.selected_grid_cells if use_eclipse_origo: print("Grid index origin: Eclipse standard") else: @@ -54,7 +56,7 @@ def obs_positions(): ) pos_list = [] - nobs = get_nobs() + nobs = get_nobs(cell_indx_list) for obs_number in range(nobs): (Iindx, Jindx, _) = get_cell_indices(obs_number, nobs, cell_indx_list) x = (Iindx + 0.5) * dx @@ -69,24 +71,29 @@ def obs_positions(): def write_localisation_config( - config_file_name="local_config.yml", - write_scaling=True, - localisation_method="gaussian", + obs_index_list: list, + field_name: str, + corr_ranges: tuple, + azimuth: float, + grid_dimension: tuple, + model_size: tuple, + use_eclipse_grid_index_origo: bool, + config_file_name: str = "local_config.yml", + write_scaling: bool = True, + localisation_method: str = "gaussian", ): - obs_index_list = settings.observation.selected_grid_cells - field_name = settings.field.name - corr_ranges = settings.field.correlation_range - azimuth = settings.field.correlation_azimuth space = " " * 2 space2 = " " * 4 space3 = " " * 6 - positions = obs_positions() + positions = obs_positions( + grid_dimension, model_size, obs_index_list, use_eclipse_grid_index_origo + ) print(f"Write localisation config file: {config_file_name}") with open(config_file_name, "w", encoding="utf8") as file: file.write("log_level: 3\n") file.write(f"write_scaling_factors: {write_scaling}\n") file.write("correlations:\n") - nobs = get_nobs() + nobs = get_nobs(obs_index_list) for obs_number in range(nobs): (Iindx, Jindx, Kindx) = get_cell_indices(obs_number, nobs, obs_index_list) obs_name = f"OBS_{Iindx+1}_{Jindx+1}_{Kindx+1}" @@ -108,13 +115,15 @@ def write_localisation_config( file.write(f"{space3}value: 1.0\n") -def write_gen_obs(upscaled_values): - observation_dir = settings.observation.directory - obs_file_name = settings.observation.file_name - obs_data_dir = settings.observation.data_dir - cell_indx_list = settings.observation.selected_grid_cells - rel_err = settings.observation.rel_error - min_err = settings.observation.min_abs_error +def write_gen_obs( + upscaled_values, + observation_dir: str, + obs_file_name: str, + obs_data_dir: str, + cell_indx_list: list, + rel_err: float, + min_err: float, +): if not os.path.exists(observation_dir): print(f"Create directory: {observation_dir} ") os.makedirs(observation_dir) @@ -128,7 +137,7 @@ def write_gen_obs(upscaled_values): with open(filename, "w", encoding="utf8") as obs_file: # Check if cell_indx_list is a single tuple (i,j,k) # or a list of tuples of type (i,j,k) - nobs = get_nobs() + nobs = get_nobs(cell_indx_list) for obs_number in range(nobs): (Iindx, Jindx, Kindx) = get_cell_indices(obs_number, nobs, cell_indx_list) value = upscaled_values[Iindx, Jindx, Kindx] @@ -161,13 +170,16 @@ def write_gen_obs(upscaled_values): data_file.write(f"{value} {value_err}\n") -def create_grid(): - grid_file_name = settings.field.grid_file_name - nx, ny, nz = settings.field.grid_dimension - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - zsize = settings.grid_size.zsize - if settings.grid_size.use_eclipse_grid_index_origo: +def create_grid( + grid_file_name, + dimensions, + size, + standard_grid_index_origo, + polygon_file_name=None, +): + xsize, ysize, zsize = size + nx, ny, nz = dimensions + if standard_grid_index_origo: flip = -1 x0 = 0.0 y0 = ysize @@ -190,7 +202,6 @@ def create_grid(): flip=flip, ) - polygon_file_name = settings.grid_size.polygon_file if polygon_file_name is not None and os.path.exists(polygon_file_name): print(f"Use polygon file {polygon_file_name} to create actnum ") polygon = xtgeo.polygons_from_file(polygon_file_name, fformat="xyz") @@ -201,55 +212,33 @@ def create_grid(): return grid_object -def create_upscaled_grid(): - grid_file_name = settings.response.grid_file_name - nx, ny, nz = settings.response.grid_dimension - xsize = settings.grid_size.xsize - ysize = settings.grid_size.ysize - zsize = settings.grid_size.zsize - if settings.grid_size.use_eclipse_grid_index_origo: - flip = -1 - x0 = 0.0 - y0 = ysize - z0 = 0.0 - else: - flip = 1 - x0 = 0.0 - y0 = 0.0 - z0 = 0.0 - - dx = xsize / nx - dy = ysize / ny - dz = zsize / nz - - grid_object = xtgeo.create_box_grid( - dimension=(nx, ny, nz), - origin=(x0, y0, z0), - increment=(dx, dy, dz), - rotation=0.0, - flip=flip, - ) - - print(f"Write grid file: {grid_file_name} ") - grid_object.to_file(grid_file_name, fformat="egrid") - return grid_object - - -def main(config_file_name=None): +def main(config_file_name): """ Initialize seed file, grid files, observation files and localisation config file """ - read_config_file(config_file_name) + settings = read_config_file(config_file_name) # Create seed file - generate_seed_file() + generate_seed_file(settings.field.seed_file) # Create grid for the field parameter - create_grid() + create_grid( + settings.field.grid_file_name, + settings.field.grid_dimension, + settings.model_size.size, + settings.model_size.use_eclipse_grid_index_origo, + settings.model_size.polygon_file, + ) # Create coarse grid to be used in QC of upscaled field parameter - create_upscaled_grid() + create_grid( + settings.response.grid_file_name, + settings.response.grid_dimension, + settings.model_size.size, + settings.model_size.use_eclipse_grid_index_origo, + settings.model_size.polygon_file, + ) print("Generate field parameter and upscale this.") print( @@ -259,33 +248,89 @@ def main(config_file_name=None): # Simulate field (with trend) real_number = 0 - upscaled_values = generate_field_and_upscale(real_number) + iteration = 0 + upscaled_values = generate_field_and_upscale( + real_number, + iteration, + settings.field.seed_file, + settings.field.algorithm, + settings.field.name, + settings.field.initial_file_name, + settings.field.file_format, + settings.field.grid_dimension, + settings.model_size.size, + settings.field.variogram, + settings.field.correlation_range, + settings.field.correlation_azimuth, + settings.field.correlation_dip, + settings.field.correlation_exponent, + settings.field.trend_use, + settings.field.trend_params, + settings.field.trend_relstd, + settings.response.name, + settings.response.response_function, + settings.response.upscaled_file_name, + settings.response.grid_dimension, + settings.response.write_upscaled_field, + settings.model_size.use_eclipse_grid_index_origo, + ) # Create observations by extracting from existing upscaled field - write_gen_obs(upscaled_values) + write_gen_obs( + upscaled_values, + settings.observation.directory, + settings.observation.file_name, + settings.observation.data_dir, + settings.observation.selected_grid_cells, + settings.observation.rel_error, + settings.observation.min_abs_error, + ) # Write upscaled field used as reference # since obs are extracted from this field write_upscaled_field_to_file( upscaled_values, settings.observation.reference_param_file, + upscaled_field_name=settings.observation.reference_field_name, selected_cell_index_list=settings.observation.selected_grid_cells, file_format=settings.field.file_format, - upscaled_field_name=settings.observation.reference_field_name, ) # Write file for non-adaptive localisation using distance based localisation write_localisation_config( + settings.observation.selected_grid_cells, + settings.field.name, + settings.field.correlation_range, + settings.field.correlation_azimuth, + settings.response.grid_dimension, + settings.model_size.size, + settings.model_size.use_eclipse_grid_index_origo, config_file_name="local_config_gaussian_decay.yml", write_scaling=True, localisation_method="gaussian", ) + write_localisation_config( + settings.observation.selected_grid_cells, + settings.field.name, + settings.field.correlation_range, + settings.field.correlation_azimuth, + settings.response.grid_dimension, + settings.model_size.size, + settings.model_size.use_eclipse_grid_index_origo, config_file_name="local_config_constant.yml", write_scaling=True, localisation_method="constant", ) + write_localisation_config( + settings.observation.selected_grid_cells, + settings.field.name, + settings.field.correlation_range, + settings.field.correlation_azimuth, + settings.response.grid_dimension, + settings.model_size.size, + settings.model_size.use_eclipse_grid_index_origo, config_file_name="local_config.yml", write_scaling=True, localisation_method=settings.localisation.method, diff --git a/tests/jobs/localisation/example_case/scripts/sim_fields.py b/tests/jobs/localisation/example_case/scripts/sim_fields.py index d11f26604..ee8ba162b 100755 --- a/tests/jobs/localisation/example_case/scripts/sim_fields.py +++ b/tests/jobs/localisation/example_case/scripts/sim_fields.py @@ -14,22 +14,21 @@ read_field_from_file, read_obs_field_from_file, read_upscaled_field_from_file, - settings, upscaling, write_obs_pred_diff_field, ) -def write_prediction_gen_data(upscaled_values): +def write_prediction_gen_data( + upscaled_values, cell_indx_list: list, response_file_name: str +): """ Write GEN_DATA file with predicted values of observables (selected upscaled values) """ - cell_indx_list = settings.observation.selected_grid_cells - response_file_name = settings.response.gen_data_file_name print(f"Write GEN_DATA file with prediction of observations: {response_file_name}") with open(response_file_name, "w", encoding="utf8") as file: # NOTE: The sequence of values must be the same as for the observations - nobs = get_nobs() + nobs = get_nobs(cell_indx_list) for obs_number in range(nobs): (Iindx, Jindx, Kindx) = get_cell_indices(obs_number, nobs, cell_indx_list) value = upscaled_values[Iindx, Jindx, Kindx] @@ -79,32 +78,84 @@ def main(args): iteration, real_number, config_file_name = get_iteration_real_number_config_file( args ) - read_config_file(config_file_name) + settings = read_config_file(config_file_name) if iteration == 0: print(f"Generate new field parameter realization:{real_number} ") # Simulate field (with trend) - upscaled_values = generate_field_and_upscale(real_number) + upscaled_values = generate_field_and_upscale( + real_number, + iteration, + settings.field.seed_file, + settings.field.algorithm, + settings.field.name, + settings.field.initial_file_name, + settings.field.file_format, + settings.field.grid_dimension, + settings.model_size.size, + settings.field.variogram, + settings.field.correlation_range, + settings.field.correlation_azimuth, + settings.field.correlation_dip, + settings.field.correlation_exponent, + settings.field.trend_use, + settings.field.trend_params, + settings.field.trend_relstd, + settings.response.name, + settings.response.response_function, + settings.response.upscaled_file_name, + settings.response.grid_dimension, + settings.response.write_upscaled_field, + settings.model_size.use_eclipse_grid_index_origo, + ) else: print(f"Import updated field parameter realization: {real_number} ") - field_object = read_field_from_file() + field_object = read_field_from_file( + settings.field.updated_file_name, + settings.field.name, + settings.field.file_format, + settings.field.grid_file_name, + ) field_values = field_object.values # Calculate upscaled values for selected coarse grid cells upscaled_values = upscaling( field_values, + settings.response.response_function, + settings.response.file_format, + settings.response.name, + settings.response.write_upscaled_field, + settings.response.upscaled_file_name, + settings.response.grid_dimension, iteration=iteration, ) # Write GEN_DATA file - write_prediction_gen_data(upscaled_values) + write_prediction_gen_data( + upscaled_values, + settings.observation.selected_grid_cells, + settings.response.gen_data_file_name, + ) # Optional output calculate difference between upscaled field and # and reference upscaled field if settings.optional.write_obs_pred_diff_field_file: - obs_field_object = read_obs_field_from_file() - upscaled_field_object = read_upscaled_field_from_file(iteration) - write_obs_pred_diff_field(upscaled_field_object, obs_field_object) + obs_field_object = read_obs_field_from_file( + settings.response.file_format, + settings.observation.reference_param_file, + settings.response.grid_file_name, + settings.observation.reference_field_name, + ) + upscaled_field_object = read_upscaled_field_from_file( + iteration, + settings.response.upscaled_file_name, + settings.response.file_format, + settings.response.name, + settings.response.grid_file_name, + ) + write_obs_pred_diff_field( + upscaled_field_object, obs_field_object, settings.field.file_format + ) if __name__ == "__main__":