diff --git a/_images/01_def.png b/_images/01_def.png deleted file mode 100644 index b83fcc3b1a..0000000000 Binary files a/_images/01_def.png and /dev/null differ diff --git a/_images/02_multioutput.png b/_images/02_multioutput.png deleted file mode 100644 index 029a65b1bf..0000000000 Binary files a/_images/02_multioutput.png and /dev/null differ diff --git a/_images/03_direct.png b/_images/03_direct.png deleted file mode 100644 index 806daf531d..0000000000 Binary files a/_images/03_direct.png and /dev/null differ diff --git a/_images/04_recursive.png b/_images/04_recursive.png deleted file mode 100644 index b4e75ea7f7..0000000000 Binary files a/_images/04_recursive.png and /dev/null differ diff --git a/_images/05_dirrec.png b/_images/05_dirrec.png deleted file mode 100644 index 8f7081205e..0000000000 Binary files a/_images/05_dirrec.png and /dev/null differ diff --git a/_images/kernel-method_11_0.png b/_images/kernel-method_11_0.png index 823a9f806e..a0f1dede82 100644 Binary files a/_images/kernel-method_11_0.png and b/_images/kernel-method_11_0.png differ diff --git a/_images/kernel-method_15_0.png b/_images/kernel-method_15_0.png index 490d5b4ab4..8fcc5a3343 100644 Binary files a/_images/kernel-method_15_0.png and b/_images/kernel-method_15_0.png differ diff --git a/_images/kernel-method_19_0.png b/_images/kernel-method_19_0.png index 4d1bd5ce81..5ec1962976 100644 Binary files a/_images/kernel-method_19_0.png and b/_images/kernel-method_19_0.png differ diff --git a/_images/kernel-method_26_0.png b/_images/kernel-method_26_0.png index ed5694624b..901ce07971 100644 Binary files a/_images/kernel-method_26_0.png and b/_images/kernel-method_26_0.png differ diff --git a/_images/linear-regression-from-scratch_12_1.png b/_images/linear-regression-from-scratch_12_1.png deleted file mode 100644 index 9ecaab48e3..0000000000 Binary files a/_images/linear-regression-from-scratch_12_1.png and /dev/null differ diff --git a/_images/linear-regression-from-scratch_19_0.png b/_images/linear-regression-from-scratch_19_0.png new file mode 100644 index 0000000000..59708633db Binary files /dev/null and b/_images/linear-regression-from-scratch_19_0.png differ diff --git a/_images/linear-regression-from-scratch_4_0.png b/_images/linear-regression-from-scratch_4_0.png deleted file mode 100644 index 1c74f40a11..0000000000 Binary files a/_images/linear-regression-from-scratch_4_0.png and /dev/null differ diff --git a/_images/linear-regression-from-scratch_6_0.png b/_images/linear-regression-from-scratch_6_0.png new file mode 100644 index 0000000000..dfe018940e Binary files /dev/null and b/_images/linear-regression-from-scratch_6_0.png differ diff --git a/_images/linear-regression-from-scratch_6_1.png b/_images/linear-regression-from-scratch_6_1.png deleted file mode 100644 index 1c74f40a11..0000000000 Binary files a/_images/linear-regression-from-scratch_6_1.png and /dev/null differ diff --git a/_images/linear-regression-from-scratch_8_1.png b/_images/linear-regression-from-scratch_8_1.png new file mode 100644 index 0000000000..63b9c6aaac Binary files /dev/null and b/_images/linear-regression-from-scratch_8_1.png differ diff --git a/_images/logistic-regression_8_4.png b/_images/logistic-regression_8_3.png similarity index 100% rename from _images/logistic-regression_8_4.png rename to _images/logistic-regression_8_3.png diff --git a/_images/time-series_11_0.png b/_images/time-series_11_0.png new file mode 100644 index 0000000000..19d73151ac Binary files /dev/null and b/_images/time-series_11_0.png differ diff --git a/_images/time-series_19_0.png b/_images/time-series_19_0.png new file mode 100644 index 0000000000..3366526de7 Binary files /dev/null and b/_images/time-series_19_0.png differ diff --git a/_images/time-series_25_0.png b/_images/time-series_25_0.png new file mode 100644 index 0000000000..b815385175 Binary files /dev/null and b/_images/time-series_25_0.png differ diff --git a/_images/time-series_27_0.png b/_images/time-series_27_0.png new file mode 100644 index 0000000000..aef3abf6d7 Binary files /dev/null and b/_images/time-series_27_0.png differ diff --git a/_images/time-series_37_1.png b/_images/time-series_37_1.png new file mode 100644 index 0000000000..b801de9e03 Binary files /dev/null and b/_images/time-series_37_1.png differ diff --git a/_images/time-series_41_1.png b/_images/time-series_41_1.png new file mode 100644 index 0000000000..7f49775bb4 Binary files /dev/null and b/_images/time-series_41_1.png differ diff --git a/_images/time-series_7_0.png b/_images/time-series_7_0.png new file mode 100644 index 0000000000..4c701edabb Binary files /dev/null and b/_images/time-series_7_0.png differ diff --git a/_images/tools-of-the-trade_13_0.png b/_images/tools-of-the-trade_13_0.png index c7152dc558..14521b8eef 100644 Binary files a/_images/tools-of-the-trade_13_0.png and b/_images/tools-of-the-trade_13_0.png differ diff --git a/_images/visualization-relationships_12_0.png b/_images/visualization-relationships_12_0.png index 234753bfc1..2e4b528df0 100644 Binary files a/_images/visualization-relationships_12_0.png and b/_images/visualization-relationships_12_0.png differ diff --git a/_images/visualization-relationships_16_0.png b/_images/visualization-relationships_16_0.png index ef0767934c..25649350e7 100644 Binary files a/_images/visualization-relationships_16_0.png and b/_images/visualization-relationships_16_0.png differ diff --git a/_images/visualization-relationships_18_1.png b/_images/visualization-relationships_18_1.png index da526cb9af..af9ef4c8d8 100644 Binary files a/_images/visualization-relationships_18_1.png and b/_images/visualization-relationships_18_1.png differ diff --git a/_images/visualization-relationships_20_0.png b/_images/visualization-relationships_20_0.png index e82c624bb2..1c4eb8f73a 100644 Binary files a/_images/visualization-relationships_20_0.png and b/_images/visualization-relationships_20_0.png differ diff --git a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb index 182590436c..46a090c45e 100644 --- a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb +++ b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c796e548", + "id": "375b52a9", "metadata": {}, "source": [ "# Create a regression model\n", diff --git a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb index 19f8f88390..f0d003eb32 100644 --- a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb +++ b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b274befa", + "id": "4073789d", "metadata": {}, "source": [ "# Exploring visualizations\n", diff --git a/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb b/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb index d8bf93b6fa..e4095fad3d 100644 --- a/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb +++ b/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb @@ -17,12 +17,29 @@ ] }, { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In previous sections, we have gained some understanding of linear regression, gradient descent, evaluation metrics, and the role of the loss function in this regression technique. In summary, linear regression utilizes gradient descent to optimize the model's parameters by minimizing the loss function. This enables it to establish a linear relationship between the input features and the target variable, making it a powerful algorithm for predicting continuous values." + ] + }, + { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Linear regression is a widely used method in data analysis to describe the relationship between independent variables and a dependent variable using a linear equation. It aims to minimize the error between predicted and actual values by finding the best-fit line or surface. Linear regression can be used for predicting trends, exploring relationships, and identifying patterns in the data." ] }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This chapter will apply the previously learnt knowledge to implement a linear regression model from scratch. The chapter includes steps for data preparation, model development, and model evaluation, and ultimately summarises the process of developing and evaluating linear regression models." + ] + }, { "attachments": {}, "cell_type": "markdown", @@ -33,12 +50,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6R0lEQVR4nO3df3RV1Zn/8c8lQKKUXAXFBIxIqYKRKqBSolRH5Zcig7OsVFREa/06aqvIqiJOO0C1Ip2pWquDxap0yShOB1H4OkRwEBhqEBDiGPFnREVN5CtoLqJETc73j3hTbnJvcs/9cc7e57xfa2UtcnNy2efenJwnez/PsyOO4zgCAACwVBe/BwAAAJANghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGC1rn4PIN+am5v10UcfqWfPnopEIn4PBwAApMFxHO3du1d9+/ZVly4dz70EPpj56KOPVFZW5vcwAABABnbu3Kkjjzyyw2MCH8z07NlTUsuLUVxc7PNoAABAOmKxmMrKylrv4x0JfDATX1oqLi4mmAEAwDLppIiQAAwAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKwW+A7AAAD4oanZ0aYde7Rr73716VmkEQN6qaALGx7nA8EMAAA5VllTp7krtquuYX/rY6XRIs2eWK7xQ0p9HFkwscwEAEAOVdbU6ZrFWxMCGUmqb9ivaxZvVWVNnU8jCy5fg5n169dr4sSJ6tu3ryKRiJ566qmErz/55JMaN26cDjvsMEUiEVVXV/syTgAA0tHU7Gjuiu1yknwt/tjcFdvV1JzsCGTK12Bm3759OvHEE3Xfffel/Pppp52mO++80+ORAQDg3qYde9rNyBzIkVTXsF+bduzxblAh4GvOzDnnnKNzzjkn5denTp0qSXr33Xc9GhEAAJnbtTd1IJPJcUhP4BKAGxsb1djY2Pp5LBbzcTQAgDDp07Mop8chPYFLAJ43b56i0WjrR1lZmd9DAgCExIgBvVQaLVKqAuyIWqqaRgzo5eWwAi9wwcysWbPU0NDQ+rFz506/hwQACImCLhHNnlguSe0CmvjnsyeW028mxwIXzBQWFqq4uDjhAwAAr4wfUqoFlw5XSTRxKakkWqQFlw6nz0weBC5nBgAAv40fUqox5SV0APaIr8HM559/rrfffrv18x07dqi6ulq9evXSUUcdpT179uj999/XRx99JEl64403JEklJSUqKSnxZcwAAKSjoEtEFQN7+z2MUPB1mWnLli0aNmyYhg0bJkmaMWOGhg0bpn/+53+WJC1fvlzDhg3ThAkTJEkXXXSRhg0bpgceeMC3MQMAALNEHMcJdBvCWCymaDSqhoYG8mcAALCEm/t34BKAAQBAuJAADAAAXGtqdoxJcCaYAQAArlTW1Gnuiu0J+1CVRos0e2K5L6XnLDMBAIC0VdbU6ZrFW9ttqFnfsF/XLN6qypo6z8dEMAMAANLS1Oxo7ortSlY5FH9s7ortamr2traIYAYAAKRl04497WZkDuRIqmvYr0079ng3KBHMAACANO3amzqQyeS4XCGYAQAAaenTs6jzg1wclysEMwAAIC0jBvRSabSo3Y7gcRG1VDWNGNDLy2ERzAAAgPQUdIlo9sRySWoX0MQ/nz2x3PN+MwQzAAAgbeOHlGrBpcNVEk1cSiqJFmnBpcN96TND0zwAAODK+CGlGlNeQgdgAABgr4IuEVUM7O33MCSxzAQAACxHMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGaTYAAD5ranaM6dliI4IZAAB8VFlTp7krtquu4W87TZdGizR7Yrkv3XRtxDITAAA+qayp0zWLtyYEMpJU37Bf1yzeqsqaOp9GZheCGQAAfNDU7Gjuiu1yknwt/tjcFdvV1OwkfE9V7W49Xf2hqmp3J3wtzFhmAgBkjZwP9zbt2NNuRuZAjqS6hv3atGOPKgb2ZjmqAwQzAICscJPNzK69qQOZtsfFl6PazsPEl6PytVu1LUEqwQwAIGN+3WSDoE/PorSOO+w7hfrFX15OuRwVUcty1JjykpwGGjYFqeTMAAAykknOB/5mxIBeKo0WKVX4EVFL8CBHaS9H5YptickEMwCAjLjJ+UB7BV0imj2xXJLaBTTxz2dPLNcn+xrTer50l606Y2OQSjADAMiIm5wPJDd+SKkWXDpcJdHEJaeSaFHrEl26y1HpHtcZG4NUcmYAABnx+iYbVOOHlGpMeUnKRNv4clR9w/6ksyURtQQ/Iwb0ysl4bAxSmZkBAGQk3ZyPXN1kg6ygS0QVA3tr0tB+qhjYOyGRN93lqFwl/9oYpBLMAAAy4vVNNszSWY7KFRuDVF+DmfXr12vixInq27evIpGInnrqqYSvO46jOXPmqG/fvjrooIP0d3/3d3r11Vf9GSwAoB0vb7JhN35IqTbMPEuPXzVSv79oqB6/aqQ2zDwr56+xjUGqrzkz+/bt04knnqgrrrhCF1xwQbuv//a3v9Vdd92lRYsW6dhjj9Xtt9+uMWPG6I033lDPnj19GDEAoK3Ocj6QO/HlqHyLB6lt+8yUGNpnJuI4jhG1VZFIRMuWLdP5558vqWVWpm/fvpo+fbpmzpwpSWpsbNQRRxyh+fPn6+qrr07reWOxmKLRqBoaGlRcXJyv4QMAEDh+dgB2c/82tpppx44dqq+v19ixY1sfKyws1BlnnKEXXnghZTDT2Nioxsa/1eTHYrG8jxUAgCDyaiYoW8YmANfX10uSjjjiiITHjzjiiNavJTNv3jxFo9HWj7KysryOEwAA+MvYYCYuEkmcznIcp91jB5o1a5YaGhpaP3bu3JnvIQIAAB8Zu8xUUlIiqWWGprT0b4lGu3btajdbc6DCwkIVFhbmfXwAAMAMxs7MDBgwQCUlJVq9enXrY1999ZXWrVunU0891ceRAQAAk/g6M/P555/r7bffbv18x44dqq6uVq9evXTUUUdp+vTpuuOOO3TMMcfomGOO0R133KGDDz5YF198sY+jBgCEgZ+VPHDH12Bmy5YtOvPMM1s/nzFjhiRp2rRpWrRokW6++WZ9+eWXuvbaa/Xpp5/qBz/4gVatWkWPGQBAXlXW1LXrsVJqaI8VGNRnJl/oMwMAcKOypk7XLN7ablPH+JyMjZ2NbZxlCkSfGQAAvNbU7Gjuiu1Jd6d21BLQzF2xXWPKS4wPBuLCMMtkbAIwAABe27RjT8JNvy1HUl3Dfm3asce7QWUhPsvU9pzqG/brmsVbVVlT59PIcotgBgCAb+3amzqQyeQ4P3U2yyS1zDI1NdufbUIwAwDAt/r0LOr8IBfH+Slos0wdIZgBAOBbIwb0Umm0SKmyYSJqyTcZMaCXl8PKSLqzR399+xPrZ2cIZgAA+FZBl4hmTyyXpHYBTfzz2RPLjUv+bWp2VFW7W09Xf6iq2t1qanbSnj267/m3NWr+GqvzZ6hmAgDgAOOHlGrBpcPbVQCVGFoBlKpa6VcTylUaLVJ9w/6keTMHiicE21h2LtFnBgCApGzozdJZT5z/c/oALVy/Q5I6DWgiagnYNsw8y4jzpM8MAFjEhptmNmw9v4IuEVUM7O33MFJKpyfO8pfrdP/Fw3TbM691mAwc/554QrDJ550MwQwA+CjoDc2Cfn5+Srda6dAehdow8yzdvfoN3fd8bafPa0PZeVskAAOAT4Le0Czo5+c3Nz1xCrpEdNr3Dk/reBvKztsimAEAHwS9oVnQz88EbnviBKnsvC2CGQDwQdAbmgX9/EzgNjixtew8HQQzAOCDILXNTybo52eCTIKTeNl5STRxVqdXj+66/2I7y7IlghkA8EWQ2uYnE/TzM0Wq4KQkWpSyZ8z4IaX61YTj1KtHt9bHdu/7Src9s93aPCaqmQDAB/ElglQNzeI9P2zMX5CCf34mGT+kVGPKS9Iuf6+sqdN1j21r977Y3DiPmRkA8EGQ8xek4J+faeI9cSYN7aeKgb1Tvq5BTcwmmAEAn2SyRGCToJ+fjYKamM0yEwD4yO0SgW2Cfn62CWpiNsEMAPjM9Lb52Qr6+dkkqInZLDMBABASQW2cRzADAEBIBDUxm2AGAIAQCWJiNjkzAIBQa2p2QpegHLTEbIIZAEBoVdbUae6K7QnlyqXRIs2eWG7lDIUbQUrMZpkJABBKlTV1umbx1nZ9V+KdcG1t7R9GBDMAgNAJaifcsCKYAQCETlA74YYVwQwAIHSC2gk3rAhmAAChE9ROuGFFMAMACJ2gdsINK4IZAEAoNDU7qqrdraerP9SmHXv0qwnB64QbVsb3mdm7d69+9atfadmyZdq1a5eGDRum3//+9zrllFP8HhoAwBKp+sn8n9MHaPnLdQmPl4Skz0yQGB/M/PSnP1VNTY0effRR9e3bV4sXL9bo0aO1fft29evXz+/hAQAMF+8n07bIur5hvxau36H7Lx6mQ3sUBqITblhFHMcxtoj+yy+/VM+ePfX0009rwoQJrY8PHTpU5513nm6//fZOnyMWiykajaqhoUHFxcX5HC4AwDBNzY5GzV+Tsgw7opaZmA0zzyKAMYyb+7fROTPffPONmpqaVFSUmE1+0EEHacOGDUm/p7GxUbFYLOEDABBO9JMJB6ODmZ49e6qiokK33XabPvroIzU1NWnx4sV68cUXVVeXvM30vHnzFI1GWz/Kyso8HjUAwBT0kwkHo4MZSXr00UflOI769eunwsJC3Xvvvbr44otVUFCQ9PhZs2apoaGh9WPnzp0ejxgAYAob+8kcWHVVVbubLRXSYHwC8MCBA7Vu3Trt27dPsVhMpaWl+vGPf6wBAwYkPb6wsFCFhYUejxIAYKJ4P5n6hv1J92GSzOonY9ou3k3Njjbt2GN8crTxMzNxPXr0UGlpqT799FM9++yzmjRpkt9DAgAYrqBLRLMnJu8nE/fl101avb3eu0GlYNou3pU1dRo1f42mPLhRNyyp1pQHN2rU/DVG7iZudDWTJD377LNyHEeDBg3S22+/rZtuukmFhYXasGGDunXr1un3U80EAKisqdMtT76iz774ut3X4kHOgkuH+9ZbxrSqq1Tl7F6+VoGpZpKkhoYGXXfddRo8eLAuu+wyjRo1SqtWrUorkAEAQJLGlJeoqGvyW178hj13xXbf8lNMqrpqanY0d8X2pMtyJrxWyRifMzN58mRNnjzZ72EAACy2acce1ccaU379wGChYmBv7wb2LZOqrtwEVn68VskYH8wAAOxmQhKpScFCMiZVXZn+WiVDMAMAyBtTqnNMChaS6azqKp4z40XVlemvVTLG58wAAOxkUnVOPFhINR8UUX5KtNPtGdNR1ZXXu3j79Vplg2AGAJBzpiWR+hEsuC1tHj+kVAsuHa6SaOKMR0m0yNNKK5MCq3QZX5qdLUqzAcB7VbW7NeXBjZ0e9/hVIz1NIvVq2Sub0mYTcowk/5cI3dy/yZkBAOScqUmk44eUakx5SV6Dhc5mpSJqmZUaU16S9P8t6BIxokrIi9cqVwhmAAA5Z3ISab6DBRtLm1MxJbDqDMEMAHzLlOn9IDCpOsdrps5KBRnBDADI//yAoIknkV6zeKsiUkJAY2oSaa6YPCsVVFQzAQg9k0qIg8SU6hyv2VjabDtmZgCEWrbJmmGWzrJcPIl04zu7VVW7W5Kjiu8eppEW5GFkKsyzUn4hmAEQakFK1vSSm2W51dvrE4697/laq5bwMsmlis9KtX2NSiw6b5sQzAAINZI13UvVQyW+LHfgEpKbY02UTS6VTaXNtiNnBkCokazpjpvOvqZ1AXYrF7lU8dLmSUP7qWJgbwKZPCGYARBqJGu642ZZzs2xprE9EAsbghkAoWbjPjR+crMsZ/MSns2BWBgRzAAIvbCWEGfCzbKczUt4NgdiYUQCMACIZM10ue3sm20XYL+6MtsciIURwQwAfMuWfWj85LaHSjb9VtxWEuUy8Anzdgw2ijiOE+jsJTdbiAMA0uMm0MikvDlVSXc8NGm7/JeP7SjiY5CSB2IsQeaXm/s3wQwAICNuZkLcHjtq/pqUCbjxWZENM89SQZeI68DHDfbs8o+b+zfLTACAjLhZlnNzrJtKohEDeuV1OwpyqexAMAMABvMrAdZPbiqJvNiOglwq8xHMAIChwrrE4aaSiBJqSPSZAQAj5aKVvq3cdGWmhBoSwQwAGCfsrfTddGVmOwpIBDMAYBxa6afflZntKCCRMwMAxiEPpEVHlURtE6Pvv3iYbnvmtYQgsCQE+UVoQTADAIYhD+RvklUSpUqM/tWEch3ao3uoKr/QgmUmADAMeSCpdZQYfd1jW9Xw5VeaNLSfKgb2JpAJEYIZADAMeSDJhT0xGqkRzACAgdJNgA0TEqORitE5M998843mzJmjf//3f1d9fb1KS0t1+eWX65e//KW6dCEOAxAsbZNax5SX0Er/ACRGIxWjg5n58+frgQce0J///Gcdf/zx2rJli6644gpFo1HdcMMNfg8PAHImrN1+3SAxGqkYPb1RVVWlSZMmacKECTr66KP1ox/9SGPHjtWWLVv8HhoA5EyYu/268em+r9TRpFSYE6PDzuhgZtSoUfrv//5vvfnmm5Kkl19+WRs2bNC5556b8nsaGxsVi8USPgDAVKYltTY1O6qq3a2nqz9UVe1uY5JpK2vqdN1jW9XZcMKYGA3Dl5lmzpyphoYGDR48WAUFBWpqatJvfvMbTZkyJeX3zJs3T3PnzvVwlACQOS92fU6XqUtdHQV8cV0i0n1ThrEklyO27dZudDDzxBNPaPHixXrsscd0/PHHq7q6WtOnT1ffvn01bdq0pN8za9YszZgxo/XzWCymsrIyr4YMIAC8/EVuSlJrfKmrbcAQX+rys4Kqs4BPkpod6dAehR6NKNhMDWo7YnQwc9NNN+mWW27RRRddJEn6/ve/r/fee0/z5s1LGcwUFhaqsJAfaACZ8foXuQlJrZ0tdUXUstQ1przEl7/OTQn4wsDkoLYjRufMfPHFF+1KsAsKCtTc3OzTiAAEmR+JuCZ0+zW9f4sJAV8YmJa/5YbRwczEiRP1m9/8Rs8884zeffddLVu2THfddZf+4R/+we+hAQgYv36Rm9Dt1/SZDxMCvjAwPajtiNHBzB/+8Af96Ec/0rXXXqvjjjtOv/jFL3T11Vfrtttu83toAALGz1/kfnf7NX3mw4SALwxMD2o7YnTOTM+ePXXPPffonnvu8XsoAALO71/k44eU+tbtNz7zUd+wP+nMVEQtgVXbmQ8vE6XjAd+c5a+qPtbY+vgRxYWa8/fHG5nHYRvTg9qOGB3MAIBXTPhFXtAlkvfy61T/7+yJ5bpm8VZFpISAJtXMh38VL6nmZpCtTINaExi9zAQAXgl7XoabpS4/EqXj/2d9LPH//DhGl+RcsXk5L+I4jnlpyTkUi8UUjUbV0NCg4uJiv4cDwGDxG6aUfHbC1LLUXOps6aip2dGo+WtS5hfF/3rfMPOsnN30/Pg/w8yUPjNu7t8sMwHAt+KzE21/kZcY3jAslzpb6vKjY7FJXZLDwM/8rUwRzADAAWz8Re4lPxKl/U7ODiO/8rcyRTADAG3Y9ovcS34kSpuQnA2zkQAMAEibH4nSYU/ORucIZgAAafOj4sXmKht4g2AGAOCKHx2L/e6SDLNRmg34zMsuqkAu+fGzy/USHpRmA5YwpZ8DkAk/EqVJzkYyLDMBPvGjiyoABBHBDOCDpmZHc1dsT7r/SfyxuSu2q6k50KvAAJATBDOAD9x0NAUAdIycGcAHdDQNHxJXc4fXEm0RzAA+oKNpuJDonTu8lkiGZSbAB3Q0DQ8SvXOH1xKpEMwAPqCjaTiQ6J07vJboCMEMfNXU7Kiqdreerv5QVbW7Q/WLiI6mwUeid+7wWqIj5MzAN2Fa+06VsDh+SKnGlJeQzBhQJHrnDq8lOkIwA1/E177bzsPE176DNDPRWdBGR9O/CVqVConeucNriY4QzMBzna19R9Sy9j2mvMTqG5kUrqAtW0GcqYsnetc37E/68x5Ry7Iiid6d47VER8iZgefCsvZNwmL6glqlQqJ37vBaoiMEM/BcWNa+wxK0ZSvoQR+J3rnDa4lUWGaC58Ky9h2WoC1bboI+W3OLSPTOHV5LJEMwA8+FZe07LEFbtsIS9JHonTu8lmiLZSZ4Lixr33T5TQ9BH4BsEczAF2FY+w5L0JYtgj4A2Yo4juMqq+7yyy/XT37yE51++un5GlNOxWIxRaNRNTQ0qLi42O/hoI2g9RVJJoglx7kWr2aSlLD0GP9JyEWAG4aftY6E/fxhHzf3b9fBzAUXXKBnnnlGZWVluuKKKzRt2jT169cvqwHnU9iDGX6BmYH3oXP5DPrCHlCG/fxhp7wGM5K0e/duLV68WIsWLVJNTY1Gjx6tK6+8UpMmTVK3bt0yHng+hDmY4RcYbJOPoC9V48JczvqYLOznD3vlPZg50LZt2/Twww/rT3/6k77zne/o0ksv1bXXXqtjjjkmm6fNmbAGM/wCA1qCo1Hz16Qs/Y5Xzm2YeZaVM2WdBX9BP38Em5v7d1YJwHV1dVq1apVWrVqlgoICnXvuuXr11VdVXl6uu+++O5unbnX00UcrEom0+7juuuty8vxBFPQmZEC6gty4sLKmTqPmr9GUBzfqhiXVmvLgRo2avyahW3KQzx84kOtg5uuvv9bSpUt13nnnqX///vrLX/6iG2+8UXV1dfrzn/+sVatW6dFHH9Wvf/3rnAxw8+bNqqura/1YvXq1JOnCCy/MyfMHEb/A4KemZkdVtbv1dPWHqqrd7WvQHNQeNulu/xDU8wfact00r7S0VM3NzZoyZYo2bdqkoUOHtjtm3LhxOuSQQ3IwPOnwww9P+PzOO+/UwIEDdcYZZ+Tk+YOIX2Dwi2l5WkHsYeNmo9Ygnj+QjOtg5u6779aFF16ooqLUP/yHHnqoduzYkdXAkvnqq6+0ePFizZgxQ5FI8vXdxsZGNTY2tn4ei8VyPg7T8QsMXmibr/HpvkZd99g2o3YID2K3aTczr0E8fyAZ18HM1KlT8zGOtDz11FP67LPPdPnll6c8Zt68eZo7d653gzIQv8CQb8lmYLpElNZsgZeJpvHGhdcs3qqIkvewsa1xoZuZ1yCeP5CMVR2AH3roIZ1zzjnq27dvymNmzZqlhoaG1o+dO3d6OEIz0HkW+ZQqX6Oj1Bg/87SC1m3a7cxr0M4fSMaajSbfe+89Pffcc3ryySc7PK6wsFCFhYUejcpc8V9gbf96LqHPDLLQUb5GOvzK0wrSTsuZzLwG6fyBZKwJZh555BH16dNHEyZM8Hso1uAXGHKts3yNzviZp1XQJaIRA3q1Xg/xnBLbrodMl47YaRpBZkUw09zcrEceeUTTpk1T165WDNkY/AJDLmU6s2JCnpZplVbZdDtm5hVIZEVk8Nxzz+n999/XT37yE7+HAoRaJjMrJuRppeqI7VelVS4CK2Zegb/JejsD04V1OwPYwbYNKOPt8VPla0gtVU0HJgP7vR+YaS392WoESI+b+7cVMzNAEJm27JGOdPI17psyXIf26G5MgOamL0u+l2TdNLwzOagFTGNVaTYQFOm2ozdRZ6W+555QqoqBvTVpaD9VDOzt+03ZpI7YbDUC5AczM4DHgvDXuU35GiZ1xDYpsAKChGAG8JhJyx7ZsKVSzqSO2CYFVkCQsMwEeIy/zr1lUkfseGCV6n+KqCVviq1GAHcIZgCP8de593LZ0r+p2VFV7W49Xf2hqmp3q6mjfRzaMCmwAoKEZSbAYyYte4RJLvJ8ctUfhoZ3QG7RZwbwQbyaSUpe3kyvEfPkuj+MbT2GAK+5uX+zzAT4gJ2M7dJZBZrUUoHmdsnJpBJ2wGYsMwE+sam8OeyCUoEGBBXBDOAjW8qbw44KNMBsLDMBQCeoQAPMxswMYDGSSL1BBRpgNoIZwFI2blRpq3Q22KQ/DOAflpkAC9m8UaWtqEADzMXMDGCZIGxUaSsq0AAzEcwAsiv3hDJhf1GBBpiHYAahZ1vuSbrlv/Wx/aqq3W1FgAYA2SCYQailalEfzz0xMRci3fLf2/7vq9qz7+vWz00O0AAgGyQAI7Ty0aLeC/Ey4c7mWA4MZKTwJQdns7s1ALswM4PQsjX3pLMy4VS37DAlB9u2dAggO8zMILRsblGfqky4V4/uHX7fgQFaUFG2DoQPMzMILdtb1CcrE65v+FI3/sfLnX5vrgM0U6rBKFsHwolgBqEVhBb1bcuEq2p3p/V9uQzQTFrSsXXpEEB2WGZCaMVzTyS1S6a1tUV9Z8nBEbUEGrkK0Exb0rF56RBA5ghmEGpBa1HvZYDmZzVYqkol25cOAWSGZSaEXtBa1McDtLZLPyU5Xvrxa0mno2WtMeUl1i8dAnCPYAZQ8FrUexGg+bGkk06TQ3a3BsKHZSb4hqZm+RUP0CYN7aeKgb1zfgP3ekkn3WWtMeUlgVo6BNA5ZmbgC5MqYJAZr6vB3Cxrmb50aEopOxAUBDPwnI37IaG9zjoRS7ld0nG7rGXq0iGBPJB7LDPBU7buh4TkvKwGC0Klkmml7EBQGD8z8+GHH2rmzJlauXKlvvzySx177LF66KGHdNJJJ/k9NGSApmbB49WSju1NDulODOSP0cHMp59+qtNOO01nnnmmVq5cqT59+qi2tlaHHHKI30NDhmhqlj9+5mF4saTj9bJWrhHIA/ljdDAzf/58lZWV6ZFHHml97Oijj/ZvQMhaEJYKTBSWPAyveujkA4E8kD9GBzPLly/XuHHjdOGFF2rdunXq16+frr32Wl111VUpv6exsVGNjY2tn8diMS+GijQFYanAtCqUsCVUm16plAqBPJA/Rgcz77zzjhYsWKAZM2bo1ltv1aZNm3T99dersLBQl112WdLvmTdvnubOnevxSJEum5cK3M5+eBH4hDUPw9RKpY7YHsgDJos4jmNs2Uj37t118skn64UXXmh97Prrr9fmzZtVVVWV9HuSzcyUlZWpoaFBxcXFeR8z0mPbskiq2Y94eNB29sOr86uq3a0pD27s9LjHrxpp3c0/iOI/R1LyQD5os2hANmKxmKLRaFr3b6NnZkpLS1VeXp7w2HHHHaelS5em/J7CwkIVFhbme2jIkk1LBW5nP7xc9iEPwy425/wAJjM6mDnttNP0xhtvJDz25ptvqn///j6NyDsm5mbkmi1LBW6qUEYM6OXpsg95GPaxKZAHbGF0MHPjjTfq1FNP1R133KHJkydr06ZNWrhwoRYuXOj30PLKtiUYr3kd6LmZ/fC6/DbMeRg2B/y2BPKALYwOZk455RQtW7ZMs2bN0q9//WsNGDBA99xzjy655BK/h5Y3YatMccuPQC/dWY23Pt6rtz7+PK1jc7XsY3NCdTYI+AEcyOgE4Fxwk0Dkt6ZmR6Pmr0n5l338r+wNM88K3M0pHW6TcHMl/r6kmv3IRK4TcsN0c/fr5wCAtwKTABw2dAhNzc8S5I5mP9zK17JPWPIwMv05sHlJCkDnCGYMQmVKan4HeqmqUNzI97JPGPIwMvk5CNOsFRBW7JptECpTUjMh0Bs/pFQbZp6lx68aqZ+d+T3X35+PnaTDxu3PAbtUA+HAzIxBwlyZcqBkSwKmBHrx2Y90b6o/O3OgjjmiJ0sbOeLm5yCs3ZGBMCKYMUhYK1MOlGpJ4FcTyo0K9NK9qZ72vcMDv/TjJTcBv99LkwC8wzKTYeK5GSXRxJtlGJYoOloSuO6xrfr7E1vOvW0o50egF7+ppvrfImoJwoI+i+a1eMAvdf5zYMLSZCpNzY6qanfr6eoPVVW7W03NgS4qBfKOmRkDhaUy5UDpLAksf7lO9188TLc985rvreCZRfNPulsCmLI02RYJyUDu0WcGRnCzYWJ8CcGEQM/WG1MQSpU7O4fO+gP50beJHjlA+ugzA9f8vrm5WRIwqQTZxlk0WwOwtjr7OTBt9oyEZCB/CGZgxM3N1CWBdJgUXHUmbNtlmLRLNQnJQP4QzIScKTc3ytLzL6wzA6bMnpmckAzYjmqmEIpXUizb9qFuXfZKypub1HJz86LSwk2VCjLjZmYgaOKzZ5OG9lPFwN6+/BzZPPsImI6ZmZBJtqSUitfT3iYtCQQRMwP+YvYRyB+CmRBJtaTUGS9vbqYsCQQRMwP+Mi0hGQgSlplCoqN8ic54fXMzYUkgiGj0578wN8UE8omZmZDoLF8iGaa9g4WZATMw+wjkHsGMh/zs5eJ2qYibWzCRl2QGm8r5ARsQzHjE714ubpeKuLkFl98zA343aAQQPAQzHjChl0s6lRS9enTXLyccp5LoQRndYIJ4kwriOUn+zQz4HdQDCCb2Zsqz+P4wqfJVvNwfJh5UScnzJbIJqoJ4kwriOfmJfYkAuOHm/k01U56Z1KgsX5UU8ZtU2/OMzzxV1tRlPGa/BPGc/NRZ92HJuwaNAIKHZaY8M61RWa7zJYLYIj+I5+Q39iUCkE8EM3lmYqOyXOZLBPEmFcRz8ptpQT2AYCGYybOgtzBP9+bz17f/X7uZIFOTa7nx5p6JQT2A4CCYybOgNypL9+Zz3/O1rf8ujRbp708s1fKX64xMruXGm3tBD+oB+IsEYA8EuYV5Zy3yk6lr2K8/rt9hbHItbf9zj13RAeQTpdkeMnVZJVupSr4z4WWpekdyUcYe1Pc7G5S7A0iXm/s3wQzS1tHNOdlNKhuPXzXS9+TabG683LRTI8gDkA6CmQMQzORGOjfnA29Sb338ue57/u2M/7/fXzRUk4b2y3rc2crkxktzOADInpv7NwnAOZbrvzpN+Cs23e0YDiz5rqrdnVUwY0pyrdsydnrUAID3CGZyKNdLCyYsVWR6c+6seiUV26ta6FEDAN6jmilHct3+3pR2+plux9BR9UoqQahqoUcNAHjP6GBmzpw5ikQiCR8lJSV+D6udXO87Y9I+NtncnFOVpJdGi3T16QNUGsBSdXrUAID3jF9mOv744/Xcc8+1fl5QUODjaJLL9dKCSUsV2d6cO9oL6ubxx/meD5RrNIcDAO8ZH8x07drVyNmYA+V6acGkpYpc3JxTJdHmco8oUwS94zMAmMjoZSZJeuutt9S3b18NGDBAF110kd55550Oj29sbFQsFkv4yLdcLy2YtFRB51b3vOr43NTsqKp2t56u/lBVtbs9WXYEABMZ3Wdm5cqV+uKLL3Tsscfq448/1u23367XX39dr776qnr3Tv4X/Zw5czR37tx2j+ezz0xTs6NR89d0OnuRblfbXD9fLphQWWWbA8vqD+tRKEWkTz5vzMmSGu8HgKALbNO8ffv2aeDAgbr55ps1Y8aMpMc0NjaqsbGx9fNYLKaysrK8N83LRfv7fD5fLnjd88aEHju5kI+SfZryAQi6wAYzkjRmzBh973vf04IFC9I63ssOwEHsM+OXoJx7rgOP+KxdqgRxU/a2AoBsBbYDcGNjo1577TX98Ic/9HsoSXVUuWPC89ki3Y7DpstHN2CTKt0AwBRGBzO/+MUvNHHiRB111FHatWuXbr/9dsViMU2bNs3voaWU6wqdIFb8dCRI2wG4DTzSWVYzqdINAExhdDDzwQcfaMqUKfrkk090+OGHa+TIkdq4caP69+/v99CQJ0GaeXATeKS7rGZSpRsAmMLoYGbJkiV+DwEeC9LMQ7oBxbuf7NM9z72V1rIaTfkAoD3j+8zAHrnoexKkmYd44JFqMSyiltmXxze9n/bWFfT9AYD2CGYslK9madk8b2VNnUbNX6MpD27UDUuqNeXBjRo1f43rDTHTDQBsmHlIJ/C46JSjVB9rVCrJNvL0qikfANjC6GWmMHDbS6Wypk5zlr+acAMsKS7UnL8/PqubWDal0LmsPgradgDxwKPta1vy7Wvb+E1zWs/TdlktrJVuAJCMdX1m3PKyz4xb6QYQ8YBn9fZ6PfzXd1M+3wMZ/lWeTS+UfPU9CUqfmbhUQWtV7W5NeXBjp9//+FUjjU94BoBcCmyfmSBJdzYj2U09lVuefMV1yXK2pdD5qj4K2sxDqhJ7EnoBIHvkzPigswBCagkg/ut/WwKedAIZSfrsi6+1sXa3q7G4CUaSyWf1UTwAmDS0nyoG9rY2kOkICb0AkD2CGR+kG0D88umapAFPR6re+cTV8dkGI0GqPvILCb0AkB2WmTKUzSaI6QYQe/Z9lcHI3P0Fn20wwjJJbgRtWQ0AvEQwk4Fsk1PzOUvhNkk022AkaNVHfgrb1hUAkCssM7kUT9xtu0wUT9xNp69KOr1UevXo5npshx7cTSO/6+5mmIucDZZJAAB+ojTbhVyWIceDIin5bMb9Fw/Tbc+8lnLGJJlMS7Pj48m2FDqbpTcAAA5EaXae5LIMubNmauOHlKpLl0jS5Zu2ctF/JRc5GyyTAAD8QDDjQq7LkDsLIFIGPMWFmjLiKB19WI+czoAQjAAAbEQw44Lbyp90ll06CyCocgEAoGMEMy64qfzJZTt+ZkwAAEiNaiYX0q38Wb29PuuKJwAAkB6CGZc6K0MeU16S1lYFTc2BLiIDAMAzLDNloKM8lqra3XnZeBEAACRHMJOhVHks+dx4EQAAtEcwk2NsvBg+NAsEAH8RzOQYGy+GSy6r1gAAmSEBOMdysdcR7JCLfboAANkjmMkDNl4MvqZmh6o1ADAEy0x5QufeYMvlPl0AgOwQzOQRnXuDi6o1ADAHy0xABqhaAwBzEMwAGYhXraVaNIyopaqJqjUAyD+CGSADVK0BgDkIZoAMUbUGAGYgARjIAlVrAOA/ghkgS1StAYC/WGYCAABWY2Ym5NgkEQBgO6tmZubNm6dIJKLp06f7PZRAqKyp06j5azTlwY26YUm1pjy4UaPmr2FPIQCAVawJZjZv3qyFCxfqhBNO8HsogcAmiQCAoLAimPn88891ySWX6MEHH9Shhx7a4bGNjY2KxWIJH0jEJokAgCCxIpi57rrrNGHCBI0ePbrTY+fNm6doNNr6UVZW5sEI7eJmk0QAAExnfALwkiVLtHXrVm3evDmt42fNmqUZM2a0fh6LxQho2rBhk0QSkwEA6TI6mNm5c6duuOEGrVq1SkVF6W3YV1hYqMLCwjyPzG6mb5JYWVOnuSu2J8welUaLNHtiOV11AQDtGL3M9NJLL2nXrl066aST1LVrV3Xt2lXr1q3Tvffeq65du6qpqcnvIVrJ5E0SSUwGALhldDBz9tln65VXXlF1dXXrx8knn6xLLrlE1dXVKigo8HuIVjJ1k0QSkwEAmTB6malnz54aMmRIwmM9evRQ79692z0Od+KbJLZdzinxcTnHTWIy2wcAAOKMDmaQX6ZtkmhDYjIAwDzWBTNr1671ewiBYtImiaYnJgMAzGR0zgzCxeTEZACAuQhmYAxTE5MBAGYjmIFR4onJJdHEpaSSaJEWXDqcPjMAgHasy5lB8JmWmAwAMBvBDIxkUmIyAMBsLDMBAACrEcwAAACrEcwAAACrEcwAAACrEcwAAACrUc0UME3NDiXNAIBQIZgJkMqauna7YJf6uAs2AABeYJkpICpr6nTN4q0JgYwk1Tfs1zWLt6qyps6nkQEAkF8EMwHQ1Oxo7ortcpJ8Lf7Y3BXb1dSc7AgAAOxGMBMAm3bsaTcjcyBHUl3Dfm3asce7QQEA4BFyZnyWi4TdXXtTBzKZHAcAgE0IZnyUq4TdPj2LOj/IxXEAANiEZSaf5DJhd8SAXiqNFinVfE5ELUHSiAG9Mh8wAACGIpjxQa4Tdgu6RDR7YrkktQto4p/PnlhOvxkAQCARzPggHwm744eUasGlw1USTVxKKokWacGlw+kzAwAILHJmfJCvhN3xQ0o1prwkrx2A6TAMADANwYwP8pmwW9AlooqBvV1/XzroMAwAMBHLTD6wMWGXDsMAAFMRzPjAtoRdOgwDAExGMOMTmxJ26TAMADAZOTM+8iJhNxfoMAwAMBnBjM/ymbCbK3QYBgCYjGUmdMrGhGUAQHgQzKBTtiUsAwDChWAGabEpYRkAEC7kzCBttiQsAwDChWAGrtiQsAwACBejl5kWLFigE044QcXFxSouLlZFRYVWrlzp97AAAIBBjA5mjjzySN15553asmWLtmzZorPOOkuTJk3Sq6++6vfQAACAISKO41jVg75Xr176l3/5F1155ZVJv97Y2KjGxsbWz2OxmMrKytTQ0KDi4mKvhgkAALIQi8UUjUbTun8bPTNzoKamJi1ZskT79u1TRUVFyuPmzZunaDTa+lFWVubhKAEAgNeMn5l55ZVXVFFRof379+s73/mOHnvsMZ177rkpj2dmBgAA+7mZmTG+mmnQoEGqrq7WZ599pqVLl2ratGlat26dysvLkx5fWFiowsJCj0cJAAD8YvzMTFujR4/WwIED9cc//jGt491EdgAAwAyBzJmJcxwnYRkJAACEm9HLTLfeeqvOOecclZWVae/evVqyZInWrl2ryspKv4cGAAAMYXQw8/HHH2vq1Kmqq6tTNBrVCSecoMrKSo0ZMybt54ivosVisXwNEwAA5Fj8vp1ONox1OTNuffDBB5RnAwBgqZ07d+rII4/s8JjABzPNzc366KOP1LNnT0Ui2W+IGC/13rlzZ2ATisNwjlI4zjMM5yiF4zzDcI5SOM4zDOcoZX+ejuNo79696tu3r7p06TjF1+hlplzo0qVLpxFdJuL7RQVZGM5RCsd5huEcpXCcZxjOUQrHeYbhHKXszjMajaZ1nHXVTAAAAAcimAEAAFYjmHGpsLBQs2fPDnSX4TCcoxSO8wzDOUrhOM8wnKMUjvMMwzlK3p5n4BOAAQBAsDEzAwAArEYwAwAArEYwAwAArEYwAwAArBb6YObf/u3fNGDAABUVFemkk07S//zP/3R4/Lp163TSSSepqKhI3/3ud/XAAw+0O2bp0qUqLy9XYWGhysvLtWzZsnwNP21uzvPJJ5/UmDFjdPjhh6u4uFgVFRV69tlnE45ZtGiRIpFIu4/9+/fn+1RScnOOa9euTTr+119/PeE429/Lyy+/POl5Hn/88a3HmPZerl+/XhMnTlTfvn0ViUT01FNPdfo9tl2Xbs/R1mvS7XnaeF26PUcbr8l58+bplFNOUc+ePdWnTx+df/75euONNzr9Pi+vy1AHM0888YSmT5+uf/qnf9K2bdv0wx/+UOecc47ef//9pMfv2LFD5557rn74wx9q27ZtuvXWW3X99ddr6dKlrcdUVVXpxz/+saZOnaqXX35ZU6dO1eTJk/Xiiy96dVrtuD3P9evXa8yYMfqv//ovvfTSSzrzzDM1ceJEbdu2LeG44uJi1dXVJXwUFRV5cUrtuD3HuDfeeCNh/Mccc0zr14LwXv7+979POL+dO3eqV69euvDCCxOOM+m93Ldvn0488UTdd999aR1v43Xp9hxtvCYl9+cZZ9N16fYcbbwm161bp+uuu04bN27U6tWr9c0332js2LHat29fyu/x/Lp0QmzEiBHOP/7jPyY8NnjwYOeWW25JevzNN9/sDB48OOGxq6++2hk5cmTr55MnT3bGjx+fcMy4ceOciy66KEejds/teSZTXl7uzJ07t/XzRx55xIlGo7kaYtbcnuPzzz/vSHI+/fTTlM8ZxPdy2bJlTiQScd59993Wx0x7Lw8kyVm2bFmHx9h6Xcalc47JmH5NtpXOedp6XcZl8l7adk06juPs2rXLkeSsW7cu5TFeX5ehnZn56quv9NJLL2ns2LEJj48dO1YvvPBC0u+pqqpqd/y4ceO0ZcsWff311x0ek+o58y2T82yrublZe/fuVa9evRIe//zzz9W/f38deeSROu+889r9leiVbM5x2LBhKi0t1dlnn63nn38+4WtBfC8feughjR49Wv3790943JT3MhM2XpfZMv2azJZN12W2bLwmGxoaJKndz9+BvL4uQxvMfPLJJ2pqatIRRxyR8PgRRxyh+vr6pN9TX1+f9PhvvvlGn3zySYfHpHrOfMvkPNv63e9+p3379mny5Mmtjw0ePFiLFi3S8uXL9fjjj6uoqEinnXaa3nrrrZyOPx2ZnGNpaakWLlyopUuX6sknn9SgQYN09tlna/369a3HBO29rKur08qVK/XTn/404XGT3stM2HhdZsv0azJTNl6X2bDxmnQcRzNmzNCoUaM0ZMiQlMd5fV0GftfszkQikYTPHcdp91hnx7d93O1zeiHTMT3++OOaM2eOnn76afXp06f18ZEjR2rkyJGtn5922mkaPny4/vCHP+jee+/N3cBdcHOOgwYN0qBBg1o/r6io0M6dO/Wv//qvOv300zN6Tq9kOqZFixbpkEMO0fnnn5/wuInvpVu2XpeZsOmadMvm6zITNl6TP/vZz/S///u/2rBhQ6fHenldhnZm5rDDDlNBQUG7CHDXrl3tIsW4kpKSpMd37dpVvXv37vCYVM+Zb5mcZ9wTTzyhK6+8Uv/xH/+h0aNHd3hsly5ddMopp/jyl0M253igkSNHJow/SO+l4zh6+OGHNXXqVHXv3r3DY/18LzNh43WZKVuuyVwy/brMlI3X5M9//nMtX75czz//vI488sgOj/X6ugxtMNO9e3eddNJJWr16dcLjq1ev1qmnnpr0eyoqKtodv2rVKp188snq1q1bh8ekes58y+Q8pZa//i6//HI99thjmjBhQqf/j+M4qq6uVmlpadZjdivTc2xr27ZtCeMPynsptVQjvP3227ryyis7/X/8fC8zYeN1mQmbrslcMv26zJRN16TjOPrZz36mJ598UmvWrNGAAQM6/R7Pr0vXKcMBsmTJEqdbt27OQw895Gzfvt2ZPn2606NHj9as8ltuucWZOnVq6/HvvPOOc/DBBzs33nijs337duehhx5yunXr5vznf/5n6zF//etfnYKCAufOO+90XnvtNefOO+90unbt6mzcuNHz84tze56PPfaY07VrV+f+++936urqWj8+++yz1mPmzJnjVFZWOrW1tc62bducK664wunatavz4osven5+juP+HO+++25n2bJlzptvvunU1NQ4t9xyiyPJWbp0aesxQXgv4y699FLnBz/4QdLnNO293Lt3r7Nt2zZn27ZtjiTnrrvucrZt2+a89957juME47p0e442XpOO4/48bbwu3Z5jnE3X5DXXXONEo1Fn7dq1CT9/X3zxResxfl+XoQ5mHMdx7r//fqd///5O9+7dneHDhyeUmk2bNs0544wzEo5fu3atM2zYMKd79+7O0Ucf7SxYsKDdc/7lL39xBg0a5HTr1s0ZPHhwwoXoFzfnecYZZziS2n1Mmzat9Zjp06c7Rx11lNO9e3fn8MMPd8aOHeu88MILHp5Re27Ocf78+c7AgQOdoqIi59BDD3VGjRrlPPPMM+2e0/b30nEc57PPPnMOOuggZ+HChUmfz7T3Ml6em+rnLwjXpdtztPWadHueNl6Xmfy82nZNJjs/Sc4jjzzSeozf12Xk24ECAABYKbQ5MwAAIBgIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgBYpampSaeeeqouuOCChMcbGhpUVlamX/7ylz6NDIBf2M4AgHXeeustDR06VAsXLtQll1wiSbrsssv08ssva/PmzerevbvPIwTgJYIZAFa69957NWfOHNXU1Gjz5s268MILtWnTJg0dOtTvoQHwGMEMACs5jqOzzjpLBQUFeuWVV/Tzn/+cJSYgpAhmAFjr9ddf13HHHafvf//72rp1q7p27er3kAD4gARgANZ6+OGHdfDBB2vHjh364IMP/B4OAJ8wMwPASlVVVTr99NO1cuVK/fa3v1VTU5Oee+45RSIRv4cGwGPMzACwzpdffqlp06bp6quv1ujRo/WnP/1Jmzdv1h//+Ee/hwbABwQzAKxzyy23qLm5WfPnz5ckHXXUUfrd736nm266Se+++66/gwPgOZaZAFhl3bp1Ovvss7V27VqNGjUq4Wvjxo3TN998w3ITEDIEMwAAwGosMwEAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKv9f5fEcOOdL6TuAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9Y0lEQVR4nO3df3RU5Z3H8c8kSKI0GQWRJBgxUosG5FcVGqW1aBCQZXF7qkLBYqu2h9KtLLVVdmsx1S7Q9lRry0FlFV2psFpFZNVYEMFFQ0ExLhFrIY2KkMg2aIYfEjW5+0ecKZPMJHPn133uve/XOTmayU14npkk95vn+X6/T8CyLEsAAAAuleP0AAAAAFJBMAMAAFyNYAYAALgawQwAAHA1ghkAAOBqBDMAAMDVCGYAAICr9XJ6AJnW3t6u/fv3q6CgQIFAwOnhAACABFiWpUOHDqmkpEQ5Od2vvXg+mNm/f79KS0udHgYAAEjC3r17dfrpp3d7jeeDmYKCAkkdT0ZhYaHDowEAAIkIhUIqLS2N3Me74/lgJry1VFhYSDADAIDLJJIiQgIwAABwNYIZAADgagQzAADA1QhmAACAqxHMAAAAVyOYAQAArkYwAwAAXI1gBgAAuBrBDAAAcDXPdwAGAMAJbe2WtjUc1IFDx3RaQb7GlPVVbg4HHmcCwQwAAGlWXdeoqnW71NhyLPJYcTBfC6eWa9KwYgdH5k1sMwEAkEbVdY2as3JHVCAjSU0txzRn5Q5V1zU6NDLvcjSYefHFFzV16lSVlJQoEAjoySefjPr4E088ocsuu0z9+vVTIBBQbW2tI+MEACARbe2WqtbtkhXjY+HHqtbtUlt7rCuQLEeDmSNHjmjEiBFaunRp3I+PGzdOS5YsyfLIAACwb1vDwS4rMsezJDW2HNO2hoPZG5QPOJozM3nyZE2ePDnux6+55hpJ0ttvv52lEQEAkLwDh+IHMslch8R4LgG4tbVVra2tkfdDoZCDowEA+MlpBflpvQ6J8VwC8KJFixQMBiNvpaWlTg8JAOATY8r6qjiYr3gF2AF1VDWNKeubzWF5nueCmQULFqilpSXytnfvXqeHBADwidycgBZOLZekLgFN+P2FU8vpN5Nmngtm8vLyVFhYGPUGAEC2TBpWrGWzRqsoGL2VVBTM17JZo+kzkwGey5kBAMBpk4YVa0J5ER2As8TRYObw4cPas2dP5P2GhgbV1taqb9++OuOMM3Tw4EG9++672r9/vyTprbfekiQVFRWpqKjIkTEDAJCI3JyAKgb3c3oYvuDoNtMrr7yiUaNGadSoUZKk+fPna9SoUfrpT38qSXrqqac0atQoTZkyRZI0ffp0jRo1Svfcc49jYwYAAGYJWJbl6TaEoVBIwWBQLS0t5M8AAOASdu7fnksABgAA/kICMAAAsK2t3TImwZlgBgAA2FJd16iqdbuizqEqDuZr4dRyR0rP2WYCAAAJq65r1JyVO7ocqNnUckxzVu5QdV1j1sdEMAMAABLS1m6pat0uxaocCj9WtW6X2tqzW1tEMAMAABKyreFglxWZ41mSGluOaVvDwewNSgQzAAAgQQcOxQ9kkrkuXQhmAABAQk4ryO/5IhvXpQvBDAAASMiYsr4qDuZ3ORE8LKCOqqYxZX2zOSyCGQAAkJjcnIAWTi2XpC4BTfj9hVPLs95vhmAGAAAkbNKwYi2bNVpFweitpKJgvpbNGu1Inxma5gEAAFsmDSvWhPIiOgADAAD3ys0JqGJwP6eHIYltJgAA4HIEMwAAwNUIZgAAgKsRzAAAAFcjmAEAAK5GMAMAAFyN0mwAABzW1m4Z07PFjQhmAABwUHVdo6rW7VJjy99Pmi4O5mvh1HJHuum6EdtMAAA4pLquUXNW7ogKZCSpqeWY5qzcoeq6RodG5i4EMwAAOKCt3VLVul2yYnws/FjVul1qa7eiPqemvllra/eppr456mN+xjYTACBl5HzYt63hYJcVmeNZkhpbjmlbw0FVDO7HdlQ3CGYAACnhJpucA4fiBzKdrwtvR3VehwlvR2XqtGq3BKkEMwCApDl1k/WC0wryE7ru1M/l6abHXo+7HRVQx3bUhPKitAYabgpSyZkBACQlmZwP/N2Ysr4qDuYrXvgRUEfwIEsJb0eli9sSkwlmAABJsZPzga5ycwJaOLVckroENOH3F04t19+OtCb09RLdtuqJG4NUghkAQFLs5HwgtknDirVs1mgVBaO3nIqC+ZEtukS3oxK9riduDFLJmQEAJCXbN1mvmjSsWBPKi+Im2oa3o5pajsVcLQmoI/gZU9Y3LeNxY5DKygwAICmJ5nyk6ybrZbk5AVUM7qdpIweqYnC/qETeRLej0pX868YglWAGAJCUbN9k/SyR7ah0cWOQ6mgw8+KLL2rq1KkqKSlRIBDQk08+GfVxy7L005/+VMXFxTrxxBNVWVmp3bt3OzNYAEAX2bzJ+t2kYcXacvMlWnXDl/Sb6SO16oYvacvNl6T9OXZjkOpozsyRI0c0YsQIffvb39bXvva1Lh//xS9+obvvvlsPPfSQysrKdOutt2rixInatWuX8vPNWd4CAD/rKecD6RPejsq0cJDauc9MkaF9ZgKWZRlRWxUIBLRmzRpdccUVkjpWZUpKSvTDH/5QN910kySppaVFAwYM0IMPPqjp06cn9HVDoZCCwaBaWlpUWFiYqeEDAOA5TnYAtnP/NraaqaGhQU1NTaqsrIw8FgwGNXbsWNXU1MQNZlpbW9Xa+vea/FAolPGxAgDgRdlaCUqVsQnATU1NkqQBAwZEPT5gwIDIx2JZtGiRgsFg5K20tDSj4wQAAM4yNphJ1oIFC9TS0hJ527t3r9NDAgAAGWRsMFNUVCRJev/996Mef//99yMfiyUvL0+FhYVRbwAAwLuMDWbKyspUVFSk559/PvJYKBTSn/70J1VUVDg4MgAAYBJHE4APHz6sPXv2RN5vaGhQbW2t+vbtqzPOOEPz5s3THXfcobPPPjtSml1SUhKpeAIAIFOcrOSBPY4GM6+88orGjx8feX/+/PmSpNmzZ+vBBx/Uj3/8Yx05ckTf+c539OGHH2rcuHGqrq6mxwwAIKOq6xq79FgpNrTHCgzqM5Mp9JkBANhRXdeoOSt3dDnUMbwm48bOxm5cZfJEnxkAALKtrd1S1bpdMU+nttQR0FSt26UJ5UXGBwNhflhlMjYBGACAbNvWcDDqpt+ZJamx5Zi2NRzM3qBSEF5l6jynppZjmrNyh6rrGh0aWXoRzAAA8JkDh+IHMslc56SeVpmkjlWmtnb3Z5sQzAAA8JnTChIrMEn0Oid5bZWpOwQzAAB8ZkxZXxUH8xUvGyagjnyTMWV9szmspCS6evTSnr+5fnWGYAYAgM/k5gS0cGq5JHUJaMLvL5xablzyb1u7pZr6Zq2t3aea+ma1tVsJrx797oU9Grdko6vzZ6hmAgDgOJOGFWvZrNFdKoCKDK0AiletdOuUchUH89XUcixm3szxwgnBbiw7l+gzAwBATG7ozdJTT5zvfKVM973YIEk9BjQBdQRsW26+xIh50mcGAFzEDTfNVLh1frk5AVUM7uf0MOJKpCfOU683auk3Run2p9/sNhk4/DnhhGCT5x0LwQwAOMjrDc28Pj8nJVqtdEqfPG25+RLduf4t/e6F+h6/rhvKzjsjARgAHOL1hmZen5/T7PTEyc0J6KLP90/oejeUnXdGMAMADvB6QzOvz88EdnvieKnsvDOCGQBwgNcbmnl9fiawG5y4tew8EQQzAOAAL7XNj8Xr8zNBMsFJuOy8KBi9qtO3T28t/YY7y7IlghkAcISX2ubH4vX5mSJecFIUzI/bM2bSsGLdOuVc9e1zQuSx5iMf6/and7k2j4lqJgBwQHiLIF5Ds3DPDzfmL0jen59JJg0r1oTyooTL36vrGjX3kde6vC5ubpzHygwAOMDL+QuS9+dnmnBPnGkjB6picL+4z6tXE7MJZgDAIclsEbiJ1+fnRl5NzGabCQAcZHeLwG28Pj+38WpiNsEMADjM9Lb5qfL6/NzEq4nZbDMBAOATXm2cRzADAIBPeDUxm2AGAAAf8WJiNjkzAABfa2u3fJeg7LXEbIIZAIBvVdc1qmrdrqhy5eJgvhZOLXflCoUdXkrMZpsJAOBL1XWNmrNyR5e+K+FOuG5t7e9HBDMAAN/xaidcvyKYAQD4jlc74foVwQwAwHe82gnXrwhmAAC+49VOuH5FMAMA8B2vdsL1K4IZAIAvtLVbqqlv1trafdrWcFC3TvFeJ1y/Mr7PzKFDh3TrrbdqzZo1OnDggEaNGqXf/OY3uuCCC5weGgDAJeL1k/nOV8r01OuNUY8X+aTPjJcYH8xcf/31qqur08MPP6ySkhKtXLlSlZWV2rVrlwYOHOj08AAAhgv3k+lcZN3Uckz3vdigpd8YpVP65HmiE65fBSzLMraI/qOPPlJBQYHWrl2rKVOmRB7/4he/qMmTJ+uOO+7o8WuEQiEFg0G1tLSosLAwk8MFABimrd3SuCUb45ZhB9SxErPl5ksIYAxj5/5tdM7Mp59+qra2NuXnR2eTn3jiidqyZUvMz2ltbVUoFIp6AwD4E/1k/MHoYKagoEAVFRW6/fbbtX//frW1tWnlypWqqalRY2PsNtOLFi1SMBiMvJWWlmZ51AAAU9BPxh+MDmYk6eGHH5ZlWRo4cKDy8vJ09913a8aMGcrJiT30BQsWqKWlJfK2d+/eLI8YAGAKN/aTOb7qqqa+mSMVEmB8AvDgwYO1efNmHTlyRKFQSMXFxbr66qt11llnxbw+Ly9PeXl5WR4lAMBE4X4yTS3HYp7DJJnVT8a0U7zb2i1tazhofHK08SszYX369FFxcbE++OADPffcc5o2bZrTQwIAGC43J6CFU2P3kwn76JM2rd/VlL1BxWHaKd7VdY0at2SjZizfqhtX12rG8q0at2SjkaeJG13NJEnPPfecLMvSkCFDtGfPHv3oRz9Sfn6+/ud//kcnnHBCj59PNRMAoLquUbc8sVMfHv2ky8fCQc6yWaMd6y1jWtVVvHL2bD5XnqlmkqSWlhbNnTtX55xzjr75zW9q3Lhxeu655xIKZAAAkKQJ5UXK7xX7lhe+YVet2+VYfopJVVdt7Zaq1u2KuS1nwnMVi/E5M1dddZWuuuoqp4cBAHCxbQ0H1RRqjfvx44OFisH9sjewz5hUdWUnsHLiuYrF+GAGAOBuJiSRmhQsxGJS1ZXpz1UsBDMAgIwxpTrHpGAhlp6qrsI5M9moujL9uYrF+JwZAIA7mVSdEw4W4q0HBZSZEu1Ee8Z0V3WV7VO8nXquUkEwAwBIO9OSSJ0IFuyWNk8aVqxls0arKBi94lEUzM9qpZVJgVWijC/NThWl2QCQfTX1zZqxfGuP16264UtZTSLN1rZXKqXNJuQYSc5vEdq5f5MzAwBIO1OTSCcNK9aE8qKMBgs9rUoF1LEqNaG8KOa/m5sTMKJKKBvPVboQzAAA0s7kJNJMBwtuLG2Ox5TAqicEMwDwGVOW973ApOqcbDN1VcrLCGYAQM7nB3hNOIl0zsodCkhRAY2pSaTpYvKqlFdRzQTA90wqIfYSU6pzss2Npc1ux8oMAF9LNVnTzxLZlgsnkW79a7Nq6pslWao461R9yQV5GMny86qUUwhmAPial5I1s8nOttz6XU1R1/7uhXpXbeElk0sVXpXq/BwVuWjebkIwA8DXSNa0L14PlfC23PFbSHauNVEquVRuKm12O3JmAPgayZr22Onsa1oXYLvSkUsVLm2eNnKgKgb3I5DJEIIZAL5GsqY9drbl7FxrGrcHYn5DMAPA19x4Do2T7GzLuXkLz82BmB8RzADwPb+WECfDzracm7fw3ByI+REJwAAgkjUTZbezb6pdgJ3qyuzmQMyPCGYA4DNuOYfGSXZ7qKTSb8VuJVE6Ax8/H8fgRgHLsjydvWTnCHEAQGLsBBrJlDfHK+kOhyadt/8ycRxFeAxS7ECMLcjMsnP/JpgBACTFzkqI3WvHLdkYNwE3vCqy5eZLlJsTsB342MGZXc6xc/9mmwkAkBQ723J2rrVTSTSmrG9Gj6Mgl8odCGYAwGBOJcA6yU4lUTaOoyCXynwEMwBgKL9ucdipJKKEGhJ9ZgDASOlope9WdroyU0INiWAGAIzj91b6droycxwFJIIZADAOrfQT78rMcRSQyJkBAOOQB9Khu0qizonRS78xSrc//WZUEFjkg/widCCYAQDDkAfyd7EqieIlRt86pVyn9Ontq8ovdGCbCQAMQx5IfN0lRs99ZIdaPvpY00YOVMXgfgQyPkIwAwCGIQ8kNr8nRiM+ghkAMFCiCbB+QmI04jE6Z6atrU233XabVq5cqaamJpWUlOjaa6/VT37yEwUC/vqLBID3dU5qnVBeRCv945AYjXiMDmaWLFmiZcuW6aGHHtLQoUP1yiuv6Fvf+paCwaB+8IMfOD08AEgbv3b7tYPEaMRj9DbTyy+/rGnTpmnKlCk688wz9fWvf12XXXaZtm3b5vTQACBt/Nzt144Pjnys7hal/JwY7XdGBzMXXnihnn/+ef3lL3+RJL3++uvasmWLJk+eHPdzWltbFQqFot4AwFSmJbW2tVuqqW/W2tp9qqlvNiaZtrquUXMf2aGehuPHxGgYvs10yy23KBQK6ZxzzlFubq7a2tr085//XDNnzoz7OYsWLVJVVVUWRwkAycvGqc+JMnWrq7uALywnIP1uxii25NLEbae1Gx3MPProo/r973+vRx55REOHDlVtba3mzZunkpISzZ49O+bnLFiwQPPnz4+8HwqFVFpamq0hA/CAbP4iNyWpNbzV1TlgCG91OVlB1VPAJ0ntlnRKn7wsjcjbTA1qu2N0MPOjH/1It9xyi6ZPny5JOu+88/TOO+9o0aJFcYOZvLw85eXxDQ0gOdn+RW5CUmtPW10BdWx1TSgvcuSvc1MCPj8wOajtjtE5M0ePHlVOTvQQc3Nz1d7e7tCIAHiZE4m4JnT7Nb1/iwkBnx+Ylr9lh9HBzNSpU/Xzn/9cTz/9tN5++22tWbNGv/71r/VP//RPTg8NgMc49YvchG6/pq98mBDw+YHpQW13jA5mfvvb3+rrX/+6vve97+ncc8/VTTfdpO9+97u6/fbbnR4aAI9x8he5091+TV/5MCHg8wPTg9ruGJ0zU1BQoLvuukt33XWX00MB4HFO/yKfNKzYsW6/4ZWPppZjMVemAuoIrDqvfGQzUToc8N321BtqCrVGHh9QmKfb/nGokXkcbmN6UNsdo4MZAMgWE36R5+YEMl5+He/fXTi1XHNW7lBAigpo4q18OFfxEm9tBqlKNqg1gdHbTACQLX7Py7Cz1eVEonT432wKRf+b74fokpwubt7OC1iWZV5achqFQiEFg0G1tLSosLDQ6eEAMFj4hinFXp0wtSw1nXraOmprtzRuyca4+UXhv9633HxJ2m56TvybfmZKnxk792+2mQDgM+HVic6/yIsMbxiWTj1tdTnRsdikLsl+4GT+VrIIZgDgOG78RZ5NTiRKO52c7UdO5W8li2AGADpx2y/ybHIiUdqE5GyYjQRgAEDCnEiU9ntyNnpGMAMASJgTFS9urrJBdhDMAABscaJjsdNdkmE2SrMBh2WziyqQTk587/Lz4h+UZgMuYUo/ByAZTiRKk5yNWNhmAhziRBdVAPAighnAAW3tlqrW7Yp5/kn4sap1u9TW7uldYABIC4IZwAF2OpoCALpHzgzgADqa+g+Jq+nDc4nOCGYAB9DR1F9I9E4fnkvEwjYT4AA6mvoHid7pw3OJeAhmAAfQ0dQfSPROH55LdIdgBo5qa7dUU9+stbX7VFPf7KtfRHQ09T4SvdOH5xLdIWcGjvHT3ne8hMVJw4o1obyIZEaPItE7fXgu0R2CGTgivPfdeR0mvPftpZWJnoI2Opr+ndeqVEj0Th+eS3SHYAZZ19Ped0Ade98TyotcfSOT/BW0pcqLK3XhRO+mlmMxv98D6thWJNG7ZzyX6A45M8g6v+x9k7CYOK9WqZDonT48l+gOwQyyzi97334J2lLl9aCPRO/04blEPGwzIev8svftl6AtVXaCPrfmFpHonT48l4iFYAZZ55e9b78EbanyS9BHonf68FyiM7aZkHV+2fumy29iCPoApIpgBo7ww963X4K2VBH0AUhVwLIsW1l1s2fP1nXXXaevfOUrmRpTWoVCIQWDQbW0tKiwsNDp4aATr/UVicWLJcfpFq5mkhS19Rj+TkhHgOuH77Xu+H3+cB8792/bwcwVV1yhZ555RoMGDdK3vvUtzZ49WwMHDkxpwJnk92CGX2Bm4HXoWSaDPr8HlH6fP9wpo8GMJP3f//2fHn74YT300EPatWuXKisrdd1112natGk64YQTkh54Jvg5mOEXGNwmE0FfvMaF6Vz1MZnf5w/3yngwc7wdO3ZoxYoV+o//+A997nOf06xZs/S9731PZ599dipfNm38GszwCwzoCI7GLdkYt/Q7XDm35eZLXLlS1lPw5/X5w9vs3L9TSgBubGzU+vXrtX79euXm5uryyy/Xzp07VV5erjvvvDOVLx1x5plnKhAIdHmbO3duWr6+F3m9CRmQKC83Lqyua9S4JRs1Y/lW3bi6VjOWb9W4JRujuiV7ef7A8WwHM5988okef/xx/cM//IMGDRqkxx57TPPmzdP+/fv10EMPacOGDXr00Uf1s5/9LC0D3L59uxobGyNv69evlyRdeeWVafn6XsQvMDiprd1STX2z1tbuU019s6NBs1d72CR6/INX5w90ZrtpXnFxsdrb2zVjxgxt27ZNI0eO7HLN+PHjdfLJJ6dheFL//v2j3l+8eLEGDx6siy++OC1f34v4BQanmJan5cUeNnYOavXi/IFYbAczd955p6688krl58f/5j/55JPV0NCQ0sBi+fjjj7Vy5UrNnz9fgUDs/d3W1la1trZG3g+FQmkfh+n4BYZs6Jyv8cGRVs195DWjTgj3YrdpOyuvXpw/EIvtYOaaa67JxDgS8uSTT+rDDz/UtddeG/eaRYsWqaqqKnuDMhC/wJBpsVZgcgJKaLUgm4mm4caFc1buUECxe9i4rXGhnZVXL84fiMVVHYDvv/9+TZ48WSUlJXGvWbBggVpaWiJve/fuzeIIzUDnWWRSvHyN7lJjnMzT8lq3absrr16bPxCLaw6afOedd7RhwwY98cQT3V6Xl5envLy8LI3KXOFfYJ3/ei6izwxS0F2+RiKcytPy0knLyay8emn+QCyuCWZWrFih0047TVOmTHF6KK7BLzCkW0/5Gj1xMk8rNyegMWV9Iz8P4ZwSt/08JLt1xEnT8DJXBDPt7e1asWKFZs+erV69XDFkY/ALDOmU7MqKCXlaplVapdLtmJVXIJorIoMNGzbo3Xff1be//W2nhwL4WjIrKybkacXriO1UpVU6AitWXoG/S/k4A9P59TgDuIPbDqAMt8ePl68hdVQ1HZ8M7PR5YKa19OeoESAxdu7frliZAbzItG2PRCSSr/G7GaN1Sp/exgRodvqyZHpL1k7DO5ODWsA0rirNBrwi0Xb0Juqp1Pfy4cWqGNxP00YOVMXgfo7flE3qiM1RI0BmsDIDZJkX/jp3U76GSR2xTQqsAC8hmAGyzKRtj1S4pVLOpI7YJgVWgJewzQRkGX+dZ5dJHbHDgVW8fymgjrwpjhoB7CGYAbKMv86zL50t/dvaLdXUN2tt7T7V1DerrbtzHDoxKbACvIRtJiDLTNr28JN05Pmkqz8MDe+A9KLPDOCAcDWTFLu8mV4j5kl3fxi39RgCss3O/ZttJsABnGTsLj1VoEkdFWh2t5xMKmEH3IxtJsAhbipv9juvVKABXkUwAzjILeXNfkcFGmA2tpkAoAdUoAFmY2UGcDGSSLODCjTAbAQzgEu58aBKt0rkgE36wwDOYZsJcCE3H1TpVlSgAeZiZQZwGS8cVOlWVKABZiKYAeSu3BPKhJ1FBRpgHoIZ+J7bck8SLf9tCh1TTX2zKwI0AEgFwQx8LV6L+nDuiYm5EImW/97+32/o4JFPIu+bHKABQCpIAIZvZaJFfTaEy4R7WmM5PpCR/JccnMrp1gDchZUZ+JZbc096KhOOd8v2U3Kw27YOAaSGlRn4lptb1McrE+7bp3e3n3d8gOZVlK0D/sPKDHzL7S3qY5UJN7V8pH959PUePzfdAZop1WCUrQP+RDAD3/JCi/rOZcI19c0JfV46AzSTtnTcunUIIDVsM8G3wrknkrok07q1RX1PycEBdQQa6QrQTNvScfPWIYDkEczA17zWoj6bAZqT1WDxKpXcvnUIIDlsM8H3vNaiPhygdd76KUrz1o9TWzrdbWtNKC9y/dYhAPsIZgB5r0V9NgI0J7Z0EmlyyOnWgP+wzQTH0NQss8IB2rSRA1UxuF/ab+DZ3tJJdFtrQnmRp7YOAfSMlRk4wqQKGCQn29Vgdra1TN86NKWUHfAKghlknRvPQ0JXPXUiltK7pWN3W8vUrUMCeSD92GZCVrn1PCTEls1qMC9UKplWyg54hfErM/v27dPNN9+sZ599VkePHtXnP/95rVixQueff77TQ0MSaGrmPdna0nF7k0O6EwOZY3Qw88EHH+iiiy7S+PHj9eyzz6p///7avXu3TjnlFKeHhiTR1CxznMzDyMaWTra3tdKNQB7IHKODmSVLlqi0tFQrVqyIPFZWVubgiJAqL2wVmMgveRjZ6qGTCQTyQOYYHcw89dRTmjhxoq688kpt3rxZAwcO1Pe+9z3dcMMNcT+ntbVVra2tkfdDoVA2hooEeWGrwLQqFL8lVJteqRQPgTyQOUYHM3/961+1bNkyzZ8/X//6r/+q7du36wc/+IF69+6t2bNnx/ycRYsWqaqqKssjRaLcvFVgd/UjG4GPX/MwTK1U6o7bA3nAZAHLsowtG+ndu7fOP/98vfzyy5HHfvCDH2j79u2qqamJ+TmxVmZKS0vV0tKiwsLCjI8ZiXHbtki81Y9weNB59SNb86upb9aM5Vt7vG7VDV9y3c3fi8LfR1LsQN5rq2hAKkKhkILBYEL3b6NXZoqLi1VeXh712LnnnqvHH3887ufk5eUpLy8v00NDity0VWB39SOb2z7kYbiLm3N+AJMZHcxcdNFFeuutt6Ie+8tf/qJBgwY5NKLsMTE3I93cslVgpwplTFnfrG77kIfhPm4K5AG3MDqY+Zd/+RddeOGF+vd//3ddddVV2rZtm+677z7dd999Tg8to9y2BZNt2Q707Kx+ZLv81s95GG4O+N0SyANuYXQwc8EFF2jNmjVasGCBfvazn6msrEx33XWXZs6c6fTQMsZvlSl2ORHoJbqqsfv9Q9r9/uGErk3Xto+bE6pTQcAP4HhGJwCng50EIqe1tVsat2Rj3L/sw39lb7n5Es/dnBJhNwk3XcKvS7zVj2SkOyHXTzd3p74PAGSXZxKA/YYOofE5WYLc3eqHXZna9vFLHkay3wdu3pIC0DOCGYNQmRKf04FevCoUOzK97eOHPIxkvg/8tGoF+BWnZhuEypT4TAj0Jg0r1pabL9GqG76k74//vO3Pz8RJ0n5j9/uAU6oBf2BlxiB+rkw5XqwtAVMCvfDqR6I31e+PH6yzBxSwtZEmdr4P/NodGfAjghmD+LUy5XjxtgRunVJuVKCX6E31os/39/zWTzbZCfid3poEkD1sMxkmnJtRFIy+Wfphi6K7LYG5j+zQP47omHvnUM6JQC98U433rwXUEYR5fRUt28IBv9Tz94EJW5PxtLVbqqlv1trafaqpb1Zbu6eLSoGMY2XGQH6pTDleIlsCT73eqKXfGKXbn37T8VbwrKI5J9EjAUzZmuyMhGQg/egzAyPYOTAxvIVgQqDn1huTF0qVe5pDT/2BnOjbRI8cIHH0mYFtTt/c7GwJmFSC7MZVNLcGYJ319H1g2uoZCclA5hDMwIibm6lbAokwKbjqid+OyzDplGoSkoHMIZjxOVNubpSlZ55fVwZMWT0zOSEZcDuqmXwoXEmx5rV9+tc1O+Pe3KSOm1s2Ki3sVKkgOXZWBrwmvHo2beRAVQzu58j3kZtXHwHTsTLjM7G2lOLJ9rK3SVsCXsTKgLNYfQQyh2DGR+JtKfUkmzc3U7YEvIiVAWeZlpAMeAnbTD7RXb5ET7J9czNhS8CLaPTnPD83xQQyiZUZn+gpXyIWlr29hZUBM7D6CKQfwUwWOdnLxe5WETc3byIvyQxuKucH3IBgJkuc7uVid6uIm5t3Ob0y4HSDRgDeQzCTBSb0ckmkkqJvn976yZRzVRQ8MakbjBdvUl6ck+TcyoDTQT0Ab+JspgwLnw8TL18lm+fDhIMqKXa+RCpBlRdvUl6ck5M4lwiAHXbu31QzZZhJjcoyVUkRvkl1nmd45am6rjHpMTvFi3NyUk/dh6XsNWgE4D1sM2WYaY3K0p0v4cUW+V6ck9M4lwhAJhHMZJiJjcrSmS/hxZuUF+fkNNOCegDeQjCTYV5vYZ7ozeelPf/XZSXI1ORabrzpZ2JQD8A7CGYyzOuNyhK9+fzuhfrI/xcH8/WPI4r11OuNRibXcuNNP68H9QCcRQJwFni5hXlPLfJjaWw5pntfbDA2uZa2/+nHqegAMonS7CwydVslVfFKvpORzVL17qSjjN2rr3cqKHcHkCg792+CGSSsu5tzrJtUKlbd8CXHk2tTufFy046PIA9AIghmjkMwkx6J3JyPv0ntfv+wfvfCnqT/vd9MH6lpIwemPO5UJXPjpTkcAKTOzv2bBOA0S/dfnSb8FZvocQzHl3zX1DenFMyYklxrt4ydHjUAkH0EM2mU7q0FE7Yqkr0591S9Eo/bq1roUQMA2Uc1U5qku/29Ke30kz2OobvqlXi8UNVCjxoAyD7jg5nbbrtNgUAg6u2cc85xelhR0n3ujEnn2KRyc45Xkl4czNd3v1KmYg+WqtOjBgCyzxXbTEOHDtWGDRsi7/fqZdaw0721YNJWRao35+7OgvrxpHMdzwdKN5rDAUD2mRUVxNGrVy8VFRU5PYy40r21YNJWRTpuzvGSaNN5RpQpvN7xGQBMZPw2kyTt3r1bJSUlOuusszRz5ky9++67ca9tbW1VKBSKesu0dG8tmLRVQedW+7LV8bmt3VJNfbPW1u5TTX1zVrYdAcBExveZefbZZ3X48GENGTJEjY2Nqqqq0r59+1RXV6eCgoIu1992222qqqrq8ngm+8y0tVsat2Rjj6sXiXa1TffXSwcTKqvc5viy+lP75EkB6W+HW9OypcbrAcDrPN0078MPP9SgQYP061//Wtddd12Xj7e2tqq1tTXyfigUUmlpacab5qWj/X0mv146ZLvnjQk9dtIhEyX7NOUD4HWeDmYk6YILLlBlZaUWLVrU47XZ7ADsxT4zTvHK3NMdeIRX7eIliJtythUApMrTHYAPHz6s+vp6XXPNNU4PpYvuKndM+HpukWjHYdNlohuwSZVuAGAK44OZm266SVOnTtWgQYO0f/9+LVy4ULm5uZoxY4bTQ4sp3RU6Xqz46Y6XjgOwG3gksq1mUqUbAJjC+GDmvffe04wZM9Tc3Kz+/ftr3Lhx2rp1q/r37+/00JABXlp5sBN4JLqtZlKlGwCYwvhgZvXq1U4PAVnkpZWHRAOKt/92RHdt2J3QthpN+QCgK1f0mYE7pKPviZdWHsKBR7zNsIA6Vl9WbXs34aMr6PsDAF0RzLhQppqlpfJ1q+saNW7JRs1YvlU3rq7VjOVbNW7JRtsHYiYaALhh5SGRwGP6BWeoKdSqeGId5JmtpnwA4BbGbzN5nd1eKtV1jbrtqTeiboBFhXm67R+HpnQTS6UUOp3VR147DiAceHR+bos+e25bP21P6Ot03lbza6UbAMTiyj4zdmSzz4xdiQYQ4YBn/a4mPfDS23G/3j1J/lWeSi+UTPU98UqfmbB4QWtNfbNmLN/a4+evuuFLxic8A0A6ebrPjFckupoR66Yezy1P7LRdspxqKXSmqo+8tvIQr8SehF4ASB05Mw7oKYCQOgKIZ/63I+BJJJCRpA+PfqKt9c22xmInGIklk9VH4QBg2siBqhjcz7WBTHdI6AWA1BHMOCDRAOIna+tiBjzdqfnr32xdn2ow4qXqI6eQ0AsAqWGbKUmpHIKYaABx8MjHSYzM3l/wqQYjbJOkh9e21QAgmwhmkpBqcmomVynsJommGox4rfrISX47ugIA0oVtJpvCibudt4nCibuJ9FVJpJdK3z4n2B7bKSedoC+dZe9mmI6cDbZJAABOojTbhnSWIYeDIin2asbSb4zS7U+/GXfFJJZkS7PD40m1FDqVrTcAAI5HaXaGpLMMuadmapOGFSsnJxBz+6azdPRfSUfOBtskAAAnEMzYkO4y5J4CiLgBT2GeZow5Q2ee2ietKyAEIwAANyKYscFu5U8i2y49BRBUuQAA0D2CGRvsVP6ksx0/KyYAAMRHNZMNiVb+rN/VlHLFEwAASAzBjE09lSFPKC9K6KiCtnZPF5EBAJA1bDMlobs8lpr65owcvAgAAGIjmElSvDyWTB68CAAAuiKYSTMOXvQfmgUCgLMIZtKMgxf9JZ1VawCA5JAAnGbpOOsI7pCOc7oAAKkjmMkADl70vrZ2i6o1ADAE20wZQudeb0vnOV0AgNQQzGQQnXu9i6o1ADAH20xAEqhaAwBzEMwASQhXrcXbNAyoo6qJqjUAyDyCGSAJVK0BgDkIZoAkUbUGAGYgARhIAVVrAOA8ghkgRVStAYCz2GYCAACuxsqMz3FIIgDA7Vy1MrN48WIFAgHNmzfP6aF4QnVdo8Yt2agZy7fqxtW1mrF8q8Yt2ciZQgAAV3FNMLN9+3bde++9Gj58uNND8QQOSQQAeIUrgpnDhw9r5syZWr58uU455ZRur21tbVUoFIp6QzQOSQQAeIkrgpm5c+dqypQpqqys7PHaRYsWKRgMRt5KS0uzMEJ3sXNIIgAApjM+AXj16tXasWOHtm/fntD1CxYs0Pz58yPvh0IhAppO3HBIIonJAIBEGR3M7N27VzfeeKPWr1+v/PzEDuzLy8tTXl5ehkfmbqYfklhd16iqdbuiVo+Kg/laOLWcrroAgC6M3mZ69dVXdeDAAY0ePVq9evVSr169tHnzZt19993q1auX2tranB6iK5l8SCKJyQAAu4wOZi699FLt3LlTtbW1kbfzzz9fM2fOVG1trXJzc50eoiuZekgiickAgGQYvc1UUFCgYcOGRT3Wp08f9evXr8vjsCd8SGLn7ZwiB7dz7CQmc3wAACDM6GAGmWXaIYluSEwGAJjHdcHMpk2bnB6Cp5h0SKLpickAADMZnTMDfzE5MRkAYC6CGRjD1MRkAIDZCGZglHBiclEweiupKJivZbNG02cGANCF63Jm4H2mJSYDAMxGMAMjmZSYDAAwG9tMAADA1QhmAACAqxHMAAAAVyOYAQAArkYwAwAAXI1qJo9pa7coaQYA+ArBjIdU1zV2OQW72MFTsAEAyAa2mTyiuq5Rc1buiApkJKmp5ZjmrNyh6rpGh0YGAEBmEcx4QFu7pap1u2TF+Fj4sap1u9TWHusKAADcjWDGA7Y1HOyyInM8S1JjyzFtaziYvUEBAJAl5Mw4LB0JuwcOxQ9kkrkOAAA3IZhxULoSdk8ryO/5IhvXAQDgJmwzOSSdCbtjyvqqOJiveOs5AXUESWPK+iY/YAAADEUw44B0J+zm5gS0cGq5JHUJaMLvL5xaTr8ZAIAnEcw4IBMJu5OGFWvZrNEqCkZvJRUF87Vs1mj6zAAAPIucGQdkKmF30rBiTSgvymgHYDoMAwBMQzDjgEwm7ObmBFQxuJ/tz0sEHYYBACZim8kBbkzYpcMwAMBUBDMOcFvCLh2GAQAmI5hxiJsSdukwDAAwGTkzDspGwm460GEYAGAyghmHZTJhN13oMAwAMBnbTOiRGxOWAQD+QTCDHrktYRkA4C8EM0iImxKWAQD+Qs4MEuaWhGUAgL8QzMAWNyQsAwD8xfhtpmXLlmn48OEqLCxUYWGhKioq9Oyzzzo9LAAAYAjjg5nTTz9dixcv1quvvqpXXnlFl1xyiaZNm6Y33njD6aEBAAADBCzLcl0P+r59++qXv/ylrrvuui4fa21tVWtra+T9UCik0tJStbS0qLCwMJvDBAAASQqFQgoGgwndv41fmTleW1ubVq9erSNHjqiioiLmNYsWLVIwGIy8lZaWZnmUAAAgm1yxMrNz505VVFTo2LFj+tznPqdHHnlEl19+ecxrWZkBAMD97KzMuKKaaciQIaqtrVVLS4v+8Ic/aPbs2dq8ebPKy8u7XJuXl6e8vDwHRgkAAJzgipWZziorKzV48GDde++9PV5rJ7IDAABm8GzOTFh7e3vUVhIAAPAv47eZFixYoMmTJ+uMM87QoUOH9Mgjj2jTpk167rnnnB4aAAAwgPHBzIEDB/TNb35TjY2NCgaDGj58uJ577jlNmDAhoc8P76KFQqFMDhMAAKRR+L6dSDaMK3Nm7HjvvfcozwYAwKX27t2r008/vdtrPB/MtLe3a//+/SooKFAgkPqBiOFS771793o2odgPc5T8MU8/zFHyxzz9MEfJH/P0wxyl1OdpWZYOHTqkkpIS5eR0n+Jr/DZTqnJycnqM6JIRPivKy/wwR8kf8/TDHCV/zNMPc5T8MU8/zFFKbZ7BYDCh61xZzQQAABBGMAMAAFyNYMamvLw8LVy40NNdhv0wR8kf8/TDHCV/zNMPc5T8MU8/zFHK7jw9nwAMAAC8jZUZAADgagQzAADA1QhmAACAqxHMAAAAVyOYkbR06VKdeeaZys/P19ixY7Vt27Zur3/sscd0zjnnKD8/X+edd56eeeaZqI9blqWf/vSnKi4u1oknnqjKykrt3r07k1PokZ05Ll++XF/+8pd1yimn6JRTTlFlZWWX66+99loFAoGot0mTJmV6Gt2yM8cHH3ywy/jz8/OjrjHxdZTszfOrX/1ql3kGAgFNmTIlco1pr+WLL76oqVOnqqSkRIFAQE8++WSPn7Np0yaNHj1aeXl5+vznP68HH3ywyzV2f84zye4cn3jiCU2YMEH9+/dXYWGhKioquhy2e9ttt3V5Hc8555wMzqJndue5adOmmN+vTU1NUde5+bWM9fMWCAQ0dOjQyDWmvZaLFi3SBRdcoIKCAp122mm64oor9NZbb/X4edm8V/o+mPmv//ovzZ8/XwsXLtSOHTs0YsQITZw4UQcOHIh5/csvv6wZM2bouuuu02uvvaYrrrhCV1xxherq6iLX/OIXv9Ddd9+te+65R3/605/Up08fTZw4UceOHcvWtKLYneOmTZs0Y8YMvfDCC6qpqVFpaakuu+wy7du3L+q6SZMmqbGxMfK2atWqbEwnJrtzlDq6Uh4//nfeeSfq46a9jpL9eT7xxBNRc6yrq1Nubq6uvPLKqOtMei2PHDmiESNGaOnSpQld39DQoClTpmj8+PGqra3VvHnzdP3110fd7JP5/sgku3N88cUXNWHCBD3zzDN69dVXNX78eE2dOlWvvfZa1HVDhw6Neh23bNmSieEnzO48w956662oeZx22mmRj7n9tfzNb34TNbe9e/eqb9++XX4mTXotN2/erLlz52rr1q1av369PvnkE1122WU6cuRI3M/J+r3S8rkxY8ZYc+fOjbzf1tZmlZSUWIsWLYp5/VVXXWVNmTIl6rGxY8da3/3udy3Lsqz29narqKjI+uUvfxn5+Icffmjl5eVZq1atysAMemZ3jp19+umnVkFBgfXQQw9FHps9e7Y1bdq0dA81aXbnuGLFCisYDMb9eia+jpaV+mt55513WgUFBdbhw4cjj5n2Wh5PkrVmzZpur/nxj39sDR06NOqxq6++2po4cWLk/VSft0xKZI6xlJeXW1VVVZH3Fy5caI0YMSJ9A0uzROb5wgsvWJKsDz74IO41Xnst16xZYwUCAevtt9+OPGb6a3ngwAFLkrV58+a412T7XunrlZmPP/5Yr776qiorKyOP5eTkqLKyUjU1NTE/p6amJup6SZo4cWLk+oaGBjU1NUVdEwwGNXbs2LhfM5OSmWNnR48e1SeffKK+fftGPb5p0yaddtppGjJkiObMmaPm5ua0jj1Ryc7x8OHDGjRokEpLSzVt2jS98cYbkY+Z9jpK6Xkt77//fk2fPl19+vSJetyU1zIZPf1MpuN5M017e7sOHTrU5Wdy9+7dKikp0VlnnaWZM2fq3XffdWiEqRk5cqSKi4s1YcIEvfTSS5HHvfha3n///aqsrNSgQYOiHjf5tWxpaZGkLt9/x8v2vdLXwczf/vY3tbW1acCAAVGPDxgwoMsebVhTU1O314f/a+drZlIyc+zs5ptvVklJSdQ33aRJk/Sf//mfev7557VkyRJt3rxZkydPVltbW1rHn4hk5jhkyBA98MADWrt2rVauXKn29nZdeOGFeu+99ySZ9zpKqb+W27ZtU11dna6//vqox016LZMR72cyFArpo48+SsvPgGl+9atf6fDhw7rqqqsij40dO1YPPvigqqurtWzZMjU0NOjLX/6yDh065OBI7SkuLtY999yjxx9/XI8//rhKS0v11a9+VTt27JCUnt9nJtm/f7+effbZLj+TJr+W7e3tmjdvni666CINGzYs7nXZvld6/tRspGbx4sVavXq1Nm3aFJUgO3369Mj/n3feeRo+fLgGDx6sTZs26dJLL3ViqLZUVFSooqIi8v6FF16oc889V/fee69uv/12B0eWOffff7/OO+88jRkzJupxt7+WfvPII4+oqqpKa9eujcolmTx5cuT/hw8frrFjx2rQoEF69NFHdd111zkxVNuGDBmiIUOGRN6/8MILVV9frzvvvFMPP/ywgyPLjIceekgnn3yyrrjiiqjHTX4t586dq7q6OsfzsTrz9crMqaeeqtzcXL3//vtRj7///vsqKiqK+TlFRUXdXh/+r52vmUnJzDHsV7/6lRYvXqw//vGPGj58eLfXnnXWWTr11FO1Z8+elMdsVypzDDvhhBM0atSoyPhNex2l1OZ55MgRrV69OqFfhE6+lsmI9zNZWFioE088MS3fH6ZYvXq1rr/+ej366KNdlvA7O/nkk/WFL3zBNa9jPGPGjInMwUuvpWVZeuCBB3TNNdeod+/e3V5rymv5/e9/X//93/+tF154Qaeffnq312b7XunrYKZ379764he/qOeffz7yWHt7u55//vmov9qPV1FREXW9JK1fvz5yfVlZmYqKiqKuCYVC+tOf/hT3a2ZSMnOUOrLMb7/9dlVXV+v888/v8d9577331NzcrOLi4rSM245k53i8trY27dy5MzJ+015HKbV5PvbYY2ptbdWsWbN6/HecfC2T0dPPZDq+P0ywatUqfetb39KqVauiSuvjOXz4sOrr613zOsZTW1sbmYNXXkupo0Joz549Cf2B4fRraVmWvv/972vNmjXauHGjysrKevycrN8rbacMe8zq1autvLw868EHH7R27dplfec737FOPvlkq6mpybIsy7rmmmusW265JXL9Sy+9ZPXq1cv61a9+Zb355pvWwoULrRNOOMHauXNn5JrFixdbJ598srV27Vrrf//3f61p06ZZZWVl1kcffZT1+VmW/TkuXrzY6t27t/WHP/zBamxsjLwdOnTIsizLOnTokHXTTTdZNTU1VkNDg7VhwwZr9OjR1tlnn20dO3bMFXOsqqqynnvuOau+vt569dVXrenTp1v5+fnWG2+8EbnGtNfRsuzPM2zcuHHW1Vdf3eVxE1/LQ4cOWa+99pr12muvWZKsX//619Zrr71mvfPOO5ZlWdYtt9xiXXPNNZHr//rXv1onnXSS9aMf/ch68803raVLl1q5ublWdXV15JqenrdsszvH3//+91avXr2spUuXRv1Mfvjhh5FrfvjDH1qbNm2yGhoarJdeesmqrKy0Tj31VOvAgQNZn1+Y3Xneeeed1pNPPmnt3r3b2rlzp3XjjTdaOTk51oYNGyLXuP21DJs1a5Y1duzYmF/TtNdyzpw5VjAYtDZt2hT1/Xf06NHINU7fK30fzFiWZf32t7+1zjjjDKt3797WmDFjrK1bt0Y+dvHFF1uzZ8+Ouv7RRx+1vvCFL1i9e/e2hg4daj399NNRH29vb7duvfVWa8CAAVZeXp516aWXWm+99VY2phKXnTkOGjTIktTlbeHChZZlWdbRo0etyy67zOrfv791wgknWIMGDbJuuOEGx36ZhNmZ47x58yLXDhgwwLr88sutHTt2RH09E19Hy7L//frnP//ZkmT98Y9/7PK1THwtw+W5nd/C85o9e7Z18cUXd/mckSNHWr1797bOOussa8WKFV2+bnfPW7bZnePFF1/c7fWW1VGOXlxcbPXu3dsaOHCgdfXVV1t79uzJ7sQ6sTvPJUuWWIMHD7by8/Otvn37Wl/96letjRs3dvm6bn4tLaujBPnEE0+07rvvvphf07TXMtb8JEX9nDl9rwx8NlAAAABX8nXODAAAcD+CGQAA4GoEMwAAwNUIZgAAgKsRzAAAAFcjmAEAAK5GMAMAAFyNYAYAALgawQwAAHA1ghkArtLW1qYLL7xQX/va16Ieb2lpUWlpqf7t3/7NoZEBcArHGQBwnb/85S8aOXKkli9frpkzZ0qSvvnNb+r111/X9u3b1bt3b4dHCCCbCGYAuNLdd9+t2267TW+88Ya2bdumK6+8Utu3b9eIESOcHhqALCOYAeBKlmXpkksuUW5urnbu3Kl//ud/1k9+8hOnhwXAAQQzAFzrz3/+s84991ydd9552rFjh3r16uX0kAA4gARgAK71wAMP6KSTTlJDQ4Pee+89p4cDwCGszABwpZdfflkXX3yx/vjHP+qOO+6QJG3YsEGBQMDhkQHINlZmALjO0aNHde2112rOnDkaP3687r//fm3btk333HOP00MD4ABWZgC4zo033qhnnnlGr7/+uk466SRJ0r333qubbrpJO3fu1JlnnunsAAFkFcEMAFfZvHmzLr30Um3atEnjxo2L+tjEiRP16aefst0E+AzBDAAAcDVyZgAAgKsRzAAAAFcjmAEAAK5GMAMAAFyNYAYAALgawQwAAHA1ghkAAOBqBDMAAMDVCGYAAICrEcwAAABXI5gBAACu9v9vMnkRjAoSFwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -48,6 +65,7 @@ } ], "source": [ + "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", @@ -60,8 +78,12 @@ "# Create a DataFrame from the data\n", "data = pd.DataFrame(np.concatenate([X, y], axis=1), columns=['X', 'y'])\n", "\n", - "# Save the data to a CSV file\n", - "data.to_csv('data.csv', index=False)\n", + "# Create the 'Temp' directory if it doesn't exist\n", + "if not os.path.exists('./tmp'):\n", + " os.makedirs('./tmp')\n", + "\n", + "# Save the data to a CSV file in the 'Temp' directory\n", + "data.to_csv('./tmp/data.csv', index=False)\n", "\n", "# Plot the data\n", "plt.scatter(X, y)\n", @@ -83,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -95,20 +117,26 @@ "1 1.901429 9.405278\n", "2 1.463988 8.483724\n", "3 1.197317 5.604382\n", - "4 0.312037 4.716440\n", - "X的缺失值数量: 0\n", - "y的缺失值数量: 0\n" + "4 0.312037 4.716440\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6R0lEQVR4nO3df3RV1Zn/8c8lQKKUXAXFBIxIqYKRKqBSolRH5Zcig7OsVFREa/06aqvIqiJOO0C1Ip2pWquDxap0yShOB1H4OkRwEBhqEBDiGPFnREVN5CtoLqJETc73j3hTbnJvcs/9cc7e57xfa2UtcnNy2efenJwnez/PsyOO4zgCAACwVBe/BwAAAJANghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGC1rn4PIN+am5v10UcfqWfPnopEIn4PBwAApMFxHO3du1d9+/ZVly4dz70EPpj56KOPVFZW5vcwAABABnbu3Kkjjzyyw2MCH8z07NlTUsuLUVxc7PNoAABAOmKxmMrKylrv4x0JfDATX1oqLi4mmAEAwDLppIiQAAwAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKwW+A7AAAD4oanZ0aYde7Rr73716VmkEQN6qaALGx7nA8EMAAA5VllTp7krtquuYX/rY6XRIs2eWK7xQ0p9HFkwscwEAEAOVdbU6ZrFWxMCGUmqb9ivaxZvVWVNnU8jCy5fg5n169dr4sSJ6tu3ryKRiJ566qmErz/55JMaN26cDjvsMEUiEVVXV/syTgAA0tHU7Gjuiu1yknwt/tjcFdvV1JzsCGTK12Bm3759OvHEE3Xfffel/Pppp52mO++80+ORAQDg3qYde9rNyBzIkVTXsF+bduzxblAh4GvOzDnnnKNzzjkn5denTp0qSXr33Xc9GhEAAJnbtTd1IJPJcUhP4BKAGxsb1djY2Pp5LBbzcTQAgDDp07Mop8chPYFLAJ43b56i0WjrR1lZmd9DAgCExIgBvVQaLVKqAuyIWqqaRgzo5eWwAi9wwcysWbPU0NDQ+rFz506/hwQACImCLhHNnlguSe0CmvjnsyeW028mxwIXzBQWFqq4uDjhAwAAr4wfUqoFlw5XSTRxKakkWqQFlw6nz0weBC5nBgAAv40fUqox5SV0APaIr8HM559/rrfffrv18x07dqi6ulq9evXSUUcdpT179uj999/XRx99JEl64403JEklJSUqKSnxZcwAAKSjoEtEFQN7+z2MUPB1mWnLli0aNmyYhg0bJkmaMWOGhg0bpn/+53+WJC1fvlzDhg3ThAkTJEkXXXSRhg0bpgceeMC3MQMAALNEHMcJdBvCWCymaDSqhoYG8mcAALCEm/t34BKAAQBAuJAADAAAXGtqdoxJcCaYAQAArlTW1Gnuiu0J+1CVRos0e2K5L6XnLDMBAIC0VdbU6ZrFW9ttqFnfsF/XLN6qypo6z8dEMAMAANLS1Oxo7ortSlY5FH9s7ortamr2traIYAYAAKRl04497WZkDuRIqmvYr0079ng3KBHMAACANO3amzqQyeS4XCGYAQAAaenTs6jzg1wclysEMwAAIC0jBvRSabSo3Y7gcRG1VDWNGNDLy2ERzAAAgPQUdIlo9sRySWoX0MQ/nz2x3PN+MwQzAAAgbeOHlGrBpcNVEk1cSiqJFmnBpcN96TND0zwAAODK+CGlGlNeQgdgAABgr4IuEVUM7O33MCSxzAQAACxHMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGaTYAAD5ranaM6dliI4IZAAB8VFlTp7krtquu4W87TZdGizR7Yrkv3XRtxDITAAA+qayp0zWLtyYEMpJU37Bf1yzeqsqaOp9GZheCGQAAfNDU7Gjuiu1yknwt/tjcFdvV1OwkfE9V7W49Xf2hqmp3J3wtzFhmAgBkjZwP9zbt2NNuRuZAjqS6hv3atGOPKgb2ZjmqAwQzAICscJPNzK69qQOZtsfFl6PazsPEl6PytVu1LUEqwQwAIGN+3WSDoE/PorSOO+w7hfrFX15OuRwVUcty1JjykpwGGjYFqeTMAAAykknOB/5mxIBeKo0WKVX4EVFL8CBHaS9H5YptickEMwCAjLjJ+UB7BV0imj2xXJLaBTTxz2dPLNcn+xrTer50l606Y2OQSjADAMiIm5wPJDd+SKkWXDpcJdHEJaeSaFHrEl26y1HpHtcZG4NUcmYAABnx+iYbVOOHlGpMeUnKRNv4clR9w/6ksyURtQQ/Iwb0ysl4bAxSmZkBAGQk3ZyPXN1kg6ygS0QVA3tr0tB+qhjYOyGRN93lqFwl/9oYpBLMAAAy4vVNNszSWY7KFRuDVF+DmfXr12vixInq27evIpGInnrqqYSvO46jOXPmqG/fvjrooIP0d3/3d3r11Vf9GSwAoB0vb7JhN35IqTbMPEuPXzVSv79oqB6/aqQ2zDwr56+xjUGqrzkz+/bt04knnqgrrrhCF1xwQbuv//a3v9Vdd92lRYsW6dhjj9Xtt9+uMWPG6I033lDPnj19GDEAoK3Ocj6QO/HlqHyLB6lt+8yUGNpnJuI4jhG1VZFIRMuWLdP5558vqWVWpm/fvpo+fbpmzpwpSWpsbNQRRxyh+fPn6+qrr07reWOxmKLRqBoaGlRcXJyv4QMAEDh+dgB2c/82tpppx44dqq+v19ixY1sfKyws1BlnnKEXXnghZTDT2Nioxsa/1eTHYrG8jxUAgCDyaiYoW8YmANfX10uSjjjiiITHjzjiiNavJTNv3jxFo9HWj7KysryOEwAA+MvYYCYuEkmcznIcp91jB5o1a5YaGhpaP3bu3JnvIQIAAB8Zu8xUUlIiqWWGprT0b4lGu3btajdbc6DCwkIVFhbmfXwAAMAMxs7MDBgwQCUlJVq9enXrY1999ZXWrVunU0891ceRAQAAk/g6M/P555/r7bffbv18x44dqq6uVq9evXTUUUdp+vTpuuOOO3TMMcfomGOO0R133KGDDz5YF198sY+jBgCEgZ+VPHDH12Bmy5YtOvPMM1s/nzFjhiRp2rRpWrRokW6++WZ9+eWXuvbaa/Xpp5/qBz/4gVatWkWPGQBAXlXW1LXrsVJqaI8VGNRnJl/oMwMAcKOypk7XLN7ablPH+JyMjZ2NbZxlCkSfGQAAvNbU7Gjuiu1Jd6d21BLQzF2xXWPKS4wPBuLCMMtkbAIwAABe27RjT8JNvy1HUl3Dfm3asce7QWUhPsvU9pzqG/brmsVbVVlT59PIcotgBgCAb+3amzqQyeQ4P3U2yyS1zDI1NdufbUIwAwDAt/r0LOr8IBfH+Slos0wdIZgBAOBbIwb0Umm0SKmyYSJqyTcZMaCXl8PKSLqzR399+xPrZ2cIZgAA+FZBl4hmTyyXpHYBTfzz2RPLjUv+bWp2VFW7W09Xf6iq2t1qanbSnj267/m3NWr+GqvzZ6hmAgDgAOOHlGrBpcPbVQCVGFoBlKpa6VcTylUaLVJ9w/6keTMHiicE21h2LtFnBgCApGzozdJZT5z/c/oALVy/Q5I6DWgiagnYNsw8y4jzpM8MAFjEhptmNmw9v4IuEVUM7O33MFJKpyfO8pfrdP/Fw3TbM691mAwc/554QrDJ550MwQwA+CjoDc2Cfn5+Srda6dAehdow8yzdvfoN3fd8bafPa0PZeVskAAOAT4Le0Czo5+c3Nz1xCrpEdNr3Dk/reBvKztsimAEAHwS9oVnQz88EbnviBKnsvC2CGQDwQdAbmgX9/EzgNjixtew8HQQzAOCDILXNTybo52eCTIKTeNl5STRxVqdXj+66/2I7y7IlghkA8EWQ2uYnE/TzM0Wq4KQkWpSyZ8z4IaX61YTj1KtHt9bHdu/7Src9s93aPCaqmQDAB/ElglQNzeI9P2zMX5CCf34mGT+kVGPKS9Iuf6+sqdN1j21r977Y3DiPmRkA8EGQ8xek4J+faeI9cSYN7aeKgb1Tvq5BTcwmmAEAn2SyRGCToJ+fjYKamM0yEwD4yO0SgW2Cfn62CWpiNsEMAPjM9Lb52Qr6+dkkqInZLDMBABASQW2cRzADAEBIBDUxm2AGAIAQCWJiNjkzAIBQa2p2QpegHLTEbIIZAEBoVdbUae6K7QnlyqXRIs2eWG7lDIUbQUrMZpkJABBKlTV1umbx1nZ9V+KdcG1t7R9GBDMAgNAJaifcsCKYAQCETlA74YYVwQwAIHSC2gk3rAhmAAChE9ROuGFFMAMACJ2gdsINK4IZAEAoNDU7qqrdraerP9SmHXv0qwnB64QbVsb3mdm7d69+9atfadmyZdq1a5eGDRum3//+9zrllFP8HhoAwBKp+sn8n9MHaPnLdQmPl4Skz0yQGB/M/PSnP1VNTY0effRR9e3bV4sXL9bo0aO1fft29evXz+/hAQAMF+8n07bIur5hvxau36H7Lx6mQ3sUBqITblhFHMcxtoj+yy+/VM+ePfX0009rwoQJrY8PHTpU5513nm6//fZOnyMWiykajaqhoUHFxcX5HC4AwDBNzY5GzV+Tsgw7opaZmA0zzyKAMYyb+7fROTPffPONmpqaVFSUmE1+0EEHacOGDUm/p7GxUbFYLOEDABBO9JMJB6ODmZ49e6qiokK33XabPvroIzU1NWnx4sV68cUXVVeXvM30vHnzFI1GWz/Kyso8HjUAwBT0kwkHo4MZSXr00UflOI769eunwsJC3Xvvvbr44otVUFCQ9PhZs2apoaGh9WPnzp0ejxgAYAob+8kcWHVVVbubLRXSYHwC8MCBA7Vu3Trt27dPsVhMpaWl+vGPf6wBAwYkPb6wsFCFhYUejxIAYKJ4P5n6hv1J92GSzOonY9ou3k3Njjbt2GN8crTxMzNxPXr0UGlpqT799FM9++yzmjRpkt9DAgAYrqBLRLMnJu8nE/fl101avb3eu0GlYNou3pU1dRo1f42mPLhRNyyp1pQHN2rU/DVG7iZudDWTJD377LNyHEeDBg3S22+/rZtuukmFhYXasGGDunXr1un3U80EAKisqdMtT76iz774ut3X4kHOgkuH+9ZbxrSqq1Tl7F6+VoGpZpKkhoYGXXfddRo8eLAuu+wyjRo1SqtWrUorkAEAQJLGlJeoqGvyW178hj13xXbf8lNMqrpqanY0d8X2pMtyJrxWyRifMzN58mRNnjzZ72EAACy2acce1ccaU379wGChYmBv7wb2LZOqrtwEVn68VskYH8wAAOxmQhKpScFCMiZVXZn+WiVDMAMAyBtTqnNMChaS6azqKp4z40XVlemvVTLG58wAAOxkUnVOPFhINR8UUX5KtNPtGdNR1ZXXu3j79Vplg2AGAJBzpiWR+hEsuC1tHj+kVAsuHa6SaOKMR0m0yNNKK5MCq3QZX5qdLUqzAcB7VbW7NeXBjZ0e9/hVIz1NIvVq2Sub0mYTcowk/5cI3dy/yZkBAOScqUmk44eUakx5SV6Dhc5mpSJqmZUaU16S9P8t6BIxokrIi9cqVwhmAAA5Z3ISab6DBRtLm1MxJbDqDMEMAHzLlOn9IDCpOsdrps5KBRnBDADI//yAoIknkV6zeKsiUkJAY2oSaa6YPCsVVFQzAQg9k0qIg8SU6hyv2VjabDtmZgCEWrbJmmGWzrJcPIl04zu7VVW7W5Kjiu8eppEW5GFkKsyzUn4hmAEQakFK1vSSm2W51dvrE4697/laq5bwMsmlis9KtX2NSiw6b5sQzAAINZI13UvVQyW+LHfgEpKbY02UTS6VTaXNtiNnBkCokazpjpvOvqZ1AXYrF7lU8dLmSUP7qWJgbwKZPCGYARBqJGu642ZZzs2xprE9EAsbghkAoWbjPjR+crMsZ/MSns2BWBgRzAAIvbCWEGfCzbKczUt4NgdiYUQCMACIZM10ue3sm20XYL+6MtsciIURwQwAfMuWfWj85LaHSjb9VtxWEuUy8Anzdgw2ijiOE+jsJTdbiAMA0uMm0MikvDlVSXc8NGm7/JeP7SjiY5CSB2IsQeaXm/s3wQwAICNuZkLcHjtq/pqUCbjxWZENM89SQZeI68DHDfbs8o+b+zfLTACAjLhZlnNzrJtKohEDeuV1OwpyqexAMAMABvMrAdZPbiqJvNiOglwq8xHMAIChwrrE4aaSiBJqSPSZAQAj5aKVvq3cdGWmhBoSwQwAGCfsrfTddGVmOwpIBDMAYBxa6afflZntKCCRMwMAxiEPpEVHlURtE6Pvv3iYbnvmtYQgsCQE+UVoQTADAIYhD+RvklUSpUqM/tWEch3ao3uoKr/QgmUmADAMeSCpdZQYfd1jW9Xw5VeaNLSfKgb2JpAJEYIZADAMeSDJhT0xGqkRzACAgdJNgA0TEqORitE5M998843mzJmjf//3f1d9fb1KS0t1+eWX65e//KW6dCEOAxAsbZNax5SX0Er/ACRGIxWjg5n58+frgQce0J///Gcdf/zx2rJli6644gpFo1HdcMMNfg8PAHImrN1+3SAxGqkYPb1RVVWlSZMmacKECTr66KP1ox/9SGPHjtWWLVv8HhoA5EyYu/268em+r9TRpFSYE6PDzuhgZtSoUfrv//5vvfnmm5Kkl19+WRs2bNC5556b8nsaGxsVi8USPgDAVKYltTY1O6qq3a2nqz9UVe1uY5JpK2vqdN1jW9XZcMKYGA3Dl5lmzpyphoYGDR48WAUFBWpqatJvfvMbTZkyJeX3zJs3T3PnzvVwlACQOS92fU6XqUtdHQV8cV0i0n1ThrEklyO27dZudDDzxBNPaPHixXrsscd0/PHHq7q6WtOnT1ffvn01bdq0pN8za9YszZgxo/XzWCymsrIyr4YMIAC8/EVuSlJrfKmrbcAQX+rys4Kqs4BPkpod6dAehR6NKNhMDWo7YnQwc9NNN+mWW27RRRddJEn6/ve/r/fee0/z5s1LGcwUFhaqsJAfaACZ8foXuQlJrZ0tdUXUstQ1przEl7/OTQn4wsDkoLYjRufMfPHFF+1KsAsKCtTc3OzTiAAEmR+JuCZ0+zW9f4sJAV8YmJa/5YbRwczEiRP1m9/8Rs8884zeffddLVu2THfddZf+4R/+we+hAQgYv36Rm9Dt1/SZDxMCvjAwPajtiNHBzB/+8Af96Ec/0rXXXqvjjjtOv/jFL3T11Vfrtttu83toAALGz1/kfnf7NX3mw4SALwxMD2o7YnTOTM+ePXXPPffonnvu8XsoAALO71/k44eU+tbtNz7zUd+wP+nMVEQtgVXbmQ8vE6XjAd+c5a+qPtbY+vgRxYWa8/fHG5nHYRvTg9qOGB3MAIBXTPhFXtAlkvfy61T/7+yJ5bpm8VZFpISAJtXMh38VL6nmZpCtTINaExi9zAQAXgl7XoabpS4/EqXj/2d9LPH//DhGl+RcsXk5L+I4jnlpyTkUi8UUjUbV0NCg4uJiv4cDwGDxG6aUfHbC1LLUXOps6aip2dGo+WtS5hfF/3rfMPOsnN30/Pg/w8yUPjNu7t8sMwHAt+KzE21/kZcY3jAslzpb6vKjY7FJXZLDwM/8rUwRzADAAWz8Re4lPxKl/U7ODiO/8rcyRTADAG3Y9ovcS34kSpuQnA2zkQAMAEibH4nSYU/ORucIZgAAafOj4sXmKht4g2AGAOCKHx2L/e6SDLNRmg34zMsuqkAu+fGzy/USHpRmA5YwpZ8DkAk/EqVJzkYyLDMBPvGjiyoABBHBDOCDpmZHc1dsT7r/SfyxuSu2q6k50KvAAJATBDOAD9x0NAUAdIycGcAHdDQNHxJXc4fXEm0RzAA+oKNpuJDonTu8lkiGZSbAB3Q0DQ8SvXOH1xKpEMwAPqCjaTiQ6J07vJboCMEMfNXU7Kiqdreerv5QVbW7Q/WLiI6mwUeid+7wWqIj5MzAN2Fa+06VsDh+SKnGlJeQzBhQJHrnDq8lOkIwA1/E177bzsPE176DNDPRWdBGR9O/CVqVConeucNriY4QzMBzna19R9Sy9j2mvMTqG5kUrqAtW0GcqYsnetc37E/68x5Ry7Iiid6d47VER8iZgefCsvZNwmL6glqlQqJ37vBaoiMEM/BcWNa+wxK0ZSvoQR+J3rnDa4lUWGaC58Ky9h2WoC1bboI+W3OLSPTOHV5LJEMwA8+FZe07LEFbtsIS9JHonTu8lmiLZSZ4Lixr33T5TQ9BH4BsEczAF2FY+w5L0JYtgj4A2Yo4juMqq+7yyy/XT37yE51++un5GlNOxWIxRaNRNTQ0qLi42O/hoI2g9RVJJoglx7kWr2aSlLD0GP9JyEWAG4aftY6E/fxhHzf3b9fBzAUXXKBnnnlGZWVluuKKKzRt2jT169cvqwHnU9iDGX6BmYH3oXP5DPrCHlCG/fxhp7wGM5K0e/duLV68WIsWLVJNTY1Gjx6tK6+8UpMmTVK3bt0yHng+hDmY4RcYbJOPoC9V48JczvqYLOznD3vlPZg50LZt2/Twww/rT3/6k77zne/o0ksv1bXXXqtjjjkmm6fNmbAGM/wCA1qCo1Hz16Qs/Y5Xzm2YeZaVM2WdBX9BP38Em5v7d1YJwHV1dVq1apVWrVqlgoICnXvuuXr11VdVXl6uu+++O5unbnX00UcrEom0+7juuuty8vxBFPQmZEC6gty4sLKmTqPmr9GUBzfqhiXVmvLgRo2avyahW3KQzx84kOtg5uuvv9bSpUt13nnnqX///vrLX/6iG2+8UXV1dfrzn/+sVatW6dFHH9Wvf/3rnAxw8+bNqqura/1YvXq1JOnCCy/MyfMHEb/A4KemZkdVtbv1dPWHqqrd7WvQHNQeNulu/xDU8wfact00r7S0VM3NzZoyZYo2bdqkoUOHtjtm3LhxOuSQQ3IwPOnwww9P+PzOO+/UwIEDdcYZZ+Tk+YOIX2Dwi2l5WkHsYeNmo9Ygnj+QjOtg5u6779aFF16ooqLUP/yHHnqoduzYkdXAkvnqq6+0ePFizZgxQ5FI8vXdxsZGNTY2tn4ei8VyPg7T8QsMXmibr/HpvkZd99g2o3YID2K3aTczr0E8fyAZ18HM1KlT8zGOtDz11FP67LPPdPnll6c8Zt68eZo7d653gzIQv8CQb8lmYLpElNZsgZeJpvHGhdcs3qqIkvewsa1xoZuZ1yCeP5CMVR2AH3roIZ1zzjnq27dvymNmzZqlhoaG1o+dO3d6OEIz0HkW+ZQqX6Oj1Bg/87SC1m3a7cxr0M4fSMaajSbfe+89Pffcc3ryySc7PK6wsFCFhYUejcpc8V9gbf96LqHPDLLQUb5GOvzK0wrSTsuZzLwG6fyBZKwJZh555BH16dNHEyZM8Hso1uAXGHKts3yNzviZp1XQJaIRA3q1Xg/xnBLbrodMl47YaRpBZkUw09zcrEceeUTTpk1T165WDNkY/AJDLmU6s2JCnpZplVbZdDtm5hVIZEVk8Nxzz+n999/XT37yE7+HAoRaJjMrJuRppeqI7VelVS4CK2Zegb/JejsD04V1OwPYwbYNKOPt8VPla0gtVU0HJgP7vR+YaS392WoESI+b+7cVMzNAEJm27JGOdPI17psyXIf26G5MgOamL0u+l2TdNLwzOagFTGNVaTYQFOm2ozdRZ6W+555QqoqBvTVpaD9VDOzt+03ZpI7YbDUC5AczM4DHgvDXuU35GiZ1xDYpsAKChGAG8JhJyx7ZsKVSzqSO2CYFVkCQsMwEeIy/zr1lUkfseGCV6n+KqCVviq1GAHcIZgCP8de593LZ0r+p2VFV7W49Xf2hqmp3q6mjfRzaMCmwAoKEZSbAYyYte4RJLvJ8ctUfhoZ3QG7RZwbwQbyaSUpe3kyvEfPkuj+MbT2GAK+5uX+zzAT4gJ2M7dJZBZrUUoHmdsnJpBJ2wGYsMwE+sam8OeyCUoEGBBXBDOAjW8qbw44KNMBsLDMBQCeoQAPMxswMYDGSSL1BBRpgNoIZwFI2blRpq3Q22KQ/DOAflpkAC9m8UaWtqEADzMXMDGCZIGxUaSsq0AAzEcwAsiv3hDJhf1GBBpiHYAahZ1vuSbrlv/Wx/aqq3W1FgAYA2SCYQailalEfzz0xMRci3fLf2/7vq9qz7+vWz00O0AAgGyQAI7Ty0aLeC/Ey4c7mWA4MZKTwJQdns7s1ALswM4PQsjX3pLMy4VS37DAlB9u2dAggO8zMILRsblGfqky4V4/uHX7fgQFaUFG2DoQPMzMILdtb1CcrE65v+FI3/sfLnX5vrgM0U6rBKFsHwolgBqEVhBb1bcuEq2p3p/V9uQzQTFrSsXXpEEB2WGZCaMVzTyS1S6a1tUV9Z8nBEbUEGrkK0Exb0rF56RBA5ghmEGpBa1HvZYDmZzVYqkol25cOAWSGZSaEXtBa1McDtLZLPyU5Xvrxa0mno2WtMeUl1i8dAnCPYAZQ8FrUexGg+bGkk06TQ3a3BsKHZSb4hqZm+RUP0CYN7aeKgb1zfgP3ekkn3WWtMeUlgVo6BNA5ZmbgC5MqYJAZr6vB3Cxrmb50aEopOxAUBDPwnI37IaG9zjoRS7ld0nG7rGXq0iGBPJB7LDPBU7buh4TkvKwGC0Klkmml7EBQGD8z8+GHH2rmzJlauXKlvvzySx177LF66KGHdNJJJ/k9NGSApmbB49WSju1NDulODOSP0cHMp59+qtNOO01nnnmmVq5cqT59+qi2tlaHHHKI30NDhmhqlj9+5mF4saTj9bJWrhHIA/ljdDAzf/58lZWV6ZFHHml97Oijj/ZvQMhaEJYKTBSWPAyveujkA4E8kD9GBzPLly/XuHHjdOGFF2rdunXq16+frr32Wl111VUpv6exsVGNjY2tn8diMS+GijQFYanAtCqUsCVUm16plAqBPJA/Rgcz77zzjhYsWKAZM2bo1ltv1aZNm3T99dersLBQl112WdLvmTdvnubOnevxSJEum5cK3M5+eBH4hDUPw9RKpY7YHsgDJos4jmNs2Uj37t118skn64UXXmh97Prrr9fmzZtVVVWV9HuSzcyUlZWpoaFBxcXFeR8z0mPbskiq2Y94eNB29sOr86uq3a0pD27s9LjHrxpp3c0/iOI/R1LyQD5os2hANmKxmKLRaFr3b6NnZkpLS1VeXp7w2HHHHaelS5em/J7CwkIVFhbme2jIkk1LBW5nP7xc9iEPwy425/wAJjM6mDnttNP0xhtvJDz25ptvqn///j6NyDsm5mbkmi1LBW6qUEYM6OXpsg95GPaxKZAHbGF0MHPjjTfq1FNP1R133KHJkydr06ZNWrhwoRYuXOj30PLKtiUYr3kd6LmZ/fC6/DbMeRg2B/y2BPKALYwOZk455RQtW7ZMs2bN0q9//WsNGDBA99xzjy655BK/h5Y3YatMccuPQC/dWY23Pt6rtz7+PK1jc7XsY3NCdTYI+AEcyOgE4Fxwk0Dkt6ZmR6Pmr0n5l338r+wNM88K3M0pHW6TcHMl/r6kmv3IRK4TcsN0c/fr5wCAtwKTABw2dAhNzc8S5I5mP9zK17JPWPIwMv05sHlJCkDnCGYMQmVKan4HeqmqUNzI97JPGPIwMvk5CNOsFRBW7JptECpTUjMh0Bs/pFQbZp6lx68aqZ+d+T3X35+PnaTDxu3PAbtUA+HAzIxBwlyZcqBkSwKmBHrx2Y90b6o/O3OgjjmiJ0sbOeLm5yCs3ZGBMCKYMUhYK1MOlGpJ4FcTyo0K9NK9qZ72vcMDv/TjJTcBv99LkwC8wzKTYeK5GSXRxJtlGJYoOloSuO6xrfr7E1vOvW0o50egF7+ppvrfImoJwoI+i+a1eMAvdf5zYMLSZCpNzY6qanfr6eoPVVW7W03NgS4qBfKOmRkDhaUy5UDpLAksf7lO9188TLc985rvreCZRfNPulsCmLI02RYJyUDu0WcGRnCzYWJ8CcGEQM/WG1MQSpU7O4fO+gP50beJHjlA+ugzA9f8vrm5WRIwqQTZxlk0WwOwtjr7OTBt9oyEZCB/CGZgxM3N1CWBdJgUXHUmbNtlmLRLNQnJQP4QzIScKTc3ytLzL6wzA6bMnpmckAzYjmqmEIpXUizb9qFuXfZKypub1HJz86LSwk2VCjLjZmYgaOKzZ5OG9lPFwN6+/BzZPPsImI6ZmZBJtqSUitfT3iYtCQQRMwP+YvYRyB+CmRBJtaTUGS9vbqYsCQQRMwP+Mi0hGQgSlplCoqN8ic54fXMzYUkgiGj0578wN8UE8omZmZDoLF8iGaa9g4WZATMw+wjkHsGMh/zs5eJ2qYibWzCRl2QGm8r5ARsQzHjE714ubpeKuLkFl98zA343aAQQPAQzHjChl0s6lRS9enTXLyccp5LoQRndYIJ4kwriOUn+zQz4HdQDCCb2Zsqz+P4wqfJVvNwfJh5UScnzJbIJqoJ4kwriOfmJfYkAuOHm/k01U56Z1KgsX5UU8ZtU2/OMzzxV1tRlPGa/BPGc/NRZ92HJuwaNAIKHZaY8M61RWa7zJYLYIj+I5+Q39iUCkE8EM3lmYqOyXOZLBPEmFcRz8ptpQT2AYCGYybOgtzBP9+bz17f/X7uZIFOTa7nx5p6JQT2A4CCYybOgNypL9+Zz3/O1rf8ujRbp708s1fKX64xMruXGm3tBD+oB+IsEYA8EuYV5Zy3yk6lr2K8/rt9hbHItbf9zj13RAeQTpdkeMnVZJVupSr4z4WWpekdyUcYe1Pc7G5S7A0iXm/s3wQzS1tHNOdlNKhuPXzXS9+TabG683LRTI8gDkA6CmQMQzORGOjfnA29Sb338ue57/u2M/7/fXzRUk4b2y3rc2crkxktzOADInpv7NwnAOZbrvzpN+Cs23e0YDiz5rqrdnVUwY0pyrdsydnrUAID3CGZyKNdLCyYsVWR6c+6seiUV26ta6FEDAN6jmilHct3+3pR2+plux9BR9UoqQahqoUcNAHjP6GBmzpw5ikQiCR8lJSV+D6udXO87Y9I+NtncnFOVpJdGi3T16QNUGsBSdXrUAID3jF9mOv744/Xcc8+1fl5QUODjaJLL9dKCSUsV2d6cO9oL6ubxx/meD5RrNIcDAO8ZH8x07drVyNmYA+V6acGkpYpc3JxTJdHmco8oUwS94zMAmMjoZSZJeuutt9S3b18NGDBAF110kd55550Oj29sbFQsFkv4yLdcLy2YtFRB51b3vOr43NTsqKp2t56u/lBVtbs9WXYEABMZ3Wdm5cqV+uKLL3Tsscfq448/1u23367XX39dr776qnr3Tv4X/Zw5czR37tx2j+ezz0xTs6NR89d0OnuRblfbXD9fLphQWWWbA8vqD+tRKEWkTz5vzMmSGu8HgKALbNO8ffv2aeDAgbr55ps1Y8aMpMc0NjaqsbGx9fNYLKaysrK8N83LRfv7fD5fLnjd88aEHju5kI+SfZryAQi6wAYzkjRmzBh973vf04IFC9I63ssOwEHsM+OXoJx7rgOP+KxdqgRxU/a2AoBsBbYDcGNjo1577TX98Ic/9HsoSXVUuWPC89ki3Y7DpstHN2CTKt0AwBRGBzO/+MUvNHHiRB111FHatWuXbr/9dsViMU2bNs3voaWU6wqdIFb8dCRI2wG4DTzSWVYzqdINAExhdDDzwQcfaMqUKfrkk090+OGHa+TIkdq4caP69+/v99CQJ0GaeXATeKS7rGZSpRsAmMLoYGbJkiV+DwEeC9LMQ7oBxbuf7NM9z72V1rIaTfkAoD3j+8zAHrnoexKkmYd44JFqMSyiltmXxze9n/bWFfT9AYD2CGYslK9madk8b2VNnUbNX6MpD27UDUuqNeXBjRo1f43rDTHTDQBsmHlIJ/C46JSjVB9rVCrJNvL0qikfANjC6GWmMHDbS6Wypk5zlr+acAMsKS7UnL8/PqubWDal0LmsPgradgDxwKPta1vy7Wvb+E1zWs/TdlktrJVuAJCMdX1m3PKyz4xb6QYQ8YBn9fZ6PfzXd1M+3wMZ/lWeTS+UfPU9CUqfmbhUQWtV7W5NeXBjp9//+FUjjU94BoBcCmyfmSBJdzYj2U09lVuefMV1yXK2pdD5qj4K2sxDqhJ7EnoBIHvkzPigswBCagkg/ut/WwKedAIZSfrsi6+1sXa3q7G4CUaSyWf1UTwAmDS0nyoG9rY2kOkICb0AkD2CGR+kG0D88umapAFPR6re+cTV8dkGI0GqPvILCb0AkB2WmTKUzSaI6QYQe/Z9lcHI3P0Fn20wwjJJbgRtWQ0AvEQwk4Fsk1PzOUvhNkk022AkaNVHfgrb1hUAkCssM7kUT9xtu0wUT9xNp69KOr1UevXo5npshx7cTSO/6+5mmIucDZZJAAB+ojTbhVyWIceDIin5bMb9Fw/Tbc+8lnLGJJlMS7Pj48m2FDqbpTcAAA5EaXae5LIMubNmauOHlKpLl0jS5Zu2ctF/JRc5GyyTAAD8QDDjQq7LkDsLIFIGPMWFmjLiKB19WI+czoAQjAAAbEQw44Lbyp90ll06CyCocgEAoGMEMy64qfzJZTt+ZkwAAEiNaiYX0q38Wb29PuuKJwAAkB6CGZc6K0MeU16S1lYFTc2BLiIDAMAzLDNloKM8lqra3XnZeBEAACRHMJOhVHks+dx4EQAAtEcwk2NsvBg+NAsEAH8RzOQYGy+GSy6r1gAAmSEBOMdysdcR7JCLfboAANkjmMkDNl4MvqZmh6o1ADAEy0x5QufeYMvlPl0AgOwQzOQRnXuDi6o1ADAHy0xABqhaAwBzEMwAGYhXraVaNIyopaqJqjUAyD+CGSADVK0BgDkIZoAMUbUGAGYgARjIAlVrAOA/ghkgS1StAYC/WGYCAABWY2Ym5NgkEQBgO6tmZubNm6dIJKLp06f7PZRAqKyp06j5azTlwY26YUm1pjy4UaPmr2FPIQCAVawJZjZv3qyFCxfqhBNO8HsogcAmiQCAoLAimPn88891ySWX6MEHH9Shhx7a4bGNjY2KxWIJH0jEJokAgCCxIpi57rrrNGHCBI0ePbrTY+fNm6doNNr6UVZW5sEI7eJmk0QAAExnfALwkiVLtHXrVm3evDmt42fNmqUZM2a0fh6LxQho2rBhk0QSkwEA6TI6mNm5c6duuOEGrVq1SkVF6W3YV1hYqMLCwjyPzG6mb5JYWVOnuSu2J8welUaLNHtiOV11AQDtGL3M9NJLL2nXrl066aST1LVrV3Xt2lXr1q3Tvffeq65du6qpqcnvIVrJ5E0SSUwGALhldDBz9tln65VXXlF1dXXrx8knn6xLLrlE1dXVKigo8HuIVjJ1k0QSkwEAmTB6malnz54aMmRIwmM9evRQ79692z0Od+KbJLZdzinxcTnHTWIy2wcAAOKMDmaQX6ZtkmhDYjIAwDzWBTNr1671ewiBYtImiaYnJgMAzGR0zgzCxeTEZACAuQhmYAxTE5MBAGYjmIFR4onJJdHEpaSSaJEWXDqcPjMAgHasy5lB8JmWmAwAMBvBDIxkUmIyAMBsLDMBAACrEcwAAACrEcwAAACrEcwAAACrEcwAAACrUc0UME3NDiXNAIBQIZgJkMqauna7YJf6uAs2AABeYJkpICpr6nTN4q0JgYwk1Tfs1zWLt6qyps6nkQEAkF8EMwHQ1Oxo7ortcpJ8Lf7Y3BXb1dSc7AgAAOxGMBMAm3bsaTcjcyBHUl3Dfm3asce7QQEA4BFyZnyWi4TdXXtTBzKZHAcAgE0IZnyUq4TdPj2LOj/IxXEAANiEZSaf5DJhd8SAXiqNFinVfE5ELUHSiAG9Mh8wAACGIpjxQa4Tdgu6RDR7YrkktQto4p/PnlhOvxkAQCARzPggHwm744eUasGlw1USTVxKKokWacGlw+kzAwAILHJmfJCvhN3xQ0o1prwkrx2A6TAMADANwYwP8pmwW9AlooqBvV1/XzroMAwAMBHLTD6wMWGXDsMAAFMRzPjAtoRdOgwDAExGMOMTmxJ26TAMADAZOTM+8iJhNxfoMAwAMBnBjM/ymbCbK3QYBgCYjGUmdMrGhGUAQHgQzKBTtiUsAwDChWAGabEpYRkAEC7kzCBttiQsAwDChWAGrtiQsAwACBejl5kWLFigE044QcXFxSouLlZFRYVWrlzp97AAAIBBjA5mjjzySN15553asmWLtmzZorPOOkuTJk3Sq6++6vfQAACAISKO41jVg75Xr176l3/5F1155ZVJv97Y2KjGxsbWz2OxmMrKytTQ0KDi4mKvhgkAALIQi8UUjUbTun8bPTNzoKamJi1ZskT79u1TRUVFyuPmzZunaDTa+lFWVubhKAEAgNeMn5l55ZVXVFFRof379+s73/mOHnvsMZ177rkpj2dmBgAA+7mZmTG+mmnQoEGqrq7WZ599pqVLl2ratGlat26dysvLkx5fWFiowsJCj0cJAAD8YvzMTFujR4/WwIED9cc//jGt491EdgAAwAyBzJmJcxwnYRkJAACEm9HLTLfeeqvOOecclZWVae/evVqyZInWrl2ryspKv4cGAAAMYXQw8/HHH2vq1Kmqq6tTNBrVCSecoMrKSo0ZMybt54ivosVisXwNEwAA5Fj8vp1ONox1OTNuffDBB5RnAwBgqZ07d+rII4/s8JjABzPNzc366KOP1LNnT0Ui2W+IGC/13rlzZ2ATisNwjlI4zjMM5yiF4zzDcI5SOM4zDOcoZX+ejuNo79696tu3r7p06TjF1+hlplzo0qVLpxFdJuL7RQVZGM5RCsd5huEcpXCcZxjOUQrHeYbhHKXszjMajaZ1nHXVTAAAAAcimAEAAFYjmHGpsLBQs2fPDnSX4TCcoxSO8wzDOUrhOM8wnKMUjvMMwzlK3p5n4BOAAQBAsDEzAwAArEYwAwAArEYwAwAArEYwAwAArBb6YObf/u3fNGDAABUVFemkk07S//zP/3R4/Lp163TSSSepqKhI3/3ud/XAAw+0O2bp0qUqLy9XYWGhysvLtWzZsnwNP21uzvPJJ5/UmDFjdPjhh6u4uFgVFRV69tlnE45ZtGiRIpFIu4/9+/fn+1RScnOOa9euTTr+119/PeE429/Lyy+/POl5Hn/88a3HmPZerl+/XhMnTlTfvn0ViUT01FNPdfo9tl2Xbs/R1mvS7XnaeF26PUcbr8l58+bplFNOUc+ePdWnTx+df/75euONNzr9Pi+vy1AHM0888YSmT5+uf/qnf9K2bdv0wx/+UOecc47ef//9pMfv2LFD5557rn74wx9q27ZtuvXWW3X99ddr6dKlrcdUVVXpxz/+saZOnaqXX35ZU6dO1eTJk/Xiiy96dVrtuD3P9evXa8yYMfqv//ovvfTSSzrzzDM1ceJEbdu2LeG44uJi1dXVJXwUFRV5cUrtuD3HuDfeeCNh/Mccc0zr14LwXv7+979POL+dO3eqV69euvDCCxOOM+m93Ldvn0488UTdd999aR1v43Xp9hxtvCYl9+cZZ9N16fYcbbwm161bp+uuu04bN27U6tWr9c0332js2LHat29fyu/x/Lp0QmzEiBHOP/7jPyY8NnjwYOeWW25JevzNN9/sDB48OOGxq6++2hk5cmTr55MnT3bGjx+fcMy4ceOciy66KEejds/teSZTXl7uzJ07t/XzRx55xIlGo7kaYtbcnuPzzz/vSHI+/fTTlM8ZxPdy2bJlTiQScd59993Wx0x7Lw8kyVm2bFmHx9h6Xcalc47JmH5NtpXOedp6XcZl8l7adk06juPs2rXLkeSsW7cu5TFeX5ehnZn56quv9NJLL2ns2LEJj48dO1YvvPBC0u+pqqpqd/y4ceO0ZcsWff311x0ek+o58y2T82yrublZe/fuVa9evRIe//zzz9W/f38deeSROu+889r9leiVbM5x2LBhKi0t1dlnn63nn38+4WtBfC8feughjR49Wv3790943JT3MhM2XpfZMv2azJZN12W2bLwmGxoaJKndz9+BvL4uQxvMfPLJJ2pqatIRRxyR8PgRRxyh+vr6pN9TX1+f9PhvvvlGn3zySYfHpHrOfMvkPNv63e9+p3379mny5Mmtjw0ePFiLFi3S8uXL9fjjj6uoqEinnXaa3nrrrZyOPx2ZnGNpaakWLlyopUuX6sknn9SgQYN09tlna/369a3HBO29rKur08qVK/XTn/404XGT3stM2HhdZsv0azJTNl6X2bDxmnQcRzNmzNCoUaM0ZMiQlMd5fV0GftfszkQikYTPHcdp91hnx7d93O1zeiHTMT3++OOaM2eOnn76afXp06f18ZEjR2rkyJGtn5922mkaPny4/vCHP+jee+/N3cBdcHOOgwYN0qBBg1o/r6io0M6dO/Wv//qvOv300zN6Tq9kOqZFixbpkEMO0fnnn5/wuInvpVu2XpeZsOmadMvm6zITNl6TP/vZz/S///u/2rBhQ6fHenldhnZm5rDDDlNBQUG7CHDXrl3tIsW4kpKSpMd37dpVvXv37vCYVM+Zb5mcZ9wTTzyhK6+8Uv/xH/+h0aNHd3hsly5ddMopp/jyl0M253igkSNHJow/SO+l4zh6+OGHNXXqVHXv3r3DY/18LzNh43WZKVuuyVwy/brMlI3X5M9//nMtX75czz//vI488sgOj/X6ugxtMNO9e3eddNJJWr16dcLjq1ev1qmnnpr0eyoqKtodv2rVKp188snq1q1bh8ekes58y+Q8pZa//i6//HI99thjmjBhQqf/j+M4qq6uVmlpadZjdivTc2xr27ZtCeMPynsptVQjvP3227ryyis7/X/8fC8zYeN1mQmbrslcMv26zJRN16TjOPrZz36mJ598UmvWrNGAAQM6/R7Pr0vXKcMBsmTJEqdbt27OQw895Gzfvt2ZPn2606NHj9as8ltuucWZOnVq6/HvvPOOc/DBBzs33nijs337duehhx5yunXr5vznf/5n6zF//etfnYKCAufOO+90XnvtNefOO+90unbt6mzcuNHz84tze56PPfaY07VrV+f+++936urqWj8+++yz1mPmzJnjVFZWOrW1tc62bducK664wunatavz4osven5+juP+HO+++25n2bJlzptvvunU1NQ4t9xyiyPJWbp0aesxQXgv4y699FLnBz/4QdLnNO293Lt3r7Nt2zZn27ZtjiTnrrvucrZt2+a89957juME47p0e442XpOO4/48bbwu3Z5jnE3X5DXXXONEo1Fn7dq1CT9/X3zxResxfl+XoQ5mHMdx7r//fqd///5O9+7dneHDhyeUmk2bNs0544wzEo5fu3atM2zYMKd79+7O0Ucf7SxYsKDdc/7lL39xBg0a5HTr1s0ZPHhwwoXoFzfnecYZZziS2n1Mmzat9Zjp06c7Rx11lNO9e3fn8MMPd8aOHeu88MILHp5Re27Ocf78+c7AgQOdoqIi59BDD3VGjRrlPPPMM+2e0/b30nEc57PPPnMOOuggZ+HChUmfz7T3Ml6em+rnLwjXpdtztPWadHueNl6Xmfy82nZNJjs/Sc4jjzzSeozf12Xk24ECAABYKbQ5MwAAIBgIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgBYpampSaeeeqouuOCChMcbGhpUVlamX/7ylz6NDIBf2M4AgHXeeustDR06VAsXLtQll1wiSbrsssv08ssva/PmzerevbvPIwTgJYIZAFa69957NWfOHNXU1Gjz5s268MILtWnTJg0dOtTvoQHwGMEMACs5jqOzzjpLBQUFeuWVV/Tzn/+cJSYgpAhmAFjr9ddf13HHHafvf//72rp1q7p27er3kAD4gARgANZ6+OGHdfDBB2vHjh364IMP/B4OAJ8wMwPASlVVVTr99NO1cuVK/fa3v1VTU5Oee+45RSIRv4cGwGPMzACwzpdffqlp06bp6quv1ujRo/WnP/1Jmzdv1h//+Ee/hwbABwQzAKxzyy23qLm5WfPnz5ckHXXUUfrd736nm266Se+++66/gwPgOZaZAFhl3bp1Ovvss7V27VqNGjUq4Wvjxo3TN998w3ITEDIEMwAAwGosMwEAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKv9f5fEcOOdL6TuAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSIElEQVR4nO3de3hTVdo28DspPQBtUoq0abCWWpBSzohlWkE8FFvl5aCjIANSZhBnEAcZZAbwGykVFHA8MKgvKioHURg8gu9okbODFIsCTmvVkVIBodARpKFgKyT7+yMkkDZps5Od7NP9u65c0J2VdO0k7X661rOeZRAEQQARERGRShnl7gARERFRMBjMEBERkaoxmCEiIiJVYzBDREREqsZghoiIiFSNwQwRERGpGoMZIiIiUrVWcncg1BwOB44dO4a4uDgYDAa5u0NERER+EAQBZ86cgdVqhdHY/NiL5oOZY8eOISUlRe5uEBERUQCOHDmCK6+8stk2mg9m4uLiADhfDJPJJHNviIiIyB82mw0pKSnu63hzNB/MuKaWTCYTgxkiIiKV8SdFhAnAREREpGoMZoiIiEjVGMwQERGRqmk+Z8Zfdrsd58+fl7sbJJPIyEhERETI3Q0iIgqA7oMZQRBw/PhxnD59Wu6ukMzi4+NhsVhYj4iISGV0H8y4ApnExES0adOGFzIdEgQB586dQ01NDQAgOTlZ5h4REZEYug5m7Ha7O5Bp37693N0hGbVu3RoAUFNTg8TERE45ERGpiK4TgF05Mm3atJG5J6QErs8Bc6eIiNRF18GMC6eWCODngIhIrXQ9zURERBQyDjtwaBdQdwKITQJScwAjp7BDgcEMERGR1Co2AMUzAduxS8dMViB/EZA5XL5+aRSnmQgA0KlTJyxevNjv9tu3b4fBYOCSdiKixio2AOvGewYyAGCrdh6v2CBPvzRM1mDmk08+wbBhw2C1WmEwGPD+++973P/uu+/i1ltvRfv27WEwGLB//35Z+tkSu0NASeVJrN9/FCWVJ2F3CCH7XgaDodnb3LlzA3rePXv24P777/e7fU5ODqqrq2E2mwP6fmIsW7YMvXv3RmxsLOLj49G3b18sWLDA78d///33iv78EJGGOOzOERl4uw5cPFY8y9mOJCPrNNPZs2fRu3dv/O53v8Odd97p9f6BAwdi1KhRmDRpkgw9bFlxeTWKPqhAdW29+1iyOQaFwzKR30P6eiXV1dXu///jH//AnDlz8O2337qPxcbGuv8vCALsdjtatWr5be7QoYOofkRFRcFisYh6TCBee+01TJs2DUuWLMHgwYPR0NCAf//73ygvLw/59yYiEu3QrqYjMh4EwHbU2S5tUNi6pXWyjszcdtttmD9/Pu644w6v9997772YM2cOcnNzw9wz/xSXV2Py6r0egQwAHK+tx+TVe1FcXu3jkYGzWCzum9lshsFgcH/9zTffIC4uDh999BGuvfZaREdHY+fOnaisrMSIESOQlJSE2NhYXHfdddi8ebPH8zaeZjIYDHjllVdwxx13oE2bNujSpQs2bLg0NNp4mmnFihWIj4/Hxo0b0a1bN8TGxiI/P98j+Lpw4QKmTp2K+Ph4tG/fHjNnzkRBQQFGjhzp83w3bNiAUaNGYeLEiejcuTO6d++OMWPG4PHHH/do98orr6Bbt26IiYlBRkYG/vd//9d9X1paGgCgb9++MBgMuPHGG0W+6kREfqo7IW078ovmcmYaGhpgs9k8bqFgdwgo+qCiuYFEFH1QEdIpJ19mzZqFhQsX4uuvv0avXr1QV1eH22+/HVu2bMG+ffuQn5+PYcOG4fDhw80+T1FREUaNGoV///vfuP322zF27FicOnXKZ/tz587hqaeewuuvv45PPvkEhw8fxowZM9z3L1q0CG+88QaWL1+OTz/9FDabrcnUYmMWiwW7d+/GoUOHfLZ54403MGfOHDz++OP4+uuv8cQTT+DRRx/FypUrAQClpaUAgM2bN6O6uhrvvvtus9+TiChgsUnStiO/aC6YWbBgAcxms/uWkpISku9TWnWqyYjM5QQA1bX1KK3yffEPlcceewxDhgxBeno6EhIS0Lt3b/z+979Hjx490KVLF8ybNw/p6ekeIy3eTJgwAWPGjEHnzp3xxBNPoK6uzh0YeHP+/Hm8+OKL6N+/P/r164cHH3wQW7Zscd//3HPPYfbs2bjjjjuQkZGB559/HvHx8c32obCwEPHx8ejUqRO6du2KCRMmYN26dXA4HB5tnn76adx5551IS0vDnXfeiT/96U946aWXAFyaQmvfvj0sFgsSEhJaegmJiAKTmuNctQRfdasMgKmjsx1JRnPBzOzZs1FbW+u+HTlyJCTfp+aM70AmkHZS6t+/v8fXdXV1mDFjBrp164b4+HjExsbi66+/bnFkplevXu7/t23bFiaTyb1/kTdt2rRBenq6++vk5GR3+9raWpw4cQJZWVnu+yMiInDttdc224fk5GSUlJSgrKwMDz30EC5cuICCggLk5+fD4XDg7NmzqKysxMSJExEbG+u+zZ8/H5WVlc0+NxGR5IwRzuXXAJoGNBe/zl/IejMS01ydmejoaERHR4f8+yTGxUjaTkpt27b1+HrGjBnYtGkTnnrqKXTu3BmtW7fGXXfdhV9++aXZ54mMjPT42mAweIyI+NNeEKSZZuvRowd69OiBBx54AH/4wx8waNAg7NixA5mZmQCcK54GDBjg8Rjur0REssgcDoxa5aPOzELWmQkBzQUz4ZKVloBkcwyO19Z7zZsxALCYY5CVJv+UxqeffooJEya4E63r6urw/fffh7UPZrMZSUlJ2LNnD2644QYAzo0+9+7diz59+oh6LlcAc/bsWSQlJcFqteLgwYMYO3as1/ZRUVHu70dEFBaZw4GMoawAHCayBjN1dXU4cOCA++uqqirs378fCQkJuOqqq3Dq1CkcPnwYx445I1vXEmTX6h05RRgNKByWicmr98IAz4oCroHFwmGZiDDKv99Ply5d8O6772LYsGEwGAx49NFHmx1hCZU//vGPWLBgATp37oyMjAw899xz+Omnn5rdE2ny5MmwWq24+eabceWVV6K6uhrz589Hhw4dkJ2dDcCZqDx16lSYzWbk5+ejoaEBn3/+OX766SdMnz4diYmJaN26NYqLi3HllVciJiYmLPVxiEjnjBFcfh0msubMfP755+jbty/69u0LAJg+fTr69u2LOXPmAHAuy+3bty+GDh0KALjnnnvQt29fvPjii7L1+XL5PZKxdFw/WMyeU0kWcwyWjusXkjozgXjmmWfQrl075OTkYNiwYcjLy0O/fv3C3o+ZM2dizJgxGD9+PLKzsxEbG4u8vDzExPieisvNzcXu3btx991345prrsGvf/1rxMTEYMuWLWjfvj0A4L777sMrr7yC5cuXo2fPnhg8eDBWrFjhXpLdqlUrLFmyBC+99BKsVitGjBgRlvMlIqLwMAhSJTUolM1mg9lsRm1tLUwmk8d99fX1qKqqQlpaWrMX1JbYHQJKq06h5kw9EuOcU0tKGJFROofDgW7dumHUqFGYN2+e3N2R7PNARETBa+763RhzZiQQYTQgO7293N1QvEOHDuHjjz92V/J9/vnnUVVVhd/85jdyd42IiFSMwQyFjdFoxIoVKzBjxgwIgoAePXpg8+bN6Natm9xdIyIikZQ0K8FghsImJSUFn376qdzdICKiIIV7X8KWaK5oHhEREYWOHPsStoTBDBEREflFqfsSMpghIiIivyh1X0IGM0REROQXpe5LyGCGiIiI/KLUfQkZzFCz5s6dK3rvJCIi0ibXvoS+FmAb4FzVFO59CRnMqIzBYGj2Nnfu3KCe+/333/c4NmPGDGzZsiW4Tvvh3LlzmD17NtLT0xETE4MOHTpg8ODBWL9+vd/PsWLFCsTHx4euk0REOufalxBAk4BGzn0JWWdGCg572HZGra6+tOTtH//4B+bMmePegBMAYmNjJf1+sbGxkj+nN3/4wx/w2Wef4bnnnkNmZiZOnjyJXbt24eTJkyH/3kRE5D/XvoSN68xYZKwzA0HjamtrBQBCbW1tk/t+/vlnoaKiQvj5558D/wZfrReEpzMEodB06fZ0hvN4iC1fvlwwm80ex5YtWyZkZGQI0dHRQteuXYUXXnjBfV9DQ4MwZcoUwWKxCNHR0cJVV10lPPHEE4IgCEJqaqoAZyK6AEBITU0VBEEQCgsLhd69e7ufo6CgQBgxYoTwt7/9TbBYLEJCQoLwwAMPCL/88ou7zbFjx4Tbb79diImJETp16iS88cYbQmpqqvDss8/6PBez2SysWLGi2fOtr68XHn74YcFqtQpt2rQRsrKyhG3btgmCIAjbtm3z6D8AobCwsMXX8HKSfB6IiHTigt0h7Drwo/D+vh+EXQd+FC7YHZI+f3PX78Y4MhOMig3AuvFA4xX3tmrn8VGrgMzhYevOG2+8gTlz5uD5559H3759sW/fPkyaNAlt27ZFQUEBlixZgg0bNmDdunW46qqrcOTIERw5cgQAsGfPHiQmJmL58uXIz89HRITvkaVt27YhOTkZ27Ztw4EDBzB69Gj06dMHkyZNAgCMHz8eP/74I7Zv347IyEhMnz4dNTU1zfbdYrHgww8/xJ133om4uDivbR588EFUVFRg7dq1sFqteO+995Cfn4+ysjLk5ORg8eLFHiNV4RhRIiLSKyXtS8hgJlAOO1A8E00CGeDiMQNQPAvIGBqyKafGCgsL8fTTT+POO+8EAKSlpaGiogIvvfQSCgoKcPjwYXTp0gUDBw6EwWBAamqq+7EdOnQAAMTHx8NisTT7fdq1a4fnn38eERERyMjIwNChQ7FlyxZMmjQJ33zzDTZv3ow9e/agf//+AIBXXnkFXbp0afY5X375ZYwdOxbt27dH7969MXDgQNx11124/vrrAQCHDx/G8uXLcfjwYVitVgDOfJ7i4mIsX74cTzzxBMxmMwwGQ4v9JyIibWECcKAO7QJsx5ppIAC2o852YXD27FlUVlZi4sSJ7jyX2NhYzJ8/H5WVlQCACRMmYP/+/ejatSumTp2Kjz/+OKDv1b17d4+Rm+TkZPfIy7fffotWrVqhX79+7vs7d+6Mdu3aNfucN9xwAw4ePIgtW7bgrrvuwldffYVBgwZh3rx5AICysjLY7XZcc801Hue3Y8cO9/kREZE+cWQmUHUnpG0XpLq6OgDAsmXLMGDAAI/7XIFHv379UFVVhY8++gibN2/GqFGjkJubi7ffflvU94qMjPT42mAwwOFwBNH7S887aNAgDBo0CDNnzsT8+fPx2GOPYebMmairq0NERAS++OKLJlNgnE4iItI3BjOBik2Stl2QkpKSYLVacfDgQYwdO9ZnO5PJhNGjR2P06NG46667kJ+fj1OnTiEhIQGRkZGw2+1B9aNr1664cOEC9u3bh2uvvRYAcODAAfz000+inyszMxMXLlxAfX09+vbtC7vdjpqaGgwaNMhr+6ioqKD7T0RE6sNgJlCpOYDJ6kz29Zo3Y3Den5oTti4VFRVh6tSpMJvNyM/PR0NDAz7//HP89NNPmD59Op555hkkJyejb9++MBqNeOutt2CxWNy1WTp16oQtW7bg+uuvR3R0dItTQ95kZGQgNzcX999/P5YuXYrIyEg8/PDDaN26NQwG33UHbrzxRowZMwb9+/dH+/btUVFRgUceeQQ33XQTTCYTTCYTxo4di/Hjx+Ppp59G37598d///hdbtmxBr169MHToUHTq1Al1dXXYsmULevfujTZt2qBNmzaBvpxERKQSzJkJlDECyF908QsfpYPyF4Yt+RcA7rvvPrzyyitYvnw5evbsicGDB2PFihVIS0sDAMTFxeHJJ59E//79cd111+H777/Hhx9+CKPR+TF4+umnsWnTJqSkpKBv374B92PVqlVISkrCDTfcgDvuuAOTJk1CXFwcYmJ8l7fOy8vDypUrceutt6Jbt2744x//iLy8PKxbt87dZvny5Rg/fjwefvhhdO3aFSNHjsSePXtw1VVXAQBycnLwhz/8AaNHj0aHDh3w5JNPBnwORESkHgZBEMK7T3eY2Ww2mM1m1NbWwmQyedxXX1+PqqoqpKWlNXuhbVbFBueqpsuTgU0dnYFMGJdlK9kPP/yAlJQUbN68Gbfccovc3fFJks8DEVEA7A4BpVWnUHOmHolxzu0Awl1FV2mau343xmmmYGUOdy6/DlMFYDXYunUr6urq0LNnT1RXV+Mvf/kLOnXqhBtuuEHurhERKU5xeXWTarrJclbTVSEGM1IwRgBp3pNS9ej8+fN45JFHcPDgQcTFxSEnJwdvvPFGk1VQRER6V1xejcmr9zbJvDxeW4/Jq/di6bh+DGj8wGCGJJeXl4e8vDy5u0FEpGh2h4CiDyqaK72Kog8qMCTT4p5y4nSUdwxmiIgoaLzIildadcpjaqkxAUB1bT1Kq04hO709p6OawWAGgMZzoMlP/BwQBYYX2cDUnPEdyDRuJ9d0lFqCVF0HM64cjnPnzqF169Yy94bkdu7cOQBNKxwTkW/M+QhcYpx/qyavaBuNGW9/KWo6SgpqClJ1HcxEREQgPj7eva9QmzZtmi3sRtokCALOnTuHmpoaxMfHN7tjOBFdEkjOB12SlZaAZHMMjtfW+yq9Cos5BjBA1HSUFNQWpOo6mAHg3mHZFdCQfvmzYzgRXSI254M8RRgNKByWicmr98IAz1ryrtCvcFgmfqxr8Ov5/J22aokag1TdBzMGgwHJyclITEzE+fPn5e4OySQyMpIjMkQiicn5IO/yeyRj6bh+TaZzLJdN55RUnvTrufydtmqJGoNU3QczLhEREbyYERGJ4O/FU6qLrFbl90jGkEyLz0Rbf6ejstISJOmPGoNU7s1EREQBcV1kfU00GOBMGJXqIqtlEUYDstPbY0SfjshOb+8xfeOajgJ87gSIwmGZkk35qDFIZTBDREQBCfdFVs9c01EWs2cAYTHHSJ6Mq8YgVdZg5pNPPsGwYcNgtVphMBjw/vvve9wvCALmzJmD5ORktG7dGrm5ufjuu+/k6SwRETURzous3uX3SMbOmTdjzaRf4e/39MGaSb/Czpk3S/4aqzFIlTVn5uzZs+jduzd+97vf4c4772xy/5NPPoklS5Zg5cqVSEtLw6OPPoq8vDxUVFRwV2MiIoVoKeeDpOOajgo1fxKTlcQgKKTsqcFgwHvvvYeRI0cCcI7KWK1WPPzww5gxYwYAoLa2FklJSVixYgXuuecev55XzBbiREREdImcFYDFXL8Vu5qpqqoKx48fR25urvuY2WzGgAEDUFJS4jOYaWhoQEPDpTX5Npst5H0lIiLSonCNBAVLsQnAx48fBwAkJSV5HE9KSnLf582CBQtgNpvdt5SUlJD2k4iIiOSl2GAmULNnz0Ztba37duTIEbm7RERERCGk2GDGVVb+xIkTHsdPnDjRbMn56OhomEwmjxsRERFpl2KDmbS0NFgsFmzZssV9zGaz4bPPPkN2draMPSMiIiIlkTUBuK6uDgcOHHB/XVVVhf379yMhIQFXXXUVpk2bhvnz56NLly7updlWq9W94omIiChU5FzJQ+LIGsx8/vnnuOmmm9xfT58+HQBQUFCAFStW4C9/+QvOnj2L+++/H6dPn8bAgQNRXFzMGjNERBRSxeXVTWqsJCu0xgopqM5MqLDODBERiVFcXo3Jq/c22dTRNSajxsrGahxl0kSdGSIionCzOwQUfVDhdXdqAc6ApuiDCgzJtCg+GHDRwyiTYhOAiYiIwq206pTHRb8xAUB1bT1Kq06Fr1NBcI0yNT6n47X1mLx6L4rLq2XqmbQYzBAREV1Uc8Z3IBNIOzm1NMoEOEeZ7A71Z5swmCEiIrooMc6/BSb+tpOT1kaZmsOcGSIioouy0hKQbI7B8dp6ryMaBjh3js5KSwh310RrbvTICAeyjN8gEadhP/gLkDYcMEaEsXfSYjBDRER0UYTRgMJhmZi8ei8MgEdA40r3LRyWqbjkX2+rlXyNHuUZS1EYuQpWw8URmU8BlFmB/EVA5vDwdVpCDGaIiIguk98jGUvH9WuyAsii0BVAvlYrPTq0W5NRpjxjKZZGLm76JLZqYN14YNQqVQY0rDNDRETkhRpqs7RUE+f+G9Lw8idVF485sDN6Kiw4Be+nYQBMVmBamSKmnFhnhohITRx24NAuoO4EEJsEpOYo4mIiFTUEBd5EGA3ITm8vdzd88qcmzoYvq/HCb/ph3j8rkHpm76WpJa8EwHbU+VlMGxSaTocIgxkiIjlVbACKZwK2Y5eOmdSdv3A5PRRsk4u/q5XatY3Czpk3o3LrYWCnH09cd0KyPoYLl2YTEcmlYoMzT+HyQAa4lL9QsUGefklELwXb5CKmJk6E0YBr0jv798SxSUH0Sh4MZoiI5OCwO0dkmitpVjzL2U6F9FSwTS6ia+Kk5jhH/eBris8AmDo626kMgxkiIjkc2tV0RMbDZfkLKqSngm1ycdXEaSY0QfLlNXGMEc7pS/e9jVsDyF+oynwtBjNERHLwNy9BhfkLgLa2BVAqV00cwGdo0rQmTuZw5/Jrk2e+UkMbC+x3r1RtnhYTgImI5OBvXoIK8xcAbW0LoGQB1cTJHI5iez9s2PAOWp2tQQ3iUVqfgaQNbVAoVKsyMZvBDBGRHFz5C7ZqeM+buVjzQ4X5C4C2tgVQuvweyRiSafF7+XtxeTUmv/ElBHQGcCkp2JWYvXRcP9UFNJxmIiKSg4bzF4AAp0AoYK6aOCP6dER2enufr6tWE7MZzBARycVH/gJMVtWWlb+cawrEYvacSrKYY1T5178WaDUxm9NMRERyyhwOZAzVbAVgsVMgFFpaTcxmMENEJDdjhOrKx4uh9G0B9ESridmcZiIiItIJ0bVpVILBDBERkU5oNTGbwQwREZGOaDExmzkzRESkbw67ZhOwfdFaYjaDGSIi0q+KDc4NPy/fJ8tkddYAUvnS+JZoKTGb00xERKRPFRuAdeObbvhpq3Yer9ggT79INAYzRESkPw67c0SmuVq4xbOc7UjxGMwQEZH+HNrVdETGgwDYjjrbkeIxmCEiIv2pOyFtO5IVgxkiItKf2CRp25GsGMwQEZH+pOY4Vy01VwvX1NHZjhSPwQwREemC3SGgpPIk1u8/ipKq07DnLbx4j49auPkLNV9vRisUH8ycOXMG06ZNQ2pqKlq3bo2cnBzs2bNH7m4REZGKFJdXY+CirRizbDceWrsfY5btxsANsdiX/XfA1KjirckKjFql+TozWqL4onn33XcfysvL8frrr8NqtWL16tXIzc1FRUUFOnbsKHf3iIhI4YrLqzF59d4mi7CP19bjzm1XYOnYTciPrdJVBWCtMQiC4G2RvSL8/PPPiIuLw/r16zF06FD38WuvvRa33XYb5s+f3+Jz2Gw2mM1m1NbWwmQyhbK7RESkMHaHgIGLtqK6tt7r/QY49yTaOfNm1Zby1yox129FTzNduHABdrsdMTGem2G1bt0aO3fu9PqYhoYG2Gw2jxsREelTadUpn4EM4CyPV11bj9KqU+HrFElO0cFMXFwcsrOzMW/ePBw7dgx2ux2rV69GSUkJqqurvT5mwYIFMJvN7ltKSkqYe01EREpRc8Z3IBNIO1ImRQczAPD6669DEAR07NgR0dHRWLJkCcaMGQOj0XvXZ8+ejdraWvftyJEjYe4xEREpRWJcTMuNRLQLC4cdqPoXUPa2819uqdAixScAp6enY8eOHTh79ixsNhuSk5MxevRoXH311V7bR0dHIzo6Osy9JCIiJcpKS0CyOQbHa+u97sIEAMnmGGSlJYS1Xz4pbBdvu0NAadUp1JypR2Kc83VSYm6R4oMZl7Zt26Jt27b46aefsHHjRjz55JNyd4mIiBQuwmhA4bBMTF69FwZ431by5/N2bKo4jvweyV7uDSPXLt6Ne+naxTvMy8WLy6tR9EGFR85RsjkGhcMy5X+tGlH0aiYA2LhxIwRBQNeuXXHgwAH8+c9/RkxMDP71r38hMjKyxcdzNRMRERWXV2PWu2U4fe58k/tc4wxLx/WT7yLtsAOLezSz+aXBOUIzrSwsy8Z9LWcP52ulmdVMAFBbW4spU6YgIyMD48ePx8CBA7Fx40a/AhkiIiIAGJJpQUwr75c81wW76IMK2B0y/X2voF287Q4BRR9UeB3FUsRr5YXip5lGjRqFUaNGyd0NIiJSsdKqUzhua/B5/+VLtLPT24evYy4K2sVbzHJ2WV4rLxQfzBARkbopIYlU8Uu0FbSLt+JfKy8YzBARUcgoJYlU8Uu0Xbt426rhPU35Ys5MGHbxVvxr5YXic2aIiEidXEmkjacsjtfWY/LqvSgu9178NBRcS7R9jQcZEJol2h47dVee9J1nYoxwLr9296Zx7xC2Xbzleq2CwWCGiIgkp7QkUtcSbcBnqIDCYZmSTn953al70VbfQVzmcOfya5l38ZbjtQqW4pdmB4tLs4mIwq+k8iTGLNvdYrs1k34V1iTScE17BbW02WF3rlqSeRdvuacIxVy/mTNDRESSU2oSaX6PZAzJtIQ0IbmlUSkDnKNSQzIt3r+vMQJIGyRZfwIVjtdKKgxmiIhIckpOIo0wGkI6GqTGpc2+hPq1kgqDGSKii5SwhFgrWtoTyQDAorAkUqkodVRKyxjMEBFB/vwArWluTySlJpFKRcmjUlrF1UxEpHtKWkKsJfk9krF0XD9YzJ4XbYs5Rt59kEJMjUub1Y4jM0Ska0Ena+qYP9NyriTS3ZUnUXLwRwDOHIxfXa38PIxA6XlUSi4MZohI17SUrBlOYqblNlUc92j7/LYD6prCC2CptGtUqvFrZFHTeasIgxki0jUma4rnq4aKa1ru8ikkMW0VqWIDUDzTc0drk9VZrbeFInZqWtqsdsyZISJdY7KmOGIq+yqtCrBoFRuAdeM9AxnAuX/SuvHO+1vgWto8ok9HZKe3ZyATIgxmiEjXmKwpjphpOTFtFcdhd47INBeKFc9ytiPZMZghIl1T4z40chIzLafqKbxDu5qOyHgQANtRZzuSHYMZItI9vS4hDoSYaTlVT+HVnZC2HYUUE4CJiMBkTX+JrewbbBVg2aoyxyZJ245CisEMEdFFatmHRk5ia6gEU29FbFVmSQOf1BznqiVbNbznzRic96fmBPb8JCmDIAgKTSOXhpgtxImIyD9iAo1AtorwtaTbFZo0nv4LyXYUrtVMALyGYqNWtbg8mwIn5vrNYIaIiAIiZiREbNuBi7b6XAnlmp7aOfNmRBgNogMfUbzWmekI5C9kIBNiYq7fnGYiIqKAiJmWE9NWzJLurLSE0G5HkTkcyBgqugIwhReDGSIiBZMtAVZGYpZ0h2U7CmMEkDYosMdSWDCYISJSqJDkgaiAmCXdqq5lQ5JhnRkiIgVy5YE0HnVw7WlUXF4tU89CT0xVZlXXsiHJMJghIlIY1e9pFCQxVZm5HQUBDGaIiBRH1XsaScTfqszcjoIA5swQESkO80CcmqvK3Dgx+oXf9MW8f37tEQRadJBfRE4MZoiIFIZ5IJd4W9LtKzH60aGZaNc2Slcrv8iJ00xERArDPBDfmkuMnvLmXtT+/AtG9OmI7PT2DGR0hMEMEZHCMA/EO70nRpNvDGaIiBTI3wRYPWFiNPmi6JwZu92OuXPnYvXq1Th+/DisVismTJiAv/71rzAY9PUXCRFpX+Ok1iGZFp8JsHrExGjyRdHBzKJFi7B06VKsXLkS3bt3x+eff47f/va3MJvNmDp1qtzdIyKSjF6r/YqRGBcDIxzIMn6DRJxGDeJR6siAo9Ekgx4So8mTooOZXbt2YcSIERg6dCgAoFOnTlizZg1KS0tl7hkRkXR87frsqvar12mlxrLqd6Ik5k9Iwkn3sWNCAorOj8dGR5Z7N209JkbrnaJzZnJycrBlyxb85z//AQB8+eWX2LlzJ2677Tafj2loaIDNZvO4EREpldKSWu0OASWVJ7F+/1GUVJ5UTjJtxQZEvFWAxMsCGQCw4BSWRi5GvtH5R64eE6NJ4SMzs2bNgs1mQ0ZGBiIiImC32/H4449j7NixPh+zYMECFBUVhbGXRESBC8uuz35S7FSXww4UzwQgNFndZTQADgGYG/U6Rv56EkewJKK23doVHcysW7cOb7zxBt588010794d+/fvx7Rp02C1WlFQUOD1MbNnz8b06dPdX9tsNqSkpISry0SkAeH8Ra6UpFZFT3Ud2gXYjvm822gALDiJ/NgqAFeGr18apdigthmKDmb+/Oc/Y9asWbjnnnsAAD179sShQ4ewYMECn8FMdHQ0oqOjw9lNItKQcP8iV0K135amugxwTnUNybTI89d53Qlp25FPig5qm6HonJlz587BaPTsYkREBBwOh0w9IiIta6667OTVe1FcXi3591RCtV/F12+JTZK2HXmltPwtMRQdzAwbNgyPP/44/vnPf+L777/He++9h2eeeQZ33HGH3F0jIo2R6xe5Eqr9KmWqy6fUHMBkRdNXyMUAmDo621HAFB/UNkPRwcxzzz2Hu+66Cw888AC6deuGGTNm4Pe//z3mzZsnd9eISGPk/EUud7VfJUx1NcsYAeQvuviFj5Avf6GzHQVM8UFtMxSdMxMXF4fFixdj8eLFcneFiDRO7l/k+T2SZav265rqOl5b73Vkylf9lrCueMkcDoxaBaF4JgyXJQMLJisM+Qud91NQFB/UNkPRwQwRUbgo4Rd5hNEQ8uXXvr5v4bBMTF69FwbAI6DxNdUlx4qXYsd1mFf/d6T88qW7AvCR+t541NET+SH5jvoSaFCrBIqeZiIiChclJOLKScxUlxyJ0q7vedR2HrsdmdjgyMFuRyaO2c6H7HvqjRLytwJlEARBeWnJErLZbDCbzaitrYXJZJK7O0SkYK4LJuB9dEKpy1Kl1NLUkd0hYOCirT7zi1x/ve+cebNkFz05vqeeKaXOjJjrN6eZiIguco1ONP5FblF4wTAptTTVJUfFYiVVSdYDOfO3AsVghojoMmr8RR5OciRKy52crUdy5W8FisEMEVEjavtFHk5yJEorITmblI0JwERE5Dc5EqX1npxNLWMwQ0REfpNjxYuaV9lQeDCYISIiUeSoWCx3lWRSNi7NJpJZWKuoEklIjs8uf170g0uziVRCKfUciAIhR6I0k7PJG04zEclEjiqqRERaxGCGSAZ2h4CiDyq87n/iOlb0QQXsDk3PAhMRSYLBDJEMxFQ0JSKi5jFnhkgGrGiqP0xclZDDDhzaBdSdAGKTgNQcwBghd69IRgxmiGTAiqb6wkRvCVVsAIpnArZjl46ZrED+IiBzuHz9IllxmolIBqxoqh9M9JZQxQZg3XjPQAYAbNXO4xUb5OkXyY7BDJEMWNFUH5joLSGH3Tki09yrWTzL2Y50h8EMycruEFBSeRLr9x9FSeVJXf1SZ0VT7WOit4QO7Wo6IuNBAGxHne1Id5gzQ7LRUx6Br+TP/B7JGJJpYWKoRjHRW0J1J6RtR5rCYIZk4cojaDwO48oj0NLIREtBGyuaXqK1FT9M9JZQbJK07UhTGMxQ2LWUR2CAM49gSKZF1RcyQF9BW7C0OFLnSvQ+Xlvv9fNugHNakYnefkjNca5aslXDe96MwXl/ak64e0YKwJwZCju95BEw+dN/Wl3xw0RvCRkjnMuvAfh8NfMXst6MTjGYobDTSx6BXoK2YGk96GOit4QyhwOjVgGmRq+Zyeo8zjozusVpJgo7veQR6CVoC5aYoE+tuUVM9JZQ5nAgYygrAJMHBjMUdnrJI9BL0BYsvQR9TPSWkDECSBskdy9IQTjNRGGnlzwCVvn1D4M+IgoWgxmShR7yCPQStAWLQR8RBcsgCIKorLqCggJMnDgRN9xwQ6j6JCmbzQaz2Yza2lqYTCa5u0ONaK2uiDdaXHIsNddqJsBz0a3rkyBFgKuHz1qzuNM0qYyY67foYGbkyJH48MMPkZqait/+9rcoKChAx44dg+pwKOk9mNH9L3CF4PvQslAGfboPKLnTNKlQSIMZAPjvf/+L119/HStXrkRFRQVyc3MxceJEjBgxApGRkQF3PBT0HMzo/hc4qU4ogj5fhQulHPVRNNdO075eAS5pJoUKeTBzub1792L58uV45ZVXEBsbi3HjxuGBBx5Aly5dgnlayeg1mNH9L3AiOIOjgYu2+lz67Vo5t3PmzaocKWsx+HPYgcU9mtmg8WLV3GllnHIixRFz/Q4qAbi6uhqbNm3Cpk2bEBERgdtvvx1lZWXIzMzEs88+G8xTu3Xq1AkGg6HJbcqUKZI8vxZpvQgZkb+0XLiwuLwaAxdtxZhlu/HQ2v0Ys2w3Bi7a6lktmTtNk06IDmbOnz+Pd955B//zP/+D1NRUvPXWW5g2bRqOHTuGlStXYvPmzVi3bh0ee+wxSTq4Z88eVFdXu2+bNm0CANx9992SPL8WafkXOKmAww5U/Qsoe9v5r8MuW1e0WsPG7+0fuNM06YToonnJyclwOBwYM2YMSktL0adPnyZtbrrpJsTHx0vQPaBDhw4eXy9cuBDp6ekYPHiwJM+vRVr9BU4qoLBEUy3WsBG1USt3miadEB3MPPvss7j77rsRE+P7hz8+Ph5VVVVBdcybX375BatXr8b06dNhMHif325oaEBDQ4P7a5vNJnk/lE6Lv8BJeZrka9TvRMRbBWiSaGqrdiagypBoqsVq06K2f0jjTtOkD6Knme69995mA5lQev/993H69GlMmDDBZ5sFCxbAbDa7bykpKeHroEKwCBmFWuN8jbHLduHHt/4EoblMreJZYZ9y0mLhQlEjr9xpmnRCVRWAX331Vdx2222wWq0+28yePRu1tbXu25EjR8LYQ2XQ4i9wUg5v+RpZxm+QhJM+A2g5E021Vm1a9Mgrd5omHVDNRpOHDh3C5s2b8e677zbbLjo6GtHR0WHqlXK5foE3rjNjYZ0ZCoKvfI1EnPbvCWRKNNXSrtUBTZ1xp2nSONUEM8uXL0diYiKGDh0qd1dUQ0u/wEkZfOVr1CDevyeQMdE0wmhAVlqC++ehtOqUKn8eXCOvk1fvhQHet3/wOvLKnaZJw1QRzDgcDixfvhwFBQVo1UoVXVaMCKMB2ent5e4GaYSvfI1SRwaOCQmw4BS8xwbyJ5oqrSJ2MNWOOfJK5EkVkcHmzZtx+PBh/O53v5O7K0S65itfwwEjis6Px9LIxXAIaBTQyJ9o6qsitqsuS7hzZ6QIrDjySnRJ0NsZKJ1etzMgdVDbBpSu7QF85WvkG0tRFPU6knDy0kFTR2cgI1OiqdK2NOBWI0T+EXP9VsXIDJEWKW3awx8t5WtsdGRh5K8nIT+2SjGJpqLqsoR4SlZUwTsFB7VESqOqpdlEWuF3OXoFanGpc88rnYmmPe9y/ivzihklVcTmViNEocGRGaIw08Jf52rK11BSRWwlBVZEWsJghijMlDTtEQy1rJRT0pYGSgqsiLSE00xEYca/zsNLSRWxudUIUWgwmCEKM/51Hn5SbmlgdwgoqTyJ9fuPoqTyJOwO/xeEKimwItISTjMRhZmSpj30RIo8H6nqw7DgHZG0WGeGSAau1UyA93L0rDWiPFLXh1FbjSGicBNz/eY0E5EMtLaTs9a1tAINcK5AEzvllJ3eHiP6dER2ensGMkRB4DQTkUzUtLxZ77SyAo1IqxjMEMlILcub9Y4r0IiUjdNMREQt4Ao0ImXjyAyRijGJNDy4Ao1I2RjMEKmUGjeqVKuWNtgEWB+GSE6cZiJSITVvVKlWXIFGpFwcmSFSGS1sVKlWXIFGpEwMZogAwGEHDu0C6k4AsUlAag5gjJC7V15xmbC8uAKNSHkYzBBVbACKZwK2Y5eOmaxA/iIgc7h8/fLB72XCtrNAVYUqAjQiomAwmCF9q9gArBsPNJ60sVU7j49apbiAxp/lv3nGUuRvmg6cO37poIIDNCKiYDABmPTLYXeOyDRXpL54lrOdgriWCfvK0sg3luLFqMWIujyQAS4FaBUbQt5HJQhmd2siUheOzJB+HdrlObXUhADYjjrbpQ0KW7da0twy4Qg4MCdyFQB4CXYupgcXzwIyhmp6yonL1on0hSMzpF91J6RtF0a+lgnnxR2E1XDK56iNR4CmUVy2TqQ/HJkh/YpNkrZdmHlbJjzg7DngXT8eLHWAppDVYFy2TqRPDGZIv1JznEmxtmp4z5sxOO9PzQl3z/zWZJlwlcW/B0oZoCloNRiXrRPpE6eZSL+MEc4LLoCmGSYXv85fqK7cEleA5nOiyQCYOkoXoLlWgzXOPZIp2Zi7WxPpE4MZ0rfM4c7l16ZGSaEmqyKXZbconAGajKvBfK1U4u7WRPrEaSaizOHO1T0KyPmQhCtA8zr1s1C6AE2m1WDNrVQakmnh7tZEOsRghghwBi4KWn4dtHAEaDKsBnOtVGocqLhWKi0d14+7WxPpEKeZSDYsahZirgCt513Of6UeaQrzarCWVioBl1YqcXdrIn3hyAzJgkXNNCDMq8HErFRS+u7Wdoeg2L4RqRGDGQo7f6YKGNCogCvZeN14wNekjoSrwcSuVFLq7tYM5Imkx2kmCit/pwo45aQSYVwNpoWVSqxOTBQaig9mjh49inHjxqF9+/Zo3bo1evbsic8//1zublGAxEwVkEpkDgemlQMF/wf8+lXnv9PKJF/W3tIGmwY4RziUulKJgTxR6Ch6mumnn37C9ddfj5tuugkfffQROnTogO+++w7t2rWTu2sUIBY1Cx1Z8zDCsBqsuQ021bBSidWJiUJH0cHMokWLkJKSguXLl7uPpaWlydgjCpYWpgqUSC95GK4NNhufq0UF58pAnih0FB3MbNiwAXl5ebj77ruxY8cOdOzYEQ888AAmTZrk8zENDQ1oaGhwf22z2cLRVfKTa6pArUXNlLgKRW8J1UpfqeQLA3mi0FF0MHPw4EEsXboU06dPxyOPPII9e/Zg6tSpiIqKQkFBgdfHLFiwAEVFRWHuKflLzVMFYkc/whH46HWXaKWuVGqO2gN5IiUzCIKg2GyzqKgo9O/fH7t27XIfmzp1Kvbs2YOSkhKvj/E2MpOSkoLa2lqYTKaQ95n8o7ZpEV+jH67woPHoR7jOr6TyJMYs291iuzWTfqW6i78WuT5HgPdAXmujaETBsNlsMJvNfl2/FT0yk5ycjMzMTI9j3bp1wzvvvOPzMdHR0YiOjg511yhIapoqEDv6Ec5pH+ZhqIuac36IlEzRwcz111+Pb7/91uPYf/7zH6SmpsrUo/BRYm6G1NQyVSBmFUpWWkJYp32Yh6E+agrkidRC0cHMn/70J+Tk5OCJJ57AqFGjUFpaipdffhkvv/yy3F0LKbVNwYRbuAM9MaMf4V5+q+c8DDUH/GoJ5InUQtHBzHXXXYf33nsPs2fPxmOPPYa0tDQsXrwYY8eOlbtrIaO3lSliyRHotTSqYYQDWcZv0O3HGtT8Nx5GtIKjhXqUUk37qDmhOhgM+InocopOAJaCmAQiudkdAgYu2urzL3vXX9k7Z96suYuTP8Qm4UrF9b54G/3IM5aiMHIVrIZLFYuPCQkoOj8eGx1ZPp9T6oRcPV3c5focEFF4aSYBWG9YIdQ3OZcg+xr9yDOWYmnk4ibtLYZTWBq5GJPPT2sS0IRq2kcveRiBfg7UPCVFRC1jMKMgXJnim9yBXuNVKEY4UBi5CjA03eDMCMABoDDydWxq6O+ecgr1tI8e8jAC+RzoadSKSK8Uv9GknnBlim9KCPTyeyRj58ybsWbSr7DqlguwGk75/AEyGgCr4SSyjN+4j1nMMZwCCZLYzwF3qSbSB47MKIieV6ZcztuUgFICPffoxzm7X+0fu/kKfH1FH05tSETM50Cv1ZGJ9IjBjILodWXK5XxNCTw6NFNZgV5skl/NrknvjGvSOoa4M/ohJuCXe2qSiMKH00wK48rNsJg9/wLVwxRFc1MCU97ci+G9nefeOJSTJdBLzQFMVi+9uaxXpo7OdiQZV8APtPw5UMLUpC92h4CSypNYv/8oSipPwu7Q9KJSopDjyIwC6WVlyuX8mRLY8GU1XvhNX8z759fyl4I3RgD5i4B14y/2zss4Wv5CZzuSlL9bAihlarIxJiQTSY91ZkgRxGyY6JpCUESgV7EBKJ4J2I5dOmbq6AxkMofL0yc/aGGpckvn0Fx9IECeuk2skUPkP9aZIfEcduDQLqDuhDMfJDUnrKMKYqYEFLUEOXM4kDFU1tdOLK2MDLT0OVBaDhoTkolCh8EM+RhdsDqnUcI0uqDUKQG/GCOAtEFy98IvetsuQ0m7VDMhmSh0GMzoXcWGi3kfjS5vtmrn8VGrwhLQcFl66Ol1ZEApOWhKTkgmUjuuZtIh90qKfYfR8H9/huDz8gageJZzCirExKxSocCIGRnQGteU1Ig+HZGd3l6Wz5GqRx+JFI7BjM4Ul1dj4KKtGLNsN9a89Q9Enzvuc3ExIAC2o858kDDQ87L0cODIgLxco4/NLOZHMkcfiQLCaSYdaZwvkYjT/j2w7kSoutSEUqYEtIgjA/JSWkIykZZwZEYnvOVL1CDevwf7We1WKkqYEtAijgzIj6OPRKHBkRmd8JYvUerIwDEhARacgvd4weBc1cQqtprAkQFl4OgjkfQ4MhNGcpYw95YH4YARRefHO//fpCusYqtFHBlQBo4+EkmLIzNhInehMl95EBsdWZh8fhoKI1fBistWsZisiq9iS4GRe2RAC9WHiUhZuJ1BGCihhHlLpd0j4EBe3EE8P8wKY5wloCq2WrxIafGc5CR3UE9E6iHm+s1gJsRcQYSv+h7h3B/GFVQB3vMlggmqtHiR0uI5yUkJQT0RqYeY6zdzZkJMSYXKQpUv4bpINT5PV4n84vLqgPssFy2ek5xaqj4MOKsPhzOPjIi0gzkzIaa0QmVS50tosUS+Fs9JbtyXiIhCicFMiCmxUJmUu05r8SKlxXOSm9KCeiLSFgYzIab1DRT9ufgY4YD94CfAObuzAN/F5GKlJtfywis9JQb1RKQdDGZCTOuFylq6+OQZS53Lvj/1XPa9r/ssPLD3SkUm1/LCKz2tB/VEJC8mAIeBlguVNVciP89YiqWRi2ExeCY3C7Zq9N41Fb3OfOJxXCnJtSz7Lz3uik5EocSl2WGk1GmVYHlb8m2EAzujp/rcKsEhAMfRHgMb/g7HZTF1OJeqN0eKZexafb+DweXuROQv1pm5jJKCGbVr7uLc+CL1K2MF1kbNb/E57/nlr9jtyGxyfM2kX8meXBvMhZcXbd8Y5BGRP8Rcv5kzQ35p6eLceMl3tx9rgJ0tP28iTns9roTk2kCXsfsqDueaRlP71GKwpFxNR0QEMJiRnsMOHNoF1J3wWLmjmOcLgL8XZ4+LVFVnv4KZGsR7Pa6U5FqxF17WqCEiCj8GM1Kq2AAUzwRsxy4dM1mB/EWBbdgo9fMFIOCLc2qOs6+2asDLo105M6WODI/jal/Vwho1REThx9VMUqnYAKwb7xl4AM6L+brxzvvlfL4ABbwdgzHCGXQBaLx+Rbj49WPn722S/Auoe1ULa9QQEYWf4oOZuXPnwmAweNwyMjJafmA4OezOEZTmdp4pnuVsJ8fzBSGoi3PmcGDUKsDkmR9iMFnxZc4SfBl3g8dxLSxVZ40aIqLwU8U0U/fu3bF582b3161aKazbh3Y1HUHxIAC2o852aYPC/3xBCPrinDkcyBjaJO+nrzECO4dob1ULi8MREYWfwqIC71q1agWLxSJ3N3yrO6HsdkGQ5OJsjPAadGlxVYvWKz4TESmR4qeZAOC7776D1WrF1VdfjbFjx+Lw4cM+2zY0NMBms3ncQi42SdntgsDKreKFq+Kz3SGgpPIk1u8/ipLKk7A7NF0yiojIJ8UXzfvoo49QV1eHrl27orq6GkVFRTh69CjKy8sRFxfXpP3cuXNRVFTU5HhIi+Y57MDiHj5X7gAG58qeaWX+LauW+vkkwCJw4l1eHO6KttGAAfixrkGSKTW+H0SkdZquAHz69GmkpqbimWeewcSJE5vc39DQgIaGBvfXNpsNKSkpoa8A7Fp9BMDr5MKoVeKWU0v9fBIId+VWrVSKlTrw8FX3R8xWC0RESqfpYAYArrvuOuTm5mLBggUttg3rdgZe68J0BPIXSlhnJojnUxGtjDxIHXjYHQIGLtrqc7m8Uva2IiIKlqa3M6irq0NlZSXuvfdeubvSlI+VOwFPBUn9fCqhle0AQlENmEX5iIiaUnwwM2PGDAwbNgypqak4duwYCgsLERERgTFjxsjdNe98rNxRzPMpnJa2AxAbePgzrcaifERETSk+mPnhhx8wZswYnDx5Eh06dMDAgQOxe/dudOjQQe6uUQhoaeRBTODh77Qai/IRETWl+GBm7dq1cneBwkhLIw/+BhTf/3gOizf/x69pNRblIyJqShV1ZkglHHag6l9A2dvOfwPYbkFLIw+uwMPXZJgBgMUUjTWlh5vbuAJFH1S4a8iw7g8RUVMMZlQoVMXSgnreig3O2jgr/wd4Z6Lz38U9RG+I6U8AkKySkQd/Ao8xWVfhuE3cRp7hKspHRKQWip9m0jqxtVSKy6sxb0MZUuq+RCJOowbxOBLbG48O7xnURSyopdDumjiNgh/XDt8iauJobTsAV+DR+LW1XHxtGy44/HqextNq+T2SMSTTook6PEREwVJlnRkxwlpnRiR/AwhXwLO54jh+KFmHwshVsBou/aV+TEjAY+fHY+Rv/hD+ImzuasW+NsYMrFqxVurMuPgKWksqT2LMst0tPn7NpF8pPuGZiEhKmi+aJ4ZSgxl/A4jLL+p5xlIsjVwMALj8D3DXbNAjkX/B4488Iuqv86CLsFX9yzml1JKC/xO9xFwrFYCb43r9W0roZRE8ItIbMddv5szIoKVaKoAz6fPDfx/D5NV7UV1bDyMcKIxcBcAzkLn866nnX0Vp5X9F9UXMUmivQrjDt2tX7RF9OiI7vb0mL+ZM6CUiCh6DGRn4G0D8dX25O7jJMn4Dq+FUk0DGxWgArIaTsH//qai+BL0UWkE7fKsVE3qJiILDBOAABTMF4m8Acerseff/E3Har8ckGvxr524f7FLo1BxnTkxLO3yn5ojql94woZeIKHAMZgIQbHJqIDVSahDvV7v0q9NFPW/QRdiMEUD+oourmXysP8pfqPn9pKTgmlYjIiJxOM0kkitxt/E0kataa3F5dYvP4U8tlfZtozyOlToycExIgK/SLw4B+Lm1BRGdrvfjLC6RJGcjc7hz+bWpUSBnsopalk1ERBQIBjMi+Ju421KxOX8CiHkjengEPA4YUXR+vPP/jZ7eAcBgMKD1sL8FNAIiSc5G5nBgWrlz1dKvX3X+O62MgQwREYUcl2aLIHVNkJamq1yjQMClYCnPWNqkzoxg6ghD/sKgAwc9LIUmIiJ1EHP9Zs6MCFJvgthS0qe36rEbHVkoj74ez/7qHLI6XABik2BIzZEkJ4U5G0REpEYMZkQQu/LHn5GOlgIIrnIhIiJqHoMZEcSs/JGyHD9HTIiIiHxjArAI/q782VRxPOgVT0REROQfBjMitbTyZ0imRZIVT0REROQfTjMFoLk8lpLKk37vdcSpIyIiouAxmAmQrzwWqVc8ERERUfMYzEgs6L2OSHVYn4eISF4MZiQW9F5HpCpSrlojIqLAMAFYYpLsdUSqIMU+XUREFDwGMyEgyV5HpGhS7dNFRETB4zRTiLByr7aVVp3iqjUiIoVgMBNCrNyrXVy1RkSkHJxmIgoAV60RESkHgxmiALhWrfmaNDTAuaqJq9aIiEKPwQxRALhqjYhIORjMEAWIq9aIiJSBCcBEQeCqNSIi+TGYIQoSV60REcmL00xERESkahyZ0TlukkhERGqnqpGZhQsXwmAwYNq0aXJ3RROKy6sxcNFWjFm2Gw+t3Y8xy3Zj4KKt3FOIiIhURTXBzJ49e/DSSy+hV69ecndFE7hJIhERaYUqgpm6ujqMHTsWy5YtQ7t27Zpt29DQAJvN5nEjT9wkkYiItEQVwcyUKVMwdOhQ5Obmtth2wYIFMJvN7ltKSkoYeqguYjZJJCIiUjrFJwCvXbsWe/fuxZ49e/xqP3v2bEyfPt39tc1mY0DTiBo2SWRiMhER+UvRwcyRI0fw0EMPYdOmTYiJ8W/DvujoaERHR4e4Z+qm9E0Si8urUfRBhcfoUbI5BoXDMllVl4iImlD0NNMXX3yBmpoa9OvXD61atUKrVq2wY8cOLFmyBK1atYLdbpe7i6qk5E0SmZhMRERiKTqYueWWW1BWVob9+/e7b/3798fYsWOxf/9+REREyN1FVVLqJolMTCYiokAoepopLi4OPXr08DjWtm1btG/fvslxEse1SWLj6RyLjNM5YhKTuX0AERG5KDqYodBS2iaJakhMJiIi5VFdMLN9+3a5u6ApStokUemJyUREpEyKzpkhfVFyYjIRESkXgxlSDKUmJhMRkbIxmCFFcSUmW8yeU0kWcwyWjuvHOjNERNSE6nJmSPuUlphMRETKxmCGFElJiclERKRsnGYiIiIiVWMwQ0RERKrGYIaIiIhUjcEMERERqRqDGSIiIlI1rmbSGLtD4JJmIiLSFQYzGlJcXt1kF+xkGXfBJiIiCgdOM2lEcXk1Jq/e6xHIAMDx2npMXr0XxeXVMvWMiIgotBjMaIDdIaDogwoIXu5zHSv6oAJ2h7cWRERE6sZgRgNKq041GZG5nACgurYepVWnwtcpIiKiMGHOjMykSNitOeM7kAmkHRERkZowmJGRVAm7iXExLTcS0Y6IiEhNOM0kEykTdrPSEpBsjoGv8RwDnEFSVlpC4B0mIiJSKAYzMpA6YTfCaEDhsEwAaBLQuL4uHJbJejNERKRJDGZkEIqE3fweyVg6rh8sZs+pJIs5BkvH9WOdGSIi0izmzMggVAm7+T2SMSTTEtIKwKwwTERESsNgRgahTNiNMBqQnd5e9OP8wQrDRESkRJxmkoEaE3ZZYZiIiJSKwYwM1JawywrDRESkZAxmZKKmhF1WGCYiIiVjzoyMwpGwKwVWGCYiIiVjMCOzUCbsSoUVhomISMk4zUQtUmPCMhER6QeDGWqR2hKWiYhIXxjMkF/UlLBMRET6wpwZ8ptaEpaJiEhfGMyQKGpIWCYiIn1R/DTT0qVL0atXL5hMJphMJmRnZ+Ojjz6Su1tERESkEIoPZq688kosXLgQX3zxBT7//HPcfPPNGDFiBL766iu5u0ZEREQKYBAEQXU16BMSEvC3v/0NEydObHJfQ0MDGhoa3F/bbDakpKSgtrYWJpMpnN0kIiKiANlsNpjNZr+u34ofmbmc3W7H2rVrcfbsWWRnZ3tts2DBApjNZvctJSUlzL0kIiKicFLFyExZWRmys7NRX1+P2NhYvPnmm7j99tu9tuXIDBERkfqJGZlRxWqmrl27Yv/+/aitrcXbb7+NgoIC7NixA5mZmU3aRkdHIzo6WoZeEhERkRxUMTLTWG5uLtLT0/HSSy+12FZMZEdERETKoNmcGReHw+ExlURERET6pfhpptmzZ+O2227DVVddhTNnzuDNN9/E9u3bsXHjRrm7RkRERAqg+GCmpqYG48ePR3V1NcxmM3r16oWNGzdiyJAhfj3eNYtms9lC2U0iIiKSkOu67U82jCpzZsT44YcfuDybiIhIpY4cOYIrr7yy2TaaD2YcDgeOHTuGuLg4GAzBb4joWup95MgRzSYU6+EcAX2cpx7OEdDHeerhHAF9nKcezhEI/jwFQcCZM2dgtVphNDaf4qv4aaZgGY3GFiO6QLj2itIyPZwjoI/z1MM5Avo4Tz2cI6CP89TDOQLBnafZbParnSpXMxERERG5MJghIiIiVWMwI1J0dDQKCws1XWVYD+cI6OM89XCOgD7OUw/nCOjjPPVwjkB4z1PzCcBERESkbRyZISIiIlVjMENERESqxmCGiIiIVI3BDBEREakagxkAL7zwAjp16oSYmBgMGDAApaWlzbZ/6623kJGRgZiYGPTs2RMffvihx/2CIGDOnDlITk5G69atkZubi++++y6Up9AiMee4bNkyDBo0CO3atUO7du2Qm5vbpP2ECRNgMBg8bvn5+aE+jWaJOccVK1Y06X9MTIxHGyW+j4C487zxxhubnKfBYMDQoUPdbZT2Xn7yyScYNmwYrFYrDAYD3n///RYfs337dvTr1w/R0dHo3LkzVqxY0aSN2J/zUBJ7ju+++y6GDBmCDh06wGQyITs7u8lmu3Pnzm3yPmZkZITwLFom9jy3b9/u9fN6/Phxj3Zqfi+9/bwZDAZ0797d3UZp7+WCBQtw3XXXIS4uDomJiRg5ciS+/fbbFh8Xzmul7oOZf/zjH5g+fToKCwuxd+9e9O7dG3l5eaipqfHafteuXRgzZgwmTpyIffv2YeTIkRg5ciTKy8vdbZ588kksWbIEL774Ij777DO0bdsWeXl5qK+vD9dpeRB7jtu3b8eYMWOwbds2lJSUICUlBbfeeiuOHj3q0S4/Px/V1dXu25o1a8JxOl6JPUfAWZXy8v4fOnTI436lvY+A+PN89913Pc6xvLwcERERuPvuuz3aKem9PHv2LHr37o0XXnjBr/ZVVVUYOnQobrrpJuzfvx/Tpk3Dfffd53GxD+TzEUpiz/GTTz7BkCFD8OGHH+KLL77ATTfdhGHDhmHfvn0e7bp37+7xPu7cuTMU3feb2PN0+fbbbz3OIzEx0X2f2t/Lv//97x7nduTIESQkJDT5mVTSe7ljxw5MmTIFu3fvxqZNm3D+/HnceuutOHv2rM/HhP1aKehcVlaWMGXKFPfXdrtdsFqtwoIFC7y2HzVqlDB06FCPYwMGDBB+//vfC4IgCA6HQ7BYLMLf/vY39/2nT58WoqOjhTVr1oTgDFom9hwbu3DhghAXFyesXLnSfaygoEAYMWKE1F0NmNhzXL58uWA2m30+nxLfR0EI/r189tlnhbi4OKGurs59TGnv5eUACO+9916zbf7yl78I3bt39zg2evRoIS8vz/11sK9bKPlzjt5kZmYKRUVF7q8LCwuF3r17S9cxiflzntu2bRMACD/99JPPNlp7L9977z3BYDAI33//vfuY0t/LmpoaAYCwY8cOn23Cfa3U9cjML7/8gi+++AK5ubnuY0ajEbm5uSgpKfH6mJKSEo/2AJCXl+duX1VVhePHj3u0MZvNGDBggM/nDKVAzrGxc+fO4fz580hISPA4vn37diQmJqJr166YPHkyTp48KWnf/RXoOdbV1SE1NRUpKSkYMWIEvvrqK/d9SnsfAWney1dffRX33HMP2rZt63FcKe9lIFr6mZTidVMah8OBM2fONPmZ/O6772C1WnH11Vdj7NixOHz4sEw9DE6fPn2QnJyMIUOG4NNPP3Uf1+J7+eqrryI3Nxepqakex5X8XtbW1gJAk8/f5cJ9rdR1MPPjjz/CbrcjKSnJ43hSUlKTOVqX48ePN9ve9a+Y5wylQM6xsZkzZ8JqtXp86PLz87Fq1Sps2bIFixYtwo4dO3DbbbfBbrdL2n9/BHKOXbt2xWuvvYb169dj9erVcDgcyMnJwQ8//ABAee8jEPx7WVpaivLyctx3330ex5X0XgbC18+kzWbDzz//LMnPgNI89dRTqKurw6hRo9zHBgwYgBUrVqC4uBhLly5FVVUVBg0ahDNnzsjYU3GSk5Px4osv4p133sE777yDlJQU3Hjjjdi7dy8AaX6fKcmxY8fw0UcfNfmZVPJ76XA4MG3aNFx//fXo0aOHz3bhvlZqftdsCs7ChQuxdu1abN++3SNB9p577nH/v2fPnujVqxfS09Oxfft23HLLLXJ0VZTs7GxkZ2e7v87JyUG3bt3w0ksvYd68eTL2LHReffVV9OzZE1lZWR7H1f5e6s2bb76JoqIirF+/3iOX5LbbbnP/v1evXhgwYABSU1Oxbt06TJw4UY6uita1a1d07drV/XVOTg4qKyvx7LPP4vXXX5exZ6GxcuVKxMfHY+TIkR7HlfxeTpkyBeXl5bLnYzWm65GZK664AhEREThx4oTH8RMnTsBisXh9jMViaba9618xzxlKgZyjy1NPPYWFCxfi448/Rq9evZpte/XVV+OKK67AgQMHgu6zWMGco0tkZCT69u3r7r/S3kcguPM8e/Ys1q5d69cvQjnfy0D4+pk0mUxo3bq1JJ8PpVi7di3uu+8+rFu3rskQfmPx8fG45pprVPM++pKVleU+By29l4Ig4LXXXsO9996LqKioZtsq5b188MEH8X//93/Ytm0brrzyymbbhvtaqetgJioqCtdeey22bNniPuZwOLBlyxaPv9ovl52d7dEeADZt2uRun5aWBovF4tHGZrPhs88+8/mcoRTIOQLOLPN58+ahuLgY/fv3b/H7/PDDDzh58iSSk5Ml6bcYgZ7j5ex2O8rKytz9V9r7CAR3nm+99RYaGhowbty4Fr+PnO9lIFr6mZTi86EEa9aswW9/+1usWbPGY2m9L3V1daisrFTN++jL/v373eeglfcScK4QOnDggF9/YMj9XgqCgAcffBDvvfcetm7dirS0tBYfE/ZrpeiUYY1Zu3atEB0dLaxYsUKoqKgQ7r//fiE+Pl44fvy4IAiCcO+99wqzZs1yt//000+FVq1aCU899ZTw9ddfC4WFhUJkZKRQVlbmbrNw4UIhPj5eWL9+vfDvf/9bGDFihJCWlib8/PPPYT8/QRB/jgsXLhSioqKEt99+W6iurnbfzpw5IwiCIJw5c0aYMWOGUFJSIlRVVQmbN28W+vXrJ3Tp0kWor69XxTkWFRUJGzduFCorK4UvvvhCuOeee4SYmBjhq6++crdR2vsoCOLP02XgwIHC6NGjmxxX4nt55swZYd++fcK+ffsEAMIzzzwj7Nu3Tzh06JAgCIIwa9Ys4d5773W3P3jwoNCmTRvhz3/+s/D1118LL7zwghARESEUFxe727T0uoWb2HN84403hFatWgkvvPCCx8/k6dOn3W0efvhhYfv27UJVVZXw6aefCrm5ucIVV1wh1NTUhP38XMSe57PPPiu8//77wnfffSeUlZUJDz30kGA0GoXNmze726j9vXQZN26cMGDAAK/PqbT3cvLkyYLZbBa2b9/u8fk7d+6cu43c10rdBzOCIAjPPfeccNVVVwlRUVFCVlaWsHv3bvd9gwcPFgoKCjzar1u3TrjmmmuEqKgooXv37sI///lPj/sdDofw6KOPCklJSUJ0dLRwyy23CN9++204TsUnMeeYmpoqAGhyKywsFARBEM6dOyfceuutQocOHYTIyEghNTVVmDRpkmy/TFzEnOO0adPcbZOSkoTbb79d2Lt3r8fzKfF9FATxn9dvvvlGACB8/PHHTZ5Lie+la3lu45vrvAoKCoTBgwc3eUyfPn2EqKgo4eqrrxaWL1/e5Hmbe93CTew5Dh48uNn2guBcjp6cnCxERUUJHTt2FEaPHi0cOHAgvCfWiNjzXLRokZCeni7ExMQICQkJwo033ihs3bq1yfOq+b0UBOcS5NatWwsvv/yy1+dU2nvp7fwAePycyX2tNFzsKBEREZEq6TpnhoiIiNSPwQwRERGpGoMZIiIiUjUGM0RERKRqDGaIiIhI1RjMEBERkaoxmCEiIiJVYzBDREREqsZghoiIiFSNwQwRqYrdbkdOTg7uvPNOj+O1tbVISUnB//t//0+mnhGRXLidARGpzn/+8x/06dMHy5Ytw9ixYwEA48ePx5dffok9e/YgKipK5h4SUTgxmCEiVVqyZAnmzp2Lr776CqWlpbj77ruxZ88e9O7dW+6uEVGYMZghIlUSBAE333wzIiIiUFZWhj/+8Y/461//Kne3iEgGDGaISLW++eYbdOvWDT179sTevXvRqlUrubtERDJgAjARqdZrr72GNm3aoKqqCj/88IPc3SEimXBkhohUadeuXRg8eDA+/vhjzJ8/HwCwefNmGAwGmXtGROHGkRkiUp1z585hwoQJmDx5Mm666Sa8+uqrKC0txYsvvih314hIBhyZISLVeeihh/Dhhx/iyy+/RJs2bQAAL730EmbMmIGysjJ06tRJ3g4SUVgxmCEiVdmxYwduueUWbN++HQMHDvS4Ly8vDxcuXOB0E5HOMJghIiIiVWPODBEREakagxkiIiJSNQYzREREpGoMZoiIiEjVGMwQERGRqjGYISIiIlVjMENERESqxmCGiIiIVI3BDBEREakagxkiIiJSNQYzREREpGr/H5TpXZCW6PvSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set size: (80, 1) (80,)\n", + "Testing set size: (20, 1) (20,)\n" + ] } ], "source": [ @@ -116,23 +144,42 @@ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import train_test_split\n", "\n", "# Load the dataset\n", - "data = pd.read_csv('data.csv')\n", + "data = pd.read_csv('./Temp/data.csv')\n", "\n", "# Perform exploratory data analysis\n", "# Display the first few rows of the data\n", "print(data.head())\n", "\n", - "# Check for missing values\n", - "print(\"X的缺失值数量:\", data['X'].isnull().sum())\n", - "print(\"y的缺失值数量:\", data['y'].isnull().sum())\n", + "# Split the dataset into training and testing sets\n", + "X = data[['X']]\n", + "y = data['y']\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# Visualize the relationship between features and target variable\n", - "plt.scatter(data['X'], data['y'])\n", + "plt.scatter(X_train, y_train, label='Training Set')\n", + "plt.scatter(X_test, y_test, label='Testing Set')\n", "plt.xlabel('X')\n", "plt.ylabel('y')\n", - "plt.show()" + "plt.legend()\n", + "plt.show()\n", + "\n", + "# Print the sizes of training and testing sets\n", + "print(\"Training set size:\", X_train.shape, y_train.shape)\n", + "print(\"Testing set size:\", X_test.shape, y_test.shape)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Development\n", + "Once we have prepared the data, we can proceed with developing the linear regression model. This involves deriving the mathematical formula for linear regression, implementing the formula in code, defining a cost function, and implementing the gradient descent algorithm to train the model.\n", + "\n", + "Let's take a look at the code snippet below to understand how we can develop the linear regression model:" ] }, { @@ -140,13 +187,29 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this code snippet, we first import the necessary libraries, such as NumPy and Pandas. Then, we load the dataset using the read_csv() function from Pandas, replacing 'data.csv' with the actual path to your dataset.\n", + "### Define loss function\n", "\n", - "Next, we perform exploratory data analysis by printing the first few rows of the dataset using head(), displaying the shape of the dataset using shape, and printing summary statistics using describe().\n", + " Calculate the loss between the true target variable and the predicted target variable.\n", "\n", - "After that, we check for missing values in the dataset using isnull().sum(). If there are missing values, we can handle them accordingly. In this example, we simply drop rows with missing values using dropna().\n", + " Parameters:\n", + " - y_true: The true target variable (numpy array or pandas Series)\n", + " - y_pred: The predicted target variable (numpy array or pandas Series)\n", "\n", - "Then, we perform any necessary preprocessing steps, such as feature scaling or encoding categorical variables. Finally, we split the dataset into input features (X) and the target variable (y), convert them to NumPy arrays using np.array(), and verify their dimensions using shape." + " Returns:\n", + " - loss: The calculated loss (float)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the loss function\n", + "def loss_function(y_true, y_pred):\n", + " # Calculate the mean squared error\n", + " mse = np.mean((y_true - y_pred) ** 2)\n", + " return mse" ] }, { @@ -154,62 +217,66 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Model Development\n", - "Once we have prepared the data, we can proceed with developing the linear regression model. This involves deriving the mathematical formula for linear regression, implementing the formula in code, defining a cost function, and implementing the gradient descent algorithm to train the model.\n", + "### Use gradient descent to train the model\n", "\n", - "Let's take a look at the code snippet below to understand how we can develop the linear regression model:" + "The `gradient_descent` function is responsible for performing gradient descent to optimize the coefficients of the linear regression model. Here is a breakdown of the steps involved:\n", + "\n", + "1. Scale the data: The input features (`X_train` and `X_test`) are scaled using the `StandardScaler` from scikit-learn. This ensures that all features have a similar scale, which can improve the performance of the gradient descent algorithm.\n", + "\n", + "2. Add a bias term: A column of ones is added to the input features (`X_train`) to account for the bias term in the linear regression model.\n", + "\n", + "3. Initialize coefficients: The coefficients are initialized with zeros. The number of coefficients is equal to the number of features plus one (including the bias term).\n", + "\n", + "4. Perform gradient descent: The function iterates over a specified number of iterations. In each iteration, the following steps are performed:\n", + " - Compute the predictions (`y_pred`) by multiplying the input features (`X_train_with_bias`) with the coefficients.\n", + " - Compute the gradients by taking the dot product of the transposed input features (`X_train_with_bias.T`) and the difference between the predictions and the true target variable (`y_train`).\n", + " - Update the coefficients by subtracting the learning rate multiplied by the gradients.\n", + " - Compute the loss by calculating the mean squared error between the true target variable (`y_train`) and the predictions (`y_pred`).\n", + "\n", + "5. Make predictions on the test set: The function applies the same preprocessing steps to the test set (`X_test`) and computes the predictions (`y_pred_test`) using the updated coefficients.\n", + "\n", + "This function is a key component in training the linear regression model from scratch. It allows us to iteratively update the coefficients based on the gradients, gradually improving the model's performance." ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 43, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean Squared Error: 0.8065845639670534\n" - ] - } - ], + "outputs": [], "source": [ - "# Deriving the mathematical formula for linear regression\n", - "# Implementing the formula in code\n", - "class LinearRegression:\n", - " def __init__(self):\n", - " self.coefficients = None\n", + "# Define the gradient descent function\n", + "def gradient_descent(X_train, y_train, X_test, y_test, learning_rate, num_iterations):\n", + " # Scale the data\n", + " scaler = StandardScaler()\n", + " X_train_scaled = scaler.fit_transform(X_train.values.reshape(-1, 1))\n", + " X_test_scaled = scaler.transform(X_test.values.reshape(-1, 1))\n", "\n", - " def fit(self, X, y):\n", - " # Add a column of ones to X for the bias term\n", - " X = np.c_[np.ones((X.shape[0], 1)), X]\n", + " # Add a column of ones to X for the bias term\n", + " X_train_with_bias = np.c_[np.ones((X_train_scaled.shape[0], 1)), X_train_scaled]\n", "\n", - " # Compute the coefficients using the normal equation\n", - " self.coefficients = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n", + " # Initialize the coefficients with zeros\n", + " coefficients = np.zeros((X_train_with_bias.shape[1], 1))\n", "\n", - " def predict(self, X):\n", - " # Add a column of ones to X for the bias term\n", - " X = np.c_[np.ones((X.shape[0], 1)), X]\n", + " # Perform gradient descent\n", + " for i in range(num_iterations):\n", + " # Compute the predictions\n", + " y_pred = X_train_with_bias.dot(coefficients)\n", "\n", - " # Predict the target variable\n", - " y_pred = X.dot(self.coefficients)\n", + " # Compute the gradients\n", + " gradients = 2 * X_train_with_bias.T.dot(y_pred - y_train.values.reshape(-1, 1)) \n", "\n", - " return y_pred\n", + " # Update the coefficients\n", + " coefficients -= learning_rate * gradients\n", "\n", - "# Defining cost function\n", - "def mean_squared_error(y_true, y_pred):\n", - " return np.mean((y_true - y_pred) ** 2)\n", + " # Compute the loss\n", + " loss = np.mean((y_train.values.reshape(-1, 1) - y_pred) ** 2)\n", + " print(\"Iteration:\", i+1, \"Loss:\", loss)\n", "\n", - "# 训练模型\n", - "regressor = LinearRegression()\n", - "regressor.fit(X, y)\n", + " # Make predictions on the test set\n", + " X_test_with_bias = np.c_[np.ones((X_test_scaled.shape[0], 1)), X_test_scaled]\n", + " y_pred_test = X_test_with_bias.dot(coefficients)\n", "\n", - "# 使用训练好的模型进行预测\n", - "y_pred = regressor.predict(X)\n", - "\n", - "# Evaluating the model\n", - "mse = mean_squared_error(y, y_pred)\n", - "print('Mean Squared Error:', mse)" + " return coefficients, y_pred_test" ] }, { @@ -217,11 +284,1035 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this code snippet, we first derive the mathematical formula for linear regression. Then, we implement the formula in code by creating a `LinearRegression` class. The `fit()` method is used to train the model using the normal equation, and the `predict()` method is used to make predictions on new data points.\n", + "Next, we train the linear regression model and make predictions on the test set. \n", "\n", - "We also define a cost function called `mean_squared_error()` to evaluate the performance of the model. Additionally, we can implement the gradient descent algorithm to train the model iteratively if desired.\n", + "First, we import the required library and set the learning rate and number of iterations for gradient descent. We then call the gradient descent function and pass in the training and test data, the learning rate, and the number of iterations. The function returns the optimised coefficients and predictions for the test set. Finally, we store the returned results in the variables coefficients and ypred test. \n", "\n", - "Finally, we train the model using the `fit()` method, make predictions using the `predict()` method, and evaluate the model's performance using the mean squared error (MSE)." + "By running this code, we can train a linear regression model using gradient descent and get the prediction results on the test set to further analyse and evaluate the performance of the model." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: 1 Loss: 49.252973836909085\n", + "Iteration: 2 Loss: 18.27358504939668\n", + "Iteration: 3 Loss: 7.121005085892223\n", + "Iteration: 4 Loss: 3.1060762990306165\n", + "Iteration: 5 Loss: 1.6607019357604422\n", + "Iteration: 6 Loss: 1.1403671649831801\n", + "Iteration: 7 Loss: 0.9530466475033655\n", + "Iteration: 8 Loss: 0.8856112612106326\n", + "Iteration: 9 Loss: 0.8613345221452491\n", + "Iteration: 10 Loss: 0.8525948960817107\n", + "Iteration: 11 Loss: 0.8494486306988371\n", + "Iteration: 12 Loss: 0.8483159751610024\n", + "Iteration: 13 Loss: 0.8479082191673818\n", + "Iteration: 14 Loss: 0.8477614270096787\n", + "Iteration: 15 Loss: 0.8477085818329055\n", + "Iteration: 16 Loss: 0.8476895575692671\n", + "Iteration: 17 Loss: 0.8476827088343573\n", + "Iteration: 18 Loss: 0.8476802432897899\n", + "Iteration: 19 Loss: 0.8476793556937455\n", + "Iteration: 20 Loss: 0.8476790361591695\n", + "Iteration: 21 Loss: 0.847678921126722\n", + "Iteration: 22 Loss: 0.8476788797150412\n", + "Iteration: 23 Loss: 0.8476788648068361\n", + "Iteration: 24 Loss: 0.8476788594398821\n", + "Iteration: 25 Loss: 0.8476788575077785\n", + "Iteration: 26 Loss: 0.8476788568122215\n", + "Iteration: 27 Loss: 0.847678856561821\n", + "Iteration: 28 Loss: 0.8476788564716766\n", + "Iteration: 29 Loss: 0.8476788564392248\n", + "Iteration: 30 Loss: 0.847678856427542\n", + "Iteration: 31 Loss: 0.8476788564233363\n", + "Iteration: 32 Loss: 0.8476788564218222\n", + "Iteration: 33 Loss: 0.8476788564212772\n", + "Iteration: 34 Loss: 0.8476788564210811\n", + "Iteration: 35 Loss: 0.8476788564210102\n", + "Iteration: 36 Loss: 0.8476788564209847\n", + "Iteration: 37 Loss: 0.8476788564209757\n", + "Iteration: 38 Loss: 0.8476788564209723\n", + "Iteration: 39 Loss: 0.8476788564209713\n", + "Iteration: 40 Loss: 0.8476788564209707\n", + "Iteration: 41 Loss: 0.8476788564209705\n", + "Iteration: 42 Loss: 0.8476788564209705\n", + "Iteration: 43 Loss: 0.8476788564209705\n", + "Iteration: 44 Loss: 0.8476788564209704\n", + "Iteration: 45 Loss: 0.8476788564209707\n", + "Iteration: 46 Loss: 0.8476788564209705\n", + "Iteration: 47 Loss: 0.8476788564209705\n", + "Iteration: 48 Loss: 0.8476788564209705\n", + "Iteration: 49 Loss: 0.8476788564209705\n", + "Iteration: 50 Loss: 0.8476788564209705\n", + "Iteration: 51 Loss: 0.8476788564209705\n", + "Iteration: 52 Loss: 0.8476788564209705\n", + "Iteration: 53 Loss: 0.8476788564209705\n", + "Iteration: 54 Loss: 0.8476788564209705\n", + "Iteration: 55 Loss: 0.8476788564209704\n", + "Iteration: 56 Loss: 0.8476788564209705\n", + "Iteration: 57 Loss: 0.8476788564209705\n", + "Iteration: 58 Loss: 0.8476788564209705\n", + "Iteration: 59 Loss: 0.8476788564209705\n", + "Iteration: 60 Loss: 0.8476788564209705\n", + "Iteration: 61 Loss: 0.8476788564209704\n", + "Iteration: 62 Loss: 0.8476788564209705\n", + "Iteration: 63 Loss: 0.8476788564209705\n", + "Iteration: 64 Loss: 0.8476788564209705\n", + "Iteration: 65 Loss: 0.8476788564209705\n", + "Iteration: 66 Loss: 0.8476788564209705\n", + "Iteration: 67 Loss: 0.8476788564209705\n", + "Iteration: 68 Loss: 0.8476788564209704\n", + "Iteration: 69 Loss: 0.8476788564209705\n", + "Iteration: 70 Loss: 0.8476788564209705\n", + "Iteration: 71 Loss: 0.8476788564209705\n", + "Iteration: 72 Loss: 0.8476788564209707\n", + "Iteration: 73 Loss: 0.8476788564209705\n", + "Iteration: 74 Loss: 0.8476788564209705\n", + "Iteration: 75 Loss: 0.8476788564209705\n", + "Iteration: 76 Loss: 0.8476788564209705\n", + "Iteration: 77 Loss: 0.8476788564209705\n", + "Iteration: 78 Loss: 0.8476788564209705\n", + "Iteration: 79 Loss: 0.8476788564209705\n", + "Iteration: 80 Loss: 0.8476788564209705\n", + "Iteration: 81 Loss: 0.8476788564209705\n", + "Iteration: 82 Loss: 0.8476788564209705\n", + "Iteration: 83 Loss: 0.8476788564209705\n", + "Iteration: 84 Loss: 0.8476788564209705\n", + "Iteration: 85 Loss: 0.8476788564209705\n", + "Iteration: 86 Loss: 0.8476788564209705\n", + "Iteration: 87 Loss: 0.8476788564209705\n", + "Iteration: 88 Loss: 0.8476788564209705\n", + "Iteration: 89 Loss: 0.8476788564209705\n", + "Iteration: 90 Loss: 0.8476788564209705\n", + "Iteration: 91 Loss: 0.8476788564209705\n", + "Iteration: 92 Loss: 0.8476788564209705\n", + "Iteration: 93 Loss: 0.8476788564209705\n", + "Iteration: 94 Loss: 0.8476788564209705\n", + "Iteration: 95 Loss: 0.8476788564209705\n", + "Iteration: 96 Loss: 0.8476788564209705\n", + "Iteration: 97 Loss: 0.8476788564209705\n", + "Iteration: 98 Loss: 0.8476788564209705\n", + "Iteration: 99 Loss: 0.8476788564209705\n", + "Iteration: 100 Loss: 0.8476788564209705\n", + "Iteration: 101 Loss: 0.8476788564209705\n", + "Iteration: 102 Loss: 0.8476788564209705\n", + "Iteration: 103 Loss: 0.8476788564209705\n", + "Iteration: 104 Loss: 0.8476788564209705\n", + "Iteration: 105 Loss: 0.8476788564209705\n", + "Iteration: 106 Loss: 0.8476788564209705\n", + "Iteration: 107 Loss: 0.8476788564209705\n", + "Iteration: 108 Loss: 0.8476788564209705\n", + "Iteration: 109 Loss: 0.8476788564209705\n", + "Iteration: 110 Loss: 0.8476788564209705\n", + "Iteration: 111 Loss: 0.8476788564209705\n", + "Iteration: 112 Loss: 0.8476788564209705\n", + "Iteration: 113 Loss: 0.8476788564209705\n", + "Iteration: 114 Loss: 0.8476788564209705\n", + "Iteration: 115 Loss: 0.8476788564209705\n", + "Iteration: 116 Loss: 0.8476788564209705\n", + "Iteration: 117 Loss: 0.8476788564209705\n", + "Iteration: 118 Loss: 0.8476788564209705\n", + "Iteration: 119 Loss: 0.8476788564209705\n", + "Iteration: 120 Loss: 0.8476788564209705\n", + "Iteration: 121 Loss: 0.8476788564209705\n", + "Iteration: 122 Loss: 0.8476788564209705\n", + "Iteration: 123 Loss: 0.8476788564209705\n", + "Iteration: 124 Loss: 0.8476788564209705\n", + "Iteration: 125 Loss: 0.8476788564209705\n", + "Iteration: 126 Loss: 0.8476788564209705\n", + "Iteration: 127 Loss: 0.8476788564209705\n", + "Iteration: 128 Loss: 0.8476788564209705\n", + "Iteration: 129 Loss: 0.8476788564209705\n", + "Iteration: 130 Loss: 0.8476788564209705\n", + "Iteration: 131 Loss: 0.8476788564209705\n", + "Iteration: 132 Loss: 0.8476788564209705\n", + "Iteration: 133 Loss: 0.8476788564209705\n", + "Iteration: 134 Loss: 0.8476788564209705\n", + "Iteration: 135 Loss: 0.8476788564209705\n", + "Iteration: 136 Loss: 0.8476788564209705\n", + "Iteration: 137 Loss: 0.8476788564209705\n", + "Iteration: 138 Loss: 0.8476788564209705\n", + "Iteration: 139 Loss: 0.8476788564209705\n", + "Iteration: 140 Loss: 0.8476788564209705\n", + "Iteration: 141 Loss: 0.8476788564209705\n", + "Iteration: 142 Loss: 0.8476788564209705\n", + "Iteration: 143 Loss: 0.8476788564209705\n", + "Iteration: 144 Loss: 0.8476788564209705\n", + "Iteration: 145 Loss: 0.8476788564209705\n", + "Iteration: 146 Loss: 0.8476788564209705\n", + "Iteration: 147 Loss: 0.8476788564209705\n", + "Iteration: 148 Loss: 0.8476788564209705\n", + "Iteration: 149 Loss: 0.8476788564209705\n", + "Iteration: 150 Loss: 0.8476788564209705\n", + "Iteration: 151 Loss: 0.8476788564209705\n", + "Iteration: 152 Loss: 0.8476788564209705\n", + "Iteration: 153 Loss: 0.8476788564209705\n", + "Iteration: 154 Loss: 0.8476788564209705\n", + "Iteration: 155 Loss: 0.8476788564209705\n", + "Iteration: 156 Loss: 0.8476788564209705\n", + "Iteration: 157 Loss: 0.8476788564209705\n", + "Iteration: 158 Loss: 0.8476788564209705\n", + "Iteration: 159 Loss: 0.8476788564209705\n", + "Iteration: 160 Loss: 0.8476788564209705\n", + "Iteration: 161 Loss: 0.8476788564209705\n", + "Iteration: 162 Loss: 0.8476788564209705\n", + "Iteration: 163 Loss: 0.8476788564209705\n", + "Iteration: 164 Loss: 0.8476788564209705\n", + "Iteration: 165 Loss: 0.8476788564209705\n", + "Iteration: 166 Loss: 0.8476788564209705\n", + "Iteration: 167 Loss: 0.8476788564209705\n", + "Iteration: 168 Loss: 0.8476788564209705\n", + "Iteration: 169 Loss: 0.8476788564209705\n", + "Iteration: 170 Loss: 0.8476788564209705\n", + "Iteration: 171 Loss: 0.8476788564209705\n", + "Iteration: 172 Loss: 0.8476788564209705\n", + "Iteration: 173 Loss: 0.8476788564209705\n", + "Iteration: 174 Loss: 0.8476788564209705\n", + "Iteration: 175 Loss: 0.8476788564209705\n", + "Iteration: 176 Loss: 0.8476788564209705\n", + "Iteration: 177 Loss: 0.8476788564209705\n", + "Iteration: 178 Loss: 0.8476788564209705\n", + "Iteration: 179 Loss: 0.8476788564209705\n", + "Iteration: 180 Loss: 0.8476788564209705\n", + "Iteration: 181 Loss: 0.8476788564209705\n", + "Iteration: 182 Loss: 0.8476788564209705\n", + "Iteration: 183 Loss: 0.8476788564209705\n", + "Iteration: 184 Loss: 0.8476788564209705\n", + "Iteration: 185 Loss: 0.8476788564209705\n", + "Iteration: 186 Loss: 0.8476788564209705\n", + "Iteration: 187 Loss: 0.8476788564209705\n", + "Iteration: 188 Loss: 0.8476788564209705\n", + "Iteration: 189 Loss: 0.8476788564209705\n", + "Iteration: 190 Loss: 0.8476788564209705\n", + "Iteration: 191 Loss: 0.8476788564209705\n", + "Iteration: 192 Loss: 0.8476788564209705\n", + "Iteration: 193 Loss: 0.8476788564209705\n", + "Iteration: 194 Loss: 0.8476788564209705\n", + "Iteration: 195 Loss: 0.8476788564209705\n", + "Iteration: 196 Loss: 0.8476788564209705\n", + "Iteration: 197 Loss: 0.8476788564209705\n", + "Iteration: 198 Loss: 0.8476788564209705\n", + "Iteration: 199 Loss: 0.8476788564209705\n", + "Iteration: 200 Loss: 0.8476788564209705\n", + "Iteration: 201 Loss: 0.8476788564209705\n", + "Iteration: 202 Loss: 0.8476788564209705\n", + "Iteration: 203 Loss: 0.8476788564209705\n", + "Iteration: 204 Loss: 0.8476788564209705\n", + "Iteration: 205 Loss: 0.8476788564209705\n", + "Iteration: 206 Loss: 0.8476788564209705\n", + "Iteration: 207 Loss: 0.8476788564209705\n", + "Iteration: 208 Loss: 0.8476788564209705\n", + "Iteration: 209 Loss: 0.8476788564209705\n", + "Iteration: 210 Loss: 0.8476788564209705\n", + "Iteration: 211 Loss: 0.8476788564209705\n", + "Iteration: 212 Loss: 0.8476788564209705\n", + "Iteration: 213 Loss: 0.8476788564209705\n", + "Iteration: 214 Loss: 0.8476788564209705\n", + "Iteration: 215 Loss: 0.8476788564209705\n", + "Iteration: 216 Loss: 0.8476788564209705\n", + "Iteration: 217 Loss: 0.8476788564209705\n", + "Iteration: 218 Loss: 0.8476788564209705\n", + "Iteration: 219 Loss: 0.8476788564209705\n", + "Iteration: 220 Loss: 0.8476788564209705\n", + "Iteration: 221 Loss: 0.8476788564209705\n", + "Iteration: 222 Loss: 0.8476788564209705\n", + "Iteration: 223 Loss: 0.8476788564209705\n", + "Iteration: 224 Loss: 0.8476788564209705\n", + "Iteration: 225 Loss: 0.8476788564209705\n", + "Iteration: 226 Loss: 0.8476788564209705\n", + "Iteration: 227 Loss: 0.8476788564209705\n", + "Iteration: 228 Loss: 0.8476788564209705\n", + "Iteration: 229 Loss: 0.8476788564209705\n", + "Iteration: 230 Loss: 0.8476788564209705\n", + "Iteration: 231 Loss: 0.8476788564209705\n", + "Iteration: 232 Loss: 0.8476788564209705\n", + "Iteration: 233 Loss: 0.8476788564209705\n", + "Iteration: 234 Loss: 0.8476788564209705\n", + "Iteration: 235 Loss: 0.8476788564209705\n", + "Iteration: 236 Loss: 0.8476788564209705\n", + "Iteration: 237 Loss: 0.8476788564209705\n", + "Iteration: 238 Loss: 0.8476788564209705\n", + "Iteration: 239 Loss: 0.8476788564209705\n", + "Iteration: 240 Loss: 0.8476788564209705\n", + "Iteration: 241 Loss: 0.8476788564209705\n", + "Iteration: 242 Loss: 0.8476788564209705\n", + "Iteration: 243 Loss: 0.8476788564209705\n", + "Iteration: 244 Loss: 0.8476788564209705\n", + "Iteration: 245 Loss: 0.8476788564209705\n", + "Iteration: 246 Loss: 0.8476788564209705\n", + "Iteration: 247 Loss: 0.8476788564209705\n", + "Iteration: 248 Loss: 0.8476788564209705\n", + "Iteration: 249 Loss: 0.8476788564209705\n", + "Iteration: 250 Loss: 0.8476788564209705\n", + "Iteration: 251 Loss: 0.8476788564209705\n", + "Iteration: 252 Loss: 0.8476788564209705\n", + "Iteration: 253 Loss: 0.8476788564209705\n", + "Iteration: 254 Loss: 0.8476788564209705\n", + "Iteration: 255 Loss: 0.8476788564209705\n", + "Iteration: 256 Loss: 0.8476788564209705\n", + "Iteration: 257 Loss: 0.8476788564209705\n", + "Iteration: 258 Loss: 0.8476788564209705\n", + "Iteration: 259 Loss: 0.8476788564209705\n", + "Iteration: 260 Loss: 0.8476788564209705\n", + "Iteration: 261 Loss: 0.8476788564209705\n", + "Iteration: 262 Loss: 0.8476788564209705\n", + "Iteration: 263 Loss: 0.8476788564209705\n", + "Iteration: 264 Loss: 0.8476788564209705\n", + "Iteration: 265 Loss: 0.8476788564209705\n", + "Iteration: 266 Loss: 0.8476788564209705\n", + "Iteration: 267 Loss: 0.8476788564209705\n", + "Iteration: 268 Loss: 0.8476788564209705\n", + "Iteration: 269 Loss: 0.8476788564209705\n", + "Iteration: 270 Loss: 0.8476788564209705\n", + "Iteration: 271 Loss: 0.8476788564209705\n", + "Iteration: 272 Loss: 0.8476788564209705\n", + "Iteration: 273 Loss: 0.8476788564209705\n", + "Iteration: 274 Loss: 0.8476788564209705\n", + "Iteration: 275 Loss: 0.8476788564209705\n", + "Iteration: 276 Loss: 0.8476788564209705\n", + "Iteration: 277 Loss: 0.8476788564209705\n", + "Iteration: 278 Loss: 0.8476788564209705\n", + "Iteration: 279 Loss: 0.8476788564209705\n", + "Iteration: 280 Loss: 0.8476788564209705\n", + "Iteration: 281 Loss: 0.8476788564209705\n", + "Iteration: 282 Loss: 0.8476788564209705\n", + "Iteration: 283 Loss: 0.8476788564209705\n", + "Iteration: 284 Loss: 0.8476788564209705\n", + "Iteration: 285 Loss: 0.8476788564209705\n", + "Iteration: 286 Loss: 0.8476788564209705\n", + "Iteration: 287 Loss: 0.8476788564209705\n", + "Iteration: 288 Loss: 0.8476788564209705\n", + "Iteration: 289 Loss: 0.8476788564209705\n", + "Iteration: 290 Loss: 0.8476788564209705\n", + "Iteration: 291 Loss: 0.8476788564209705\n", + "Iteration: 292 Loss: 0.8476788564209705\n", + "Iteration: 293 Loss: 0.8476788564209705\n", + "Iteration: 294 Loss: 0.8476788564209705\n", + "Iteration: 295 Loss: 0.8476788564209705\n", + "Iteration: 296 Loss: 0.8476788564209705\n", + "Iteration: 297 Loss: 0.8476788564209705\n", + "Iteration: 298 Loss: 0.8476788564209705\n", + "Iteration: 299 Loss: 0.8476788564209705\n", + "Iteration: 300 Loss: 0.8476788564209705\n", + "Iteration: 301 Loss: 0.8476788564209705\n", + "Iteration: 302 Loss: 0.8476788564209705\n", + "Iteration: 303 Loss: 0.8476788564209705\n", + "Iteration: 304 Loss: 0.8476788564209705\n", + "Iteration: 305 Loss: 0.8476788564209705\n", + "Iteration: 306 Loss: 0.8476788564209705\n", + "Iteration: 307 Loss: 0.8476788564209705\n", + "Iteration: 308 Loss: 0.8476788564209705\n", + "Iteration: 309 Loss: 0.8476788564209705\n", + "Iteration: 310 Loss: 0.8476788564209705\n", + "Iteration: 311 Loss: 0.8476788564209705\n", + "Iteration: 312 Loss: 0.8476788564209705\n", + "Iteration: 313 Loss: 0.8476788564209705\n", + "Iteration: 314 Loss: 0.8476788564209705\n", + "Iteration: 315 Loss: 0.8476788564209705\n", + "Iteration: 316 Loss: 0.8476788564209705\n", + "Iteration: 317 Loss: 0.8476788564209705\n", + "Iteration: 318 Loss: 0.8476788564209705\n", + "Iteration: 319 Loss: 0.8476788564209705\n", + "Iteration: 320 Loss: 0.8476788564209705\n", + "Iteration: 321 Loss: 0.8476788564209705\n", + "Iteration: 322 Loss: 0.8476788564209705\n", + "Iteration: 323 Loss: 0.8476788564209705\n", + "Iteration: 324 Loss: 0.8476788564209705\n", + "Iteration: 325 Loss: 0.8476788564209705\n", + "Iteration: 326 Loss: 0.8476788564209705\n", + "Iteration: 327 Loss: 0.8476788564209705\n", + "Iteration: 328 Loss: 0.8476788564209705\n", + "Iteration: 329 Loss: 0.8476788564209705\n", + "Iteration: 330 Loss: 0.8476788564209705\n", + "Iteration: 331 Loss: 0.8476788564209705\n", + "Iteration: 332 Loss: 0.8476788564209705\n", + "Iteration: 333 Loss: 0.8476788564209705\n", + "Iteration: 334 Loss: 0.8476788564209705\n", + "Iteration: 335 Loss: 0.8476788564209705\n", + "Iteration: 336 Loss: 0.8476788564209705\n", + "Iteration: 337 Loss: 0.8476788564209705\n", + "Iteration: 338 Loss: 0.8476788564209705\n", + "Iteration: 339 Loss: 0.8476788564209705\n", + "Iteration: 340 Loss: 0.8476788564209705\n", + "Iteration: 341 Loss: 0.8476788564209705\n", + "Iteration: 342 Loss: 0.8476788564209705\n", + "Iteration: 343 Loss: 0.8476788564209705\n", + "Iteration: 344 Loss: 0.8476788564209705\n", + "Iteration: 345 Loss: 0.8476788564209705\n", + "Iteration: 346 Loss: 0.8476788564209705\n", + "Iteration: 347 Loss: 0.8476788564209705\n", + "Iteration: 348 Loss: 0.8476788564209705\n", + "Iteration: 349 Loss: 0.8476788564209705\n", + "Iteration: 350 Loss: 0.8476788564209705\n", + "Iteration: 351 Loss: 0.8476788564209705\n", + "Iteration: 352 Loss: 0.8476788564209705\n", + "Iteration: 353 Loss: 0.8476788564209705\n", + "Iteration: 354 Loss: 0.8476788564209705\n", + "Iteration: 355 Loss: 0.8476788564209705\n", + "Iteration: 356 Loss: 0.8476788564209705\n", + "Iteration: 357 Loss: 0.8476788564209705\n", + "Iteration: 358 Loss: 0.8476788564209705\n", + "Iteration: 359 Loss: 0.8476788564209705\n", + "Iteration: 360 Loss: 0.8476788564209705\n", + "Iteration: 361 Loss: 0.8476788564209705\n", + "Iteration: 362 Loss: 0.8476788564209705\n", + "Iteration: 363 Loss: 0.8476788564209705\n", + "Iteration: 364 Loss: 0.8476788564209705\n", + "Iteration: 365 Loss: 0.8476788564209705\n", + "Iteration: 366 Loss: 0.8476788564209705\n", + "Iteration: 367 Loss: 0.8476788564209705\n", + "Iteration: 368 Loss: 0.8476788564209705\n", + "Iteration: 369 Loss: 0.8476788564209705\n", + "Iteration: 370 Loss: 0.8476788564209705\n", + "Iteration: 371 Loss: 0.8476788564209705\n", + "Iteration: 372 Loss: 0.8476788564209705\n", + "Iteration: 373 Loss: 0.8476788564209705\n", + "Iteration: 374 Loss: 0.8476788564209705\n", + "Iteration: 375 Loss: 0.8476788564209705\n", + "Iteration: 376 Loss: 0.8476788564209705\n", + "Iteration: 377 Loss: 0.8476788564209705\n", + "Iteration: 378 Loss: 0.8476788564209705\n", + "Iteration: 379 Loss: 0.8476788564209705\n", + "Iteration: 380 Loss: 0.8476788564209705\n", + "Iteration: 381 Loss: 0.8476788564209705\n", + "Iteration: 382 Loss: 0.8476788564209705\n", + "Iteration: 383 Loss: 0.8476788564209705\n", + "Iteration: 384 Loss: 0.8476788564209705\n", + "Iteration: 385 Loss: 0.8476788564209705\n", + "Iteration: 386 Loss: 0.8476788564209705\n", + "Iteration: 387 Loss: 0.8476788564209705\n", + "Iteration: 388 Loss: 0.8476788564209705\n", + "Iteration: 389 Loss: 0.8476788564209705\n", + "Iteration: 390 Loss: 0.8476788564209705\n", + "Iteration: 391 Loss: 0.8476788564209705\n", + "Iteration: 392 Loss: 0.8476788564209705\n", + "Iteration: 393 Loss: 0.8476788564209705\n", + "Iteration: 394 Loss: 0.8476788564209705\n", + "Iteration: 395 Loss: 0.8476788564209705\n", + "Iteration: 396 Loss: 0.8476788564209705\n", + "Iteration: 397 Loss: 0.8476788564209705\n", + "Iteration: 398 Loss: 0.8476788564209705\n", + "Iteration: 399 Loss: 0.8476788564209705\n", + "Iteration: 400 Loss: 0.8476788564209705\n", + "Iteration: 401 Loss: 0.8476788564209705\n", + "Iteration: 402 Loss: 0.8476788564209705\n", + "Iteration: 403 Loss: 0.8476788564209705\n", + "Iteration: 404 Loss: 0.8476788564209705\n", + "Iteration: 405 Loss: 0.8476788564209705\n", + "Iteration: 406 Loss: 0.8476788564209705\n", + "Iteration: 407 Loss: 0.8476788564209705\n", + "Iteration: 408 Loss: 0.8476788564209705\n", + "Iteration: 409 Loss: 0.8476788564209705\n", + "Iteration: 410 Loss: 0.8476788564209705\n", + "Iteration: 411 Loss: 0.8476788564209705\n", + "Iteration: 412 Loss: 0.8476788564209705\n", + "Iteration: 413 Loss: 0.8476788564209705\n", + "Iteration: 414 Loss: 0.8476788564209705\n", + "Iteration: 415 Loss: 0.8476788564209705\n", + "Iteration: 416 Loss: 0.8476788564209705\n", + "Iteration: 417 Loss: 0.8476788564209705\n", + "Iteration: 418 Loss: 0.8476788564209705\n", + "Iteration: 419 Loss: 0.8476788564209705\n", + "Iteration: 420 Loss: 0.8476788564209705\n", + "Iteration: 421 Loss: 0.8476788564209705\n", + "Iteration: 422 Loss: 0.8476788564209705\n", + "Iteration: 423 Loss: 0.8476788564209705\n", + "Iteration: 424 Loss: 0.8476788564209705\n", + "Iteration: 425 Loss: 0.8476788564209705\n", + "Iteration: 426 Loss: 0.8476788564209705\n", + "Iteration: 427 Loss: 0.8476788564209705\n", + "Iteration: 428 Loss: 0.8476788564209705\n", + "Iteration: 429 Loss: 0.8476788564209705\n", + "Iteration: 430 Loss: 0.8476788564209705\n", + "Iteration: 431 Loss: 0.8476788564209705\n", + "Iteration: 432 Loss: 0.8476788564209705\n", + "Iteration: 433 Loss: 0.8476788564209705\n", + "Iteration: 434 Loss: 0.8476788564209705\n", + "Iteration: 435 Loss: 0.8476788564209705\n", + "Iteration: 436 Loss: 0.8476788564209705\n", + "Iteration: 437 Loss: 0.8476788564209705\n", + "Iteration: 438 Loss: 0.8476788564209705\n", + "Iteration: 439 Loss: 0.8476788564209705\n", + "Iteration: 440 Loss: 0.8476788564209705\n", + "Iteration: 441 Loss: 0.8476788564209705\n", + "Iteration: 442 Loss: 0.8476788564209705\n", + "Iteration: 443 Loss: 0.8476788564209705\n", + "Iteration: 444 Loss: 0.8476788564209705\n", + "Iteration: 445 Loss: 0.8476788564209705\n", + "Iteration: 446 Loss: 0.8476788564209705\n", + "Iteration: 447 Loss: 0.8476788564209705\n", + "Iteration: 448 Loss: 0.8476788564209705\n", + "Iteration: 449 Loss: 0.8476788564209705\n", + "Iteration: 450 Loss: 0.8476788564209705\n", + "Iteration: 451 Loss: 0.8476788564209705\n", + "Iteration: 452 Loss: 0.8476788564209705\n", + "Iteration: 453 Loss: 0.8476788564209705\n", + "Iteration: 454 Loss: 0.8476788564209705\n", + "Iteration: 455 Loss: 0.8476788564209705\n", + "Iteration: 456 Loss: 0.8476788564209705\n", + "Iteration: 457 Loss: 0.8476788564209705\n", + "Iteration: 458 Loss: 0.8476788564209705\n", + "Iteration: 459 Loss: 0.8476788564209705\n", + "Iteration: 460 Loss: 0.8476788564209705\n", + "Iteration: 461 Loss: 0.8476788564209705\n", + "Iteration: 462 Loss: 0.8476788564209705\n", + "Iteration: 463 Loss: 0.8476788564209705\n", + "Iteration: 464 Loss: 0.8476788564209705\n", + "Iteration: 465 Loss: 0.8476788564209705\n", + "Iteration: 466 Loss: 0.8476788564209705\n", + "Iteration: 467 Loss: 0.8476788564209705\n", + "Iteration: 468 Loss: 0.8476788564209705\n", + "Iteration: 469 Loss: 0.8476788564209705\n", + "Iteration: 470 Loss: 0.8476788564209705\n", + "Iteration: 471 Loss: 0.8476788564209705\n", + "Iteration: 472 Loss: 0.8476788564209705\n", + "Iteration: 473 Loss: 0.8476788564209705\n", + "Iteration: 474 Loss: 0.8476788564209705\n", + "Iteration: 475 Loss: 0.8476788564209705\n", + "Iteration: 476 Loss: 0.8476788564209705\n", + "Iteration: 477 Loss: 0.8476788564209705\n", + "Iteration: 478 Loss: 0.8476788564209705\n", + "Iteration: 479 Loss: 0.8476788564209705\n", + "Iteration: 480 Loss: 0.8476788564209705\n", + "Iteration: 481 Loss: 0.8476788564209705\n", + "Iteration: 482 Loss: 0.8476788564209705\n", + "Iteration: 483 Loss: 0.8476788564209705\n", + "Iteration: 484 Loss: 0.8476788564209705\n", + "Iteration: 485 Loss: 0.8476788564209705\n", + "Iteration: 486 Loss: 0.8476788564209705\n", + "Iteration: 487 Loss: 0.8476788564209705\n", + "Iteration: 488 Loss: 0.8476788564209705\n", + "Iteration: 489 Loss: 0.8476788564209705\n", + "Iteration: 490 Loss: 0.8476788564209705\n", + "Iteration: 491 Loss: 0.8476788564209705\n", + "Iteration: 492 Loss: 0.8476788564209705\n", + "Iteration: 493 Loss: 0.8476788564209705\n", + "Iteration: 494 Loss: 0.8476788564209705\n", + "Iteration: 495 Loss: 0.8476788564209705\n", + "Iteration: 496 Loss: 0.8476788564209705\n", + "Iteration: 497 Loss: 0.8476788564209705\n", + "Iteration: 498 Loss: 0.8476788564209705\n", + "Iteration: 499 Loss: 0.8476788564209705\n", + "Iteration: 500 Loss: 0.8476788564209705\n", + "Iteration: 501 Loss: 0.8476788564209705\n", + "Iteration: 502 Loss: 0.8476788564209705\n", + "Iteration: 503 Loss: 0.8476788564209705\n", + "Iteration: 504 Loss: 0.8476788564209705\n", + "Iteration: 505 Loss: 0.8476788564209705\n", + "Iteration: 506 Loss: 0.8476788564209705\n", + "Iteration: 507 Loss: 0.8476788564209705\n", + "Iteration: 508 Loss: 0.8476788564209705\n", + "Iteration: 509 Loss: 0.8476788564209705\n", + "Iteration: 510 Loss: 0.8476788564209705\n", + "Iteration: 511 Loss: 0.8476788564209705\n", + "Iteration: 512 Loss: 0.8476788564209705\n", + "Iteration: 513 Loss: 0.8476788564209705\n", + "Iteration: 514 Loss: 0.8476788564209705\n", + "Iteration: 515 Loss: 0.8476788564209705\n", + "Iteration: 516 Loss: 0.8476788564209705\n", + "Iteration: 517 Loss: 0.8476788564209705\n", + "Iteration: 518 Loss: 0.8476788564209705\n", + "Iteration: 519 Loss: 0.8476788564209705\n", + "Iteration: 520 Loss: 0.8476788564209705\n", + "Iteration: 521 Loss: 0.8476788564209705\n", + "Iteration: 522 Loss: 0.8476788564209705\n", + "Iteration: 523 Loss: 0.8476788564209705\n", + "Iteration: 524 Loss: 0.8476788564209705\n", + "Iteration: 525 Loss: 0.8476788564209705\n", + "Iteration: 526 Loss: 0.8476788564209705\n", + "Iteration: 527 Loss: 0.8476788564209705\n", + "Iteration: 528 Loss: 0.8476788564209705\n", + "Iteration: 529 Loss: 0.8476788564209705\n", + "Iteration: 530 Loss: 0.8476788564209705\n", + "Iteration: 531 Loss: 0.8476788564209705\n", + "Iteration: 532 Loss: 0.8476788564209705\n", + "Iteration: 533 Loss: 0.8476788564209705\n", + "Iteration: 534 Loss: 0.8476788564209705\n", + "Iteration: 535 Loss: 0.8476788564209705\n", + "Iteration: 536 Loss: 0.8476788564209705\n", + "Iteration: 537 Loss: 0.8476788564209705\n", + "Iteration: 538 Loss: 0.8476788564209705\n", + "Iteration: 539 Loss: 0.8476788564209705\n", + "Iteration: 540 Loss: 0.8476788564209705\n", + "Iteration: 541 Loss: 0.8476788564209705\n", + "Iteration: 542 Loss: 0.8476788564209705\n", + "Iteration: 543 Loss: 0.8476788564209705\n", + "Iteration: 544 Loss: 0.8476788564209705\n", + "Iteration: 545 Loss: 0.8476788564209705\n", + "Iteration: 546 Loss: 0.8476788564209705\n", + "Iteration: 547 Loss: 0.8476788564209705\n", + "Iteration: 548 Loss: 0.8476788564209705\n", + "Iteration: 549 Loss: 0.8476788564209705\n", + "Iteration: 550 Loss: 0.8476788564209705\n", + "Iteration: 551 Loss: 0.8476788564209705\n", + "Iteration: 552 Loss: 0.8476788564209705\n", + "Iteration: 553 Loss: 0.8476788564209705\n", + "Iteration: 554 Loss: 0.8476788564209705\n", + "Iteration: 555 Loss: 0.8476788564209705\n", + "Iteration: 556 Loss: 0.8476788564209705\n", + "Iteration: 557 Loss: 0.8476788564209705\n", + "Iteration: 558 Loss: 0.8476788564209705\n", + "Iteration: 559 Loss: 0.8476788564209705\n", + "Iteration: 560 Loss: 0.8476788564209705\n", + "Iteration: 561 Loss: 0.8476788564209705\n", + "Iteration: 562 Loss: 0.8476788564209705\n", + "Iteration: 563 Loss: 0.8476788564209705\n", + "Iteration: 564 Loss: 0.8476788564209705\n", + "Iteration: 565 Loss: 0.8476788564209705\n", + "Iteration: 566 Loss: 0.8476788564209705\n", + "Iteration: 567 Loss: 0.8476788564209705\n", + "Iteration: 568 Loss: 0.8476788564209705\n", + "Iteration: 569 Loss: 0.8476788564209705\n", + "Iteration: 570 Loss: 0.8476788564209705\n", + "Iteration: 571 Loss: 0.8476788564209705\n", + "Iteration: 572 Loss: 0.8476788564209705\n", + "Iteration: 573 Loss: 0.8476788564209705\n", + "Iteration: 574 Loss: 0.8476788564209705\n", + "Iteration: 575 Loss: 0.8476788564209705\n", + "Iteration: 576 Loss: 0.8476788564209705\n", + "Iteration: 577 Loss: 0.8476788564209705\n", + "Iteration: 578 Loss: 0.8476788564209705\n", + "Iteration: 579 Loss: 0.8476788564209705\n", + "Iteration: 580 Loss: 0.8476788564209705\n", + "Iteration: 581 Loss: 0.8476788564209705\n", + "Iteration: 582 Loss: 0.8476788564209705\n", + "Iteration: 583 Loss: 0.8476788564209705\n", + "Iteration: 584 Loss: 0.8476788564209705\n", + "Iteration: 585 Loss: 0.8476788564209705\n", + "Iteration: 586 Loss: 0.8476788564209705\n", + "Iteration: 587 Loss: 0.8476788564209705\n", + "Iteration: 588 Loss: 0.8476788564209705\n", + "Iteration: 589 Loss: 0.8476788564209705\n", + "Iteration: 590 Loss: 0.8476788564209705\n", + "Iteration: 591 Loss: 0.8476788564209705\n", + "Iteration: 592 Loss: 0.8476788564209705\n", + "Iteration: 593 Loss: 0.8476788564209705\n", + "Iteration: 594 Loss: 0.8476788564209705\n", + "Iteration: 595 Loss: 0.8476788564209705\n", + "Iteration: 596 Loss: 0.8476788564209705\n", + "Iteration: 597 Loss: 0.8476788564209705\n", + "Iteration: 598 Loss: 0.8476788564209705\n", + "Iteration: 599 Loss: 0.8476788564209705\n", + "Iteration: 600 Loss: 0.8476788564209705\n", + "Iteration: 601 Loss: 0.8476788564209705\n", + "Iteration: 602 Loss: 0.8476788564209705\n", + "Iteration: 603 Loss: 0.8476788564209705\n", + "Iteration: 604 Loss: 0.8476788564209705\n", + "Iteration: 605 Loss: 0.8476788564209705\n", + "Iteration: 606 Loss: 0.8476788564209705\n", + "Iteration: 607 Loss: 0.8476788564209705\n", + "Iteration: 608 Loss: 0.8476788564209705\n", + "Iteration: 609 Loss: 0.8476788564209705\n", + "Iteration: 610 Loss: 0.8476788564209705\n", + "Iteration: 611 Loss: 0.8476788564209705\n", + "Iteration: 612 Loss: 0.8476788564209705\n", + "Iteration: 613 Loss: 0.8476788564209705\n", + "Iteration: 614 Loss: 0.8476788564209705\n", + "Iteration: 615 Loss: 0.8476788564209705\n", + "Iteration: 616 Loss: 0.8476788564209705\n", + "Iteration: 617 Loss: 0.8476788564209705\n", + "Iteration: 618 Loss: 0.8476788564209705\n", + "Iteration: 619 Loss: 0.8476788564209705\n", + "Iteration: 620 Loss: 0.8476788564209705\n", + "Iteration: 621 Loss: 0.8476788564209705\n", + "Iteration: 622 Loss: 0.8476788564209705\n", + "Iteration: 623 Loss: 0.8476788564209705\n", + "Iteration: 624 Loss: 0.8476788564209705\n", + "Iteration: 625 Loss: 0.8476788564209705\n", + "Iteration: 626 Loss: 0.8476788564209705\n", + "Iteration: 627 Loss: 0.8476788564209705\n", + "Iteration: 628 Loss: 0.8476788564209705\n", + "Iteration: 629 Loss: 0.8476788564209705\n", + "Iteration: 630 Loss: 0.8476788564209705\n", + "Iteration: 631 Loss: 0.8476788564209705\n", + "Iteration: 632 Loss: 0.8476788564209705\n", + "Iteration: 633 Loss: 0.8476788564209705\n", + "Iteration: 634 Loss: 0.8476788564209705\n", + "Iteration: 635 Loss: 0.8476788564209705\n", + "Iteration: 636 Loss: 0.8476788564209705\n", + "Iteration: 637 Loss: 0.8476788564209705\n", + "Iteration: 638 Loss: 0.8476788564209705\n", + "Iteration: 639 Loss: 0.8476788564209705\n", + "Iteration: 640 Loss: 0.8476788564209705\n", + "Iteration: 641 Loss: 0.8476788564209705\n", + "Iteration: 642 Loss: 0.8476788564209705\n", + "Iteration: 643 Loss: 0.8476788564209705\n", + "Iteration: 644 Loss: 0.8476788564209705\n", + "Iteration: 645 Loss: 0.8476788564209705\n", + "Iteration: 646 Loss: 0.8476788564209705\n", + "Iteration: 647 Loss: 0.8476788564209705\n", + "Iteration: 648 Loss: 0.8476788564209705\n", + "Iteration: 649 Loss: 0.8476788564209705\n", + "Iteration: 650 Loss: 0.8476788564209705\n", + "Iteration: 651 Loss: 0.8476788564209705\n", + "Iteration: 652 Loss: 0.8476788564209705\n", + "Iteration: 653 Loss: 0.8476788564209705\n", + "Iteration: 654 Loss: 0.8476788564209705\n", + "Iteration: 655 Loss: 0.8476788564209705\n", + "Iteration: 656 Loss: 0.8476788564209705\n", + "Iteration: 657 Loss: 0.8476788564209705\n", + "Iteration: 658 Loss: 0.8476788564209705\n", + "Iteration: 659 Loss: 0.8476788564209705\n", + "Iteration: 660 Loss: 0.8476788564209705\n", + "Iteration: 661 Loss: 0.8476788564209705\n", + "Iteration: 662 Loss: 0.8476788564209705\n", + "Iteration: 663 Loss: 0.8476788564209705\n", + "Iteration: 664 Loss: 0.8476788564209705\n", + "Iteration: 665 Loss: 0.8476788564209705\n", + "Iteration: 666 Loss: 0.8476788564209705\n", + "Iteration: 667 Loss: 0.8476788564209705\n", + "Iteration: 668 Loss: 0.8476788564209705\n", + "Iteration: 669 Loss: 0.8476788564209705\n", + "Iteration: 670 Loss: 0.8476788564209705\n", + "Iteration: 671 Loss: 0.8476788564209705\n", + "Iteration: 672 Loss: 0.8476788564209705\n", + "Iteration: 673 Loss: 0.8476788564209705\n", + "Iteration: 674 Loss: 0.8476788564209705\n", + "Iteration: 675 Loss: 0.8476788564209705\n", + "Iteration: 676 Loss: 0.8476788564209705\n", + "Iteration: 677 Loss: 0.8476788564209705\n", + "Iteration: 678 Loss: 0.8476788564209705\n", + "Iteration: 679 Loss: 0.8476788564209705\n", + "Iteration: 680 Loss: 0.8476788564209705\n", + "Iteration: 681 Loss: 0.8476788564209705\n", + "Iteration: 682 Loss: 0.8476788564209705\n", + "Iteration: 683 Loss: 0.8476788564209705\n", + "Iteration: 684 Loss: 0.8476788564209705\n", + "Iteration: 685 Loss: 0.8476788564209705\n", + "Iteration: 686 Loss: 0.8476788564209705\n", + "Iteration: 687 Loss: 0.8476788564209705\n", + "Iteration: 688 Loss: 0.8476788564209705\n", + "Iteration: 689 Loss: 0.8476788564209705\n", + "Iteration: 690 Loss: 0.8476788564209705\n", + "Iteration: 691 Loss: 0.8476788564209705\n", + "Iteration: 692 Loss: 0.8476788564209705\n", + "Iteration: 693 Loss: 0.8476788564209705\n", + "Iteration: 694 Loss: 0.8476788564209705\n", + "Iteration: 695 Loss: 0.8476788564209705\n", + "Iteration: 696 Loss: 0.8476788564209705\n", + "Iteration: 697 Loss: 0.8476788564209705\n", + "Iteration: 698 Loss: 0.8476788564209705\n", + "Iteration: 699 Loss: 0.8476788564209705\n", + "Iteration: 700 Loss: 0.8476788564209705\n", + "Iteration: 701 Loss: 0.8476788564209705\n", + "Iteration: 702 Loss: 0.8476788564209705\n", + "Iteration: 703 Loss: 0.8476788564209705\n", + "Iteration: 704 Loss: 0.8476788564209705\n", + "Iteration: 705 Loss: 0.8476788564209705\n", + "Iteration: 706 Loss: 0.8476788564209705\n", + "Iteration: 707 Loss: 0.8476788564209705\n", + "Iteration: 708 Loss: 0.8476788564209705\n", + "Iteration: 709 Loss: 0.8476788564209705\n", + "Iteration: 710 Loss: 0.8476788564209705\n", + "Iteration: 711 Loss: 0.8476788564209705\n", + "Iteration: 712 Loss: 0.8476788564209705\n", + "Iteration: 713 Loss: 0.8476788564209705\n", + "Iteration: 714 Loss: 0.8476788564209705\n", + "Iteration: 715 Loss: 0.8476788564209705\n", + "Iteration: 716 Loss: 0.8476788564209705\n", + "Iteration: 717 Loss: 0.8476788564209705\n", + "Iteration: 718 Loss: 0.8476788564209705\n", + "Iteration: 719 Loss: 0.8476788564209705\n", + "Iteration: 720 Loss: 0.8476788564209705\n", + "Iteration: 721 Loss: 0.8476788564209705\n", + "Iteration: 722 Loss: 0.8476788564209705\n", + "Iteration: 723 Loss: 0.8476788564209705\n", + "Iteration: 724 Loss: 0.8476788564209705\n", + "Iteration: 725 Loss: 0.8476788564209705\n", + "Iteration: 726 Loss: 0.8476788564209705\n", + "Iteration: 727 Loss: 0.8476788564209705\n", + "Iteration: 728 Loss: 0.8476788564209705\n", + "Iteration: 729 Loss: 0.8476788564209705\n", + "Iteration: 730 Loss: 0.8476788564209705\n", + "Iteration: 731 Loss: 0.8476788564209705\n", + "Iteration: 732 Loss: 0.8476788564209705\n", + "Iteration: 733 Loss: 0.8476788564209705\n", + "Iteration: 734 Loss: 0.8476788564209705\n", + "Iteration: 735 Loss: 0.8476788564209705\n", + "Iteration: 736 Loss: 0.8476788564209705\n", + "Iteration: 737 Loss: 0.8476788564209705\n", + "Iteration: 738 Loss: 0.8476788564209705\n", + "Iteration: 739 Loss: 0.8476788564209705\n", + "Iteration: 740 Loss: 0.8476788564209705\n", + "Iteration: 741 Loss: 0.8476788564209705\n", + "Iteration: 742 Loss: 0.8476788564209705\n", + "Iteration: 743 Loss: 0.8476788564209705\n", + "Iteration: 744 Loss: 0.8476788564209705\n", + "Iteration: 745 Loss: 0.8476788564209705\n", + "Iteration: 746 Loss: 0.8476788564209705\n", + "Iteration: 747 Loss: 0.8476788564209705\n", + "Iteration: 748 Loss: 0.8476788564209705\n", + "Iteration: 749 Loss: 0.8476788564209705\n", + "Iteration: 750 Loss: 0.8476788564209705\n", + "Iteration: 751 Loss: 0.8476788564209705\n", + "Iteration: 752 Loss: 0.8476788564209705\n", + "Iteration: 753 Loss: 0.8476788564209705\n", + "Iteration: 754 Loss: 0.8476788564209705\n", + "Iteration: 755 Loss: 0.8476788564209705\n", + "Iteration: 756 Loss: 0.8476788564209705\n", + "Iteration: 757 Loss: 0.8476788564209705\n", + "Iteration: 758 Loss: 0.8476788564209705\n", + "Iteration: 759 Loss: 0.8476788564209705\n", + "Iteration: 760 Loss: 0.8476788564209705\n", + "Iteration: 761 Loss: 0.8476788564209705\n", + "Iteration: 762 Loss: 0.8476788564209705\n", + "Iteration: 763 Loss: 0.8476788564209705\n", + "Iteration: 764 Loss: 0.8476788564209705\n", + "Iteration: 765 Loss: 0.8476788564209705\n", + "Iteration: 766 Loss: 0.8476788564209705\n", + "Iteration: 767 Loss: 0.8476788564209705\n", + "Iteration: 768 Loss: 0.8476788564209705\n", + "Iteration: 769 Loss: 0.8476788564209705\n", + "Iteration: 770 Loss: 0.8476788564209705\n", + "Iteration: 771 Loss: 0.8476788564209705\n", + "Iteration: 772 Loss: 0.8476788564209705\n", + "Iteration: 773 Loss: 0.8476788564209705\n", + "Iteration: 774 Loss: 0.8476788564209705\n", + "Iteration: 775 Loss: 0.8476788564209705\n", + "Iteration: 776 Loss: 0.8476788564209705\n", + "Iteration: 777 Loss: 0.8476788564209705\n", + "Iteration: 778 Loss: 0.8476788564209705\n", + "Iteration: 779 Loss: 0.8476788564209705\n", + "Iteration: 780 Loss: 0.8476788564209705\n", + "Iteration: 781 Loss: 0.8476788564209705\n", + "Iteration: 782 Loss: 0.8476788564209705\n", + "Iteration: 783 Loss: 0.8476788564209705\n", + "Iteration: 784 Loss: 0.8476788564209705\n", + "Iteration: 785 Loss: 0.8476788564209705\n", + "Iteration: 786 Loss: 0.8476788564209705\n", + "Iteration: 787 Loss: 0.8476788564209705\n", + "Iteration: 788 Loss: 0.8476788564209705\n", + "Iteration: 789 Loss: 0.8476788564209705\n", + "Iteration: 790 Loss: 0.8476788564209705\n", + "Iteration: 791 Loss: 0.8476788564209705\n", + "Iteration: 792 Loss: 0.8476788564209705\n", + "Iteration: 793 Loss: 0.8476788564209705\n", + "Iteration: 794 Loss: 0.8476788564209705\n", + "Iteration: 795 Loss: 0.8476788564209705\n", + "Iteration: 796 Loss: 0.8476788564209705\n", + "Iteration: 797 Loss: 0.8476788564209705\n", + "Iteration: 798 Loss: 0.8476788564209705\n", + "Iteration: 799 Loss: 0.8476788564209705\n", + "Iteration: 800 Loss: 0.8476788564209705\n", + "Iteration: 801 Loss: 0.8476788564209705\n", + "Iteration: 802 Loss: 0.8476788564209705\n", + "Iteration: 803 Loss: 0.8476788564209705\n", + "Iteration: 804 Loss: 0.8476788564209705\n", + "Iteration: 805 Loss: 0.8476788564209705\n", + "Iteration: 806 Loss: 0.8476788564209705\n", + "Iteration: 807 Loss: 0.8476788564209705\n", + "Iteration: 808 Loss: 0.8476788564209705\n", + "Iteration: 809 Loss: 0.8476788564209705\n", + "Iteration: 810 Loss: 0.8476788564209705\n", + "Iteration: 811 Loss: 0.8476788564209705\n", + "Iteration: 812 Loss: 0.8476788564209705\n", + "Iteration: 813 Loss: 0.8476788564209705\n", + "Iteration: 814 Loss: 0.8476788564209705\n", + "Iteration: 815 Loss: 0.8476788564209705\n", + "Iteration: 816 Loss: 0.8476788564209705\n", + "Iteration: 817 Loss: 0.8476788564209705\n", + "Iteration: 818 Loss: 0.8476788564209705\n", + "Iteration: 819 Loss: 0.8476788564209705\n", + "Iteration: 820 Loss: 0.8476788564209705\n", + "Iteration: 821 Loss: 0.8476788564209705\n", + "Iteration: 822 Loss: 0.8476788564209705\n", + "Iteration: 823 Loss: 0.8476788564209705\n", + "Iteration: 824 Loss: 0.8476788564209705\n", + "Iteration: 825 Loss: 0.8476788564209705\n", + "Iteration: 826 Loss: 0.8476788564209705\n", + "Iteration: 827 Loss: 0.8476788564209705\n", + "Iteration: 828 Loss: 0.8476788564209705\n", + "Iteration: 829 Loss: 0.8476788564209705\n", + "Iteration: 830 Loss: 0.8476788564209705\n", + "Iteration: 831 Loss: 0.8476788564209705\n", + "Iteration: 832 Loss: 0.8476788564209705\n", + "Iteration: 833 Loss: 0.8476788564209705\n", + "Iteration: 834 Loss: 0.8476788564209705\n", + "Iteration: 835 Loss: 0.8476788564209705\n", + "Iteration: 836 Loss: 0.8476788564209705\n", + "Iteration: 837 Loss: 0.8476788564209705\n", + "Iteration: 838 Loss: 0.8476788564209705\n", + "Iteration: 839 Loss: 0.8476788564209705\n", + "Iteration: 840 Loss: 0.8476788564209705\n", + "Iteration: 841 Loss: 0.8476788564209705\n", + "Iteration: 842 Loss: 0.8476788564209705\n", + "Iteration: 843 Loss: 0.8476788564209705\n", + "Iteration: 844 Loss: 0.8476788564209705\n", + "Iteration: 845 Loss: 0.8476788564209705\n", + "Iteration: 846 Loss: 0.8476788564209705\n", + "Iteration: 847 Loss: 0.8476788564209705\n", + "Iteration: 848 Loss: 0.8476788564209705\n", + "Iteration: 849 Loss: 0.8476788564209705\n", + "Iteration: 850 Loss: 0.8476788564209705\n", + "Iteration: 851 Loss: 0.8476788564209705\n", + "Iteration: 852 Loss: 0.8476788564209705\n", + "Iteration: 853 Loss: 0.8476788564209705\n", + "Iteration: 854 Loss: 0.8476788564209705\n", + "Iteration: 855 Loss: 0.8476788564209705\n", + "Iteration: 856 Loss: 0.8476788564209705\n", + "Iteration: 857 Loss: 0.8476788564209705\n", + "Iteration: 858 Loss: 0.8476788564209705\n", + "Iteration: 859 Loss: 0.8476788564209705\n", + "Iteration: 860 Loss: 0.8476788564209705\n", + "Iteration: 861 Loss: 0.8476788564209705\n", + "Iteration: 862 Loss: 0.8476788564209705\n", + "Iteration: 863 Loss: 0.8476788564209705\n", + "Iteration: 864 Loss: 0.8476788564209705\n", + "Iteration: 865 Loss: 0.8476788564209705\n", + "Iteration: 866 Loss: 0.8476788564209705\n", + "Iteration: 867 Loss: 0.8476788564209705\n", + "Iteration: 868 Loss: 0.8476788564209705\n", + "Iteration: 869 Loss: 0.8476788564209705\n", + "Iteration: 870 Loss: 0.8476788564209705\n", + "Iteration: 871 Loss: 0.8476788564209705\n", + "Iteration: 872 Loss: 0.8476788564209705\n", + "Iteration: 873 Loss: 0.8476788564209705\n", + "Iteration: 874 Loss: 0.8476788564209705\n", + "Iteration: 875 Loss: 0.8476788564209705\n", + "Iteration: 876 Loss: 0.8476788564209705\n", + "Iteration: 877 Loss: 0.8476788564209705\n", + "Iteration: 878 Loss: 0.8476788564209705\n", + "Iteration: 879 Loss: 0.8476788564209705\n", + "Iteration: 880 Loss: 0.8476788564209705\n", + "Iteration: 881 Loss: 0.8476788564209705\n", + "Iteration: 882 Loss: 0.8476788564209705\n", + "Iteration: 883 Loss: 0.8476788564209705\n", + "Iteration: 884 Loss: 0.8476788564209705\n", + "Iteration: 885 Loss: 0.8476788564209705\n", + "Iteration: 886 Loss: 0.8476788564209705\n", + "Iteration: 887 Loss: 0.8476788564209705\n", + "Iteration: 888 Loss: 0.8476788564209705\n", + "Iteration: 889 Loss: 0.8476788564209705\n", + "Iteration: 890 Loss: 0.8476788564209705\n", + "Iteration: 891 Loss: 0.8476788564209705\n", + "Iteration: 892 Loss: 0.8476788564209705\n", + "Iteration: 893 Loss: 0.8476788564209705\n", + "Iteration: 894 Loss: 0.8476788564209705\n", + "Iteration: 895 Loss: 0.8476788564209705\n", + "Iteration: 896 Loss: 0.8476788564209705\n", + "Iteration: 897 Loss: 0.8476788564209705\n", + "Iteration: 898 Loss: 0.8476788564209705\n", + "Iteration: 899 Loss: 0.8476788564209705\n", + "Iteration: 900 Loss: 0.8476788564209705\n", + "Iteration: 901 Loss: 0.8476788564209705\n", + "Iteration: 902 Loss: 0.8476788564209705\n", + "Iteration: 903 Loss: 0.8476788564209705\n", + "Iteration: 904 Loss: 0.8476788564209705\n", + "Iteration: 905 Loss: 0.8476788564209705\n", + "Iteration: 906 Loss: 0.8476788564209705\n", + "Iteration: 907 Loss: 0.8476788564209705\n", + "Iteration: 908 Loss: 0.8476788564209705\n", + "Iteration: 909 Loss: 0.8476788564209705\n", + "Iteration: 910 Loss: 0.8476788564209705\n", + "Iteration: 911 Loss: 0.8476788564209705\n", + "Iteration: 912 Loss: 0.8476788564209705\n", + "Iteration: 913 Loss: 0.8476788564209705\n", + "Iteration: 914 Loss: 0.8476788564209705\n", + "Iteration: 915 Loss: 0.8476788564209705\n", + "Iteration: 916 Loss: 0.8476788564209705\n", + "Iteration: 917 Loss: 0.8476788564209705\n", + "Iteration: 918 Loss: 0.8476788564209705\n", + "Iteration: 919 Loss: 0.8476788564209705\n", + "Iteration: 920 Loss: 0.8476788564209705\n", + "Iteration: 921 Loss: 0.8476788564209705\n", + "Iteration: 922 Loss: 0.8476788564209705\n", + "Iteration: 923 Loss: 0.8476788564209705\n", + "Iteration: 924 Loss: 0.8476788564209705\n", + "Iteration: 925 Loss: 0.8476788564209705\n", + "Iteration: 926 Loss: 0.8476788564209705\n", + "Iteration: 927 Loss: 0.8476788564209705\n", + "Iteration: 928 Loss: 0.8476788564209705\n", + "Iteration: 929 Loss: 0.8476788564209705\n", + "Iteration: 930 Loss: 0.8476788564209705\n", + "Iteration: 931 Loss: 0.8476788564209705\n", + "Iteration: 932 Loss: 0.8476788564209705\n", + "Iteration: 933 Loss: 0.8476788564209705\n", + "Iteration: 934 Loss: 0.8476788564209705\n", + "Iteration: 935 Loss: 0.8476788564209705\n", + "Iteration: 936 Loss: 0.8476788564209705\n", + "Iteration: 937 Loss: 0.8476788564209705\n", + "Iteration: 938 Loss: 0.8476788564209705\n", + "Iteration: 939 Loss: 0.8476788564209705\n", + "Iteration: 940 Loss: 0.8476788564209705\n", + "Iteration: 941 Loss: 0.8476788564209705\n", + "Iteration: 942 Loss: 0.8476788564209705\n", + "Iteration: 943 Loss: 0.8476788564209705\n", + "Iteration: 944 Loss: 0.8476788564209705\n", + "Iteration: 945 Loss: 0.8476788564209705\n", + "Iteration: 946 Loss: 0.8476788564209705\n", + "Iteration: 947 Loss: 0.8476788564209705\n", + "Iteration: 948 Loss: 0.8476788564209705\n", + "Iteration: 949 Loss: 0.8476788564209705\n", + "Iteration: 950 Loss: 0.8476788564209705\n", + "Iteration: 951 Loss: 0.8476788564209705\n", + "Iteration: 952 Loss: 0.8476788564209705\n", + "Iteration: 953 Loss: 0.8476788564209705\n", + "Iteration: 954 Loss: 0.8476788564209705\n", + "Iteration: 955 Loss: 0.8476788564209705\n", + "Iteration: 956 Loss: 0.8476788564209705\n", + "Iteration: 957 Loss: 0.8476788564209705\n", + "Iteration: 958 Loss: 0.8476788564209705\n", + "Iteration: 959 Loss: 0.8476788564209705\n", + "Iteration: 960 Loss: 0.8476788564209705\n", + "Iteration: 961 Loss: 0.8476788564209705\n", + "Iteration: 962 Loss: 0.8476788564209705\n", + "Iteration: 963 Loss: 0.8476788564209705\n", + "Iteration: 964 Loss: 0.8476788564209705\n", + "Iteration: 965 Loss: 0.8476788564209705\n", + "Iteration: 966 Loss: 0.8476788564209705\n", + "Iteration: 967 Loss: 0.8476788564209705\n", + "Iteration: 968 Loss: 0.8476788564209705\n", + "Iteration: 969 Loss: 0.8476788564209705\n", + "Iteration: 970 Loss: 0.8476788564209705\n", + "Iteration: 971 Loss: 0.8476788564209705\n", + "Iteration: 972 Loss: 0.8476788564209705\n", + "Iteration: 973 Loss: 0.8476788564209705\n", + "Iteration: 974 Loss: 0.8476788564209705\n", + "Iteration: 975 Loss: 0.8476788564209705\n", + "Iteration: 976 Loss: 0.8476788564209705\n", + "Iteration: 977 Loss: 0.8476788564209705\n", + "Iteration: 978 Loss: 0.8476788564209705\n", + "Iteration: 979 Loss: 0.8476788564209705\n", + "Iteration: 980 Loss: 0.8476788564209705\n", + "Iteration: 981 Loss: 0.8476788564209705\n", + "Iteration: 982 Loss: 0.8476788564209705\n", + "Iteration: 983 Loss: 0.8476788564209705\n", + "Iteration: 984 Loss: 0.8476788564209705\n", + "Iteration: 985 Loss: 0.8476788564209705\n", + "Iteration: 986 Loss: 0.8476788564209705\n", + "Iteration: 987 Loss: 0.8476788564209705\n", + "Iteration: 988 Loss: 0.8476788564209705\n", + "Iteration: 989 Loss: 0.8476788564209705\n", + "Iteration: 990 Loss: 0.8476788564209705\n", + "Iteration: 991 Loss: 0.8476788564209705\n", + "Iteration: 992 Loss: 0.8476788564209705\n", + "Iteration: 993 Loss: 0.8476788564209705\n", + "Iteration: 994 Loss: 0.8476788564209705\n", + "Iteration: 995 Loss: 0.8476788564209705\n", + "Iteration: 996 Loss: 0.8476788564209705\n", + "Iteration: 997 Loss: 0.8476788564209705\n", + "Iteration: 998 Loss: 0.8476788564209705\n", + "Iteration: 999 Loss: 0.8476788564209705\n", + "Iteration: 1000 Loss: 0.8476788564209705\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler\n", + "# Perform gradient descent to train the model\n", + "learning_rate = 0.01\n", + "num_iterations = 1000\n", + "coefficients, y_pred_test = gradient_descent(X_train, y_train, X_test, y_test, learning_rate, num_iterations)" ] }, { @@ -232,39 +1323,56 @@ "## Model Evaluation\n", "After training the linear regression model, it is important to evaluate its performance to assess how well it is able to make predictions. In this section, we will discuss some commonly used evaluation metrics for regression models.\n", "\n", - "When evaluating a machine learning model, we often use certain metrics to measure its performance. Here are some commonly used metrics and plotting methods:\n", - "\n", - "1. **Mean Absolute Error (MAE):** MAE is the average absolute difference between the predicted values and the actual values. It measures the average magnitude of the model's errors. A lower MAE value indicates better predictive performance of the model.\n", - "\n", - "2. **Root Mean Squared Error (RMSE):** RMSE is the square root of the average of the squared differences between the predicted values and the actual values. Compared to MAE, RMSE is more sensitive to large errors because it penalizes squared errors. Similar to MAE, a lower RMSE value indicates better predictive performance of the model.\n", - "\n", - "3. **R-squared:** R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1. A higher R-squared value indicates a better fit of the model to the data.\n", - "\n", - "4. **Mean Squared Error (MSE):** MSE is the average of the squared differences between the predicted values and the actual values. Unlike RMSE, MSE does not take the square root, so its values are typically larger.\n", - "\n", - "Let's take a look at the code snippet below to understand how we can evaluate the linear regression model:" + "When evaluating a machine learning model, we often use certain metrics to measure its performance. Here are some commonly used metrics and plotting methods:" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Mean Absolute Error: 0.7010426719637757\n", - "Root Mean Squared Error: 0.8981005311027566\n", - "R-squared: 0.7692735413614223\n", - "Mean Squared Error: 0.8065845639670534\n", - "Shape of X: (100, 1)\n", - "Shape of y: (100, 1)\n" + "Mean Squared Error: 0.6536995137169997\n", + "Mean Absolute Error: 0.5913425779189757\n", + "R-squared: 0.8072059636181399\n" ] - }, + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score\n", + "\n", + "# Make predictions on the test set\n", + "y_pred = model.predict(X_test)\n", + "\n", + "# Compute the evaluation metrics\n", + "mse = mean_squared_error(y_test, y_pred)\n", + "mae = mean_absolute_error(y_test, y_pred)\n", + "r2 = r2_score(y_test, y_pred)\n", + "\n", + "print(\"Mean Squared Error:\", mse)\n", + "print(\"Mean Absolute Error:\", mae)\n", + "print(\"R-squared:\", r2)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLz0lEQVR4nO3deXwU5f0H8M8Qkg1XIveVhSBFDg+g0mpUFARFOX6xEbkUg8XWu0TqRWsVWxSwVsB6FCyHSsNRCdiqKEoTwAJyWxUVj0QDBIFWE0AIsHl+f4yzZjezx2xmZ56Z+bxfr30tmZndfWY3m/nyPN/n+yhCCAEiIiIih2pgdwOIiIiI6oPBDBERETkagxkiIiJyNAYzRERE5GgMZoiIiMjRGMwQERGRozGYISIiIkdraHcDkq2mpgb79+9Hs2bNoCiK3c0hIiKiOAghcOTIEXTo0AENGkTve3F9MLN//374/X67m0FEREQJKC8vR1ZWVtRjXB/MNGvWDID6ZmRkZNjcGiIiIopHVVUV/H5/8DoejeuDGW1oKSMjg8EMERGRw8STIsIEYCIiInI0BjNERETkaAxmiIiIyNFcnzMTr0AggFOnTtndDEpQWlpazKl7RETkTp4PZoQQOHDgAL799lu7m0L10KBBA3Tp0gVpaWl2N4WIiCzm+WBGC2TatGmDxo0bs7CeA2mFESsqKtCpUyd+hkREHuPpYCYQCAQDmZYtW9rdHKqH1q1bY//+/Th9+jRSU1Ptbg4REVnI00kGWo5M48aNbW4J1Zc2vBQIBGxuCRERWc3TwYyGwxLOx8+QiMi7PD3MRERElCyBALBhA1BRAbRvD/TvD6Sk2N0qd2IwQ0REZLKiImDSJGDv3h+2ZWUBc+YAeXn2tcutOMxEplMUBatWrbK7GUREtigqAkaODA1kAGDfPnV7UZE97XIzW4OZ9evXY8SIEejQoYPuBbCoqAhDhgxBq1atoCgKdu3aZUs7YwkEgJISYMkS9d7KHNSNGzciJSUFV111laHHZWdnY/bs2clpFBGRRwUCao+MEHX3adsKCqy9TniBrcHMsWPH0Lt3bzz99NMR91988cWYMWOGxS2LX1ERkJ0NDBwIjBun3mdnWxd5L1iwAHfddRfeeecdfPXVV9a8KBER6dqwoW6PTG1CAOXl6nFkHluDmauvvhrTpk1DXoQBxPHjx+Ohhx7C4MGDLW5ZfOzuSjx27BiWL1+O2267DcOHD8eiRYtC9v/jH/9Av379kJ6ejlatWgXf5wEDBuDLL7/E3XffDUVRgjOBpk6dij59+oQ8x+zZs5GdnR38eevWrbjiiivQqlUrZGZm4rLLLsOOHTuSeZpERI5RUWHucRQf1+XMVFdXo6qqKuSWDDJ0JS5btgzdu3dH9+7dccMNN2DhwoUQ37/4a6+9hry8PAwbNgw7d+7E2rVr0a9fPwDq8F1WVhZ+//vfo6KiAhUGvlVHjhxBfn4+NmzYgM2bN6Nbt24YOnQojhw5kpRzJCJykvbtzT2O4uO62UzTp0/HI488kvTXMdKVOGBActowf/583HDDDQCAq666CkePHsXatWsxePBgPProoxgzZkzIe9G7d28AQIsWLZCSkoJmzZqhXbt2hl7z8ssvD/l57ty5aN68OdatW4fhw4fX84yIiJytf3911tK+ffr/2VUUdX///ta3zc1c1zMzZcoUVFZWBm/l5eVJeR27uxI/+eQTbNmyBWPGjAEANGzYEKNHj8aCBQsAALt27cKgQYNMf92DBw/i1ltvxVlnnYXMzExkZmbi6NGjzNchIoJaR2bOHPXf4bU8tZ9nz2a9GbO5rmfG5/PB5/Ml/XXs7kqcP38+Tp8+jY4dOwa3CSGQmpqKb775Bo0aNTL8nA0aNAgOU2m0JR80EyZMwKFDhzB79mx07twZPp8POTk5OHnyZGInQkTkMnl5wMsv69eZmT2bdWaSwXXBjFXs7Eo8ffo0XnzxRfzpT3/ClVdeGbLv2muvxd/+9jecd955WLt2LW666Sbd50hLS6uzjlHr1q1x4MABCCGCScHh0+E3bNiAZ599FkOHDgUAlJeX4/DhwyadGRGRO+TlAbm5rABsFVuDmaNHj+Kzzz4L/lxaWopdu3ahRYsW6NSpE/73v//hq6++wv79+wGoQysA0K5dO8O5HmbTuhJHjlQDl9oBTbK7El999VV88803mDhxIjIzM0P2jRw5EvPnz8esWbMwaNAgdO3aFWPGjMHp06exevVq3HfffQDUOjPr16/HmDFj4PP50KpVKwwYMACHDh3C448/jpEjR+KNN97A6tWrkZGREXz+H/3oR3jppZfQr18/VFVV4d57702oF4iIyO1SUpKXM0lhhI2Ki4sFgDq3/Px8IYQQCxcu1N3/8MMPx/0alZWVAoCorKyss+/48eNi9+7d4vjx4wmfw4oVQmRlCaGGM+rN71e3J8vw4cPF0KFDdfdt375dABDbt28XK1asEH369BFpaWmiVatWIi8vL3jcpk2bxHnnnSd8Pp+o/Wvw3HPPCb/fL5o0aSJuvPFG8eijj4rOnTsH9+/YsUP069dP+Hw+0a1bN/H3v/9ddO7cWcyaNSt4DACxcuVKs087KjM+SyIikke063c4RQi9QRL3qKqqQmZmJiorK0N6GADgxIkTKC0tRZcuXZCenp7wa3AxMfuZ9VkSEZEcol2/wzFnxgTsSiQiIrIPgxkiIiIyTKZRCQYzREREZEhRkf7U8zlz7Jl67rqieURERJQ8dq9LqIfBDBEREcVFhnUJ9TCYISIiorgYWZfQSgxmiIiIKC52r0sYCYMZIiIiiovd6xJGwmCGopo6dSr69OkT/HnChAm45pprLG9HWVkZFEWps1YUERFZR1uXMHxFcI2iAH5/ctYljIbBjENNmDABiqJAURSkpqbizDPPxD333INjx44l9XXnzJmDRYsWxXUsAxAiInfR1iUE6gY0yV6XMBoGMw521VVXoaKiAl988QWmTZuGZ599Fvfcc0+d406dOmXaa2ZmZuKMM84w7fmIiMhZ8vKAl18GOnYM3Z6VpW5nnRkyxOfzoV27dvD7/Rg3bhyuv/56rFq1Kjg0tGDBApx55pnw+XwQQqCyshK//OUv0aZNG2RkZODyyy/He++9F/KcM2bMQNu2bdGsWTNMnDgRJ06cCNkfPsxUU1ODmTNn4kc/+hF8Ph86deqERx99FADQpUsXAEDfvn2hKAoG1FrzYeHChejZsyfS09PRo0cPPPvssyGvs2XLFvTt2xfp6eno168fdu7caeI7R0RE9ZGXB5SVAcXFQGGhel9aak8gA7ACcF1CAN99Z/3rNm4ceRAyTo0aNQr2wnz22WdYvnw5VqxYgZTv+/uGDRuGFi1a4PXXX0dmZibmzp2LQYMGYc+ePWjRogWWL1+Ohx9+GM888wz69++Pl156CU899RTOPPPMiK85ZcoUPP/885g1axYuueQSVFRU4OOPPwagBiQ//elP8fbbb+Pss89GWloaAOD555/Hww8/jKeffhp9+/bFzp078Ytf/AJNmjRBfn4+jh07huHDh+Pyyy/H4sWLUVpaikmTJtXrvSEiInNJtS5hspfwtlu0JcSPHz8udu/eLY4fP/7DxqNHhVBDGmtvR48aOq/8/HyRm5sb/Pndd98VLVu2FKNGjRIPP/ywSE1NFQcPHgzuX7t2rcjIyBAnTpwIeZ6uXbuKuXPnCiGEyMnJEbfeemvI/gsuuED07t1b93WrqqqEz+cTzz//vG4bS0tLBQCxc+fOkO1+v18UFhaGbPvDH/4gcnJyhBBCzJ07V7Ro0UIcO3YsuP+5557TfS6N7mdJRESOFe36HY7DTA726quvomnTpkhPT0dOTg4uvfRS/PnPfwYAdO7cGa1btw4eu337dhw9ehQtW7ZE06ZNg7fS0lJ8/vnnAICPPvoIOTk5Ia8R/nNtH330EaqrqzFo0KC423zo0CGUl5dj4sSJIe2YNm1aSDt69+6Nxo0bx9UOIiLyNg4zhWvcGDh61J7XNWjgwIF47rnnkJqaig4dOiA1NTW4r0mTJiHH1tTUoH379igpKanzPIkm9DZq1MjwY2pqagCoQ00XXHBByD5tOEzo1ckmIiKKgMFMOEUBwgIBWTVp0gQ/+tGP4jr2xz/+MQ4cOICGDRsiOztb95iePXti8+bNuPHGG4PbNm/eHPE5u3XrhkaNGmHt2rW4+eab6+zXcmQCtRbpaNu2LTp27IgvvvgC119/ve7z9urVCy+99BKOHz8eDJiitYOIiLyNw0weMXjwYOTk5OCaa67Bm2++ibKyMmzcuBEPPvggtm3bBgCYNGkSFixYgAULFmDPnj14+OGH8eGHH0Z8zvT0dNx///2477778OKLL+Lzzz/H5s2bMX/+fABAmzZt0KhRI7zxxhv4+uuvUVlZCUAtxDd9+nTMmTMHe/bswfvvv4+FCxfiySefBACMGzcODRo0wMSJE7F79268/vrreOKJJ5L8DhERkVMxmPEIRVHw+uuv49JLL8XPf/5znHXWWRgzZgzKysrQtm1bAMDo0aPx0EMP4f7778f555+PL7/8ErfddlvU5/3d736HX//613jooYfQs2dPjB49GgcPHgQANGzYEE899RTmzp2LDh06IDc3FwBw8803469//SsWLVqEc889F5dddhkWLVoUnMrdtGlT/POf/8Tu3bvRt29f/Pa3v8XMmTOT+O4QEZGTKcLlCQpVVVXIzMxEZWUlMjIyQvadOHECpaWl6NKlC9LT021qIZmBnyUROVkgoK40XVGhrmvUv7/1VXRlE+36HY45M0RERDYqKgImTQL27v1hW1aWumyAXUXonIbDTERERDYpKgJGjgwNZABg3z51e1GRPe1yGgYzRERENggE1B4ZvWQPbVtBgXpc7ceUlABLlqj3tfd5GYMZIiKqN15kjduwoW6PTG1CAOXl6nGA2kuTnQ0MHAiMG6feZ2ez9wZgMAOARdrcgJ8hkX14kU1MRUX8x9k1HOWUINXTwYxWMfc7OxaWJFOdPHkSwA9VhInIGsz5SFz79vEd16aN8eEoMzgpSPX0bKaUlBScccYZwboojRs3hlLPlavJejU1NTh06BAaN26Mhg09/StNZKlYOR+Kol5kc3M5zVhP//7qrKV9+/TfQ0VR9wPxD0eZtYq1FqSGt0sLUl9+Wa6ZVp7/y9+uXTsACAY05EwNGjRAp06dGIwSWchIzodZF1k3SUlRp1+PHKkGLrUDB+1P2ezZQLyXp3iHrWJxYpDq+WBGURS0b98ebdq0walTp+xuDiUoLS0NDRp4etSUyHJGcj5IX16e2suhV2dm9mx1v876wLriHbaKxYlBqueDGU1KSgrzLYiIDIj34mnWRdat8vLUXo5IFYDjHY7q39+c9jgxSGUwQ0RECbH6IutmKSmRezniHY4y6//jTgxS2S9PREQJ0S6ywA8XVU0yLrJepg1HdewYuj0ry/xkXC1IjZSCqCiA3y9XkGprMLN+/XqMGDECHTp0gKIoWLVqVch+IQSmTp2KDh06oFGjRhgwYAA+/PBDexpLRER1WHmR9bq8PKCsDCguBgoL1fvSUvPfYycGqbYGM8eOHUPv3r3x9NNP6+5//PHH8eSTT+Lpp5/G1q1b0a5dO1xxxRU4cuSIxS0lIqJIrLrI0g/DUWPHqvfJCiicFqQqQpLSqYqiYOXKlbjmmmsAqL0yHTp0QEFBAe6//34AQHV1Ndq2bYuZM2filltuiet5jSwhTkRERD8IBCInJiebkeu3tAnApaWlOHDgAK688srgNp/Ph8suuwwbN26MGMxUV1ejuro6+HNVVVXS20pERORG0RKTZSJtAvCBAwcAAG3btg3Z3rZt2+A+PdOnT0dmZmbw5vf7k9pOIiIispe0wYwmvKKrECJqldcpU6agsrIyeCsvL092E4mIiMhG0g4zacsMHDhwAO1rTWY/ePBgnd6a2nw+H3w+X9LbR0RERHKQtmemS5cuaNeuHd56663gtpMnT2LdunW46KKLbGwZERERycTWnpmjR4/is88+C/5cWlqKXbt2oUWLFujUqRMKCgrw2GOPoVu3bujWrRsee+wxNG7cGOPGjbOx1URE5AV2zuQhY2wNZrZt24aBAwcGf548eTIAID8/H4sWLcJ9992H48eP4/bbb8c333yDCy64AGvWrEGzZs3sajIREXlAUZH+4o9z5shXY4UkqjOTLKwzQ0RERhQVqesghV8dtbknMhaNi8WJvUxGrt/S5swQERFZLRBQe2T0/puvbSsoUI9ziqIiIDsbGDgQGDdOvc/OVre7BYMZIiKi723YEDq0FE4IoLxcPc4JtF6m8HPat0/d7paAhsEMERHR9yoqzD3OTm7sZYqEwQwREdH3apU1M+U4O7mtlykaBjNERETf699fnbUUqdC8ogB+v3qc7OLtPVq71vm9MwxmiIiIvpeSok6/BuoGNNrPs2fLNxMoEABKSoAlS9T7QCD+3qNp0+qREPzaa8Af/wgcOZLAg83DYIaIiKiWvDx1+nXHjqHbs7LknJYdabbS4cPRe5lqM5wQvGGD+sTDhwP33QcsWFCPM6g/1pkhIiLS4YTaLLFq4txzD/DEE+q/Y13tFUUNfkpLo5znjh3A+efX3X74MNCypaG2x8I6M0REDqI3ROAmTj2/lBRgwABg7Fj1XrZAJp7ZSkuXAsuW1e1l0hM1IXjPHjXaCQ9kZs9WH2hyIGMUgxkiIhu5vaCZ28/PTvHOVmrdGigrAx58ML7nDUkcXr5cDWK6dw896OGH1ReYNMlos5OCwQwRkU3cXtDM7ednNyM1cVJSgEGD4ju+fXsAK1eqQczo0aE777wTqKkBpk410tSkY84MEZENAgG1hyLS/6zjyl+QmNvPTwYlJWpPVyzFxeowmfaZ7NunPzSlKMCw1lvwz4MX6D/R6dOWfljMmSEikpzbC5q5/fxkYLQmTrRp59koQ41Q9AOZ//1P/cAkjjoZzBAR2cBNZfP1uP38ZJBITZzwaeeZ+BYCCkrRpe4L7N6tBjHNm5vedrMxmCEisoGbyubrcfv5ySKRmjh5ecDsmdUQUPAtdAKVtWvVIKZnz+Q0OgmYM0NEZIN48hecnFPi9vOTTdw1cYQAGuj3Y/wcC7BIuUmawoDMmSEikpxTy+bHy+3nJ5u4auIoim4g8yLGQ4HAQtwEwJkraTOYISKyidPK5hvl9vNzDEXRzRL+BGdBgUA+Xgxuc2pidkO7G0BE5GV5eUBurvxl8xPl9vOTWpRFmRREzzBxWmI2gxkiIptpQwRu5fbzk06UIKakWMRVm8ZpidkMZoiIiNwg2vLY32dh9w+ow3yxErO12jROwZwZIiIiJ4uQEwNAjVhqRS1uTcxmMENEROREmZlxBzG1uTExm8NMRETkaXHXaJHFiBHAq6/q76upiT7c9D23JWYzmCEiIs8qKgImTQpdRyorSx2Kka6H4te/Bp58Un/fiROAz2fo6dyUmM1hJiIi8qSiImDkyLoLYu7bp24vKrKnXXUUFqq9LXqBzIED6nCSwUDGbRjMEBGR5wQCao+MXlqJts32Srjbt6tBzPXX1923caPa0LZtrW+XhBjMEBGR52zYULdHpjZbK+F+/bUaxPTrV3ff/Plq43JyrG+XxJgzQ0REnhNvhVtLK+GePBl5uOjWW4HnnrOwMc7CYIaIiDwn3gq3llXCjTQDqXt34OOPLWqEczGYISIiz+nfX5JKuHFU7aXYGMwQEZEnhNeTmTULGDVKjSdqxw2WVMJlEGMq6ROAjxw5goKCAnTu3BmNGjXCRRddhK1bt9rdLCIicpCiIiA7Gxg4EBg3Tr2/+27gnnssroRrYOkBip/0PTM333wzPvjgA7z00kvo0KEDFi9ejMGDB2P37t3oGP4bSEREFEarJxMeJ+zbBzzxBLBsGdC6dZIr4bInJqkUIeR9F48fP45mzZrhlVdewbBhw4Lb+/Tpg+HDh2PatGkxn6OqqgqZmZmorKxERkZGMptLRESSCQTUHplI07C13JjS0iQNKTGISZiR67fUw0ynT59GIBBAenp6yPZGjRrhnXfe0X1MdXU1qqqqQm5ERORNttWT4XCSpaQOZpo1a4acnBz84Q9/wP79+xEIBLB48WK8++67qIgw+X/69OnIzMwM3vx+v8WtJiIiWVheT4ZBjC2kDmYA4KWXXoIQAh07doTP58NTTz2FcePGISVCf+CUKVNQWVkZvJWXl1vcYiIikoVl9WR8vshBTCBgKIgJBICSEmDJEvXe1iUVHEL6YKZr165Yt24djh49ivLycmzZsgWnTp1Cly5ddI/3+XzIyMgIuRERkTdp9WSipa7Uq57M6NHqk588WXfff/+rBjEN4r/U6s26ys62b9FLpwRW0gczmiZNmqB9+/b45ptv8OabbyI3N9fuJhERkeRSUoA5c9R/Rwpojh8HXnnF4BP/5S/qEy5fXnffjh1qENOihaGnlG0Vb9kCq2ikns0EAG+++SaEEOjevTs+++wz3HvvvfD5fHjnnXeQmpoa8/GczUREREVFwC9/qXaWhNOCnLhqy7z7LnDhhfr7Fi4EJkxIqH22z7oKE2k6u6H3qp5cM5sJACorK3HHHXegR48euPHGG3HJJZdgzZo1cQUyREREAJCbC4RNjA3SLtgFBVGGUQ4dUq/keoFMfr76JAkGMoBcq3gHAsCkSfppPnG9VzaQvmjeqFGjMGrUKLubQUREDrZhgzpcE0ntYGHAgFo7Tp8GIv3nuWVL4PBhU9on0yreRgKrkPfKRtIHM0RE5GzhayIlpcJuDAkFCxYWvJNpFW+ZAqt4ST/MREREziVLEqmhYMGGWjGxZl0pCuD3W7CKN+QKrOLFYIaIiJJCptk58QQLAgoGDDQ3iIl3anO0WVeWrOJdi0yBVbwYzBARkelkSyKNFiwIKKgR5vfEGO2VystTZwlZuoq3DpkCq3gxmCEiItPJNDtHEx4sCCgQSM5wUqK9Unl5QFkZUFwMFBaq96Wl1gUytdshQ2AVL+nrzNQX68wQEVlvyRK1NyKWwkJg7NjktydEkhN7ZasZUx92Jm8buX5zNhMREZlOyiRSi2YnOXFqcyQpKfK3EWAwQ0QUJMMUYrfQkkj37dOPE7TeCUuSSC2cYg04c2qz0zFnhogI8kwhdgspkkijTbE+cSIpgQwgaa+UyzGYISLPk2kKsZvYlkQ6ZEjkIObzz9UgxudL0os7c2qz0zEBmIg8zU3JmlaLd1hOq7VSUqL+PGCAejP9/fzjH4H77tPft3IlcM01Jr9gZFqADIR2AFm5UKPTuWqhSSKiZJJxCrETGBmWe+UVdQ3GadPU2+DBJg/hbdqkRgl6gcxdd6kfYj0CmXgL39XmtKnNTscEYCLyNCZrGqf1OoT362vDcrUv1kaONex//1MXe9TTujVw8GCCT/yDoiK1+F/tgDcrS80HitXuvDx1tW4mlScfh5mIyNNKStRehViKi50xRTXZjAzLAUkawhMCaBBlYMGky1qkQIxDRdbgMBMRUZyYrGmMkWG5pAzhKUrkQMbERSBlW46BomMwQ0SeJsUUYgcxMixn6hCexStZM5fKWRjMEJHnMVkzfkZqqJhSb8XiIEbDXCpnYQIwERGYrBkvo5V9E64CbHHV3nAsfOcs7JkhIvqetg7N2LFJqoPiAkaG5RIawovSE6NAwJ8lIk7pTmQKdSTMpXIWBjNERGSIkWG5uI+NEcQoUHtjIlVlNns5CuZSOQunZhMRUUKMLMwZ8dgow0laAFNne9iU7mROodarM+P3q4EMc6mSy8j1m8EMERFZL0oQU/KvGgy8PErOzPeKi9WgKNnLUXA1dXsYuX4zAZiISGKuu5BGS+z93/+A5s1RsSS+p6qoMDaFOtGih1ouFcmLOTNERJIyOw/EVpdeGjmQ+fe/1aijeXMAxmYScQo1AQxmiIikpOWBhPc6REqAldasWWoQo1ddbto0NYi56KKQzUZmEnEKNQHMmSEiko6R9Y+kHXLasQM4/3z9feecA7z/ftSHa8EcEJrYG57Uq71XsWrZSP1ekS6uzURE5GCOLqV/9KgaQUQKZISIGcgA8U/p5hRqApgATEQkHcfmgZhctTdaVebwxOhly4DJk0ODwKwsTqH2CgYzRESScVweSBKXHtCbSaRX+yUrS03PadXKRTO/KG7MmSEikoxj8kBsWD8pmQXySC7MmSEicjDp80BsWsk6EFB7ZPSeXttWUFC/NZnImRjMEBFJyMj6R5axKYjRODoxmpJK6mDm9OnTePDBB9GlSxc0atQIZ555Jn7/+9+jpqbG7qYREZkufNXn3FygrEwt219YqN6XltoQyNgcxGgcmxhNSSd1AvDMmTPxl7/8BS+88ALOPvtsbNu2DTfddBMyMzMxadIku5tHRGSaSEmtc+bYmANiQ05MNI5LjCbLSB3MbNq0Cbm5uRg2bBgAIDs7G0uWLMG2bdtsbhkRkXkiJbVq1X4tH1aSLIjRHD78w7RsPVpidP/+1raL7Cf1MNMll1yCtWvXYs+ePQCA9957D++88w6GDh0a8THV1dWoqqoKuRERyUqqpNZow0mnTtkayBQVAaNGxX4fWCDPm6QOZu6//36MHTsWPXr0QGpqKvr27YuCggKMHTs24mOmT5+OzMzM4M3v91vYYiIiY6RIao0SxFzQ7ksUrRBAQ/s68qMFfJqUFLVwHqdlmyM8f0v2GWJSBzPLli3D4sWLUVhYiB07duCFF17AE088gRdeeCHiY6ZMmYLKysrgrby83MIWE5EbWPmH3Nak1hEjIgYx12E5FAhs/bqT7Qtbxgr4APUzat3amva4nRNXa5c6Z+bee+/FAw88gDFjxgAAzj33XHz55ZeYPn068vPzdR/j8/ng8/msbCYRuYjVibi2JLW++CIQ4W/oEozBOCwJ/iyEGu8UFKizq+wYwuEsJutIl78VJ6l7Zr777js0aBDaxJSUFE7NJqKk0P6Qh/cCaH/Ik/E/0/791WApUqqKogB+v0lJrXv2qE8YIZBRIEICGY3d9Vs4i8kaUuVvGSR1MDNixAg8+uijeO2111BWVoaVK1fiySefxM9+9jO7m0ZELmPXH3JLqv2ePKk+WffuuruXFAooiJ3ca1fPh6UBn4dJkb+VIKmDmT//+c8YOXIkbr/9dvTs2RP33HMPbrnlFvzhD3+wu2lE5DJ2/iFParVfRQEiDb1/X/BO9p4P6Zd3cAknD+dJnTPTrFkzzJ49G7Nnz7a7KUTkcnb/Ic/LU3NSNmwwadVnA7VitJ6PWAtbhvd8BAImtjcGLeD71a/Udmo6drS5sKCLyB7URiN1MENEZBUZ/pCnpAADBtTzSRIoeKf1fIwcqT689mGRej7sqlgc7fSofhINamUg9TATEZFVHJ+XUc/1k4wMddmRKG3Ha3qNk4fzFCFsLOlogaqqKmRmZqKyshIZGRl2N4eIJKZdMAH93gkpp6WavPRArKGjQECtORIpv0j733tpqXkXPTte08v0et38fjWQsfL338j1m8EMEVEtsvwhj8mm9ZNKStQiarEUF5swZGbja3qdlflQkRi5fjNnhoioFtMTcc1m8yKQdiRK252c7UWm5G9ZiMEMEVEYKf+QS7KStR2J0jIkZ5PcmABMRCSzaIm9x45ZvpK1HYnSjk/OpqRjMENEJKO0tMhX71271CCmcWNLmwTYM+PFybNsyBoMZoiIZHLnneoV+tSpuvvmzFGDmN69rW9XLUmtWCzRa5JzcDYTkc1kmDVAEnj1VWDECP19F14IbNpkbXviYMfvLr8v3sHZTEQOYVcVVZLI/v11uxtqk/j/m3YkSkuZnE224zATkU1Y0dTjamrU4aRIgUwcVXuJSMVghsgGgYDaI6N3rdK2FRSox5ELKUrksREGMUSGMZghssGGDZFLswPqtay8XD2OXKSe6ycRkT7mzBDZgBVNPUaSgnduwSRgCseeGSIbsKKpR0TpifFnCRStYCBjVFGRuujkwIHAuHHqfXY2c8y8jsEMkQ1Y0dTlogQxCgQUCCZ6J4BJ8xQJgxkiG7CiqUvFEcRomOhtDJPmKRoGM2SrQAAoKQGWLFHvvfSHiBVNXcRAEFMbE73jx6R5ioYJwGQbLxWMi5SwmJcH5OYymdGxoiX21tRgyVIFGBf7aZjoHRuT5ikaBjNkC23sO7zLWBv7dlPPRKygjRVNf+CYWSrRgphDh4BWrQAw0dtMfC8pGq7NRJYLBNTZB5G6jBVFvdiXlkp6ITMgUtCmXQvdFLTVlyN66s45B/jwQ/19b70FDB4cskn7Xd+3Tz/Xw02/68nG99J7jFy/mTNDlvPK2DcTFuMn/SyVmTPVq6VeIHPXXeoHGhbIAEz0NhPfS4qGwQxZzitj314J2upL6qBv2zb1SvnAA3X3nXGG2sCnnor6FEz0Ng/fS4qEOTNkOa+MfXslaKsvI0GfZblFVVVAZmb0RhnARG/z8L0kPQxmyHJawbhYY99OLxjnlaCtvqQL+pK09AATvc3D95LCcZiJLOeVsW9W+Y2PNEEfF4EkciwGM2QLL4x9eyVoqy/bgz4GMUSOZziYmTBhAtavX5+MtpDH5OUBZWVAcTFQWKjel5a6I5DReCFoqy+rgr7watNeC2K8XG2b3M9wnZlrr70Wr732Gvx+P2666Sbk5+ejY/hfaol4vc6MY4qQuRw/h9j06sz4/WogU9+gr/ZzCyQnJ0ZmjqjhQxTGyPU7oaJ5//3vf7F48WIsWrQIH3zwAQYPHoyJEyciNzcXqampCTc8GbwczPAPGDlNMoI+rYZNjfBeEAOwcCM5V9KDmdp27tyJBQsW4K9//SuaNm2KG264Abfffju6detWn6c1jVeDGf4BI1KDo5SGkYOYBopwdNXYWMGfl6ptk/tYVgG4oqICa9aswZo1a5CSkoKhQ4fiww8/RK9evTBr1qz6PHVQdnY2FEWpc7vjjjtMeX43kroIGZFVFCViIKOtZO3kwoVFRWqgMnAgMG6cep+dHVotmYUbySsMBzOnTp3CihUrMHz4cHTu3Bl///vfcffdd6OiogIvvPAC1qxZg5deegm///3vTWng1q1bUVFREby99dZbAIDrrrvOlOd3I/4BIzvZnmgaJbE3FSehoG6U77TChfEu/yBdDR+iJDFcNK99+/aoqanB2LFjsWXLFvTp06fOMUOGDMEZZ5xhQvOA1q1bh/w8Y8YMdO3aFZdddpkpz+9G/ANGdrE1TytKsbvu+Bh70D3ificVLozV86ooas9rbq5ENXyIksxwMDNr1ixcd911SE9Pj3hM8+bNUVpaWq+G6Tl58iQWL16MyZMnQ4nwh6u6uhrV1dXBn6uqqkxvh+z4B4ysEJ6vcegQMHp03Yus1luQtDytnj2Bjz/W3VXzzHPoPP1W7NsH6HTIOLLatJGeV69U2yYyPMw0fvz4qIFMMq1atQrffvstJkyYEPGY6dOnIzMzM3jz+/3WNVASthchI9fTy9cYO9biPK3HH1d/mfUCmX79ACHQ4PZbXVe40EjPKws3klc4qgLw/PnzcfXVV6NDhw4Rj5kyZQoqKyuDt/LycgtbKAf+AaNkipSvES1QMTVP64MP1F/k+++P/GJbtwZ/dFvhQqM9r247fyI99Z6abZUvv/wSZ555JoqKipCbmxv347w6NRtIbhEy8qZYU31jKSxUe3ASUl0NROsVjvGnzC2FC7XPINbQUfh0a7ecP3mHkeu3Y1bNXrhwIdq0aYNhw4bZ3RTHyMtTkwD5B4zMEitfI5aE87RMWMk6JUX9/de+D1pOidO+D1rP68iR6ttS+/Sj9bxypWlyM0cEMzU1NVi4cCHy8/PRsKEjmiwN/gEjMyU6Ay7hRFMTghiNbBWx69NTog0d6Z0Pe17JixwRGbz99tv46quv8POf/9zuphB5WiI9KwnlaZkYxACRK2InfaZVlPbUN7BizyvRDxyTM5MoL+fMkPyclscQK18DUNtfOxnYUJ6WyUEMIF9Jfy41QhQfS9dmkh2DGZKVbMMe8dIuxoB+vsby5UCrVgYDtCQEMZqSEnXqeCzFxckfkpUtsCKSmWVrMxFRYuItRy+jWFN9R45Ug4KxY9X7qBflKEsPQAhTVrOWqSI2lxohSg5H5MwQuYmRcvSy/u+83vkaSeyJCSdTRWyZAisiN2EwQ2QxI/87l3kmWkIz5SwMYjQylfSXKbAichMOMxFZzJP/O482nHTkSNICGUCuithcaoQoORjMEFnMU/87jxbEbNyoBjFNmya9GWaW9A8E1KTiJUvUeyPrTckUWBG5CYMZIot54n/nubmRT3DKFDWIycmxtEl5eUBZmTprqbBQvS8tNRbI6C2wmZ1tLGGbayURmY9Ts4lsEGt6s2MvasuXA6NH6+9r2lQdUnIos+vDOK3GEJHVWGemFgYzJCtXLQS6b5/atRCJw//MsD4MkfVcudAkkdu4ohx9TU30Bjs8iNG4ZQYakVsxmCGykaMXArVhmrVdPDkDjchBGMwQkTEeCmI0npqBRuRADGaIHMzSJFIPBjEamQrvEVFdnJpN5FBmTBOOiwXrJ8mO9WGI5MZghsiBLFmokkFMCNaHIZIXp2YTOUzSpwl7eDgpHqwPQ2QNTs0mMshJF6ikTRNmEBMXR89AI3IpBjPkeXrF67Ky1BwJGYcO4p3+u2+funZQzAAtWhBTUxN9PxGRBBjMkKdFKlGv5Z7ImAsR7/TfggLg8OEffq4ToEULUg4cANq2TbSJRESWYs4MeZZTS9Rr7Y40TTgSLXapEVGCmFWr1LLELuCkoUMiqsvI9ZuzmcizjOSeyCSeacJ6nha3Rw5kRo9WT9glgYxl09aJSAoMZsiznFyiPtI04Vat6h47AMUQUHA7ntN/MiGApUvNb6RNLJm2TkRSYc4MeZbTS9TrLVS5bx9www3q/kx8i2/RPPITmDjCLMuQTiCgJnPrnZoQas9VQYH6vnHIicg9GMyQZ7mhRH34NOGSEvVeIPJ4kwKB4mJgQMQjjJFpNhhXtybyJg4zkWe5sUT9gIFKxEBGgUADRcDvNy9Ak21Ix8lDh0SUOAYz5GmuKVEfZekBNbwRpgdosYZ0AHVIJxCo/2vpvXZJCbBkiXqvvYbThw6JKDEcZiLP08s9ccw03ijTl/xZos7Qz+zZ5gVodg3pRBvWys11/tAhERnHYIYIDixRH8fSA2VJTsq1Y0gnniKHc+ao/1aU0OOcOnRIRLExmCHbyDIDxlEMrJ+U7ADN6iGdeGcqlZaqQY1e742ZPVNEJA8GM2QLmWbAOIKEi0BaPRvMyLCW7EOHDOSJzMVghiznxPWQbCNhEKPRZoNZNaRjdFhL1qFDBvJE5uNsJrKUnTNgHCXK7CScPGl7IKOxcjaYG2YqyTaVncgtpA9m9u3bhxtuuAEtW7ZE48aN0adPH2zfvt3uZlGCnLoekmWiBTEffqi+Qamp1rYphrw8oKwMKC4GCgvV+9JS83sZtGGtSG+PosDUGjpmYyBPlDxSDzN98803uPjiizFw4ECsXr0abdq0weeff44zzjjD7qZRgljULAK/P3KUN3u2ehWMwc48DCuGdKwe1jIbqxMTJY/UwczMmTPh9/uxcOHC4Lbs7Gz7GkT15oahAlM9/jhw//36+846C/jkk7iexit5GNqwlhNnKjGQJ0oeRQhJBt919OrVC0OGDMHevXuxbt06dOzYEbfffjt+8YtfRHxMdXU1qqurgz9XVVXB7/ejsrISGRkZVjSboggEgOzs2DNgSkvl/B+2ab0f//kP0Lt35P0GvpaREqq13go3JlQ7cTZQSQkwcGDs44qL2TNDBKjX78zMzLiu31IHM+np6QCAyZMn47rrrsOWLVtQUFCAuXPn4sYbb9R9zNSpU/HII4/U2c5gRh7axRfQHyqQ9eJrtPdD94J7uhr4/vdal8GvoxYcRhq+kD049BKnB/JEVnNNMJOWloZ+/fph48aNwW2/+tWvsHXrVmzatEn3MeyZcQa9wMDvl3eowGjvh975RVvJOtHZSfzfvrM4NZAnsoORYEbq2Uzt27dHr169Qrb17NkTX331VcTH+Hw+ZGRkhNxIPlbNgDGD0Vko4dNvv1/mUf/JhajXNGvmYTiLaxY2JZKM1AnAF198MT4JS4Dcs2cPOnfubFOLrOPEnACjZC1qFs7ILJT+/X8IfKL1xAROC1M+TyZUO4/s1YmJnEjqYObuu+/GRRddhMceewyjRo3Cli1bMG/ePMybN8/upiWVV2amJMrqQM9I78eGDUD53shBjAK1F6bYpOm3Vi8pIBMnB/xOCeSJHENI7p///Kc455xzhM/nEz169BDz5s0z9PjKykoBQFRWViapheZasUIIRdHGHn64KYp6W7HC7hbaa8UKIbKyQt+brKzkvi/FxXU/D71btJ3hmwoLzWuf9jsT/nvj5t8ZO34PiMhaRq7fUicAm8FIApHdODMlOrumIMeahRJtOEnriQlndkKu0xKq68OLU9GJvMg1s5nM4KRghjNTIrM70NObhZJIEJPMdjp52CVeif4eeOG9IXIb18xm8hrOTInM7jWdas9CiTY7Sfl+r+6+JJfc1/Iwxo5V7914sU7k96CoSA2ABg4Exo1T77OzuagjkZswmJEIZ6ZEJkOgl3etEjG5tymORAxiNJx+W39Gfw+4SjWRN0g9m8lrvDwzpTa9IQFbA71IyzQDuBCb8C4ujLj/wQeBXr04tGEWI78HseoDKYpaHyg3l58LkdOxZ0Yi2qrAQN3rpxNWBTZDpCGBw4fVQC5SXKEoasKrqYHexIkRX7B0wiNQIKIGMgAwaJC7h32spgX88fwe2D00SUTWYTAjGS9XCI02JDBqlBoUABYEeq++qj7pggV193XsCAiBTn99yPrgigwF/DIMTUYSCKgJ/0uWqPda9WgiSgyDGQk5qdS/WeJZMmDpUmDZsiQGegcOqFfEESP09wsRjLTYi2afeAN+WXPQmJBMZD5OzSYpGJmWrg0hmDbNtqYm+hNE+Yo4tb6LG6YqxzoHGVepZo0covgZuX4zAZgA2H9xMzIkYGop+CjJvfEsAOnEdXbcslxGrN8Drfds5Ej1Y9ZbpdrK3jMmJBMlD4eZSIpub8uHBBQlciBjcCVrJ9V38dpUZZly0JiQTJQ8DGY8TpaLm5FZKvViYhDjNPHkJRUUuC8ZVZYcNJkTkomcjsGMB2kzKf72N+CWW+S4uCU9odbDQYzGyz0DMvSeyZqQTOQGDGY8pvaQ0g03qPVbIrH64paUIQEGMUHsGbCXZb2PRB7EBGAPiTSTIhYrL26mJdTWM7HXjdgzYC/ZEpKJ3IQ9Mx4RLV8iFqsvbvUaEmBPTETsGbCfTAnJRG7CnhmPiJUvocdRa0FF64mpqYm+3yPYMyAHJ07nJ5IdgxkL2VnLxehQkWMubtGClEOHgFatrGuLA2g9A3p1ZmQv9OcmptZKIiIGM1axu1CZ0aEi6S9uvXoBH32kv++tt4DBg61tj4PY3TNgd4FGInIfLmdgARlKmMdT2r1VK2DWLHU8P5ELjCUXqRkzgClT9PcVFKgnYCJeeM1ld1BPRM5h5PrNYCbJtCAiUr6KlevDaEEVoJ8vUZ+gKukXqW3bgJ/8RH9fo0bAd9+Z8CKheOE1lwxBPRE5h5HrN2czJZlMhcqSNZMiqVWEjxxRr3aRAhkhkhbIyFAZ2S28Wn2YiKzBYCbJZCtUZnZp96RepBQFiBSNJ3GaNS+85pMpqCci92ECcJLJWKjMzJkURi5Scb+mzQXvknJOHidbUE9E7sJgJsm0QmXREm8dU8tFR7wXn7Vr6ybRhifXDhgoR9VeXnjNJ2NQT0TuwWAmydxeqCzei8+0aT/8OytLre67ZInaAyIgRxCj4YXXfG4P6onIXsyZsYCbS5jHKpGvZ+9e4I9/BMr3KpEDGRuXHmDZf/MlfVV0IvI0BjMWMTvxVhbRLlKRCEQOYhooAp38wtbkWrMuvIEAUFKi9kCVlDBh2M1BPRHZi3VmKG7RCsjp1WQJF204SUHor2Fxsf3JtXrn5PfHVxmZNWoiYyFCIooHi+bVwmDGHPFcnGtfpHbv/iFPxkgQoyksVPNq7JbIhZfF4YiI6o/BTC1WBzNm/69Thv/FJnJxLimJPjupIU4hECX/XIaemUTIVPGZiMjJWAHYJkVF6oVs4EBg3Dj1Pjs78WqxZj9fIhIqIKcoEQOZTvgSCkTEQMbpybUsDkdEZD0GMyYxu/y9LOX0DV2c8/MjZgFfg5VQIFCOThGfyw2zWlijhojIelIHM1OnToWiKCG3du3a2d2sOswufy9TOf14Lrp5WKH2xLz4Yp19ZYMmwp8l8AquCW7z+4F771WHW2pzw6wW1qghIrKe9EXzzj77bLz99tvBn1Mk/C+72eXvZSqnH+2im41SlOLMyAcIgWwAZRHyfqZPtz8fyGwsDkdEZD3pg5mGDRtK2RtTm9lDCzINVehdnBviFE4hLfKDwq7ikdaCMnONKFm4veIzEZGMpB5mAoBPP/0UHTp0QJcuXTBmzBh88cUXUY+vrq5GVVVVyC3ZzB5akGmoIryAnIASOZCxsWqvTKwqDseifEREKqmnZq9evRrfffcdzjrrLHz99deYNm0aPv74Y3z44Ydo2bKl7mOmTp2KRx55pM72ZE7N1qbjxhpaiHc6rtnPZwqbV7J2otrT6tu0UbcdPGjOkBqL8hGR27m2zsyxY8fQtWtX3HfffZg8ebLuMdXV1aiurg7+XFVVBb/fn/Q6M9rsI0B/aMHo/8jNfr6ERQliAqdFUoMpGWrsmMHswINF+YjIC1xbZ6ZJkyY499xz8emnn0Y8xufzISMjI+RmBbOHFmxfx0ZRIgcy3w8nJTOwkKHGjhnMnmIv00w3IiJZOKpnprq6Gl27dsUvf/lLPPTQQ3E9hhWADZJgOMktPQ/JqAZcUqIGdrE4tYIyEZHGyPVb6tlM99xzD0aMGIFOnTrh4MGDmDZtGqqqqpCfn2930yIye4aOZTN+JAhigNg9D4qi9jzk5so/5GR0in08gatMM92IiGQh9TDT3r17MXbsWHTv3h15eXlIS0vD5s2b0blzZ7ub5h5xDCdZyU3LARgJPOIdVpNpphsRkSyk7plZunSp3U1wL0l6YsK5qech3oDi00+BqVPrvu1aXk3tYTUW5SMiqkvqnhlKgmg9MceP1yuQMaPuiZt6HrTAI9LbrQUe8+bFn9AbXvcn/PkAFuUjIu9hMONACQUNo0dHvqqWlgJCIJCannAwYtbso3gCAKesqh1P4PGLX6i9LJHoDavZPtONiEgyDGZsZjQwKSoCOncODRo6d44SNCxerF45ly+vu++VV9SrZXZ2vYIRM6cfu63nIVbg0a1bfM8TPqyWlweUlamzlgoL1fvSUgYyRORRwuUqKysFAFFZWWl3U+pYsUKIrCwty1a9ZWWp22s7fVqI4mIhCgpCjw2/hTzu/fcjH3jPPXXaoSh1D1MU9RbenvC2hZ9D+HP4/epx9X1v/P7obZGZ9hkWFqr32vtRXBz9M9VuxcX2tZ2IyA5Grt+OqjOTCKvrzMQr3loqetVjI2nZEvj686NIOaOZ/gFduwKffRayqb61UJJZ98QtFYCjkXLpCiIiCbimzoxbxVtLpaYGGDUq3pxcgcP/bQCcEWm3/pMYrYUSLpmzj9y4qnY4rrJNRFR/zJmxQbwBxO23xxfICCgQkT7KGLVi6huMuGn2kV2Y0EtEVD/smUlQfYZA4g0gDh2Kvl+g/rVi6huMsO6JOfLy1KrGbh9WIyJKBvbMJKC+05Dr20uh9sToBzJr3zZWtbe+U6HdNvvITtqw2tix6j3fMyKi+DCYMciMacjxBBCtW9fdHi2IUSDQqqUwnGNiRjDCYRIiIrITgxkDYiXuAqHVWiOJJ4B45pkfAp5YQYwC9cXnzUvsf/NmBCOse0JERHbh1GwDzJ6GrDft2u9Xe0Ly8hB1/SQtgAHUoGPOnPoHDl6YCk1ERM7AqdlJYvY05IhJnxf0A67drvsYBQJZWcAjv1Crx5oZdHhhKjQREbkPgxkDjM78iaenIySAuO02YOBfdJ+z5F81qDigoJg9JkRERCEYzBhgZBqy3hBSxOGgRYuAm27Sf9ETJwCfDwNMOgciIiK3YQKwAfHO/HnllThnPH3wgfpAvUDm4EE1YvL5zDwFIiIi12EwY1CsmT+5ubFnPD12V4UaxJx7bt2D3n9fPVBvbjYRERHVwWGmBESr1lpSEnmpAh9O4IRoBOzX2bl1K9CvXzKbTURE5EoMZhIUaeaP3kwmBTWoQYSM3VdeAf7v/0xtGxERkZdwmMlk4TOeBBTdQObTO+eow0kMZBwvEFB75JYsUe9jFU0kIiJzMZgxmTbjqQyddav2FmA2OvkFzpz9KxtaR2ar7zpdRERUfwxmTJay+AWU71XQGV+FbJ+NSWigCDylTOLCiy5hxjpdRERUfwxmzLJqlTpDacKEkM1T8BgUCNyN2Vx40UXMWqeLiIjqjwnA9VVcDFx+ed3tr76KwFXDMGQDcB7XOnKdDRsiz1oD1ICmvFw9jktEEBElF4OZRJ04ATRqVHf73/6mJk8ASAEvZG5l9jpdRESUOA4zJWrZstCfn35a/e/494EMuZvRdbqIiCh52DOTqP/7P+D++4EmTYDf/c7u1pDFjKzTRUREycVgJlHNmwMzZtjdCrKJtk7XyJFq4FI7oKm9ThdzpIiIko/DTEQJirVOF2etERFZgz0zRPUQbZ0uIiKyBoMZonqKtE4XERFZg8NMRERE5GjsmfG4QIBDJERE5GyO6pmZPn06FEVBQUGB3U1xBS6SSEREbuCYYGbr1q2YN28ezjvvPLub4gpcJJGIiNzCEcHM0aNHcf311+P5559H8+bNox5bXV2NqqqqkBuF4iKJRETkJo4IZu644w4MGzYMgwcPjnns9OnTkZmZGbz5/X4LWugsRhZJJCIikp30CcBLly7Fjh07sHXr1riOnzJlCiZPnhz8uaqqigFNGCcsksjEZCIiipfUwUx5eTkmTZqENWvWID09Pa7H+Hw++Hy+JLfM2WRfJLGoSB0Gq917lJWlLh/AqrpERBROEUIvc0IOq1atws9+9jOk1PoveSAQgKIoaNCgAaqrq0P26amqqkJmZiYqKyuRkZGR7CY7QiCgzlqKtUhiaan1vSFaYnJ4u7T1jrhMABGRNxi5fkudMzNo0CC8//772LVrV/DWr18/XH/99di1a1fMQIb0aYskAj8ECRo7F0lkYjIRESVC6mCmWbNmOOecc0JuTZo0QcuWLXHOOefY3TxHk3GRRCYmExFRIqTOmaHkkm2RRCckJhMRkXwcF8yUlJTY3QRXkWmRRNkTk4mISE5SDzORt/Tvrw5zhefxaBQF8PvV44iIiDQMZkgasiYmExGR3BjMkFRkTEwmIiK5OS5nhtxPtsRkIiKSG4MZkpJMiclERCQ3DjMRERGRozGYISIiIkdjMENERESOxmCGiIiIHI3BDBERETkaZzO5TCDAKc1EROQtDGZcpKgImDQpdOXprCy1qi6LzRERkVtxmMklioqAkSNDAxkA2LdP3V5UZE+7iIiIko3BjAsEAmqPjBB192nbCgrU44iIiNyGwYwLbNhQt0emNiGA8nL1OCIiIrdhzozNzEjYragw9zgiIiInYTBjI7MSdtu3N/c4IiIiJ+Ewk03MTNjt318NghRFf7+iAH6/ehwREZHbMJixgdkJuykpam8OUDeg0X6ePZv1ZoiIyJ0YzNggGQm7eXnAyy8DHTuGbs/KUrezzgwREbkVc2ZskKyE3bw8IDc3uRWAWWGYiIhkw2DGBslM2E1JAQYMMP64eLDCMBERyYjDTDZwYsIuKwwTEZGsGMzYwGkJu6wwTEREMmMwYxMnJeyywjAREcmMOTM2siJh1wysMExERDJjMGOzZCbsmoUVhomISGYcZqKYnJiwTERE3sFghmJyWsIyERF5C4MZiouTEpaJiMhbmDNDcXNKwjIREXkLgxkyxAkJy0RE5C1SDzM999xzOO+885CRkYGMjAzk5ORg9erVdjeLiIiIJCJ1MJOVlYUZM2Zg27Zt2LZtGy6//HLk5ubiww8/tLtpREREJAlFCL0i9fJq0aIF/vjHP2LixIm6+6urq1FdXR38uaqqCn6/H5WVlcjIyLCqmURERFQPVVVVyMzMjOv6LXXPTG2BQABLly7FsWPHkJOTE/G46dOnIzMzM3jz+/0WtpKIiIisJn3PzPvvv4+cnBycOHECTZs2RWFhIYYOHRrxePbMEBEROZ+RnhnpZzN1794du3btwrfffosVK1YgPz8f69atQ69evXSP9/l88Pl8FreSiIiI7CJ9z0y4wYMHo2vXrpg7d25cxxuJ7IiIiEgOrsyZ0QghQoaRiIiIyNukHmb6zW9+g6uvvhp+vx9HjhzB0qVLUVJSgjfeeMPuphEREZEkpA5mvv76a4wfPx4VFRXIzMzEeeedhzfeeANXXHFF3M+hjaJVVVUlq5lERERkMu26HU82jONyZozau3cvp2cTERE5VHl5ObKysqIe4/pgpqamBvv370ezZs2gKEq9n0+b6l1eXu7ahGIvnCPgjfP0wjkC3jhPL5wj4I3z9MI5AvU/TyEEjhw5gg4dOqBBg+gpvlIPM5mhQYMGMSO6RGjrRbmZF84R8MZ5euEcAW+cpxfOEfDGeXrhHIH6nWdmZmZcxzluNhMRERFRbQxmiIiIyNEYzBjk8/nw8MMPu7rKsBfOEfDGeXrhHAFvnKcXzhHwxnl64RwBa8/T9QnARERE5G7smSEiIiJHYzBDREREjsZghoiIiByNwQwRERE5mueDmWeffRZdunRBeno6zj//fGzYsCHq8evWrcP555+P9PR0nHnmmfjLX/5S55gVK1agV69e8Pl86NWrF1auXJms5sfNyHkWFRXhiiuuQOvWrZGRkYGcnBy8+eabIccsWrQIiqLUuZ04cSLZpxKRkXMsKSnRbf/HH38ccpzTP8sJEybonufZZ58dPEa2z3L9+vUYMWIEOnToAEVRsGrVqpiPcdr30ug5OvU7afQ8nfi9NHqOTvxOTp8+HT/5yU/QrFkztGnTBtdccw0++eSTmI+z8nvp6WBm2bJlKCgowG9/+1vs3LkT/fv3x9VXX42vvvpK9/jS0lIMHToU/fv3x86dO/Gb3/wGv/rVr7BixYrgMZs2bcLo0aMxfvx4vPfeexg/fjxGjRqFd99916rTqsPoea5fvx5XXHEFXn/9dWzfvh0DBw7EiBEjsHPnzpDjMjIyUFFREXJLT0+34pTqMHqOmk8++SSk/d26dQvuc8NnOWfOnJDzKy8vR4sWLXDdddeFHCfTZ3ns2DH07t0bTz/9dFzHO/F7afQcnfidBIyfp8ZJ30uj5+jE7+S6detwxx13YPPmzXjrrbdw+vRpXHnllTh27FjEx1j+vRQe9tOf/lTceuutIdt69OghHnjgAd3j77vvPtGjR4+Qbbfccou48MILgz+PGjVKXHXVVSHHDBkyRIwZM8akVhtn9Dz19OrVSzzyyCPBnxcuXCgyMzPNamK9GT3H4uJiAUB88803EZ/TjZ/lypUrhaIooqysLLhNts+yNgBi5cqVUY9x6vdSE8856pH9OxkunvN06vdSk8hn6bTvpBBCHDx4UAAQ69ati3iM1d9Lz/bMnDx5Etu3b8eVV14Zsv3KK6/Exo0bdR+zadOmOscPGTIE27Ztw6lTp6IeE+k5ky2R8wxXU1ODI0eOoEWLFiHbjx49is6dOyMrKwvDhw+v879Eq9TnHPv27Yv27dtj0KBBKC4uDtnnxs9y/vz5GDx4MDp37hyyXZbPMhFO/F7Wl+zfyfpy0veyvpz4naysrASAOr9/tVn9vfRsMHP48GEEAgG0bds2ZHvbtm1x4MAB3cccOHBA9/jTp0/j8OHDUY+J9JzJlsh5hvvTn/6EY8eOYdSoUcFtPXr0wKJFi/CPf/wDS5YsQXp6Oi6++GJ8+umnprY/HomcY/v27TFv3jysWLECRUVF6N69OwYNGoT169cHj3HbZ1lRUYHVq1fj5ptvDtku02eZCCd+L+tL9u9kopz4vawPJ34nhRCYPHkyLrnkEpxzzjkRj7P6e+n6VbNjURQl5GchRJ1tsY4P3270Oa2QaJuWLFmCqVOn4pVXXkGbNm2C2y+88EJceOGFwZ8vvvhi/PjHP8af//xnPPXUU+Y13AAj59i9e3d07949+HNOTg7Ky8vxxBNP4NJLL03oOa2SaJsWLVqEM844A9dcc03Idhk/S6Oc+r1MhJO+k0Y5+XuZCCd+J++880785z//wTvvvBPzWCu/l57tmWnVqhVSUlLqRIAHDx6sEylq2rVrp3t8w4YN0bJly6jHRHrOZEvkPDXLli3DxIkTsXz5cgwePDjqsQ0aNMBPfvITW/7nUJ9zrO3CCy8Mab+bPkshBBYsWIDx48cjLS0t6rF2fpaJcOL3MlFO+U6aSfbvZaKc+J2866678I9//APFxcXIysqKeqzV30vPBjNpaWk4//zz8dZbb4Vsf+utt3DRRRfpPiYnJ6fO8WvWrEG/fv2Qmpoa9ZhIz5lsiZwnoP7vb8KECSgsLMSwYcNivo4QArt27UL79u3r3WajEj3HcDt37gxpv1s+S0CdjfDZZ59h4sSJMV/Hzs8yEU78XibCSd9JM8n+vUyUk76TQgjceeedKCoqwr/+9S906dIl5mMs/14aThl2kaVLl4rU1FQxf/58sXv3blFQUCCaNGkSzCp/4IEHxPjx44PHf/HFF6Jx48bi7rvvFrt37xbz588Xqamp4uWXXw4e8+9//1ukpKSIGTNmiI8++kjMmDFDNGzYUGzevNny89MYPc/CwkLRsGFD8cwzz4iKiorg7dtvvw0eM3XqVPHGG2+Izz//XOzcuVPcdNNNomHDhuLdd9+1/PyEMH6Os2bNEitXrhR79uwRH3zwgXjggQcEALFixYrgMW74LDU33HCDuOCCC3SfU7bP8siRI2Lnzp1i586dAoB48sknxc6dO8WXX34phHDH99LoOTrxOymE8fN04vfS6DlqnPSdvO2220RmZqYoKSkJ+f377rvvgsfY/b30dDAjhBDPPPOM6Ny5s0hLSxM//vGPQ6aa5efni8suuyzk+JKSEtG3b1+RlpYmsrOzxXPPPVfnOf/+97+L7t27i9TUVNGjR4+QL6JdjJznZZddJgDUueXn5wePKSgoEJ06dRJpaWmidevW4sorrxQbN2608IzqMnKOM2fOFF27dhXp6emiefPm4pJLLhGvvfZaned0+mcphBDffvutaNSokZg3b57u88n2WWrTcyP9/rnhe2n0HJ36nTR6nk78Xiby++q076Te+QEQCxcuDB5j9/dS+b6hRERERI7k2ZwZIiIicgcGM0RERORoDGaIiIjI0RjMEBERkaMxmCEiIiJHYzBDREREjsZghoiIiByNwQwRERE5GoMZIiIicjQGM0TkKIFAABdddBGuvfbakO2VlZXw+/148MEHbWoZEdmFyxkQkeN8+umn6NOnD+bNm4frr78eAHDjjTfivffew9atW5GWlmZzC4nISgxmiMiRnnrqKUydOhUffPABtm7diuuuuw5btmxBnz597G4aEVmMwQwROZIQApdffjlSUlLw/vvv46677uIQE5FHMZghIsf6+OOP0bNnT5x77rnYsWMHGjZsaHeTiMgGTAAmIsdasGABGjdujNLSUuzdu9fu5hCRTdgzQ0SOtGnTJlx66aVYvXo1Hn/8cQQCAbz99ttQFMXuphGRxdgzQ0SOc/z4ceTn5+OWW27B4MGD8de//hVbt27F3Llz7W4aEdmAwQwROc4DDzyAmpoazJw5EwDQqVMn/OlPf8K9996LsrIyextHRJbjMBMROcq6deswaNAglJSU4JJLLgnZN2TIEJw+fZrDTUQew2CGiIiIHI3DTERERORoDGaIiIjI0RjMEBERkaMxmCEiIiJHYzBDREREjsZghoiIiByNwQwRERE5GoMZIiIicjQGM0RERORoDGaIiIjI0RjMEBERkaP9P4POGFC1qP+AAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvEklEQVR4nO3deVxUVf8H8M+ArAKDmrIoIaGpuC9poGYWBubjUplmmlhmpvaYqaX2ewpJS00rH1usrLDSLCu3ehIV19zCXEqlTBGXFDVRGVFBnTm/P64zOswMzMDM3HtnPu/Xi5fOvXfunDsD3C/nfM/3aIQQAkREREQq5SN3A4iIiIiqgsEMERERqRqDGSIiIlI1BjNERESkagxmiIiISNUYzBAREZGqMZghIiIiVWMwQ0RERKrGYIaIiIhUjcEMkcodOXIEGo0G8+fPl7spVAVDhgxB/fr15W4GkSoxmCFSsPnz50Oj0eDXX3+VuykuM3nyZGg0GtOXn58f6tevj9GjR+PChQtyN4+IVKCa3A0goqqJjY3FlStX4OfnJ3dTqmTu3LkICQnBpUuXsHbtWrz77rvYtWsXNm/eLHfT3GLevHkwGAxyN4NIlRjMEKmcRqNBYGCg3M0o1+XLlxEcHFzuMX379sVtt90GABg+fDgee+wxfPPNN8jJyUH79u3d0UwAgMFgwNWrV93+nqo9GCWSE4eZiFTOWs7MkCFDEBISghMnTqBPnz4ICQlB7dq1MX78eOj1erPnGwwGzJ49G02bNkVgYCAiIiIwfPhwnD9/3uy45cuXo0ePHoiOjkZAQADi4+MxZcoUi/Pde++9aNasGXbu3Il77rkHwcHBePnllx2+rs6dOwMA8vLyzLb/8ssvSE1NhVarRXBwMLp06YItW7ZYPH/Dhg1o164dAgMDER8fj48++sg0pHUrjUaD5557DgsXLkTTpk0REBCArKwsAMCJEyfw1FNPISIiAgEBAWjatCk+++wzi9d699130bRpUwQHB6NGjRpo164dvvrqK9P+ixcvYsyYMahfvz4CAgJQp04ddOvWDbt27TIdYy1n5tKlSxg3bhxiYmIQEBCARo0aYdasWRBCWL2GZcuWoVmzZqa2Gq+DyNOxZ4bIQ+n1eqSkpKBDhw6YNWsWsrOz8dZbbyE+Ph4jRowwHTd8+HDMnz8fTz75JEaPHo38/Hy899572L17N7Zs2WLqMZg/fz5CQkIwduxYhISEYN26dXj11Veh0+kwc+ZMs9cuLCxE9+7d8dhjj2HQoEGIiIhwuP1HjhwBANSoUcO0bd26dejevTvatm2L9PR0+Pj4IDMzE/fddx9+/vlnUw/O7t27kZqaiqioKGRkZECv1+O1115D7dq1rb7WunXrsHjxYjz33HO47bbbUL9+fZw+fRp33323KVCoXbs2Vq5ciaFDh0Kn02HMmDEApOGh0aNHo2/fvnj++edRUlKC33//Hb/88gsef/xxAMCzzz6L7777Ds899xwSEhJQWFiIzZs3448//kCbNm2stkkIgV69emH9+vUYOnQoWrVqhVWrVuHFF1/EiRMn8M4775gdv3nzZixZsgQjR45EaGgo5syZg0ceeQTHjh1DrVq1HH7/iVRFEJFiZWZmCgBix44dNo/Jz88XAERmZqZpW1pamgAgXnvtNbNjW7duLdq2bWt6/PPPPwsAYuHChWbHZWVlWWy/fPmyxWsPHz5cBAcHi5KSEtO2Ll26CADiww8/tOsa09PTBQBx4MAB8c8//4gjR46Izz77TAQFBYnatWuLS5cuCSGEMBgMomHDhiIlJUUYDAazdsXFxYlu3bqZtvXs2VMEBweLEydOmLYdPHhQVKtWTZT9tQdA+Pj4iP3795ttHzp0qIiKihJnz5412/7YY48JrVZrej969+4tmjZtWu41arVaMWrUqHKPSUtLE7GxsabHy5YtEwDE1KlTzY7r27ev0Gg04tChQ2bX4O/vb7btt99+EwDEu+++W+7rEnkCDjMRebBnn33W7HHnzp1x+PBh0+Nvv/0WWq0W3bp1w9mzZ01fbdu2RUhICNavX286NigoyPT/ixcv4uzZs+jcuTMuX76MP//80+x1AgIC8OSTTzrU1kaNGqF27dqoX78+nnrqKTRo0AArV6405drs2bMHBw8exOOPP47CwkJTWy9duoT7778fmzZtgsFggF6vR3Z2Nvr06YPo6GjT+Rs0aIDu3btbfe0uXbogISHB9FgIge+//x49e/aEEMLsvUlJSUFRUZFpiCg8PBx///03duzYYfPawsPD8csvv+DkyZN2vx8//fQTfH19MXr0aLPt48aNgxACK1euNNuenJyM+Ph40+MWLVogLCzM7PMm8lQcZiLyUIGBgRbDKjVq1DDLhTl48CCKiopQp04dq+c4c+aM6f/79+/Hf/7zH6xbtw46nc7suKKiIrPHdevWhb+/v0Pt/f777xEWFoZ//vkHc+bMQX5+vlkAdfDgQQBAWlqazXMUFRWhpKQEV65cQYMGDSz2W9sGAHFxcWaP//nnH1y4cAEff/wxPv74Y6vPMb43EyZMQHZ2Ntq3b48GDRrggQcewOOPP46OHTuajn3zzTeRlpaGmJgYtG3bFg8++CAGDx6MO+64w+a1HD16FNHR0QgNDTXb3qRJE9P+W91+++0W5yj7eRN5KgYzRB7K19e3wmMMBgPq1KmDhQsXWt1vDIYuXLiALl26ICwsDK+99hri4+MRGBiIXbt2YcKECRZTim8NQux1zz33mGYz9ezZE82bN8fAgQOxc+dO+Pj4mF5j5syZaNWqldVzhISEoKSkxOHXLtte42sNGjTIZvDUokULAFJwceDAAfz444/IysrC999/jw8++ACvvvoqMjIyAAD9+vVD586dsXTpUqxevRozZ87EjBkzsGTJEpu9RY6y9XmLMsnCRJ6IwQyRF4uPj0d2djY6duxYbgCyYcMGFBYWYsmSJbjnnntM2/Pz813SrpCQEKSnp+PJJ5/E4sWL8dhjj5mGUMLCwpCcnGzzuXXq1EFgYCAOHTpksc/aNmtq166N0NBQ6PX6cl/LqHr16ujfvz/69++Pq1ev4uGHH8brr7+OSZMmmaZ4R0VFYeTIkRg5ciTOnDmDNm3a4PXXX7cZzMTGxiI7OxsXL140650xDunFxsbadS1E3oA5M0RerF+/ftDr9ZgyZYrFvuvXr5sq8Br/6r/1r/yrV6/igw8+cFnbBg4ciHr16mHGjBkAgLZt2yI+Ph6zZs1CcXGxxfH//POPqa3JyclYtmyZWY7KoUOHLPJMbPH19cUjjzyC77//Hvv27bP5WoA0c+tW/v7+SEhIgBAC165dg16vtxiGq1OnDqKjo1FaWmqzDQ8++CD0ej3ee+89s+3vvPMONBqN03p0iDwBe2aIVOCzzz6zWjPk+eefr9J5u3TpguHDh2PatGnYs2cPHnjgAfj5+eHgwYP49ttv8d///hd9+/ZFUlISatSogbS0NIwePRoajQZffvmlS4cw/Pz88Pzzz+PFF19EVlYWUlNT8cknn6B79+5o2rQpnnzySdStWxcnTpzA+vXrERYWhh9++AGAtETC6tWr0bFjR4wYMcIUFDRr1gx79uyx6/WnT5+O9evXo0OHDhg2bBgSEhJw7tw57Nq1C9nZ2Th37hwA4IEHHkBkZCQ6duyIiIgI/PHHH3jvvffQo0cPhIaG4sKFC6hXrx769u2Lli1bIiQkBNnZ2dixYwfeeustm6/fs2dPdO3aFf/3f/+HI0eOoGXLlli9ejWWL1+OMWPGmCX7Enk9GWdSEVEFjFOzbX0dP37c5tTs6tWrW5zPOA26rI8//li0bdtWBAUFidDQUNG8eXPx0ksviZMnT5qO2bJli7j77rtFUFCQiI6OFi+99JJYtWqVACDWr19vOq5Lly4VTlW21qZ//vnHYl9RUZHQarWiS5cupm27d+8WDz/8sKhVq5YICAgQsbGxol+/fmLt2rVmz127dq1o3bq18Pf3F/Hx8eKTTz4R48aNE4GBgWbHAbA5bfr06dNi1KhRIiYmRvj5+YnIyEhx//33i48//th0zEcffSTuueceU3vi4+PFiy++KIqKioQQQpSWlooXX3xRtGzZUoSGhorq1auLli1big8++MDstcpOzRZCiIsXL4oXXnhBREdHCz8/P9GwYUMxc+ZMs6np5V1DbGysSEtLs3ptRJ5EIwSzw4jIO/Tp0wf79+83zYwiIs/AnBki8khXrlwxe3zw4EH89NNPuPfee+VpEBG5DHtmiMgjRUVFYciQIbjjjjtw9OhRzJ07F6Wlpdi9ezcaNmwod/OIyImYAExEHik1NRWLFi3CqVOnEBAQgMTERLzxxhsMZIg8EHtmiIiISNWYM0NERESqxmCGiIiIVM3jc2YMBgNOnjyJ0NBQaDQauZtDREREdhBC4OLFi4iOjoaPT/l9Lx4fzJw8eRIxMTFyN4OIiIgq4fjx46hXr165x3h8MGNcoO348eMICwuTuTVERERkD51Oh5iYGLOFVm3x+GDGOLQUFhbGYIaIiEhl7EkRYQIwERERqRqDGSIiIlI1BjNERESkah6fM2MvvV6Pa9euyd0Mkomfnx98fX3lbgYREVWC1wczQgicOnUKFy5ckLspJLPw8HBERkayHhERkcp4fTBjDGTq1KmD4OBg3si8kBACly9fxpkzZwBIqy0TEZF6eHUwo9frTYFMrVq15G4OySgoKAgAcObMGdSpU4dDTkREKuLVCcDGHJng4GCZW0JKYPw+YO4UEZG6eHUwY8ShJQL4fUBEpFZePcxERETkMgY9cHQrUHwaCIkAYpMAHw5huwJ7ZggAUL9+fcyePdvu4zds2ACNRsNZYERE1uSuAGY3Az7/F/D9UOnf2c2k7eR0DGZURqPRlPs1efLkSp13x44deOaZZ+w+PikpCQUFBdBqtZV6PUfMmzcPLVu2REhICMLDw9G6dWtMmzbN7ucfOXIEGo0Ge/bscV0jiYiMclcAiwcDupPm23UF0nYGNE4nazCzadMm9OzZE9HR0dBoNFi2bJnZ/iVLluCBBx5ArVq1FH0z0hsEtuUVYvmeE9iWVwi9QbjstQoKCkxfs2fPRlhYmNm28ePHm44VQuD69et2nbd27doOJUL7+/u7pSbLZ599hjFjxmD06NHYs2cPtmzZgpdeegnFxcUufV0iokox6IGsCQCs3QdubMuaKB1HTiNrMHPp0iW0bNkS77//vs39nTp1wowZM9zcMvtl7StApxnrMGDedjz/9R4MmLcdnWasQ9a+Ape8XmRkpOlLq9VCo9GYHv/5558IDQ3FypUr0bZtWwQEBGDz5s3Iy8tD7969ERERgZCQENx1113Izs42O2/ZYSaNRoNPPvkEDz30EIKDg9GwYUOsWHHzr4myw0zz589HeHg4Vq1ahSZNmiAkJASpqakoKLj5Ply/fh2jR49GeHg4atWqhQkTJiAtLQ19+vSxeb0rVqxAv379MHToUDRo0ABNmzbFgAED8Prrr5sd98knn6BJkyYIDAxE48aN8cEHH5j2xcXFAQBat24NjUaDe++918F3nYjITke3WvbImBGA7oR0HDmNrMFM9+7dMXXqVDz00ENW9z/xxBN49dVXkZyc7OaW2SdrXwFGLNiFgqISs+2nikowYsEulwU0FZk4cSKmT5+OP/74Ay1atEBxcTEefPBBrF27Frt370Zqaip69uyJY8eOlXuejIwM9OvXD7///jsefPBBDBw4EOfOnbN5/OXLlzFr1ix8+eWX2LRpE44dO2bWUzRjxgwsXLgQmZmZ2LJlC3Q6nUVvXFmRkZHYvn07jh49avOYhQsX4tVXX8Xrr7+OP/74A2+88QZeeeUVfP755wCAnJwcAEB2djYKCgqwZMmScl+TiKjSik879ziyi8flzJSWlkKn05l9uYLeIJDxQ255HYnI+CHXpUNOtrz22mvo1q0b4uPjUbNmTbRs2RLDhw9Hs2bN0LBhQ0yZMgXx8fFmPS3WDBkyBAMGDECDBg3wxhtvoLi42BQYWHPt2jV8+OGHaNeuHdq0aYPnnnsOa9euNe1/9913MWnSJDz00ENo3Lgx3nvvPYSHh5fbhvT0dISHh6N+/fpo1KgRhgwZgsWLF8NgMJgd89Zbb+Hhhx9GXFwcHn74Ybzwwgv46KOPAEhDaABQq1YtREZGombNmhW9hURElRMS4dzjyC4eF8xMmzYNWq3W9BUTE+OS18nJP2fRI3MrAaCgqAQ5+bZ7MlylXbt2Zo+Li4sxfvx4NGnSBOHh4QgJCcEff/xRYc9MixYtTP+vXr06wsLCTCX/rQkODkZ8fLzpcVRUlOn4oqIinD59Gu3btzft9/X1Rdu2bcttQ1RUFLZt24a9e/fi+eefx/Xr15GWlobU1FQYDAZcunQJeXl5GDp0KEJCQkxfU6dORV5eXrnnJiJyutgkICwagK18Qg0QVlc6jpzG4+rMTJo0CWPHjjU91ul0Lglozly0HchU5jhnql69utnj8ePHY82aNZg1axYaNGiAoKAg9O3bF1evXi33PH5+fmaPNRqNWY+IPccL4ZyeqWbNmqFZs2YYOXIknn32WXTu3BkbN25EQkICAGnGU4cOHcyewyUJiMjtfHyB1BnSrCVoYJ4IfCPASZ3OejNO5nHBTEBAAAICAlz+OnVCA516nCtt2bIFQ4YMMeUmFRcX48iRI25tg1arRUREBHbs2IF77rkHgLQ21q5du9CqVSuHzmUMYC5duoSIiAhER0fj8OHDGDhwoNXj/f39Ta9HRORyCb2Afl9Is5puTQYOi5YCmYRe8rXNQ3lcMOMu7eNqIkobiFNFJVbzZjQAIrWBaB8nf35Gw4YNsWTJEvTs2RMajQavvPJKuT0srvLvf/8b06ZNQ4MGDdC4cWO8++67OH/+fLnTu0eMGIHo6Gjcd999qFevHgoKCjB16lTUrl0biYmJAKRE5dGjR0Or1SI1NRWlpaX49ddfcf78eYwdOxZ16tRBUFAQsrKyUK9ePQQGBrqlPg4RebGEXkDjHqwA7Cay5swUFxdjz549pvox+fn52LNnjymX49y5c9izZw9yc3MBAAcOHMCePXtw6tQpuZps4uujQXpPqYeg7K3Y+Di9ZwJ8feRf7+ftt99GjRo1kJSUhJ49eyIlJQVt2rRxezsmTJiAAQMGYPDgwUhMTERISAhSUlIQGGi79yo5ORnbt2/Ho48+ijvvvBOPPPIIAgMDsXbtWtNK508//TQ++eQTZGZmonnz5ujSpQvmz59vmpJdrVo1zJkzBx999BGio6PRu3dvt1wvEXk5H18grjPQvK/0LwMZl9EIZyU1VMKGDRvQtWtXi+1paWmYP38+5s+fjyeffNJif3p6ut2VbnU6HbRaLYqKihAWFma2r6SkBPn5+YiLiyv3hlqerH0FyPgh1ywZOEobiPSeCUhtFlWpc3oLg8GAJk2aoF+/fpgyZYrczXHK9wMRETlHeffvsmQNZtzB1cEMIE3Tzsk/hzMXS1AnVBpaUkKPjNIcPXoUq1evRpcuXVBaWor33nsPmZmZ+O2339CkSRO5m8dghohIQRwJZpgz4wS+PhokxteSuxmK5+Pjg/nz52P8+PEQQqBZs2bIzs5WRCBDRETqxWCG3CYmJgZbtmyRuxlEROQEShqVYDBDREREDlFavqjHVQAmIiIi11HiuoQMZoiIiMguSl2XkMEMERER2UWp6xIymCEiIiK7KHVdQgYzREREZBelrkvIYIbKNXnyZIcXgiQiIs9kXJfQ1gRsDaRZTe5el5DBjMpoNJpyv+xd5sHWuZctW2a2bfz48Vi7dm3VGm2Hy5cvY9KkSYiPj0dgYCBq166NLl26YPny5XafY/78+QgPD3ddI4mIvJxS1yVknRlnMOjdtjJqQcHNKW/ffPMNXn31VRw4cMC0LSQkxKmvFxIS4vRzWvPss8/il19+wbvvvouEhAQUFhZi69atKCwsdPlrExGR/VKbRWHuoDYWdWYi5VyXUHi4oqIiAUAUFRVZ7Lty5YrIzc0VV65cqfwL7F8uxFuNhUgPu/n1VmNpu4tlZmYKrVZrtm3evHmicePGIiAgQDRq1Ei8//77pn2lpaVi1KhRIjIyUgQEBIjbb79dvPHGG0IIIWJjYwWkRHQBQMTGxgohhEhPTxctW7Y0nSMtLU307t1bzJw5U0RGRoqaNWuKkSNHiqtXr5qOOXnypHjwwQdFYGCgqF+/vli4cKGIjY0V77zzjs1r0Wq1Yv78+eVeb0lJiRg3bpyIjo4WwcHBon379mL9+vVCCCHWr19v1n4AIj09vcL38FZO+X4gIvIS1/UGsfXQWbFs999i66Gz4rre4NTzl3f/Los9M1WRuwJYPBgoO+NeVyBt7/cFkNDLbc1ZuHAhXn31Vbz33nto3bo1du/ejWHDhqF69epIS0vDnDlzsGLFCixevBi33347jh8/juPHjwMAduzYgTp16iAzMxOpqanw9bXds7R+/XpERUVh/fr1OHToEPr3749WrVph2LBhAIDBgwfj7Nmz2LBhA/z8/DB27FicOXOm3LZHRkbip59+wsMPP4zQ0FCrxzz33HPIzc3F119/jejoaCxduhSpqanYu3cvkpKSMHv2bLOeKnf0KBEReSslrUvIYKayDHogawIsAhngxjYNkDURaNzDZUNOZaWnp+Ott97Cww8/DACIi4tDbm4uPvroI6SlpeHYsWNo2LAhOnXqBI1Gg9jYWNNza9euDQAIDw9HZGRkua9To0YNvPfee/D19UXjxo3Ro0cPrF27FsOGDcOff/6J7Oxs7NixA+3atQMAfPLJJ2jYsGG55/z4448xcOBA1KpVCy1btkSnTp3Qt29fdOzYEQBw7NgxZGZm4tixY4iOjgYg5fNkZWUhMzMTb7zxBrRaLTQaTYXtJyIiz8IE4Mo6uhXQnSznAAHoTkjHucGlS5eQl5eHoUOHmvJcQkJCMHXqVOTl5QEAhgwZgj179qBRo0YYPXo0Vq9eXanXatq0qVnPTVRUlKnn5cCBA6hWrRratGlj2t+gQQPUqFGj3HPec889OHz4MNauXYu+ffti//796Ny5M6ZMmQIA2Lt3L/R6Pe68806z69u4caPp+oiIyDuxZ6ayik8797gqKi4uBgDMmzcPHTp0MNtnDDzatGmD/Px8rFy5EtnZ2ejXrx+Sk5Px3XffOfRafn5+Zo81Gg0MBkMVWn/zvJ07d0bnzp0xYcIETJ06Fa+99homTJiA4uJi+Pr6YufOnRZDYBxOIiLybgxmKiskwrnHVVFERASio6Nx+PBhDBw40OZxYWFh6N+/P/r374++ffsiNTUV586dQ82aNeHn5we9Xl+ldjRq1AjXr1/H7t270bZtWwDAoUOHcP78eYfPlZCQgOvXr6OkpAStW7eGXq/HmTNn0LlzZ6vH+/v7V7n9RESkPgxmKis2CQiLlpJ9rebNaKT9sUlua1JGRgZGjx4NrVaL1NRUlJaW4tdff8X58+cxduxYvP3224iKikLr1q3h4+ODb7/9FpGRkabaLPXr18fatWvRsWNHBAQEVDg0ZE3jxo2RnJyMZ555BnPnzoWfnx/GjRuHoKAgaDS26w7ce++9GDBgANq1a4datWohNzcXL7/8Mrp27YqwsDCEhYVh4MCBGDx4MN566y20bt0a//zzD9auXYsWLVqgR48eqF+/PoqLi7F27Vq0bNkSwcHBCA4OruzbSUREKsGcmcry8QVSZ9x4YKN0UOp0tyX/AsDTTz+NTz75BJmZmWjevDm6dOmC+fPnIy4uDgAQGhqKN998E+3atcNdd92FI0eO4KeffoKPj/Rt8NZbb2HNmjWIiYlB69atK92OL774AhEREbjnnnvw0EMPYdiwYQgNDUVgoO3y1ikpKfj888/xwAMPoEmTJvj3v/+NlJQULF682HRMZmYmBg8ejHHjxqFRo0bo06cPduzYgdtvvx0AkJSUhGeffRb9+/dH7dq18eabb1b6GoiISD00Qgj3rtPtZjqdDlqtFkVFRQgLCzPbV1JSgvz8fMTFxZV7oy1X7gppVtOtycBhdaVAxo3TspXs77//RkxMDLKzs3H//ffL3RybnPL9QERUCXqDQE7+OZy5WII6odJyAO6uoqs05d2/y+IwU1Ul9JKmX7upArAarFu3DsXFxWjevDkKCgrw0ksvoX79+rjnnnvkbhoRkeJk7SuwqKYbJWc1XRViMOMMPr5AnPWkVG907do1vPzyyzh8+DBCQ0ORlJSEhQsXWsyCIiLydln7CjBiwS6LzMtTRSUYsWAX5g5qw4DGDgxmyOlSUlKQkpIidzOIiBRNbxDI+CG3vNKryPghF90SIk1DThyOso7BDBERVRlvso7LyT9nNrRUlgBQUFSCnPxzSIyvxeGocjCYISKiKuFNtnLOXLQdyJQ9Tq7hKLUEqQxmiIio0pjzUXl1Qu2bNXlb9QCM/+43h4ajnEFNQSrrzBARUaVUlPMBSDdZvcGjK4BUWvu4mojSBlpUKjPSQAoeoIHdw1HOYgxSy76uMUjN2lfgtNdyBgYzRERUKY7kfJAlXx8N0nsmALBZehXpPRNwtrjUrvPZO2xVETUGqQxmiIioUhzJ+SDrUptFYe6gNojUmg85RWoDTUN09g5H2XtcRdQYpDJnhso1ZMgQXLhwAcuWLQMgraHUqlUrzJ49u9LndMY5iEh+7r7JeqrUZlHolhBpM9HWOBx1qqjE1kqAiNRKz3EGNQap7JlRqSFDhkCj0UCj0cDf3x8NGjTAa6+9huvXr7v0dZcsWYIpU6bYdeyGDRug0Whw4cKFSp+DiJTL3pwPZ91kPZmvjwaJ8bXQu1VdJMbXMkvktXc4ylnJv2oMUhnMqFhqaioKCgpw8OBBjBs3DpMnT8bMmTMtjrt69arTXrNmzZoIDQ2V/RxEJD9332S9mT3DUc6ixiBV1mBm06ZN6NmzJ6Kjo6HRaExDGUZCCLz66quIiopCUFAQkpOTcfDgQXkaq0ABAQGIjIxEbGwsRowYgeTkZKxYsQJDhgxBnz598PrrryM6OhqNGjUCABw/fhz9+vVDeHg4atasid69e+PIkSOm8+n1eowdOxbh4eGoVasWXnrpJZRdh/Tee+/FmDFjTI9LS0sxYcIExMTEICAgAA0aNMCnn36KI0eOoGvXrgCAGjVqQKPRYMiQIVbPcf78eQwePBg1atRAcHAwunfvbvY5z58/H+Hh4Vi1ahWaNGmCkJAQUyBntGHDBrRv3x7Vq1dHeHg4OnbsiKNHjzrpnSYiW9x5k/V2qc2isHnCfVg07G7897FWWDTsbmyecJ/T32M1Bqmy5sxcunQJLVu2xFNPPYWHH37YYv+bb76JOXPm4PPPP0dcXBxeeeUVpKSkIDc313WrGgsBXL7smnOXJzgY0FTtGyMoKAiFhYUAgLVr1yIsLAxr1qwBIK2XlJKSgsTERPz888+oVq0apk6ditTUVPz+++/w9/fHW2+9hfnz5+Ozzz5DkyZN8NZbb2Hp0qW47777bL7m4MGDsW3bNsyZMwctW7ZEfn4+zp49i5iYGHz//fd45JFHcODAAYSFhSEoKMjqOYYMGYKDBw9ixYoVCAsLw4QJE/Dggw8iNzfXtJ7T5cuXMWvWLHz55Zfw8fHBoEGDMH78eCxcuBDXr19Hnz59MGzYMCxatAhXr15FTk4ONFV8P4nIPhXlfJDzGIejXM0YpJatMxOp0DozEAoBQCxdutT02GAwiMjISDFz5kzTtgsXLoiAgACxaNEiu89bVFQkAIiioiKLfVeuXBG5ubniypUrNzcWFwshhTTu/Souduj9SktLE7179za9V2vWrBEBAQFi/PjxIi0tTURERIjS0lLT8V9++aVo1KiRMBgMpm2lpaUiKChIrFq1SgghRFRUlHjzzTdN+69duybq1atneh0hhOjSpYt4/vnnhRBCHDhwQAAQa9assdrG9evXCwDi/PnzZttvPcdff/0lAIgtW7aY9p89e1YEBQWJxYsXCyGEyMzMFADEoUOHTMe8//77IiIiQgghRGFhoQAgNmzYYMc7Z5vV7wciIi92XW8QWw+dFct2/y22HjorrusNFT/JScq7f5el2NlM+fn5OHXqFJKTk03btFotOnTogG3btuGxxx6z+rzS0lKUlt6ck6/T6VzeVrn8+OOPCAkJwbVr12AwGPD4449j8uTJGDVqFJo3bw5/f3/Tsb/99hsOHTpkkatSUlKCvLw8FBUVoaCgAB06dDDtq1atGtq1a2cx1GS0Z88e+Pr6okuXLpW+hj/++APVqlUze91atWqhUaNG+OOPP0zbgoODER8fb3ocFRWFM2fOAJBycIYMGYKUlBR069YNycnJ6NevH6KiFPaXAxGRyrirJ6iqFBvMnDp1CgAQERFhtj0iIsK0z5pp06YhIyOj8i8cHAwUF1f++VV5XQd17doVc+fOhb+/P6Kjo1Gt2s2Ps3r16mbHFhcXo23btli4cKHFeWrXru14ewGbw0auYBxuMtJoNGZBVmZmJkaPHo2srCx88803+M9//oM1a9bg7rvvdlsbiYhIHh43m2nSpEkoKioyfR0/ftyxE2g0QPXq7v+qRH5H9erV0aBBA9x+++1mgYw1bdq0wcGDB1GnTh00aNDA7Eur1UKr1SIqKgq//PKL6TnXr1/Hzp07bZ6zefPmMBgM2Lhxo9X9xp4hvV5v8xxNmjTB9evXzV63sLAQBw4cQEJCQrnXVFbr1q0xadIkbN26Fc2aNcNXX33l0POJiEidFBvMREZGAgBOnz5ttv306dOmfdYEBAQgLCzM7IuAgQMH4rbbbkPv3r3x888/Iz8/Hxs2bMDo0aPx999/AwCef/55TJ8+HcuWLcOff/6JkSNHWtSIuVX9+vWRlpaGp556CsuWLTOdc/HixQCA2NhYaDQa/Pjjj/jnn39QbKXHq2HDhujduzeGDRuGzZs347fffsOgQYNQt25d9O7d265ry8/Px6RJk7Bt2zYcPXoUq1evxsGDB9GkSRPH3ygiIlIdxQYzcXFxiIyMxNq1a03bdDodfvnlFyQmJsrYMnUKDg7Gpk2bcPvtt+Phhx9GkyZNMHToUJSUlJgCvnHjxuGJJ55AWloaEhMTERoaioceeqjc886dOxd9+/bFyJEj0bhxYwwbNgyXLl0CANStWxcZGRmYOHEiIiIi8Nxzz1k9R2ZmJtq2bYt//etfSExMhBACP/30k8XQUnnX9ueff+KRRx7BnXfeiWeeeQajRo3C8OHDHXiHiIhIrTTCVnanGxQXF+PQoUMApCGCt99+G127dkXNmjVx++23Y8aMGZg+fbrZ1Ozff//doanZOp0OWq0WRUVFFr00JSUlyM/PR1xcnOumepNq8PuBiG6lNwhON5dReffvsmRNAP71119NhdUAYOzYsQCAtLQ0zJ8/Hy+99BIuXbqEZ555BhcuXECnTp2QlZXFGw0REblU1r4CixorUUqtsULy9sy4A3tmyF78fiAiQApkRizYZbGoo7FPRo2VjdXYy6SanhkiIiIl0RsEMn7Itbo6tYAU0GT8kItuCZGKDwaMvKGXSbEJwERERO6Wk3/O7KZflgBQUFSCnPxz7mtUFRh7mcpe06miEoxYsAtZ+wpsPFNdGMwANivcknfh9wERnbloO5CpzHFyqqiXCZB6mfQG9f/u8+pg5tZFDImM3wf2TgknIs9TJ9S+fDl7j5OTp/Uylcerc2Z8fX0RHh5uWuMnODiYKy17ISEELl++jDNnziA8PBy+vr5yN4mIZNI+riaitIE4VVRitUdDA2nl6PZxNd3dNIeV13vkAwPa+/yJOrgA/eGrQFwvwEe9v/u8OpgBblYaNgY05L3Cw8PLrS5NRJ7P10eD9J4JGLFgFzSAWUBj/FM3vWeC4pJ/rc1WstV7lOKTg3S/LxCtudEjswXA3mggdQaQ0Mt9jXYir56afSu9Xo9r1665sWWkJH5+fuyRISITNc0AstXWV3o0wZT//WHWy5Tik4O5frMBAObx2I0H/b5QTEDjyNRsBjNERERWqKE2S0U1cZ65Jw4fb8q/sc2AzQGjEYlzsH4ZGiAsGhizVxFDTqwzQ0SkJgY9cHQrUHwaCIkAYpMUcTNxFjUEBdb4+miQGF9L7mbYZE9NnBW/FeD9x9tgyv9yEXtx182hJasEoDshfS/GdXZNo12EwQwRkZxyVwBZEwDdyZvbwtSdv3ArNQ3XqI29s5VqVPfH5gn3IW/dMWCzHScuPu20NrqLV0/NJiKSVe4KYPFg80AGAHQF0vbcFfK0y0m8pWCbXBypiePro8Gd8Q3sO3FIRBVaJQ8GM0REcjDopR6Z8kqaZU2UjlMhbyrYJheHa+LEJkm9frA1xKcBwupKx6kMgxkiIjkc3WrZI2PmlvwFFfKmgm1yMdbEKSc0QdStNXF8fKXhS9PeskcDSJ2uynwtBjNERHKwNy9BhfkLgGctC6BUxpo4gM3QxLImTkIvafp1mHm+UmlwJPSPfq7aPC0mABMRycHevAQV5i8AnrUsgJKlNovC3EFtLJKsI8tLsk7ohSx9G6xY8T2qXTqDMwhHTkljRKwIRrooUGViNoMZIiI5GPMXdAWwnjdzo+aHCvMXAM9aFkDpUptFoVtCpN3T37P2FeCDWd/hoyVTsbB1d6xIkr7HjInZcwe1UV1Aw2EmIiI5eHD+AlDJIRCqNGNNnN6t6iIxvpbN91X/5wGkNo/Gii9eQFRxIcb/vAC4UTtXzYnZDGaIiORiI38BYdGKKitfWcYhkEit+VBSpDZQlX/9q1pBAeDvD98mjc02v9h9NHDLAstqTczmMBMRkZwSegGNe3hsBWBHh0DIyS5cAFq0AI4fN9s8v82/MDl5uFkgcyu1JWYzmCEikpuPr+rKxztC6csCeKQrV4B77wVycsw2F6b0xF0tnoahgmBZbYnZHGYiIiLyFNevA336AMHB5oFMx47AlSsI/2k5ImpUt782jUowmCEiIlI7IYARIwA/P2D58pvb4+KkoabNm4HAQI9NzGYwQ0REpGavvQb4+AAffnhzW1CQlPR7+DCg1Zod7omJ2cyZISIi72bQqzMB++OPgeHDLbcfPAg0KH9RSU9LzGYwQ0RE3it3hbTg563rZIVFSzWAlDo1fskS4JFHLLfv3Am0aWP3aTwpMZvDTERE5J1yVwCLB1su+KkrkLbnrpCnXbZs3ChNpS4byGRnSzkzDgQynobBDBEReR+DXuqRsbrYwo1tWROl4+S2Z48UxNx7r/n2b76Rgpj775ejVYrCYIaIiLzP0a2WPTJmBKA7IR0nl8OHpSCmdWvz7e+/LwUx/frJ0y4FYjBDRETep/i0c49zpr17pSAmPt58+6uvSkHMyJHub5PCMQGYiIi8T0iEc49zhhMngHr1LLc/84w07drG0gPEYIaIiLxRbJI0a0lXAOt5Mxppf2yS69ui01nUgjG5dg2oxlt1RTjMREREXkFvENiWV4jle05gW/4F6FOm39hjoxZu6nTX1pu5dk3qbbEWyJw9Kw0pMZCxi+KDmYsXL2LMmDGIjY1FUFAQkpKSsGPHDrmbRUREKpK1rwCdZqzDgHnb8fzXezBg3nZ0WhGC3Yn/BcLKVLwNiwb6feG6OjNCSEGMv7/lvrw8aX8tz6j/4i6KD/mefvpp7Nu3D19++SWio6OxYMECJCcnIzc3F3Xr1pW7eUREpHBZ+wowYsEui8GkU0UleHj9bZg7cA1SQ/LdUwG4Vi3g3DnL7du3Ax06uOY1vYBGCGFtsFARrly5gtDQUCxfvhw9evQwbW/bti26d++OqVOnVngOnU4HrVaLoqIihIWFubK5RESkMHqDQKcZ61BQVGJ1vwbSmkSbJ9zn2lL+XboAmzZZbl+6VFrlmiw4cv9W9DDT9evXodfrERhovhhWUFAQNm/ebPU5paWl0Ol0Zl9EROSdcvLP2QxkACn1t6CoBDn5VnpLnGH4cGlIqWwgM2eONJzEQMYpFB3MhIaGIjExEVOmTMHJkyeh1+uxYMECbNu2DQUFBVafM23aNGi1WtNXTEyMm1tNRERKceai7UCmMsfZrU8fKYj5+GPz7WPGSEHMv//t3NfzcooOZgDgyy+/hBACdevWRUBAAObMmYMBAwbAx8d60ydNmoSioiLT1/Hjx93cYiIiUoo6oYEVH+TAcRV69VUpiFm+3Hx79+5SEPPOOxWfw6AH8n8G9n4n/auEJRUUTvEJwPHx8di4cSMuXboEnU6HqKgo9O/fH3fccYfV4wMCAhAQEODmVhIRkRK1j6uJKG0gThWVWK0mAwBR2kC0j6tZtRdauBAYNMj6PkdSUxW2irfeIJCTfw5nLpagTqj0Prk0t6iSFB/MGFWvXh3Vq1fH+fPnsWrVKrz55ptyN4mIiBTO10eD9J4JGLFgFzSwXh7vyjU91uSeQmqzKCt7K7B1K9Cxo/V9BoNjVXuNq3iXbaVxFW9XThe3ImtfATJ+yDXLOYrSBiK9Z0Ll3isXUvRsJgBYtWoVhBBo1KgRDh06hBdffBGBgYH4+eef4efnV+HzOZuJiIiy9hVg4pK9uHD5msU+Y7gxd1Ab+2/Shw9brp1kdPUqYMf9yYxBD8xuVs7ilzcqEo/Z69pCfjfYms5eqfeqkjxmNhMAFBUVYdSoUWjcuDEGDx6MTp06YdWqVXYFMkRERADQLSESgdWs3/KMN+yMH3KhN1Tw931RkfVFIAHg/HlpSKky9ycFreKtNwhk/JBrtRfLoffKjRQ/zNSvXz/04zLnRERUBTn553BKV2pz/61TtBPjrVTfvXbNesVeQKraayOP024KWsXbkensVt8rGSg+mCEiInVTQhJppadoCwHYmD2LzZtt58s4SkGreMs2nb0KGMwQEZHLKCWJtFJTtG0l7375pe2ZS5WloFW83T6d3QkUnzNDRETqZEwiLTtkcaqoBCMW7ELWPuvFT13BOEXbVn+QBrdM0dZorAcy48ZJPTUOBDJmK3XnFdrOM/HxlaZfm1pTtnVw/SreNzj0XikEgxkiInI6pSWRGqdoAzZDBWx7ORm+vlZui7fdJgUxs2Y59JpWV+qesc52EJfQS5p+7e5VvMuw571K75mgqHozip+aXVWcmk1E5H7b8goxYN72Co9bNOxutyaRWhv22vjpCMSetVEtvpK3yCpNbTbopVlL7ljFuxxyDxE6cv9mzgwRETmdUpNIU5tFoVtCJHLyzyF63CjELv/G+oFV+Du/ol4pDaReqW4JkdZ7N3x8gbjOlX59Z7n1vWIFYCIi8jpKTiL1/eB9JNpa6NEJgxVqnNpsi6+PRvFtBBjMEBGZKGEKsaeoaE0kDYBIdyeRZmcD3bpZ3+fo0gPlUGqvlCdjMENEBPnzAzxNeWsiuT2J9OBB4M47re+7fBkICnLqyym5V8pTcTYTEXk9JU0h9iSpzaIwd1AbRGrNb9qR2kC3rO2DCxek3hZrgcyJE9KQkpMDGUCdU5vVjj0zROTVqpys6cXsGZYzJpFuzyvEtsNnAUg5GHff4cI8jOvXba+P9MsvQPv2rnttKKxXykswmCEir+ZJyZru5Miw3JrcU2bHvrf+kOuG8GzlvSxcCDz+eOXOWYmp0sZeqbLvUSSHLl2CwQwReTUmazrOVg0V47DcrUNIjhxbJbaCmIkTgWnTKn/e3BVA1gTzFa3DoqVqvRUUsVPT1Ga1Y84MEXk1Jms6xpHKvm6pAmxr6YH77pNyYqoayCwebB7IANL6SYsHS/srYJza3LtVXSTG12Ig4yIMZojIqzFZ0zGODMs5cqzDbAUxGo0UxKxd6/g5b2XQSz0y5YViWROl40h2DGaIyKupcR0aOTkyLOeSIbyAANtDSkJI9WKc4ehWyx4Z8xcDdCek40h2DGaIyOvJPoVYRRwZlnPqEF6vXlIQc/Wq5T4hnFK510zxaeceRy7FBGAiIjBZ016OVvatahVgw7Rp8Hn5Zes7XblOckiEc48jl2LPDBHRDUzWrJgjw3JVGsJbuRLQaKwGMll7jlsNZPQGgW15hVi+5wS25RVWLbE4NkmatVReNlVYXek4kp1GCFeGtvJzZAlxIiKyjyN1ZhxaKuKvv4BGjay+Zovnv8bFwBAAsBj+c8lyFMbZTACslr7r90WF07Op8hy5fzOYISKiSnFkYc4Kj9XpAK3W6nPvHzoXebfFmB4bh6c2T7gPvj4am7VsjGevUt6T1TozdYHU6QxkXIzBzC0YzBARKZjBAPhar6b79MOvILthB5tPXTTsbrSPq4lOM9bZnAJeNvCpXBsdrwBMVefI/ZsJwERECuZI74fq2Jhi/cez49Bd27XCp5+5WOKe5Sh8fIG4zpV7LrkFgxkiIoVySR6IEtiqE9OtG7B6NS7kFQLztld4mjqhgVyOggBwNhMRkSIZ80DK9joY1zTK2lcgU8uqwFbVXkCanbR6NQDHqjJzOQoCGMwQESmOW9Y0cqeKgpgyqZuOTOnmchQEMJghIlIcl65p5E516zoUxNzK3qrMXI6CAObMEBEpjurzQNLSgC++sL7PgQm05VVlLpsY/f7jrTHlf3+YBYGRnpBfRHZhMENEpDCqzQP54ANg1Cjr+ypZBcRYlflWthKjX+mRgBrV/T1z5heVi8NMREQKo7o8kE2bpOEka4HM1atOXUOpvMToUV/tQtGVq1yOwgsxmCEiUhjV5IEcOyYFMV26WO47fVoKYvz8nPZyHpcYTU7DYIaISIHsTYCVxeXLUhATG2u5b+dOKYipU8fpL+sxidHkdIrOmdHr9Zg8eTIWLFiAU6dOITo6GkOGDMF//vMfaGxlyBMRqVTZpNZuCZE2E2BlIQTgY+Nv4AULgIEDXfryqk+MJpdRdDAzY8YMzJ07F59//jmaNm2KX3/9FU8++SS0Wi1Gjx4td/OIiJxG8dV+bf0B+cILwNtvu6UJdUID4QMD2vv8iTq4gDMIR46hMQxlBhkUlxhNLqfoYGbr1q3o3bs3evToAQCoX78+Fi1ahJycHJlbRkTkPLZWfTZW+5V1WMlWENO6NbBrl1ub0r5kM7YFvoAIFJq2nRQ1kXFtMFYZ2psWlVRMYjS5jaJzZpKSkrB27Vr89ddfAIDffvsNmzdvRvfu3W0+p7S0FDqdzuyLiEiplJbUqjcIbMsrrLhqr5sDGeSugO+3aahzSyADAJE4h7l+s5HqI/2Rq4jEaHI7RffMTJw4ETqdDo0bN4avry/0ej1ef/11DCxnXHbatGnIyMhwYyuJiCrPLas+2ylrXwFSm0cj0WZjZJolZNADWRMACIvZXT4awCCAyf5fos8jw5QxJOcB1LZau6KDmcWLF2PhwoX46quv0LRpU+zZswdjxoxBdHQ00tLSrD5n0qRJGDt2rOmxTqdDTEyMu5pMRB7Anb/IlZLUqmvcFKkHcq3ui5vwozTU5dIWlOPoVkB30uZuHw0QiUKkhuQDqOe+dnkoxedvWaHoYObFF1/ExIkT8dhjjwEAmjdvjqNHj2LatGk2g5mAgAAEBAS4s5lE5EHc/Ytc9mq/Y8YA//0vwqzsqj/hRwBSbZuMH3LRLSFSnr/Oi0879ziySdH5W+VQdM7M5cuX4VNmGqCvry8MBoNMLSIiT1ZeddkRC3Yha1+B019Ttmq/CxZIOTH//a/Frvov/WAKZAAF1G8JiXDucWSV0vK3HKHoYKZnz554/fXX8b///Q9HjhzB0qVL8fbbb+Ohhx6Su2lE5GHk+kXu9mq/v/4qBTFPPGGxq9HY76Ugxkbir2z1W2KTgLBoWL5DRhogrK50HFWamosSKjqYeffdd9G3b1+MHDkSTZo0wfjx4zF8+HBMmTJF7qYRkYeR8xe5W6r9nj4tBSl33WWxa+em31B/wo8o9St/iF62+i0+vkDqjBsPbIR8qdOl46jSlJK/VRmKzpkJDQ3F7NmzMXv2bLmbQkQeTu5f5KnNolxT7ffqVcBWHuGmTUDnzmhlEIja/A9OFZVY7ZmyVb/FrTNeEnoB/b6AyJoAzS3JwCIsGprU6dJ+qhLZ87eqQNHBDBGRuyjhF7mvj8a5069t1YmZOxd49lmz103vmYARC3ZBA5gFNLaGuuSY8ZJluAtTSv6LmKu/mSoAHy9piVcMzeWbaeVBjPlbjga1SqDoYSYiIneRLRHXFWwVvBsyRKoVc0sgY+TIUJccidLG1zyhu4bthgSsMCRhuyEBJ3XXXPaa3kY1q7VboRFCripI7qHT6aDValFUVISwMGuTD4mIJMYbJmC9d0Kp01JNbPXExMQAx47ZdYqKho70BoFOM9bZzC8y/vW+ecJ9TrvpyfGa3kwpdWYcuX9zmImI6AZj70TZX+SRCi8YZjOIARyu2lvRUJccFYuVVCXZG7gsf8uFGMwQEd1CVb/InRjE2EuORGm5k7O9kdPzt1yMwQwRURmK/0V+//3AunXW97k4c0CORGklJGeTsjEBmIhILdLTpd4Ya4GMEG5ZCFKORGmPSs4ml2AwQ0SkdMuXS0HMa69Z7tPr3bqatRwzXtQ8y4bcg8EMEZFS7d8vBTF9+lju0+mkIMbH/b/G3VKxWAGvSerBqdlEMnNrFVVSh/PngZo2hkz++gto2NC97bFBju9d/rx4D07NJlIJpdRzIIXQ64FqNn4tr1wJpCqrzq0cidKKT84mWXCYiUgmclRRJQXTaKwHMjNmSMNJCgtkiJSEwQyRDPQGgYwfcq2uf2LclvFDLvQGjx4FJsD20gO9e0tBzEsvub9NRCrDYSYiGbCiKdkseBcUBFy+7N62EKkce2aIZMCKpt5HbxDYlldouycGkHpiGMhUzKAH8n8G9n4n/WvQy90ikhl7ZohkwIqm3iVrXwGS7roTiSXF1g/w7EmlzpW7AsiaAOhO3twWFg2kzgASesnXLpIVe2aIZMCKpt7j1AM9kdo8GmFWApm4CT8ia+9JK88iq3JXAIsHmwcyAKArkLbnrpCnXSQ7BjNEMmBFUy/w9tuARoPINT9a7Ko/4UfUnyBtZ6K3nQx6qUemvLT5rIkccvJSDGZIVsY8guV7TmBbXqFX/VJnRVMPlZ0t5cSMG2exK/7F5aYgBjBP9KYKHN1q2SNjRgC6E9Jx5HWYM0Oy8aaCcbaqlqY2i0K3hEhWNPUEhw8D8fFWd7Ua/RUuBNmuYMpEbzsUn3buceRRGMyQLIwF48r2wxgLxnlSz0RFQRsrmt6kylL1xcVAaKjVXb/9uBG9f75Y4SmY6G2HkAjnHkcehcEMuV1FBeM0kPIIuiVEKv9GVgFvCtqqSnU9deUt8vjtt0DfvmhmEIj6fR1OFZVY/X7XQBpWZKK3HWKTpFlLugJYz5vRSPtjk9zdMlIA5syQ2zlSME7NWOXXfqpb2kGjsR7IvPyyFOT07QuAid5O5eMrTb8GYPPdTJ0uHUdeh8EMuZ23FIzzlqCtqlQV9NkqeNepkxTEvP66xS4mejtRQi+g3xdAWJn3LCxa2s46M16Lw0zkdt5SMM5bgraqUsXSDrYq9gJ2FbxjorcTJfQCGveQZi0Vn5ZyZGKT2CPj5RjMkNsZC8Z5eh6BtwRtVaXooK+KQcytmOjtRD6+QFxnuVtBCsJhJnI7b8kjYJVf+ygy6GvQoPz1k7j8AJGiOBzMpKWlYdOmTa5oC3kRb8gj8JagraoUFfQNHy4FMXl5lvsYxBAplsPDTEVFRUhOTkZsbCyefPJJpKWloW7duq5oG3k4b8gjMAZtZaccRyp5yrGbGYO+EQt2QQPzSbfODPrKrWHzySfAsGHWn2gwlD/cpBYGPfNMyGNphHD8T41//vkHX375JT7//HPk5uYiOTkZQ4cORe/eveHn5+eKdlaaTqeDVqtFUVERwsJsV+D0VKosQuaB+DlUzJV1Zmyd+52Yy7j7CRszYEpKgICAKr2uYnClaVIhR+7flQpmbrVr1y5kZmbik08+QUhICAYNGoSRI0eiYcOGVTmt03hzMKO6ImTk9VwR9FkrXBhx8Sx++WCI9SecPAlEedDPh3GlaYt0+xvvK6c0k0I5cv+uUgJwQUEB1qxZgzVr1sDX1xcPPvgg9u7di4SEBLzzzjtVOTVVkeqKkBHh5oyf3q3qIjG+llOGlm6tYRNw/SqOzPiX9UBm+3YpJ0ZFgUyFC7VypWnyEg7nzFy7dg0rVqxAZmYmVq9ejRYtWmDMmDF4/PHHTZHT0qVL8dRTT+GFF16ocgPr16+Po0ePWmwfOXIk3n///Sqf3xN503IBROUx1bARAkfe7Gn1mPEPjsEjc/6jumnTdvW8OrLSNKc6k4o5HMxERUXBYDBgwIAByMnJQatWrSyO6dq1K8LDw53QPGDHjh3Q62/+1bBv3z5069YNjz76qFPO74lUUYSMPJeCEk3PXCzBkRn/srrvy9YP4pUHRgIAOquscKHda35xpWnyEg4HM++88w4effRRBAbarvkQHh6O/Pz8KjXMqHbt2maPp0+fjvj4eHTp0sUp5/dEii5CRp5NSYmmGg16W9l8qGY9JA/70GybmgoXOtTzypWmyUs4HMw88cQTrmiHXa5evYoFCxZg7Nix0NiYKllaWorS0lLTY51O567mKYYii5CRx7FI1i3ZDN9v02CRn6ErkBJQ3ZVoWs406voTfjQ/FOqrNu1Qz2scV5om76Cq5QyWLVuGCxcuYMiQITaPmTZtGjIyMtzXKAXyluUCSD5l8zV8YMC2wBdQB8JK8bsb/QVZE6U1dVw15FROEBNXJogB1Fu40KGeV+NK04sHA7aq+HClafIAqlrO4NNPP0X37t0RHR1t85hJkyahqKjI9HX8+HE3tlAZWHmWXMnaTLn2Pn8iAoU2q/iaJZo6W2JihUsPeFK1aYd7XrnSNHkB1fTMHD16FNnZ2ViyZEm5xwUEBCDAUwpdVQErz5Ir2MrXqIML9p3AmYmmEyYAb75pfV+Z8lmeVG26Uj2vXGmaPJxqgpnMzEzUqVMHPXr0kLspquFJv8BJGWzla5xBuH0ncEai6eLFQP/+1veVs/SAr48G7eNqmn4ecvLPqfLnodLLP3ClafJgqghmDAYDMjMzkZaWhmrVVNFkxTAWISNyBlv5GjmGxjgpaiIS52A9NnBCoumePUDr1tb3FRcD1auX+3SlVcSuSrVj9rwSmVNFZJCdnY1jx47hqaeekrspRF7NVr6GAT7IuDYYc/1mwyBQJqCpYqLp2bNAmRINJvn5QP36FZ7C7rosbuKMwIo9r0Q3VXltJqXz5rWZSPnUtgCl3iDQacY6m/kaqT45yPD/EhEovLkxrK4UyDiaaHr9OmBr4dp164CuXR1qs63pzMYck80T7nPLe28rsDK+shqTkolcwZH7typ6Zog8kdKGPexRUb7GKkN79HlkGFJD8quWaGprdtLs2cDzzzt0KiVVxOZSI0Suoaqp2USeQs0LgRrzNWxOdW5eT0o0bd5X+teRQEajsR7I9O8vzVByMJABlFUR25HAiojsx54ZIjfzhL/OnZ6vYasn5rbbgH/+qXxDoayK2EoKrIg8CYMZIjdT0rBHVThlplw5VXvL1oqpLCVVxFZSYEXkSTjMRORm/OscUmJvBVV7nUVJFbGNgZWtV9JAypviUiNEjmEwQ+RmXv3XeY8eUhBz/brlPicHMbeqMM/HgYRrvUFgW14hlu85gW15hdAb7G+zkgIrIk/CYSYiN1PSsIfbvPEG8H//Z32fm6pDOCPPx1n1YVjwjsi5WGeGSAbG2UyA9XL0HlNr5H//A/71L+v7rl8HfNWzNpCz68OorcYQkbs5cv/mMBORDJw57KFIf/4pDSdZC2TOn5d6Y1QUyFQ0Aw2QZqA5OuSUGF8LvVvVRWJ8LQYyRFXAYSYimXhkOfrz54GaNobHcnOBJk3c2x4n8ZQZaESeisEMkYw8ZiFQvR6wtQjsihVAz57ubY+TcQYakbJxmImIqkajsR7IPPusNJyk8kAG8PIZaEQqwJ4ZIhWTNYnUVp2YuDjg8GH3tMFNvHIGGpGKMJghUinZFqp0Q9VepalogU2A9WGI5MRhJiIVkmWhSluLQAIuLXinFB4/A41IxdgzQ6Qybl+o0gt7YmzxyBloRB6AwQwRABj0wNGtQPFpICQCiE0CfJRZB8Vt04Q7dwY2b7bxIt4VxNzKY2agEXkQBjNEuSuArAmA7uTNbWHRQOoMIKGXfO2ywe5pwrpLQH6u4wHa5MlARob1fV4cxBCRcjGYIe+WuwJYPBgoO2ijK5C29/tCcQGNPdN/U3xykLpmLHD51M2NFQVo5S09UFoK+PtXorVERK7HBGDyXga91CNTXpH6rInScQpinCZsK0sj1ScHH/rPhv+tgQxwM0DLXWG+/eBB20sPnDgh9caoMJCpyurWRKQu7Jkh73V0q/nQkgUB6E5Ix8V1dluzKlLeNGFfGPCq3xcAYCXYuZEenDURaNwDuHwFCA21/iKbNwMdOzq97e4i27R1IpIFe2bIexWfdu5xbmRrmnBK6GFEa87Z7LUBBFD0N+BbzXog8+67Uk+MygMZt09bJyJZsWeGvFdIhHOPczNr04Q7XLoMLCnnSRk669v79QO++abyjVHIbDC3T1snIkVgMEPeKzZJSorVFcB63oxG2h+b5O6W2c1imnB+pPUDbQUxwcHApUtVa4SCZoNxdWsi78RhJvJePr7SDReAZYbJjcep0xVbb8YqY4BmbH+GznYgI4RzApnFgy1zj2wlG7sYV7cm8k4MZsi7JfSSpl+HlUkKDYtW5LTsChkDtIwi20HM/uXOqRcj42wwWzOVuLo1kXfiMBNRQi9pdo8Ccj6qzNcXMBis73uridTT5KwATabZYOXNVOqWEMnVrYm8EIMZIkAKXBQ0/dphDz0ELFtmfd/v37omQJNhNphxplLZQMU4U2nuoDZc3ZrIC3GYiWTDomZOMHu2VPDOWiBjMEjDSc37SoGas3ua3DwbrKKZSsDNmUpc3ZrIu7BnhmTBomZVtGED0LWr9X3FxUD16q5vg5tngzkyU0npq1vrDUKxbSNSIwYz5Hb2DBUwoLHh77+BmBjr+/LygDvucF9bjMnGiwcDtgZ1nDgbzNGZSkpd3ZqBPJHzcZiJ3MreoQIOOZVRUiINJ1kLZFaulIaT3BnIGLlxNpgnzFRidWIi11B8MHPixAkMGjQItWrVQlBQEJo3b45ff/1V7mZRJTkyVEA3aDRAUJDl9qlTpSAmNdX9bbpVQi9gzD4g7UfgkU+lf8fsdfq09ooW2NRA6uFQ6kwlBvJErqPoYabz58+jY8eO6Nq1K1auXInatWvj4MGDqFGjhtxNo0piUTMHaGzctrt2Bdats9gsax6GG2aDlbfAphpmKrE6MZHrKDqYmTFjBmJiYpCZmWnaFhcXJ2OLqKo8YajA5WwFMYDNYnfekodhXGCz7LVGquBaGcgTuY6ig5kVK1YgJSUFjz76KDZu3Ii6deti5MiRGDZsmM3nlJaWorS01PRYp7NRBZVkYRwqUGtRM5f2flQiiAG8L6Fa6TOVbGEgT+Q6ig5mDh8+jLlz52Ls2LF4+eWXsWPHDowePRr+/v5IS0uz+pxp06YhIyPDzS0le6l5qMDR3g+7A59KBjHG1/DGVaKVOlOpPGoP5ImUTCOEMxZpcQ1/f3+0a9cOW7duNW0bPXo0duzYgW3btll9jrWemZiYGBQVFSEsLMzlbSb7qG1YxFbvhzE8KNv7Ydf1RUcDBTZmr9j5Y7ktrxAD5m2v8LhFw+5W3c3fExm/jwDrgbyn9aIRVYVOp4NWq7Xr/q3onpmoqCgkJCSYbWvSpAm+//57m88JCAhAQECAq5tGVaSmoQJHez8qGvbZdHAhYpYssv5iDv5twTwMdVFzzg+Rkik6mOnYsSMOHDhgtu2vv/5CbGysTC1yH2+oEKqWoQJHZqG0j6tpM/Dp+/tqzFw5x/pJ9HrAx/FKCczDUB81BfJEaqHoYOaFF15AUlIS3njjDfTr1w85OTn4+OOP8fHHH8vdNJdS2xCMu7k70HOk98Na4NO84CB++OIF60+6cAHQaivdNm/Ow1BzwK+WQJ5ILRQdzNx1111YunQpJk2ahNdeew1xcXGYPXs2Bg4cKHfTXMbbZqY4So5Ar6JeDR8Y0N7nTzQ5ewZn/gmHD6rBAB/UvFyEXe9a/15d991a3PfIfVVum5oTqquCAT8R3UrRCcDO4EgCkdz0BoFOM9bZHNIw/pW9ecJ9HndzsoejSbjOYvxcrPV+pPjkIN3vC0RrblYsPqmvgeipR62ea2TvifipcSenJ+R6081dru8DInIvj0kA9jasEGqbnFOQbfV+pPjkYK7fbPODM3SIhmVto3l39cHr9z3tspL73pKHUdnvAzUPSRFRxRjMKAhnptgmd6BXdhaKDwxI9/sC0NxY4CzDenHGA7fFImXo+wBcP+zjDXkYlfk+8KZeKyJvxWBGQTgzxTYlBHq39n7oD29C9JZzNoMYAEB6GNKvjgIM0kNOv606R78PmING5B0YzCiIN89MuZW1IQGlBHqm3o8GD9s+KP3m2O5r992GP25rxaENJ3Hk+8BbqyMTeSMGMwrirTNTbmVrSOCVHgnKCPRCQ4HiYuv70i0T1O6Mb4A74+q6tk1exJGAX+6hSSJyH8erdJFLGXMzIrXmf4FGagM9vkvcOCRQ9gZ0qqgEo77ahV4tpWsvG8q5JdB75BFpDSVrgUx6mJVARgOE1QVik1zTHi9lDPiBir8PlDA0aYveILAtrxDL95zAtrxC6A0ePamUyOXYM6NA3jIz5Vb2DAms+K0A7z/eGlP+94f7SsHPmgW8+KL1ffuXA4sH39JKoxufU+p0wMfX+W3ycvYuCaCUocmymJBM5HwMZhTKG2am3MreIYEa1QOwecJ9rg/01qwBHnjA+r5r14BqN350+n0BZE0AdCdv7g+LlgKZhF7ObZMTqX2qsj0BvxJz0JiQTOQaDGZIYtADR7cCxaeBkAhpeMSNvQqODAm4NNDLywMaNLC+7+xZoFaZ103oBTTuIet75yhP6Rmo6PtAaTloTEgmch0GMwTkrrDRuzDDbb0Lsg8JXL4MVK9ufd/vvwPNm9t+ro8vENfZNe1yMm/rGVDSKtVMSCZyHQYz3i53xY28jzK3N12BtL3fF24JaGQbEhDC9mrV330nJf56CG/tGVBKDpqSE5KJ1I6zmbyQaSbF7mMo/fFFCJu3NwBZE6UhKBdzZJaK02g01gOZl1+WghwPCmQAx3oGPI1xSKp3q7pIjK8lS7Ame+8jkQdjMONlsvYVoNOMdRgwbzsWffsNAi6fsggebhKA7oSUD+IGbpuWrtFIX2U9/bQUxLz+unNeR2HYMyAvY++jrZ83V63bReQNOMzkRcrmS9TBBfueWHzaVU2y4NIhAWsBDAAkJAD791f9/ArHngF5KS0hmciTMJjxEtbyJc4g3L4nh0S4okk2OX22Ung4UFRkfZ/wnmJlSpyq7G2UlJBM5EkYzHgJa/kSOYbGOClqIhLnYP2PQY00q0mtVWz79AGWL7e+z4uCGCP2DCiDUhKSiTwJc2bcSM4S5tbyIAzwQcY1qYKtZVNUXMX29delISVrgYwQXhnIGHnzchlKooSEZCJPwp4ZN5G7UJmtPIhVhvYYcW0M0v2+QDRumcWigiq2FpYtAx56yPo+g8F2zoyXkbtnQO3Vh4lIeTRCePafqTqdDlqtFkVFRQgLs1zV2B1sFSoz/vp2x1/EeoNApxnrbOZL+MKAlNDDeK9nNHxCIytVxVa2m9RvvwGtWlnfV1oK+PtX+tS88TqX3EE9EamHI/dvBjMuZgwibNX3MCZdbp5wn8tvksagCrCeL1GVoEqWm9SZM0CEjeTkf/4BbrutSqfnjde5lBDUE5F6OHL/Zs6MiympUJmr8iWMN6my12kskZ+1r6DSbbaqtFQaMrIWyOzdK+XEOCGQces1ebiKqg8DUvVhd+aREZHnYM6MiymtUJmz8yXcWiK/vKUHfvgB+Ne/qnb+G7y17L8rcV0iInIl9sy4mBILlTlzJoXbep5sLT0wfboU5DgpkAGU1ZvmKZQW1BORZ2HPjIt5eqEye24+PjBAf3gTcFkvFeC7kVxsV3KtrRlIjzwiLQTpArzxOp8Sg3oi8hwMZlzM0wuVVXTzSfHJkaZ9bzGf9r276USM3FXPdnKtrSCmTh3gtGuXV+CN1/k8PagnInlxmMkNPLlQWXmL56X45GCu32xEasyHY4SuAC23jkaLi5vMtp8qKkHjzm1tBzJCuDyQAbggoCvIsio6EXkNTs12I0+tWWJtyrcPDNgcMNrmUgkGAZxCLXQq/S8M8MGs/72DvvvWWn8BGb5FnTGN3VM/76rgdHcishfrzNxCScGM2pV3cy57k7rbJxdf+0+t8Jyfb7kXadkrrO+U+VuzKjde3rRtY5BHRPZgMHMLBjPOYc/N+dabVJOzq3Hn5jG2T5h3HVhw2equ+i/9gP8OaI3ereo68xIqpTI3XhaHIyKqOkfu30wAdjaDHji6FSg+bTZzRzHnqwRbN2djATnjzdk45RsAkN8A2GzlZGf1wPuXrL5Oo3FLUFpNWnpAKcm1ZtdkB9aoISJyPwYzzpS7AsiaAOhO3twWFg2kzqjcgo3OPl8lVPrmHJsktVVXIB15RQBvXrT6Gu1Hfo4zoVLAoPZZLSwOR0TkfpzN5Cy5K4DFg80DD0C6mS8eLO2X83yVVOkCcj6+UtBlEECGzmog88aQp1F/wo9mgQyg7lktrFFDROR+ig9mJk+eDI1GY/bVuHFjuZtlzqCXelDKW3kma6J0nBznq4Iq3Zyb9gam6Cy3D4rG7qz5+OHOx8w2e8JUddaoISJyP1UMMzVt2hTZ2dmmx9WqKazZR7da9qCYEYDuhHRcXGf3n68KKnVztlUnZuhDwP+9AMQmobWPLzZ387xZLSwOR0TkfgqLCqyrVq0aIiMj5W6GbcV2FnKT67gqcOjmbCuIGTgQWLDAYrOjybVq4OkVn4mIlEjxw0wAcPDgQURHR+OOO+7AwIEDcezYMZvHlpaWQqfTmX25XEiEso+rAnsqt26c2Q++vla+lRo0kGrFWAlkPJm7Kj7rDQLb8gqxfM8JbMsrhN7g0VUWiIhsUnydmZUrV6K4uBiNGjVCQUEBMjIycOLECezbtw+hoaEWx0+ePBkZGRkW211aZ8agB2Y3uzlzx4JGmtkzZq9906qdfT4nsFZn5svlr6Pzn9usP0HZ31ZucWuNmtuqBwAa4GxxqVOG1FiUj4g8nUcXzbtw4QJiY2Px9ttvY+jQoRb7S0tLUVpaanqs0+kQExPj+qJ5xtlHAKwOLvT7wrHp1M4+nxMYb841Zr6Oxh+9Y/0gJ347eUqlWGcHHizKR0TewKOL5oWHh+POO+/EoUOHrO4PCAhAQECAm1sFKbDo94WNujDTHQ88nH0+J/D9djESH3vM+k4nx8Se0vNgb8FBe7EoHxGRJdUFM8XFxcjLy8MTTzwhd1MsJfQCGvdwXsVeZ5+vsnbsANq3t75Prwd8nJt65ewAQC6uCDxYlI+IyJLig5nx48ejZ8+eiI2NxcmTJ5Geng5fX18MGDBA7qZZ5+Pr3OnSzj6fI06cAOrVs76vuBioXt3pL+lJPQ+OBh72DKuxKB8RkSXFBzN///03BgwYgMLCQtSuXRudOnXC9u3bUbt2bbmb5rkuXQJCQqzvO37cdoDjBJ7U8+BI4GHvsBqL8hERWVJ8MPP111/L3QTvYTAAvjaGsH75xfZQkxN5Us+DvQHFkbOXMTv7L7uG1ViUj4jIkirqzJAbaDTWA5mvv5aSe+0JZAx6IP9nYO930r+VWG7Bk3oejIGHrcEwDYDIsAAsyjlW3sIVyPgh11RDxp66PyzKR0TehsGMCjm1WFq1alYr9x5/bjz0egPQv79958ldIdXG+fxfwPdDpX9nN3N4QUx7AoAolfQ82BN4DGh/O07pHFvI011F+YiI1ELxw0yeztFaKln7CjBlxV7EFP+GOriAMwjH8ZCWeKVXc8duYh06ADk5Fps/bdcbU+4fBgCImrHOvqnQppo4ZYIq4wrfDtTE8bTlAIyBR9l8mMgb+TCl1w12nafssFpqsyh0S4j0iDo8RERVpbqieY5ypOiOu9mb9GkMeLJzT+HvbYuR7vcFojU3/1I/KWritWuD0efxZysOPJ5+Gvj0U4vNPzbujOd6TzDbZlcRNlO1YlsLY1auWrGn1JkxshW0bssrxIB52yt8/qJhdys+4ZmIyJk8ugKwo5QazNhbxfXWm3qKTw7m+s0GANz6B7hxlOllv5fw+ssvW//rfNYs4MUXLTaLO+9E0pAPbM4gMiaUbp5wn/Xz5v8sDSlVJO1Hh6eYe0oF4PLoDQKdZqyrMKHX5vtPROShHLl/M2dGBhXVUgGkpM+ffj+JEQt2oaCoBD4wIN3vCwDmgcytj0df+xQ5ef+Y7/z+eyknxkogAyGw/aetdk+FtsqFK3wbV9Xu3aouEuNreeTNnAm9RERVx2BGBvbWUvnP8n2m4Ka9z5+I1pyzCGSMfDRAtKYQ+iNbbrxIjhTE9O1r5QWEafmBKk+FVtAK32rFhF4ioqphAnAlVWUIxN4A4tyla6b/18EFu54TffqQ1dlJAIDr1y2mX1d5KnRskpQTU9EK37FJdr2Ot2JCLxFR5TGYqYSqJqdWpkbKGYSXf0CJAGZcxB14yXJfOUsPVLkIm48vkDrjxmwmG/OPUqe7fz0pFTIOqxERkWM4zOQgY+Ju2WEiY7XWrH0FFZ7Dnloqtar7m23LMTTGSVETFiVl9ALI0AEzLlqe6ORJaTipnDWUnJKzYVzhO6xMIBcW7dC0bCIiospgMOMAexN3KypiZ08AMaV3M7OAxwAfZFwbLP1fQApSMnTAVCtBzO+/S/uj7Mu1cErORkIvYMw+adbSI59K/47Zy0CGiIhcjlOzHeDsmiAVDVcZe4GAm8FSik8OZi+ZiaADVyxPuGoV8MADdl2LNd4wFZqIiNTBkfs3c2Yc4OxFECtK+ixbPfaVtfMw9Nfllif68ENg+HC7r8MW5mwQEZEaMZhxgKMzf+zp6agogEhtFoUHVi+Cz4xxljszM4EhQ+xuPxERkSdiMOMAR2b+OKUc/9atQMeOlolNc+YA//53Ja+CiIjIszAB2AH2zvxZk3uqajOe9u+XasV07Gi+ffx4KbGXgQwREZEJgxkHVTTzp1tCZOVnPB07JgUxzZqZb581SwpiZs50yjUQERF5Eg4zVUJ5ibvb8grtXuvIlCtTWAg0bgycPWt+8IsvAjNm2K7oS0RERAxmKstW4q5DM54uXQISE4G9e813PvEEMH8+4MOOMyIiooowmHEye2Y8VdNfR5fRg4Gf15nvuP9+4KefAH9/608kRWJ9HiIieTGYcbLyZjxphAEzf/ov+u5ba74jIQH45RcgJMRt7STncMqsNSIiqhKOYziZrRlPL22cj/w3e5kHMjVqAGfOSLOXGMiojjPW6SIioqpjMOMCt854evLX5Tgy418Yuf0784OOHAHOnQNq15aljVQ1zlqni4iIqo7DTC6S+vt6pL480HLH778DzZu7v0HkVDn55xyftUZERC7BnhlXGDECGFgmkPn5Z6lWDAMZj+DsdbqIiKjyGMy4wrVrN/+/fLkUxHTqJF97yOkcXaeLiIhch8GMK3zyCWAwSEFMr15yt4ZcwDhrzdYEbA2kWU3t42q6s1lERF6JwYyrsGqvR7N3nS7WmyEicj0GM0SVVNE6XawzQ0TkHpzNRFQF5a3TRURE7sFghqiKbK3TRURE7sFhJiIiIlI1VQUz06dPh0ajwZgxY+RuisfQGwS25RVi+Z4T2JZXyIq1RESkOqoZZtqxYwc++ugjtGjRQu6meAwukkhERJ5AFT0zxcXFGDhwIObNm4caNWrI3RyPwEUSiYjIU6gimBk1ahR69OiB5OTkCo8tLS2FTqcz+yJzXCSRiIg8ieKDma+//hq7du3CtGnT7Dp+2rRp0Gq1pq+YmBgXt1B9HFkkkYiISOkUHcwcP34czz//PBYuXIjAQPvWuJk0aRKKiopMX8ePH3dxK9VHDYskMjGZiIjspegE4J07d+LMmTNo06aNaZter8emTZvw3nvvobS0FL6+vmbPCQgIQEBAgLubqipKXySRiclEROQIRffM3H///di7dy/27Nlj+mrXrh0GDhyIPXv2WAQyZB8lL5LIxGQiInKUontmQkND0axZM7Nt1atXR61atSy2k/2MiySOWLALGsAsEVjORRIrSkzWQEpM7pYQyeUCiIjIRNE9M+Q6SlwkkYnJRERUGYrumbFmw4YNcjfBYyhtkUQ1JCYTEZHyqC6YIedS0iKJSk9MJiIiZeIwEymGkhOTiYhIuRjMkGIYE5MBWAQ0ciYmExGRsjGYIUVRYmIyEREpG3NmSHGUlphMRETKxmCGFElJiclERKRsHGYiIiIiVWMwQ0RERKrGYIaIiIhUjcEMERERqRqDGSIiIlI1zmbyMHqD4JRmIiLyKgxmPEjWvgJk/JBrtvJ0lDYQ6T0TWGyOiIg8FoeZPETWvgKMWLDLLJABgFNFJRixYBey9hXI1DIiIiLXYjDjAfQGgYwfciGs7DNuy/ghF3qDtSOIiIjUjcGMB8jJP2fRI3MrAaCgqAQ5+efc1ygiIiI3Yc6MzJyRsHvmou1ApjLHERERqQmDGRk5K2G3TmhgxQc5cBwREZGacJhJJs5M2G0fVxNR2kDY6s/RQAqS2sfVrHyDiYiIFIrBjAycnbDr66NBes8EALAIaIyP03smsN4MERF5JAYzMnBFwm5qsyjMHdQGkVrzoaRIbSDmDmrDOjNEROSxmDMjA1cl7KY2i0K3hEiXVgBmhWEiIlIaBjMycGXCrq+PBonxtRx+nj1YYZiIiJSIw0wyUGPCLisMExGRUjGYkYHaEnZZYZiIiJSMwYxM1JSwywrDRESkZMyZkZE7EnadgRWGiYhIyRjMyMyVCbvOwgrDRESkZBxmogqpMWGZiIi8B4MZqpDaEpaJiMi7MJghu6gpYZmIiLwLc2bIbmpJWCYiIu+i+J6ZuXPnokWLFggLC0NYWBgSExOxcuVKuZvltYwJy71b1UVifC0GMkREJDvFBzP16tXD9OnTsXPnTvz666+477770Lt3b+zfv1/uphEREZECaIQQqivbWrNmTcycORNDhw6t8FidTgetVouioiKEhYW5oXVERERUVY7cv1WVM6PX6/Htt9/i0qVLSExMtHpMaWkpSktLTY91Op27mkdEREQyUPwwEwDs3bsXISEhCAgIwLPPPoulS5ciISHB6rHTpk2DVqs1fcXExLi5tUREROROqhhmunr1Ko4dO4aioiJ89913+OSTT7Bx40arAY21npmYmBgOMxEREamII8NMqghmykpOTkZ8fDw++uijCo9lzgwREZH6OHL/VsUwU1kGg8Gs94WIiIi8l+ITgCdNmoTu3bvj9ttvx8WLF/HVV19hw4YNWLVqldxNIyIiIgVQfDBz5swZDB48GAUFBdBqtWjRogVWrVqFbt26yd00IiIiUgDFBzOffvpplZ5vTAniFG0iIiL1MN637UntVXwwU1UXL14EAE7RJiIiUqGLFy9Cq9WWe4wqZzM5wmAw4OTJkwgNDYVGU/V1hIxTvY8fP+6xs6O84RoB77hOb7hGwDuu0xuuEfCO6/SGawSqfp1CCFy8eBHR0dHw8Sl/vpLH98z4+PigXr16Tj+vceFLT+YN1wh4x3V6wzUC3nGd3nCNgHdcpzdcI1C166yoR8ZIlVOziYiIiIwYzBAREZGqMZhxUEBAANLT0xEQECB3U1zGG64R8I7r9IZrBLzjOr3hGgHvuE5vuEbAvdfp8QnARERE5NnYM0NERESqxmCGiIiIVI3BDBEREakagxkiIiJSNQYzAN5//33Ur18fgYGB6NChA3Jycso9/ttvv0Xjxo0RGBiI5s2b46effjLbL4TAq6++iqioKAQFBSE5ORkHDx505SVUyJFrnDdvHjp37owaNWqgRo0aSE5Otjh+yJAh0Gg0Zl+pqamuvoxyOXKN8+fPt2h/YGCg2TFK/BwBx67z3nvvtbhOjUaDHj16mI5R2me5adMm9OzZE9HR0dBoNFi2bFmFz9mwYQPatGmDgIAANGjQAPPnz7c4xtGfc1dy9BqXLFmCbt26oXbt2ggLC0NiYiJWrVpldszkyZMtPsfGjRu78Coq5uh1btiwwer366lTp8yOU/Nnae3nTaPRoGnTpqZjlPZZTps2DXfddRdCQ0NRp04d9OnTBwcOHKjwee68V3p9MPPNN99g7NixSE9Px65du9CyZUukpKTgzJkzVo/funUrBgwYgKFDh2L37t3o06cP+vTpg3379pmOefPNNzFnzhx8+OGH+OWXX1C9enWkpKSgpKTEXZdlxtFr3LBhAwYMGID169dj27ZtiImJwQMPPIATJ06YHZeamoqCggLT16JFi9xxOVY5eo2AVJXy1vYfPXrUbL/SPkfA8etcsmSJ2TXu27cPvr6+ePTRR82OU9JneenSJbRs2RLvv/++Xcfn5+ejR48e6Nq1K/bs2YMxY8bg6aefNrvZV+b7w5UcvcZNmzahW7du+Omnn7Bz50507doVPXv2xO7du82Oa9q0qdnnuHnzZlc0326OXqfRgQMHzK6jTp06pn1q/yz/+9//ml3b8ePHUbNmTYufSSV9lhs3bsSoUaOwfft2rFmzBteuXcMDDzyAS5cu2XyO2++Vwsu1b99ejBo1yvRYr9eL6OhoMW3aNKvH9+vXT/To0cNsW4cOHcTw4cOFEEIYDAYRGRkpZs6cadp/4cIFERAQIBYtWuSCK6iYo9dY1vXr10VoaKj4/PPPTdvS0tJE7969nd3USnP0GjMzM4VWq7V5PiV+jkJU/bN85513RGhoqCguLjZtU9pneSsAYunSpeUe89JLL4mmTZuabevfv79ISUkxPa7q++ZK9lyjNQkJCSIjI8P0OD09XbRs2dJ5DXMye65z/fr1AoA4f/68zWM87bNcunSp0Gg04siRI6ZtSv8sz5w5IwCIjRs32jzG3fdKr+6ZuXr1Knbu3Ink5GTTNh8fHyQnJ2Pbtm1Wn7Nt2zaz4wEgJSXFdHx+fj5OnTpldoxWq0WHDh1sntOVKnONZV2+fBnXrl1DzZo1zbZv2LABderUQaNGjTBixAgUFhY6te32quw1FhcXIzY2FjExMejduzf2799v2qe0zxFwzmf56aef4rHHHkP16tXNtivls6yMin4mnfG+KY3BYMDFixctfiYPHjyI6Oho3HHHHRg4cCCOHTsmUwurplWrVoiKikK3bt2wZcsW03ZP/Cw//fRTJCcnIzY21my7kj/LoqIiALD4/ruVu++VXh3MnD17Fnq9HhEREWbbIyIiLMZojU6dOlXu8cZ/HTmnK1XmGsuaMGECoqOjzb7pUlNT8cUXX2Dt2rWYMWMGNm7ciO7du0Ov1zu1/faozDU2atQIn332GZYvX44FCxbAYDAgKSkJf//9NwDlfY5A1T/LnJwc7Nu3D08//bTZdiV9lpVh62dSp9PhypUrTvkZUJpZs2ahuLgY/fr1M23r0KED5s+fj6ysLMydOxf5+fno3LkzLl68KGNLHRMVFYUPP/wQ33//Pb7//nvExMTg3nvvxa5duwA45/eZkpw8eRIrV660+JlU8mdpMBgwZswYdOzYEc2aNbN5nLvvlR6/ajZVzfTp0/H1119jw4YNZgmyjz32mOn/zZs3R4sWLRAfH48NGzbg/vvvl6OpDklMTERiYqLpcVJSEpo0aYKPPvoIU6ZMkbFlrvPpp5+iefPmaN++vdl2tX+W3uarr75CRkYGli9fbpZL0r17d9P/W7RogQ4dOiA2NhaLFy/G0KFD5Wiqwxo1aoRGjRqZHiclJSEvLw/vvPMOvvzySxlb5hqff/45wsPD0adPH7PtSv4sR40ahX379smej1WWV/fM3HbbbfD19cXp06fNtp8+fRqRkZFWnxMZGVnu8cZ/HTmnK1XmGo1mzZqF6dOnY/Xq1WjRokW5x95xxx247bbbcOjQoSq32VFVuUYjPz8/tG7d2tR+pX2OQNWu89KlS/j666/t+kUo52dZGbZ+JsPCwhAUFOSU7w+l+Prrr/H0009j8eLFFl34ZYWHh+POO+9UzedoS/v27U3X4EmfpRACn332GZ544gn4+/uXe6xSPsvnnnsOP/74I9avX4969eqVe6y775VeHcz4+/ujbdu2WLt2rWmbwWDA2rVrzf5qv1ViYqLZ8QCwZs0a0/FxcXGIjIw0O0an0+GXX36xeU5Xqsw1AlKW+ZQpU5CVlYV27dpV+Dp///03CgsLERUV5ZR2O6Ky13grvV6PvXv3mtqvtM8RqNp1fvvttygtLcWgQYMqfB05P8vKqOhn0hnfH0qwaNEiPPnkk1i0aJHZ1HpbiouLkZeXp5rP0ZY9e/aYrsFTPktAmiF06NAhu/7AkPuzFELgueeew9KlS7Fu3TrExcVV+By33ysdThn2MF9//bUICAgQ8+fPF7m5ueKZZ54R4eHh4tSpU0IIIZ544gkxceJE0/FbtmwR1apVE7NmzRJ//PGHSE9PF35+fmLv3r2mY6ZPny7Cw8PF8uXLxe+//y569+4t4uLixJUrV9x+fUI4fo3Tp08X/v7+4rvvvhMFBQWmr4sXLwohhLh48aIYP3682LZtm8jPzxfZ2dmiTZs2omHDhqKkpEQV15iRkSFWrVol8vLyxM6dO8Vjjz0mAgMDxf79+03HKO1zFMLx6zTq1KmT6N+/v8V2JX6WFy9eFLt37xa7d+8WAMTbb78tdu/eLY4ePSqEEGLixIniiSeeMB1/+PBhERwcLF588UXxxx9/iPfff1/4+vqKrKws0zEVvW/u5ug1Lly4UFSrVk28//77Zj+TFy5cMB0zbtw4sWHDBpGfny+2bNkikpOTxW233SbOnDnj9uszcvQ633nnHbFs2TJx8OBBsXfvXvH8888LHx8fkZ2dbTpG7Z+l0aBBg0SHDh2snlNpn+WIESOEVqsVGzZsMPv+u3z5sukYue+VXh/MCCHEu+++K26//Xbh7+8v2rdvL7Zv327a16VLF5GWlmZ2/OLFi8Wdd94p/P39RdOmTcX//vc/s/0Gg0G88sorIiIiQgQEBIj7779fHDhwwB2XYpMj1xgbGysAWHylp6cLIYS4fPmyeOCBB0Tt2rWFn5+fiI2NFcOGDZPtl4mRI9c4ZswY07ERERHiwQcfFLt27TI7nxI/RyEc/379888/BQCxevVqi3Mp8bM0Ts8t+2W8rrS0NNGlSxeL57Rq1Ur4+/uLO+64Q2RmZlqct7z3zd0cvcYuXbqUe7wQ0nT0qKgo4e/vL+rWrSv69+8vDh065N4LK8PR65wxY4aIj48XgYGBombNmuLee+8V69atszivmj9LIaQpyEFBQeLjjz+2ek6lfZbWrg+A2c+Z3PdKzY2GEhEREamSV+fMEBERkfoxmCEiIiJVYzBDREREqsZghoiIiFSNwQwRERGpGoMZIiIiUjUGM0RERKRqDGaIiIhI1RjMEJGq6PV6JCUl4eGHHzbbXlRUhJiYGPzf//2fTC0jIrmwAjARqc5ff/2FVq1aYd68eRg4cCAAYPDgwfjtt9+wY8eOClchJiLPwmCGiFRpzpw5mDx5Mvbv34+cnBw8+uij2LFjB1q2bCl304jIzRjMEJEqCSFw3333wdfXF3v37sW///1v/Oc//5G7WUQkAwYzRKRaf/75J5o0aYLmzZtj165dqFatmtxNIiIZMAGYiFTrs88+Q3BwMPLz8/H333/L3Rwikgl7ZohIlbZu3YouXbpg9erVmDp1KgAgOzsbGo1G5pYRkbuxZ4aIVOfy5csYMmQIRowYga5du+LTTz9FTk4OPvzwQ7mbRkQyYM8MEanO888/j59++gm//fYbgoODAQAfffQRxo8fj71796J+/fryNpCI3IrBDBGpysaNG3H//fdjw4YN6NSpk9m+lJQUXL9+ncNNRF6GwQwRERGpGnNmiIiISNUYzBAREZGqMZghIiIiVWMwQ0RERKrGYIaIiIhUjcEMERERqRqDGSIiIlI1BjNERESkagxmiIiISNUYzBAREZGqMZghIiIiVWMwQ0RERKr2/8ld3rT2LV0QAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -274,46 +1382,29 @@ } ], "source": [ - "from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n", "import matplotlib.pyplot as plt\n", "\n", - "# Evaluating the model\n", - "# Mean Absolute Error (MAE)\n", - "mae = mean_absolute_error(y, y_pred)\n", - "print('Mean Absolute Error:', mae)\n", - "\n", - "# Root Mean Squared Error (RMSE)\n", - "rmse = np.sqrt(mean_squared_error(y, y_pred))\n", - "print('Root Mean Squared Error:', rmse)\n", - "\n", - "# R-squared\n", - "r2 = r2_score(y, y_pred)\n", - "print('R-squared:', r2)\n", + "# Plot the scatter plot of the training set\n", + "plt.scatter(X_train, y_train, label='Training Set')\n", "\n", - "mse = mean_squared_error(y, y_pred)\n", - "print('Mean Squared Error:', mse)\n", + "# Plot the scatter plot of the testing set\n", + "plt.scatter(X_test, y_test, label='Testing Set')\n", "\n", - "# Print shapes of X and y\n", - "print('Shape of X:', X.shape)\n", - "print('Shape of y:', y.shape)\n", + "# Plot the line representing the predicted results\n", + "plt.plot(X_test, y_pred_test, color='red', label='Predictions')\n", "\n", - "# Plot the data\n", - "plt.scatter(X[:, 0], y, color='blue', label='Actual')\n", - "plt.plot(X[:, 0], y_pred, color='red', label='Predicted')\n", + "# Set the title and labels for the chart\n", + "plt.title('Linear Regression')\n", "plt.xlabel('X')\n", "plt.ylabel('y')\n", + "\n", + "# Add a legend\n", "plt.legend()\n", + "\n", + "# Display the chart\n", "plt.show()" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data." - ] - }, { "attachments": {}, "cell_type": "markdown", @@ -335,16 +1426,6 @@ "\n", "In conclusion, implementing a linear regression model from scratch is a great way to gain a deeper understanding of how machine learning algorithms work. We hope that this assignment has helped you to better understand the concepts and techniques involved in building and training machine learning models." ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Acknowledgments\n", - "\n", - "Thanks to the ChatGPT platform for providing the inspiration and guidance throughout this assignment." - ] } ], "metadata": { @@ -363,7 +1444,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb b/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb index a517f8e3da..ee88281cd0 100644 --- a/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb +++ b/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb @@ -32,22 +32,6 @@ "— Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Difference between a Loss Function and a Cost Function\n", - "\n", - "A loss function evaluates the error for a single training example, and it is occasionally referred to as an error function. In contrast, a cost function represents the **average loss** across the entire training dataset. Optimization strategies are designed to minimize this cost function.\n", - "\n", - "For a simple sample:\n", - "\n", - "The corresponding cost function of L1 Loss is the Mean of these Squared Errors (MSE).\n", - "You can see the difference of [Mathematical Expression](#regression-loss-functions)\n", - "\n", - "However, these terms are frequently used interchangeably in practical settings, they aren't precisely equivalent. From a definitional standpoint, the cost function represents an aggregation or average of the loss functions." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -89,81 +73,6 @@ "- L2 Regularization (Ridge): Curbs the unchecked growth of model parameters without nullifying them, ensuring the model remains generalized without undue complexity." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Empirical Risk and Structural Risk\n", - "\n", - "### Definition\n", - "\n", - "Perhaps you've heard of these two concepts before. In the realms of machine learning and statistics, the concepts of empirical risk and structural risk are intricately tied to loss functions. **However, these terms aren't directly categories of loss functions perse.** Let's first clarify these concepts:\n", - "\n", - "1. **Empirical Risk:** Refers to the average loss of a model over a given dataset. Minimizing empirical risk focuses on reducing errors explicitly on the training data.\n", - "2. **Structural Risk:** Introduces a regularization term in addition to empirical risk, aiming to prevent overfitting. Minimizing structural risk strikes a balance between the empirical risk and the complexity of the model.\n", - "\n", - "Given these definitions:\n", - "\n", - "- **Empirical Risk:** Loss functions directly related to dataset performance fall under this category. From the ones been listed, regression losses (e.g., MSE, MAE, Huber Loss, L1 Loss, L2 Loss, Smooth L1 Loss), classification losses (e.g., Cross Entropy Loss, Hinge Loss, Log Loss), and structured losses (e.g., CTC or Image Segmentation Loss) can be seen as manifestations of empirical risk.\n", - "\n", - "- **Structural Risk:** Regularization losses, like L1 and L2 regularization, form part of structural risk. They don't measure the model's performance on the data directly but rather serve to rein in model complexity.\n", - "\n", - "### A Detaphor\n", - "\n", - "Maybe it's still abtract. So, now imagine you're a tailor trying to make a dress for a client.\n", - "\n", - "- **Empirical Risk:** This is like ensuring the dress fits the client perfectly based on a single fitting session. You measure every contour and make the dress to match those exact measurements. The dress is a perfect fit for the client on that particular day.\n", - "\n", - "However, what if the client gains or loses a little weight or wants to move more comfortably? A dress tailored too tightly to the exact measurements might not be very adaptable or comfortable in various situations.\n", - "\n", - "- **Structural Risk:** Now, consider that you decide to allow a bit more flexibility in the dress. You make it slightly adjustable, perhaps with some elastic portions. This way, even if the client's measurements change a bit, the dress will still fit comfortably. You're sacrificing a tiny bit of the \"perfect\" fit for the adaptability and general comfort.\n", - "\n", - "In the context of machine learning:\n", - "\n", - "Relying solely on **Empirical Risk** would be like fitting the dress exactly to the client's measurements, risking overfitting. If the data changes slightly, the model might perform poorly.\n", - "\n", - "Factoring in **Structural Risk** ensures the model isn't overly tailored to the training data and can generalize well to new, unseen data. It's about ensuring a balance between a perfect fit and adaptability.\n", - "\n", - "### Mathematical Explanation\n", - "\n", - "Now you have a general understanding of the meaning of empirical risk and structural risk. Let's delve into a more mathematical perspective:\n", - "\n", - "Given a dataset $\\mathcal{D}$ comprising input-output pairs $(x_1, y_1)$, $(x_2, y_2)$, ... $(x_n, y_n)$ and a model $f$ parameterized by $\\theta$, the empirical risk and structural risk can be formally defined as follows:\n", - "\n", - "**Empirical Risk(Cost Function):**\n", - "$$\n", - "R_{emp}(f) = \\frac{1}{n} \\sum_{i=1}^{n} L(y_i, f(x_i; \\theta))\n", - "$$\n", - "Where:\n", - "\n", - "- **$L$ is the loss function**, measuring the discrepancy between the predicted value $f(x_i; \\theta)$ and the actual output $y_i$.\n", - "\n", - "Empirical risk quantifies how well the model fits the given dataset, representing the average loss of the model on the training data.\n", - "\n", - "**Structural Risk(Objective Function):**\n", - "$$\n", - "R_{struc}(f) = R_{emp}(f) + \\lambda R_{reg}(\\theta)\n", - "$$\n", - "Where:\n", - "- $R_{reg}(\\theta)$ is the regularization term, penalizing the complexity of the model.\n", - "- $\\lambda$ is a regularization coefficient determining the weight of the regularization term relative to the empirical risk.\n", - "\n", - "Structural risk is a combination of the empirical risk and a penalty for model complexity. It strikes a balance between fitting the training data (empirical risk) and ensuring the model isn't overly complex (which can lead to overfitting).\n", - "\n", - "**Differences and Relations:**\n", - "\n", - "1. **Empirical Risk** focuses solely on minimizing the error on the training data without considering model complexity or how it generalizes to unseen data.\n", - "2. **Structural Risk** takes into account both the empirical risk and the complexity of the model. By introducing a regularization term, it ensures that the model doesn't become overly complex and overfit the training data. Thus, it balances performance on training data with generalization to new data.\n", - "\n", - "In essence, while empirical risk aims for performance on the current dataset, structural risk aims for good performance on new data by penalizing overly complex models.\n", - "\n", - "### Cost Function and Objective Function\n", - "\n", - "The empirical risk and cost functions are in many cases the same and represent the average loss on the training data.\n", - "\n", - "Structural risk is often viewed as an objective function, especially when regularization is considered. But the term \"objective function\" is broader and is not limited to structural risk but can also include other optimization objectives." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -271,34 +180,14 @@ "metadata": {}, "source": [ "### Classification Loss Functions\n", - "\n", - "1. **Cross Entropy Loss**\n", - "\n", - "$$\n", - "L(y, p) = - \\sum_{i=1}^{C} y_i \\log(p_i)\n", - "$$\n", - "\n", - "Where $y_i$ is the actual label (0 or 1) and $p_i$ is the predicted probability for the respective class." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_true = tf.constant([[0, 1], [1, 0], [1, 0]])\n", - "y_pred = tf.constant([[0.05, 0.95], [0.1, 0.9], [0.8, 0.2]])\n", - "loss = tf.keras.losses.CategoricalCrossentropy()(y_true, y_pred)\n", - "\n", - "print(loss.numpy())" + "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "2. **Hinge Loss**\n", + "1. **Hinge Loss**\n", "\n", "$$\n", "L(y, \\hat{y}) = \\max(0, 1 - y \\cdot \\hat{y})\n", @@ -320,205 +209,6 @@ "print(loss.numpy())" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "3. **Binary Cross Entropy(Log Loss)**\n", - "\n", - "Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.\n", - "\n", - "Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for predicting class 1. The score is minimized and a perfect cross-entropy value is 0.\n", - "\n", - "This YouTube video by Andrew Ng explains very well Binary Cross Entropy Loss (make sure that you have access to YouTube for this web page to render correctly):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import HTML\n", - "\n", - "display(HTML(\n", - " \"\"\"\n", - " \n", - " \"\"\"\n", - "))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_true = tf.constant([0, 1, 0])\n", - "y_pred = tf.constant([0.05, 0.95, 0.1])\n", - "loss = tf.keras.losses.BinaryCrossentropy()(y_true, y_pred)\n", - "\n", - "print(loss.numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "4. **Multi-Class Cross-Entropy Loss**\n", - "\n", - "Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.\n", - "\n", - "Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for all classes in the problem. The score is minimized and a perfect cross-entropy value is 0." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "y_true = [[1, 0, 0],\n", - " [0, 1, 0],\n", - " [0, 0, 1],\n", - " [1, 0, 0],\n", - " [0, 1, 0]]\n", - "\n", - "# Mock predicted probabilities from a model\n", - "y_pred = [[0.7, 0.2, 0.1],\n", - " [0.2, 0.5, 0.3],\n", - " [0.1, 0.2, 0.7],\n", - " [0.6, 0.3, 0.1],\n", - " [0.1, 0.6, 0.3]]\n", - "\n", - "y_true = tf.constant(y_true, dtype=tf.float32)\n", - "y_pred = tf.constant(y_pred, dtype=tf.float32)\n", - "\n", - "loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred), axis=1))\n", - "\n", - "print(\"Multi-Class Cross-Entropy Loss:\", loss.numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Structured Loss Functions\n", - "\n", - "1. **CTC Loss (Connectionist Temporal Classification)**\n", - "\n", - "Used for sequence-to-sequence problems, like speech recognition." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "y_true = np.array([[1, 2]]) # (batch, timesteps)\n", - "y_pred = np.array([[[0.1, 0.6, 0.3], [0.3, 0.1, 0.6]]]) # (batch, timesteps, num_classes)\n", - "logit_length = [2]\n", - "label_length = [2]\n", - "loss = tf.keras.backend.ctc_batch_cost(y_true, y_pred, logit_length, label_length)\n", - "\n", - "print(loss.numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2. **Dice Loss, IoU Loss**\n", - "\n", - "Used for image segmentation tasks." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def dice_loss(y_true, y_pred):\n", - " numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=-1)\n", - " denominator = tf.reduce_sum(y_true + y_pred, axis=-1)\n", - " return 1 - (numerator + 1) / (denominator + 1)\n", - "\n", - "y_true = tf.constant([[1, 0, 1], [0, 1, 0]])\n", - "y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])\n", - "loss = dice_loss(y_true, y_pred)\n", - "\n", - "print(loss.numpy())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def iou_loss(y_true, y_pred):\n", - " intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])\n", - " union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3]) - intersection\n", - " return 1. - (intersection + 1) / (union + 1)\n", - "\n", - "# For simplicity, using 2D tensors. Typically, these are images (3D tensors).\n", - "y_true = tf.constant([[1, 0, 1], [0, 1, 0]])\n", - "y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])\n", - "loss = iou_loss(y_true[tf.newaxis, ...], y_pred[tf.newaxis, ...]) # Add batch dimension\n", - "\n", - "print(loss.numpy())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Regularization\n", - "\n", - "1. **L1 Regularization (Lasso)**\n", - "\n", - "Produces sparse model parameters." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from keras.regularizers import l1\n", - "\n", - "model = tf.keras.models.Sequential([\n", - " tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l1(0.01), input_shape=(10,))\n", - "])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "2. **L2 Regularization (Ridge)**\n", - "\n", - "Prevents model parameters from becoming too large but doesn't force them to become exactly zero." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from keras.regularizers import l2\n", - "\n", - "model = tf.keras.models.Sequential([\n", - " tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l2(0.01), input_shape=(10,))\n", - "])" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/_sources/assignments/ml-fundamentals/parameter-play.ipynb b/_sources/assignments/ml-fundamentals/parameter-play.ipynb index b04c71b96d..f9901629d1 100644 --- a/_sources/assignments/ml-fundamentals/parameter-play.ipynb +++ b/_sources/assignments/ml-fundamentals/parameter-play.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "77832121", + "id": "c4f4e7c1", "metadata": {}, "source": [ "# Parameter play\n", diff --git a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb index 4113d54808..69b059d9ad 100644 --- a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb +++ b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "304850dd", + "id": "be4b65ba", "metadata": {}, "source": [ "# Regression with Scikit-learn\n", diff --git a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb index bbff63991c..da1cb3d3f6 100644 --- a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb +++ b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7798e2d4", + "id": "46278fc3", "metadata": {}, "source": [ "# Retrying some regression\n", diff --git a/_sources/data-science/data-science-in-the-wild.ipynb b/_sources/data-science/data-science-in-the-wild.ipynb index 6a1f23755f..2b44b0528b 100644 --- a/_sources/data-science/data-science-in-the-wild.ipynb +++ b/_sources/data-science/data-science-in-the-wild.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4711b4dd", + "id": "c32a0c5d", "metadata": {}, "source": [ "# Data Science in the real world\n", diff --git a/_sources/data-science/data-science-lifecycle/analyzing.ipynb b/_sources/data-science/data-science-lifecycle/analyzing.ipynb index c45d86aa10..59c15936b5 100644 --- a/_sources/data-science/data-science-lifecycle/analyzing.ipynb +++ b/_sources/data-science/data-science-lifecycle/analyzing.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "9f8e437d", + "id": "d0d48596", "metadata": {}, "source": [ "# Analyzing\n", diff --git a/_sources/data-science/data-science-lifecycle/communication.ipynb b/_sources/data-science/data-science-lifecycle/communication.ipynb index 1ea8616853..b888232a70 100644 --- a/_sources/data-science/data-science-lifecycle/communication.ipynb +++ b/_sources/data-science/data-science-lifecycle/communication.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "74fb713d", + "id": "b5a78097", "metadata": {}, "source": [ "# Communication\n", diff --git a/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb b/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb index 545b88d296..fac1fc5c10 100644 --- a/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb +++ b/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "97a4e306", + "id": "6b16932a", "metadata": {}, "source": [ "# Data Science lifecycle\n", diff --git a/_sources/data-science/data-science-lifecycle/introduction.ipynb b/_sources/data-science/data-science-lifecycle/introduction.ipynb index a47666df39..182a9afdaf 100644 --- a/_sources/data-science/data-science-lifecycle/introduction.ipynb +++ b/_sources/data-science/data-science-lifecycle/introduction.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bb0c4c27", + "id": "fedb6c3e", "metadata": {}, "source": [ "# Introduction to the Data Science lifecycle\n", diff --git a/_sources/data-science/working-with-data/data-preparation.ipynb b/_sources/data-science/working-with-data/data-preparation.ipynb index 3466d07656..1d7c650a0b 100644 --- a/_sources/data-science/working-with-data/data-preparation.ipynb +++ b/_sources/data-science/working-with-data/data-preparation.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "09851747", + "id": "21daa8ac", "metadata": {}, "source": [ "# Data preparation\n", @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "38e2bb96", + "id": "16500be0", "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ }, { "cell_type": "markdown", - "id": "b201151b", + "id": "64b3fc70", "metadata": {}, "source": [ "| |sepal length (cm)|sepal width (cm)|petal length (cm)|petal width (cm)|\n", @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "77406b1b", + "id": "6b41c90b", "metadata": {}, "outputs": [ { @@ -93,7 +93,7 @@ }, { "cell_type": "markdown", - "id": "d0a6b8d5", + "id": "543fc221", "metadata": {}, "source": [ "From this, we know that the *Iris* dataset has 150 entries in four columns with no null entries. All of the data is stored as 64-bit floating-point numbers.\n", @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "b6a1c99c", + "id": "b87fe8e4", "metadata": {}, "outputs": [ { @@ -194,7 +194,7 @@ }, { "cell_type": "markdown", - "id": "e222c9ef", + "id": "aedb888e", "metadata": {}, "source": [ "**`DataFrame.tail()`**: Conversely, to check the last few rows of the `DataFrame`, we use the `tail()` method:" @@ -203,7 +203,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "8ba627d6", + "id": "71fca0c9", "metadata": {}, "outputs": [ { @@ -293,7 +293,7 @@ }, { "cell_type": "markdown", - "id": "f2054712", + "id": "2e2c75e8", "metadata": {}, "source": [ "```{note}\n", @@ -320,7 +320,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "2435e012", + "id": "81fb278e", "metadata": {}, "outputs": [ { @@ -347,7 +347,7 @@ }, { "cell_type": "markdown", - "id": "305f61ef", + "id": "f08ff137", "metadata": {}, "source": [ "Look closely at the output. Does any of it surprise you? While `0` is an arithmetic null, it's nevertheless a perfectly good integer and pandas treats it as such. `''` is a little more subtle. While we used it in Section 1 to represent an empty string value, it is nevertheless a string object and not a representation of null as far as pandas is concerned.\n", @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "69ec9897", + "id": "8361e2db", "metadata": {}, "outputs": [ { @@ -387,7 +387,7 @@ }, { "cell_type": "markdown", - "id": "8070079f", + "id": "ab1e1bab", "metadata": {}, "source": [ "Note that this should look like your output from `example3[example3.notnull()]`. The difference here is that, rather than just indexing on the masked values, `dropna` has removed those missing values from the `Series` `example1`.\n", @@ -398,7 +398,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "aaa37f62", + "id": "d11e19d7", "metadata": {}, "outputs": [ { @@ -471,7 +471,7 @@ }, { "cell_type": "markdown", - "id": "858462b7", + "id": "37e2f592", "metadata": {}, "source": [ "| | 0 | 1 | 2 |\n", @@ -488,7 +488,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "5af424df", + "id": "5c6a37d8", "metadata": {}, "outputs": [ { @@ -544,7 +544,7 @@ }, { "cell_type": "markdown", - "id": "762af56b", + "id": "3969ef65", "metadata": {}, "source": [ "If necessary, you can drop NA values from columns. Use `axis=1` to do so:" @@ -553,7 +553,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "8405d655", + "id": "76785e9e", "metadata": {}, "outputs": [ { @@ -615,7 +615,7 @@ }, { "cell_type": "markdown", - "id": "47d24051", + "id": "c8e3ae25", "metadata": {}, "source": [ "Notice that this can drop a lot of data that you might want to keep, particularly in smaller datasets. What if you just want to drop rows or columns that contain several or even just all null values? You specify those setting in `dropna` with the `how` and `thresh` parameters.\n", @@ -626,7 +626,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "f2f3fe5c", + "id": "d25d8cef", "metadata": {}, "outputs": [ { @@ -701,7 +701,7 @@ }, { "cell_type": "markdown", - "id": "fda7d3dd", + "id": "2c8b3f9c", "metadata": {}, "source": [ "| |0 |1 |2 |3 |\n", @@ -716,7 +716,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "e5370e2c", + "id": "371c6912", "metadata": {}, "outputs": [ { @@ -774,7 +774,7 @@ }, { "cell_type": "markdown", - "id": "1956fcb4", + "id": "c4670e87", "metadata": {}, "source": [ "Here, the first and last rows have been dropped, because they contain only two non-null values.\n", @@ -785,7 +785,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "39f47e18", + "id": "88ac8026", "metadata": {}, "outputs": [ { @@ -811,7 +811,7 @@ }, { "cell_type": "markdown", - "id": "5c82bfa0", + "id": "f60e5bc1", "metadata": {}, "source": [ "You can fill all of the null entries with a single value, such as `0`:" @@ -820,7 +820,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "e7f5acc0", + "id": "a5fb5460", "metadata": {}, "outputs": [ { @@ -845,7 +845,7 @@ }, { "cell_type": "markdown", - "id": "e43ba12b", + "id": "6aaf28b7", "metadata": {}, "source": [ "You can **forward-fill** null values, which is to use the last valid value to fill a null:" @@ -854,7 +854,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "ae2b0a45", + "id": "15f3cd14", "metadata": {}, "outputs": [ { @@ -879,7 +879,7 @@ }, { "cell_type": "markdown", - "id": "a969d708", + "id": "f8fb5572", "metadata": {}, "source": [ "You can also **back-fill** to propagate the next valid value backward to fill a null:" @@ -888,7 +888,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "4f4f80c3", + "id": "2a8d2da3", "metadata": {}, "outputs": [ { @@ -913,7 +913,7 @@ }, { "cell_type": "markdown", - "id": "4e6715d4", + "id": "ce05fef8", "metadata": {}, "source": [ "As you might guess, this works the same with `DataFrame`s, but you can also specify an `axis` along which to fill null values. taking the previously used `example2` again:" @@ -922,7 +922,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "47d64ae3", + "id": "bf109926", "metadata": {}, "outputs": [ { @@ -996,7 +996,7 @@ }, { "cell_type": "markdown", - "id": "a4958cb1", + "id": "cd45335d", "metadata": {}, "source": [ "Notice that when a previous value is not available for forward-filling, the null value remains.\n", @@ -1019,7 +1019,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "e08a6c74", + "id": "2e9225db", "metadata": {}, "outputs": [ { @@ -1099,7 +1099,7 @@ }, { "cell_type": "markdown", - "id": "4488d9d7", + "id": "d9e30710", "metadata": {}, "source": [ "| |letters|numbers|\n", @@ -1114,7 +1114,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "1c1c523a", + "id": "851d33b1", "metadata": {}, "outputs": [ { @@ -1139,7 +1139,7 @@ }, { "cell_type": "markdown", - "id": "290bf846", + "id": "e66e3835", "metadata": {}, "source": [ "**Dropping duplicates: `drop_duplicates`:** simply returns a copy of the data for which all of the `duplicated` values are `False`:" @@ -1148,7 +1148,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "328c28ac", + "id": "4f6253a5", "metadata": {}, "outputs": [ { @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "436a1bd9", + "id": "d11a81f5", "metadata": {}, "source": [ "Both `duplicated` and `drop_duplicates` default to consider all columns but you can specify that they examine only a subset of columns in your `DataFrame`:" @@ -1223,7 +1223,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "2638ef59", + "id": "e46cee94", "metadata": {}, "outputs": [ { @@ -1283,7 +1283,7 @@ }, { "cell_type": "markdown", - "id": "f282d259", + "id": "28d1210c", "metadata": {}, "source": [ "```{note}\n", diff --git a/_sources/data-science/working-with-data/numpy.ipynb b/_sources/data-science/working-with-data/numpy.ipynb index bccbf7605c..7e3415eb5f 100644 --- a/_sources/data-science/working-with-data/numpy.ipynb +++ b/_sources/data-science/working-with-data/numpy.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "f7cab3d2", + "id": "26df044f", "metadata": {}, "source": [ "# NumPy\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "6f7c517f", + "id": "639f7e9c", "metadata": {}, "outputs": [ { @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "0e86be5b", + "id": "58c3425f", "metadata": {}, "source": [ "### Create a basic array\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "6e939e45", + "id": "67a8279a", "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "2afea2c2", + "id": "1eb6110e", "metadata": {}, "source": [ "Besides creating an array from a sequence of elements, you can easily create an array filled with `0`’s:" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "c675041c", + "id": "9f2e614a", "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "eca650ce", + "id": "33c11942", "metadata": {}, "source": [ "Or an array filled with 1’s:" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "5a98112d", + "id": "013a4d32", "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "31f9eab9", + "id": "e06dd41e", "metadata": {}, "source": [ "Or even an empty array! The function `empty` creates an array whose initial content is random and depends on the state of the memory. The reason to use `empty` over `zeros` (or something similar) is speed - just make sure to fill every element afterwards!" @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "0de9b575", + "id": "320cff03", "metadata": {}, "outputs": [ { @@ -162,7 +162,7 @@ }, { "cell_type": "markdown", - "id": "8e309a63", + "id": "6b88c494", "metadata": {}, "source": [ "You can create an array with a range of elements:" @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "6c2e5e51", + "id": "1a2ed2bd", "metadata": {}, "outputs": [ { @@ -191,7 +191,7 @@ }, { "cell_type": "markdown", - "id": "eb1226c8", + "id": "421ef3f3", "metadata": {}, "source": [ "And even an array that contains a range of evenly spaced intervals. To do this, you will specify the **first number**, **last number**, and the **step size**." @@ -200,7 +200,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "20a297e1", + "id": "348232bf", "metadata": {}, "outputs": [ { @@ -220,7 +220,7 @@ }, { "cell_type": "markdown", - "id": "7b5c110c", + "id": "2ab9b967", "metadata": {}, "source": [ "You can also use `np.linspace()` to create an array with values that are spaced linearly in a specified interval:" @@ -229,7 +229,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "28e1bc9f", + "id": "726ba671", "metadata": {}, "outputs": [ { @@ -249,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "b8b50ace", + "id": "bb24eef2", "metadata": {}, "source": [ "While the default data type is floating point (`np.float64`), you can explicitly specify which data type you want using the `dtype` keyword." @@ -258,7 +258,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "68ae3d79", + "id": "a56da42a", "metadata": {}, "outputs": [ { @@ -278,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "2ef3f3a0", + "id": "3ab57724", "metadata": {}, "source": [ "### Adding, removing, and sorting elements\n", @@ -291,7 +291,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "427a2549", + "id": "68c60214", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ }, { "cell_type": "markdown", - "id": "0c27e861", + "id": "dd36db00", "metadata": {}, "source": [ "You can quickly sort the numbers in ascending order with:" @@ -309,7 +309,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "30d691db", + "id": "3b445999", "metadata": {}, "outputs": [ { @@ -329,7 +329,7 @@ }, { "cell_type": "markdown", - "id": "6eb422f9", + "id": "6ae4729f", "metadata": {}, "source": [ "In addition to sort, which returns a sorted copy of an array, you can use:\n", @@ -345,7 +345,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "7fbbcd5c", + "id": "89e299c5", "metadata": {}, "outputs": [], "source": [ @@ -355,7 +355,7 @@ }, { "cell_type": "markdown", - "id": "7cc16126", + "id": "3d7be007", "metadata": {}, "source": [ "You can concatenate them with `np.concatenate()`." @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "89e86081", + "id": "204b53fe", "metadata": {}, "outputs": [ { @@ -384,7 +384,7 @@ }, { "cell_type": "markdown", - "id": "243f380f", + "id": "4d2ed678", "metadata": {}, "source": [ "Or, if you start with these arrays:" @@ -393,7 +393,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "e3a0d001", + "id": "27e18841", "metadata": {}, "outputs": [], "source": [ @@ -403,7 +403,7 @@ }, { "cell_type": "markdown", - "id": "1dbcd3bb", + "id": "94de63b3", "metadata": {}, "source": [ "You can concatenate them with:" @@ -412,7 +412,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "e2230971", + "id": "e2d73dd8", "metadata": {}, "outputs": [ { @@ -434,7 +434,7 @@ }, { "cell_type": "markdown", - "id": "9635d315", + "id": "f0732cdf", "metadata": {}, "source": [ "In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.\n", @@ -450,7 +450,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "afd751ab", + "id": "c4b07961", "metadata": {}, "outputs": [ { @@ -475,7 +475,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "ab067237", + "id": "256397e6", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ }, { "cell_type": "markdown", - "id": "a5847d23", + "id": "dc18dd33", "metadata": {}, "source": [ "- ndarray.shape\n", @@ -505,7 +505,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "08566ba6", + "id": "77dc06bc", "metadata": {}, "outputs": [ { @@ -525,7 +525,7 @@ }, { "cell_type": "markdown", - "id": "9c082db2", + "id": "2a12dfb6", "metadata": {}, "source": [ "- ndarray.size\n", @@ -535,7 +535,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "d6777ead", + "id": "bf368775", "metadata": {}, "outputs": [ { @@ -555,7 +555,7 @@ }, { "cell_type": "markdown", - "id": "e31d3983", + "id": "3d62ef04", "metadata": {}, "source": [ "- ndarray.dtype\n", @@ -565,7 +565,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "e4f9349e", + "id": "f00abe42", "metadata": {}, "outputs": [ { @@ -586,7 +586,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "50441d36", + "id": "b5504fbd", "metadata": {}, "outputs": [ { @@ -606,7 +606,7 @@ }, { "cell_type": "markdown", - "id": "b9a4e3df", + "id": "ad5f7ff9", "metadata": {}, "source": [ "- ndarray.itemsize\n", @@ -616,7 +616,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "bc91818e", + "id": "f26d8693", "metadata": {}, "outputs": [ { @@ -636,7 +636,7 @@ }, { "cell_type": "markdown", - "id": "6001b4e7", + "id": "5b83c510", "metadata": {}, "source": [ "- ndarray.data\n", @@ -646,13 +646,13 @@ { "cell_type": "code", "execution_count": 23, - "id": "550fcac2", + "id": "e9c1f03b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 23, @@ -666,7 +666,7 @@ }, { "cell_type": "markdown", - "id": "9e7c4466", + "id": "0ba8edc5", "metadata": {}, "source": [ "### Reshape an array\n", @@ -679,7 +679,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "3b635c98", + "id": "652d07a5", "metadata": {}, "outputs": [ { @@ -700,7 +700,7 @@ }, { "cell_type": "markdown", - "id": "edd82c34", + "id": "757b63fc", "metadata": {}, "source": [ "You can use `reshape()` to reshape your array. For example, you can reshape this array to an array with three rows and two columns:" @@ -709,7 +709,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "70a82cec", + "id": "a157fc71", "metadata": {}, "outputs": [ { @@ -732,7 +732,7 @@ }, { "cell_type": "markdown", - "id": "c97b8591", + "id": "475d7643", "metadata": {}, "source": [ "With `np.reshape`, you can specify a few optional parameters:" @@ -741,7 +741,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "e3394a1f", + "id": "cbe5f4e1", "metadata": {}, "outputs": [ { @@ -761,7 +761,7 @@ }, { "cell_type": "markdown", - "id": "d3b4a6fa", + "id": "a118cd19", "metadata": {}, "source": [ "`a` is the array to be reshaped.\n", @@ -782,7 +782,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "067a7a2d", + "id": "f34cf4c0", "metadata": {}, "outputs": [ { @@ -803,7 +803,7 @@ }, { "cell_type": "markdown", - "id": "f988b32e", + "id": "dc77089a", "metadata": {}, "source": [ "You can use `np.newaxis` to add a new axis:" @@ -812,7 +812,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "4896f3e9", + "id": "61c3e030", "metadata": {}, "outputs": [ { @@ -833,7 +833,7 @@ }, { "cell_type": "markdown", - "id": "60466c47", + "id": "5a32c35b", "metadata": {}, "source": [ "You can explicitly convert a 1D array with either a row vector or a column vector using `np.newaxis`. For example, you can convert a 1D array to a row vector by inserting an axis along the first dimension:" @@ -842,7 +842,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "3bdb4dc9", + "id": "ce884611", "metadata": {}, "outputs": [ { @@ -863,7 +863,7 @@ }, { "cell_type": "markdown", - "id": "682ec8fd", + "id": "e97dd5b8", "metadata": {}, "source": [ "Or, for a column vector, you can insert an axis along the second dimension:" @@ -872,7 +872,7 @@ { "cell_type": "code", "execution_count": 30, - "id": "6e2e6dcc", + "id": "43528ccc", "metadata": {}, "outputs": [ { @@ -893,7 +893,7 @@ }, { "cell_type": "markdown", - "id": "9a533818", + "id": "7f51fd26", "metadata": {}, "source": [ "You can also expand an array by inserting a new axis at a specified position with `np.expand_dims`.\n", @@ -904,7 +904,7 @@ { "cell_type": "code", "execution_count": 31, - "id": "f231c757", + "id": "0cadc802", "metadata": {}, "outputs": [ { @@ -925,7 +925,7 @@ }, { "cell_type": "markdown", - "id": "dae2ba71", + "id": "a500dcf6", "metadata": {}, "source": [ "You can use np.expand_dims to add an axis at index position 1 with:" @@ -934,7 +934,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "fa9a1754", + "id": "b38d7e48", "metadata": {}, "outputs": [ { @@ -955,7 +955,7 @@ }, { "cell_type": "markdown", - "id": "61e387bd", + "id": "8f724e1d", "metadata": {}, "source": [ "You can add an axis at index position 0 with:" @@ -964,7 +964,7 @@ { "cell_type": "code", "execution_count": 33, - "id": "afa5e2ee", + "id": "76687b8f", "metadata": {}, "outputs": [ { @@ -985,7 +985,7 @@ }, { "cell_type": "markdown", - "id": "2c2b789e", + "id": "f82ab1ce", "metadata": {}, "source": [ "### Indexing and slicing\n", @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "2b8d66d7", + "id": "f319d9ae", "metadata": {}, "outputs": [], "source": [ @@ -1006,7 +1006,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "040987c4", + "id": "3e1b50c8", "metadata": {}, "outputs": [ { @@ -1027,7 +1027,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "25f88150", + "id": "0eff095e", "metadata": {}, "outputs": [ { @@ -1048,7 +1048,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "83acd0d4", + "id": "e83b0b8e", "metadata": {}, "outputs": [ { @@ -1069,7 +1069,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "add70cd7", + "id": "e7cee670", "metadata": {}, "outputs": [ { @@ -1089,7 +1089,7 @@ }, { "cell_type": "markdown", - "id": "e2c6aaf2", + "id": "1da34809", "metadata": {}, "source": [ "You may want to take a section of your array or specific array elements to use in further analysis or additional operations. To do that, you’ll need to subset, slice, and/or index your arrays.\n", @@ -1102,7 +1102,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "9a604b67", + "id": "bb1892ab", "metadata": {}, "outputs": [], "source": [ @@ -1111,7 +1111,7 @@ }, { "cell_type": "markdown", - "id": "7cbab311", + "id": "beb77fe9", "metadata": {}, "source": [ "You can easily print all of the values in the array that are less than 5." @@ -1120,7 +1120,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "00776007", + "id": "7e705a02", "metadata": {}, "outputs": [ { @@ -1140,7 +1140,7 @@ }, { "cell_type": "markdown", - "id": "eeddf726", + "id": "18704444", "metadata": {}, "source": [ "You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array." @@ -1149,7 +1149,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "e64cd122", + "id": "6d575ea6", "metadata": {}, "outputs": [ { @@ -1170,7 +1170,7 @@ }, { "cell_type": "markdown", - "id": "c512e667", + "id": "9b58de66", "metadata": {}, "source": [ "You can select elements that are divisible by 2:" @@ -1179,7 +1179,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "2d394b78", + "id": "26718b28", "metadata": {}, "outputs": [ { @@ -1200,7 +1200,7 @@ }, { "cell_type": "markdown", - "id": "d419ba95", + "id": "66545416", "metadata": {}, "source": [ "Or you can select elements that satisfy two conditions using the `&` and `|` operators:" @@ -1209,7 +1209,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "7c8a86d0", + "id": "0ecca13b", "metadata": {}, "outputs": [ { @@ -1230,7 +1230,7 @@ }, { "cell_type": "markdown", - "id": "16846ba4", + "id": "a208682c", "metadata": {}, "source": [ "You can also make use of the logical operators `&` and `|` in order to return boolean values that specify whether or not the values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values." @@ -1239,7 +1239,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "f9b179f8", + "id": "d485f8cb", "metadata": {}, "outputs": [ { @@ -1262,7 +1262,7 @@ }, { "cell_type": "markdown", - "id": "a5f1f1c0", + "id": "183145c5", "metadata": {}, "source": [ "You can also use `np.nonzero()` to select elements or indices from an array.\n", @@ -1273,7 +1273,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "ee7506d5", + "id": "e3bc0fce", "metadata": {}, "outputs": [], "source": [ @@ -1282,7 +1282,7 @@ }, { "cell_type": "markdown", - "id": "399658e4", + "id": "720f93cd", "metadata": {}, "source": [ "You can use `np.nonzero()` to print the indices of elements that are, for example, less than 5:" @@ -1291,7 +1291,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "f7cf6627", + "id": "9aa61cae", "metadata": {}, "outputs": [ { @@ -1312,7 +1312,7 @@ }, { "cell_type": "markdown", - "id": "084590fc", + "id": "53405376", "metadata": {}, "source": [ "In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where these values are found, and the second array represents the column indices where the values are found.\n", @@ -1323,7 +1323,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "aceb6426", + "id": "31099d2e", "metadata": {}, "outputs": [ { @@ -1345,7 +1345,7 @@ }, { "cell_type": "markdown", - "id": "e51358aa", + "id": "514076ac", "metadata": {}, "source": [ "You can also use `np.nonzero()` to print the elements in an array that are less than 5 with:" @@ -1354,7 +1354,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "7b98ca49", + "id": "802d7f0e", "metadata": {}, "outputs": [ { @@ -1374,7 +1374,7 @@ }, { "cell_type": "markdown", - "id": "6f97c2d9", + "id": "7d7ab3f2", "metadata": {}, "source": [ "If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:" @@ -1383,7 +1383,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "2d55de2f", + "id": "00a394e1", "metadata": {}, "outputs": [ { @@ -1404,7 +1404,7 @@ }, { "cell_type": "markdown", - "id": "e061db46", + "id": "72131317", "metadata": {}, "source": [ "### Create an array from existing data\n", @@ -1417,7 +1417,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "311d5d3a", + "id": "fe21870f", "metadata": {}, "outputs": [], "source": [ @@ -1426,7 +1426,7 @@ }, { "cell_type": "markdown", - "id": "d9435eaf", + "id": "62e2f1fe", "metadata": {}, "source": [ "You can create a new array from a section of your array any time by specifying where you want to slice your array." @@ -1435,7 +1435,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "a8a9081f", + "id": "feb14035", "metadata": {}, "outputs": [ { @@ -1456,7 +1456,7 @@ }, { "cell_type": "markdown", - "id": "33bacf86", + "id": "e7ecf728", "metadata": {}, "source": [ "Here, you grabbed a section of your array from index position 3 through index position 8.\n", @@ -1467,7 +1467,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "8d0bf3a7", + "id": "6f3e926d", "metadata": {}, "outputs": [], "source": [ @@ -1479,7 +1479,7 @@ }, { "cell_type": "markdown", - "id": "913ae369", + "id": "fb7c6e4f", "metadata": {}, "source": [ "You can stack them vertically with `vstack`:" @@ -1488,7 +1488,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "a57f1398", + "id": "937ec97f", "metadata": {}, "outputs": [ { @@ -1511,7 +1511,7 @@ }, { "cell_type": "markdown", - "id": "c93a3213", + "id": "89d736b6", "metadata": {}, "source": [ "Or stack them horizontally with hstack:" @@ -1520,7 +1520,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "3e483055", + "id": "f7150024", "metadata": {}, "outputs": [ { @@ -1541,7 +1541,7 @@ }, { "cell_type": "markdown", - "id": "122119f3", + "id": "e6205d9d", "metadata": {}, "source": [ "You can split an array into several smaller arrays using `hsplit`. You can specify either the number of equally shaped arrays to return or the columns after which the division should occur.\n", @@ -1552,7 +1552,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "47bb86da", + "id": "c29fe1cb", "metadata": {}, "outputs": [ { @@ -1574,7 +1574,7 @@ }, { "cell_type": "markdown", - "id": "9d15976b", + "id": "a3633f0b", "metadata": {}, "source": [ "If you wanted to split this array into three equally shaped arrays, you would run:" @@ -1583,7 +1583,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "4c8cf233", + "id": "4dc14ead", "metadata": {}, "outputs": [ { @@ -1608,7 +1608,7 @@ }, { "cell_type": "markdown", - "id": "e207d574", + "id": "cdcfce2f", "metadata": {}, "source": [ "If you wanted to split your array after the third and fourth column, you’d run:" @@ -1617,7 +1617,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "0cf0f3b0", + "id": "a015db75", "metadata": {}, "outputs": [ { @@ -1642,7 +1642,7 @@ }, { "cell_type": "markdown", - "id": "35e63b64", + "id": "3c353310", "metadata": {}, "source": [ "You can use the `view` method to create a new array object that looks at the same data as the original array (a shallow copy).\n", @@ -1655,7 +1655,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "6fa2958b", + "id": "3907e2f0", "metadata": {}, "outputs": [], "source": [ @@ -1664,7 +1664,7 @@ }, { "cell_type": "markdown", - "id": "7eed264f", + "id": "66acf107", "metadata": {}, "source": [ "Now we create an array `b1` by slicing `a` and modify the first element of `b1`. This will modify the corresponding element in `a` as well!" @@ -1673,7 +1673,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "97791347", + "id": "fa17b307", "metadata": {}, "outputs": [ { @@ -1695,7 +1695,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "8a740070", + "id": "cb6e8bbf", "metadata": {}, "outputs": [ { @@ -1717,7 +1717,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "aa1fb7c6", + "id": "3bd99881", "metadata": {}, "outputs": [ { @@ -1739,7 +1739,7 @@ }, { "cell_type": "markdown", - "id": "c702d31a", + "id": "29b22c76", "metadata": {}, "source": [ "Using the `copy` method will make a complete copy of the array and its data (a deep copy). To use this on your array, you could run:" @@ -1748,7 +1748,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "59bcbef2", + "id": "8aa9494f", "metadata": {}, "outputs": [], "source": [ @@ -1757,7 +1757,7 @@ }, { "cell_type": "markdown", - "id": "3085413e", + "id": "98b56cf8", "metadata": {}, "source": [ "## Array operations\n", @@ -1770,7 +1770,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "695ac3a0", + "id": "5d271f03", "metadata": {}, "outputs": [], "source": [ @@ -1780,7 +1780,7 @@ }, { "cell_type": "markdown", - "id": "2554cc86", + "id": "d394adbb", "metadata": {}, "source": [ "You can add the arrays together with the plus sign." @@ -1789,7 +1789,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "6226d0de", + "id": "8589a275", "metadata": {}, "outputs": [ { @@ -1809,7 +1809,7 @@ }, { "cell_type": "markdown", - "id": "494e35b2", + "id": "0258b325", "metadata": {}, "source": [ "You can, of course, do more than just addition!" @@ -1818,7 +1818,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "31fe29d8", + "id": "e215cc4c", "metadata": {}, "outputs": [ { @@ -1839,7 +1839,7 @@ }, { "cell_type": "markdown", - "id": "707e85aa", + "id": "2cd070df", "metadata": {}, "source": [ "Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use `sum()`. This works for 1D arrays, 2D arrays, and arrays in higher dimensions." @@ -1848,7 +1848,7 @@ { "cell_type": "code", "execution_count": 66, - "id": "3fd4efa4", + "id": "e2b98e6b", "metadata": {}, "outputs": [ { @@ -1869,7 +1869,7 @@ }, { "cell_type": "markdown", - "id": "428a46f8", + "id": "e9e4b2d1", "metadata": {}, "source": [ "To add the rows or the columns in a 2D array, you would specify the axis.\n", @@ -1880,7 +1880,7 @@ { "cell_type": "code", "execution_count": 67, - "id": "08182aa5", + "id": "1f6517bb", "metadata": {}, "outputs": [], "source": [ @@ -1889,7 +1889,7 @@ }, { "cell_type": "markdown", - "id": "f7d16cb5", + "id": "9a0afdb4", "metadata": {}, "source": [ "You can sum over the axis of rows with:" @@ -1898,7 +1898,7 @@ { "cell_type": "code", "execution_count": 68, - "id": "1c6723a8", + "id": "9ebfebfb", "metadata": {}, "outputs": [ { @@ -1918,7 +1918,7 @@ }, { "cell_type": "markdown", - "id": "6a2c2f26", + "id": "48d3cf45", "metadata": {}, "source": [ "You can sum over the axis of columns with:" @@ -1927,7 +1927,7 @@ { "cell_type": "code", "execution_count": 69, - "id": "0128ba3d", + "id": "c03d1d11", "metadata": {}, "outputs": [ { @@ -1947,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "a9c96f50", + "id": "da66d9dc", "metadata": {}, "source": [ "### Universal functions(ufunc)\n", @@ -2038,7 +2038,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "ef248869", + "id": "9c5ec5fb", "metadata": {}, "outputs": [ { @@ -2060,7 +2060,7 @@ }, { "cell_type": "markdown", - "id": "5862d7c2", + "id": "e4650d70", "metadata": {}, "source": [ "NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broadcasting example occurs when an array and a scalar value are combined in an operation:" @@ -2069,7 +2069,7 @@ { "cell_type": "code", "execution_count": 71, - "id": "39173cbb", + "id": "69d37f65", "metadata": {}, "outputs": [ { @@ -2091,7 +2091,7 @@ }, { "cell_type": "markdown", - "id": "28c3594f", + "id": "363ade7d", "metadata": {}, "source": [ "The result is equivalent to the previous example where `b` was an array. NumPy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible.\n", @@ -2133,7 +2133,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "c628a1b5", + "id": "d42ca203", "metadata": {}, "outputs": [ { @@ -2154,7 +2154,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "3b8afcfe", + "id": "17730997", "metadata": {}, "outputs": [ { @@ -2175,7 +2175,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "e5ceffd7", + "id": "118b3a70", "metadata": {}, "outputs": [ { @@ -2195,7 +2195,7 @@ }, { "cell_type": "markdown", - "id": "f8e1ea6f", + "id": "0cc1a266", "metadata": {}, "source": [ "Let’s start with this array, called “a”." @@ -2204,7 +2204,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "f11b6aab", + "id": "f5ff443c", "metadata": {}, "outputs": [], "source": [ @@ -2215,7 +2215,7 @@ }, { "cell_type": "markdown", - "id": "1c77e02d", + "id": "9853e0d5", "metadata": {}, "source": [ "It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:" @@ -2224,7 +2224,7 @@ { "cell_type": "code", "execution_count": 76, - "id": "4672a4f7", + "id": "c6f4ca78", "metadata": {}, "outputs": [ { @@ -2244,7 +2244,7 @@ }, { "cell_type": "markdown", - "id": "6de9c70a", + "id": "ce7ec19c", "metadata": {}, "source": [ "Or:" @@ -2253,7 +2253,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "15df4134", + "id": "de936b74", "metadata": {}, "outputs": [ { @@ -2273,7 +2273,7 @@ }, { "cell_type": "markdown", - "id": "6ac7fa2c", + "id": "07b818fa", "metadata": {}, "source": [ "You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum value within each column by specifying `axis=0`." @@ -2282,7 +2282,7 @@ { "cell_type": "code", "execution_count": 78, - "id": "9e8daa12", + "id": "a9919b51", "metadata": {}, "outputs": [ { @@ -2302,7 +2302,7 @@ }, { "cell_type": "markdown", - "id": "d6f0bfbd", + "id": "fdb24859", "metadata": {}, "source": [ "The four values listed above correspond to the number of columns in your array. With a four-column array, you will get four values as your result.\n", @@ -2325,7 +2325,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "4450838a", + "id": "891f20eb", "metadata": {}, "outputs": [], "source": [ @@ -2335,7 +2335,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "10190d22", + "id": "430f370c", "metadata": {}, "outputs": [ { @@ -2356,7 +2356,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "1853031a", + "id": "c8f13aaa", "metadata": {}, "outputs": [ { @@ -2376,7 +2376,7 @@ }, { "cell_type": "markdown", - "id": "4c2c3f7e", + "id": "78b23e98", "metadata": {}, "source": [ "It is not necessary to separate each dimension’s index into its own set of square brackets." @@ -2385,7 +2385,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "d02e2655", + "id": "5c473d42", "metadata": {}, "outputs": [], "source": [ @@ -2395,7 +2395,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "90cc832e", + "id": "c2371626", "metadata": {}, "outputs": [ { @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "a10c38da", + "id": "8440c8d4", "metadata": {}, "outputs": [ { @@ -2436,7 +2436,7 @@ }, { "cell_type": "markdown", - "id": "f4f08161", + "id": "cbd77d4e", "metadata": {}, "source": [ "Note that If one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array. For example:" @@ -2445,7 +2445,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "eb3a616a", + "id": "43465e15", "metadata": {}, "outputs": [ { @@ -2465,7 +2465,7 @@ }, { "cell_type": "markdown", - "id": "377b05fe", + "id": "a66843c9", "metadata": {}, "source": [ "That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array of that dimensionality and size. It must be noted that the returned array is a view, i.e., it is not a copy of the original, but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is returned. So using a single index on the returned array, results in a single element being returned. That is:" @@ -2474,7 +2474,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "6537ef11", + "id": "bd21f5c4", "metadata": {}, "outputs": [ { @@ -2494,7 +2494,7 @@ }, { "cell_type": "markdown", - "id": "48837a75", + "id": "c0c7ccde", "metadata": {}, "source": [ "So note that `x[0, 2] == x[0][2]` though the second case is more inefficient as a new temporary array is created after the first index that is subsequently indexed by 2.\n", @@ -2521,7 +2521,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "14dd9f2f", + "id": "07bd56ef", "metadata": {}, "outputs": [ { @@ -2542,7 +2542,7 @@ }, { "cell_type": "markdown", - "id": "16627f0f", + "id": "fcfac40f", "metadata": {}, "source": [ "- Negative *i* and *j* are interpreted as *n + i* and *n + j* where *n* is the number of elements in the corresponding dimension. Negative *k* makes stepping go towards smaller indices. From the above example:" @@ -2551,7 +2551,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "0a0b3c3d", + "id": "048b59f4", "metadata": {}, "outputs": [ { @@ -2572,7 +2572,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "80e5ec1b", + "id": "84757c4d", "metadata": {}, "outputs": [ { @@ -2592,7 +2592,7 @@ }, { "cell_type": "markdown", - "id": "3e1c8d05", + "id": "3b2fdb43", "metadata": {}, "source": [ "- Assume *n* is the number of elements in the dimension being sliced. Then, if *i* is not given it defaults to 0 for *k > 0* and *n - 1* for *k < 0*. If *j* is not given it defaults to *n* for *k > 0* and *-n-1* for *k < 0*. If *k* is not given it defaults to 1. Note that `::` is the same as : and means select all indices along this axis. From the above example:" @@ -2601,7 +2601,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "51c83c7c", + "id": "30695935", "metadata": {}, "outputs": [ { @@ -2621,7 +2621,7 @@ }, { "cell_type": "markdown", - "id": "fdc8656b", + "id": "330bd5ac", "metadata": {}, "source": [ "- If the number of objects in the selection tuple is less than N, then `:` is assumed for any subsequent dimensions. For example:" @@ -2630,7 +2630,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "5162f77e", + "id": "9838bfd2", "metadata": {}, "outputs": [ { @@ -2652,7 +2652,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "a57b6bca", + "id": "0e244e06", "metadata": {}, "outputs": [ { @@ -2674,7 +2674,7 @@ }, { "cell_type": "markdown", - "id": "944e3a00", + "id": "4d559829", "metadata": {}, "source": [ "- An integer, *i*, returns the same values as `i:i+1` **except** the dimensionality of the returned object is reduced by 1. In particular, a selection tuple with the *p*-th element an integer (and all other entries *:*) returns the corresponding sub-array with dimension *N - 1*. If *N = 1* then the returned object is an array scalar.\n", @@ -2699,7 +2699,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "d313c9c9", + "id": "9a50f69f", "metadata": {}, "outputs": [ { @@ -2720,7 +2720,7 @@ }, { "cell_type": "markdown", - "id": "accce0d4", + "id": "3168d462", "metadata": {}, "source": [ "This is equivalent to:" @@ -2729,7 +2729,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "962ce5bd", + "id": "c171f937", "metadata": {}, "outputs": [ { @@ -2750,7 +2750,7 @@ }, { "cell_type": "markdown", - "id": "d124c0c9", + "id": "f10eca8b", "metadata": {}, "source": [ "Each `newaxis` object in the selection tuple serves to expand the dimensions of the resulting selection by one unit-length dimension. The added dimension is the position of the `newaxis` object in the selection tuple. `newaxis` is an alias for `None`, and `None` can be used in place of this with the same result. From the above example:" @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "721c8994", + "id": "e45841c7", "metadata": {}, "outputs": [ { @@ -2780,7 +2780,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "c113639e", + "id": "eef9df8e", "metadata": {}, "outputs": [ { @@ -2800,7 +2800,7 @@ }, { "cell_type": "markdown", - "id": "358ff1fa", + "id": "745aba87", "metadata": {}, "source": [ "This can be handy to combine two arrays in a way that otherwise would require explicit reshaping operations. For example:" @@ -2809,7 +2809,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "c5a789a0", + "id": "62848397", "metadata": {}, "outputs": [ { @@ -2834,7 +2834,7 @@ }, { "cell_type": "markdown", - "id": "fbffca75", + "id": "f86ca8b2", "metadata": {}, "source": [ "### Advanced indexing\n", @@ -2857,7 +2857,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "8b144bd4", + "id": "40894d5e", "metadata": {}, "outputs": [], "source": [ @@ -2867,7 +2867,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "5cc04bed", + "id": "e23dde7a", "metadata": {}, "outputs": [ { @@ -2888,7 +2888,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "f562a26b", + "id": "a78aed57", "metadata": {}, "outputs": [ { @@ -2909,7 +2909,7 @@ { "cell_type": "code", "execution_count": 101, - "id": "d4269301", + "id": "f17ca511", "metadata": {}, "outputs": [ { @@ -2929,7 +2929,7 @@ }, { "cell_type": "markdown", - "id": "a9125b73", + "id": "8802458d", "metadata": {}, "source": [ "If the index values are out of bounds then an `IndexError` is thrown:" @@ -2938,7 +2938,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "76b7edb0", + "id": "ad1e9a5a", "metadata": {}, "outputs": [], "source": [ @@ -2948,7 +2948,7 @@ { "cell_type": "code", "execution_count": 103, - "id": "b9cbd184", + "id": "e6cb7d13", "metadata": {}, "outputs": [ { @@ -2969,7 +2969,7 @@ }, { "cell_type": "markdown", - "id": "e395168c", + "id": "e234e871", "metadata": {}, "source": [ "```py\n", @@ -2999,7 +2999,7 @@ { "cell_type": "code", "execution_count": 104, - "id": "8ab458d8", + "id": "9fdb98e0", "metadata": {}, "outputs": [], "source": [ @@ -3009,7 +3009,7 @@ { "cell_type": "code", "execution_count": 105, - "id": "1f2bcb11", + "id": "43d82062", "metadata": {}, "outputs": [ { @@ -3034,7 +3034,7 @@ { "cell_type": "code", "execution_count": 106, - "id": "820062fc", + "id": "f0a2dfa4", "metadata": {}, "outputs": [ { @@ -3054,7 +3054,7 @@ }, { "cell_type": "markdown", - "id": "db53daac", + "id": "aab0d978", "metadata": {}, "source": [ "In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the resultant array is `y[0, 0]`. The next value is `y[2, 1]`, and the last is `y[4, 2]`.\n", @@ -3077,7 +3077,7 @@ { "cell_type": "code", "execution_count": 107, - "id": "1b1a1b5a", + "id": "715e99c5", "metadata": {}, "outputs": [ { @@ -3097,7 +3097,7 @@ }, { "cell_type": "markdown", - "id": "0cee103d", + "id": "d63b4484", "metadata": {}, "source": [ "Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of thought to understand what happens in such cases. For example if we just use one index array with y:" @@ -3106,7 +3106,7 @@ { "cell_type": "code", "execution_count": 108, - "id": "8406aaa9", + "id": "8a16e9f8", "metadata": {}, "outputs": [ { @@ -3128,7 +3128,7 @@ }, { "cell_type": "markdown", - "id": "5df0f65d", + "id": "66b89963", "metadata": {}, "source": [ "It results in the construction of a new array where each value of the index array selects one row from the array being indexed and the resultant array has the resulting shape (number of index elements, size of row).\n", @@ -3143,7 +3143,7 @@ { "cell_type": "code", "execution_count": 109, - "id": "93d197df", + "id": "b5946079", "metadata": {}, "outputs": [ { @@ -3164,7 +3164,7 @@ }, { "cell_type": "markdown", - "id": "477e572b", + "id": "39398bc5", "metadata": {}, "source": [ "To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function `ix_` can help with this broadcasting. This is best understood with an example.\n", @@ -3177,7 +3177,7 @@ { "cell_type": "code", "execution_count": 110, - "id": "33c0ea04", + "id": "98399336", "metadata": {}, "outputs": [ { @@ -3206,7 +3206,7 @@ }, { "cell_type": "markdown", - "id": "4fba67c2", + "id": "32a705f6", "metadata": {}, "source": [ "However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such as `rows[:, np.newaxis] + columns`) to simplify this:" @@ -3215,7 +3215,7 @@ { "cell_type": "code", "execution_count": 111, - "id": "4445fc8a", + "id": "bd6be710", "metadata": {}, "outputs": [], "source": [ @@ -3226,7 +3226,7 @@ { "cell_type": "code", "execution_count": 112, - "id": "690e98fd", + "id": "e805c484", "metadata": {}, "outputs": [ { @@ -3248,7 +3248,7 @@ { "cell_type": "code", "execution_count": 113, - "id": "ac5928f6", + "id": "02b07429", "metadata": {}, "outputs": [ { @@ -3269,7 +3269,7 @@ }, { "cell_type": "markdown", - "id": "c2e7743d", + "id": "ca461196", "metadata": {}, "source": [ "This broadcasting can also be achieved using the function `ix_`:" @@ -3278,7 +3278,7 @@ { "cell_type": "code", "execution_count": 114, - "id": "8b37f49c", + "id": "5ed1a21e", "metadata": {}, "outputs": [ { @@ -3299,7 +3299,7 @@ }, { "cell_type": "markdown", - "id": "8df9fdc5", + "id": "9c5e611f", "metadata": {}, "source": [ "Note that without the `np.ix_` call, only the diagonal elements would be selected:" @@ -3308,7 +3308,7 @@ { "cell_type": "code", "execution_count": 115, - "id": "60cd151b", + "id": "bf36f567", "metadata": {}, "outputs": [ { @@ -3328,7 +3328,7 @@ }, { "cell_type": "markdown", - "id": "40cb41d0", + "id": "ed63cbac", "metadata": {}, "source": [ "This difference is the most important thing to remember about indexing with multiple advanced indices.\n", @@ -3349,7 +3349,7 @@ { "cell_type": "code", "execution_count": 116, - "id": "034f6e88", + "id": "32c43872", "metadata": {}, "outputs": [ { @@ -3370,7 +3370,7 @@ }, { "cell_type": "markdown", - "id": "7ec2b126", + "id": "34831f87", "metadata": {}, "source": [ "Or wish to add a constant to all negative elements:" @@ -3379,7 +3379,7 @@ { "cell_type": "code", "execution_count": 117, - "id": "776e538b", + "id": "111aa78d", "metadata": {}, "outputs": [ { @@ -3401,7 +3401,7 @@ }, { "cell_type": "markdown", - "id": "c48ff2a1", + "id": "b4755dfa", "metadata": {}, "source": [ "In general if an index includes a Boolean array, the result will be identical to inserting `obj.nonzero()` into the same position and using the integer array indexing mechanism described above. `x[ind_1, boolean_array, ind_2]` is equivalent to `x[(ind_1,) + boolean_array.nonzero() + (ind_2,)]`.\n", @@ -3414,7 +3414,7 @@ { "cell_type": "code", "execution_count": 118, - "id": "3f3b00b5", + "id": "676a24a0", "metadata": {}, "outputs": [], "source": [ @@ -3425,7 +3425,7 @@ { "cell_type": "code", "execution_count": 119, - "id": "4db6538a", + "id": "9342d31e", "metadata": {}, "outputs": [ { @@ -3446,7 +3446,7 @@ { "cell_type": "code", "execution_count": 120, - "id": "f2b3c754", + "id": "d280361a", "metadata": {}, "outputs": [ { @@ -3467,7 +3467,7 @@ }, { "cell_type": "markdown", - "id": "67b5790c", + "id": "50ea3c69", "metadata": {}, "source": [ "Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.\n", @@ -3480,7 +3480,7 @@ { "cell_type": "code", "execution_count": 121, - "id": "ac321cea", + "id": "68f60c9e", "metadata": {}, "outputs": [ { @@ -3503,7 +3503,7 @@ }, { "cell_type": "markdown", - "id": "5d2c03c1", + "id": "b0642557", "metadata": {}, "source": [ "Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the `obj.nonzero()` analogy. The function `ix_` also supports boolean arrays and will work without any surprises.\n", @@ -3516,7 +3516,7 @@ { "cell_type": "code", "execution_count": 122, - "id": "f806b15f", + "id": "0d307621", "metadata": {}, "outputs": [], "source": [ @@ -3530,7 +3530,7 @@ { "cell_type": "code", "execution_count": 123, - "id": "e7bf6120", + "id": "bc3aa448", "metadata": {}, "outputs": [ { @@ -3551,7 +3551,7 @@ { "cell_type": "code", "execution_count": 124, - "id": "21dd0d79", + "id": "bdb37b53", "metadata": {}, "outputs": [], "source": [ @@ -3561,7 +3561,7 @@ { "cell_type": "code", "execution_count": 125, - "id": "2b9faab4", + "id": "5806efee", "metadata": {}, "outputs": [ { @@ -3582,7 +3582,7 @@ }, { "cell_type": "markdown", - "id": "495bb350", + "id": "444524a9", "metadata": {}, "source": [ "Without the n`p.ix_` call, only the diagonal elements would be selected.\n", @@ -3593,7 +3593,7 @@ { "cell_type": "code", "execution_count": 126, - "id": "964c9d9e", + "id": "9c49d837", "metadata": {}, "outputs": [ { @@ -3615,7 +3615,7 @@ }, { "cell_type": "markdown", - "id": "66bcdf85", + "id": "09ef8785", "metadata": {}, "source": [ "##### Example 3\n", @@ -3626,7 +3626,7 @@ { "cell_type": "code", "execution_count": 127, - "id": "a31b7d5a", + "id": "3ea8713e", "metadata": {}, "outputs": [ { @@ -3654,7 +3654,7 @@ { "cell_type": "code", "execution_count": 128, - "id": "ae893b90", + "id": "6dfc825d", "metadata": {}, "outputs": [ { @@ -3678,7 +3678,7 @@ }, { "cell_type": "markdown", - "id": "c8f5879e", + "id": "e19fe24c", "metadata": {}, "source": [ "#### Combining advanced and basic indexing\n", @@ -3691,7 +3691,7 @@ { "cell_type": "code", "execution_count": 129, - "id": "edd90b6c", + "id": "e4e47f80", "metadata": {}, "outputs": [ { @@ -3714,7 +3714,7 @@ }, { "cell_type": "markdown", - "id": "1ec3cf31", + "id": "5251af62", "metadata": {}, "source": [ "In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2, (i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the first, third and fifth rows). This is equivalent to:" @@ -3723,7 +3723,7 @@ { "cell_type": "code", "execution_count": 130, - "id": "fff9b422", + "id": "5a59149e", "metadata": {}, "outputs": [ { @@ -3745,7 +3745,7 @@ }, { "cell_type": "markdown", - "id": "9ec5d536", + "id": "e6cb1904", "metadata": {}, "source": [ "A single advanced index can, for example, replace a slice and the result array will be the same. However, it is a copy and may have a different memory layout. A slice is preferable when it is possible. For example:" @@ -3754,7 +3754,7 @@ { "cell_type": "code", "execution_count": 131, - "id": "750ad1c4", + "id": "b30046a1", "metadata": {}, "outputs": [], "source": [ @@ -3767,7 +3767,7 @@ { "cell_type": "code", "execution_count": 132, - "id": "d9ba63fc", + "id": "96db8003", "metadata": {}, "outputs": [ { @@ -3788,7 +3788,7 @@ { "cell_type": "code", "execution_count": 133, - "id": "5baf9d82", + "id": "f808257c", "metadata": {}, "outputs": [ { @@ -3808,7 +3808,7 @@ }, { "cell_type": "markdown", - "id": "07e4d279", + "id": "dc1581b2", "metadata": {}, "source": [ "The easiest way to understand a combination of multiple advanced indices may be to think in terms of the resulting shape. There are two parts to the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the advanced indexing part. Two cases of index combination need to be distinguished:\n", @@ -3834,7 +3834,7 @@ { "cell_type": "code", "execution_count": 134, - "id": "31fa379d", + "id": "d32641f8", "metadata": {}, "outputs": [], "source": [ @@ -3845,7 +3845,7 @@ { "cell_type": "code", "execution_count": 135, - "id": "b10397fd", + "id": "5f1e8a7f", "metadata": {}, "outputs": [ { @@ -3870,7 +3870,7 @@ { "cell_type": "code", "execution_count": 136, - "id": "256d7468", + "id": "ec68edc1", "metadata": {}, "outputs": [ { @@ -3891,7 +3891,7 @@ }, { "cell_type": "markdown", - "id": "ed03ee54", + "id": "a39ed51a", "metadata": {}, "source": [ "### Field access\n", @@ -3908,7 +3908,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "88408175", + "id": "1411547e", "metadata": {}, "outputs": [], "source": [ @@ -3918,7 +3918,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "5ab1560f", + "id": "cdecac44", "metadata": {}, "outputs": [ { @@ -3939,7 +3939,7 @@ { "cell_type": "code", "execution_count": 139, - "id": "ec1a8c24", + "id": "7418c946", "metadata": {}, "outputs": [ { @@ -3960,7 +3960,7 @@ { "cell_type": "code", "execution_count": 140, - "id": "7f9eaba3", + "id": "45aa035e", "metadata": {}, "outputs": [ { @@ -3981,7 +3981,7 @@ { "cell_type": "code", "execution_count": 141, - "id": "026e6417", + "id": "2c608a95", "metadata": {}, "outputs": [ { @@ -4001,7 +4001,7 @@ }, { "cell_type": "markdown", - "id": "e70c7aa1", + "id": "afee0e0c", "metadata": {}, "source": [ "### Flat Iterator indexing\n", @@ -4016,7 +4016,7 @@ { "cell_type": "code", "execution_count": 142, - "id": "f01bf460", + "id": "742df6d4", "metadata": {}, "outputs": [], "source": [ @@ -4026,7 +4026,7 @@ }, { "cell_type": "markdown", - "id": "12d0c0d7", + "id": "5b426150", "metadata": {}, "source": [ "Or an array of the right size:" @@ -4035,7 +4035,7 @@ { "cell_type": "code", "execution_count": 143, - "id": "83d436ff", + "id": "137fb0fd", "metadata": {}, "outputs": [], "source": [ @@ -4044,7 +4044,7 @@ }, { "cell_type": "markdown", - "id": "506ceb99", + "id": "50845ef8", "metadata": {}, "source": [ "Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions (assigning complex to floats or ints):" @@ -4053,7 +4053,7 @@ { "cell_type": "code", "execution_count": 144, - "id": "c247723c", + "id": "0447411c", "metadata": {}, "outputs": [ { @@ -4074,7 +4074,7 @@ }, { "cell_type": "markdown", - "id": "58afbf47", + "id": "e03449ca", "metadata": {}, "source": [ "```py\n", @@ -4093,7 +4093,7 @@ { "cell_type": "code", "execution_count": 145, - "id": "4f172c9c", + "id": "4c3fc47b", "metadata": {}, "outputs": [ { @@ -4115,7 +4115,7 @@ { "cell_type": "code", "execution_count": 146, - "id": "e0469b3d", + "id": "7d7f9edc", "metadata": {}, "outputs": [ { @@ -4136,7 +4136,7 @@ }, { "cell_type": "markdown", - "id": "9c6e003b", + "id": "778839a8", "metadata": {}, "source": [ "Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is that a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at `x[1] + 1` is assigned to `x[1]` three times, rather than being incremented 3 times.\n", @@ -4149,7 +4149,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "10981ef7", + "id": "a5f016a2", "metadata": {}, "outputs": [ { @@ -4171,7 +4171,7 @@ }, { "cell_type": "markdown", - "id": "9794d68a", + "id": "15de32de", "metadata": {}, "source": [ "So one can use code to construct tuples of any number of indices and then use these within an index.\n", @@ -4182,7 +4182,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "7abf8d4f", + "id": "e1bd432a", "metadata": {}, "outputs": [ { @@ -4203,7 +4203,7 @@ }, { "cell_type": "markdown", - "id": "e5546b1b", + "id": "78e5454c", "metadata": {}, "source": [ "Likewise, ellipsis can be specified by code by using the Ellipsis object:" @@ -4212,7 +4212,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "f17ac336", + "id": "c153c815", "metadata": {}, "outputs": [ { @@ -4235,7 +4235,7 @@ }, { "cell_type": "markdown", - "id": "782b633e", + "id": "3a79c78b", "metadata": {}, "source": [ "For this reason, it is possible to use the output from the `np.nonzero()` function directly as an index since it always returns a tuple of index arrays.\n", @@ -4246,7 +4246,7 @@ { "cell_type": "code", "execution_count": 150, - "id": "32df210d", + "id": "709c07b2", "metadata": {}, "outputs": [ { @@ -4316,7 +4316,7 @@ { "cell_type": "code", "execution_count": 151, - "id": "ae43b357", + "id": "486b3c0c", "metadata": {}, "outputs": [ { @@ -4336,7 +4336,7 @@ }, { "cell_type": "markdown", - "id": "e8da70c1", + "id": "cd9fb5e8", "metadata": {}, "source": [ "## Structured arrays\n", @@ -4349,7 +4349,7 @@ { "cell_type": "code", "execution_count": 152, - "id": "5cefcabd", + "id": "55995518", "metadata": {}, "outputs": [ { @@ -4372,7 +4372,7 @@ }, { "cell_type": "markdown", - "id": "55522e67", + "id": "59e7d7ce", "metadata": {}, "source": [ "Here `x` is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10 or less named `'name'`, 2. a 32-bit integer named `'age'`, and 3. a 32-bit float named `'weight'`.\n", @@ -4383,7 +4383,7 @@ { "cell_type": "code", "execution_count": 153, - "id": "26d5311d", + "id": "dc7d3bec", "metadata": {}, "outputs": [ { @@ -4403,7 +4403,7 @@ }, { "cell_type": "markdown", - "id": "6a829e6d", + "id": "b1549776", "metadata": {}, "source": [ "You can access and modify individual fields of a structured array by indexing with the field name:" @@ -4412,7 +4412,7 @@ { "cell_type": "code", "execution_count": 154, - "id": "99add1a0", + "id": "79707978", "metadata": {}, "outputs": [ { @@ -4433,7 +4433,7 @@ { "cell_type": "code", "execution_count": 155, - "id": "0549b6f6", + "id": "62e8ddc0", "metadata": {}, "outputs": [ { @@ -4454,7 +4454,7 @@ { "cell_type": "code", "execution_count": 156, - "id": "a46b7c66", + "id": "dde264d9", "metadata": {}, "outputs": [ { @@ -4475,7 +4475,7 @@ }, { "cell_type": "markdown", - "id": "421614cf", + "id": "21fcf439", "metadata": {}, "source": [ "Structured datatypes are designed to be able to mimic 'structs' in the C language, and share a similar memory layout. They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and allow control over the memory layout of the structure.\n", @@ -4498,7 +4498,7 @@ { "cell_type": "code", "execution_count": 157, - "id": "ac3ad698", + "id": "bb25d3fb", "metadata": {}, "outputs": [ { @@ -4518,7 +4518,7 @@ }, { "cell_type": "markdown", - "id": "256d4b96", + "id": "99121b0c", "metadata": {}, "source": [ "If `fieldname` is the empty string `''`, the field will be given a default name of the form `f#`, where `#` is the integer index of the field, counting from 0 from the left:" @@ -4527,7 +4527,7 @@ { "cell_type": "code", "execution_count": 158, - "id": "1d16916c", + "id": "fa2b7b4a", "metadata": {}, "outputs": [ { @@ -4547,7 +4547,7 @@ }, { "cell_type": "markdown", - "id": "5c1fea12", + "id": "938fbce7", "metadata": {}, "source": [ "The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.\n", @@ -4560,7 +4560,7 @@ { "cell_type": "code", "execution_count": 159, - "id": "4ac7166d", + "id": "b90c587c", "metadata": {}, "outputs": [ { @@ -4581,7 +4581,7 @@ { "cell_type": "code", "execution_count": 160, - "id": "a97720c4", + "id": "fe1304fe", "metadata": {}, "outputs": [ { @@ -4601,7 +4601,7 @@ }, { "cell_type": "markdown", - "id": "a8b0360e", + "id": "fac5bb80", "metadata": {}, "source": [ "- A dictionary of field parameter arrays\n", @@ -4614,7 +4614,7 @@ { "cell_type": "code", "execution_count": 161, - "id": "6aa4b702", + "id": "d1e31afb", "metadata": {}, "outputs": [ { @@ -4635,7 +4635,7 @@ { "cell_type": "code", "execution_count": 162, - "id": "9c0848da", + "id": "7a016d54", "metadata": {}, "outputs": [ { @@ -4658,7 +4658,7 @@ }, { "cell_type": "markdown", - "id": "054943d8", + "id": "40cabea2", "metadata": {}, "source": [ "Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber any overlapping field’s data. As an exception, fields of `numpy.object_` type cannot overlap with other fields, because of the risk of clobbering the internal object pointer and then dereferencing it.\n", @@ -4673,7 +4673,7 @@ { "cell_type": "code", "execution_count": 163, - "id": "ab5f6e64", + "id": "99cb1995", "metadata": {}, "outputs": [ { @@ -4693,7 +4693,7 @@ }, { "cell_type": "markdown", - "id": "54333b97", + "id": "70491a6d", "metadata": {}, "source": [ "#### Manipulating and Displaying Structured Datatypes\n", @@ -4704,7 +4704,7 @@ { "cell_type": "code", "execution_count": 164, - "id": "0b1c3e34", + "id": "f02aa357", "metadata": {}, "outputs": [ { @@ -4725,7 +4725,7 @@ }, { "cell_type": "markdown", - "id": "e9478ce8", + "id": "4adbfcfc", "metadata": {}, "source": [ "The field names may be modified by assigning to the `names` attribute using a sequence of strings of the same length.\n", @@ -4736,7 +4736,7 @@ { "cell_type": "code", "execution_count": 165, - "id": "2cec035d", + "id": "86ed67ad", "metadata": {}, "outputs": [ { @@ -4756,7 +4756,7 @@ }, { "cell_type": "markdown", - "id": "af50c892", + "id": "7963c01d", "metadata": {}, "source": [ "Both the `names` and `fields` attributes will equal `None` for unstructured arrays. The recommended way to test if a dtype is structured is with `if dt.names is not None` rather than `if dt.names`, to account for dtypes with 0 fields.\n", @@ -4773,7 +4773,7 @@ { "cell_type": "code", "execution_count": 166, - "id": "f5386c1b", + "id": "d410a8a3", "metadata": {}, "outputs": [ { @@ -4793,7 +4793,7 @@ }, { "cell_type": "markdown", - "id": "548a48d2", + "id": "a196d312", "metadata": {}, "source": [ "When using the first form of dictionary-based specification, the titles may be supplied as an extra `'titles'` key as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing a 3-element tuple `(datatype, offset, title)` instead of the usual 2-element tuple:" @@ -4802,7 +4802,7 @@ { "cell_type": "code", "execution_count": 167, - "id": "2d913a45", + "id": "bce8a60a", "metadata": {}, "outputs": [ { @@ -4822,7 +4822,7 @@ }, { "cell_type": "markdown", - "id": "37eb8002", + "id": "d67ced8c", "metadata": {}, "source": [ "The `dtype.fields` dictionary will contain titles as keys, if any titles are used. This means effectively that a field with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the field title. Because of this, and because the `names` attribute preserves the field order while the `fields` attribute may not, it is recommended to iterate through the fields of a dtype using the `names` attribute of the dtype, which will not list titles, as in:" @@ -4831,7 +4831,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "d16b0ad2", + "id": "a837c3cf", "metadata": {}, "outputs": [ { @@ -4850,7 +4850,7 @@ }, { "cell_type": "markdown", - "id": "8759fab3", + "id": "38862aa9", "metadata": {}, "source": [ "### Indexing and Assignment to Structured arrays\n", @@ -4867,7 +4867,7 @@ { "cell_type": "code", "execution_count": 169, - "id": "9d311732", + "id": "3bf8d38a", "metadata": {}, "outputs": [ { @@ -4890,7 +4890,7 @@ }, { "cell_type": "markdown", - "id": "84bab5d9", + "id": "992b7664", "metadata": {}, "source": [ "##### Assignment from Scalars\n", @@ -4901,7 +4901,7 @@ { "cell_type": "code", "execution_count": 170, - "id": "100aaf82", + "id": "de15da18", "metadata": {}, "outputs": [], "source": [ @@ -4911,7 +4911,7 @@ { "cell_type": "code", "execution_count": 171, - "id": "0048996d", + "id": "27427fff", "metadata": {}, "outputs": [ { @@ -4934,7 +4934,7 @@ { "cell_type": "code", "execution_count": 172, - "id": "027b14a6", + "id": "3a81a352", "metadata": {}, "outputs": [ { @@ -4956,7 +4956,7 @@ }, { "cell_type": "markdown", - "id": "28756d42", + "id": "0e6f1ac4", "metadata": {}, "source": [ "Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:" @@ -4965,7 +4965,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "41bf2d2f", + "id": "070ff231", "metadata": {}, "outputs": [], "source": [ @@ -4976,7 +4976,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "538e2c1f", + "id": "b4bc2558", "metadata": {}, "outputs": [], "source": [ @@ -4985,7 +4985,7 @@ }, { "cell_type": "markdown", - "id": "8fe3c666", + "id": "26e6623a", "metadata": {}, "source": [ "```py\n", @@ -5006,7 +5006,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "162d0c94", + "id": "71d03f9c", "metadata": {}, "outputs": [], "source": [ @@ -5017,7 +5017,7 @@ { "cell_type": "code", "execution_count": 176, - "id": "925e0b34", + "id": "c4ec0941", "metadata": {}, "outputs": [ { @@ -5039,7 +5039,7 @@ }, { "cell_type": "markdown", - "id": "a4f69851", + "id": "744b22ab", "metadata": {}, "source": [ "##### Assignment involving subarrays\n", @@ -5056,7 +5056,7 @@ { "cell_type": "code", "execution_count": 177, - "id": "860edddb", + "id": "993e80d4", "metadata": {}, "outputs": [ { @@ -5078,7 +5078,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "2906edee", + "id": "94068fd8", "metadata": {}, "outputs": [ { @@ -5099,7 +5099,7 @@ }, { "cell_type": "markdown", - "id": "de4288a7", + "id": "aa3ae581", "metadata": {}, "source": [ "The resulting array is a view into the original array. It shares the same memory locations and writing to the view will modify the original array." @@ -5108,7 +5108,7 @@ { "cell_type": "code", "execution_count": 179, - "id": "0517ddd7", + "id": "5aa890ea", "metadata": {}, "outputs": [ { @@ -5130,7 +5130,7 @@ }, { "cell_type": "markdown", - "id": "6276a2d2", + "id": "2b608a9a", "metadata": {}, "source": [ "This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case of nested structures." @@ -5139,7 +5139,7 @@ { "cell_type": "code", "execution_count": 180, - "id": "38039e2e", + "id": "eedbd95b", "metadata": {}, "outputs": [ { @@ -5159,7 +5159,7 @@ }, { "cell_type": "markdown", - "id": "9bdaa05a", + "id": "13b741c2", "metadata": {}, "source": [ "If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:" @@ -5168,7 +5168,7 @@ { "cell_type": "code", "execution_count": 181, - "id": "e2fe5c45", + "id": "16456122", "metadata": {}, "outputs": [], "source": [ @@ -5178,7 +5178,7 @@ { "cell_type": "code", "execution_count": 182, - "id": "dccdc746", + "id": "2f1109a9", "metadata": {}, "outputs": [ { @@ -5199,7 +5199,7 @@ { "cell_type": "code", "execution_count": 183, - "id": "2ae5eb1b", + "id": "21fc9653", "metadata": {}, "outputs": [ { @@ -5219,7 +5219,7 @@ }, { "cell_type": "markdown", - "id": "f953ef81", + "id": "7a8e2427", "metadata": {}, "source": [ "##### Accessing multiple fields\n", @@ -5232,7 +5232,7 @@ { "cell_type": "code", "execution_count": 184, - "id": "fefb4f30", + "id": "b2170bad", "metadata": {}, "outputs": [ { @@ -5254,7 +5254,7 @@ }, { "cell_type": "markdown", - "id": "35fcd7ef", + "id": "71392fca", "metadata": {}, "source": [ "Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the same offsets as in the original array, and unindexed fields are merely missing.\n", @@ -5265,7 +5265,7 @@ { "cell_type": "code", "execution_count": 185, - "id": "02fa87d8", + "id": "a1f70879", "metadata": {}, "outputs": [ { @@ -5287,7 +5287,7 @@ }, { "cell_type": "markdown", - "id": "236cdd99", + "id": "ccd52130", "metadata": {}, "source": [ "This obeys the structured array assignment rules described above. For example, this means that one can swap the values of two fields using appropriate multi-field indexes:" @@ -5296,7 +5296,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "6811c266", + "id": "e751d459", "metadata": {}, "outputs": [], "source": [ @@ -5305,7 +5305,7 @@ }, { "cell_type": "markdown", - "id": "321227cd", + "id": "17c3ffee", "metadata": {}, "source": [ "##### Indexing with an integer to get a structured scalar\n", @@ -5316,7 +5316,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "99941fac", + "id": "c963d6bf", "metadata": {}, "outputs": [ { @@ -5339,7 +5339,7 @@ { "cell_type": "code", "execution_count": 188, - "id": "69f556d9", + "id": "b5d0b33e", "metadata": {}, "outputs": [ { @@ -5359,7 +5359,7 @@ }, { "cell_type": "markdown", - "id": "322f244e", + "id": "b2af34f4", "metadata": {}, "source": [ "Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modifying the scalar will modify the original array. Structured scalars also support access and assignment by field name:" @@ -5368,7 +5368,7 @@ { "cell_type": "code", "execution_count": 189, - "id": "275e5aa6", + "id": "cde65ded", "metadata": {}, "outputs": [ { @@ -5391,7 +5391,7 @@ }, { "cell_type": "markdown", - "id": "563981e3", + "id": "3843ee4d", "metadata": {}, "source": [ "Similarly to tuples, structured scalars can also be indexed with an integer:" @@ -5400,7 +5400,7 @@ { "cell_type": "code", "execution_count": 190, - "id": "f717fd01", + "id": "84a3e293", "metadata": {}, "outputs": [ { @@ -5422,7 +5422,7 @@ { "cell_type": "code", "execution_count": 191, - "id": "d8da4d5a", + "id": "0d6c362f", "metadata": {}, "outputs": [], "source": [ @@ -5431,7 +5431,7 @@ }, { "cell_type": "markdown", - "id": "ce864c33", + "id": "6b9bbf7e", "metadata": {}, "source": [ "Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling `numpy.ndarray.item`:" @@ -5440,7 +5440,7 @@ { "cell_type": "code", "execution_count": 192, - "id": "73160c68", + "id": "dba6398a", "metadata": {}, "outputs": [ { @@ -5460,7 +5460,7 @@ }, { "cell_type": "markdown", - "id": "7a4af1a9", + "id": "76dfd92d", "metadata": {}, "source": [ "#### Viewing structured arrays containing objects\n", @@ -5475,7 +5475,7 @@ { "cell_type": "code", "execution_count": 193, - "id": "051080bb", + "id": "9a9c272d", "metadata": {}, "outputs": [ { @@ -5497,7 +5497,7 @@ }, { "cell_type": "markdown", - "id": "a1efc3ce", + "id": "c2166d63", "metadata": {}, "source": [ "NumPy will promote individual field datatypes to perform the comparison. So the following is also valid (note the `'f4'` dtype for the `'a'` field):" @@ -5506,7 +5506,7 @@ { "cell_type": "code", "execution_count": 194, - "id": "0ddc6a84", + "id": "80b0d583", "metadata": {}, "outputs": [ { @@ -5527,7 +5527,7 @@ }, { "cell_type": "markdown", - "id": "86d6712e", + "id": "e1bfa6c9", "metadata": {}, "source": [ "To compare two structured arrays, it must be possible to promote them to a common dtype as returned by `numpy.result_type` and `np.promote_types`. This enforces that the number of fields, the field names, and the field titles must match precisely. When promotion is not possible, for example due to mismatching field names, NumPy will raise an error. Promotion between two structured dtypes results in a canonical dtype that ensures native byte-order for all fields:" @@ -5536,7 +5536,7 @@ { "cell_type": "code", "execution_count": 195, - "id": "8525513a", + "id": "47f739b4", "metadata": {}, "outputs": [ { @@ -5557,7 +5557,7 @@ { "cell_type": "code", "execution_count": 196, - "id": "ef0a80f4", + "id": "aaa0d1ad", "metadata": {}, "outputs": [ { @@ -5577,7 +5577,7 @@ }, { "cell_type": "markdown", - "id": "29f79250", + "id": "2b318e45", "metadata": {}, "source": [ "The resulting dtype from promotion is also guaranteed to be packed, meaning that all fields are ordered contiguously and any unnecessary padding is removed:" @@ -5586,7 +5586,7 @@ { "cell_type": "code", "execution_count": 197, - "id": "78179e76", + "id": "a3eb03a4", "metadata": {}, "outputs": [ { @@ -5608,7 +5608,7 @@ { "cell_type": "code", "execution_count": 198, - "id": "2646685d", + "id": "e37a6f82", "metadata": {}, "outputs": [ { @@ -5628,7 +5628,7 @@ }, { "cell_type": "markdown", - "id": "e93627e5", + "id": "b3bbca7f", "metadata": {}, "source": [ "Note that the result prints without `offsets` or `itemsize` indicating no additional padding. If a structured dtype is created with `align=True` ensuring that `dtype.isalignedstruct` is true, this property is preserved:" @@ -5637,7 +5637,7 @@ { "cell_type": "code", "execution_count": 199, - "id": "95276731", + "id": "78dddbf6", "metadata": {}, "outputs": [ { @@ -5659,7 +5659,7 @@ { "cell_type": "code", "execution_count": 200, - "id": "ade96302", + "id": "3980a4ee", "metadata": {}, "outputs": [ { @@ -5680,7 +5680,7 @@ { "cell_type": "code", "execution_count": 201, - "id": "8c2516d8", + "id": "5c7c5cfa", "metadata": {}, "outputs": [ { @@ -5700,7 +5700,7 @@ }, { "cell_type": "markdown", - "id": "2e1ff208", + "id": "24091496", "metadata": {}, "source": [ "When promoting multiple dtypes, the result is aligned if any of the inputs is:" @@ -5709,7 +5709,7 @@ { "cell_type": "code", "execution_count": 202, - "id": "5989c869", + "id": "94299542", "metadata": {}, "outputs": [ { @@ -5729,7 +5729,7 @@ }, { "cell_type": "markdown", - "id": "944fa2b1", + "id": "aee3bb68", "metadata": {}, "source": [ "The `<` and `>` operators always return `False` when comparing void structured arrays, and arithmetic and bitwise operations are not supported.\n", diff --git a/_sources/data-science/working-with-data/relational-databases.ipynb b/_sources/data-science/working-with-data/relational-databases.ipynb index 0ca30ae27c..d2671509bb 100644 --- a/_sources/data-science/working-with-data/relational-databases.ipynb +++ b/_sources/data-science/working-with-data/relational-databases.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "d25f0717", + "id": "e8806420", "metadata": {}, "source": [ "# Relational databases\n", diff --git a/_sources/data-science/working-with-data/working-with-data.ipynb b/_sources/data-science/working-with-data/working-with-data.ipynb index 111abc09d8..92873ebf74 100644 --- a/_sources/data-science/working-with-data/working-with-data.ipynb +++ b/_sources/data-science/working-with-data/working-with-data.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "6ab3d42f", + "id": "5f5bdd07", "metadata": {}, "source": [ "# Working with data\n", diff --git a/_sources/deep-learning/autoencoder.ipynb b/_sources/deep-learning/autoencoder.ipynb index 0f598fd884..af722d2e48 100644 --- a/_sources/deep-learning/autoencoder.ipynb +++ b/_sources/deep-learning/autoencoder.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "26432477", + "id": "9c2c6c42", "metadata": {}, "source": [ "# Autoencoder\n", @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1c39e21d", + "id": "53b47613", "metadata": {}, "outputs": [], "source": [ @@ -118,7 +118,7 @@ }, { "cell_type": "markdown", - "id": "02a7afd0", + "id": "574ad4dc", "metadata": {}, "source": [ "MNIST Dataset parameters." @@ -127,7 +127,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2eaf34ef", + "id": "aad3812f", "metadata": {}, "outputs": [], "source": [ @@ -136,7 +136,7 @@ }, { "cell_type": "markdown", - "id": "0c62fa63", + "id": "9a2e7f92", "metadata": {}, "source": [ "Training parameters." @@ -145,7 +145,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dcd59057", + "id": "0246af93", "metadata": {}, "outputs": [], "source": [ @@ -157,7 +157,7 @@ }, { "cell_type": "markdown", - "id": "376ff0b9", + "id": "9c1327af", "metadata": {}, "source": [ "Network Parameters" @@ -166,7 +166,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3c33e257", + "id": "1b7fa0cb", "metadata": {}, "outputs": [], "source": [ @@ -176,7 +176,7 @@ }, { "cell_type": "markdown", - "id": "c50d49f0", + "id": "4ac530c4", "metadata": {}, "source": [ "Prepare MNIST data." @@ -185,7 +185,7 @@ { "cell_type": "code", "execution_count": null, - "id": "071de12f", + "id": "c8c88364", "metadata": {}, "outputs": [], "source": [ @@ -201,7 +201,7 @@ }, { "cell_type": "markdown", - "id": "4566d310", + "id": "491c2c40", "metadata": {}, "source": [ "Store layers weight & bias.\n", @@ -211,7 +211,7 @@ { "cell_type": "code", "execution_count": null, - "id": "45bf0285", + "id": "552986d1", "metadata": {}, "outputs": [], "source": [ @@ -233,7 +233,7 @@ }, { "cell_type": "markdown", - "id": "1e77c8d0", + "id": "19fa6d39", "metadata": {}, "source": [ "Building the encoder." @@ -242,7 +242,7 @@ { "cell_type": "code", "execution_count": null, - "id": "46bf44f0", + "id": "dbc1f00b", "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "markdown", - "id": "58f6c79f", + "id": "b6342243", "metadata": {}, "source": [ "Building the decoder." @@ -267,7 +267,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f357096c", + "id": "a46a4512", "metadata": {}, "outputs": [], "source": [ @@ -283,7 +283,7 @@ }, { "cell_type": "markdown", - "id": "4d37abf8", + "id": "d115d00b", "metadata": {}, "source": [ "Mean square loss between original images and reconstructed ones." @@ -292,7 +292,7 @@ { "cell_type": "code", "execution_count": null, - "id": "87ef739e", + "id": "66a57b39", "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "markdown", - "id": "429308e7", + "id": "3af38928", "metadata": {}, "source": [ "Adam optimizer." @@ -311,7 +311,7 @@ { "cell_type": "code", "execution_count": null, - "id": "77877aff", + "id": "b736b0e9", "metadata": {}, "outputs": [], "source": [ @@ -320,7 +320,7 @@ }, { "cell_type": "markdown", - "id": "66ab0c6f", + "id": "9e9b302e", "metadata": {}, "source": [ "Optimization process." @@ -329,7 +329,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ca1410d9", + "id": "1081a567", "metadata": {}, "outputs": [], "source": [ @@ -353,7 +353,7 @@ }, { "cell_type": "markdown", - "id": "572a7552", + "id": "6e27923c", "metadata": {}, "source": [ "Run training for the given number of steps." @@ -362,7 +362,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bee12173", + "id": "2b35dbec", "metadata": {}, "outputs": [], "source": [ @@ -377,7 +377,7 @@ }, { "cell_type": "markdown", - "id": "418fa76b", + "id": "1af3920e", "metadata": {}, "source": [ "Testing and Visualization." @@ -386,7 +386,7 @@ { "cell_type": "code", "execution_count": null, - "id": "51737843", + "id": "bc5edc94", "metadata": {}, "outputs": [], "source": [ @@ -395,7 +395,7 @@ }, { "cell_type": "markdown", - "id": "2a6fab19", + "id": "42d3bde7", "metadata": {}, "source": [ "Encode and decode images from test set and visualize their reconstruction." @@ -404,7 +404,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a3b9d7ca", + "id": "29d08251", "metadata": {}, "outputs": [], "source": [ @@ -438,7 +438,7 @@ }, { "cell_type": "markdown", - "id": "52acb449", + "id": "da4c2331", "metadata": {}, "source": [ " @@ -1686,132 +1715,1186 @@

37.49.2. Data Preparation +../../../_images/linear-regression-from-scratch_8_1.png +
Training set size: (80, 1) (80,)
+Testing set size: (20, 1) (20,)
+
+
-

In this code snippet, we first import the necessary libraries, such as NumPy and Pandas. Then, we load the dataset using the read_csv() function from Pandas, replacing ‘data.csv’ with the actual path to your dataset.

-

Next, we perform exploratory data analysis by printing the first few rows of the dataset using head(), displaying the shape of the dataset using shape, and printing summary statistics using describe().

-

After that, we check for missing values in the dataset using isnull().sum(). If there are missing values, we can handle them accordingly. In this example, we simply drop rows with missing values using dropna().

-

Then, we perform any necessary preprocessing steps, such as feature scaling or encoding categorical variables. Finally, we split the dataset into input features (X) and the target variable (y), convert them to NumPy arrays using np.array(), and verify their dimensions using shape.

37.49.3. Model Development#

Once we have prepared the data, we can proceed with developing the linear regression model. This involves deriving the mathematical formula for linear regression, implementing the formula in code, defining a cost function, and implementing the gradient descent algorithm to train the model.

Let’s take a look at the code snippet below to understand how we can develop the linear regression model:

+
+

37.49.3.1. Define loss function#

+
Calculate the loss between the true target variable and the predicted target variable.
+
+Parameters:
+- y_true: The true target variable (numpy array or pandas Series)
+- y_pred: The predicted target variable (numpy array or pandas Series)
+
+Returns:
+- loss: The calculated loss (float)
+
+
-
# Deriving the mathematical formula for linear regression
-# Implementing the formula in code
-class LinearRegression:
-    def __init__(self):
-        self.coefficients = None
-
-    def fit(self, X, y):
-        # Add a column of ones to X for the bias term
-        X = np.c_[np.ones((X.shape[0], 1)), X]
+
# Define the loss function
+def loss_function(y_true, y_pred):
+    # Calculate the mean squared error
+    mse = np.mean((y_true - y_pred) ** 2)
+    return mse
+
+
+
+
+
+
+

37.49.3.2. Use gradient descent to train the model#

+

The gradient_descent function is responsible for performing gradient descent to optimize the coefficients of the linear regression model. Here is a breakdown of the steps involved:

+
    +
  1. Scale the data: The input features (X_train and X_test) are scaled using the StandardScaler from scikit-learn. This ensures that all features have a similar scale, which can improve the performance of the gradient descent algorithm.

  2. +
  3. Add a bias term: A column of ones is added to the input features (X_train) to account for the bias term in the linear regression model.

  4. +
  5. Initialize coefficients: The coefficients are initialized with zeros. The number of coefficients is equal to the number of features plus one (including the bias term).

  6. +
  7. Perform gradient descent: The function iterates over a specified number of iterations. In each iteration, the following steps are performed:

    +
      +
    • Compute the predictions (y_pred) by multiplying the input features (X_train_with_bias) with the coefficients.

    • +
    • Compute the gradients by taking the dot product of the transposed input features (X_train_with_bias.T) and the difference between the predictions and the true target variable (y_train).

    • +
    • Update the coefficients by subtracting the learning rate multiplied by the gradients.

    • +
    • Compute the loss by calculating the mean squared error between the true target variable (y_train) and the predictions (y_pred).

    • +
    +
  8. +
  9. Make predictions on the test set: The function applies the same preprocessing steps to the test set (X_test) and computes the predictions (y_pred_test) using the updated coefficients.

  10. +
+

This function is a key component in training the linear regression model from scratch. It allows us to iteratively update the coefficients based on the gradients, gradually improving the model’s performance.

+
+
+
# Define the gradient descent function
+def gradient_descent(X_train, y_train, X_test, y_test, learning_rate, num_iterations):
+    # Scale the data
+    scaler = StandardScaler()
+    X_train_scaled = scaler.fit_transform(X_train.values.reshape(-1, 1))
+    X_test_scaled = scaler.transform(X_test.values.reshape(-1, 1))
 
-        # Compute the coefficients using the normal equation
-        self.coefficients = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
+    # Add a column of ones to X for the bias term
+    X_train_with_bias = np.c_[np.ones((X_train_scaled.shape[0], 1)), X_train_scaled]
 
-    def predict(self, X):
-        # Add a column of ones to X for the bias term
-        X = np.c_[np.ones((X.shape[0], 1)), X]
+    # Initialize the coefficients with zeros
+    coefficients = np.zeros((X_train_with_bias.shape[1], 1))
 
-        # Predict the target variable
-        y_pred = X.dot(self.coefficients)
+    # Perform gradient descent
+    for i in range(num_iterations):
+        # Compute the predictions
+        y_pred = X_train_with_bias.dot(coefficients)
 
-        return y_pred
+        # Compute the gradients
+        gradients = 2 * X_train_with_bias.T.dot(y_pred - y_train.values.reshape(-1, 1)) 
 
-# Defining cost function
-def mean_squared_error(y_true, y_pred):
-    return np.mean((y_true - y_pred) ** 2)
+        # Update the coefficients
+        coefficients -= learning_rate * gradients
 
-# 训练模型
-regressor = LinearRegression()
-regressor.fit(X, y)
+        # Compute the loss
+        loss = np.mean((y_train.values.reshape(-1, 1) - y_pred) ** 2)
+        print("Iteration:", i+1, "Loss:", loss)
 
-# 使用训练好的模型进行预测
-y_pred = regressor.predict(X)
+    # Make predictions on the test set
+    X_test_with_bias = np.c_[np.ones((X_test_scaled.shape[0], 1)), X_test_scaled]
+    y_pred_test = X_test_with_bias.dot(coefficients)
 
-# Evaluating the model
-mse = mean_squared_error(y, y_pred)
-print('Mean Squared Error:', mse)
+    return coefficients, y_pred_test
+
+
+
+
+

Next, we train the linear regression model and make predictions on the test set.

+

First, we import the required library and set the learning rate and number of iterations for gradient descent. We then call the gradient descent function and pass in the training and test data, the learning rate, and the number of iterations. The function returns the optimised coefficients and predictions for the test set. Finally, we store the returned results in the variables coefficients and ypred test.

+

By running this code, we can train a linear regression model using gradient descent and get the prediction results on the test set to further analyse and evaluate the performance of the model.

+
+
+
import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+from sklearn.model_selection import train_test_split
+from sklearn.preprocessing import StandardScaler
+# Perform gradient descent to train the model
+learning_rate = 0.01
+num_iterations = 1000
+coefficients, y_pred_test = gradient_descent(X_train, y_train, X_test, y_test, learning_rate, num_iterations)
 
-
Mean Squared Error: 0.8065845639670534
+
Iteration: 1 Loss: 49.252973836909085
+Iteration: 2 Loss: 18.27358504939668
+Iteration: 3 Loss: 7.121005085892223
+Iteration: 4 Loss: 3.1060762990306165
+Iteration: 5 Loss: 1.6607019357604422
+Iteration: 6 Loss: 1.1403671649831801
+Iteration: 7 Loss: 0.9530466475033655
+Iteration: 8 Loss: 0.8856112612106326
+Iteration: 9 Loss: 0.8613345221452491
+Iteration: 10 Loss: 0.8525948960817107
+Iteration: 11 Loss: 0.8494486306988371
+Iteration: 12 Loss: 0.8483159751610024
+Iteration: 13 Loss: 0.8479082191673818
+Iteration: 14 Loss: 0.8477614270096787
+Iteration: 15 Loss: 0.8477085818329055
+Iteration: 16 Loss: 0.8476895575692671
+Iteration: 17 Loss: 0.8476827088343573
+Iteration: 18 Loss: 0.8476802432897899
+Iteration: 19 Loss: 0.8476793556937455
+Iteration: 20 Loss: 0.8476790361591695
+Iteration: 21 Loss: 0.847678921126722
+Iteration: 22 Loss: 0.8476788797150412
+Iteration: 23 Loss: 0.8476788648068361
+Iteration: 24 Loss: 0.8476788594398821
+Iteration: 25 Loss: 0.8476788575077785
+Iteration: 26 Loss: 0.8476788568122215
+Iteration: 27 Loss: 0.847678856561821
+Iteration: 28 Loss: 0.8476788564716766
+Iteration: 29 Loss: 0.8476788564392248
+Iteration: 30 Loss: 0.847678856427542
+Iteration: 31 Loss: 0.8476788564233363
+Iteration: 32 Loss: 0.8476788564218222
+Iteration: 33 Loss: 0.8476788564212772
+Iteration: 34 Loss: 0.8476788564210811
+Iteration: 35 Loss: 0.8476788564210102
+Iteration: 36 Loss: 0.8476788564209847
+Iteration: 37 Loss: 0.8476788564209757
+Iteration: 38 Loss: 0.8476788564209723
+Iteration: 39 Loss: 0.8476788564209713
+Iteration: 40 Loss: 0.8476788564209707
+Iteration: 41 Loss: 0.8476788564209705
+Iteration: 42 Loss: 0.8476788564209705
+Iteration: 43 Loss: 0.8476788564209705
+Iteration: 44 Loss: 0.8476788564209704
+Iteration: 45 Loss: 0.8476788564209707
+Iteration: 46 Loss: 0.8476788564209705
+Iteration: 47 Loss: 0.8476788564209705
+Iteration: 48 Loss: 0.8476788564209705
+Iteration: 49 Loss: 0.8476788564209705
+Iteration: 50 Loss: 0.8476788564209705
+Iteration: 51 Loss: 0.8476788564209705
+Iteration: 52 Loss: 0.8476788564209705
+Iteration: 53 Loss: 0.8476788564209705
+Iteration: 54 Loss: 0.8476788564209705
+Iteration: 55 Loss: 0.8476788564209704
+Iteration: 56 Loss: 0.8476788564209705
+Iteration: 57 Loss: 0.8476788564209705
+Iteration: 58 Loss: 0.8476788564209705
+Iteration: 59 Loss: 0.8476788564209705
+Iteration: 60 Loss: 0.8476788564209705
+Iteration: 61 Loss: 0.8476788564209704
+Iteration: 62 Loss: 0.8476788564209705
+Iteration: 63 Loss: 0.8476788564209705
+Iteration: 64 Loss: 0.8476788564209705
+Iteration: 65 Loss: 0.8476788564209705
+Iteration: 66 Loss: 0.8476788564209705
+Iteration: 67 Loss: 0.8476788564209705
+Iteration: 68 Loss: 0.8476788564209704
+Iteration: 69 Loss: 0.8476788564209705
+Iteration: 70 Loss: 0.8476788564209705
+Iteration: 71 Loss: 0.8476788564209705
+Iteration: 72 Loss: 0.8476788564209707
+Iteration: 73 Loss: 0.8476788564209705
+Iteration: 74 Loss: 0.8476788564209705
+Iteration: 75 Loss: 0.8476788564209705
+Iteration: 76 Loss: 0.8476788564209705
+Iteration: 77 Loss: 0.8476788564209705
+Iteration: 78 Loss: 0.8476788564209705
+Iteration: 79 Loss: 0.8476788564209705
+Iteration: 80 Loss: 0.8476788564209705
+Iteration: 81 Loss: 0.8476788564209705
+Iteration: 82 Loss: 0.8476788564209705
+Iteration: 83 Loss: 0.8476788564209705
+Iteration: 84 Loss: 0.8476788564209705
+Iteration: 85 Loss: 0.8476788564209705
+Iteration: 86 Loss: 0.8476788564209705
+Iteration: 87 Loss: 0.8476788564209705
+Iteration: 88 Loss: 0.8476788564209705
+Iteration: 89 Loss: 0.8476788564209705
+Iteration: 90 Loss: 0.8476788564209705
+Iteration: 91 Loss: 0.8476788564209705
+Iteration: 92 Loss: 0.8476788564209705
+Iteration: 93 Loss: 0.8476788564209705
+Iteration: 94 Loss: 0.8476788564209705
+Iteration: 95 Loss: 0.8476788564209705
+Iteration: 96 Loss: 0.8476788564209705
+Iteration: 97 Loss: 0.8476788564209705
+Iteration: 98 Loss: 0.8476788564209705
+Iteration: 99 Loss: 0.8476788564209705
+Iteration: 100 Loss: 0.8476788564209705
+Iteration: 101 Loss: 0.8476788564209705
+Iteration: 102 Loss: 0.8476788564209705
+Iteration: 103 Loss: 0.8476788564209705
+Iteration: 104 Loss: 0.8476788564209705
+Iteration: 105 Loss: 0.8476788564209705
+Iteration: 106 Loss: 0.8476788564209705
+Iteration: 107 Loss: 0.8476788564209705
+Iteration: 108 Loss: 0.8476788564209705
+Iteration: 109 Loss: 0.8476788564209705
+Iteration: 110 Loss: 0.8476788564209705
+Iteration: 111 Loss: 0.8476788564209705
+Iteration: 112 Loss: 0.8476788564209705
+Iteration: 113 Loss: 0.8476788564209705
+Iteration: 114 Loss: 0.8476788564209705
+Iteration: 115 Loss: 0.8476788564209705
+Iteration: 116 Loss: 0.8476788564209705
+Iteration: 117 Loss: 0.8476788564209705
+Iteration: 118 Loss: 0.8476788564209705
+Iteration: 119 Loss: 0.8476788564209705
+Iteration: 120 Loss: 0.8476788564209705
+Iteration: 121 Loss: 0.8476788564209705
+Iteration: 122 Loss: 0.8476788564209705
+Iteration: 123 Loss: 0.8476788564209705
+Iteration: 124 Loss: 0.8476788564209705
+Iteration: 125 Loss: 0.8476788564209705
+Iteration: 126 Loss: 0.8476788564209705
+Iteration: 127 Loss: 0.8476788564209705
+Iteration: 128 Loss: 0.8476788564209705
+Iteration: 129 Loss: 0.8476788564209705
+Iteration: 130 Loss: 0.8476788564209705
+Iteration: 131 Loss: 0.8476788564209705
+Iteration: 132 Loss: 0.8476788564209705
+Iteration: 133 Loss: 0.8476788564209705
+Iteration: 134 Loss: 0.8476788564209705
+Iteration: 135 Loss: 0.8476788564209705
+Iteration: 136 Loss: 0.8476788564209705
+Iteration: 137 Loss: 0.8476788564209705
+Iteration: 138 Loss: 0.8476788564209705
+Iteration: 139 Loss: 0.8476788564209705
+Iteration: 140 Loss: 0.8476788564209705
+Iteration: 141 Loss: 0.8476788564209705
+Iteration: 142 Loss: 0.8476788564209705
+Iteration: 143 Loss: 0.8476788564209705
+Iteration: 144 Loss: 0.8476788564209705
+Iteration: 145 Loss: 0.8476788564209705
+Iteration: 146 Loss: 0.8476788564209705
+Iteration: 147 Loss: 0.8476788564209705
+Iteration: 148 Loss: 0.8476788564209705
+Iteration: 149 Loss: 0.8476788564209705
+Iteration: 150 Loss: 0.8476788564209705
+Iteration: 151 Loss: 0.8476788564209705
+Iteration: 152 Loss: 0.8476788564209705
+Iteration: 153 Loss: 0.8476788564209705
+Iteration: 154 Loss: 0.8476788564209705
+Iteration: 155 Loss: 0.8476788564209705
+Iteration: 156 Loss: 0.8476788564209705
+Iteration: 157 Loss: 0.8476788564209705
+Iteration: 158 Loss: 0.8476788564209705
+Iteration: 159 Loss: 0.8476788564209705
+Iteration: 160 Loss: 0.8476788564209705
+Iteration: 161 Loss: 0.8476788564209705
+Iteration: 162 Loss: 0.8476788564209705
+Iteration: 163 Loss: 0.8476788564209705
+Iteration: 164 Loss: 0.8476788564209705
+Iteration: 165 Loss: 0.8476788564209705
+Iteration: 166 Loss: 0.8476788564209705
+Iteration: 167 Loss: 0.8476788564209705
+Iteration: 168 Loss: 0.8476788564209705
+Iteration: 169 Loss: 0.8476788564209705
+Iteration: 170 Loss: 0.8476788564209705
+Iteration: 171 Loss: 0.8476788564209705
+Iteration: 172 Loss: 0.8476788564209705
+Iteration: 173 Loss: 0.8476788564209705
+Iteration: 174 Loss: 0.8476788564209705
+Iteration: 175 Loss: 0.8476788564209705
+Iteration: 176 Loss: 0.8476788564209705
+Iteration: 177 Loss: 0.8476788564209705
+Iteration: 178 Loss: 0.8476788564209705
+Iteration: 179 Loss: 0.8476788564209705
+Iteration: 180 Loss: 0.8476788564209705
+Iteration: 181 Loss: 0.8476788564209705
+Iteration: 182 Loss: 0.8476788564209705
+Iteration: 183 Loss: 0.8476788564209705
+Iteration: 184 Loss: 0.8476788564209705
+Iteration: 185 Loss: 0.8476788564209705
+Iteration: 186 Loss: 0.8476788564209705
+Iteration: 187 Loss: 0.8476788564209705
+Iteration: 188 Loss: 0.8476788564209705
+Iteration: 189 Loss: 0.8476788564209705
+Iteration: 190 Loss: 0.8476788564209705
+Iteration: 191 Loss: 0.8476788564209705
+Iteration: 192 Loss: 0.8476788564209705
+Iteration: 193 Loss: 0.8476788564209705
+Iteration: 194 Loss: 0.8476788564209705
+Iteration: 195 Loss: 0.8476788564209705
+Iteration: 196 Loss: 0.8476788564209705
+Iteration: 197 Loss: 0.8476788564209705
+Iteration: 198 Loss: 0.8476788564209705
+Iteration: 199 Loss: 0.8476788564209705
+Iteration: 200 Loss: 0.8476788564209705
+Iteration: 201 Loss: 0.8476788564209705
+Iteration: 202 Loss: 0.8476788564209705
+Iteration: 203 Loss: 0.8476788564209705
+Iteration: 204 Loss: 0.8476788564209705
+Iteration: 205 Loss: 0.8476788564209705
+Iteration: 206 Loss: 0.8476788564209705
+Iteration: 207 Loss: 0.8476788564209705
+Iteration: 208 Loss: 0.8476788564209705
+Iteration: 209 Loss: 0.8476788564209705
+Iteration: 210 Loss: 0.8476788564209705
+Iteration: 211 Loss: 0.8476788564209705
+Iteration: 212 Loss: 0.8476788564209705
+Iteration: 213 Loss: 0.8476788564209705
+Iteration: 214 Loss: 0.8476788564209705
+Iteration: 215 Loss: 0.8476788564209705
+Iteration: 216 Loss: 0.8476788564209705
+Iteration: 217 Loss: 0.8476788564209705
+Iteration: 218 Loss: 0.8476788564209705
+Iteration: 219 Loss: 0.8476788564209705
+Iteration: 220 Loss: 0.8476788564209705
+Iteration: 221 Loss: 0.8476788564209705
+Iteration: 222 Loss: 0.8476788564209705
+Iteration: 223 Loss: 0.8476788564209705
+Iteration: 224 Loss: 0.8476788564209705
+Iteration: 225 Loss: 0.8476788564209705
+Iteration: 226 Loss: 0.8476788564209705
+Iteration: 227 Loss: 0.8476788564209705
+Iteration: 228 Loss: 0.8476788564209705
+Iteration: 229 Loss: 0.8476788564209705
+Iteration: 230 Loss: 0.8476788564209705
+Iteration: 231 Loss: 0.8476788564209705
+Iteration: 232 Loss: 0.8476788564209705
+Iteration: 233 Loss: 0.8476788564209705
+Iteration: 234 Loss: 0.8476788564209705
+Iteration: 235 Loss: 0.8476788564209705
+Iteration: 236 Loss: 0.8476788564209705
+Iteration: 237 Loss: 0.8476788564209705
+Iteration: 238 Loss: 0.8476788564209705
+Iteration: 239 Loss: 0.8476788564209705
+Iteration: 240 Loss: 0.8476788564209705
+Iteration: 241 Loss: 0.8476788564209705
+Iteration: 242 Loss: 0.8476788564209705
+Iteration: 243 Loss: 0.8476788564209705
+Iteration: 244 Loss: 0.8476788564209705
+Iteration: 245 Loss: 0.8476788564209705
+Iteration: 246 Loss: 0.8476788564209705
+Iteration: 247 Loss: 0.8476788564209705
+Iteration: 248 Loss: 0.8476788564209705
+Iteration: 249 Loss: 0.8476788564209705
+Iteration: 250 Loss: 0.8476788564209705
+Iteration: 251 Loss: 0.8476788564209705
+Iteration: 252 Loss: 0.8476788564209705
+Iteration: 253 Loss: 0.8476788564209705
+Iteration: 254 Loss: 0.8476788564209705
+Iteration: 255 Loss: 0.8476788564209705
+Iteration: 256 Loss: 0.8476788564209705
+Iteration: 257 Loss: 0.8476788564209705
+Iteration: 258 Loss: 0.8476788564209705
+Iteration: 259 Loss: 0.8476788564209705
+Iteration: 260 Loss: 0.8476788564209705
+Iteration: 261 Loss: 0.8476788564209705
+Iteration: 262 Loss: 0.8476788564209705
+Iteration: 263 Loss: 0.8476788564209705
+Iteration: 264 Loss: 0.8476788564209705
+Iteration: 265 Loss: 0.8476788564209705
+Iteration: 266 Loss: 0.8476788564209705
+Iteration: 267 Loss: 0.8476788564209705
+Iteration: 268 Loss: 0.8476788564209705
+Iteration: 269 Loss: 0.8476788564209705
+Iteration: 270 Loss: 0.8476788564209705
+Iteration: 271 Loss: 0.8476788564209705
+Iteration: 272 Loss: 0.8476788564209705
+Iteration: 273 Loss: 0.8476788564209705
+Iteration: 274 Loss: 0.8476788564209705
+Iteration: 275 Loss: 0.8476788564209705
+Iteration: 276 Loss: 0.8476788564209705
+Iteration: 277 Loss: 0.8476788564209705
+Iteration: 278 Loss: 0.8476788564209705
+Iteration: 279 Loss: 0.8476788564209705
+Iteration: 280 Loss: 0.8476788564209705
+Iteration: 281 Loss: 0.8476788564209705
+Iteration: 282 Loss: 0.8476788564209705
+Iteration: 283 Loss: 0.8476788564209705
+Iteration: 284 Loss: 0.8476788564209705
+Iteration: 285 Loss: 0.8476788564209705
+Iteration: 286 Loss: 0.8476788564209705
+Iteration: 287 Loss: 0.8476788564209705
+Iteration: 288 Loss: 0.8476788564209705
+Iteration: 289 Loss: 0.8476788564209705
+Iteration: 290 Loss: 0.8476788564209705
+Iteration: 291 Loss: 0.8476788564209705
+Iteration: 292 Loss: 0.8476788564209705
+Iteration: 293 Loss: 0.8476788564209705
+Iteration: 294 Loss: 0.8476788564209705
+Iteration: 295 Loss: 0.8476788564209705
+Iteration: 296 Loss: 0.8476788564209705
+Iteration: 297 Loss: 0.8476788564209705
+Iteration: 298 Loss: 0.8476788564209705
+Iteration: 299 Loss: 0.8476788564209705
+Iteration: 300 Loss: 0.8476788564209705
+Iteration: 301 Loss: 0.8476788564209705
+Iteration: 302 Loss: 0.8476788564209705
+Iteration: 303 Loss: 0.8476788564209705
+Iteration: 304 Loss: 0.8476788564209705
+Iteration: 305 Loss: 0.8476788564209705
+Iteration: 306 Loss: 0.8476788564209705
+Iteration: 307 Loss: 0.8476788564209705
+Iteration: 308 Loss: 0.8476788564209705
+Iteration: 309 Loss: 0.8476788564209705
+Iteration: 310 Loss: 0.8476788564209705
+Iteration: 311 Loss: 0.8476788564209705
+Iteration: 312 Loss: 0.8476788564209705
+Iteration: 313 Loss: 0.8476788564209705
+Iteration: 314 Loss: 0.8476788564209705
+Iteration: 315 Loss: 0.8476788564209705
+Iteration: 316 Loss: 0.8476788564209705
+Iteration: 317 Loss: 0.8476788564209705
+Iteration: 318 Loss: 0.8476788564209705
+Iteration: 319 Loss: 0.8476788564209705
+Iteration: 320 Loss: 0.8476788564209705
+Iteration: 321 Loss: 0.8476788564209705
+Iteration: 322 Loss: 0.8476788564209705
+Iteration: 323 Loss: 0.8476788564209705
+Iteration: 324 Loss: 0.8476788564209705
+Iteration: 325 Loss: 0.8476788564209705
+Iteration: 326 Loss: 0.8476788564209705
+Iteration: 327 Loss: 0.8476788564209705
+Iteration: 328 Loss: 0.8476788564209705
+Iteration: 329 Loss: 0.8476788564209705
+Iteration: 330 Loss: 0.8476788564209705
+Iteration: 331 Loss: 0.8476788564209705
+Iteration: 332 Loss: 0.8476788564209705
+Iteration: 333 Loss: 0.8476788564209705
+Iteration: 334 Loss: 0.8476788564209705
+Iteration: 335 Loss: 0.8476788564209705
+Iteration: 336 Loss: 0.8476788564209705
+Iteration: 337 Loss: 0.8476788564209705
+Iteration: 338 Loss: 0.8476788564209705
+Iteration: 339 Loss: 0.8476788564209705
+Iteration: 340 Loss: 0.8476788564209705
+Iteration: 341 Loss: 0.8476788564209705
+Iteration: 342 Loss: 0.8476788564209705
+Iteration: 343 Loss: 0.8476788564209705
+Iteration: 344 Loss: 0.8476788564209705
+Iteration: 345 Loss: 0.8476788564209705
+Iteration: 346 Loss: 0.8476788564209705
+Iteration: 347 Loss: 0.8476788564209705
+Iteration: 348 Loss: 0.8476788564209705
+Iteration: 349 Loss: 0.8476788564209705
+Iteration: 350 Loss: 0.8476788564209705
+Iteration: 351 Loss: 0.8476788564209705
+Iteration: 352 Loss: 0.8476788564209705
+Iteration: 353 Loss: 0.8476788564209705
+Iteration: 354 Loss: 0.8476788564209705
+Iteration: 355 Loss: 0.8476788564209705
+Iteration: 356 Loss: 0.8476788564209705
+Iteration: 357 Loss: 0.8476788564209705
+Iteration: 358 Loss: 0.8476788564209705
+Iteration: 359 Loss: 0.8476788564209705
+Iteration: 360 Loss: 0.8476788564209705
+Iteration: 361 Loss: 0.8476788564209705
+Iteration: 362 Loss: 0.8476788564209705
+Iteration: 363 Loss: 0.8476788564209705
+Iteration: 364 Loss: 0.8476788564209705
+Iteration: 365 Loss: 0.8476788564209705
+Iteration: 366 Loss: 0.8476788564209705
+Iteration: 367 Loss: 0.8476788564209705
+Iteration: 368 Loss: 0.8476788564209705
+Iteration: 369 Loss: 0.8476788564209705
+Iteration: 370 Loss: 0.8476788564209705
+Iteration: 371 Loss: 0.8476788564209705
+Iteration: 372 Loss: 0.8476788564209705
+Iteration: 373 Loss: 0.8476788564209705
+Iteration: 374 Loss: 0.8476788564209705
+Iteration: 375 Loss: 0.8476788564209705
+Iteration: 376 Loss: 0.8476788564209705
+Iteration: 377 Loss: 0.8476788564209705
+Iteration: 378 Loss: 0.8476788564209705
+Iteration: 379 Loss: 0.8476788564209705
+Iteration: 380 Loss: 0.8476788564209705
+Iteration: 381 Loss: 0.8476788564209705
+Iteration: 382 Loss: 0.8476788564209705
+Iteration: 383 Loss: 0.8476788564209705
+Iteration: 384 Loss: 0.8476788564209705
+Iteration: 385 Loss: 0.8476788564209705
+Iteration: 386 Loss: 0.8476788564209705
+Iteration: 387 Loss: 0.8476788564209705
+Iteration: 388 Loss: 0.8476788564209705
+Iteration: 389 Loss: 0.8476788564209705
+Iteration: 390 Loss: 0.8476788564209705
+Iteration: 391 Loss: 0.8476788564209705
+Iteration: 392 Loss: 0.8476788564209705
+Iteration: 393 Loss: 0.8476788564209705
+Iteration: 394 Loss: 0.8476788564209705
+Iteration: 395 Loss: 0.8476788564209705
+Iteration: 396 Loss: 0.8476788564209705
+Iteration: 397 Loss: 0.8476788564209705
+Iteration: 398 Loss: 0.8476788564209705
+Iteration: 399 Loss: 0.8476788564209705
+Iteration: 400 Loss: 0.8476788564209705
+Iteration: 401 Loss: 0.8476788564209705
+Iteration: 402 Loss: 0.8476788564209705
+Iteration: 403 Loss: 0.8476788564209705
+Iteration: 404 Loss: 0.8476788564209705
+Iteration: 405 Loss: 0.8476788564209705
+Iteration: 406 Loss: 0.8476788564209705
+Iteration: 407 Loss: 0.8476788564209705
+Iteration: 408 Loss: 0.8476788564209705
+Iteration: 409 Loss: 0.8476788564209705
+Iteration: 410 Loss: 0.8476788564209705
+Iteration: 411 Loss: 0.8476788564209705
+Iteration: 412 Loss: 0.8476788564209705
+Iteration: 413 Loss: 0.8476788564209705
+Iteration: 414 Loss: 0.8476788564209705
+Iteration: 415 Loss: 0.8476788564209705
+Iteration: 416 Loss: 0.8476788564209705
+Iteration: 417 Loss: 0.8476788564209705
+Iteration: 418 Loss: 0.8476788564209705
+Iteration: 419 Loss: 0.8476788564209705
+Iteration: 420 Loss: 0.8476788564209705
+Iteration: 421 Loss: 0.8476788564209705
+Iteration: 422 Loss: 0.8476788564209705
+Iteration: 423 Loss: 0.8476788564209705
+Iteration: 424 Loss: 0.8476788564209705
+Iteration: 425 Loss: 0.8476788564209705
+Iteration: 426 Loss: 0.8476788564209705
+Iteration: 427 Loss: 0.8476788564209705
+Iteration: 428 Loss: 0.8476788564209705
+Iteration: 429 Loss: 0.8476788564209705
+Iteration: 430 Loss: 0.8476788564209705
+Iteration: 431 Loss: 0.8476788564209705
+Iteration: 432 Loss: 0.8476788564209705
+Iteration: 433 Loss: 0.8476788564209705
+Iteration: 434 Loss: 0.8476788564209705
+Iteration: 435 Loss: 0.8476788564209705
+Iteration: 436 Loss: 0.8476788564209705
+Iteration: 437 Loss: 0.8476788564209705
+Iteration: 438 Loss: 0.8476788564209705
+Iteration: 439 Loss: 0.8476788564209705
+Iteration: 440 Loss: 0.8476788564209705
+Iteration: 441 Loss: 0.8476788564209705
+Iteration: 442 Loss: 0.8476788564209705
+Iteration: 443 Loss: 0.8476788564209705
+Iteration: 444 Loss: 0.8476788564209705
+Iteration: 445 Loss: 0.8476788564209705
+Iteration: 446 Loss: 0.8476788564209705
+Iteration: 447 Loss: 0.8476788564209705
+Iteration: 448 Loss: 0.8476788564209705
+Iteration: 449 Loss: 0.8476788564209705
+Iteration: 450 Loss: 0.8476788564209705
+Iteration: 451 Loss: 0.8476788564209705
+Iteration: 452 Loss: 0.8476788564209705
+Iteration: 453 Loss: 0.8476788564209705
+Iteration: 454 Loss: 0.8476788564209705
+Iteration: 455 Loss: 0.8476788564209705
+Iteration: 456 Loss: 0.8476788564209705
+Iteration: 457 Loss: 0.8476788564209705
+Iteration: 458 Loss: 0.8476788564209705
+Iteration: 459 Loss: 0.8476788564209705
+Iteration: 460 Loss: 0.8476788564209705
+Iteration: 461 Loss: 0.8476788564209705
+Iteration: 462 Loss: 0.8476788564209705
+Iteration: 463 Loss: 0.8476788564209705
+Iteration: 464 Loss: 0.8476788564209705
+Iteration: 465 Loss: 0.8476788564209705
+Iteration: 466 Loss: 0.8476788564209705
+Iteration: 467 Loss: 0.8476788564209705
+Iteration: 468 Loss: 0.8476788564209705
+Iteration: 469 Loss: 0.8476788564209705
+Iteration: 470 Loss: 0.8476788564209705
+Iteration: 471 Loss: 0.8476788564209705
+Iteration: 472 Loss: 0.8476788564209705
+Iteration: 473 Loss: 0.8476788564209705
+Iteration: 474 Loss: 0.8476788564209705
+Iteration: 475 Loss: 0.8476788564209705
+Iteration: 476 Loss: 0.8476788564209705
+Iteration: 477 Loss: 0.8476788564209705
+Iteration: 478 Loss: 0.8476788564209705
+Iteration: 479 Loss: 0.8476788564209705
+Iteration: 480 Loss: 0.8476788564209705
+Iteration: 481 Loss: 0.8476788564209705
+Iteration: 482 Loss: 0.8476788564209705
+Iteration: 483 Loss: 0.8476788564209705
+Iteration: 484 Loss: 0.8476788564209705
+Iteration: 485 Loss: 0.8476788564209705
+Iteration: 486 Loss: 0.8476788564209705
+Iteration: 487 Loss: 0.8476788564209705
+Iteration: 488 Loss: 0.8476788564209705
+Iteration: 489 Loss: 0.8476788564209705
+Iteration: 490 Loss: 0.8476788564209705
+Iteration: 491 Loss: 0.8476788564209705
+Iteration: 492 Loss: 0.8476788564209705
+Iteration: 493 Loss: 0.8476788564209705
+Iteration: 494 Loss: 0.8476788564209705
+Iteration: 495 Loss: 0.8476788564209705
+Iteration: 496 Loss: 0.8476788564209705
+Iteration: 497 Loss: 0.8476788564209705
+Iteration: 498 Loss: 0.8476788564209705
+Iteration: 499 Loss: 0.8476788564209705
+Iteration: 500 Loss: 0.8476788564209705
+Iteration: 501 Loss: 0.8476788564209705
+Iteration: 502 Loss: 0.8476788564209705
+Iteration: 503 Loss: 0.8476788564209705
+Iteration: 504 Loss: 0.8476788564209705
+Iteration: 505 Loss: 0.8476788564209705
+Iteration: 506 Loss: 0.8476788564209705
+Iteration: 507 Loss: 0.8476788564209705
+Iteration: 508 Loss: 0.8476788564209705
+Iteration: 509 Loss: 0.8476788564209705
+Iteration: 510 Loss: 0.8476788564209705
+Iteration: 511 Loss: 0.8476788564209705
+Iteration: 512 Loss: 0.8476788564209705
+Iteration: 513 Loss: 0.8476788564209705
+Iteration: 514 Loss: 0.8476788564209705
+Iteration: 515 Loss: 0.8476788564209705
+Iteration: 516 Loss: 0.8476788564209705
+Iteration: 517 Loss: 0.8476788564209705
+Iteration: 518 Loss: 0.8476788564209705
+Iteration: 519 Loss: 0.8476788564209705
+Iteration: 520 Loss: 0.8476788564209705
+Iteration: 521 Loss: 0.8476788564209705
+Iteration: 522 Loss: 0.8476788564209705
+Iteration: 523 Loss: 0.8476788564209705
+Iteration: 524 Loss: 0.8476788564209705
+Iteration: 525 Loss: 0.8476788564209705
+Iteration: 526 Loss: 0.8476788564209705
+Iteration: 527 Loss: 0.8476788564209705
+Iteration: 528 Loss: 0.8476788564209705
+Iteration: 529 Loss: 0.8476788564209705
+Iteration: 530 Loss: 0.8476788564209705
+Iteration: 531 Loss: 0.8476788564209705
+Iteration: 532 Loss: 0.8476788564209705
+Iteration: 533 Loss: 0.8476788564209705
+Iteration: 534 Loss: 0.8476788564209705
+Iteration: 535 Loss: 0.8476788564209705
+Iteration: 536 Loss: 0.8476788564209705
+Iteration: 537 Loss: 0.8476788564209705
+Iteration: 538 Loss: 0.8476788564209705
+Iteration: 539 Loss: 0.8476788564209705
+Iteration: 540 Loss: 0.8476788564209705
+Iteration: 541 Loss: 0.8476788564209705
+Iteration: 542 Loss: 0.8476788564209705
+Iteration: 543 Loss: 0.8476788564209705
+Iteration: 544 Loss: 0.8476788564209705
+Iteration: 545 Loss: 0.8476788564209705
+Iteration: 546 Loss: 0.8476788564209705
+Iteration: 547 Loss: 0.8476788564209705
+Iteration: 548 Loss: 0.8476788564209705
+Iteration: 549 Loss: 0.8476788564209705
+Iteration: 550 Loss: 0.8476788564209705
+Iteration: 551 Loss: 0.8476788564209705
+Iteration: 552 Loss: 0.8476788564209705
+Iteration: 553 Loss: 0.8476788564209705
+Iteration: 554 Loss: 0.8476788564209705
+Iteration: 555 Loss: 0.8476788564209705
+Iteration: 556 Loss: 0.8476788564209705
+Iteration: 557 Loss: 0.8476788564209705
+Iteration: 558 Loss: 0.8476788564209705
+Iteration: 559 Loss: 0.8476788564209705
+Iteration: 560 Loss: 0.8476788564209705
+Iteration: 561 Loss: 0.8476788564209705
+Iteration: 562 Loss: 0.8476788564209705
+Iteration: 563 Loss: 0.8476788564209705
+Iteration: 564 Loss: 0.8476788564209705
+Iteration: 565 Loss: 0.8476788564209705
+Iteration: 566 Loss: 0.8476788564209705
+Iteration: 567 Loss: 0.8476788564209705
+Iteration: 568 Loss: 0.8476788564209705
+Iteration: 569 Loss: 0.8476788564209705
+Iteration: 570 Loss: 0.8476788564209705
+Iteration: 571 Loss: 0.8476788564209705
+Iteration: 572 Loss: 0.8476788564209705
+Iteration: 573 Loss: 0.8476788564209705
+Iteration: 574 Loss: 0.8476788564209705
+Iteration: 575 Loss: 0.8476788564209705
+Iteration: 576 Loss: 0.8476788564209705
+Iteration: 577 Loss: 0.8476788564209705
+Iteration: 578 Loss: 0.8476788564209705
+Iteration: 579 Loss: 0.8476788564209705
+Iteration: 580 Loss: 0.8476788564209705
+Iteration: 581 Loss: 0.8476788564209705
+Iteration: 582 Loss: 0.8476788564209705
+Iteration: 583 Loss: 0.8476788564209705
+Iteration: 584 Loss: 0.8476788564209705
+Iteration: 585 Loss: 0.8476788564209705
+Iteration: 586 Loss: 0.8476788564209705
+Iteration: 587 Loss: 0.8476788564209705
+Iteration: 588 Loss: 0.8476788564209705
+Iteration: 589 Loss: 0.8476788564209705
+Iteration: 590 Loss: 0.8476788564209705
+Iteration: 591 Loss: 0.8476788564209705
+Iteration: 592 Loss: 0.8476788564209705
+Iteration: 593 Loss: 0.8476788564209705
+Iteration: 594 Loss: 0.8476788564209705
+Iteration: 595 Loss: 0.8476788564209705
+Iteration: 596 Loss: 0.8476788564209705
+Iteration: 597 Loss: 0.8476788564209705
+Iteration: 598 Loss: 0.8476788564209705
+Iteration: 599 Loss: 0.8476788564209705
+Iteration: 600 Loss: 0.8476788564209705
+Iteration: 601 Loss: 0.8476788564209705
+Iteration: 602 Loss: 0.8476788564209705
+Iteration: 603 Loss: 0.8476788564209705
+Iteration: 604 Loss: 0.8476788564209705
+Iteration: 605 Loss: 0.8476788564209705
+Iteration: 606 Loss: 0.8476788564209705
+Iteration: 607 Loss: 0.8476788564209705
+Iteration: 608 Loss: 0.8476788564209705
+Iteration: 609 Loss: 0.8476788564209705
+Iteration: 610 Loss: 0.8476788564209705
+Iteration: 611 Loss: 0.8476788564209705
+Iteration: 612 Loss: 0.8476788564209705
+Iteration: 613 Loss: 0.8476788564209705
+Iteration: 614 Loss: 0.8476788564209705
+Iteration: 615 Loss: 0.8476788564209705
+Iteration: 616 Loss: 0.8476788564209705
+Iteration: 617 Loss: 0.8476788564209705
+Iteration: 618 Loss: 0.8476788564209705
+Iteration: 619 Loss: 0.8476788564209705
+Iteration: 620 Loss: 0.8476788564209705
+Iteration: 621 Loss: 0.8476788564209705
+Iteration: 622 Loss: 0.8476788564209705
+Iteration: 623 Loss: 0.8476788564209705
+Iteration: 624 Loss: 0.8476788564209705
+Iteration: 625 Loss: 0.8476788564209705
+Iteration: 626 Loss: 0.8476788564209705
+Iteration: 627 Loss: 0.8476788564209705
+Iteration: 628 Loss: 0.8476788564209705
+Iteration: 629 Loss: 0.8476788564209705
+Iteration: 630 Loss: 0.8476788564209705
+Iteration: 631 Loss: 0.8476788564209705
+Iteration: 632 Loss: 0.8476788564209705
+Iteration: 633 Loss: 0.8476788564209705
+Iteration: 634 Loss: 0.8476788564209705
+Iteration: 635 Loss: 0.8476788564209705
+Iteration: 636 Loss: 0.8476788564209705
+Iteration: 637 Loss: 0.8476788564209705
+Iteration: 638 Loss: 0.8476788564209705
+Iteration: 639 Loss: 0.8476788564209705
+Iteration: 640 Loss: 0.8476788564209705
+Iteration: 641 Loss: 0.8476788564209705
+Iteration: 642 Loss: 0.8476788564209705
+Iteration: 643 Loss: 0.8476788564209705
+Iteration: 644 Loss: 0.8476788564209705
+Iteration: 645 Loss: 0.8476788564209705
+Iteration: 646 Loss: 0.8476788564209705
+Iteration: 647 Loss: 0.8476788564209705
+Iteration: 648 Loss: 0.8476788564209705
+Iteration: 649 Loss: 0.8476788564209705
+Iteration: 650 Loss: 0.8476788564209705
+Iteration: 651 Loss: 0.8476788564209705
+Iteration: 652 Loss: 0.8476788564209705
+Iteration: 653 Loss: 0.8476788564209705
+Iteration: 654 Loss: 0.8476788564209705
+Iteration: 655 Loss: 0.8476788564209705
+Iteration: 656 Loss: 0.8476788564209705
+Iteration: 657 Loss: 0.8476788564209705
+Iteration: 658 Loss: 0.8476788564209705
+Iteration: 659 Loss: 0.8476788564209705
+Iteration: 660 Loss: 0.8476788564209705
+Iteration: 661 Loss: 0.8476788564209705
+Iteration: 662 Loss: 0.8476788564209705
+Iteration: 663 Loss: 0.8476788564209705
+Iteration: 664 Loss: 0.8476788564209705
+Iteration: 665 Loss: 0.8476788564209705
+Iteration: 666 Loss: 0.8476788564209705
+Iteration: 667 Loss: 0.8476788564209705
+Iteration: 668 Loss: 0.8476788564209705
+Iteration: 669 Loss: 0.8476788564209705
+Iteration: 670 Loss: 0.8476788564209705
+Iteration: 671 Loss: 0.8476788564209705
+Iteration: 672 Loss: 0.8476788564209705
+Iteration: 673 Loss: 0.8476788564209705
+Iteration: 674 Loss: 0.8476788564209705
+Iteration: 675 Loss: 0.8476788564209705
+Iteration: 676 Loss: 0.8476788564209705
+Iteration: 677 Loss: 0.8476788564209705
+Iteration: 678 Loss: 0.8476788564209705
+Iteration: 679 Loss: 0.8476788564209705
+Iteration: 680 Loss: 0.8476788564209705
+Iteration: 681 Loss: 0.8476788564209705
+Iteration: 682 Loss: 0.8476788564209705
+Iteration: 683 Loss: 0.8476788564209705
+Iteration: 684 Loss: 0.8476788564209705
+Iteration: 685 Loss: 0.8476788564209705
+Iteration: 686 Loss: 0.8476788564209705
+Iteration: 687 Loss: 0.8476788564209705
+Iteration: 688 Loss: 0.8476788564209705
+Iteration: 689 Loss: 0.8476788564209705
+Iteration: 690 Loss: 0.8476788564209705
+Iteration: 691 Loss: 0.8476788564209705
+Iteration: 692 Loss: 0.8476788564209705
+Iteration: 693 Loss: 0.8476788564209705
+Iteration: 694 Loss: 0.8476788564209705
+Iteration: 695 Loss: 0.8476788564209705
+Iteration: 696 Loss: 0.8476788564209705
+Iteration: 697 Loss: 0.8476788564209705
+Iteration: 698 Loss: 0.8476788564209705
+Iteration: 699 Loss: 0.8476788564209705
+Iteration: 700 Loss: 0.8476788564209705
+Iteration: 701 Loss: 0.8476788564209705
+Iteration: 702 Loss: 0.8476788564209705
+Iteration: 703 Loss: 0.8476788564209705
+Iteration: 704 Loss: 0.8476788564209705
+Iteration: 705 Loss: 0.8476788564209705
+Iteration: 706 Loss: 0.8476788564209705
+Iteration: 707 Loss: 0.8476788564209705
+Iteration: 708 Loss: 0.8476788564209705
+Iteration: 709 Loss: 0.8476788564209705
+Iteration: 710 Loss: 0.8476788564209705
+Iteration: 711 Loss: 0.8476788564209705
+Iteration: 712 Loss: 0.8476788564209705
+Iteration: 713 Loss: 0.8476788564209705
+Iteration: 714 Loss: 0.8476788564209705
+Iteration: 715 Loss: 0.8476788564209705
+Iteration: 716 Loss: 0.8476788564209705
+Iteration: 717 Loss: 0.8476788564209705
+Iteration: 718 Loss: 0.8476788564209705
+Iteration: 719 Loss: 0.8476788564209705
+Iteration: 720 Loss: 0.8476788564209705
+Iteration: 721 Loss: 0.8476788564209705
+Iteration: 722 Loss: 0.8476788564209705
+Iteration: 723 Loss: 0.8476788564209705
+Iteration: 724 Loss: 0.8476788564209705
+Iteration: 725 Loss: 0.8476788564209705
+Iteration: 726 Loss: 0.8476788564209705
+Iteration: 727 Loss: 0.8476788564209705
+Iteration: 728 Loss: 0.8476788564209705
+Iteration: 729 Loss: 0.8476788564209705
+Iteration: 730 Loss: 0.8476788564209705
+Iteration: 731 Loss: 0.8476788564209705
+Iteration: 732 Loss: 0.8476788564209705
+Iteration: 733 Loss: 0.8476788564209705
+Iteration: 734 Loss: 0.8476788564209705
+Iteration: 735 Loss: 0.8476788564209705
+Iteration: 736 Loss: 0.8476788564209705
+Iteration: 737 Loss: 0.8476788564209705
+Iteration: 738 Loss: 0.8476788564209705
+Iteration: 739 Loss: 0.8476788564209705
+Iteration: 740 Loss: 0.8476788564209705
+Iteration: 741 Loss: 0.8476788564209705
+Iteration: 742 Loss: 0.8476788564209705
+Iteration: 743 Loss: 0.8476788564209705
+Iteration: 744 Loss: 0.8476788564209705
+Iteration: 745 Loss: 0.8476788564209705
+Iteration: 746 Loss: 0.8476788564209705
+Iteration: 747 Loss: 0.8476788564209705
+Iteration: 748 Loss: 0.8476788564209705
+Iteration: 749 Loss: 0.8476788564209705
+Iteration: 750 Loss: 0.8476788564209705
+Iteration: 751 Loss: 0.8476788564209705
+Iteration: 752 Loss: 0.8476788564209705
+Iteration: 753 Loss: 0.8476788564209705
+Iteration: 754 Loss: 0.8476788564209705
+Iteration: 755 Loss: 0.8476788564209705
+Iteration: 756 Loss: 0.8476788564209705
+Iteration: 757 Loss: 0.8476788564209705
+Iteration: 758 Loss: 0.8476788564209705
+Iteration: 759 Loss: 0.8476788564209705
+Iteration: 760 Loss: 0.8476788564209705
+Iteration: 761 Loss: 0.8476788564209705
+Iteration: 762 Loss: 0.8476788564209705
+Iteration: 763 Loss: 0.8476788564209705
+Iteration: 764 Loss: 0.8476788564209705
+Iteration: 765 Loss: 0.8476788564209705
+Iteration: 766 Loss: 0.8476788564209705
+Iteration: 767 Loss: 0.8476788564209705
+Iteration: 768 Loss: 0.8476788564209705
+Iteration: 769 Loss: 0.8476788564209705
+Iteration: 770 Loss: 0.8476788564209705
+Iteration: 771 Loss: 0.8476788564209705
+Iteration: 772 Loss: 0.8476788564209705
+Iteration: 773 Loss: 0.8476788564209705
+Iteration: 774 Loss: 0.8476788564209705
+Iteration: 775 Loss: 0.8476788564209705
+Iteration: 776 Loss: 0.8476788564209705
+Iteration: 777 Loss: 0.8476788564209705
+Iteration: 778 Loss: 0.8476788564209705
+Iteration: 779 Loss: 0.8476788564209705
+Iteration: 780 Loss: 0.8476788564209705
+Iteration: 781 Loss: 0.8476788564209705
+Iteration: 782 Loss: 0.8476788564209705
+Iteration: 783 Loss: 0.8476788564209705
+Iteration: 784 Loss: 0.8476788564209705
+Iteration: 785 Loss: 0.8476788564209705
+Iteration: 786 Loss: 0.8476788564209705
+Iteration: 787 Loss: 0.8476788564209705
+Iteration: 788 Loss: 0.8476788564209705
+Iteration: 789 Loss: 0.8476788564209705
+Iteration: 790 Loss: 0.8476788564209705
+Iteration: 791 Loss: 0.8476788564209705
+Iteration: 792 Loss: 0.8476788564209705
+Iteration: 793 Loss: 0.8476788564209705
+Iteration: 794 Loss: 0.8476788564209705
+Iteration: 795 Loss: 0.8476788564209705
+Iteration: 796 Loss: 0.8476788564209705
+Iteration: 797 Loss: 0.8476788564209705
+Iteration: 798 Loss: 0.8476788564209705
+Iteration: 799 Loss: 0.8476788564209705
+Iteration: 800 Loss: 0.8476788564209705
+Iteration: 801 Loss: 0.8476788564209705
+Iteration: 802 Loss: 0.8476788564209705
+Iteration: 803 Loss: 0.8476788564209705
+Iteration: 804 Loss: 0.8476788564209705
+Iteration: 805 Loss: 0.8476788564209705
+Iteration: 806 Loss: 0.8476788564209705
+Iteration: 807 Loss: 0.8476788564209705
+Iteration: 808 Loss: 0.8476788564209705
+Iteration: 809 Loss: 0.8476788564209705
+Iteration: 810 Loss: 0.8476788564209705
+Iteration: 811 Loss: 0.8476788564209705
+Iteration: 812 Loss: 0.8476788564209705
+Iteration: 813 Loss: 0.8476788564209705
+Iteration: 814 Loss: 0.8476788564209705
+Iteration: 815 Loss: 0.8476788564209705
+Iteration: 816 Loss: 0.8476788564209705
+Iteration: 817 Loss: 0.8476788564209705
+Iteration: 818 Loss: 0.8476788564209705
+Iteration: 819 Loss: 0.8476788564209705
+Iteration: 820 Loss: 0.8476788564209705
+Iteration: 821 Loss: 0.8476788564209705
+Iteration: 822 Loss: 0.8476788564209705
+Iteration: 823 Loss: 0.8476788564209705
+Iteration: 824 Loss: 0.8476788564209705
+Iteration: 825 Loss: 0.8476788564209705
+Iteration: 826 Loss: 0.8476788564209705
+Iteration: 827 Loss: 0.8476788564209705
+Iteration: 828 Loss: 0.8476788564209705
+Iteration: 829 Loss: 0.8476788564209705
+Iteration: 830 Loss: 0.8476788564209705
+Iteration: 831 Loss: 0.8476788564209705
+Iteration: 832 Loss: 0.8476788564209705
+Iteration: 833 Loss: 0.8476788564209705
+Iteration: 834 Loss: 0.8476788564209705
+Iteration: 835 Loss: 0.8476788564209705
+Iteration: 836 Loss: 0.8476788564209705
+Iteration: 837 Loss: 0.8476788564209705
+Iteration: 838 Loss: 0.8476788564209705
+Iteration: 839 Loss: 0.8476788564209705
+Iteration: 840 Loss: 0.8476788564209705
+Iteration: 841 Loss: 0.8476788564209705
+Iteration: 842 Loss: 0.8476788564209705
+Iteration: 843 Loss: 0.8476788564209705
+Iteration: 844 Loss: 0.8476788564209705
+Iteration: 845 Loss: 0.8476788564209705
+Iteration: 846 Loss: 0.8476788564209705
+Iteration: 847 Loss: 0.8476788564209705
+Iteration: 848 Loss: 0.8476788564209705
+Iteration: 849 Loss: 0.8476788564209705
+Iteration: 850 Loss: 0.8476788564209705
+Iteration: 851 Loss: 0.8476788564209705
+Iteration: 852 Loss: 0.8476788564209705
+Iteration: 853 Loss: 0.8476788564209705
+Iteration: 854 Loss: 0.8476788564209705
+Iteration: 855 Loss: 0.8476788564209705
+Iteration: 856 Loss: 0.8476788564209705
+Iteration: 857 Loss: 0.8476788564209705
+Iteration: 858 Loss: 0.8476788564209705
+Iteration: 859 Loss: 0.8476788564209705
+Iteration: 860 Loss: 0.8476788564209705
+Iteration: 861 Loss: 0.8476788564209705
+Iteration: 862 Loss: 0.8476788564209705
+Iteration: 863 Loss: 0.8476788564209705
+Iteration: 864 Loss: 0.8476788564209705
+Iteration: 865 Loss: 0.8476788564209705
+Iteration: 866 Loss: 0.8476788564209705
+Iteration: 867 Loss: 0.8476788564209705
+Iteration: 868 Loss: 0.8476788564209705
+Iteration: 869 Loss: 0.8476788564209705
+Iteration: 870 Loss: 0.8476788564209705
+Iteration: 871 Loss: 0.8476788564209705
+Iteration: 872 Loss: 0.8476788564209705
+Iteration: 873 Loss: 0.8476788564209705
+Iteration: 874 Loss: 0.8476788564209705
+Iteration: 875 Loss: 0.8476788564209705
+Iteration: 876 Loss: 0.8476788564209705
+Iteration: 877 Loss: 0.8476788564209705
+Iteration: 878 Loss: 0.8476788564209705
+Iteration: 879 Loss: 0.8476788564209705
+Iteration: 880 Loss: 0.8476788564209705
+Iteration: 881 Loss: 0.8476788564209705
+Iteration: 882 Loss: 0.8476788564209705
+Iteration: 883 Loss: 0.8476788564209705
+Iteration: 884 Loss: 0.8476788564209705
+Iteration: 885 Loss: 0.8476788564209705
+Iteration: 886 Loss: 0.8476788564209705
+Iteration: 887 Loss: 0.8476788564209705
+Iteration: 888 Loss: 0.8476788564209705
+Iteration: 889 Loss: 0.8476788564209705
+Iteration: 890 Loss: 0.8476788564209705
+Iteration: 891 Loss: 0.8476788564209705
+Iteration: 892 Loss: 0.8476788564209705
+Iteration: 893 Loss: 0.8476788564209705
+Iteration: 894 Loss: 0.8476788564209705
+Iteration: 895 Loss: 0.8476788564209705
+Iteration: 896 Loss: 0.8476788564209705
+Iteration: 897 Loss: 0.8476788564209705
+Iteration: 898 Loss: 0.8476788564209705
+Iteration: 899 Loss: 0.8476788564209705
+Iteration: 900 Loss: 0.8476788564209705
+Iteration: 901 Loss: 0.8476788564209705
+Iteration: 902 Loss: 0.8476788564209705
+Iteration: 903 Loss: 0.8476788564209705
+Iteration: 904 Loss: 0.8476788564209705
+Iteration: 905 Loss: 0.8476788564209705
+Iteration: 906 Loss: 0.8476788564209705
+Iteration: 907 Loss: 0.8476788564209705
+Iteration: 908 Loss: 0.8476788564209705
+Iteration: 909 Loss: 0.8476788564209705
+Iteration: 910 Loss: 0.8476788564209705
+Iteration: 911 Loss: 0.8476788564209705
+Iteration: 912 Loss: 0.8476788564209705
+Iteration: 913 Loss: 0.8476788564209705
+Iteration: 914 Loss: 0.8476788564209705
+Iteration: 915 Loss: 0.8476788564209705
+Iteration: 916 Loss: 0.8476788564209705
+Iteration: 917 Loss: 0.8476788564209705
+Iteration: 918 Loss: 0.8476788564209705
+Iteration: 919 Loss: 0.8476788564209705
+Iteration: 920 Loss: 0.8476788564209705
+Iteration: 921 Loss: 0.8476788564209705
+Iteration: 922 Loss: 0.8476788564209705
+Iteration: 923 Loss: 0.8476788564209705
+Iteration: 924 Loss: 0.8476788564209705
+Iteration: 925 Loss: 0.8476788564209705
+Iteration: 926 Loss: 0.8476788564209705
+Iteration: 927 Loss: 0.8476788564209705
+Iteration: 928 Loss: 0.8476788564209705
+Iteration: 929 Loss: 0.8476788564209705
+Iteration: 930 Loss: 0.8476788564209705
+Iteration: 931 Loss: 0.8476788564209705
+Iteration: 932 Loss: 0.8476788564209705
+Iteration: 933 Loss: 0.8476788564209705
+Iteration: 934 Loss: 0.8476788564209705
+Iteration: 935 Loss: 0.8476788564209705
+Iteration: 936 Loss: 0.8476788564209705
+Iteration: 937 Loss: 0.8476788564209705
+Iteration: 938 Loss: 0.8476788564209705
+Iteration: 939 Loss: 0.8476788564209705
+Iteration: 940 Loss: 0.8476788564209705
+Iteration: 941 Loss: 0.8476788564209705
+Iteration: 942 Loss: 0.8476788564209705
+Iteration: 943 Loss: 0.8476788564209705
+Iteration: 944 Loss: 0.8476788564209705
+Iteration: 945 Loss: 0.8476788564209705
+Iteration: 946 Loss: 0.8476788564209705
+Iteration: 947 Loss: 0.8476788564209705
+Iteration: 948 Loss: 0.8476788564209705
+Iteration: 949 Loss: 0.8476788564209705
+Iteration: 950 Loss: 0.8476788564209705
+Iteration: 951 Loss: 0.8476788564209705
+Iteration: 952 Loss: 0.8476788564209705
+Iteration: 953 Loss: 0.8476788564209705
+Iteration: 954 Loss: 0.8476788564209705
+Iteration: 955 Loss: 0.8476788564209705
+Iteration: 956 Loss: 0.8476788564209705
+Iteration: 957 Loss: 0.8476788564209705
+Iteration: 958 Loss: 0.8476788564209705
+Iteration: 959 Loss: 0.8476788564209705
+Iteration: 960 Loss: 0.8476788564209705
+Iteration: 961 Loss: 0.8476788564209705
+Iteration: 962 Loss: 0.8476788564209705
+Iteration: 963 Loss: 0.8476788564209705
+Iteration: 964 Loss: 0.8476788564209705
+Iteration: 965 Loss: 0.8476788564209705
+Iteration: 966 Loss: 0.8476788564209705
+Iteration: 967 Loss: 0.8476788564209705
+Iteration: 968 Loss: 0.8476788564209705
+Iteration: 969 Loss: 0.8476788564209705
+Iteration: 970 Loss: 0.8476788564209705
+Iteration: 971 Loss: 0.8476788564209705
+Iteration: 972 Loss: 0.8476788564209705
+Iteration: 973 Loss: 0.8476788564209705
+Iteration: 974 Loss: 0.8476788564209705
+Iteration: 975 Loss: 0.8476788564209705
+Iteration: 976 Loss: 0.8476788564209705
+Iteration: 977 Loss: 0.8476788564209705
+Iteration: 978 Loss: 0.8476788564209705
+Iteration: 979 Loss: 0.8476788564209705
+Iteration: 980 Loss: 0.8476788564209705
+Iteration: 981 Loss: 0.8476788564209705
+Iteration: 982 Loss: 0.8476788564209705
+Iteration: 983 Loss: 0.8476788564209705
+Iteration: 984 Loss: 0.8476788564209705
+Iteration: 985 Loss: 0.8476788564209705
+Iteration: 986 Loss: 0.8476788564209705
+Iteration: 987 Loss: 0.8476788564209705
+Iteration: 988 Loss: 0.8476788564209705
+Iteration: 989 Loss: 0.8476788564209705
+Iteration: 990 Loss: 0.8476788564209705
+Iteration: 991 Loss: 0.8476788564209705
+Iteration: 992 Loss: 0.8476788564209705
+Iteration: 993 Loss: 0.8476788564209705
+Iteration: 994 Loss: 0.8476788564209705
+Iteration: 995 Loss: 0.8476788564209705
+Iteration: 996 Loss: 0.8476788564209705
+Iteration: 997 Loss: 0.8476788564209705
+Iteration: 998 Loss: 0.8476788564209705
+Iteration: 999 Loss: 0.8476788564209705
+Iteration: 1000 Loss: 0.8476788564209705
 
-

In this code snippet, we first derive the mathematical formula for linear regression. Then, we implement the formula in code by creating a LinearRegression class. The fit() method is used to train the model using the normal equation, and the predict() method is used to make predictions on new data points.

-

We also define a cost function called mean_squared_error() to evaluate the performance of the model. Additionally, we can implement the gradient descent algorithm to train the model iteratively if desired.

-

Finally, we train the model using the fit() method, make predictions using the predict() method, and evaluate the model’s performance using the mean squared error (MSE).

+

37.49.4. Model Evaluation#

After training the linear regression model, it is important to evaluate its performance to assess how well it is able to make predictions. In this section, we will discuss some commonly used evaluation metrics for regression models.

When evaluating a machine learning model, we often use certain metrics to measure its performance. Here are some commonly used metrics and plotting methods:

-
    -
  1. Mean Absolute Error (MAE): MAE is the average absolute difference between the predicted values and the actual values. It measures the average magnitude of the model’s errors. A lower MAE value indicates better predictive performance of the model.

  2. -
  3. Root Mean Squared Error (RMSE): RMSE is the square root of the average of the squared differences between the predicted values and the actual values. Compared to MAE, RMSE is more sensitive to large errors because it penalizes squared errors. Similar to MAE, a lower RMSE value indicates better predictive performance of the model.

  4. -
  5. R-squared: R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1. A higher R-squared value indicates a better fit of the model to the data.

  6. -
  7. Mean Squared Error (MSE): MSE is the average of the squared differences between the predicted values and the actual values. Unlike RMSE, MSE does not take the square root, so its values are typically larger.

  8. -
-

Let’s take a look at the code snippet below to understand how we can evaluate the linear regression model:

-
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
-import matplotlib.pyplot as plt
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
+
+# Make predictions on the test set
+y_pred = model.predict(X_test)
 
-# Evaluating the model
-# Mean Absolute Error (MAE)
-mae = mean_absolute_error(y, y_pred)
-print('Mean Absolute Error:', mae)
+# Compute the evaluation metrics
+mse = mean_squared_error(y_test, y_pred)
+mae = mean_absolute_error(y_test, y_pred)
+r2 = r2_score(y_test, y_pred)
 
-# Root Mean Squared Error (RMSE)
-rmse = np.sqrt(mean_squared_error(y, y_pred))
-print('Root Mean Squared Error:', rmse)
+print("Mean Squared Error:", mse)
+print("Mean Absolute Error:", mae)
+print("R-squared:", r2)
+
+
+
+
+
Mean Squared Error: 0.6536995137169997
+Mean Absolute Error: 0.5913425779189757
+R-squared: 0.8072059636181399
+
+
+
+
+

The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data.

+
+
+
import matplotlib.pyplot as plt
 
-# R-squared
-r2 = r2_score(y, y_pred)
-print('R-squared:', r2)
+# Plot the scatter plot of the training set
+plt.scatter(X_train, y_train, label='Training Set')
 
-mse = mean_squared_error(y, y_pred)
-print('Mean Squared Error:', mse)
+# Plot the scatter plot of the testing set
+plt.scatter(X_test, y_test, label='Testing Set')
 
-# Print shapes of X and y
-print('Shape of X:', X.shape)
-print('Shape of y:', y.shape)
+# Plot the line representing the predicted results
+plt.plot(X_test, y_pred_test, color='red', label='Predictions')
 
-# Plot the data
-plt.scatter(X[:, 0], y, color='blue', label='Actual')
-plt.plot(X[:, 0], y_pred, color='red', label='Predicted')
+# Set the title and labels for the chart
+plt.title('Linear Regression')
 plt.xlabel('X')
 plt.ylabel('y')
+
+# Add a legend
 plt.legend()
+
+# Display the chart
 plt.show()
 
-
Mean Absolute Error: 0.7010426719637757
-Root Mean Squared Error: 0.8981005311027566
-R-squared: 0.7692735413614223
-Mean Squared Error: 0.8065845639670534
-Shape of X: (100, 1)
-Shape of y: (100, 1)
-
-
-../../../_images/linear-regression-from-scratch_12_1.png +../../../_images/linear-regression-from-scratch_19_0.png
-

The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data.

37.49.5. Conclusion#

@@ -1827,10 +2910,6 @@

37.49.5. Conclusion

In conclusion, implementing a linear regression model from scratch is a great way to gain a deeper understanding of how machine learning algorithms work. We hope that this assignment has helped you to better understand the concepts and techniques involved in building and training machine learning models.

-
-

37.49.6. Acknowledgments#

-

Thanks to the ChatGPT platform for providing the inspiration and guidance throughout this assignment.

-
@@ -1971,7 +1971,7 @@

18.4. Beyond linear boundaries: Kernel S

Next we describe how to select and adjust the radial basis function centres. @@ -2086,7 +2086,7 @@

18.13. Your turn! 🚀 -{"state": {"dad66c99e7784a38898e206d60883759": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cf50a7e3fda45e683a7ed36129bdadd": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_517294c2a73c4071853c887c7991fd94", "IPY_MODEL_ac52743ada7448c98d8e7f41e7652da2"], "layout": "IPY_MODEL_dad66c99e7784a38898e206d60883759"}}, "4f1b4cbdc5c143ccadbae13801b81d2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "afa055db038f446eb2a92f05d75a9040": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "517294c2a73c4071853c887c7991fd94": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_4f1b4cbdc5c143ccadbae13801b81d2b", "style": "IPY_MODEL_afa055db038f446eb2a92f05d75a9040"}}, "99f5916181d94cf785422b3b7c90103d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac52743ada7448c98d8e7f41e7652da2": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_99f5916181d94cf785422b3b7c90103d", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "db1da06a39a44326bfe81d4eddac371b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4396863816b74d4a96478dc1a1cda72b": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_a296b3b385464869b0bc237ea58a23d9", "IPY_MODEL_042b1f2558c94f1a8e7a7530dfa261a5", "IPY_MODEL_c2f9fbddc4cc41d2a0cfb5f31d8e82f1"], "layout": "IPY_MODEL_db1da06a39a44326bfe81d4eddac371b"}}, "6fc1130ed0e94536bd4d830852e25390": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb678518733b4e349920ca8f3e41ad0e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a296b3b385464869b0bc237ea58a23d9": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_6fc1130ed0e94536bd4d830852e25390", "style": "IPY_MODEL_fb678518733b4e349920ca8f3e41ad0e"}}, "801d8ad033064bf787e41e91d3640f28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dea2de7bb0e48478daf57970613041d": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "042b1f2558c94f1a8e7a7530dfa261a5": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_801d8ad033064bf787e41e91d3640f28", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_3dea2de7bb0e48478daf57970613041d", "value": 30}}, "16802d9e848a45fe823d56984c49fc96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2f9fbddc4cc41d2a0cfb5f31d8e82f1": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_16802d9e848a45fe823d56984c49fc96", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGFCAYAAAC7VyfcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsNUlEQVR4nOydd5gkVdm+73Oqqqtzz2yAXcIuOQiCSg5K+AQREVByNmGWJKiAfp/5MyOCmH6fSJCgkgTFgCRBMooEybDL7rJxQufuqjrn90dVT9rpnp6Z7pmeoe7r2otlZrr69OxMv3Xe87zPI7TWmpCQkJCQkClGTvcCQkJCQkLemIQFKCQkJCRkWggLUEhISEjItBAWoJCQkJCQaSEsQCEhISEh00JYgEJCQkJCpoWwAIWEhISETAthAQoJCQkJmRbMZr9wzZpcO9cREhISEtJm5s9PTfcShhHugEJCQkJCpoWwAIWEhISETAthAQoJCQkJmRbCAhQSEhISMi2EBSgkJCQkZFoIC1BISEhIyLQQFqCQkJCQkGkhLEAhISEhIdNCWIBCQmY4Uiq0rqK1N91LCQkZF007IYSEhHQWUvp/lFIo5QUfkwghpnllISHNEe6AQkJmGEKAYfh/wC9APl64CwqZUYQFKCRkBmEYYJp+EdLa/288HkMIgdagtYvWerqXGRLSFGELLiRkBlBrt9UKD4BtR4jFIgghEELS358DNEo5SGmFrbiQjicsQCEhHYwQg8XH3+GAaRrE4zZSSsrlCq7rkEqlKJXKVKsO4AFG8CckpHMJW3AhIR3K+u02QSIRJZWKo5Qmmy2SzxcoFEo4jkM6nQx2Q6CUF7biQjqesACFhHQYUvqFp7brAb/dlskkME2DfL5EPl/CsgzmzZtDPB4jmy0EO6MoWgtCQULITCAsQCEhHcJIdVut3ZZOx4nFIlQqDv39BUCTTieIxWxc1yWZTOB5ilKpQjIZxzBkKEgImRGEBSgkpANopt1WqVRJJGIkk3GUUvT1Zent7UNrSKXi5HIFAJLJBCCoCRLCIhTSqYQihJCQaaSRuk1rTT5fwnFcotEI0ejgx1zXIxq1AU0+XyCTSVEqVcjlimQyyVCQEDIjCHdAISHTQK3dNmdOEssyx2y3RaMRyuUq/f0FpBRkMgmiUZtMJk25XKVadUilEpRK5VCQEDJjCAtQSMgUU2u3GYYYmNUZq92WzRZwXS8oUDblcpV163oAv/2WzeYHRAihICFkphAWoJCQKWKkus0I1AaJRHSYui0SMUmnE5imJJ8vUSiUicVsUqk4WkMuV8RxqhiGJJcrEItFAUGxWCaZjIeChJAZQ1iAQkLaTD11Wzxuo7Vuqt1mmgaFQolCoUQ0GiGdTpHJZKhUnGBnlCCfL4aChJAZRViAQkLaSCN1G4DnqTHbbZWKQzZbQEpJOp0Idj65gWKTzeaJRCyi0Qj5vL8jsiyTXK5IPB4lErHQWgRtONV4wSEhU0hYgEJC2kAzw6RK+Z8Yq93muh6plL8zKpXK9PVlKZedgWIjhKBUKpNKJUJBQsiMIixAISEtZDzDpIYhMQw5ZrstmYzheR59ff0Ui6WBnVS1WqVarZJOJwZabmMJEmzbJNwFhXQKYQEKCWkR4x0mFUJQLFbGbLdlszmy2Ryep/DPc2oI8vkihmEQjdrk88WGggTLMunuzhCJyHAXFNIRhAUoJGSSNOvdNlTdVipVALAsc8x2mz9QKhhefPwC53kepVKZZNJvvzUSJGQySZTSlMvlUJAQ0hGEBSgkZIKM17ttuLrN34WYphyz3Tay8Axfgwy+To8pSLAsC8ephoKEkI4hLEAhIRNgIt5tQ9VtkYiJ1noc7bb6aM2YggTHcYJ1m6EgIaRjCL3gQkLGwWS82+Jxm0jEwnU9XNd3JkilEkjpF41SqRwUhPElmY4UJPT09GPbkYEd0dy5XaRSCZRSGIYkHo9SKJQQwkNriRDh20DI9BDugEJCmmBy7bb11W2maWBZ5rjabWOssKEgIRKxqFSqoUNCSEcRFqCQkDGYbLttNHUbQLlcHne7rR6NBAmVShUhBFLK0CEhpKMI994hIXVoVbstlysipRzWbjNNE8uymGzhGUpNkGDb9rD2WyIRQymFbUcGBAlhZENIJxDugEJCRtDqdtto6rZ83i9K8Xi0pWsfTZAQiViUSpXQISGk4wgLUEjIENrRbhtN3aaUolQqE4tFkbJ1v4YjBQnlst9+89cQRjaEdBZhAQoJYWLDpOPxbhttmLRYLKOUJpmMtfjVDAoShrbfwsiGkE4jLEAhb2imot3WSN1WKBSJRCJEIlYLX9OgIMGyTEqlShjZENKRhAUo5A3LVLXbGlGtOlSrDolEa3dBQvhOC0Pbb2FkQ0inERagkDcc09Fua0SrBQmWZdLVlSYej1EuV4hG7TCyIaQjCWXYIW8YhBiUVvtnHoPJpFJKKhWHUqmCZRmk075kulyuUi5XsW2LTCaB1ppCwZdax2K+1Lpa9XdBgzue8UmrhwoSyuUqSk1sByKlIJGIY9sRHMehry+P67pIKeo6JNQECXPmZEKHhJApJ9wBhbwh6IR2WyMmK0iIxWy6uzOYpkkul6e/Pz+wpvFENoSChJCpJLzFCZnVtHOYdKLebfUoFIqk00kikWrQxhsbyzJJJOJBsF1liOjBZ6RDwtq1vcRiUdLpBL29WaLR2tBqIRBQJOjvz1ETJEhpIUTrhmVDQoYSFqCQWUmnttsaMVSQMFYBGq3d5q9ptO/F6A4JNUFCJpOiVKqEDgkhU07YgguZdRgGpFLRYEfTee22RjQjSKjfbqtPM5ENoSAhZKoJd0Ahs4ah7TYpBUJIoDPbbfVoJEgYq93WiGYiG0JBQshUE+6AQmY8ow2Taq2xLHNKhklbzUhBgpSCVCpBJpNCa0VfX5ZCofniM0goSAjpLMICFDKjqaduqzkLdHK7rRE1h4RkMj7udls9GkU2hA4JIdNBuK8OmZGMpW4rl6tEoxEiEbNj222N0FqjlMa2I+NutzUiFCSEdBLhDihkRlHfuy0xrN1WOzvp9HbbSIa22zzPDV6jbknxqREKEkI6hbAAhcwYGg+TqmHttpqKrFgsd3y7rcZo6rapiGyotdxqO6IwsiFkqggLUEjHM1HvNq31gNKrld5trWakd1tfXz+Vij8HNBWRDaEgIWS6CAtQSMfSbLutnroNwDDkjGi3NVK3tTuyIRQkhEwXoQghpCMxjOEuBkKIAfGA47jk8xVAk0jEiETM4GPloLUWR0qJUhrP84KPRYM2XW6Iy8D0ttvi8RhKaXK5/MCOZzTG45AwHkJBQsh0E+6AQjqKVkYlKOVhWeaMabc1otWRDTVCQULIdBIWoJCOYLLtttHUbZblt6xmUrutHkMdEkJBQshsISxAIdPOeNRt4xkmzefzANi2zXS321oxTBoKEkJmG+EZUMi0MRVRCVIakw56myiT8W6rx0QiG8YijGwImS7CHVDIlNOOdls9dZu/a1Akk/Epe32t825bn6GChFZSEyRorQfab5GINSBIiMWiWJZJLlckHvetjrQWQRtuagt7yOwhLEAhU0q72m2NhkkLhRKRiNVSGXM9WtVua0QoSAiZLYQtuJApYTqTSdslYx5KO9pt9WgU2TAZwsiGkKkm3AGFtJWpbLc1ol27hna22xoRChJCZgNhAQppG9PRbqtHO2TMU9Fua0TokBAy0wn3zCEtZzrbbY0oFsvYtp+xk83mJ/z6prLd1ojQISFkphPugEJaRqe02xoxGUHCdLXbGhEKEkJmMmEBCmkJndRua8REZczT3W6rR+iQEDKTCQtQyKRopXfbVEUljGfXMFHvtqlkcNYpFCSEzCzCAhQyIWZCu60ezewaOrHd1gi/tRgKEkJmFqEIIWTctCIqoVJxKJcr2HZkWqISGgkSxhOVMGm0xnz4Icx//hOhPNytt8XZf3+wxldIQkFCyEwkLEAhTSMl2LaJZRkUixWgM9RtE8J1KaxaQ3rBBkQiFtWqMzF1m+v6FXkCXmjm44+ROP8LmM/+p1bJQWu8jTameOEXqb738HFdL58v0t2dJh6PUiyWx72eetQECbViUxMkrFnTSyzmCxLWresjHrdJp5OsW9cX3KAoQIY+cSF1CQtQyJgIMSitBr/ouK4iGo0gpaBScSiVKliW34KTUlAuVymXq9i2RSaTQGtNoeAXo1jMHnjTz2YLQwQG7X+jMh9/DPvqq4j85c8Ix0EnkySPOx73tFOJ7LADjuPQ19dYYCBWrSJ6/XXYv7kOuXYt2rRw/uudlE86CXf3PZpeR/rEExCFPNq2BxUcrouxfBnJMz5NoVqlctTRTb+2TnJIsO0IQkBvbyF0SAipi9BNNmrXrMm1ey0hHcjQdhv4b0a1IuM4brAT0sRi0YF2W7FYDg757fXabdFoBKUUhUJxypNJ7St/ReLrXwPHAdNES4nwPIRSkEpRuuwnFPd5e8NrGE89RerDH0SuXgVCoC3Lf7zrgmlSOuMsSp85o/FCtCbzroMw//MMOpFYf/ekNaJYRKdS9D7wMDqdHtfr7O5O43ke2WxhXI9rvGSNYUi6uzNDFHEJ1q3rJxazicVs1q7tI5n0FY0APT19OI6LlHa4C+oQ5s9PTfcShhGKEEJGpZG6DfwPVCrVjlK3NcL6+71+8fE8/w09mUQmEoh0GjIZyOWwP/EJ5Kuv1r2G6Osj9dEPI1etRKdS/nViMXQiMVAkYhdfROSWmxuuxXz4IcznnvV3PqO9MQuBjsUQ2RyRW24a92udTkFCuey3Zl3Xo1p1CQUJIY0IC1DIMJpVt7muRyIRG7+6rbcP+fQzGP9+EtHXN2WvK3r5L6FaRSeTSGkggzd+rTRKa8hkkPkc0euvrXsN+5abkSteR6dSg/3IGkL4uxnPI/aLn9Ho8Mj85z9r39j6C5YS0FiPPz6elwlMb2RDJpPE8xSWZYaRDSFjEhagkAHGM0xqmkYwIV9papg0t2w59v/+L9177kHXoe+i672H0r3HriTO+yzylVfa+rrEmjVY998H0SjSMECA0hqlFDrYzWlASIl9c/0dR+SWm/wNm1Ff2aWjUYxnn8N47tn661Ge/01upi3lTWyoczocEpRSSCnp6ekPHRJCmiI8HQyZsHdbJGISi/n9/UbqNnp6SB9/HOZ/ngHwW08AlQrR668j8te/kL3qGrw3v7ktry+Sz/nnNLaN1nrUN0KtNdowkP39oNT6OxxArl7dsPgAfgWvVJBr11KvdLhbb+t/o4Nzo1EJVHHeNtuM8epGZ6oFCV1daaSUaK2JRiNhZENIU4Q7oDcwkx0mtSz/zaRScRoOkya+eKF/4B6N+m0q0/T/xGLoWAy5rofUJz7qiwNaSG2YNLXJRmAYaMdBK1U7wloP7XqQShGvk56q05mxdySeB1KiUvWFA87+++NttBGiXK7fqiuX0RGbytHHNH6+BkyVQ0KxWCYSMSmXy6FDQsi4CAvQG5RWebdVq86AEGE07za5fBmRP92OHlrphiIlOmpjLF1K5I6/tuz1DfNuqzp48zdA9PUhV61CrlqJ7OnxC0ANrUF5uEe+r65DQvWww/y/NNhNiFIJtWgx3o471l+cZVG84Ito00QUi8OvpxQUCgjPo/Sxj6MWLBzvSx/GVAgSbDsCgJRG6JAQMi7CAvQGo9XebWbQQnJdd1R1m3XnnYiqA7W222gE17BaUIBGerdln/g30aOPQi57LSgyyv9vuYzo7UX09/uy52wWYjHyRx8T7BrW3wWV3380OpNB5HKj71zKZRCC8mkfGLNVVz38CArf+wE6lUIUS4hczl9Pby+iXEZLSeSPfyD6859BsTjh70c9QYJcsZzoT35M4r+/SPzb/4v52KMNhRMjqQkShPB3zf39ufUECZZlkssVicejoSAhZFTCAvQGoZ3ebeVyGdM0g13D8IN1USiAbOLAXSlEfuJzK6N6t/VlSXzm0xgvvojaYAPU3LlDt3wD65Nr10E0Sv7b38Xbepu6kQ16wQLyF1+CTiQQ2az/2qpVv5j19yOqVSrHHEv55FOaWnPlqKPpfeBhimeeiY5Gg91gDDV/A3Q6g/Haa8S/8y3SH/4gIj/xObxhgoRKhcTnzqVr7z1JfOPrRH91ObFLLyFz5OFk3nNI04IQwzDIZFKByECglA4jG0LGTViA3gC0OyqhUCihlCKRWH/XoDbcwN91NDoE19p/891wgwm9vlq7zb/jHoxKsO65G/O5Z1FdXf7g6Zw5qIUL1xv+1PEY/VdcPWB900jG7Oy3P9nf3OA7FEQiCMdBKIW781sofPf7FP7322MLFYa+9FiMyF//AlqjFm6E3nBDiMchGkV3d6MTScyHHyL+rW9N6HsDQwQJdoTUpz5B9Jpfg1Jo20ZHIv4fw8D897/JHP0+5Irlda8lBCQSMbq6Uggh6evrDyMbQiZM6IQwixlL3VYsVtZTtxWLlfW822rOBrGYXde7zbJMMpkU2Wx+mBmmyGXp3nN3yOf9N9bRqFbB88jeeDPu23Zp+vWN5d2WOO+z2DffjNpg/voP9ryBwijzeXI/+wXOfvsP+d5JurvTlErlur5qIpdFrF0HUds/q5nAtL/117+S+uTH/KJoRUZ/nnwObVn0/e1u9PxRXkuTdD94P/KYY9BSjm52qhSiWqV84kkUvvO99T5t2xESiRhCCIrFEqVSZVwOCdFohLVre/E8DyFE6JAwDYROCCFtZzqiEhzHDXZRw4uMTqUpfejDCK2hUln/nMF1EY6Du+deuG99W1Ovr9moBLl6td/+Gw3D8N+EIxHwPERv77BPNxPZoFNp1OaboxZuNKHiAxC582/gqbrFB0DHE4hCAevv907oOWqon/3MP52r91xSooXAvulG/2wswG+3JUmlEjiOS29vP6WS73gQRjaETIawAM0ypjOZtFAoIaUgHh/euiqdeTblY49HeJ5/oF4q+X/yeUS5jPPWt5K77KdNvYnXa7eNhu7uBjXGG1wgmx7Nb21Qxlxn59YCRC5LXV14jWAbK3OT60LIxx9nzIgl00SUShgvvrBeu62/P0cuV0CN+J4245AQChJCRiMsQLOE0dRt0ejUJpMqpSgW/esZxpAfLdOk8N3vkb3yaqoHH4JOpSEex911N/IXXUz2+t+h58xp+PpGqtt6e8dOJq0edLC/A2owXyRyOdTceTh77Dnq5+sJElqFmjdveI90NILZIzV37qSfr/YsY7W+LMuiuzsTzPmU6OvL4jhu/es2cEgIBQkh9QjHkmc4Q6MSagFxtQPf6YhKKJXKRKMREokRQW9C4Oy3/7BzlmaQUpBIxLHtSFNRCUOp/tc78RYvxnj1Vf/Ne2QrrVRCuB7l446HRGL0a7Qp6G3g+occSvTaa/z2ZHR02xyRz6O7u/2gukngvuWtRP52xxhf5EI8TuKtO1NxXAqF4no7nlHXOIHIhtAhISTcAc1gprPd1oh8vtiSXcN42m2jEo2Sv/gS1MKFyHXrfPPTUglRLCLXrkUWi1Tf9S5Kn/jkmK+nHb5qAO7uu+PusiuiWBh9p1YqgudRPuU0dHJyB8jlk3x5uK5WgfV3QUJr/3Tm2GPpl+ao7bbGDHdIyOeLxGJRQIQOCSGjEqrgZiCjqdtGKtlapW6bKKlUAtM06e3tH/uLRzChZNIGyOXLsK/5NfaNN/rzNELgbb0NleNPoHLk+5qKv47Ho8RiUXp7sy3zVash1qwhdfqHMZ980v+2WxH/H9apgmFQed/7KXzjfxu7ZzeD55E6/cNE/vJnkBIRiRCUHH/n43noDTek7+ZbUZtsMqGn0NqX40ejUdau7aW7O43Wmt7eLPPmdVOtVslmC8yf3x0IX3IIoQEDKa1QFddmOk0FFxagGcTIdhvUb7f56q3h7bZYzDfjrDlYD223FQqFCe94RmNQxuwXkOYeI0i+toTILbegHnkE13Fwt9+ByuFH+NY2k31zKpeR69airYgvZx7n9fygNzW8tdgqCgXsW3+Pfd21GC+/BFLi7L4HleOOxzngwFHNUSdEuUziixcQ/e1vIXDlFvhmrO4OO5L78U9QW245ySfRdHd3Ua1WKRbLzJ3bRX+///6RyaTo6ekfUNatW9cXtDY1hhFBiOZnqELGT1iAQibEaMmktd1MpyaTxmJR4vEofX3ZMVtnMdsi/uNL4Wc/QxcKvnccAuG5aDtK5f3vp/iFC5rarbSLSMQinU6uN+vUcpRqPq5hAggBiXVrsG+5BVaswItGyb9jf9xdd2vJc2qtiUSsgWITi9nYdoQ1a/wdkRCCdev6mDs3A/h/99Vw4S6o3YQFKGRczIR2WyPG2jUMtNt+9lP0N77h704ymcE3Qq0R+RyiUKT0wQ9ROve8tq21GdLpJIYh6e3NTus6JsrIYVIhRFtai1orMpnUQD7QvHndQTvV3xHlcgUcx2XOHH+A1RckaISwkDIUJLSLTitAoQihQ2k0TBqNtmeYtB3UEyQMGybt78O77DK0kOiuruF34UKgU2l01Mb+7fWIlSvbut6xaKcgoZ3UGyadqsiGUJAQMhrhrUYHMrTdVlO3DW235fN+uy2RiA202/L5cqBki6/Xbkuno4ECLrd+u61QwP7DbZhP/hsAd4cdqRz2XkgmW/JahjokVKu+ICEWs4nHY2ityeXy6FtuJbF2HXrevLrX0ekMctVK7D//yXebnibaFfTWLoSAeDxGNGrjeYr+/tx68zyFQol0OkkkUm1Za3GkQ8Latb3EYlHS6QS9vVmiUTuQaBeCm6NEcE7kOySErbg3BmEB6iDGarfVSyYd2W6rl0w6st1m/+63xL/yZWRfr+8PBkSVIv71r1H80n9TOe74lryuQqFEd3eaZDKOaZrrqduiK1YQ+Po3/OZoIZCvr2jJmiZDsVjGtiMkk/H2CBJaxGjebaPhvLYM9/Y/kLrtVryeHtSChVSOOJLKew6b1I1IzSHBtu1h80A1h4RMJkWpVCGXK5LJJCmVykEB9AAj+BMymwkLUAfgv/f6MzyFgl8o2j1Mat/wOxLnnoPwPD8KIOj1ac9D9veR/Lx/1tKaIqTxPI9o1B59mNS2QathMQl1rxRpkCs0hQzuGqzRdw2eh8jnQQp/fmcK7+YNwyCZjGFZFpVKteEwqXXXnSQ/ezairx+kQEqJfPVVzAcfJPbTy8j9/P/hbT2xWHAYdEioFZuaQ8KaNb3EYk5gXNpHPG6TTicDQYJGKQ8pZbgLmuWEIoRpptZuk1IO9OE9T2FZZvvUbaUS3XvuhuzpQcfj6785ao0oFlFd3fQ+9Eh9F+smGNpuA3Bdb71dg/Hkk6RPPQltR+s6ElAuI3JZ8pf9FGfft094Pa1kNEGC6Osj8sc/ELntVuSaNf7M0XbbUTnsvTgH/tfkZ3kaMLLdVigUG9rnGE8+Sfqk4xH5ArorgzCMINtH+Sax2Sxq003pv/lW31dvgoSChM4hFCGEAOt7t3meolJxEEJgmgblcrVt3m2R2//oF59odPQ7cyHQ0Siyrxf7D7dN6PWN5t2WyxVGFSR4O+6Iu/NbfAdmb5ScGKWQvb14W2yJs9feE1pPOxgpSJDLl5E8+wziF/8Q47WlAzYV5iOPkPjKl4l/8+t+9EQbsO3IuLzbAKK//H+BzU+X3+IMbhJk0A7VmQzytWXYN94wydWFgoSQ0QkL0BTTjLrNcdygtZZsi7rNfPppv/I1Ck4LtmbGM0+P6/U1ikqoF9mAEBT+5yuoRZsiV630C1EwmS+yWcTK11EbzKfw9W+OK+yt3QyLbNCa+Ne/hvH0M3ibbILaeBN0JoPu7kYtXozu6vIjtq+6sqVraBSV0AjR2+sH4UUiw8P5lPaNQgl+UAXYv7l+UmsMIxtC6hEWoCmkWe82EEFgl8Bx3NZ7twkRWLA0wTh68M14t9WLbFCbb07u/11O5X3vR0uJXLcWuXYNaE313e/xzyJ23LHptUwVNRlz6uknMZ96ErVgwajDsjqVgmiMyO9v8cP5JkmzUQn1kKtWIqpVdGR4NpBG+z+btRwly/ITUidZBMLIhpDRCBusU8BE1W1+Tz/aWN3W24f1178QW7oUbUdx9tsPb6utG67HffObEcpDe179HUWQGOq++c1jvr7xeLfptWspP/YosYhJdc483IUbDXxObbophW9+C3HGSsznnwOt8bbcasK+ZFNFoVAi/cA/8KrVhudlau5c5IoVWI89Om5X8KE0q25rhI7G/B/KUWTkSiukCAQASoFdp1U73ucMBQkhIwgLUBuZbFSC793mH+L6E+s2lmX66rb+PNbPf07397+P6O0ZfBIhcPbZl/wPfojadNNR11U95N2o+fORa9aMLkJQvghBJ5MgJGLNmlGjoMcTlSBWrSL2f/+PyF/+7IewCUE6Hqey596UP/QhvO22H/havWABzoIFE//GTzHVqoO3bh3SNBnlBGsQywKtEBMMlhuPum0s1KJFeFtsgfHsc/5Z4Ah0zRnb9ai+850Teo6RhJENISMJW3BtonVRCb7vmJQiCJbLk83miHz72yS++EW/+NQOlYLdjHX/fWQOezdy+bLRF2fbFL72DbRpIorF4Qf/pTKir9c/LC+WSH72bLreeQCJ8z+PWLdu4MvGE5UgX19B6lOfwL7+WqhWUfM3wNtgQ6RhYP/5TyQ/8ymMJ/7Vqm/9tFCJJUCp4UF8I3EcENJvx42DybbbRkVKP55BCiiX1/u09hUuCDtC5fgTJv486xEKEkIGCQtQi2lHMqlt++o2pRSRiI3x3HPEL/pBYN1vDTol1xQOUiLXrCH+1a/UXWf1PYeRv/Qy1AYbIMplPycnl/NzaQDVPQe9YAG6ew6i6mD/5npSp51CJNc/7mTS2Pe+i/HC86iNNkbPnQuWhTYMVKYLsdlmyDVrSXzly21TiE0F1b33RkUiyHK5brtKrluH2mADnF12bfq6E1G3NUvl+BOoHvZeRKnkZyVVq/7NSLmM6Onxd0EXXojcffeWPB+EgoSQ4YQFqEVMhXdbzVctfs2v/Sepd34TbLvsP/4BsWpV3TVX33MYvQ88TO4nP6Ny4kloy0Ink6jFm0HNk036d+y6qwvr2f+Q/sll66nbGiFffhnrwQd8j7cRMzCe8sCQsHABxpJXse77ezPf6o7EfdsuODvsCCtWYI4iJRe5HJRLVI84sil3gYmq28aFYZD/3g8ofuEC1Mab+IUom0U4Du6b30z++xdR/eSnSCRa6xMXChJCaoQFqAVMVTJpTcYcuf++Qcv+RotyHKx/Pt548ZEI1cPei5q/gT/7MW/9nBwhBTISgUgEdf31ZJcubzqZ1Prn44hCEZ1Kr/9JDcpTyFgMPA/z8ceaumZHYhgUv/TfuDvsgFz2Gsby5Yi+PkRPD/LVVxF9fVQPO5zyKac2vExb2m2NME3Kp3+Uvr/dRfb635K7/Ar6b/o92ZtvpXrYe9tmvloTJMRiUYQQA4KEctn3o0ulEpRKZRzHIZ1O+tJwAUp54S5oFhGe6k2CqfZuA19xFXHH0YJp8mut++/zn2uYE7Xv0AD+mYCOxhDZLOa/n8B5+zuae/5KxT9nqFMslVJIKZBCINqZsTMFqIUbkf3+D8nccyfy5pth2TIQEnfvvam85zBf+dbACaEV6rYJY5q4b9tlvQ+3y3w1FCSEQFiAJsRk1W0T8W6roZTC2257jBdeaOydFuyQvK0bS7IHXlOtUEBQh/yioIPnRDP4gp3mC4XacEP/gtWqP/Q4Cp7jYgqB2HijUT8/k9CZDNkjj6L7Ax/AWb2GYsWpby8U0Ep1WzsYNF+Nkc0WWnhlX5BQO+PK54ukUgmKxcqAIGHt2r4BQUK5XMHzPMBFayOUZc8CwhbcOJmqdlsjCied7BeYoXejSvkHyK7n/1dr3N12x9t2u6Zel7fllqCU324LZi6U0igvKD7g72Yikbry7tFw9tkXtdFCZM+6+l/U34dKJokccUTT1+1klFKUyhViG26AbKB4m/J22yQoFEpEIpH1bJQmQyhICAkLUJO0Q93WrHfbSJx99sX9r3f6X+k4fmGoVv2/u47/X8+j/N7Dm3597nHHIUwTUamgtV94hv2Ca40oFnDetsv43JGjUcqnfgA0iHVrh0/Ua+0feufzVN79HuSWW6znkDBTGQx6G30wtZ3qtnZQrTpUq04oSAhpKWEBGoOOTCaVkv6f/QJv730GdjvrYRgkvvVNrLvuHONSvndb8j2Hot/xDnQuhy6Whl/T8xB9veh4gtKnz2h+nQGVY46l9IlP+vLwZa8hX1+BXPk6ctlrUC5TOeJICmefQ7HoF+uGszQzCH/XMNx8dUrUbW0iFCSEtJowjqEBQ5NJYf1k0rZEJTSL1nQduD/G88/5/x+c+WjTHDhrEeUyav58eh98xM/cGcHQqIRCoUh1zToSZ59J5L77wHMHngch0F3d5L/5LZyDD57YegH50kvYt/8B45//RHgu3jbbUnnPYXg77TxwltXdncbzVEcHvY2HWmRDX192XFEJnUo8HiUWi9Lbm21pGmwY2TA1dFocQ1iARmEsdVuxWFlP3VYsVtZTt9WKUSxmj6luGy/m/feTOf4YfxDVNEe/E/Q8RLVK7tLLqB75voEPN/Ru0xrzkYexb7kZuWQJOh7HefvbqR52+KQyYZrFskwymdSAA8RMR0pJd/egBH3K1W1twL9J8FoqSNBaYxiS7u7MwJmP7w3XTyxmE4vZrF3bRzIZJxqNsHZtL57nBaa9dihIaJJOK0DhrcMQplPdNl6shx8CBFpK/4pCrF+EDAOEwHrwQapHvq857zYhcHffA3f3PSa9xokwNLKhWu2fljW0ipq6rfZv09+fw3UbusXNCAbTYKuj3iSIfI7IbbdhPv4YwnXxNt+Cyvve39BUdqQgYe3aXmKxKOl0gt7eLNFoLda7ELSxE/T356gJEqS0wiI0AwkLUMDQdltN3Ta03ZbP++22RCI20G7L58uBki2+XrstnY4GCrjc5NttoyCcalDL/Dc3KfzCphltJ+QOa7flcvkx7XOmk0KhRHe3b/dTLJameznjZmQyaX9/jmQyTjwemxWtxaGChJEFKHL7H0l88QJEb2/wywRIQeyySymf+gGK532u7ixUTZBg2/aweaCaIKHmop3LFclkkpRKZapVByEUviChc7KiQprjDV+ApmOYtBV4W2w5KMWWkgEdw9D6E7ygyJvehAy82xpFJXQKSimKxTLxeJRKpdK060InUG+YdHDXYM2K1qI/v5MmHo9SLPpmptadfyN59plQrfqGqzXljlKIYpHoL34OWlG84IuDF9LaN0MN0nnHG9lQrVaJx2OsXdvne9eFu6AZxRv2DGhkuw3qt9tisWidqARNqVRZr91WKBSamueZFIUCc3bfBdHfj47FgtfkP1/tn1RUKohIBOfJJ8kn0zPqjRxmliChmWHSmiChtzc7TatsLcMECa5L5t0HYzz/vO/7N0ohEPk8SEnfn+9A5HJEr/wV9u9v8UcIYjEq73s/5VNPw9166zEFCeCfEQHkcgWKxWIoSGiCTjsDmh1613HSCcOkkyaRoPjZ8/wXUS4Pk00LQFSroDWVj32c/lhyxhUfYMB8tZXDj61mPMOk7ZIxTxeDs04xzIcewnjpJXQiUdedQycSUK0S/8qXyRxxGNFrr4VSqabDJnrlFWQOO5TI7bfXjWwolyukUgnSaf9nWmtNuVwJIxtmKG+o24WZ2m6rR/mDH0IUC8S+/z1EuQLKGxbJUD79oxTOOXfK1tNqOl2QMF7vtnb5qk0ntdai9+rLfjt4lDjyAYQAx8G+/Q++cnNEGKLWfhBi6swz6Nt8c0q7vG2YIKG7OzXgTVipOPT1ZZk/vzsUJMxg3hAFaCap28b7wkqfPgPnqKNI3nAD5uOP+eaeO+9M7uhjqWy6aGrX0wY6UZAwGe+2QV+1+IxoLY5FTZBgx2OjD0SPQAQ+gqMm8QqBjscRpRKxK6+gsP322LZNJuMPnxqGQblcoVKpksmkBhwShgoSwMMXI4SChJnArD8DMgxIpWJUKg6O43bWMGkLGDlMWqn4B7WmadLX19/xgoNmiMWixONR+vqy09pKHKlum+gwaSRikU4nZ9es07IlcMABKMPwBQWj4brI11+HSKRxKmypBLEYvc88S6orM3Cz5wcyWqxZ00t3dxohBOvW9TF3bgbw/15Tw4W7oNEJz4CmiJp3m2H4P4TJZIxMJjEt3m3twLLMusmkhUIJKQWx2OzwVaulwSYSo/uqTQWt9G5rl6/adKGUorTV1rDHHohSabhJbg2t/VA+IdB1XNEHMAxEtcoc28I0DVzXRUoxsGOsSbRrXYxstjDwd60F4AVecSGdzqwrQCO925TSlMtVPE8N3BEJIQZaa1Pi3dZCat5tmUyqbjJpTcY8m3zVpkuQ0C7vtlkpSPjWtxDz5yP6+4cLYxzH/5hhjGoJNRIRnCWVpUFPTz/ZbH5UQUItssHz1EBkg2HIUJAwg5gd704Bzajbamc2lmUipUQpf3agY9RtDYjFbLq7M0HvO09//yhOBgGdsGtoJUMFCVNBu6MShgoSagfrM53CZlsgbrkFb7fdEK6L6O/3/xSLqE028SO+D/wvhDu6ga4Qwn9DUorquw+lEOzoR4tsyGTCyIbZwKwQIUxU3Qb+m3rtY47jopSadnXbSBp6tzUgny+SyaRmzfDjVAkSpiqZdFYKErbdDuMvf6H/3vuxHnsUPA9v880H0mB1dzeRe+4eNnwqEEHN0OhiEW2alE77wMB1J+qQEAoSOp8ZLUJo1TBpuVxFSoFtRwJPKkU2m532Hc9I77Z8vjjuQ/hQkNA805FMOisFCd1pSqXygEPCSKI/+TGJb38LPAVWELLl+UGK2jAofPXrVE45ddhjtNZEIhaZTIqeHt+g1LYjoSBhnIQihBbRymFS/0woErRFShiGxDRNZkq7rRGhIGFspjOZdFYKEsZoLVY/9Wmc665HHHyQ/wHXRQtJ9aCDyf76uvWKD/i/39VqlWq1SjqdGOKGEAoSZjIzbgc0FVEJqVQSyzLp7Z36XcNE222N6BQZc6toZWTDVLXbGtHMrmGmUS+yYfjYQInq6ysR2Sy6q8u38GlAGNkweTptBzRjCtBUerdJKejuzlAuVygUpmb4sRXttkbMJF+1Zqi1Fnt7J+aQMB3ttka0K+htuhjZWmzVjZXW/u43Go2ydm1vkLWk6enJMm9eN9VqlWy2wPz53YG6NYcQmrAV5xMWoAkwHcmktTu1qdg1jDZM2mpma9BbqVQZlyChVcOk7WC23STUzFdd12vxjZWmu7uLarU6YFDqW/EwcEZUk8+vW9cX/LxrDCOCEG9sQUKnFaCOPgOqDZMOLT7RaGRKhklLJT8GIJlsn+y30TBpqxkqY54NN4ETmXVq5TBpOygUSh1vvjoe/AFSSSRikcsVJnyOOZJaZEMsFkUIMRDZUC77AXmpVIJSqYzjOKTTvo2PEKCUF8qyO4yOLEAjh0lr3m3ptF9AKhWH/v4CoAc+1o5h0kKhiGVZ2HZr3xCaGSZtB29UQUK7hklbzWwRJNRurGKx6EACbCsLfShImD10XAHqpKiEduwaWqVumwhvNIeE6VS3TZSZ7JAw2o1Vf39uILIBgGoV86EHse74K+bjj/ny6wkh6kY2hA4JM4eOGUTt1KiEQqFId3eGeDw2KUFCO9RtE6FUKhONRkgkZsfwY73Ihk5Qt02EmRrZMDzyvUClUh34XKFQIp2IkfjVL7GuvAK54nU/OsQw8TZbTPkDH6Jy7HF1c4RGw5/XG3RIqEU2ZDIJenqyRKO1odVC0AEJIxs6kWkXIcyEZNLJCBLarW6bCLNZkFCpVDtK3TZRZoogoakbK8+j+3++hPzdb1GATib9NofjIPN5P1bkw6dTOve8cRUhn1CQMB5CEcIQOqnd1oiJChKms93WiNkoSPB3DfaMarc1otMFCeM5x4z8/mbE734L8Thi3jyIRPw7TttGzZ2Ltixiv/ol1j/uH/c6QkHCzGZaCtB0qtsmyngECVOpbpsos0mQ4EvrfZdlpVTHqdsmQicLEobfWI2hbtOa6DXXgFJ+2FzN+23ol6RSflLqb64f91pCQcLMZlrOgGoOHTMpmXTkWcNoN08j2219fRPc8SiF+cADRH97PXLJq+hYHGf/A6gcfQx6zpzJvxgGBQnxeJRKpdIRO7PxMnKYtFqtkkolZ435aj5fDMxXox3hkDCRc0yxejXGs8+i43G0UhiGgZQCb8TOVEciWH//uy9KMMbbGhPB9yozIEhIpRIUi5UBQcLatX0DgoRyuYLneYCL1kZ4FjSNTEsBcofcnErpvxnm85VAUhsbGCbN58tBay2+3jBpOh0NWnK5KUsmbSRIGH4Im5/wjkf09ZH62OlYD/xjMD8ciNx7L/EffM+3tH/PYZN+LTBzBQkjh0n7+3MDO55IZH1BwkylUwQJk7mxEo4DWqGl/1ajlMKQEiHE8BZYzZDUccZdgEJBwsxl2rW41apHX1+JalXhuuB5ilyuRC7n98A7KZlUKU2xWCIaHZQxt7Td5nmkPvphrH/8A22a6FgMnUj4f2JRRKFA8jOfwrrv7y17TdMV9DZRxhomrbUW4/HOa11NhGKxHMiYpyfXaVzttlFQc+ZALI6o+CpErTVa6/WNSisV1Pz59eO8x6AW2eB7Ofo3VJZlDUQ2xGLR4DUUicejRCIWWougDTfzdv+zhWkvQCPJ5yuUyy6eB5WKRy5Xor/fl1YnkzGUmt5k0kFBQqLlw6TW3XdhPfAg2jLBsoYrgqREx2KIapXY9747+RcSMFMECc0Ok87GWafpECSMfmNVHfuBI4nHqbz3cES1OhDVXROGDBQhz0NoTeWYYye15lCQMPPo6N9Qx/Eol12U8ouR1nogr2c6oxIcxzdXbLW6zb72WkD7xWc0hEBbFtY/H8d49j+Tfr4anSxImMgw6WxLg51KQUI7XDrKp5yKmjcPua7Hz/xBD/wuC9dF9vTgbbqIylFHT2rtoSBh5tHRBWgoSvnBcaZpDiieppraXWE0ag9YjLTysNt86YUmvsgEz8NYsqRlz9upu4bJeLfNtNbiWEyFQ8Jk2231UJtvTv7Sy1ALFyB7epFr16LXroXVq5H9/Xibb07+pz9Dz5vXglcROiTMJDrGCaEZCgVfDRePx6hUqlPmJDDaIazWuiUOCUPREZumXlSwE2olnSRIaEVUQj2HhJlKOwUJU+HS4e6yK/233U7kD7cR+dPtiL4+vA03JHLcsZT2OwDPbM3PcyhImFlMuxPCeIlGTVIpvy+dzxfb/nyNohJaHdkQ/+Y3iP3kMnQsWn8ivFwG26b3oUfR3d2Tfs6hTLdDQqujEiYa2dDJtNIhoRNcOmqRDb292RZfOXRIGI3QCWGSlMtu4AlnY5rt+0FpRt3W6siG8gkn+gKEcp2ZD89DKEXlfe9vefGB6RUktCMqoVNbi5OhVYKEdrXbxku7WouhIGFmMCN/K/N531y0HdLU8R7CtjKyQW2+OcULvuj/MhQK/sCU1r56qFxGVCp4W25J8XNfmPRz1WOqBQntjkporSBBA4Xgz/S8SU1WkNAydVuLGNpaXE+aPQlCQcLMYMa14GokkxFiMZt8vkC53JpfoIkmk6ZSCSzLj4duxc1T5MYbiF/0fV9o4Hn+mU80SvU9h1H47y+j586d/JM0IBaLEo9H25oGO5XJpJNvLVYxjBcwzaeRchUASs3HdXfE87YBIi1d71gMthbLTTskdEK7rYbx/HNYd9+NyGXRmS6qB/4XmV3egud5ZLOFlj2P1hrDkHR3Z4YUoATr1vUTi9nEYjZr1/aRTMaJRiOsXduL53kIIZDSnpVnQZ3WgpuxBUgImDMnATDpN/7JHsJKKejuzlAuV1omSMDzMB98EGP5MrRt4+y1N3qDDVpz7SZopxvzdEQlpFIJTNO/SVifAkIUAROtMwxvDJSIRP6CaT6F1hG07gJAiD6EqOC6O1KtvguYWgl7PB4lFovS25sdU5Aw/MaqNG07HrFuHYn//iLWP+5HlCtoIQAN0SjeQQcR+cEPyAqjpeePWvu732g0ytq1vXR3pwFNT0+WefO6qVarZLMF5s/vDkItcwihAWNWChLCAtRCJitIaOVdYasFCdNNOwQJrVC3TZTRBAlCrMY0n8IwngXKgETrjYKdzXaAxLLuwLL+gedtDow8pyhjGK/gOHvjOO+cktcxlLFuEjolgwpA5LKkTv8w5hNPoJMpdCIxYIMv8nlEPo/e7x1wxRX0llstgAkFCTU6rQDNyDOgGpMRJLQ6KqHVgoSxMF58gcifbsf6y5+Ry5e1/PqtFCR0QjLpSEGClEux7ZswzX/gF575QAYplxKJ/B7LugchejDNZ1BqQ9YvPgBRlFqAaT6DEL1T9lpq1BMkTFfkeyPs3/0O49//Rs2Z6+cB1X6ohECnUqg5cxD33Yf8/e9DQcIbiBk1BzQa+XyZrq4EyWScvr6xd2ntvCssFIpkMils22pb/ILxxBPEL/o+1sMPQaUC+OdDzgEHUjz3PNRmm7XsuQqFEt3daWKx2IRlzJ2UTDo466SpVO5AiH6U2paaq4Y/kJhCiCym+SBC9AP9aL1t3Wtq3YUQzyPla3he65WJjRgqSKjtUhslk04bnof929+AkH4W0GjYtq+3ueIKYscf39JZp5GChJ6efmw7MiBImDu3a0CQMGdOhng8SqFQQggPrSVCzPi3yY5lxn9nXdd3SIjFbKLRSF1BQsuiEhrQTGTDZDAffojUxz6K6O9Hx+PQHUQzlEpEbv8D5r8eJ3vFVagtt2rJ800msmHq220uUr6KYbyMEDm0TqDUFkHrbHCHkM8XyWReRalVOM4WjGbppHUaIXoxjGeDG/UcUq5GiL7g8xmU2gBIA/7dshDNv9ELkUPKl5Eyi9YSpTZEqcXD1tkstciGZDKOaZod0W4biVi7Frlypd92a0Q8hnj+eVSpRDIZa6kgIYxs6ExmfAGCsR0SWhWV0Nxa6kc2NEQpRH8/GIYf0DXyB75aJfm583zl0Ny5wz+fSKBjMeTrr5P84oVkr7luAtHGozNeh4RGUQntQoheIpE/Yhgv4stoI0FBeAjP24Jq9d1o7du8OI6L4zxHJJLAceq3bZWah2E8jZRrkXIpUAFqFlCvYxiv4HlboNRmwc6pmbaRwjQfxTQfQMp1tdWjtYlSm+A470SpTcf56jWep4hG7bbdWE01hUKJ9AYJIpFqy84fQ4eEzmRGnwHV0BoKhQpSymHzHtORTDpaZEMjRG8vsR9dTPceuzHnLW9mzpvfROagA7GvujJosflE7vwbcvkydCo9enGREh1PYP7rnxhPPtn0ekU+h3z5ZeRrrw0PahpCs75q7RgmHZsikcitGMZ/8LxN8LxtUWpzPG9bPG9TDON5IpHfI8Rge7ZS6UeIsV5PBCgi5RrAQamFKNWN1hFAIeUqLOseTPMetI6j1KIxV2qaD2NZf0YID8/bGs/bLljvJhjGa0QiNyPliqZfee0cU0qBUgqt6cjio+fNQ220kT/b1ohiEXfrbagK2Rbz1TCyofOYFQUIhgsSHnvsUc4992yef/7ZaTmEbVaQIJcvI/Pe9xD/zreRr69AC4EGzGefJXn+50mfejIUfXWf+fBDfqVt5AEXjYLjYD3y8JhrlEuXErvoB6SPO4b0B08lfcpJpD70Ab9XXxl+TjOWIKHdw6SNMM3nMIwX8LytWF8oYON5W2EYLwdKNx/Py1Ct5olE6t/VCtGHlDlcdzPAAwpIuRTDeAkpVwMOkMeyHkHKVWOKEITow7L+gdZJlFoADN192Xjelki5BtN8aMzXPNqNVUebrxqGH7WgFVTrtCrLZQSCyjHHgBChQ8IbhFlTgABefPEVPvOZz3DGGZ/m4YcfZs2aNdNmMTKmQ4JSpD7yYYwlr6LtCDoW84tLxP+7tiys++8j8T9fAvDzVMZCCD9Zstr4zd945hmSZ34G+5qroVhCpdLoeBzjxReIff+7JP77i1Aa3j4czSFh+tVtGsN4Imh/1XvjNdE6iWE8gV9IwPO2wnU9tC4SjY5+KG4YLwERXHcfPG8LTPNFDGNJcEccAVwghlIborXEsv6KEKvqrtQwXkSI3kBtNxoCpRYGX7d61K9opG6bysiGiVA56ijct7wVuW4dIp8bNN1VCpHNIvt6cfbaC2/LrTGe+Bd6xYrQIeENwKwoQNVqlauuupzjjz+av/zlL+y2225cc8217L77XtO2prF2DeYDD2A+9STaNP2isd4XmGgpsW+8AbF6Nd4mm/gfb6QMcl1QCrXxJvW/plQi/rWvIJcvQy1ajJ4/H+JxdDKJ2mRT1Lz5WHfdSfSqK4Y9bKSMeXrabSNxEKIPrRvPNmidRMos/jkOKLUIz9uGavU5TNPFGBYBrZHyNbSODMivldoYrbvxvE0QwkQIgVLzgvbZhmi9AVL2YZpP112DEOvwi2T9XzmtMwiRR8q+9T7XjHfbVEQ2TBSdTJG/9DIqhxziexquXoVYvQq5ZjVohbvNdsglS0ifeByZE46j610HIT/8YdRDD5FMtrqohpENncKsECF86Uuf5/77/87cuXP5/Oe/yHHHvR8hRMuscSZKI0GCfdut/l+MBvNLkQiiXCby59upHnY4sUsvQRQKvkgBDUqDHIwjF/kceu48qu88qO4lrfvuw3jlZdRGG4/+3PE4xOJEbruV8oknQzI58KmaICGTSSGlnPJh0vUx8N/Qx7oz9eW0g2/+5sDgqGm+TDQqKZUMaq02refhuvtimk/hF6TVgapuwRBpsH+tmoOCUt1I+SJC7IrW6VHWIBj7HMH/vL9Wn/GMDbQzsqEV6DlzKPzwR5ReeonIPXcjsll0KoV17z1YDz2IBnQyiZYSUa0S+fOf4B/3E/npT4ns83ZfkFCtEvnLn7HuvgtRKKAWLqRyxJF4O+3ctPAmFCR0DrOiAO2yy+5stdU2nHjiKSQSSYrFKqlUjEQiPiWRDfWoCRJqvfqhd6yiv8/fzTT6QQ5aarK3D7XJJlSOP4HoL/8PUSz4LbngnUjHYn4xkZLSJz7pF5E6WA/+A6FU/XkMQM2Zg3x9BdYT/8LZZ9+BpcTjMaSUAzM9zfqQtQ8Dz9sSy3oIz6tvUyRlL677FoaeEWmdplp9L0otJZNZhmmupFr123OetyXgYRivIkQWIYpB2w1G2vRobaN1Bq1jwS6rhC/PBv+cSAOR4NxH4Re50W86/BZdBq3nTXhsoFgsY9sRksnpz3Wqh9pyS8pbbglA9KeXYT34ICqV9M8wA3Qkgk4kkOvWoT9zBol77kY98yzJT34CY8Xy4EIKLSXRX12Os9/+5C++BJ0erfivT02QYNv2sHmgmiAhk0kNdDHi8SimaQQ3AVUKhQr1/g1DxsesKEDHHnvCsP8vl12iUV+QUC5XBtJLp4NSqYJt2ySTcfr7B98QdDrjt960rl+EAids1d0FQHX/A4le/ktEqeS/r9WGyfN5kJLqQQdTPu0DDdcjslm0HOOXxzQRngfB8OnIYVLTNLFtm1KpPO2zJp63A5b1BEKsHZBaD8UXB5i47o6jPNrCdbekWNyBeDxKsTjcRsnztsI0/4nWAiFGvvl7SNmD5y0Kdjwlam9KUr6EYTyHlCsBX9Kt1GKUmoeUy+so5jykXI3j7EM0uuGkhkkLhRLpdJJIxJqWXKemKZeJXn8d2pDDis8AQvg3Q2vXIn/8Y9JXXono6fVvuMzgrcs/ACNy599Inf5hsldf01ioMwRfPVsgnfZbuK7rkU4P7vjT6SRaa5TSmKZBsVimWq2glBq4EQuZHLPiDGg02hnZMF5GEyRU3/te/y9eg+JYraIjNtWDD0GufJ3UZ88GIfA22gidyaCjUXQshuruRnV1YT32GNYddzRci5q/QePnBKhU0JEIYu7cUdVtUx3Z0AilFlOtvgMp+5HyFaCIv9MoIeWrSLkOx9kXpbYMrHXuJxK5Gcv6I4bxJEJk60Y2uO6eeN5WCFHCMFYhxDqE6EWIHqRciVIbBp5xAinXodRcTPPf2PbvMc3ngqsIDONlIpG/oXUMUIHAodaS1cHQ6/PAliQSB006KqHTBQk1zCf/jVy1yrfmqYeUvl3PFVcg+vrQqeRg8QH/5s220XYU68EHiPz1L00/fzRqkwiGY6NRe6Bl6Tgu/f25gRuA3t7+4NxPUam4hIKE1jErdkCj0axDwlQwmkOCs9feuDvsgPn002gp1xciuC5CKcrvex96ww2JXnYpomcdas5ckBIVXf/NRaxbS/SKy3EOqn8G5Oy/P/YtN/vy7jqtOrluLWKLLUjt/3a8QN02VGAwGYeE1iNw3X3QugvTfAzDWAZUAQvP2xjX3QWlFmFZtxCJ/A0pX8dXsJloncJ1t8N1DyCf351MpnvYrkHrNK67I1K+BPwL01yB1nG0TuJ52+G6OwFxIB8MvgpM85943ibA4NS/1nOAEoaxNNj9KAxjabCOMkJoTHMLLGsPHMdsiaFtzSHB39lNd6t0dESp5LehG52DAloI5OrVEI8jpESPduZoWVApY19zNdVD39PweoYhSSbjWJZFuVwhl6uQyaQolyuUyxVSqQTZrBc6JEwBs7YAwdgOCVO7lhGCBCnJ/eKXpI8/FmPpEtDaV8Rp7be/8ItU4atfByDy+9+jxSiFagg6Fsf65z+Rr72G2nT0iXp3l11x3/o2rIcewNtoY7DtIRfQGH19vuz1tNMoOi6l0ujDg+N1SGgvAs/bEc/bPmh7VfDPXRYiRCHY8dwBeENcrasI0Ytp/gch+nCcKpXKwQM3CQCG8RyWdS+QoFI5AtN8GiEKaB0Ndi3PofU8hKjium8K2mtzGFp8BvEl20LkqVSORoheLOt+bPsVLEuidZZK5WYc526E2BnYjYlY89TodEECgJo/3/+Zr1ahwW66dt6pLQsJ6CDFYSRaGpjPPrv+J2rXqePSobUKBQnTxKxtwUF9h4TpYDSHBLXppvT//jaKnz0PteEChNYIwNt6Gwpf/6bfzw5aBLK3Z3jrYRS0aYLnInobDEUaBoX/+TLOLrsiV61ELl2CWLsGuXo11mtLMZSH95HT6T3oXWMOk3be8KOBUhuj1BYotQlgYBhPYJqPBp/bjEEhQgStN0TreCChfoRi8VWkFMTjMYToxzQfDB63OVpvjeu+A8/bgVqBMc1nAY9q9RCUWoyUfWhdPyzQl1nnkHIZtv0i8fhKLGsRjvNmCoXFVKubAS6RyB1Y1t2Mre5rTLHotxY7oQ09Gt522+O9aQdkbshc0EgcxzcxNU3QwdFngzNTXed3pNHYQOiQMH3M6h0QdL4gQc+dS+mssyl95gy/cBgGuqtrPWGCynQh+/oaXl94rv/4TKbh1+n588n/4IdE7rmbyB9uw3ptKdK20XvvTf6gg6m8acemEqeHthYdZ3ol76MhRC445ykFs0Lr329p3Y2Uq5ByJUK8QLG4iHg8ius+i2G8iFIbI+WKwIZnDp43B88rIEQVKVcFM0XbBU4LFaRcgRBVtDYCRVvX0BUhhCSZXIZlPYfrLqZYNFGq1t400HpDlIpjmo/ieZuj1OSMZTtakCAEpY98lOQ5Z/nnOyN/7h0H2duLt70/IyRyebRlDrgTDPt50xqhFe4ew2f/hrbbGo0N1BwSMpkUpVJlwCFhzZpeYjEnSFLtIx63Saf93CB/F+SFgoRJMOsLEIw/sqGd1I1sMAz0vPVVXDWq7zmM2CUXo5Wq24YTxSLu23ZBLRrbl4x4HHHkkUROOmFSUQmtiGxoF0L0IuVatJZoPXQXoBEiH0isK0AOIRRSLqdUyhKNPkY8fjOu+xpC9AC+3ZBS3Si1GK1TwWCqjZTrEGIdhvE0pvk0Wifw84UUfhtwPkpth9YxIhET27bQ+jUqFUW1ajBapdc6hZQrMYz/TLoAjRbZ0Ek4Bx9M8fNfIP697yLXrBkYzBaOv1Zv2+3I/fgnRH91ObH/+wXa9cA0gkKlB799lTLaMCifeCIwflPcMLJhepjy79qyZa9x7bVX8fTTT/HKKy+xaNFirrrqN2M+TmvN1VdfwU03/Za+vj623nobPvOZc9hxxzeP+dhOFyQ0Q+Woo4ledQWyt8cXIoy44xK5HBgG5VNPG3Mgr5VRCZ0lSBhJ7TUNPTRwkHI5fqS2QmsTIfoxjCJaPxKoelcQiwmU2hDXtYMohlWY5pNBEdoMz1uAUhsBLqb5MIbxKkql8M9tdOBmsDYQMLyOaR6AlCaOE8FxsvjR3/VRqgvDWIbj1J8bapZOFyRUTjkVd7fdsG+6EeuuOxGlMu6mm1B931FU3/1udDJF6dOfwbr3HswXnkebFiLwctOuC+USQmtKp30Ad/c9iPasI75yBcKyKG61NaWmU03DyIapZsojuf/+97u56KLv8qY37cBrry1FKdVUAbrqql/xy1/+jI9//NNsueXW3Hjjb3n00Ye5/PJfs3Ej65kAIWDOHL93P90OCVIKurszlMuVcUU2WHffRfKcs/1ZnoiFtiIIz0NUymCalD72cUpnnl23AI28KywUii2zzxkrHno6EKIH274GKf/jv1lpP/FUiLX4w6Im/m6oJ3AfsBAij+tuQyRiIEQfruviS6YT+IUgh1IbAwohVFB0InjeRki5Bst6AD9iIYoQJoahMIxePG8xjrMJlcrbMYwXAHtEe27k2tcCgnL5dFpxnxiPR4nFovT2ZjtSkNAMYs0aEl+6kMgdf0U4TqCIU6iuLsqnfxTvwP8iecnFyNtvRwc/1zqdonzCiZTOPHvM1jSA1r4cPxqNsnZtL93daUDT05Nl3rxuqtUq2WyB+fO7KZer9PfnEEIDxowQJHRaJPeUF6DaEBfAN77xZZ599pkxC1ClUuHwww/m/e8/lo997FMAOI7DCSe8nz333Idzz/1CU88djZqkUv6MxXQ6JMBgRtF4JbfGc89i//pq7D/8AVEpo6XE2XMvKsefgHPAgXWLT7uTSS3LJJNJkc3mO6rVY1l/JhL5c+AZF0PKJfjFpPamXkDKVWgdResYQmTRegu0trDtJ1EqhusuZnAX0he02SwM49kBWTbEgHVImccvZCaGkULrKJ7XA5RwnD0plc4mErknUMwtrrtuw3gJ192WavX9LftedOJNwkSQS5di3XM3MeUhNtmYvr32Ifn8s0SOPdYfLxACbRj+wY7rIoTA3WZbsr+7ET1nThPPoOnu7qJarVIslpk7tytQvkEmk6Knp3/AAX7dur7g511jGBFE07ut6aHTCtCUt+Am4mz71FP/plAocOCB7xz4mGVZ7LffAdxzz11NX6fTBQnN4G27HcWvfp3i+Rci+/vQiYSfEVSHqUom7VRBguu+FSmXYJqPYBgvo7ULZPBbcoVgLkgHcQjZoJ/vuyoo5bfShEig9YbBFY3AFdtEqTRS9qK1Rso1wbUkkELKGErlUSqCUvPQeiFad2EYy3HdN2PbLzE85G4oJbRWeN6bWvq96GhBwjhQixZROeVUHCnp7k4zp1iE006DQgEdiQy/CTMMtFKYzz9H4ksXkv/xT8a8fihImDpmhAx7yZJXAVi0aLNhH1+8eHNWrVpJpdJ8X7vTHRKaJhZDLVhYt/hMR1RCJzkk1NB6AxznMBxnP7S2kLKAlEuQcilS9qN1As/bCa03ArJI2YMQqzGMpWjtBnOSy4GlCLEKKV8LdlNJ/PMeDyEchMgDCQwjBTi4ro3rLkKp7mAdUZSag2E8h+dthuu+KYgP72fwfKrmivAqrrtT4EnXOmaKQ0IzGIYklYr7b/a//S2sWYO2rPphjYD9h9uQK18f89phZMPUMSOkG7lclkgkgm0Pv1tMpVKBXUYO227Ogn42CBLGot3ttnp0qiBBqY2oVo9HiHJgeRMBLLSWSLkcrRcixMqgfeYAcZRKIqX/s2Ga69B6LUolEKI/OPdxgp1REsPwh3e1juB5BlorhMjiuyT4/m+QBLqAEkJAtXoIWscwzeeQ8vXAb06jdRrH2RvH2ZfJDKLWo9MFCWMxmrotdfvtfiFq1F2xLKhUsO6+m8rxJ9T/usFnCgUJU8CMKECtpqMdEibBVLXbGtFZDglDMXHd3ZAyi+dtg+/fthR4Hd83bmUwlNoftNQchOjBj892EcJC6xhaJxEiiZRr0BqkNJHSQCkd3P0a+CIEgZRFlKqgdS0HqA9IBv8fxXEOxXV3wzBew7cPsvG8xYF1T3uYCQ4J9ah3Y+X19GAFpr51j7SFACEQxebOfsPIhqlhRrTgUqk01WqVyoio6FwuhxCCVGp8B2ud7pAwXqY/mXQ4neeQ4KPUZig1NzirAb9Y6KAdtyIwGs0j5Zrg7yVq8QlSVgMvODsQKySwrD5A47qZYAdTxPeFKwRzRq8HOy4NrMGyHgKqSLkCv+CA1vNx3bfhunvium9ta/Gp0ekOCSMxDNkw8t3deBPfT7HRnaRSoDVq4cKmnzd0SGg/M6IALV68GQBLly4Z9vElS15lww0XNN1+G0q57OI4viDBNKdXuVIq+e2qibwhdEYy6XDGSoNt4zMj5YtY1h+x7V9h21djmv+gFnGtdQbH2QetBYbxElpbCFHAMJ7Gd7juDd5AYvhGoS6+UMBFqViw25FYlkIIB9eVeJ6fuKp1N+AiRA6oIEQxOBfKIuUyTPNFTPNJLOvPRKOXEY3+GMN4ZCq/OcMoFEodeZMwlMEbq3TDG6vK+4/2/+J5dXcdolpFzZ2Ls/POyGXL1oucr0dNkBAL5o5qgoRyuUq16gsSSqUyjuOQTicHXBqU8urvxkIGmBEFaMcddyKRSHDXXYNRA67rcu+9d7HnnvtM+LozWZBQk4HWuyucbqZekFDAsm7Htm/ANP8d7EJ6iETuwravxzD+BYBSW+E4h+C62yNEFsN4OQiS889w/Pmg4HAbC981O4ZSMSCOYVRRqgfPU3jeAnwVWwFwArWb/7OktYWfE2TjG5iCUnOQchWG8QSRyO0kEhcSj38e07w3ODOaOjpdkDCeGyt3r71wdt/djxnxPAaCssCvIJWKvwOSkjlv3ZnuXd7C3G23Inn2mRgvPN9wHaEgob1M+RlQuVzmgQfuA2DlytcpFAoDheUtb9mF7u5uzjzzE6xc+TrXX38zALZtc/LJH+Tyy39OV1c3W265FTfd9Fv6+/s54YSTJ7yWmShIGK/FyHQxtYIEjWXdjWU9ietuxtDkUz90djWW9Tcgjudtg1KboNQmCPF64GyQwDBqMQ213bD/Jqa1jRAJTBM8z8QwkiiVAPKAQutI0Hor4p/vVPBbbopaLITW0eBjGogj5Wr8WSSPSORuDGMJjrMHjnMAnrczw95A20gnChKa9W4bhhC+s/wpJ2E+8S+EcH1dYWDui+uCUshVqwYfU6lgX3ct9k03kv31tQPJv3WeIBQktIkpL0C9vT186UvDB0dr//+jH/2U7u5d8Twv+Acc5OSTTwM01113NX19vWy11Tb84AeXNOWC0IiZJEiw7QiJmI3wvClVt02UqRIkSLkCw3gW192UocWnhtYbIMQrmOa/8Lyt8Df+FUzzBbSej1LzEcJBylXUJNG+k4GHYXhoncN1kyg1H1BImaBazWCaS9C6ip+WqoEsftFRDBYRjb+7sgEXKQtordHaDNR3/YCDYSxBiL9RrRp43tj2Uq2gkwQJk72x0nPn0n/TLcT/8mfiv74K/cwzaNPEmzsX84knBoLthvWEtYZymdQpJ9H78GN1vRhDQUL7mHInhE6k0x0SDClJPfIg5lVXoe+8E+26qA03pHzc8VSOOQ49t34EwHQzFQ4Jpnk/lnUPnrdtg68qIuVqqtUTUWohUi4jFvt2cGZjI+UypFwSzPekkTIfuF0rtBZBJMPGCNGPZS3EdWO4bh5fxLASISoI8XowzGoHrguV4JypEijoBL5jgq+UU8q/ntZz0TqN522B1nMol08Mvm5qmG6HhFaPDaTTSQxD0rumh+637oxctbJ+6F3w9lf84pcoffqMMa488x0SOs0JYUacAbWbThUkCAGJeJSu738H48QT0b+/FV2p+DLhpUuJf+fbZN5/BPKlF6d1zY1otSBBiBym+TiW9Ucs6w+Y5sMIsTI4v2lEDD+1tIzv47YumP15NVDFGUAEKfuxrFVAH0pJ/LkgCfghdFo7uK7ANJchhEmp9Ak8bxF++y6NUhn89pqFUjaQwDc8LSBlzflAM7TN5rfoyoG6bi2GMVxs026mS5AwlrptouTzRaSUJJ98Arl6VeP5oCDXwb7xhjGvGwoSWs8bcg5oNDoxsqG7O4P4v/+DH/8YbZro7q6Br9HxOHgeculrpE//CH23/bFuxPZ006rIBv/w/s5gBkfiv4m7weyOCALn6hmx9iLlSiKR2/B93P4d7FYSQBQpExhGHK2X4Xm9+P37GEKUARmYmBYDccE6lJqHZa3Dtn+PYSxDiDJKbYEQawcEBb4Kzj8U11ojRE1ZV0bredSkun67r4Rf6HTwuKljqiMb2n2OOdBaLOT9qjHWnY/WiJ6eMa8bRja0nnAHFFATJJimSTQ61t10+zAMX0kDIDwP70c/8s8MEqPEPBsGOp1CvvoKkT//aYpX2jw1QUIsNvFZJ8N4Btu+FSjiulvjedvgeVvjeduiVArDeCmYuVkfKVdiWfcEZzwEO59V+Oc5/ZhmHtMs43lRHGc+Sln4IgO/QGm9ASBRqgvPW4jWaVx3EwwjRiTyJELkgx2YF0iyJb7bQhLf+SAfnBOVkXI1UuaDj60JVHMmvlih1nab+l/L2q6h9rPXLqZqbKBYLKPmrh9bMipCoBpkcY34YvL5IoZhDAgSYrEoIAYECZ6nBgQJhiHRGrR2w13QKIQFaAiFgn8Q60cyT+1zjxwmzWbz8NBDGMuW+budegQRxJHbbp2ilU6MUskffpzY4K+DZf0drT2U2pTh+TgSz9sOredimg/hRycM+azsxTAeQ4gCjrN7cP6zAlAYhoFlZYHXcZw1eN5qfBGB3yITohbxnQr+uz1CpBGihJRP4HnPIWUx+HojeG4nOEcqB8cLHn5Cqh64ru+mUAgygyRCZFFqfuCQEEGpDSbwPZocQwUJEzEMHot2tdsaUdhxJ8Smm/pSyHoERaFy7PFNXXOkIKFcruK6HplMgny+iNa+RLsm104mE9TyqJRywiI0grAADWG6HBJGuyusVh0qy1f4vzx1cu4HkBJj9eqpWewkmKhDgm8eujwIgPMRooRhvIJl3Y9l3R34uuWwrPuQciVQCM6L/olhrMV134pSizCMZ7Csl4hEKgiRwXE2RmsXIdYi5drgbKgIGCiVRqlFQIRaSqkQa/B/bRyUqiIlGIaDlDm03hCt04EIIY2vyIuilI2UOnicwI/ezqDUBsFaFUotxjBW4HmLhr3OqaQdDgnNDpO2g6qncM8+h+AgZv0vCIqB7uqicuxxTV83dEhoHWFTcgRTGdkwlndbJRrDlhKpdeMfW6VQ3d1tW2ermGhkgz8o6lKLLpByLYbxJEL0UTMW9cUC1WAAtYCU/nmL1hrH2QPP2x7LWkkk8hpSJvA8G88zgO5AwdYfnPfYgSrNoyaP9guUjRClYHejg7abjeumMc0kSj2JlC8HhUcHrbtosJNOBP+uMngeJ1DE+cF1/izRWpRaiOO8nem8L2xlZMN0meIOJXvyqXS/8Dz8JIhhqBUirf0WdjJJ9prr0F1d47puGNnQGsId0Ci02yGhWe82Z5ddUfPnIwqF+j+wwbxU9ZB3t2WtrWYiDgn+mYqPEHkM4wmEyKH1ggEJs9ZzgzmdCFrbVKtHUq0ejedtj1JbEItFicVWAlGq1RSeV5Pbq2DHI/C87YHMgLWO1gvwRQ5rgZ7gnKcCFNE6gVLdaF0J/t104Hrt4btgG0i5EilzCFHBdXemUjmeSuUoHGf3YO3+uoUo4nnbU60exmDu0PTQCoeE6Wi31UNpTenb34EbbvCHTYPfI53JUPrYx+m78x7cXXYd93VDh4TWEO6ARqGdDgnjuiuMRimffArx738PUan4YVtDUQqRzaI22JDqYe9t2RrbyUQcEpRagNZ+FILfBssGxWFoUa4CBq67PVKuQsrXcd0dsawEkYhE6zzV6lpcN4kQ3cH5SzX4U8YPqTMDyXQ2KDCbIEQfhrEKKXMoFQdslOoKlE0bACvQehWmmcF1DYSo4L/JyEB4UMIPt9sSrbvQugultgKKA7s1cHGcA9B67MjoqWCiDgmd6tJRLFWw3/teOPRQ1q3tRZTL6GSysTy7KUKHhMkS7oDq0GpBwkS920of/TjVQ98D5TKyr883UaxUELkcor8f3T2H/I8vQ6frp6J2GuMVJGi9AM/bOhgWXYa/wxj6j6IRoifwYpuP1kls+0m6uhYSiWyL46ykWMyjVCW4XjIoHsUggM5D6xR+my+Pr1zrR8rXg7ZbNBBAzEGphfiFKo5SCxFCAv14XhohNsDzFqPUxmidwY/r3hilNgp2WUOJo/V8IIbW84Yo4KafiQgSOtEUdyj+rFOESDLh/660QGgRChImT1iA6tAqQcKkoxJMk9wPf0T1O9+BnXdGKIVwHHQsTvnkU+n/ze8m1EKYbsYrSHCcA1FqIwxjBf55T01VVgwGUVN43psQwiAS6SIW89C6Qja7iGrVRcr/IOVrmOa/Mc2ngQq+g3UlaI04QC++cWg3Sm3iy991NFCtOQixAujBfwPZCL/dVkHruXieiZQFTNM/N/GD5d4SiBgSCDFaEqdCyj48bwf8s6zOoVlBQie12xrRLvPVUJAwOcIWXAMmK0ho2SGsYZB739F0feCD6BXLya3t9ecWRpsNmiGMV5Cg9TwqlWMwjGeQchVCrAw+E0WpxXjeVljWvOAXvIdy2SKfLyNEHNOsYBjPB4Ok/g7ID4Fzg7OeJEpthJQvoXUGz9sJ38V6BUKsC54/Si3vR6k5+JEL5aDwbRf8v4VpbofjgOdlAsHCPzGMF4MhRN+k1M8bWolhLAvaizFquUOdRCNBQqe22xrRLvPVUJAwccICNAYTcUhoVzJpoVgis3gx1py5VCrtn1hvN+N1SNB6I6rVI7GsO9B6ITW1mZRdxGIRpBQ4jovnraRaPQjfbfqvgIfjvAspnwuiGpxglxNFCDcQFxSRMotSi9DaDlpzBYRwAweDLvzI7U3xvN3xB0dtTPOpQBARoVLZCSm3wrIUruu/wbnuTvjJqiUM40kM4xWkXId/TtQNOEQit+J5z+E4Bwcqus6gnkNCJ6jbJkK7zFdDh4SJE7bgxmA8DgntTiadvqC39jARhwTP2zE4O/HQeiG2PS9QGPnJso7zEkp1B2KEJUj5Ckptgdbz8bx9cZxDgmTUDDAnkED3YxgvoHUSz9sIw1gaWO84+Kq6eTjOm4AkpvkyUi7Hd7fW+BY72cCRYSHlcgXLMjEHZrdslNqcSuXwQObt4LpvwnEOplo9BM97G0otwDT/TSTyR3xBROcw1CFhprTbGjHYWmz1mVvokDARwgLUBM0IEqbqELZQKCKEIB7vnEPryTBeQYJSm+I478KyBInEKxhGD+XyOsrlZQjxH8CkWn03Wi/AMF7Fb3tFhjx+CxxnLzxv++B8J4NSGwaFLRkE1C3Hbw44+AOpi9F6Y1x3Z5RK4yvbLLRO4DjvwnH2pna47HkejuNi2741j2G8jOdtitZdQATHORTPeytKLcCfXwI/p2grDON5DOOllnxfW8XQXcN0DJO2gwFBQgvNV0NBwsR44+79xkFNkJBKxUgk4sMiG9rVbquHUv6dfjweC2SdM/8gM5/3zVebGX60LJNEYj8MYzHV6sO47lP4hSKC4+yD5+2EUrWMqDyDb/JDyaBUBqW2xp/zeRXP2w7TvB/DeAWlUvjhculAzeYPwPqtu0VoPQ/X3RultgDA896EZd2JYbyI1gkqlQiJBESjecrljXGctwcmqBoplwStFzuYW6rdSETQ2sQ0nwpECZ2BbUeIRv3X73mKvr6pTW6dMNUqcvVqMCRqwwXDVG/tMl+tCRJs2x7WfqsJEmpnRLlckUwmSalUDp6/dv7XWWeAU0FYgJpkpCBh6dKlpNMpFi9eNOWHsKVSBdu2SSbj9PdPT4ZLK2lGkCClIJGIY9sRHMehr28enncIsG/gteZHHwwniT/n0wg/tdR1t8IwngSieN42jNYcEKI/8KKLBFlBfgFSalOq1fch5SsYxgsIUaJSmYNt70ShMA8h1mBZD+K7ZA9e1581WoznbY1vz5MKRA/TL0gYmUxarVZJpVrjkNBOxKpVxH7+M6K/vhqRzYIAtfEmlD74QcqnfXDAMT4UJHQGYQtuHOTzZfr7+7nkkos57rhj+OIXL5y2mYdCoYhlWdj21Ga4tItGDgmxmE13dyaQsxbo788P2fkl0XoO6xcf8LzNqaWf1kPK1fgR3W8KBkTzwTDpsCsFERDxQFYt8WeGBvED5XamWj2aSuUU8vn3oNQOJBI2lnU7Uq4amB3y//iOB4bxDIbxLP4skx/dMJ2/lvW82yqV9siYW4l86SW6DjmY2E8uQ/T3gfQTUOVrS0l87atkjj0KkfeFRO0yXw0dEsZHWICaRGvNrbfeyiGHHMLVV1/NZpttxkc/+rFpO4R9IwgSLMukqys90G7s7e2nUmnelUKpxSi1JVK+zMiCAQS7DYXr7gQYOM4+KLUYIfqQ8nWkXBO4KqwOBAo7oVQX/pvF2MmS/qzTv4lEluN5WwWihhoSrf0AO8N4GSF6EaIviAyfnn/Qsc4xpyqyYUJ4HukPnOoH0JkGRCJ+Cqox+Hfz8cdJfOHzAw8JBQnTT9iCa4KVK1fyla9cyJNPPkEsFuPcc8/llFNOoVAojTm/0k4KBd8GJB6PUSgEMmbPw7r/PqwHH4ByBbVwIdVDD0VtvEnji3UApVKZaDRCMhlHKT2k3Zaf4FmXSbV6EJGIi5Qv4KeTJvEjEnoBG8fZP/CAqwkc3oFh/Ac/QTUPmCjVjVLzgAhC9ATChcVjPrvj5HCcR7GsDSmVupBydeCsMPQNLw70YxjPotSmA2uZSka22+qdY7ZLxtwKrHvuxnjxBb/gjHZHJiV4HvYtN1P44n+jFywAhs46VVvWWhwpSFi7tpdYLEomk6CnJ0s0WjsjKgQ/74kg2tsXJEhpvWFacWEBaoK//vV2nnzyCf7rvw7iU586i0WLNiYa9e9ohgoSppqRggSe+DfJ8z+H8eJLoILtvIbYpZdQOfpoip/7Atj2tK23GRzHIRqNopQKWj+T8+HTuptK5QgM40VM88ngHMbAdXcPpNObMrjjkLju24KIbjGkhefjp6quw3H2CWZ4GiNEFsdZi2kuxjQNPK9n4IzIFzr4SjshSgixCsc5cYiAov1MZJi0WCxj2/5NQjbbOeeP9m23+kWmUTvNNMF1sf90O+UPfBAIBQnTTViAmuCEE07hwAMPYuNgFzGVkQ1jMSBIWLEM8bHTkWtWozKZwUKjFCKfJ3r1VYh8nsK3vtNcSuQU46vb/HaE53kDvfTWkMDzdg4cDnzT0no/+r5M+yAs675gNiiCH6NQQes4jrMXrrtHk8/ry2yrVYdIJEaxuD2el0CIpYEZqoe/w0rheTuP47qTZzLDpK2MbGgVor/fd4ZvlJ0lBEiJ6Osb9uFQkDB9hAWoCUzTHCg+NSbikNAuCoUimR/+ELVmtW/RM/QuUErffLFQIHLbbVSOORZ3192mb7EjWF/dVkBrPS6HhOYR1DKFGuF526HUxkj5SpCe6qH1PDxv88DEtDl85+tutF6FZaWw7Ril0mJgE4Top1aAfOfuPZiKs59m222NaNeuYTKouXP99pvW9W+wtAbP87926GPb6JCgtUIpRVdXilKpjBCCdDpJLjfoivBGdkgIRQgTZDwOCe3GW7oU/ec/IxKJui0IHY8jnCr2DTdM8erqM7q6zZuQQ0Kr8T3edsJxDsFx3oPr7jGu4uMTwXXfghD9lMu+Aso0/faK1nOGODqk8bxt2/AqBml1MmmnCRIqR7zPLzCNiofrQsT23eVH0GpBgpSCVCpBV1cGz1MIIYjFosF/bebO7QqGUxPE41EcxyWZTGBZ1htKkBAWoEnQ6siGiWK8/DK6WIR4vL6kVAi0aWI889TULm4UmlG3jdchoVNx3Z3wvDcBz+E4q7Dt2l2tg5TLkbIPx9kriHloD+1w6WiXjHmiuHvvjfvmneoXoSC4sXz8CegRO6AarXJIiMVsuroGb6z6+voplcqAYM2aXlzXxXU9CgX//Ni2I5imgZSCefO6WLBgPvPmzUFKNeuL0PT/5MxgWhXZMOl1BK0brTRCCES9Vk6j9sQUULsrzGRSaK3o68s1VBKON7KhM4lTqRyO4+yN4+QR4jmi0RcxjFfQOkG1+h5cd5+2PHO7vduajWyYEoQg96sr8Dbf3C82laq/43FdAntyqvvtT+ErX617iclGNgy9sapUKvT2ZqlUqsMiG5LJGP39/m5YKUU2m0dKSV9fbkDUUSgUA5cTh9ke2TD7m4xtphMECd6226ITCSjkEZFupBR4I1srWiM8D/dt05MdFIvZxOMxtNZNq9vGG9nQuSRxnENx3T0RYg3RqEGxqHGcTYHWt7CmMiqhkwQJauFG9P/xz9i/vorY5b9ELl8OgPvmnSh/6MNU3n8UWI1vZiYiSBh+junS15cLkk8HaVaQEIvZ2LY9IEjQenYLEoRuco+3Zs30HrR3MqYp6OpK4HnetAkSEheej/3b36DnzcOwLDw1fPsucjlQiuw11+O9+c1Ttq6h6rZyuRLcCTb/eCkl3d1pSqVKiwUJ00d3dxrPU22RMU9HVEI6ncQwJL29HeQTpzUUi74wITq+Ih+PR4nFovT2ZscUJMRiduDeoSkUSg1vrLRWZDIppJT09PQzb1538DtRZu7cLnK5Ao7jMmdOhlyuEAgSNEJYSNmavcL8+WMPUE8lYQuuBXSCIKH0qU/jLVqEWLsWlc8ja3dMnofo7UVUKlROOhlvxx2nZD3jbbfVoxMECa2mHa3F6YxKmDJBgtaYjz+Gfe012Nddi/GfZ+p/ra+6GHfxgeYECfXabY0JHRJGMut2QEuWvMpFF32Hp576N/F4gkMOOZTTT/8k1hhb76OPfi8rV64fm/y3v92P3cTwphAwZ47vR9bbOz3tIrlkCYkvXYj5z8eRjuMLD5RCdXdTPu0DlD/6cf+OsM0MbbeNdVfYLO3cNUwHqVQC0zTp7e2f1HVGttsKheK0JJOOZ9cwEcx//IPE176C8Z9nEK7/+rRl4e6yK4WvfA1vh9Y6iEciFul0kmw2P6y1OLLdls8X12u3NUJrX1gTjUZZu7aX7u40oOnpyTJvXjfVapVstsD8+d2Uy1X6+3MIoQGjJQ4JnbYDmlUFKJvNcsopx7Lppos45ZQPsmbNai699CIOPvjdnHPO5xs+9uij38t2272J448/edjHd9hhx6b/0aNRk1TKV3ZNm0OC1hjPPEP80YeJaEWhq5vKge/0Z4HazGTbbWNdO5NJrfeGMFMZbC2WJzz82GnJpO26SbDuupPURz+CKJfRtj04bOo4iGoVnc7Qf811eDvv3NLnHdlaHE+7rTGa7u4uqtXqQPvNt+KBTCZFT08/hmGQyfjDqf7Pu8YwIggxuRvITitAs0qEcMstN1AsFvjmN79LOp0BwPM8fvCDb3PqqR9i3rz5DR8/Z84cdtxx4ucjnSBIQAi8HXYgt8MOdHWlsbWi3ObIhtGGScdzV9gMs0eQ4FNrLcbjUSqV6ri87loxTNoO2iFIkC++SOoTH0MUCuhYDExrcF43EkFbFiLbT/Jz59L/p7+0VOVZEyQkk3FM0xxyY1WeVEssdEgYZHY01QMefPAf7Lrr7gPFB+DAAw9CKcXDDz84JWvI58uB3HL6palTEdlQb5i0HTSKbJiJjHfWqdXDpK1msjLmochly0h+9CN0HbgfYt06f7eTy/k2OkN3HkKgbRvz2f9gPvzQpJ93OBrPU0SjNlrrIeeYk/t+h5ENg8yqArRkyassWrTZsI+lUinmzp3HkiWvjvn4v/zlTxxwwF4cdNDbOffcM3jppRfHvYZOECTUaGdkw2SjEibCG1mQMFWR75OlFYIEuWwZ6WOPIvLnPyFqNzMDohrXz/QpD2lbBi056+GHJ/ycI6kNk0opUEqhtWrxjVUoSIBZVoByuSzJ5Po9zlQqRTbbWCK6777v4JxzPscPf3gZ55zzeZYtW8YnP/lhli9fNu51dIpDgr+WIkII4vHWWoxMVt02UWaLQ0KNoTcJozGd6raJ0AqHhPjXvoJcvhydSKIHRDPC/yOEP9NWKAw6HgiBFgJaYF47mrrNv0mYvEPCUEZGNpTLVVzXI5NJkM8XA5ue+MDuKJlMUDO3VcqZNUVoVp0BTYazzjpv4O877/xWdtttT0466SiuvfZqzj33C+O6Vs0hIZWKkUjEOyqyYWK5Oj7rDZOWypj/fJz4X/6M8YwviXV33BHn4HfhvuWtbXNdyOeLZDKpjhh+bAWFQmm94cepHCZtNZOJbJCvvUbkzr/5A6NSghG8RQ24eIjgfVhDpQKxmD9q4Hl4W2w+4TU3GiYNIxvax6wqQKlUmkJh/R/4XC5HepwqsHnz5rHTTm/huef+M6G1dIQgIWAgsiEZp38CgoRR1W2VKrGLvo/9p9uhUkHH/Dt4+8UXsf/0JyrvOYzSmWeNOXk+EWa7IME0zY5St02EiQoSzEcfQVQqqJT/+6qjUUQhD8P+jf2dgHAcdCyGKJdRc+ZQPeTQCa11qLqtnktHGNnQHmZVC27x4s3WO+vJ5/OsW7eWxYs3m/L1zHRBQqN2W/T//QL7lptRyRTeFluiFi5ELVyIt+WWqEQC+6YbiP7q8ja+ntkpSMhkUjOm3daIiQoShDOiWBlGcHOjCQ5BBj+nlO92IASlsz/r74bGwXiGSdtlvvpGFyTMqgK055578+ijD5PLDc4s3XXXHUgp2X33Pcd1rbVr1/Dvf/+L7bd/04TXM5MFCY3UbWL1auzbbkWn0uhMZr3H6q4udCKJfcvNvoKpDcwmQUJN3SalREpJoVDqKHXbRJmIIMHbbDP/3McdLEQ6mUTH44H8WoMe0ka2LIqf/wLl0z7Q9HMMv7FqXt3W6siGQXxBwumnn84Pf/iD4AxIkc1mZ70gYWb/5o7giCOOIh6Pc/75n+Xhhx/kD3/4PT/+8cUcccT7h80AnXnmJzjuuCMH/v+vf/0TX/nKF/nLX27n8ccf5bbbbuZTnzodKY31BlPHy0wTJDSjbrPu/zuir2+9YK+hqLlzEb09WPff17L1j2Q2CBJGqtsqlSrRaGfHpjfLRHYN7q674W29NaJUGtztCIFOpVFz5vqmu6YJhkH51NPou/c+Sp/8dNPnjSOjEvr71zcObUSrIhuGUhMkKKW44Ybf8cADD3DBBRdy0knHs3z56xSLJf75z0cHhlVnkyBhVhWgdDrNxRf/BMMwOf/8z/LTn17Ke997JJ/5zDnDvs7zvGE/dAsXbszatWv40Y++z9lnf4qf/vRStt12e372s1+y0UYbT2pNnRLZAIOChGh0/V3DeNRtcl3PQLxxXQwDEMje3ta+iBHM1MiGeuq2WmuxU4LeJsu4IxukpHju5yES8c9+htr6GAbatCBiUznqaArf+g6qyd/PiXm3rU8rZ52Grq27u4vzzz8fwzC46KLv89a3voWenh5+9av/449/vJ0zzvgMN9zwW3K5IvfccxdPP/0UWougDTdzIxtmlRVPJ9PVFcOyTPr6stMqSPDXkkZrNSBIGK93m331VcQuuxRv8y0axh8br7xM6YyzqBx/QqtfwjBqvmp9fZ0vSGjGuy0WixKPR+nry05Ktdgp1PNVa/iYm24geeEFvgOC1oAAKUAaVA89lPx3v9/Umc9kvdtGv+bkbZRGrk1rTank8O1v/y/XXXcNZ555Fn/60+08//zzXH755ZxzzjmUy2VuvPEmPvzhD5HNZrnyymuYM6eL8fjEdZoVz6zaAXUynShIiMejExomdd+2CzoWR+TrK+pELouOJ3B32aWVSx+VmSJIaHaYdDa0FocykV1D9X1H0Xvv/RQu+CLOf70T9+37Ujn5VPpvuoX8JT9uqvhMtt1Wj1YIEmKxKN3dGWw7QrXq0ttbpFCo8IEPfJQ5c+by85//jFNO+TBaa77zne9y5plnUSwWufTSSzj99NPJ5XJcccX/kUgkiETkjBUkhAVoiugkQUKtBenvesY/TOptvz3uzjsjV6/yEydH4jjI1Wtwd9kFb6utW7v4Ueh0QcJEhklnamuxHhMRJOh58yh/7OPkLr+C7K+vo/D1b/iGo2Pc6beq3daIiQoSamtLJGIopclmS/T3lwZ2uslkkk996kxKpRKvvPIShxzyHp555mlyuRI77rgTt912GwsWbMSb3rQDN998My+88Bxz5nSzwQZdmGbn/eyPRdiCm0I6IbJhaLtNCEG57J87jBe5fBmJC87HeO45dCqJCvz3ZH8/opDH2257Cv/7LdSCha1+CXXptMiGyUYltCqyoVNod2RDO9ptjRhPa3G0dluxWBn1PUBrzZ133sFOO+2MYRiceOJRbLPNdnz602fxkY+cyqJFm/G5z13Apz51OltvvQ1XX30t0WiEQmFsU9tOa8GFBWiKma7IhtGGSaNRvxhN9KxBrF6NfcPviPz5T8j+PgBU9xyq7zqEylFHo+fNa/GraEwnRTa0IiqhVWcNnUS7bhJaF5UwPppJg62d6fkzPy75/PgcSZYtew3DMFi4cCN++MPv8bvfXcdvf/t7rrzyl9x6682cffZ5HHXUcU1dKyxAIVMqSBgZlZDPl4bdFY4UJEwEkc8hl/meed4mm0IyOel1T5TpFiS0OiohFCQ0Zv0bq8lFJYyXRjcJtbWZphHsgCtUKpOzU1JKsWzZayxatJi+vj5OOeVYdt11d/7nf77e1OPDAhSCaQq6uhJ4nkdfX/u+r82o22q7hlwuT6Uy833VBt8Q/F3eVNHOZNJOay1OlmZ2DWMx1e22RsTjUR599BFSqS423XTTcbXbJksulyMSsbDt5s7WwgIUAkAyGSEWs8nnC5TL42wXaI3x3LPIVavQqRTuTjsPpkQy/mTSVCqBZZnTdi7VaqZ619DuZNJOai02i+jtxXzsUd/XbeFC35w2UIxNtrU4Xe22Rrz73QeTTCb57W9vYO7c7gm321rBsmWvce21V/H000/xyisvsWjRYq666jdA4wKkteYXv/gF11xzDT09PWy//facf/75vOUtb2nbWmeVGelMolCoYttWoNSpNv3GH/nDbcQu+j7m008POASrDTek/JHTqXzyUyQy6XEnkxYKRbq7M8TjsQkJEjqNUqlMNBohkRi/G/N4mKpk0qE2StVqZwsSRH8/sR9ehP37WxDZrG+bY1l4W29D6ROfpPruQ4fJmMvlatOChOlutzXi6KOP4Ze//D9+/eur+PSnP0OhUJ50u22ivPLKSzzwwP286U07oLWiUqlw1lmf5Kmn/k0sFiMWi9HT00MymeSII47grLPOIhKJ8Itf/IIf/ehHnHvuuWy77bZcfvnlnHTSSXR3d5PP51mwYAHpdJqlS5dSLBbZeOON+cQnPsHhhx8+4bWGO6BpZLyChOhPf0LiK//j/0/NiUBr8Dz//w8/HH3ttRQqzrjvCmvtutly1tDOXUM72231mAmCBJHNkvrQBzCf+Bc6EkEnkv7PaLWCzOXQkQjFC75I5STf3qrZ1mIntdtGUlub57kceuihrFu3jquuup6NN9502taklBqYT/ryly/krrvu4M1v3pmjjjqOb3/7a5RKJd7xjnfwzne+k29961scfvjhfP7zn2fvvffmpJNO4pxzfOeYk08+mccee4zddtuNE044gQsvvJBCocAJJ5zAu971Ll544QXi8ThHH330hNc684Tjs4hy2cVx/MgG02yc7WE88QSJr37ZLziG4f+pFSHL8v/++99T+v4PJtSSKJX8VkEnDMq2gnalwU5XMungrFO0I2edAGKXXYr5xL9QmS50OjP4M2pHUXPngaeIf+dbyFdfBWq+ao1nndo1TNoKhg6TmmaEM844h2q1yg9/+L1p3ZkNHY5dunQJSim++c3vsmzZUpRSnHfeedx77728/e1v57zzzuPaa6/l6KOPJp/Pc/311/Od73yHFStW8Mgjj7DXXnuxbNky7rzzTrbZZht23XVXXnnlFfbaay9OPfXUgeLzq1/9im233ZaPfexj41trS195yLhp1iEhdvn/+X8xzWGDeAN/MwzQmugvfjHcP2scTCSyoZNppUNCJySTdrJDgsjnsG+6EW1Zo2dACYHu6kIUi9g33gA0dkiYimHSiVJvmHTfffdn99335IEH7ufhhx+c7mUCsGbNamKxGOl0hgcf/Ad77bUXRx11FEop7r//fvbZZx+UUqwLXOvPOussfvOb33DxxRcDsGjRIlasWMEf//hHTjzxRFKp1HrFdc2aNfz4xz9mbgNz4nqEBWiaadYhIfKn24ekQg4y7EdBSuRrSzFeeH5Ca2nXrmG6aIVDQi0qoasrjRCS/v7ctEYldKpDgvHkU4i+PnQ8Uf+LhEBLiXX/3wc+NNIhYaJRCVPB0LUZhqRYrNLbWxg46xFCcPbZn2PRosU4TmcUy3w+j2X57ytLlrzKFltsQTqdZv78+bz88sv84Q9/QAjBpptuSiQS4YQTTuC8887j1ltvZbfdduO+++5Da43rujz55JPcfffdPPLII+yzzz5897vfxXEcvvvd73LggQey5ZZbjnt9YQHqAJqJbBDlJvr+wYNFaeJCgmYiG2YSk9k1TFe7rRFDbxI6CVGt+DdIY3mjCYkoD+4chwoSfG/Czm+3DfVuG1kXN910EddccwP77rvf9Cx0BK7rDLTkcrnsQDJ0JpOhv7+fe++9l3g8jjvEUuvd7343SikOO+wwUqlB1dyVV17JnnvuyeWXX85pp53GFVdcwfnnn88dd9zBZz/72QmtL1TBdQC1yIZUKkYiEV9PkCClQG+8MfLFF9GuO5iTIqX/p1a1gh2SNwn7m1pkQ82gdDYIEvL5IplMqul46KlSt02UQqHUlnjohjiO70wdj0Nk/Z26t8mm6EgEUSk33AUJz8XbYosRl3aJxQhUcZ2lblt/mHT61G3t4OWXXw7yjSJUq1UqlQrpdJp58+bxq1/9imx2cFZr880359FHH2XdunV89KMfJZ/P8/Of/5zPfOYzbLDBBhN6/nAH1CHUEyTEYjbdyTiiuxutlG/+6XngeX58cbXqn/kEv7DV/fZHL1gwqbW8UQUJndZuq8dUChKMF54n/o2v03XAO+h654F07bcviQvPx/zXP4evacstcXfdFVEoUHemoFIBKam87/3A8JaW5ymEEDhOZ6R8jtVumymYpjUgc0+l0gNp0f39/WQyGbLZLI7jsCB4z3jllVeCx5m88sor7LvvvgNnOyeffDJHHnkk3/rWtwAoBFEZ++038d1eWIA6iJogIRIxue66a/j617+KaUi8k0+Bhx9GwLA/gP/LXq2C44CUlM44qyVreaMJEjqx3daIqRAkWH+7g9QpJxO9+kq/sEiJqFSI3HQjqQ9/CPs31w9f0yc+hU4kkT3rQA1pnWkN5TIym8XZfQ+cd+y3nrqtry/b8qC3idJsu20mkEwmB86jFi/ejJdffplcLseaNWvYYost0FqTz+fZc889SSaT3H777QBUq/5jHn30UfbZZ5+B622//fasXr2a5cuXc+ONNwJMylg2bMF1EK6rufvue/n2t/+XV155hQULFpD745+Y99vf1H2MH8zrk7vkx7h77dWStYwcfpyJv3xDqe0a4vEolcpga7HT222NGG9rcTzIl18m8cULELmc72g+dOuoNWLdOuLf+l+8zTbD3X0PANw99iT/3e+TvPB8ZE+P/7VC+sOohoGz7z5ULv0xXfPmjDpMms8Xp761OITZ0m4rl8s88MB9AMRiMfr6evnjH29jgw024L777uWmm25Ca82ll16KbduUSiX2339/+vv7ueSSS5gzZw6l4By5p6eHM844g2effZZ//OMfdHV1MXfuXH72s5+RyWTwPI8NN9yQbDaL67q4rks2myUej2OaY5eXcBC1Q1i1aiWXXvpD7rrrDqSUnHTSSZxyymksOOtMIrfdihgtd2cIWgh6H38CtckmLVuTlILu7syEIxs6kdrwYy6Xn/Jh0nbQrsiG2Pe+S+yX/w+14YLR83e0Rq5cSeXdh1L4wUXDPiV6erBv/T3WvXdDsYRatAjniCOx3/lf2PFYw2HSdkc2jMZUerdNBa+/voJjjhndnSAWi1GtVgfEBblcjoULF7LJJpuwfPlyjjnmGC655BIcx8EwDObPn88555zD8uXLufjiixFCcOSRR/LII4+wLDAgHo1f/OIXvOMd7xhzrWEB6gBWr17FyScfS7FYYKed3sL551/A2962M+VyBWvbbTCWLm3qOtmrr6H6rkNaurbZ6pCglGqbd9tU0haHBK3pOmA/RG8vusFsh8j2gxD0/fVOdFdX3a8br3fbVJqvTjYqYSbw6quvcNFF3+Wpp55Yz4pns80245lnnmH77bdn1apV3HnnnbzrXe/i1Vdf5ZprruGqq67iscceI5fLkclkcF2Xvr4+uru72X///TnssMMGosC/+c1vEo1GOeecc9h2223pavAzUSNswXUA0WiMvfbah7322od3vevQgcPYaNTGY3oHckqlCrZtk0zGJxXZ0AkYxuC8iRCC3t7+GdNuq8fw1uLYgWRN4TiIYmH0gdIhaMtClCuIbHbUAjRR77ZCoUQ6nWxLa3Hk2mZ6u60ZNttscy6++DJgfTPS/v5+3vOe92CaJl/96le54YYb6Onp4aSTTmKXXXZhl112AeC0005jxYoV3HPPPXWfJ51OE4/H2WOPPZpeW1iAOoB0Os1XvvLNYR/L58t0dSUQe+2JXr4MMcY8hBYCd8cd27K+QsE/a7Bty49s0BrR24uolFFd3dACp4F2MtK7LZvNk0oliEajUxrZ0C5abr5qWehYHNHX1/DLhOOAaaCD2ZIaI73b+vrGN88z1CGh5WdbI9ptxWJ1RrfbJksmk+GKK67ga1/7Gp/61KdIJBIcffTRnH322cO+TinVlpmssAXXwSSTNrHHHoa3v73h12nDoPrOg8hdfU3b1pJKJbAMSeHqX2P/+teY/34ClEbHY1QOP4LyKaehRsx3dAL1ohJmW9Bbq81X49/+FvavLvcl/Y3OgA45hMJFFw98uFVRCe1oLb4R2m1j0Wl5QKEMu4MpFCqovfZCn3wyus4AizYMdCxG8X++3N61ZHOI884jec7ZmI88jEagTRORLxC98goyxx2N+fBDbV3DeBjLu62TfdUmQqsdEspHH43OpBFrVq8/16M1oqcHHYtSOe4EoPXebUMdEuRY7gpjUM+77Y1WfDqRsAB1MFpDoVhFXH453ic/6RcbKdGWhQ4kjt5mm9F/2+14W2/T1rVYV18FV1wBto2eMwficYhG0ek0uqsb0dND8ozPIGry22liPMOkneqrNlFqs061c67JoLbcisJXv4FOJJArVyJ6e6FQQPT3IVatBMOgeO7nUHvv1TbvtmLRv0mY6ED0bBkmnc2ELbgZQFdXDMsy6X/uBczrrkUufQ0di+K88yCcffYdvUXSSjyPzMHvxFjyKmLePADUyLtHz0P091P80n9T/sAH27ueOkwkmbQmY+7rm/mzTtD61qLxn2ewf/MbIn/+E6JSAdOkesABVI4+Buvt+7Y9mTQSsUink+NuLU51u61RCmkjtNZcffUV3HTTb+nr62PrrbfhM585hx13fHNb1tlpLbiwAM0ATFPQ1ZXA8zz6+qb+38H85+Okjz8WHY2CbWNIiVJ6vbtc0dOD+7a3kf3tDVO6vskMkw6eNVRmhSAB2iRjrlQQuRw6HsfKpKc0mTSdTmIYkt7e7Jhfu766rTIlO56///1uLrrou7zpTTvw2mt+7k4zBeiqq37FL3/5Mz7+8U+z5ZZbc+ONv+XRRx/m8st/zcYbt26mr0anFaBQBTcD8CMbHGKxCNFohHJ5aq3eRTbr+88ZJmj/rk1IgVZ6eB6EYYypnGrpukao2/r7c+MeJq3nkDCTaalDQqlE5M9/wnr4IYTrYm61JebJJ+PEY+NWt02UZhwSplvdts8+7+Dtb98fgG9848s8++wzYz6mUqlw9dWXc/zxJ3PccScBsPPOb+WEE97PtddezbnnfqGdS+4IwgI0TpYseZWLLvoOTz31b+LxBIccciinn/5JrLFmJia51S4UKti2GRzyVqe0XaS6uv3AO9cFw0BpjRQCIcTwO1/PQwctunYzkXZbPVouY55mRtooTRTrnrtJfOFzyNWrB6fRhED98Ic4x5+Id/4FY84KtYKhgoRyubqeQ0InqNsmIpR46ql/UygUOPDAdw58zLIs9tvvAO65565WLq9jCUUI4yCbzXLGGR/HdV2+8Y3v8tGPfpLf//4mLrnkB2M+9uqrr+CXv/wZxx13It/5zkXMnTuPc875NMuX17ezGEotskFKOeXKLW/HHfG22MIfToTBXZAQg66ongdoKu8d3QKkVbQrmTQUJAzHfOhBkp/+pF98MhmYOxc9Zw4qkwGliF5xOfGvfbXFq65PsVimVCpx3333DGTXzHR125IlrwKwaNFmwz6+ePHmrFq1kkpl6v3wppqwAI2DW265gWKxwDe/+V322GMvDjvsCD7xiTO45ZYbWbt2Td3Hjdxq77rr7nzlK98knU5z7bVXN/389SIb2o5hUP7QR/wwsby/Q9DBGYuUEpRC9PehNtqY6mHvbcsS2h2VMHvTYCcQ2aA1ie99B1koIOfMAdNEKeXvdoVAJ5MQiRD9zXUYz/6nPS9gFO6442+cd955XHHF5bNC3ZbLZYlEIti2PezjtdjrWnTCbCYsQOPgwQf/wa677k46nRn42IEHHoRSqmEGfKOt9oMP3j+uNdQiG6Y6q6dy9DGUP3K6X2x61iHyeVQ+j+jtRfb3oRYsIHfZT9ebim8FUxWVMFZkw0xjorNOiRefw3zySUgkUIxut6/jcXAc7MCSfyp429t2ZeONN+aqq65kxYrlMz4qISQsQONiyZJX19sup1Ip5s6dN7Cdrvc4aM1WuyZIME2TaHT9ZMq2IQTFz32e3C/+H9WD34U2DYQGteGG6M99jtwNN+K9ubXS0Xa12+oxuGuw2x70NlWMp7VYa2lFlyyBSgUVidRXtwXbROOZp1u53IZrW7BgAy644AIcx+HLX/4qfX3FGdNuG41UKj2QQjqUXC6HEGJYHPZsJRQhjINcLksyuf4PRSqVGhZdO9rjxtpq23bzvfppEyQIgfOO/XDesZ8fgFepIJMJuud2E21hZEMr1G0T5Y0oSBjp3VYoV2lqz6Q1NJH5MhlGqtv22uvt7LXXPjzwwP3ce+/d7LffAW19/nayePFmACxduoSthwySL1nyKhtuuGBc7wkzldlxmzdJKpUyJ554FCeeeNSw3Ug2288RR7yLj3/8Q1MiN22W6RQkDGBZkEyi8FVo0Whrdg2dkEz6RhIkjEwm7e/PUd1hR4hGodTghiJoy7m77NquZY+aTFosVjnrrPOIRCL86EffHxAkzER23HEnEokEd911x8DHXNfl3nvvYs8992nwyNlDWIAA245y4YVfYfnyZfz855cNfPz73/82+XyeCy74HwzDIJVKUyisf1ecy+VINzj7aMdWe9oECaNQKvmy18mcS011u60RbwRBQiPvNrX55lT32RdRLg8UmpGIfB4di1N5//tbvt6x1G0bb7wJH/vYp7CsCI7TnriG8VIul7nrrju46647WLnydQqFwsD/9/b2AnDmmZ/guOOOHHiMbducfPIHue66q/nNb67lscce4ctfvoD+/n5OOOHkaXolU0vYggvYYYcdOfHEU/n1r6/gHe84gJ6edfztb3/hjDM+y6JFiwF/yzzyrCefz7Nu3dqB7fRotGurXYtsSCbj0+KQMJShkQ3Oy68QufX3yJUr0YkEzv4H4O6626iWQdPZbmtEoVCiuztNLBabFQ4JtdZiMhlHKT1mVELx/Asxn3oSuXq1Lziwbf8fy3URuRwYBqVzPotq4bT+eIZJjzvupIHhzU6gt7eHL31p+OBo7f9/9KOf0t29K57nrfe9Pvnk0wDNddddTV9fL1tttQ0/+MElbXFB6ERCK54hOI7DRz5ySjDYWGSzzTbnkkt+NpD4d9VVl3PllZdz441/GNi13HrrzXzve//LDTfcxrx580e9bqVS4fDDD+aoo47jox/9JOBvtU844f3sscfek5p4TiZtYrEI+Xxhyh0SRpKKmETO/wL617/2z4iEQGiNFhJvxx3J/ejSYZENI4dJy0uXYd94A/ZNNyDXrEEnk1TffSjlY45FbbnVlL+eGRXZoBTWfX/H/s31mI8/DsrD2357KsccR/Wgg8GySCZjRKNRlFJNebcZL75A4sILMP/1T38IWQjQGrXhAkpnnEnluONb5kPYCcOkbwQ6zYonLEAjePbZZ/jIR04lErG5+urfsNFGGw98LpvNcsopx7Lppos49dQPsWbNai655CIOPvgQzjnn8wNfd+aZn2Dlyte5/vqbBz521VW/4vLLf87HP/4ZttxyK2666bc8/PBDk/Z8EgLmzEkA0Ns7jYaaSpH65MeJ3P5HMEx07Y5Za3AdRKWCWrCQ/htvRixetJ53m3z8cZKf/Dhy9Wr/caYFygPXRScSFL72DapHHDnlL2sq46EnjOOQ+OIF2L+/xf9+WREQIKpVEBL37fsiL/8VRndXIKn202CbQmuMp57CevQRqFZRixdT3f8A/4yoBUyXd9sblU4rQGELbgQPPfQAANVqhWXLXhtWgNLpNBdf/BMuuui7nH/+Z4nHE7z3vUcO7GpqTOVWuyZISKViJBJx8vnipK43Kp6H9be/YT34D4Tr4m2xJZX3HzVs5se6+y6sP92OjkQQtu0vTOMXEyuCNkzkqpWkf/YTjMt+PKzdJlat8ovPqlXo7jkw1NZEa0RfH4kLz0dttBHubru3/vU1oKW+am0idvFF2DfeiI7H0V3dwz4nnCqRv/8d9dlz6PvBxWitx/RVG34BgffmN7dcYj/d3m0hnUG4AxrCiy++wOmnn8pBBx3Ciy8+T19fH1deeT3JZHK6lzYmtciGvr4srts6xZ75wAOkPv1J5PJlvh+cEL7nWzRK6ezPUvrMGSAEyY98iMhf/gLJJEL6bRk91KVAgCiVIBql+Pg/KUUHBQvRn/yY+Pe/5795juappTWit4fquw4h/+OftOy1NUsnRzaI3l663nkglErozOCAtBRi4N9B5XLgeWRvuAlv2+2mvbUYttumj07bAYUquADXdfnmN7/MvHnzOeusc7nggi/T29vDj370/eleWlO0wyHBfORhMscfg1yx3C8+UvoFyDAQpRLxb36d+He+BYD1xL8GiofW2reIE/4fIQVSCIhEoFjEeXq4U7B9ww0g5OjFB3z7F9vGuuduxNq1LXt9zdLJDgmRv92ByGZ9exxq/zzSdyvXGuUpdCyOqFSI3H47MLZDgujpwXjqKYwXnvfPflrETPduC2k9YQEKuOKK/+OFF57n/PP/m3g8wVZbbc0HPvAR/vjHW3nggfume3lj0nKHBK1JXHA+VKuDxaeGEP4ckBDEfnQxcunSEY+tdd/EgIBDaY1WmtE2EHLNmrFdla0IwnWR66a+AHWyQ4JYsxqkQBgGUgoMKUH7a1a173fwbyCH+BWONutkPP00yU99gu7d3kbXoe+i678OoOvtexP96WVQmbgkPkwmDalHZ/02TRPPPfcsV175S4466lje9rbBwbqTT/4A22//Jr797W/MCGPAQqGCUop4PDZpcZLx7ycwn3rSf/OqdzHDAK2JXn0Vzs5vAR3cyY748oHcIKcKsRjeVlsP/3w8HrhpN8DzQEp0PDGh1zNZJuqr1m50IoHQGin9Yu8phafU8Fah1oBAJwa/d0NnnQCs+/5O5n2HDwoZTBNtmhivvUbiG18n9YFToDx+d+bRhklD77aQGmEBArbddjvuuechzjrrvGEfNwyDX/ziSm6++fYZ4cvUSocE61//8i/YKOckOA8y//VPKied7O94/n97dx4XVb3+AfxzZt9Fw9QywLQspLouASZJoiYKJNliXdfKqzcrNCWL9Jq2ucvPbPndaFGzLK/teTM1UTMkt6xI83evBRqKKzD7dub8/jgyMswwzMDMnAGe9+vV69UM58z5UjlP5znP93kcdj7dVrcggA9ILhcYlwu20Xd7PKsAAHtmJsA64e9bibGY4UxMhKu7cPsjoq1DglQqgTIrC1AowBmNfLrN1z9Cux0Qi/gWSvW4OyTYLNBMmwqYLe6pt5BIAImEL2yQSiH7bg9UK5YHtTZKt5GmUABqY4TpkMBBNmokcPfdfKmu2QyOZfkvQ44D43CAsZjBdusGS16e19m2+8eCUyjB1Nb4DkImEyASwTp+Ysj2nTRHtHRIqJ/S4q69Fvb0OwCTGZzTR5Uey0Jk0MPZ+wY4Ugd6/MidWvzsU4hqawCF3Pc/X4kEHAMoPljP/7sIcG2UbiNNoQDUBoWiIMF50038l1EjrVgA8MFCLIY0JQUKlRLmVa/AOn4CX6RgNgNmE2Ay8aXbfftBv2EjXPXK2uuwNybCPP85QCIFc/Eif57dDlgs/OgHhx3WceMF2QfUkNAFCb56txnnL4AzMRGimhow1dX88xq7DUxtLUQXL8B1dXcYVxbyKdMGLBYr8Pnn/At/d7syGZjaWkj3lvhZG6XbSHCoDLuNanGHBI5Dh2FDIDly5HL5dUNOJxiGge2nn2Hq0tU9HE5UdRqyL+pa8aggzcqCZGAqqmv0fr+MJN9/D8W7b0O6twSMk3/m47yhN6wTJ8GeO0bQu5/6hChjrtuwKRaLYLXaYDZbPUYlMNXVULz7DuSfbILo4kW+EESjge2uu2B9+BG/LXNiRgyH5MivcPkLqhwHxmyG4bU3YM+92+faaDNp9Iu2MmwKQG1UKDokSEpL0eH+e/i2OqJ6ZdIcxxcFcBxsM2bCWDDX7+eIRAw6duwAa4AjG0RVp8FcuAhOrYYrPj5qAk99keqQ0HBUgtFo9t+Z3WKB+EQFwLrguqY7OG3TAwK1kyZAtuNbQKVqfP6P0wnG4UDth/+Cc9Agr7VxHAeLxRH2zaQVFeUoLFyKsrKfoVKpkZk5Cn/723RIm6iivPfeHFRVnfZ6/9tvv/cak9KWRVsAok4IbVQoOiQ4U1Ohf38DNE88BlFVFf/mpcIDyGQwP5EHy6z8Jj/H5eJgNlugUilhtTa96dDVtRvQtVvQ642kSHRIUCrll1J9HAwGU5O92y6dBLb3DUFdxzbmHsi+3Q6wLBix2GcQYux2sNdcA2dKyqXLRH4zqV6vR17e33HNNXF46aVlOHfuLF59tRBWq9WjFVZj7rhjKB54wLPLtEwWwaGOxAsFoDbManVCoeALEqxWW7M6JDhuHwz9ocPQ7t4JSUkJWIsF1vgesI65B1ynTgF/jsVig1wuh0ajQm1tFPdVa4T42G+Q/Mg35WR79oIjJcVdkOBwtLBDgt0OxmTiN5NKpU2m20LNnjkSbM9eEP9+nK+Aa9AKCXY7wDCwTH8MUqWiQbrNGrF02+effwyz2YSXX14GnY6vpGRZFitXLsHEiQ832gy4TqdOnZCUFNqWQqRlKAC1cS0Z2eAxKiH3btQOH9GiUQn1RzbYbNHZV60h8f8dg3rBfEgOHOBTkQAgFoO9tiesBc9Cdu+YZo9skBz+EfK1ayDfsgVwOgCpFFxuLsTTp8PRJ6nRUQkhJ5dDv249dOMegLiiAgwATiTin/tcKsW3PvY4ZI8+CrlCLljvttLSEgwYkOwOPgCQkTEcy5cvwr59pRg1KidyiyEhQVVwbVxzOySEYzJptJQxB0p87DfoHnwAkr17wYnF4Dp04P+Sy/nA9PepsG34sFkdEuQffQjd/fdC8ekngN3Gj66w2yHasAGuoUNhWbM2olN4XfHxqP33N7C+8CLsPXuCFYsBjRa2nLtg/ewLKJYthVwhF7S6raKiHHFxCR7vabVaXHFFrNecLl+2bt2CIUMGYvjw25Gfn4fjx/8bnoWSgNEdUDtgMtkgl0suTb+0+/3iEItFXqMSXK7QfdOYTGZ07NgBKpUyoIIEIann/wPMxQt81+/6aSmZDJxUCkavh/Tpp+EamQm1WhNwQYLk4AGo580FHA5wWi2YesUdnIsDjAZonpmD2l7XXe5C7XRCuuNbyD/7lB8S16ED7KOyYMvKDtloBE6ng2nyw/jH8f9i9+7d+OCDD9GnT6Ig6TZfDAY9NBrvh+harRZ6vd7vuWlpg5GYmIQuXbri1KlKrF37DqZPfwTvvNOycSikZegOqB0IpEMCwwBqtRIxMTowjAi1tQYYDKaQBh/gckGCQhF9fdXqE5eVQXLoEN8ZwNf+GIYBp9GAqamG7f0NQXVIUKx5F3DYwei0ENVr4OriAI5hwGm0gM0Gxbo1AADRyZPokDkcukcegvzLLyAt3QvZN1ugmZGHjmm3QfzT4RD91rysrBw4nU78z/+shEjEtInNpDNnPoU77xyJW27pi5Ejs/Hqq28CADZsWC/wytq36P0GICHlr0NCONJt/lgsfMVUKDt3h5rk0AH+uYy/Et1LvfCY/fsCTy2azZBv2wrmUjNXF8fxTUPrx/lLHcflm78Cc/48dOMegOTYMXAyGd8aR63m/1LI+RlLE8ZDVF4egt+ar27LyhqJIUOGoKSkBB9//EXUbCbVanUwmbzvMg0GA3S6psvN64uNjcXNN/8Fx44dDdXySDNQAGpH6ndI4DgOv/9+HFqtClqtGg6HE9XVtbBYmt/1OBgmkxlSqRRyeXT0VWuIcbL+G7F6HOsMqEOCVCpBjAiXG6s2DDz1cGIx4HBA8f56iP/4g58wK2mQMReLwSmVEFVfhLLon0H8do2srV7vthkz8iGTyfHKKythNodhyGEzxMcneD3rMRqNuHDhPOLjEwRZE2kZCkDtSF1BwvHjx5GX9zgmTBiHr77aHLZ0mz/RXpDAJiTwf+PwU63HcfzE0IQefkc2ePRu02j4ggYn63M0RR2GZQGpFPJNG90tj3wfyIBjGMg/3tRknzZfGuvdFhvbBePHT8LZs2fw/vtrg/7ccEhNvQ0HDuzz6ExfXLwdIpEIycmpQX3W+fPn8PPPh3HjjYmhXiYJAhUhtCNGoxGvvLICH3+8ESzLYvjw4ejf/9awptv8iZaCBObMGUj37wMcdrji4uHs1x+Owelwde8O0cmTfPduH1GSMZsBmQy2MfcA4PuqKRQyqNUqd0GC12ZSpwuajKGQ/XuzO4B54TgwLAvriEzIP/sMXMM7n4akUjAWC0RVVXD17Bnw793UZtJx4yZi7949sFii4w5o9Oh7sGnTRygomI2JEx/GuXNn8dprqzB69BiPPUAzZjyKqqrT+OijzwAA27ZtQUnJHgwcOAixsZ1x6tSfeO+9NRCJxF4bU0lkUQBqJ777bieWLVuEixcvID4+AQsWPId+/fo3q0NCqATbISHUmDNnoH5hIWSbvwJTN3BNJIKzd2+Yny6AOX8ONPmz+ImjWq1HKyLGbAacTlgnP8y3C7qkrkOCSqWATCbzuZnUOvkhyLZ+A8ZkBKfWeAYhjgNjNIKTyWCdOAnyL78AHE2UY3McuLqJswHw7t3mu7pNLlegqGhdQJ8ZCTqdDqtWvYHCwmUoKJgNlUqNnJxcTJ063eM4lmU9Sti7dbsa58+fwyuvrIDBYIBWq0W/frdiypRpuMpHc1wSOdQLrp144IG7cf78OUyePAVjx45D5846SKUS1NTom9UhIZRiYnTgOFdEOyQwZ86gQ+5dEJ88wX95SyTuNkOM0wmIxTCuKARYFqoXngdjNtWbb8R/2Vv/Oh7mufM8ns2IRAw6dNBBLBb57d0mf28d1Auf40deiyXgxGI+7cY6AakMppdehu3+sdCO/ytku3byQ/sa+13MZrAJPVCzc3fjqTrgUhWkMqK920h0ibZecBSA2okzZ6ogk8nQsSPfPkciYRATowbLskF3SAg1qVSCDh20MBiMEeuQoJn+d8i/+BycVOpdZu1ygbFY+IAjkwMiBmzXrnBd2QWurl3B9u4N25h74br2Wo/T6qfbGIaBxWLz2yFBsu8HKNauhezbbXwgkkhgH5EJ68RJcPbnJ/NKt26FbspDfFGCrzucS01CTf94Dta/TW30WkL0biPRhwIQiRotHtkQQlqtGlKppNmdu4PBVFWhY2oyf7fR8Eu9Lr1Wd9ciFoMTS8CAAzgO9qHDYHjzLaBetZuv3m0KhTzwkQ0mE59202qBhnc6HAd1/mwoNn7Iv5TL+bsclwuw2cBwHBy3DYJ+3XqfJeM0KoHUF20BiKrg2jGTyQaXywWVSil4JZrJZAbDMFCpwj/oTVq6F4zdBvho4c9YLJeDj/sEKTipDJxYDNmOb6GePw9Ag+o2jkNNjQEmk+VSessKl8sV2Gh0tRpcly7ewQcAGAampctgnvMMXJ06gbHZwJhM/DpVKlgengL9mnVewUckEtFkUhL16A6onVMoJNBq+SIAIQsSAD6FpVIpwz7oTf6vjdDMeILvclA/8rIsmIalzCIROGW9wOCwg5FIYPnlFygSegDgYDJZfI5KqEst6vXG0IxssFgg270LzPnz4HQ6OAan8xV6DVC6jTQm2u6AqAqunQvFyIZQidTIBjYujn/uw7IeBQSMrz0/DZ4PMVIp4HBA+e9/w/rIFL+jEurvdWrxyAYAUCphH5HZ6I8DrW4jJFpQCo54dEgQWiQ6JDhvTQZ7bU8+4NSPCr4ihIRfB4O6xggMP56g/IQ73eZPIB0SWorSbaS1ogBEmj2yIRwi0iFBJIJ5ztOAWMzv/6lfXl2fWAxOLOLfvvQjjuMAlwsuXWCpDH8dEkJBqVSgY0cd5HKZoKMSCGkOSsG1Inv27EZR0Rs4ebICV17ZFRMmTEZW1l1+zzl9+hTuu8/7mMTEJLz55hr362BGNoRbJDok2LNzYKypgfofc8HY7XxVWf1fWiwGFPxzFDcO4JxOMAwD24iRAV/LV4eElqJ0G2kLKAC1Ej/9dBhz5z6F7OzRmDFjNg4e3I/Fi1+ASqXCkCHDmjx/2rTH0LfvAPdrVYOKq7qRDVqtEmq1ql10SLCNnwDH0KGQf/ABpLt3gbFaIf79dzAmI9/ehmHc/do4Dvz+II6DfUhGUC1vgMsdEmQyaYsKEhpuJhViMikhoUIBqJVYu/YtJCb2wVNPPQsA6NdvACor/8Tbb/8zoADUvfs1SEq6ye8x7bEgwdXtKlhm58MyOx8AoDr1J5Q5OcCZKnBOJzgR31mAYZ1849GevWAsXBX0dUJRkEDVbaStoWdArYDdbsehQwe8As2wYXeivPwPnD59KmTXam8FCXXqxhEob0qCdccOWB/5Gzi1GoyLBeNi4ep0BSxP5KH2y83gOndu+gN9aG5BQsNRCXq9BbW1lrAGn4qKcsycOR3DhqXhrrtG4PXXV8HhrzP4JRzH4b331mDMmCxkZAzCtGkPoazsl7Ctk7RuFIBagcrKP+F0OhEXl+Dxfnx8DwDwmpHiy4oVizF4cDKys4djyZIXodfX+jyuvRUk+NxM2qEjTAufx8XDv6CmeBdqdn2H6oM/wvzMsz733QQq2IIEoarb9Ho98vL+DqfTiZdeWoapU6fjiy8+xerVK5s8d/36tXjnnX9i7Ni/YunSQlxxRSxmzXoclZV/hnXNpHWiFFwrYDDw8+41Gs/KK62WnwKp1+sbPVcqlSE3916kpKRCo9HiyJEyrFv3Dn777QiKitZB4qPVf3spSPAaldBwM6lKBfb63iG9ZqAFCUKm2z7//GOYzSa8/PIy6HR8wGVZFitXLsHEiQ97jD6oz2azYf36d/HAA+Mxduw4AMAtt/TFgw+OwYYN65Gf/0xE1k9aDwpAAqmb5NiUlraLj42N9fiD37dvf/To0RNz5szErl3FGDp0uNc5bb0gwVfvtgAbgoSEv4KEaKhuKy0twYABye7gAwAZGcOxfPki7NtXilGjcnyeV1b2M0wmEzIyLqeKpVIp0tOHYNeu4rCvm7Q+FIAEUly8HUuWvNjkce+/v8l9p2Myef4fc92dkU6nC+raAwcOglKpxLFjR30GIKBtFiSIRAzUahXkchkcDidqagw+RyWEW11qsazsF3TrdhW0Wl1UVbdVVJR7lfdrtVpccUWs33Rv3c98pYrPnNkAm80KuVwR4tWS1owCkEBycnKRk5Mb0LF2ux0SiQQVFeVISRnofr/uD3x8fELoFwi+ICEmRg2NRiX4yAaTib9rkMulzRrZ0GS6LcLOnDmHhx6ajFtvvRX/+79vQq1WRk11m8Gg90r3AnwQ8pfuNRj0kMlkkDdojKrV8s/XDAYDBSDigYoQWgGZTIZ+/QZg585vPd7fsWMbEhJ6oFu3q4L6vO+//w4WiwU33pjo97i2UJBQV0HGP8+yobpaL3jwAfh9WBkZQ7F//37s2lUcseo2QqIJ3QG1EpMmTUFe3jQsX74YGRnD8OOPB7Ft2xYsXLjI47j09BRkZmahoGA+AGD16kKIRCL06ZMEjUaLo0d/xXvvrcENNyTi9tvvaPK6rbUgIVrSbb7UpdvmzZuLkpLvsWjRYiQl9YdKpRZ6aQD44paG6V4AMBgMftO9Wq0OdrsdNpvN4y7IYDCAYRhotdHViZkIj+6AWolbbvkLXnppKX755TBmz34C27ZtwdNPz/N44Avw1Uou1+X/g+7RowcOHtyPRYuex+zZT+Dzzz9BdvZdWLXqdZ8VcA3VFSTwX5rC7g2qK0hQKPyXMSuVcsTEdIBUKoHBYEJtbfQEn/q92zp37oJJkx7GuXNn8e67bwm9NLf4+ASvZz11RTP+0r11PztxosLj/YqKcnTp0pXSb8QL3QG1Imlp6UhLS/d7zJ49BzxeZ2fnIjs7t0XXbS0FCUJXt/nTWHXb2LHjsXnzl9i48QPk5OQiLi5e6KUiNfU2rFv3LgwGg/uupbh4O0QiEZKTUxs9LynpZqjVahQXb8d1110PAHA6ndi9uxipqYMisnbSutAdEAlINHdI8DeZVGhNbSaVyWTIzy+AUqlEbW2NsIu9ZPToe6BSqVBQMBv79pVi8+Yv8NprqzB69BiPPUAzZjyKsWNz3a/lcjnGj38IH364Hhs3bsDBg/uxYMGzqK2txYMPjhfgNyHRjiaikoBpNHIolTIYjSZYrcI+yNdq1ZBKJbBYrO7qtsYmkwolmM2kHMd5dt4WWHn5HygsXIaysp+gUqmRmZmFqVOnQ1pvjPnjj09FVdVpbNr0pfs9juOwfv0afPrpJtTUVKNXr+uRlzcLSUk3C/FrkAaibSIqBSASMIYBOnXiH5RXV4dgwmcLyGRSaLX8WqI/3WajUQkkKkRbAKJnQCRg0dAhoX51G8uyEIn45z3REHyiaTMpIa0BBSASFCELEnxtJo2J0YV9ZENga6NRCYQEiwIQCVqkOyT4q25raYeEUK2NJpMSEjyqgiNBi1SHhECq2yIxssH32oQZlRCtDh06gLS0AT6bjm7dugVpaQNQVvazACsj0YwCEGkWk8kGl8sFlUoZli/+YDaTmkxmMAwDlSq4QW/NX9vlzaR2uxPV1WaYTO37WU/fvv1x5ZVdsG3b114/27bta1x9dXeqhCNeKACRZglXh4Tm9G4LtENCqNYWycmkrQXDMBgxYhRKSvbAaLz8PK66uhr79pXizjtHCrg6Eq0oAJFms1qdcDj4ggSJRNyiz2rpZlKLhX/oH46NspRuC0xmZhbsdjt27tzufm/Hjq1gWRYjRowScGUkWlEAIi0Sig4Joerd1rBDQihQui1w8fEJuPHGRGzdusX93tatW9Cnz03o3v0aAVdGohUFINIiLSlICPWohFAWJFC6rXkyM7Nw+PAhnD17BpWVf+LXX3+h9BtpFAUg0mLBFiSEs3dbSwsSKN3WMkOHjoBIJML27d9g69avIZFIMHTonUIvi0Qp2gdEWiyYDgnhnkxaV5CgUilhtQa3GTSaNpPu2bMbRUVv4OTJClx5ZVdMmDDZa0x2Q6dPn8J993kfk5iYhDffXBOmlXqKiYlBaupt+Oabr2G325CSMhAxMTERuTZpfSgAkZBoqkNCJEcl+BvZ4Eu0bSb96afDmDv3KWRnj8aMGbNx8OB+LF78AlQqFYYMGdbk+dOmPYa+fQe4X6tUke1gnpmZhXnzngYATJnyaESvTVoXCkAkZHx1SBBqMmkgHRKitXfb2rVvITGxD5566lkAQL9+A1BZ+SfefvufAQWg7t2vQVLSTeFeZqMGDRoMrVYHjnMhLW2wYOsg0Y+eAZGQqV+QoNfXoLBwOXbs2C7IZNKmChKitbrNbrfj0KEDXoFm2LA7UV7+B06fPiXQygLHMAzEYjHS0zM8RnMT0hAFIBJSNTVGFBUV4Z57xmDTpk0oK/u1xdVtzWUymWE2m3H06BF3ui/aq9sqK/+E0+lEXFyCx/vx8T0AwGtUti8rVizG4MHJyM4ejiVLXoReXxuGlTbuu+92oqamGpmZWRG9Lml9KAVHQubgwf0oLFyK8vI/0KlTJxQUPIs77sgQbFSCy8Xho48+wtKlS7Fw4fO4++67oy7d1pDBoAcAaDSec1u0Wh0AQK/XN3quVCpDbu69SElJhUajxZEjZVi37h389tsRFBWtg0QS3j/uv/5ahuPH/4M1a97C9df3Rt++/cN6PdL6UQAiIfHpp5uwYsViiEQi3HvvWMyaNRNXXNEJNTX6iI5saCg1dRCUSiVefXU1srJGgWFEEa9uMxqNuHDhfJPHXXXV1S26TmxsLPLzn3G/7tu3P3r06Ik5c2Zi165iDB06vEWf35TPPtuErVu/Rq9e12Pu3OfCei3SNlAAIiHRuXNnpKcPweTJU3Dddb0hEjHuDgmRGNngi1QqQe/e12H69OlYsWIFVqwoxGOPPRnxdRQXb8eSJS82edz7729y3+mYTJ7Ve3V3RjqdLqhrDxzIB+Bjx46GPQDNnbsAc+cuCOs1SNtCAYiERFpaOtLS0t2v6woSlEoZFAoZrNbIPQNqWN02duw4bNz4L2zc+CEyM3PQs2eviK0FAHJycpGTkxvQsXa7HRKJBBUV5UhJGeh+v+7ZT3x8QugXSIhAqAiBhE24Rzb44qu6zW534ckn54BlWaxatTwyC2kmmUyGfv0GYOfObz3e37FjGxISeqBbt6uC+rzvv/8OFosFN96YGMplEhISdAdEwiaYDgkt1dRm0uTkVIwaldMqhqJNmjQFeXnTsHz5YmRkDMOPPx7Etm1bsHDhIo/j0tNTkJmZhYKC+QCA1asLIRKJ0KdPEjQaLY4e/RXvvbcGN9yQiNtvv0OA34QQ/xguwBKlc+eEyeOT1i8mRgmpVBKWgoSG6TaLxdFodVvdf+pMJEenNtOePbtQVPQGTpyoQJcuXTF+/GRkZ4/2OCYtbQBGjsx2P3f56qvP8Mknm1BZeRJWqxWdO1+JwYPvwCOPTINarRHgtyDRpnNnbdMHRRAFIBJ2EgmDmBg1WJYNaUFCNPVuI6Q1iLYARCk4EnahLkiItt5thJDmoQBEAAD795di8+YvceRIGU6dqsSYMfdh1qynAzrXaDRi9eqV2L17J5xOJ1JSUjFz5hzExsa6jzGZbJDLJZdm/9ibtQE0Wnu3EUKah6rgCACgtHQv/vvf/+Avf+nntQu/KfPnF2D//h+Qn1+A5557ASdOVCA/Pw9O5+W7krqCBD6IBN+dOVp7txFCmo/ugAgA4LHHZuCJJ/hNmocOHQj4vLKyn7Fv316sXPkqkpNTAQBxcfEYN+4+r933TY1s8IXSbYS0XXQHRADw6a3mKC0tgUajxa23prjfi4tLwHXXXY/S0u+9jjcare4OCU2thyaTEtK20R0QaZGKinLExcV7lTbHx/fw2bk5kIIEqm4jpH2gAERaxGDQ+3xmpNVqG+3c3FhBAqXbCGlfKAC1UcF0YJZKpRFY0WUNOySYzVaqbiOkHaIA1EYF04G5JQ0utVodzp494/W+wWDw27m5fkGCXC6jdBsh7RAFoDYqmA7MLREfn4ADB/aB4ziP50AVFeVNdp02Gq2IiVGD4wCDwULpNkLaGaqCIy2SmnobDAY9DhzY537vxIkK/Oc/x5CaOsjvuU4nh5oaMy5cMAoSfPbvL8WCBXNx//2jkZY2ACtXLgn4XKPRiEWLnsfIkRkYPnww5s2bg/Pnm055EkIuozsgAgCoqjqNo0d/BQBYrVZUVlaiuHg7AGDIkGHu4xp2YE5KuhnJyQOxaNHzePzxJyGTyVBU9Dp69rwO6elDmryu0ylcuq3+5lt/o659mT+/AOXlvyM/vwByuQxvvvk68vPz8NZb4R99TUhbQX9SCAB+8+nLLy90v/7hhxL88EMJAGDPnssbU1mWhcvlGTSef34RVq9eiaVLXwLLskhOTsGTT86J+i/iSGy+JYQ0Lrq/IUjEjBqVg1Gjcpo8rn4wqqPRaFBQMN99V9RahGvzLQUgQgJDz4AICVKwm28JIb5RACIkSM3ZfEsI8UYpONJmRPPmW0KINwpApM2I9s23hBBPFIBIm9EaNt8SQi6jZ0CEBKklm28JIZfRHRBpt4TafEsI4VEAIu1We9x8S0g0YTgusKb3584Zwr0WQgghYdS5s/f2ASHRMyBCCCGCoABECCFEEBSACCGECIICECGEEEFQACKEECIICkCEEEIEQQGIEEKIICgAEUIIEQQFIEIIIYKgAEQIIUQQFIAIIYQIggIQIYQQQVAAIoQQIggKQIQQQgRBAYgQQoggKAARQggRBAUgQgghgqAARAghRBAUgAghhAiCAhAhhBBBMBzHcUIvghBCSPtDd0CEEEIEQQGIEEKIICgAEUIIEQQFIEIIIYKgAEQIIUQQFIAIIYQIggIQIYQQQVAAIoQQIggKQIQQQgTx/+jOHW0nJXp+AAAAAElFTkSuQmCC"}}]}}}, "version_major": 2, "version_minor": 0} +{"state": {"5bccd89d7d2d4fec802bed7854496cfb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa4b9e11a211451f910376019ccbafa8": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_1e3f9fb98022415e81bd0b1d29f32e02", "IPY_MODEL_e6e37a37ba5d40abafef620f2cbf37cf"], "layout": "IPY_MODEL_5bccd89d7d2d4fec802bed7854496cfb"}}, "de335f9e901a4400b87ea08b6a0434ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1595b61668e34dd69b92e53e36d00686": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1e3f9fb98022415e81bd0b1d29f32e02": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_de335f9e901a4400b87ea08b6a0434ec", "style": "IPY_MODEL_1595b61668e34dd69b92e53e36d00686"}}, "b1c33466ad7341b0988201215511e61e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6e37a37ba5d40abafef620f2cbf37cf": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b1c33466ad7341b0988201215511e61e", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkqUlEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXeQiyLje3SPPrhzPs+Ie1GX1HFn3Oed5dlnFg4q3Zb0hrq7ioAIiC4KiMCJMV1Wnc79n0kknne5Od1c9f3RSTGAumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYfvCDH+DP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+JLX/oSPvShD2Hv3r2Ix+P49a9/jXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+Seihhx5Ce3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF2666SYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W588YtfhKIo+NnPfob6+vo1Pa+u6xAEYZ2rJSIiolJU9EW3uq5jYWEB//RP/4RwOAwA2LNnDw4cOIB//dd/xV//9V+v6XkFQUAikUI+r61nuXSGrFYLvF43j0UJ4LEoHTwWpYPHorRUV7thsazt4k7RA4vX60VNTY0RVgCgpqYGO3bsQDQaPavnzuc15HL8BSwFPBalg8eidPBYlA4ei9JwNtd0ir6GJRgMnvSxTCZT7JcnIiKiTaDogeXyyy/HzMwMjh49aozF43G89NJL2LlzZ7FfnoiIiDaBol8SOnjwIM455xz81V/9FW6//XY4nU7cd999cDgcuPnmm4v98kRERLQJFP0Mi8ViwX333Ye9e/fik5/8JP7rf/2vqKysxAMPPIDGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zomJsbxn//5KzzwwDeQzS6e1fPZ1qkuIiIiIszNzUFVZSiKjHh82hjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3jqqScxMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9//RSOHHneWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9BnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrRtd1jI+PYWxsFHv3ngcAsNsdaG9vRzKZhCSFEQyGjP1UShUDCxER0SaUSMxCliNQVRmzs7MAAL8/aOyRcvDgm4zbkcsBAwsREdEmkclk0NNTWJcyOjpijNvtdvj9Aei6tmKsnDCwEBGdjq7D9vzvYFUVwG5Hdt9+aG3tZldF9Br9/X144onHAQCCIKC9vQOiGEZ3dzfsdvMXzp4NBhaiTcr24hG47v8SHI/9AkI2i1wwiPRfvA+Za64FSmDFf7lwPPozeP7uE7DJR40xXRCw+KarMf8/Pgeto9PE6mir0nUdk5MTUBQZtbW12LmzcAtyd3c3mpu3obs7gFBIRGVlpcmVrh9BX966rgzF40nkctrpv5GKxmazoLbWw2NRAoxjMT0Px//4NDz/+3PQrTYI+RwAQLdYIGgacjt3Yea7P4Te2GhyxaXP+e/fR9UH3wMAEF71VqlbrdBrahF/5HFonb4Vj3FelI7Ndizm5uYQjSqQ5Qji8WkAQF1dPW644R0QBMHk6k6vrs4Dq9Wypp/lGRaiTcbx1S/D878/BwBGWAEAQSu8WVsjR1F989sx88jjgGVtbxxbgTATR9X/9aHCP5/gc52QzwMzcVR99K8w+70fbnR5tMVEowpefvkljIwMG1vk22w2dHV1QxSL17+nlDCwEG0muRzc//BZ6ABO9llLyOdhP/I87L98DNkDBzeyurLi+tYDwOLiCcPKMiGfh+OJx2GJ9UDzBzawOtrsNE2D5bgPFL29MQwPDwEAWlvbIElhdHcH4HQ6zSpxwzGwEG0mP/85LJMTp/023WqF69++ycByCvYnHgNWccVcFwQ4nnwCaQYWWgfHjk1BliOIRhVcc821qKurBwDs3HkO6urqEQpJxm3JWw0DC9FmMjBwyrMry4R8Htb+vg0oqHwJqdRp/zsWvlGAsJgpdjm0iS0sJKGqChRFxtTUpDEejaq48MJCYGltbUNra5tZJZYEBhaizcTjWdUfWR2AvonuHiiGfDAE/TfPFNaqnIKgach3dW9QVbSZJJPz+OUvH8fgYL+xLsVqtcLn64IohtH5qsXcWx0DC9FmcuWV0K3W0/6RhSBg8ao3b0xNZSr9znfB/c2vnfJ7dABaUzMWL+elNTo9XdcxPz+PqqoqAIDL5cbExBh0Xce2bS0QRQmBQAgul8vkSksTAwvRZtLcjMW3XQfHD75/0tCiCwLgciF9480bXFx5yZ37OmT+5Go4fvGIcYfVqwkAkv/9U0AJNoqj0hGPx6GqMmQ5AkEQcMsthyAIAqxWKw4cOIjq6hrU1NSaXWbJ4ywj2mRS//D/wPrC87D2xl4TWnSLFRCAxH1fg843yNNK/J/74X3vITgf+/nKPW2sVkDTkPzUZ5B5xztNrpJKUSqVQjSqQlEimJgYN8YdDgcSiVlUV9cAAHw+Xk5craIHloceeggf//jHXzP+/ve/H//tv/23Yr880Zaj19Zh5uFfwHP3Z+D61gMQUgvGY9n9r0fyY3cid9F+EyssIx4PEt96EPZnnobr6/fDFjkK3W5H9rI3IvWu97xmwzgiAHjxxT/g6aefhLZ0Zs5isaCjoxOiGIbP11V2PXxKxYadYfnyl79sXLcDgObm5o16aaItR6+pxfzd/wvJO/8OtheeBxYXke/2Q+v2m11a+REEZPdfjOz+i82uhEqQrusYHx+D2+02zprU19dD0zQ0NjZCFMMIhUS43RXmFroJbFhg2blzJ+rq6jbq5YgIgF5Zhewll5ldBtGmk0jMQlFkKEoEs7Oz2LVrNy699A0AgJaWVtx44y38m7fOuIaFiIhoFTKZDHp6VCiKjNHREWPcbrev2JVWEASGlSLYsMByzTXXIB6Po7W1FTfccAPe9773wWq1ntVzrrWBEq2f5WPAY2E+HovSwWNROtbrWOi6jh/84HuYnZ0xnq+9vWPpVuQA7HZ2QF+Ns+nPWPRuzU8++SSOHDmCPXv2QBAEPPbYY/jWt76Fd7zjHfjkJz9ZzJcmIiI6Y7quY2JiArIs45JLLjHOnvzqV79CLBbDzp07EQ6HV6zLpOIremA5kX/4h3/A17/+dfzyl79EU1PTmp8nkUghny//duHlzGq1wOt181iUAB6L0sFjUTrO5FjMz89DUSKQ5Qimp6cBANdc86fw+boAAPl8HhaLBcLZnCbY4qqr3Ssun50JU9awXH311bj//vtx9OjRswos+byGXI5vBqWAx6J08FiUDh6L0nGyY5HNLiIWi0FRIhgeHjK2yLfZbPD5umG3O4/7OQH5vI7CHse0FmdzioSLbomIaMuamZnBY4/93Pi6paUVkhSG3x+E0+k0sTJ6NVMCy8MPPwyr1YodO3aY8fJERLQFTU8fgyxHAAD7l/bVaWhoRFdXNxobmyCKErzeajNLpFMoemB573vfi3379kGSJADAo48+iu9+97s4dOgQGhsbi/3yRES0hS0sJNHTcxTPPfcCJiYmABRuQz7//AtgtzsgCAKuvvoak6uk1Sh6YOnu7sb3v/99jI2NQdM0dHV14W//9m9x6623FvuliYhoi+rv78Mf//giRkYG4XTakEotwmq1wufrQigkwWI5u201aOMVPbDceeedxX4JIiLa4nRdh67rxh0ok5MTGBjog8UioKWlBe3t3ejqCsDtdptcKa0VF90SEVHZmpmJL22RL+Oii16PYDAEABDFMDRNw44d29Hd3Y54PMk7tsocAwsREZWVVCqFnp4oFCWC8fExY7ynJ2oEFq/XiwsvvAg2G3cb3iwYWIiIqCzkcjn84hePYGCgH/l8HgBgsVjQ0dEJUZTg83WbXCEVEwMLERGVJF3XMTs7g5qaWgCFzdwWFhaQz+fR2NgIUQwjGAyhosJjcqW0ERhYiIiopCQSs1AUGaoqY25uDocOvQculwsA8PrXXwKHw4G6unqTq6SNxsBCRESmy2QyiMWikOUIRkdHjHGbzY6pqUm0t3cAALZtazGrRDIZAwsREZmqv78XP/vZYeRyOQCAIAhoa2uHKIbh9/thtztMrpBKAQMLERFtGF3XMTU1CU3T0Ny8DQDQ2NiEfD6P2to6SFIYoZCEyspKkyulUsPAQmsixKfh/PGPYJuaAFqaILzxSmBbm9llEVGJmp+fh6oW9kuZnj6GtrZ2/Omfvg0AUFHhwTve8U54vdUQBMHkSqlUMbDQmVlchOfv7oT76/cDuSxgtQL5PKoBLL75rZj73/8MvbbO7CqJqARks4uIxWJQlAiGh4eg6zqAwt0+brcbmqYZO9NWV9eYWCmVAwYWWr18Ht73HoLjZ4ch6Es7Ri5fcwbgOPwT1PSomPnJz6FXec2rk4hKws9+9ggGBvqMr1taWiFJYfj9QTidTvMKo7LEwEKr5vzxD+F85OGTPi7k87AqCtyf/2cs3MEeUkRbyfT0MchyBLt374HHU1h/EgyGMDsbhyiGIYoSvN5qk6ukcsbAQqvm+vL/gW6xQtDyJ/0eQcvD/bWvYOGjHwPs9g2sjog22sJCEtGoCkWJYHJyEgDgdruxd+95AIBQSIQoSlyXQuuCgYVWR9dhf+43pwwryyzTx2Dt70N+qacHEW0euVwOfX0xyLKMoaEBaFrh8rDVakVnpw+NjU3G9y6vTyFaDwwstDq6Dmhn0Ol0aW0LEW0u+Xwejz/+qLFnSnPzNohiGIFAEG632+TqaDNjYKHVsViQDwRh7YlCWFrpfzK6y4X80q6URFS+ZmbiUBQZ8Xgcb3rT1QAAp9OJHTt2wW63QxQlo88PUbExsNCqpd77AVT+7d+c8nt0qxXpG28BuOkTUVlKpVLo6YlCUSIYHx8zxuPxOGprC+Hk4osvNas82sIYWGjV0jfeAvdXv1w4y5J/7VoW3WqFXlWFhf/rIxtfHBGdlbGxURw58jz6+/uQX5rfFosF7e2dkCTuPEvmY2Ch1ausxMz3f4zqQzfC/vzvodtsQC4HYWnzOK2lFbMPfA9ap8/sSonoNHRdRz6fh81W+DOQTCYRi/UAABoaGiGKEkIhERUVHjPLJDIwsNAZ0ZubMXP4cdifeRrOB78D6+QEHA11mL/qGqQO/Alg468UUSlLJBJLW+RHEAyKuOCCfQAAn68L5513PoLBEOrrG0yukui1+NeFzpwgILv/YmT3XwybzQJHrQfZeBLIncFdRES0YTKZDGKxKGQ5gtHREWO8tzdmBBabzYZ9+/abVSLRaTGwEBFtYk888RgURTZuQxYEAW1t7RDFMPx+v8nVEa0eAwsR0Sah6zri8WnU1tYZu8tqmo5cLofa2jpIUhihEBfQUnliYCEiKnPz8/NQVQWKEsH09DFcd90NaGpqBgDs3Xsedu7chcbGJm6RT2WNgYWIqAxls4uIxWJQVRlDQ4PQlzZ0tNlsmJ4+ZgSW5b1TiModAwsRUZmZnj6Ghx76HrLZrDHW0tIKUZQQCITgdDpNrI6oOBhYiIhK3PT0MczNzcHn6wIA1NTUwuFwoKKiAqIYhihK8HqrzS2SqMgYWIiISlAqtWCsS5mcnITH48E73/kXsFgssFgseNvbrkdlZSXXpdCWwcBCRFQistks+vv7oCgRDA4OQFvqkG6xWNDY2IRMJg23uwIAUFVVZWapRBuOgYWIqET89rfP4MiRF4yvm5qaIYphBIMhuN1u8wojKgEMLEREJpiZiUNVZXR2dqG5eRsAIBAQ0dPTY+yXwjt8iF7BwEJEtEHS6TSiURWKEsH4+BgAYH4+aQSWpqYmvPOd7+K6FKITYGAhIioiXdfR19cLRYmgv78P+XweQGGL/I4On3Hnz/IYEZ0YAwsRUZE9/fR/IpGYBQA0NDRCFCWEQiIqKjwmV0ZUPhhYiE4mmYTzZz+FZXICmrcaiwffBL2hweyqqIQlEgmoqozBwX68+923AiicNdm9ew/m5uYgSWHU1/N3iGgtGFiIXi2fR8U//k+4/88XYEkmoVssEDQNus2G9NtvRPJ/fg56JW8ppYLFxUXEYlHIcgQjI8MAAItFQG9vLxoaWgEA55yzx8wSiTYFBhai4+k6qm77IJwPfQ/CUm8WYWkvDCGXg+t734bt5Zcw88OfAh6ezt/K4vE4nnvuWfT19SKXywEonE1pa2vH9u1hdHZ2YmEhZ3KVRJsHAwvRcRyHH4br+9896eNCPg/bH/+Aii/+CxY++rENrIzMpus6crkc7Ha78XU0qgIAamvrIElhBIMiqqqqYLNZ4HQ6GViI1hEDC9Fx3F/+InSrFcLSnRwnImga3Pd/CQt//VHAxim02SWT81CUwhb5dXV1uPLKqwAAdXV1uOii16OtrR2NjU28w4eoyPhuS7RM12H/9VOnDCvLLJMTsPb1Ih8MbUBhtNGy2UX09hZuRR4aGoS+dHkwmZxHLpeDbSmonnvu68wsk6gsZLNZ9PXFoCgybrrpOlitrjU9z4YHlmQyiauvvhrj4+N48MEHcc4552x0CUQnt4qwYlhcLF4dZJrf/vZZHDnyPLLZrDHW0tIKUZTg9weNsEJEJ6frOkZGhqEoMmKxKBaX3i+z2SxcrjIJLF/4wheMjZOISoogIN/VDWtfr7Hg9mR0uwNaR8cGFUbFND09jaqqStjtDgCAzWZHNptFdXU1RDEMUZTg9VabXCVReYjH41CUCBRFxvz8nDHu9VZDFEW4XGvvibWhgaWnpwf/9m//ho997GP41Kc+tZEvTbQq6Xe/D55P/fdTfo9utSJ93Q3Qq7wbVBWtt1RqAdGoClmOYHJyAgcOXAlJCgMAwuEwtm3bhm3bWrguhWgVUqmU0XJiYmLcGHc6nQgEggiFJLS0tEIQBFgsljW/zoYGls985jO46aab0N3dvZEvS7Rq6VsOwf2V+2AZGjzhWhbdYoXuciH117ebUB2djVwuZ2yRPzg4AG3pdnWLxWLsQgsAbncF3O4Ks8okKgu5XA79/X1QlAgGBvpXzKeOjk6IYhhdXd3regl1wwLL4cOHoSgK7rnnHrz00kvr8pxW69qTGq2P5WOwaY5FbQ3m/uMwqm54G6yRo8YdQ8bmcXW1mP/WgxAkqeRWrG+6Y7GOMpkMHnjg60in08ZYS8s241Zkt3vtp6lPhMeidPBYrB9d1zE2NgZZjqCnR10xn7Zta4YkbUcwGEJFxckD/9mctNyQ99xUKoW7774bt99+OyorK9fteb3e9X2TobXbVMeiVgL++CLwyCMQvvlNYHgYQm0t8Pa3w3L99fCuccHYRtlUx2KN4vE4RkZGsHPnzqURDzo6WjE7O4vt27dj586dqKurK3odPBalg8di7WZmZvDyyy/j6NGjmJmZAVAIHo2NdcZ8qq+vL3odGxJY7r33XtTX1+O6665b1+dNJFLI57V1fU46M1arBV6ve3Mei/1vKPzveKk8kEqaU89pbOpjsQrpdNpYlzI2NgqLxYKamkajweAllxyA2+021qXE48U7jlv9WJQSHou1yWQyxnwaHR0xxu12OwKBIERRQltbu7EmZbXzqbraveZ1LEUPLMPDw7j//vvx+c9/HnNzhRXDCwsLxv8nk0l41rjFeT6vIZfjL2Ap4LEoHVvpWOTzeQwM9ENRIujv7zPuQBQEAa2t7Ugm03A4Cp+sHQ4X8nkdwKnvAFvf+rbOsSh1PBanl8/nMTjYD0VR0N+/suVEe3sHQiEJfr/fuKNO02CsXVmt09yAeUpFDyxDQ0PIZrP4wAc+8JrHDh06hD179uC73z35VuhERCcjy0fxxBOPG1/X1zdAFCWEQiI8nvW7/Ey0Wem6jsnJCSiKjGhURSq1YDxWV1cPUQwjFBLXdTnHWhU9sGzfvh3f+MY3VowdPXoUn/3sZ3HXXXdx4zgiWpVEIgFVlVFdXYPg0g7Dfn8Qv//97+D3ByCKEhoaGk2ukqg8zM3NQVVlKIqMeHzaGK+oqEAoJEIUw6ivbyipW/uLHli8Xi/27dt3wsd27tx53KI4IqKVFhcXEYtFIcsRjIwMAwCam7cZgcXlcuGWWw6V1JsqUakqzKceKEphPi23nLDZbOjq6oYohtHR0XlWe6UUU6ndmUlEhMHBAcjyUfT2xlZcR29tbYMohqHruhFSGFaITk7TNAwNDUJVZcRiMeRyr7ScaG1tgySF0d0dgNPpNLHK1TElsOzbtw+yLJvx0kRUBl588Qj6+/sAALW1tUvX0SVUVVWZWxhRmTh2bAqyHEE0qiCZfOUOnpqaGmM+eb3ltVs3z7AQkWmSyXmoqgJVVfCmN73ZeAPduXPXUu8RCY2NTTyLQrQKCwtJqKoCRZExNTVpjLtcLgQCIUjSdjQ1le98YmAhog2VzS6it7ewRf7Q0KBxHV1VZbzudRcAAHy+bvh8bOFBdDrZbBZ9fTEoiozBwQFjPlmtVvh8XRDFMDo7fbBarSZXevYYWIhoQyST83j22WcQi0WRzb5yHb2lpRWiKMHvD5pYHVH50HUdIyPDUBQZsVgUi4uLxmPbtrVAFCUEAiG4SnxX7jPFwEJERbO4uAiHo7DJlMPhMMLK8uUeUZRQXV1jbpFEZSIej0NRIlAUGfPzc8Z4VZUXkiQhFJJQU1NrYoXFxcBCROsqlVowtvTO5/O44YZ3QBAE2O0OXHLJG1BdXY1t21rK9jo60UZKpVKIRlUoSgQTE+PGuNPpRCAQRCgkoaWldUvMJwYWIjprp2o1PzeXgNdbDQAIh7ebWSZRWVieT6oqo7+/b8V86ujohCiG4fN1wW63m1zpxmJgIaKzcvToS/j1r59CJpMxxhobmyBJYQSDIbjdJ281T0QFuq5jfHwMihJBT08U6XTaeKyxsdHYIn8rzycGFiI6I7OzM7DZbEavnooKDzKZDCorK439Herq6kyukqg8JBKzUBQZihLB7OysMV5ZWYlQqLDOq66u3sQKSwcDCxGdVjqdRk+PCkWRMTY2inPPfR0uuuj1AICOjk786Z++Da2tbVviOjrR2cpkMsZ8Gh0dMcbtdvtSX6wwWlvbSnaLfLMwsBDRCeXzeQwM9ENRZPT39yKfzwMobIW/sPBKR1eLxYK2tnazyiQqC/l8HkNDA5Dlwnw6vuVEe3sHRDGM7u5u2O0OkystXQwsRPQauq7je9/7FuLxuDFWX98AUZQQConG5SAiOjld1zE5OWHs5pxKvRL06+rqjXUplZWcT6vBwEJEmJubQ19fDLt27YYgCEuNBtuRyWSM6+gNDY1ml0lUFubn56GqMmQ5gnh82hh3uysQConGfOIl1DPDwEK0RZ2o1XxDQyNaWloBAPv27ccll1zG6+hEq5DNLiIWi0FRIhgeHjK2yLfZbOjq6oYohtHR0cn5dBYYWIi2kOVW84oSQW9v74pW869eh1IO7eaJzKRpGoaHh6AoEcRisRXzqaWlFZIUht8f5FxaJwwsRFvI2NgofvKTHxlf19bWIhSSyrLVPJFZpqePQZYjUFUZyWTSGK+pqVm6hBrmfCoCBhaiTSqZnIeqKgCAvXvPA1D41NfY2ITm5m0QxXBZt5on2kgLC0moqgJFkTE1NWmMu1wuBAIhSFIYTU3NnE9FxMBCtIlks1koioyjR48areZdLjfOOWcPrFYrBEHAddfdwDdVolXIZrPo7++FLMsYGhowtsi3Wq3w+boQCkno7PTBZuOf0o3A/8pEm8DY2Chk+WWMjAwgkUhC0woL/pZbzS8vAATAsEJ0CrquY2RkGKqqoKdHxeLiovHY8pnJQCAIt9ttYpVbEwMLUZnSdd0IH729MUQiR+F2O+D1ViMYLNw6WV1dY26RRGUiHo9DVWUoioy5uYQxXlXlhSgWbu2vqak1sUJiYCEqI6nUAqJRFbIcwYUXXoTOTh8AQJLCyOezuPDC8+B2VyOf10/zTESUSqUQjapQVRnj42PGuMPhQCAQQigksuVECWFgISpxy63mFSWCgYF+4zq6okSMwFJXV483vvEAams9iMeTABhYiE4kl8sttZwozKfllhMWiwXt7Z2QJAk+XzfsdrvJldKrMbAQlahcLoennvoVenqiyGQyxnhjYxMkKYxgMGRidUTlQ9d1jI6O4ujRo+jpUZFOp43HGhsbIYqF+VRR4TGxSjodBhaiEpJOp+FyuQAU7kQYGxtDJpM5rtV8GHV1dSZXSVQeEolZ9PSoGByMYXR0wliM7vF4EApJkKQw6urqTa6SVouBhchk6XQasVgUiiLj2LEpHDr0HtjtdgiCgIsuej2sVitbzROtUiaTQSwWhSxHMDo6AotFgNvtgM1mR3e3H6IY5nwqUwwsRCbI5/MYHOw3Ws0vX0cXBAHj42Nob+8AAPh8XSZWSVQe8vk8hoYGjPmUy+UAFOZTe3sHLrjgXDQ2tkIQ+CevnPHoEW2wgYF+PProz5FOp4yxurp6SFKh1bzHw1bzRKej6zqmpiahKDJUVUEqtWA8VltbtzSfJNTUeI3F6LmcZmLFdLYYWIiKbG5uDtls1lh7UlNTg3Q6hYqK5VbzYdTXN/DWSaJVmJ+fX9oiP4Lp6WPGuNu9PJ8kNDQ0cj5tQgwsREWwuLiIWKwHihLByMgwfL4uXH31NQAAr7cab3vb29HU1Mzr6ESrkM0uIhaLQVEiGB4eMnZuttls6OrqhihKaG/vhNVqNblSKiYGFqJ1omkahoYGoSgR9Pb2rmg1n8/noWmaEVC2bWsxq0yisqBpGoaHh6CqMnp6elbMp5aWVkhSGH5/EE6n08QqaSMxsBCtk8OHf4L+/j7j69raWoRCEkIhia3miVZpevoYZDkCVZWRTCaN8ZqamqVb+yV4vdUmVkhmYWAhWoNksnAdPRzeYeyb0tHhw/j4OILBEEQxjKamJl5HJ1qFhYUkVFWBqsqYnJw0xl0uFwKBECQpjKamZs6nLY6BhWiVstks+vpiUBQZg4MD0HUdDocDO3bsAgCEw9uxY8dOXkcnWoVsNov+/l7IsoyhoQGj5YTVakVnpw+iGEZnpw82G/9MUQF/E2jryOchJGahO11ARcWqfmS51byiyIjFoitazW/b1oKK456HvUeITq2wRf4IFEVGT4+6Yj41N2+DKIYRCAThdrtNrJJKFQMLbXqWkWG477sXrm9+DZaltvHZ885H6v0fQuZtbwdOcadOKrWA//iPfzfuSvB6q41W89XVNRtRPlHZm5mJQ1FkKIqMuaU5CABVVV5jPtXU1JpYIZUDBhba1GwvHkH1n78VwvwchKXdZAHA9sLv4f3L9yH9s8OY+8KXAKvVaDU/OzuDSy65DABQUeFBMBiC3W6HKIaxbVsLr6MTrUIqlUJPTxSKEsH4+Jgx7nA4EAiEIIoSWlpaOZ9o1RhYaPNKJlF949teE1YAQFi+Xv7v38dIczOO7L8YAwP90DQNgiBgz55zUVVVBQA4ePBNG146UTnK5/MYGOiHokTQ399ntJywWCxob++EJEnw+bp5+ZTWhIGFNi3XQ9+DMDWFE31+m7RY8ILdDsVuR+r738VCUzNgtRqt5h0Ox4bXS1SOdF3HxMQ4ZDmCnh4V6XTaeGx5PgWDIVRUeEyskjYDBhbatJwPfgcQBGBp/YkOGOFl3GLBH5ZCSdXCAnZarfDfeDNbzROtUiIxu9THR8bMzIwx7vF4jP1S6usbzCuQNh0GFtq0LFOTyOg6FLsdL9tsCOZyOD9b2C0zlMthOJtFOJtFRz6P+bp6ZBhWiE4pk8kgFotCliMYHR0xxm02O/x+P0QxjLa2dracoKIoemB54okn8KUvfQnRaBTz8/Nobm7GwYMHcdtttxlrBIjWUz6fx+BgP/7T7UZ/VRWWV69kBcEILE4Abzru1LW+1JiQiFbSNA2DgwNQlAj6+nqRy+UAAIIgoK2tHaIYht/vh93Oy6hUXEUPLDMzM9i9ezduvfVW1NTUQFVV3HPPPVBVFffff3+xX562mF//+ilEIkeRTqdgC4Tg6I2hIZ/HzlwO4Wz2hD+jeauxeOkbN7ZQohKm6zqmpiaXLvkoSKUWjMdqa+sgSWEEgyI/dNKGKnpgufbaa1d8vW/fPjgcDnziE5/A+Pg4mpubi10CbWILC8kVi/kSiQTS6RQqKioQuuEm7PvlY2hKLsCi5U/487ogIPX+DwFL2+sTbWXz84WWE4oSwfT0MWPc7a5AKCQiFBLR2MiWE2QOU9aw1NTUAChszUx0phYXFxGL9UBVZQwPD+HGG29BbW1h06lzzz0P4fB2dHR0wmKxwPatB4Hrr4W+sLDi1mbdYgE0DYtXX4OFj37MrH8VItNls4uIxWJQVRlDQ4PGJok2mw0+XzckSUJ7eydbTpDpNiyw5PN55HI5RKNRfP7zn8eBAwfQ3t6+US9PZW651byiRBCLxVa0mh8dHTYCS1PTyjN2ufPOR/yxp+D+P5+H+9++CWGhcGo7H96B1Af+Eukbbwb4RkxbjKZpSy0nIojFelZ8eGxpaYUoSggEQnA6nSZWSbSSoC/H6SK77LLLMD4+DgC49NJL8c///M8r+rCsRSKRQj6vrUd5tEZWqwVer7uox2Jqago//vEPX9NqXpK2L7Wa967uiRYXIRw7Bric0GtqC7c8byIbcSxodUr1WBw7dgyKEoGiyJifnzfGq6trIIoSJCmM6upqEytcf6V6LLaq6mr3mu8i27DAEolElrY+j+Lee+9Fe3s7vvrVr/I0I71GMpnE7OwsWltbAQC5XA5f/OIXIQgCJEnCjh070NLCLfKJVmNhYQFHjx7Fyy+/jImJCWPc6XQa86m1lVvkU+nbsMByvEgkgmuvvRb/9E//hKuuumrNz8PEbL71+vSSzWbR19cLWY5gcHAAVVVe3HLLrcab6NTUJGpr6xhwT4GfJEuH2cdieT4pimy0nAAKW+T7fF2QpDB8vi7YbJt/Ky6zjwWtdDZnWEz5bZUkCXa7HQMDA2f1PPm8hlyOv4ClYC3HQtf1pevoMmKx6IpW8w6HE/PzC0ab+Zqaeug6eLxXgfOidGzksdB1HaOjI1AUGT096or51NTUbGyRvzyngK01nzgvSsPZnCIxJbAcOXIE2WyWi263uKef/k/84Q8vGF9XVXkhSRJCIbaaJ1qtmZk4VFWGLMuYm0sY45WVVZCkMEIhyViUTlTOih5YbrvtNuzatQuSJMHlciESieArX/kKJEnCwYMHi/3yVCIK65dUtLW1Gf16urq6EYm8zFbzRGconU4jGlWhKBGMj48Z4w6HA35/EKIoobW1jfOJNpWiB5bdu3fj4Ycfxn333Qdd19HW1obrr78e733ve9kRd5PL5XIrWs1rmobdu/fi4osvBQC0trbh0KH3sNU80Srk8/kV8ym/tK+QIAjo6OiEKEro6vJzPtGmVfTA8oEPfAAf+MAHiv0yVCJ0Xcf4+BgUJYKenuhrWs3X17/SYFAQBL65Ep2CruuYmBiHosiIRlWk0ynjsYaGRoiihGAwBI+n0sQqiTbG5l8iThtK13U88sjDWFjaoG251bwkhY1LQUR0aolEAqoqQ1EimJmZMcY9Hg+CQRGSFEZ9fYN5BRKZgIGF1iyTyUCWe3Ds2BguueQAgMJtkzt27MTc3BxEMYzW1ja2midahUwmg1gsCkWRMTIybIzbbHb4/X6IYhhtbe2cT7RlMbDQGcnn8xgaGoAsy+jv74Wm5eF2O9DdLaKlpXDX1wUXXGRylUTlQdM0DA4OQFEi6OvrRS6XA1C4XNra2gZRDMPvD3C9HxEYWGiVEolZvPjiH17Tar6xsQHnn3/uirUpRHRyuq5jamoSqipDVRXj8ikA1NbWQZLCCAZFVFVVmVglUelhYKGT0nXduC0ylUobe6Yst5oXRQnbtjWjrq4S8XiSmzIRncL8/DxUVYGiRDA9fcwYd7ncxnxqbGzirchEJ8HAQisst5pXlAi8Xi/e8IbC2pSmpibs3r0X7e0daG/vMLbI55sr0clls4tQ1R4oSgRDQ4NY7oRis9ng83VDkiS0t3ey5QTRKjCwEDRNw/Dw0FKr+RhyuUKreafTiUsueQOsVisEQTD2TyGikyusSxnCM8/04Q9/eAmZzCtb5Le0tEIUJQQCITidThOrJCo/DCxb3JEjz+PIkeeRTCaNsZqaGohiGKGQyE9+RKs0PX0MiiJDVWUsLCThdjuQzWZRXV0NUQxDFCV4vdVml0lUthhYtpiFhSScTpcRRBYXM0gmk3C5XAgEQpCkMJqamnmph2gVUqkFY13K5OSkMe52u7B79zloa+tGQwPXpRCtBwaWLSCbzaK/vxeyLGNoaABXXnkV/P4AACAc3on6+kZ0dvq2RKt5orOVy+XQ19cLRYlgcHAAmlZYbG6xWODzdSEUkhAI+NHYWM3F6ETriH+hNild1zEyMgxVVV7Tan5iYtwILFVVVbx9kug0dF3H6OgIVFVGT08UmUzGeKypqRmiGEYwGILb7QYA2Gzc3I1ovTGwbELpdBoPPvidFa3mq6q8kCQJoZCEmhq2midajdnZGShKBIqiIJGYNcYrK6sgihJEMYzaWs4noo3AwLIJpFIpTE5OoLPTBwBwuVxwuVzIZNIIBEIQRQktLa28jk60Cul0Gj09KhRFxtjYqDFut9uN+dTa2sb5RLQKmUwGPT0q+vp68aY3vfmsnouBpUzlcjmj1fzAQD8EQcChQ+8xbpU8ePBP4PFUshsy0Srk83ljPvX39yGfzwMo7DPU0dEJUZTQ1eXnfCJahXw+j8HBfiiKgv7+V1pODA72o7HxnDU/LwNLGdF1HePjY1AUGT09KtLptPFYY2Mjksl5I7Dwsg/Rqem6jomJCShKBNGoinQ6ZTxWX98AUZQQConweCpNrJKofCQSCfzhDy8gGlVXtHCpq6uHKBbuQD0bDCxl5KWX/ognn/yl8bXH40EoJEGSwqirYy8fotVIJBKIRgu3IsfjcWO8oqICoZAEUZTQ0NBoYoVE5UPTNKODeC6XxYsvHgFQaOEiiiJEMYz6+oZ1uYTKwFKillvNV1ZWoaOjEwDQ3d2NZ599Gt3dhVbzra1tbDVPtAqLi4uIxaKQ5QhGRoaNcZvNju7ubohiGO3tHZxPRKtQmE+FlhMejwdXXPEnAApnUvbuPQ+trW3o6Ohc9/nEwFJC8vk8hoYGIMuycd2vo6PTCCweTyXe9a73cr8UolXQNA1DQ4NQlAh6e2PGdXRBENDa2gZRlOD3B+FwOEyulKj0nayFi81mx2WXZY31Xfv3X1y0GviXrwRMTk4sbemtrLjuV1tbh/b2jhVdkxlWiE5tamoSihKBqipYWDh+PtUutZyQuPcQ0Rn4wx9ewAsv/P4kLVykDVuMzr9+JeDpp//TOE3tdlcYreYbGhp56yTRKiST80tb5Ms4dmzKGHe53AiFRIRCEpqauEU+0WosLCRhtzuMIJLP540WLsFg4e+TGS1cGFg2UDa7iFgsBlWVccUVV8LtrgAAbN++ExUVFRBFtponWq1sdhG9vYUt8oeGBqHrOgDAarXC5+uGJEno6PBxPhGtQjabRV9fDIoiY3BwAFdccSVCIQkAIIqFDUc7O82dTwwsRaZpGkZGhpeu+/Ugmy1c91NVBbt37wWApR0zJROrJCoPyy0nZDmCWCxqzCcAaGlpRSgkIhAIweVymVglUXlYnk+KIiMWi65o4TI5OWEEFo+nEt3d5t/ez8BSJKnUAl544Xmoqrziut9yq/muLr+J1RGVl+np6aV1KTLm5+eNca+32gj81dU15hVIVGay2UV85zvfWtHCpTCfxJJt4cLAso6Ovx8dEPDii0eQz+fhcrkQCIQgSWFTrvsRlaNUagHRqApZjmBycsIYdzqdCASCEMUwtm1r4XwiWoVUKoWJiTH4fN0AALvdgcrKSiwuZspmPjGwnKVsNov+/l7IsoxsdhF/9mfXAQDcbjcuuGAfqqtr0Nnp4909RKuQy+XQ11dYlzI4OABN0wAAFosFnZ0+iGIYPl8X5xPRKuRyOfT39xktXADg0KH3GF3FDxw4CLe7omxaTnDWr8Fyq/nlLfKPv+43Nzdn3DJ57rmvM6tEorKh6zrGxkahKBH09ESRyWSMx5qamiGKEoLBkLFInYhO7pUWLoX5dKIWLsuBxeutNqvMNWFgOUOqKuPZZ59Zcd2vqsq71HeE+zsQrdbs7AwUJQJFUZBIzBrjlZVVS7f2h1FXV2dihUTlR5aP4vHHHzW+rqysNFpOlHsLFwaW00ilUhAEwbjrQBAEzM0l4HA44PcH2Wqe6Ayk02n09KhQFBljY6PGuN1uh98fhCSFOZ+IVimTyaCnR0VFRYVxI4fP1w2n04muru5N18KFgeUEcrmc0Wp+YKAf559/Ic4773wAhV+GK698E3y+7rK57kdkpnw+vzSfCi0n8vk8gEL47+johChK6Orycz4RrcKJWri0tLQagcXtduNd73rvptx/iIFlSaHV/DhkOYKeHnXFdb/JyUnjn+12O4JB0YwSicpGYT5NQFEiiEZVpNMp47H6+oalS6giPB7z93YgKgeTkxOQ5cJ8Or6FS11dPXy+7hUtXDZjWAEYWAAU3ly///3vrAgmHo/HuO5XX99gYnVE5WNubg6qKkNRIojH48Z4RUWFMZ8aGhpNrJCoPP3mN88Yd/q43RXGfilbqYXLlgwsmUwGg4MDCAZDAAqnpuvq6hGPz8Dv90MUw2hra9801/2IiqnQaj4KWY4YPbGAQhfX7u7CdfT29g7OJ6JVWG7hoigRvPGNVxg3coTDO+BwOCCKYXR0dG7J+bRlAoumaRgcHICiRNDXV7juV1NTY3za27dvPy699A2w29lqnuh0NE3D0NAgFCWC3t5eo9U8ALS1tUMUJfj9QTgcnE9Ep6NpGoaHh5ZauMSM+RSNKsb2GIFAEIFA0MwyTbepA4uu60ut5mVEo69uNV+3Yp0Kr6UTnV5hPkWgqq+eT7VGq3ne2k+0OqlUCi+88PvXtHCpqamBKIYRCIRMrK70bOrAMjIyjB/96AfG1253BYLBEERRQmMjW80TrUYyOQ9VVaAoMo4dmzLGXS43QqHCdfSmJs4notXI5/PGolir1Yo//vFF5HJZtnBZhU0TWJav++m6jnB4OwBg27YWVFZWobl5GyRJQnt756ZdPU20nrLZRfT29kJVC63mdV0HUHiD9fm6IUkSOjrMbTVPVC6Ob+GSSi3g7W+/EQDgcDiwb99FqKryorOT8+l0yjqwHH8dPRbrQTabRWVlJSQpDEEQYLVacfPNt/KXgGgVllvNy3IEsVgU2ewr61K2bWuBKEoIBELGJopEdHLL80lRZMRi0RUtXGZm4kY35N2795pUYfkp28CSSqXwzW9+DYnEnDFWXV0NUQwjl8sZm1AxrBCd2vT09NKtyDLm51+ZT4VW84Vbkaura8wrkKjMRKMKnnnm169p4SJJhRYuy2GFzkzZBpZMJoP5+Xk4nc6ldSlhNDdv43U/olVIpRYQjaqQ5QgmJyeMcafTWTat5olKRSpV2BhxuamgzWYzWrgEAoV1ky0trZxPZ6lsA4vdbsdVV70ZbW2dbDVPtAqvbjWvaRoAwGKxoLPTh1BIQldXN+cT0Sq8uoXL3r3n4cILLwIAdHT4cOWVV8Hn62LLiXVU9Hemn/70p/jRj36El156CYlEAj6fD7feeiuuu+66s0qbHo8HgUAQuZy2jtUSbS7Ht5qPRlVkMhnjscbGJkhSGMFgCG53hYlVEpWH4+dTT090xdYY09PHjH+2Wq3GxqS0fooeWL72ta+hra0Nd9xxB2pra/H000/jE5/4BMbGxnDbbbcV++WJtqTZ2RkoigxVlTE7O2uMV1ZWGvul1NXVmVghUXnRdR0PPfQ9TEyMG2OVlZVGy4m6unoTq9saih5Y7r333hVvjPv378fMzAy++tWv4r/8l/+yJbcXJiqGdDqNP/yhB7/97fMYHn5li3y73Q6/PwhJKrSa53V0otPLZDLo7+9DKCRCEAQIgoCGhgbE49Pw+wMQxcJ84t+wjVP0wHKiT3Hbt2/Hd7/7XSwsLKCykjvMEq1VPp/H4GA/ZFnG4GAfHA4rUqlFCIKAjo5OiGJhXQpbThCdXj6fx9DQAGRZRn9/oYWL1+vFtm0tAIALLtiH17/+Es4nk5iyuu53v/sdmpubzzqsWK1MtmZbPgY8FhtH13Wj1byqKsYdChaLgIaGZnR1FXqOsN2EeTgvSsfpjsVyCxdZjkBRFKRSr7ScaGioh6blYbMVftbrZduJs3U2J3g3PLA899xzePjhh/Gxj33srJ/L63WvQ0W0Hngsii+RSODo0aN4+eWXMT09bYw3NNQiHA5jx44daGpqMrFCejXOi9JxsmMxPDyM//iPh4yv6+trVswnXkItHRsaWMbGxnD77bdj3759OHTo0Fk/XyKRQj7Pu4TMZLVa4PW6eSyKZHFxEbFYFLIcwfDwsLFFvs1mW7qOLhmt5pc/QfJYmI/zonQcfyzS6TR6enqQy+Wwa9c5AAC3uxpOZwUaGhohSWF0dLzSwmVmZuFUT01rUF3tXvO6nw0LLIlEAu9///tRU1ODe+65Z10WKuXzGm9rLhE8Fuvn+JYTvb29Rqt5AGhtbYMkheH3B+FwOJa+H8aeKgCPRSnhsTCfpmno6+vDb37ze0SjPcjlsnC7KxAKhY1gcv31Nxt/k3QdPGZFtPSZa002JLCk02l88IMfxNzcHL7zne+w/TzRCRw7NgVZjiAaVU7Yaj4UkuD1ek2skKh8TE9PQ5aPoqdHgaZlkUotQtN01NTUIBSSoGmvdE3mnT7loeiBJZfL4SMf+QhisRgeeOABNDc3F/slicrGwkISqqpAUWRMTU0a4y6X22g5wevoRGcuEnkJR468AItFQG2tF4GAhGBQQlNTM+dTmSp6YLnrrrvw+OOP44477sD8/DxeeOEF47EdO3YYp7WJtopsNou+vhgURcbg4ICxLsVqtcLn64IohtlqnmiVstks+vt7Icsy9uzZi/b2DgCAKIaRSCSwfft27N27E3NzGV7qKXNFDyxPPfUUAODuu+9+zWOPPvoo2tvbi10CkelO1Wq+uXkbJCmMQCAEl8tlYpVE5UHXdYyOjkBRZPT0qMZ8crtdRmBpaGjEVVe9BTabZak/VuYUz0jloOiB5bHHHiv2SxCVrHg8DkWJQFFkzM/PGeNebzVEUWSreaIzkMvl8PvfPwdFkTE3lzDGq6q8EMXCFvm0ebEtK9E6S6VSiEZVKEpkRd8Rp9OJQCAIUQxj27YWXkcnWoVcLmd0ELdarYjFopibS8DhcCAQCEEUJbS0tHI+bQEMLETrIJfLob+/z2g1v3ybscViWdoiP4yurm7jjZeITi6Xy2FgoB+KEsHY2BhuueUQ7HY7BEHA+efvA6DD5+uG3W43u1TaQHz3JFqj41vNR6MqMplXrpE3NjZBksIIBkNwuytMrJKoPOi6jomJcchyBD09KtLptPHYyMgwfL4uAEAwGDKpQjIbAwvRGZqdnYGiyFBVGbOzs8b4K63mwyds+klEJzY8PIRf/epxzMzMGGMej2dpPkmor28wrzgqGQwsRKuQTqcRi0WhKDJGR0eMcbvdDr8/CFGU2GqeaJUymQwymYyxEaLH48HMzAxsNjv8fj9EMYy2tnbOJ1qBgYXoJPL5PAYH+yHLMgYG+pDL5QAAgiCgvb0DohhGd3c3W80TrUI+n8fQ0AAURUZfXy86O31405veDACoqanF1Ve/BW1t7ZxPdFIMLETH0XUdk5MTS5d8FKTTKeOxurr6pS3yRVRWVppYJVF50HUdU1OTxnxKpV5pJphIJKBpmnEWpavLb1aZVCYYWIgAzM3NQVVlKEoE8XjcGK+oqEAoJEIUw6ivb+Ctk0Rn4Be/eATRqGp8XWg6KCIUEtHYyJYTdGYYWGjLWlxcRCzWA0WJYGRk2Ngi32azoaurG6JYaDXP6+hEp5fNLiIWi6GrqxtOpxMAsG1bC/r6euHzdUOSJLS3d7LlBK0ZAwttKZqmYWhoEKoqIxaLIZfLGo+1trZBksLo7g4Yb7hEdHKapi21nIggFutBNpvF5ZdfgXB4BwBAkrZDFMOcT7QuGFhoSzh2bAqyHEE0qiCZTBrjNTU1S+tSJOOOBSI6tenpY5DlCFRVXjGfqqurIQivnJFkc1taTwwstGktLCShqgoURcbU1KQx7nK5EAiEIEnb0dTE6+hEZ2JhIYnvfvdbxiXUwnwqtJxobt7G+URFw8BCm0o2m0VfXwyKImNwcMB4U7VarfD5uiCKYXR2+ngdnWgVstks+vt7EY9P44ILLgIAVFR40NHhg9VqMeYTW07QRuBvGZU9XdeXrqPLiMWiRqt5oLDoTxQlBAIhuFwuE6skKg+6rmN0dASKIqOnR8Xi4iIEQcD27buM2/nf/OZreCaFNhwDC5WteDwOVZUhyxHMz88Z41VVXkiShFBIQk1NrYkVEpWPRGIWsnwUsixjbi5hjFdWVkGSwrBYXgkoDCtkBgYWKiupVArRqApFiWBiYtwYZ6t5orMzPDyE5577LYDCfDq+5QTnE5UCBhYqece3mu/v74OmaQAAi8WCjo5OiGIYPl8XW80TrUI+nzfmU1tbB3btOgcA4PcH0dfXi2AwhK4uP+cTlRwGFipJuq5jfHwMihJBT090Rav5xsZGY4t8t7vCxCqJyoOu65iYGIcsR9DToxrzaW5uzggsTqcTV199jZllEp0SAwuVlERiFopS2CJ/dnbWGK+srDRazdfV1ZtYIVF5ef753yMSeQkzMzPGmMfjMeYTUblgYCHTZTIZ9PSoUBQZo6MjxrjdboffH4AohtHa2sYt8olWIZtdXNHxeGJiDDMzM7DZ7PD7/RDFMNra2jmfqOwwsJApllvNy7KM/v5e5HI5AIW7D9ra2iGKYfj9fraaJ1oFTdMwODgARYmgr68PN9xwE6qrawAAu3fvhc/XDb8/wJ1nqawxsNCG0XUdk5MTUFXlNa3m6+rqjXUpy3s9ENHJ6bqOqalJKIqMaFTBwsIr86mvrxd79pwLAGhpaUVLS6tZZRKtGwYWKrq5uTlEowpkOYJ4fNoYX241L4oSGhoaeesk0SrF43H87Gc/xfT0MWPM5XIb86mxscnE6oiKg4GFimK51byiRDA8PGRskW+z2dDV1Q1RDKO9vYNb5BOtQja7iLm5OWPBeWVlJebn52Cz2eDzdUMUxaXt8jmfaPNiYKF1o2kahoeHllrNx5DLZY3HWlpaIUlh+P1BtponWgVN05ZaTkQQi/WgsrISN954CwRBgN1ux9VXX4P6+gbOJ9oyGFjorE1OTuI3v3kekcjRFa3ma2pqltalSPB6vSZWSFQ+pqePQVFkqKqM+fl5Y1zTNKRSC6io8AAAWlvbzCqRyBQMLLQmCwtJqKqCaFRBMjmLVGoRmqYvtZoPQZLCaGpq5roUojPwm988g9/97rfG106nE8FgCKIYRnPzNs4n2tIYWGjVllvNy7KMoaEBaJoGi0WAx+OC3x9AICCy1TzRKuVyOfT19aKhocFo0tnS0gqLxQKfrwuhkASfr4vziWgJZwKdkq7rS9fRZcRiUSwuLhqPNTdvw/bt23HBBXuRTmvI5TQTKyUqfbquY3R0BKoqo6cnikwmgz179uL1r78UANDW1o5Dh97NlhNEJ8DAQicUj8ehqjIUZWWr+aoqL0SxsKV3TU0tbDYL3G430unkKZ6NaGubnZ2BokSgKAoSieNbTlQZa1KAQkNPhhWiE2NgIUMqlUI0qkJVZYyPjxnjDocDgUAIoiihpaWV19GJzoCmafjBD75vbJRot9uN+dTa2sb5RLRKDCxbXC6XM1rNDwz0I5/PAyh80mtv74QkSfD5utlqnmgV8vk8Bgb6MTTUj7e97a0ACnNJFCXE49MQRQldXX7OJ6I1YGDZgk7Wah4AGhsbIYphBIOhFaeqiejECvNpAooSQTSqIp1OwWIRcP75e1FVVdjobf/+i3kmhegsMbBsIYnErLG/w4lazUtS2NhJk2grsVh64HZ/A1brUQB2ZLP7kU7fAl2vPenPLCwkcfToy1CUyIr5VFFRgXB4O7xeL5Y2eC7jsJKBzfY8BCEFTetAPh80uyDawhhYNrlMJoNYLApZjmB0dMQYt9nsCAQCEMUwWlvb2GqetqgcKiv/Bm73l6HrVgB5AAIcjh/D47kLc3P/LzKZd57wJxOJBH7zm2cAFOaT3+9HKCShvb0DDocNNTUexOPluhg9hYqKf4Tb/WVYLDPGaDZ7IZLJjyObvcK80mjLYmDZhPL5PIaGBqAoMvr6epHL5QAUPuW1tbVDFMPw+/2w29lqnra2ysq/gcv1FQCAIOSXRgunRXQ9A6/3v2Bmxolo9AKoqgy3uwIXX1y4Bbm5eRskKYzW1nb4/QE4HJtlPqVQU/OnsNl+C0FYuVWBzfYcqqv/HHNz9yKTudmk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/fMLHdB2YnLTgpZfsOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9XXouvW4MysFf/yjDb/7nQNTU8udj+dRWTmE7u5rEApJm7wjcgou11dOGFaWCUIh0LndX0Uy+XcbVxpteQwsZSibXUQsFoOiRDA8PAR9aWWfzWZDV1c3RFFCe3vnJn9jJTo7VuvLAPJYXARsNmB5GVc8bsHUlBUWi45AIIcdOzQ0NrZgcfEyU+vdCHb7s7BY5k77fYKQh8PxIwYW2lAMLGVC0zQMDw8tbendg1wuazzW0tIKSQrD7w+y1TzRKui6jsFBHarqgqra8OY3pxAMFs607NqVRXW1jlAoC7cb0HULksmtsW+KICyc/puM7y3XBcVUrooeWPr7+/GVr3wFR44cgaqq8Pv9+PGPf1zsl900pqePQZYjUFUZyeQrbxA1NTUIhQpb5Hu91SZWSFQ+pqenoSgRqKqCTKYCdrsdggD09dmMwFJbq6O29pUPBIKgIZvdb1bJG0rT2lb1fbpugaZ1FLkaopWKHlhUVcUTTzyBPXv2QNM04/IFndzCQhLRqApFiWByctIYd7lcCARCkKQwmpqauS6FaJUymQz+4z/+HZOTE8aY03k+9ux5FDt2pNDaeuI1G7puRS63C7nc6zaqVFPlcruRy4VhtcoQhFO9V2tIpf5io8oiArABgeXAgQM4ePAgAOCOO+7AH//4x2K/ZFnKZrPo7++FLMsYGhqAphXeQK1WKzo7fRDFMDo7fWw1T7QKuVwOx45Nobl5GwDA6XRC13VYLBZjPvl8XaisrEFV1V/hRJ+jCvuyODA/f8/GFm8qAcnk36K6+tBJv0PXrdC0NmQyf76BdRFtQGDhhmQnt9xqXlFk9PSoWFxcNB5rbt4GUQwjEAjC7XabWCVRedB1HWNjo1CUCHp6osjnNbzrXe8x9kd54xsPoLKyckU35HT6L6Drbng8d8JqHV8KKToEQUM+vx1zc19ALrfXnH8hkywu/hnm5++Gx/NxABbjLipdFwDo0LRWzMz8BwB2laaNVdYf163W8gxDMzNxyHIEiiIjkUgY4zU11RDFwhb5NTUn3xK8lCwfg3I9FpvJVj0Ws7MzkOUIZFlGIjFrjFdVVSGZTKCiogkA0NKy7YQ/n8+/A4nE9bDbfwaLpbA1fy73euTzrwMgYC0nNcv9WGSztyGROACn80twOH4CIAVN60Qm814sLt4Ii8WDcvksWu7HYrM5m5UMZR1YvN7yOfOQSqUgyzJefvlljI6OGuPV1ZWQJAnbt29He3t72a5LKadjsdltpWPxxz/+EY888ojxtdfrgSiK2LFjBzo6Os5wPl2/7vWV97G4YOl/BRZL4fZvT5n2RC3vY0FAmQeWRCKFfP7kGxyZLZfLob+/D7IcwcBAP/L5wqlVi8WCjo5OSFIYXV3dRqv5mZnV31JYKqxWC7xed8kfi61gsx+LfD6P/v4+uFwutLYW7mbxehuQyeTQ3t4BSQqju9tfEvNpsx+LcsJjUVqqq91rXipS1oEln9eQy5XWL2Ch1fw4ZDmCnh4V6XTaeKyxsRGiGEYwGEJFxSsfU0rt32EtSvFYbFWb6VgU5tMEFCWCaFRFOp1CZ6cPb3lLCwDA7fbg1lvfA5fLZfxMKf27b6ZjUe54LErD2dwoXNaBpZQkErNLfXzkFa3mPR4PQqHCupS6unrzCiQqI4lEAtGoAkWJIB6PG+MVFRWoq6uHruvG5Z7jwwoRbV4MLGchk8kgFotCliMYHR0xxpdbzYtiGG1t7bxTiugMPfbYz405ZbPZ0d3dDVEMo729g/OJaIsqemBJpVJ44oknAADDw8OYn5/H4cOHAQAXXngh6urqil3CutI0DYODA1CUCPr6epHL5QAAgiCgra0dohiG3++H3b5ZWs0TFY+maRgaGoSqynj96y81buGXpDAsFsvSfAoYtyYT0dYl6EXeenZoaAhXXHHFCR/7xje+gX379q35uePx5IZck9R1HVNTk0uXfBSkUq8s5qutrYMkhREKSaisrCx6LaXGZrOgttazYceCTq6cjkVhPhW2yF9YKMynSy55A845ZzcArLjkU47K6VhsdjwWpaWuzrPmW8yLfoalvb0dsiwX+2WKYn5+HqpauI4+PX3MGHe7KxAKiQiFRDQ2NpX1GyvRRslkMjh69CUoioxjx6aMcZfLjWAwhNbWVmOMc4qIXo1rWF4lm11ELBaDqsoYGho0eh/ZbDb4fN2QJAnt7Z2wWq0mV0pU+o4/U6JpeTz77K+haRqsVqsxnzo6fJxPRHRaDCwoXEcfGRmGokQQi/Ugm32lU2tLSytEUUIgEILT6TSxSqLyoOs6RkaGIcsRpFIpvOUtbwVQODO5d+95qKysRCAQ2lR39wjCNJzOB2G1DkDXncjn/wTAiS+FE9HabOnAMj19zLgVeX5+3hivrq6GKIYhihK83moTKyQqH9PT01BVGYoiY35+zhhPJGaNebRv336zyiuSPDyez8DtvgdAFoW3VB2C8I8AdsFiuR9A2NQKiTaLLRdYUqkFY13K5OSkMe50OhEMhiCKYTQ3b+M1dKJV6uuL4bnnfovJyQljzOl0IhAIQhTDqKrymlhdcVVW/je4XPdDEJbvXcge9+hRVFUdxMzM48jnQ2aUR7SpbInAks1m0d/fB0WJYHBwAJpWWClusVjg83VBFMPo7PTBtpYuZ0RbTC6Xg65rxq372WwWk5MTsFgs6Oz0IRSS0NXVbdJ8ysNu/yWs1kHouhuLi5dD15uK8ko22+/gdn/llLUIQhIez39HIvHdotRAtJVs2r/Quq5jdHQEiiKjp0fF4uKi8VhTU7OxRf7yvg9EdHK6rmNsbBSKEkFPTxTnnvs6nHvu6wAAXV1+XHLJZUvzqcK0Gl2ur6Oi4n/Aah0zxnTdikzmbZif/0fo+vruNO1yfQW6boMg5E76PYKQh8PxCCyWIWha+7q+PtFWs+kCy8xMHKoqQ5ZlzM0ljPHKyipjv5Ta2loTKyQqH7OzM1CUwrqURGLWGB8aGjQCi91uxznn7DGrRABARcXn4PF85jV9SgQhD6fzB7DZnsfMzC/WNbTY7b8+ZVh5pQYdNtvzWFzcqoGlENocjl8ASEPTupBO38wAR2dsUwSWdDqNaFSFqsoYGxs1xh0OB/z+IERRQmtrG9elEK2Sruv4yU9+hMHBAWPMbrfD7w9CksJGt+RSYLW+BI/nMwCAE01xQcjDau2Dx/NpzM//f+v4ymey52ZR9+csWTbbs/B63wWrdQS6vvznRkdFxf9AOv1uzM//IwC7mSVSGSnbwKLrOmKxHhw9ehT9/X3I5/MAChtOdXT4IIoiurpeaTVPRCeXz+cxNjaKtrbCp15BEOByuZbmUydEsbAupRRbTrjdX17VpRmX69+QTN4FXV+fO/9yuXNhtQ6s6ixLLrdrXV6znNhsR1BT81YsL0R+9X8nl+urEIQ5zM19GQA/TNLplW1gSSQS+OlPfwJNK3xyaWhohChKCAZD8Hi23hb5RGdK13VMTk4YLSfS6RRuvPFmo6v4hRdehP37Ly75+eRw/GKVl2bSsNl+h2z2wLq8bjr9Prhc3z/l9+i6FdnspdA0/7q8ZjnxeO4EkIUg5E/4uCDocLm+h1TqA8jl1t6ihbaOsg0suq7D4/HA7w9BksKor28wuySisjA3N7e0X0oE8XjcGK+oqMDcXMIILOWzB1Fm1d8pCKv/3tPJZl+PdPptcDp/CEE4UY8aCwA7kslPr9trlguLpQcOxxOn/T5dt8Ht/jLm5hhY6PTKNrB4PB4cOvRuaOxlRbRqo6Mj+OEPH1rRcqK7249QSEJHRycslrU1JTNTPi/CYpk86Sf5ld8bXMdXFjA39yXoehVcrm+iEFAK44UzPs2Ym/smcjlzFySbwWZ7cVXfJwg52Gy/K3I1tFmUbWCx2+2wWBaNPVWIaCVN0zA0NIhsNotAoPCHuqmpGS6XG7W1tZCkMPz+IByO0luXcibS6ffA4fjVKb9H1y3I5S4swgZuDszP/wsWFv5vuFwPwGrth667kc9ficrKtyOfzwDYiu9RZ7ImhetXaHXKNrAQ0YlNTU3h5ZdfhqrKWFhYQFWVF35/AIIgwGq14uabby37kHK8TOatyGb3wGb74wnPsui6AEBAMvmJotWgaT4sLPyt8bXNZkHh7XX9LkGVk1xuL3RdOG4H4BMrrPHh5SBaHQYWok0gmZxHLBbF4GAMg4MjxmJ0l8sNn68LuVzWuMNnM4WVAjtmZ/8d1dVvh93+O+i6FYKQX9qTRQDgQCJxP7LZS02uc+vQNB8WFw/C4XjslJfqBCGPdPp9G1gZlTMGFqJN4LnnfoNI5GW43Q5YrVZ0dXVBkiR0dPhgtVrNLq/odL0eMzOPwm5/DC7XN2G19kLXK7C4+Gak07es+y63dHrJ5P+E3X45gNRJz3yl03+BXO68jS+OyhIDC1EZ0XUdIyPDUBQZO3bsQnNzMwBAFMOYmYnjggvORVNTO2y2zXYWZTUsyGYPIps9aHYhBCCflzAz8wi83r+AzaYubRwnAMgDsCKVug3J5CdNrpLKCQMLURmIx+NQlAgURcb8/BwAwGq1GoGlpaUV1113PWprPYjHk8jltuJCTyo1+fw5iMefg93+FByORwGkoGk+pNM38KwXnTEGFqISlcvlcPToy1CUCCYmxo1xp9OJQKCwRT5R6ROQzV6CbPYSswuhMsfAQlRCdF03el5ZrVa88MLvMD8/D4vFsrRFfhhdXd2w2Th1iWhr4bsekcl0Xcf4+BgUJYKRkWHccMPNsFgsEAQB5557PjQtj1BIhNtdYXapRESmYWAhMkkiMQtZjkBVZczOzhrjQ0OD6Oz0AQB27TrHrPKIiEoKAwvRBhsbG8UzzzyN0dERY8xut8PvD0AUw2htbTOxOiKi0sTAQlRk+Xwei4uLcLvdAAr9e0ZHRyAIAtrbOyCKYXR3dxsbuxER0WsxsBAVga7rmJycgKLIUFUFPp8PBw5cCQCor2/AG95wOTo7u1BZWWlypURE5YGBhWgdzc3NQVVlKIqMeHzaGB8bG4WmacZi2h07dplYJRFR+WFgIVonv/zlY4hEXoZeaGIDm82Grq5uiGIYHR2dsFgsJldIRFS+GFiI1kDTNAwPD2HbthbY7XYAQFVVFXRdR2trGyQpjO7uAJxOp8mVEhFtDgwsRGfg2LEpyHIE0aiCZDKJK6+8CsFgCACwY8cuhEISvF6vyVUSEW0+DCxEp7GwkISqKlAUGVNTk8a4y+XG4mLG+Nrtdht3AhER0fpiYCE6hWRyHv/6r1+HphWaCVqtVvh8XRDFMDo7fbBarSZXSES0NTCwEC3RdR0jI8OYnp7GOefsBgB4PJVobGyCIAgQRQmBQAgul8vkSomIth4GFtry4vE4FCUCRZExPz8Hq9WKUEg0gslb3/pnxsJaIiIyBwMLbUmpVArRqApFiWBiYtwYdzgcCARCyOVyxhjDChGR+RhYaEtSVRlPPfUkAMBisaCjoxOiGIbP18WAQkRUghhYaFPTdR3j42NQlAhaW9sQDIoAgGAwBFVVEAqJCAZDqKjwmFwpERGdCgMLbUqJxCwURYaiRDA7OwugsFZlObBUVHhw3XU3mFkiERGdAQYW2lQikZcRiRzF6OiIMWa32+H3ByCKYRMrIyKis8HAQmVN13UIgmB8raoKRkdHIAgC2ts7IIphdHd3w253mFglERGdLQYWKju6rmNycgKqqiAaVfD2t98Ij6cSALB79x60t3ciFBJRWVlpcqVERLReNiSw9PT04DOf+Qyef/55eDweXHvttfjIRz4Ch4Ofemn15ubmEI0qkOUI4vFpY7ynJ4rdu/cCAHy+bvh83SZVSERExVL0wDI7O4t3vetd6Orqwj333IPx8XHcfffdSKfT+OQnP1nsl6dNYGYmjieffALDw0PQdR0AYLPZ0NXVDVEMo729w+QKiYio2IoeWL797W8jmUziX/7lX1BTUwMAyOfzuOuuu/DBD34Qzc3NxS6ByoymaVhYWDAu6bjdFRgbG4Wu62hpaYUkheH3B+F0Ok2ulIiINkrRA8uvfvUr7N+/3wgrAHD11VfjU5/6FJ566in8+Z//ebFLoDIxPX0MshyBqsqoqPDg7W+/EQDgdDpx4MCVaGxshNdbbXKVRERkhqIHllgshuuuu27FmNfrRWNjI2Kx2Fk9t9VqOaufp7O3fAzWeiwWFpJQlMK6lKmpSWNc1zUsLqZRUVEBAJAk8eyL3eTO9ljQ+uGxKB08FqXluJs6z1jRA0sikYDX633NeHV1tbGh11p5ve6z+nlaP2s5Fs888wx+/etfQ9M0AIDH44Lf78eOHTvQ3d0Nm403sa0F50Xp4LEoHTwW5a+s/yIkEink85rZZWxpVqsFXq/7tMdC13WMjAyjurrGWJtis7mRTKbR3LwNkhRGMBiC2114U5mbywDIbMS/wqax2mNBxcdjUTp4LEpLdbUbFsvaznYVPbB4vV7Mzc29Znx2dhbV1We3HiGf15DL8RewFJzsWMTjcaiqDEWRMTeXwPnnX4gLLtgHAGhr68SNN96Cmppa4/t5PM8e50Xp4LEoHTwWpWHpRs81KXpg8fv9r1mrMjc3h8nJSfj9/mK/PJkglUqhpycKRYlgfHzMGC/su/PKb6vNZlsRVoiIiE6m6IHlsssuwxe/+MUVa1kOHz4Mi8WCiy++uNgvTxtM0zR8+9sPIJ1OAQAsFgs6OjohimH4fF2w2+0mV0hEROWo6IHlpptuwje/+U18+MMfxgc/+EGMj4/jc5/7HG666SbuwVLmdF3H6OgoXn55HNu37wFQCCjd3X5MTU1AFAvrUioqPCZXSkRE5a7ogaW6uhpf//rX8elPfxof/vCH4fF48Pa3vx233357sV+aiiSRmIWiyFCUCObmEnC7HWhoaEFdXSMA4JJLLuMdPkREtK425K9KIBDA1772tY14KSqSTCaDWCwKWY5gdHTEGHc4HNixYwdstlcu9TCsEBHReuNfFlqViYlx/PKXjwEABEFAW1s7RDEMUQyiqakW8XiSK/CJiKhoGFhoBV3XMTU1CUWR4Xa7cd555wMA2tra0d7egfb2ToRC4nF7qXD3SCIiKj4GFgIAzM/PQ1VlyHIE8fg0AKCiogJ7954Hi8UCi8WCt771z8wtkoiItiwGli2upyeKl1/+I4aHh6Av7ehjs9ng83VDkiSTqyMiIipgYNliNE2DIAgQljpQjY6OYGhoEADQ0tIKUZQQCITgdDrNLJOIiGgFBpYtYnr6GGQ5AlWVccUVf4K2tnYAwPbtO+ByuSCKErzes2uVQEREVCwMLJvYwkIS0agKRYlgcnLSGO/pUY3AUl/fgPr6BrNKJCIiWhUGlk0onU7j0Ud/jqGhAWha4VZjq9WKzk4fRDGMzk6fyRUSERGdGQaWTUDXdSQSs6iurgEAOJ1OzM7GoWkampu3IRSSEAyG4Ha7zS2UiIhojRhYytjMTHxpi3wZi4sZHDr0HthsNgiCgDe84QAqKjyorWU3ZCIiKn8MLGUmlUqhpycKRYlgfHzMGHc4HJiePoampkJDyeU1KkRERJsBA0sZURQZv/zlo8jn8wAKnZHb2zshSRJ8vm7Y7fbTPAMREVF5YmApUbquY2JiHFarFQ0NhS7IjY1NyOfzaGxshCiGEQyGUFHhMblSIiKi4mNgKTGJRAKqKkNRIpiZmUEgEMKf/MlVAIDa2lq84x3vRE0N16UQEdHWwsBSAjKZDGKxKGQ5gtHREWPcZrPD4XBA13VjZ1qGFSIi2ooYWErAT37yI2MBrSAIaGtrhyiG4ff7Ybc7TK6OiIjIfAwsG0jXdUxNTUJVZVxwwT4jjPj9ASwuLkKSwgiFJFRWVppcKRERUWlhYNkA8/PzUFUFihLB9PQxAEB9fSMkKQwA2L17L/bsOde47ENEREQrMbAUSTabRSzWA0WJYHh4CLquAwBsNht8vm5UV7/SaNBisZhVJhERUVlgYCmSdDqNxx77ufF1S0srRFFCIBCC0+k0sTIiIqLyw8CyDqanj0GWI8hkMnjjGw8AAKqqqhAO70BVVRVEUYLXW32aZyEiIqKTYWBZo1RqwViXMjk5CaBwaefCC/cZm7ldfvkVZpZIRES0aTCwnKHh4SEcOfI8BgcHoGkaAMBqtaKz0wdRDMPh4OUeIiKi9cbAchq6rkPTNFitVgCFDsn9/X0AgKamZmOLfLfbbWKVREREmxsDy0nMzMShqjJkWcbevedh165zAACBQAjJZBKhkITaWu46S0REtBEYWI6TTqcRjapQlIix8ywAxGJRI7C4XC5ceOFFZpVIRES0JTGwoHDZ5xe/eAS9vTHk83kAhQW07e2dkCQJPl+3yRUSERFtbVsysOi6jnh8GnV19QAK/Xuy2Szy+TwaGhohihJCIdG424eIiIjMtaUCSyKRgKrKUJQIZmZmcMsth4z9US688CLs27cf9fUNJldJREREr7bpA8vi4iJisShkOYKRkWFj3GazY2pqyggsDQ2NZpVIREREp7GpA8vo6Ah+/OMfIpfLAShc+mltbYMohuH3B+BwOEyukIiIiFZj0wQWXdcxNTWJxcVFtLW1AwAaGhogCAJqa+sgSWEEgyKqqqpMrpSIiIjOVNkHlmRyHopS2CJ/evoYamvrcOONN0MQBNjtDtx44y2orKyEIAhml0pERERrVLaBZXFxET/60b9jYGAAuq4DAGw2G+rq6pHLZWG3Fy738IwKERFR+SvbwLKwsIDBwUJYaWlphShKCARCcDrZy4eIiGizKdvAUuiMfBECgZBxpw8RERFtTmUbWKqqqnDBBRcil9PMLoWIiIiKzGJ2AWvFRbRERERbR9kGFiIiIto6GFiIiIio5BU9sDz11FP46Ec/ioMHD0KSJPz93/99sV+SiIiINpmiB5Ynn3wSkUgEF1xwAbxeb7FfjoiIiDahot8l9Dd/8ze44447AADPPvtssV+OiIiINqGin2GxWLhMhoiIiM5O2e7DAgDV1W4s7cpPJlm+u5zHwnw8FqWDx6J08FiUFotl7VuSlHVg4dmb0sFjUTp4LEoHj0Xp4LEof2ccWObm5jAxMXHa7+vo6IDD4VhTUURERETHO+PAcvjwYdx5552n/b6HH34YgUBgTUURERERHe+MA8v111+P66+/vhi1EBEREZ0QL+oRERFRySv6otvh4WG8+OKLAIBUKoWBgQEcPnwYAHDVVVcV++WJiIhoExB0vbg3ej300EP4+Mc/fsLHZFku5ksTERHRJlH0wEJERER0triGhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUckr+8Dy1FNP4aMf/SgOHjwISZLw93//92aXtCX09PTg3e9+N/bu3YuLL74Yn/vc57C4uGh2WVtSf38/PvnJT+Laa6/Fjh07cM0115hd0pb005/+FH/5l3+Jyy67DHv37sW1116LBx98ENw5whxPPPEE3vnOd+Kiiy7Crl27cMUVV+Czn/0s5ubmzC5ty0smk7jssssgSZKxsexqFH2n22J78sknEYlEcMEFF2B2dtbscraE2dlZvOtd70JXVxfuuecejI+P4+6770Y6ncYnP/lJs8vbclRVxRNPPIE9e/ZA0zT+gTTJ1772NbS1teGOO+5AbW0tnn76aXziE5/A2NgYbrvtNrPL23JmZmawe/du3HrrraipqYGqqrjnnnugqiruv/9+s8vb0r7whS8gn8+f+Q/qZS6fzxv/fPnll+t33XWXidVsDV/84hf1vXv36vF43Bj79re/rW/fvl0fGxszr7At6vg58LGPfUx/y1veYmI1W9exY8deM3bnnXfq55133opjROb5zne+o4uiyPcpE0WjUX3v3r36t771LV0URf0Pf/jDqn+27C8JWSxl/69Qdn71q19h//79qKmpMcauvvpqaJqGp556yrzCtijOgdJQV1f3mrHt27djfn4eCwsLJlREr7b8npXNZs0tZAv7zGc+g5tuugnd3d1n/LN8p6MzFovF4Pf7V4x5vV40NjYiFouZVBVR6fnd736H5uZmVFZWml3KlpXP55HJZPDSSy/h85//PA4cOID29nazy9qSDh8+DEVR8OEPf3hNP1/2a1ho4yUSCXi93teMV1dXcx0R0ZLnnnsODz/8MD72sY+ZXcqWdvnll2N8fBwAcOmll+J//a//ZXJFW1MqlcLdd9+N22+/fc0BvuQCy9zcHCYmJk77fR0dHXA4HBtQERHRmRkbG8Ptt9+Offv24dChQ2aXs6Xdd999SKVSiEajuPfee/GhD30IX/3qV2G1Ws0ubUu59957UV9fj+uuu27Nz1FygeXw4cO48847T/t9Dz/8MAKBwAZURK/m9XpPeGvg7OwsqqurTaiIqHQkEgm8//3vR01NDe655x6uMTJZOBwGAJx77rk455xzcO211+LnP/85rrrqKpMr2zqGh4dx//334/Of/7zxt2N5XdfCwgKSySQ8Hs9pn6fkAsv111+P66+/3uwy6BT8fv9r1qrMzc1hcnLyNWtbiLaSdDqND37wg5ibm8N3vvMdVFVVmV0SHUeSJNjtdgwMDJhdypYyNDSEbDaLD3zgA6957NChQ9izZw+++93vnvZ5Si6wUOm77LLL8MUvfnHFWpbDhw/DYrHg4osvNrk6InPkcjl85CMfQSwWwwMPPIDm5mazS6JXOXLkCLLZLBfdbrDt27fjG9/4xoqxo0eP4rOf/SzuuusunHPOOat6nrIPLMPDw8ZOealUCgMDAzh8+DAA8JRfkdx000345je/iQ9/+MP44Ac/iPHxcXzuc5/DTTfdxDdpE6RSKTzxxBMACvNhfn7emAMXXnjhCW+3pfV311134fHHH8cdd9yB+fl5vPDCC8ZjO3bs4Jq7DXbbbbdh165dkCQJLpcLkUgEX/nKVyBJEg4ePGh2eVuK1+vFvn37TvjYzp07sXPnzlU9j6Dr5b0t5kMPPYSPf/zjJ3xMluUNrmbr6Onpwac//Wk8//zz8Hg8uPbaa3H77bfzTdkEQ0NDuOKKK0742De+8Y2TvlHQ+jpw4ACGh4dP+Nijjz7KT/Ub7L777sPDDz+MgYEB6LqOtrY2XHnllXjve9/L28xLwLPPPotDhw7hwQcfXPUZlrIPLERERLT5cfk6ERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8v5/Uw+Slkht6IgAAAAASUVORK5CYII="}}]}}, "7e321030c98a4e6ea5a9d5bba8fc94fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40b3631e052d4f45a2405421746e81f4": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_0b19a987dc1940db96584606cd9c2351", "IPY_MODEL_fe83954702344ffd95336b0bbff9fd20", "IPY_MODEL_e6fcaee78b794c5186b2da37a8679b6c"], "layout": "IPY_MODEL_7e321030c98a4e6ea5a9d5bba8fc94fd"}}, "1eb6fd8829324bcfa28f3b33f304bc8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccdd032dd754402385b0cf1dd57a6410": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0b19a987dc1940db96584606cd9c2351": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_1eb6fd8829324bcfa28f3b33f304bc8f", "style": "IPY_MODEL_ccdd032dd754402385b0cf1dd57a6410"}}, "ed095bc3accc486bbeb67fdc849c7eac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9699938620b041b39e2e7a0699ed8b60": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "fe83954702344ffd95336b0bbff9fd20": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_ed095bc3accc486bbeb67fdc849c7eac", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_9699938620b041b39e2e7a0699ed8b60", "value": 30}}, "a1fdac994ab24d80abc1b17dbb5f38b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6fcaee78b794c5186b2da37a8679b6c": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a1fdac994ab24d80abc1b17dbb5f38b6", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqYElEQVR4nOydd5grZdn/P88zk5n07O4pHM7hFDoqoiL6ghR9URALUhQVBBQLIHbEgt2fDUFAwfJiwQIqSEewAIJiAQELiKC0UzgcTt3d9DbzPL8/JsnZkmSz2SSbXeZzXVxiNplMlp3c89zP9/5+hdZa4+Pj4+PjM4vI2T4BHx8fHx8fvxj5+Pj4+Mw6fjHy8fHx8Zl1/GLk4+Pj4zPr+MXIx8fHx2fW8YuRj4+Pj8+s4xcjHx8fH59Zxy9GPj4+Pj6zjtnqE7dsSXfzPHx8fHx8usyiRbHZPoWG+CsjHx8fH59Zxy9GPj4+Pj6zjl+MfHx8fHxmHb8Y+fj4+PjMOn4x8vHx8fGZdfxi5OPj4+Mz6/jFyMfHx8dn1vGLkY+Pj4/PrOMXIx+fOY6UCiijtTvbp+Lj0zYtOzD4+Pj0F1KCZRmEQmGkFGzZMgpIhBCzfWo+PtPGXxn5+MwxhADTFMRiQWKxMForAGKxkL868pmz+CsjH585hGFAKGQRDFporclk8uRyWWzbJpGIkc8XcF3tr4585hz+ysjHZw4gJQSDBolEmGDQolgsk0xmASpFqEi5XCYej6JUGa31LJ+xj8/08FdGPj59jBBgGIJIxMayApTLDtlsDoBYLIxpGmiticXCpFJZFiwYIBQKUCwqwJjdk/fxmQZ+MfLx6VMmtuSy2TzlsksoZGHbFo7jMjKSxDAMYrEI+XyRXK5ALBalUBjFFzP4zCX8Np2PT5/RqCUnhCAejxAIBMhmC2QyOSwrQD6fx3Vd4vEo6bTXuvPFDD5zDX9l5OPTJ7TSkisWS+TzJWw7QCIRRQiBEJJUKsvQUALbtkincyQSUV/M4DOn8FdGPj59gGFAJGIxMBDBNA2y2TzZbAHbDhCPRwBIpbKUSg6xmLdiKhSKpNNpwuEgWmvy+SKxWIRCwRcz+Mw9/GLk4zOLtNqSy2bzBIMWsVgYpRSpVI5y2aFQKFEqlWstOiEE0agnZggEAoRCAUDN9sf08ZkSv03n4zMLTLclF49HanNFWmsikSCmaVAq2RUVXYJg0CKTyRGLhcnnC76YwWdO4a+MfHx6TDstuWKxTCqVIxAwK64LmlQqhWUFCAQM8vkC0WiYQqHgixl85iR+MfLx6REzackppUgkIgQCXvGqKui81U+ETCYPQCwWIZXKYlmBmpghHA5hmvh7Rz59jV+MfHy6jGdoKmteckpp0ukcpVKZWCxMOBykXC6TSmWR0itMpmmQyeQpFEpEo0FCIZtisUwm462O4vEYiUSCXM4rQtFoiHQ6Syjkixl85iZ+MfLx6SKGAbFYkERiJi05SKdzFaeFCIYhSafTaA2RSIhMJkcoFKRcdn0xg8+cxRcw+Ph0gWq8QzhsI6VEa00ymR1XhLLZAo7jEAptFzFkMkUCAYNEIlJzXagWHSkF+XyBfL6AUhqlshVfuiSO4xKPR3wxg8+cxV8Z+fh0kInxDkppSiUHpVTbLbloNITruoyOJsnlvOIkhKBUKlEqlSpFKOOLGXzmNH4x8vHpEI1UcqZpYBieaWk7LblUKk0qlcZ1FTB2RSPIZHIYhkEgYJLP+2IGn7mLX4x8fGbIVCo5KUVljmhqlVyhUCISCREMWuTzBUZHU5RKZbwiNL61JoTAdd3KSihCNuuLGXzmLn4x8vFpk3otuXoqueqXfrstuYlFaPw5yMrztC9m8JnT+MXIx6cNpjO4KqWsOCrMpCXXGK0hk/FWQo7jjhMzmKZREzNUPexyuQLxeAzbNv3VkU/f4KvpfHymwUSVXLFYJp8vNlXJAeRyBYQQU6rkvOIwPaXbRDFDMplhwYKBcWKGrVtHCIdt4vEoqVSWcDhYMVvNIoT/NeAz+/grIx+fFmi1JTdRJZfPFwEIBq0Zt+SmOMOWxQzRaAilFLZt+WIGn77BL0Y+PlMwUy85oGMtuUZMR8xg25YvZvDpO/xi5OPTgE54yRmGRCk1LZVcu7QiZigUiuMC+Xwxg0+/4BcjH58JtNuSq6eSK5UcgA635BozlZghEgnhuopg0KqJGWKxKForf3XkM6v4xcjHZwydiXfY3pKzLBMhREdbcs2YypnB20/K+84MPn2HX4x8fOhsvMPYlpxSCtdVHW/JNae+mMFxHIQQmKbpOzP49B1+MfJ5RtPJllw9lVwqlcEwJMFgsIefqb6YIRIJ4zgOwaDtOzP49B1+MfJ5xtLpllw9lZzrKgqFIuFwqKdO2RPFDNlsHiklhULRd2bw6Uv8YuTzjKNbLblGKrlcrgB4RaGXjBUzGIZ3qdu23dSZwRcz+MwWfjHyecbQ7ZZcI5Vc1XEhGLQxzd65HYwVM4RCQUqlEoGA6cdM+PQlfjHyeUbQi5ZcM3FCsViiXHaIRsM9+sRVBIVCCSEEjqP8mAmfvsUvRj7zml635JrhKdwkwaDd9c8NVPaDIsRiEVzXJRQK+jETPn2LX4x85iWz1ZJrhuu6PRMz2LbF4GAc2w6QzeYZGUn6MRM+fY1fjHzmHbPdkmtGt8UMpmmQSMSIxSKUSmVGRlIUCsW2YiZ8MYNPL/G9433mDe3EO5TLDplMkUDA6Eq8w0Sqx/daYiUcx+nAJ/dacuGw10L0Vm8pHMcd9/PpxEyMjKQqbcsQ6XTBj5nw6Tr+yshnztOPLblmdFrMMLElNzqaHleIttN6zIQvZvDpNX4x8pnT9HNLrhmdEDM0ask1YjoxE76YwafX+GtvnzmJlBCJ2DUj0n5syTVjrJihWCxN64t+qpZc89d6zgy2bdfEDLFYhFwuWRMzjIykWLhwsCZmWLBggFAoQLGoAKPNT+zj0xy/GPnMKYQAwxCVQhRAKUU6nQMgFgtjmgbFYol8vlQrTFprMhnPGicaDdb2k0qlEsGgd5xSyWvjbV8Jdd+6J5crYNtWrSi0QvX5QEVu3ngl1IiqmCGRiJHPJ8eJGRYsSNTEDLFYmHy+UBMzFAqjgOyprZHPMwe/TeczZ5jYkiuXHZTSfd+Sa8R0nBmm25JrxlQxE74zg89s4Bcjn76n0eCq1hrDkD0dXO00U4kZhBBEImESiRhCwOhoikwm14H9G1/M4NNf+MXIp2+ZSiVnWQGE8L5U+0El1y6NxAytq+Smjy9m8Ok3/GLk05e0opKrto+i0VDft+SaMdGZoZMtuWZMjJnwnRl8ZhNfwODTV0x3cBWoFZ1+UMm1S1XMkEjEMAw5bZVcu/hiBp9+wV8Z+fQF7Q6uOo6L1mrOtOQaYVkBwBMq5PPFjrbkmuGLGXz6Bb8Y+cw6MxlcBTBNc8605CYysSVXLju1wtQ7fDGDz+zjFyOfWaMT8Q5Sen/CxWJ/qeSmopFKrtcxE9Vz8cUMPrONX4x8ek4nveSyWW91FInMnZZcM5VcL2MmxuKLGXxmG78Y+fSUTnvJRaNhtNYUi8U515JrpJLrdsxEI/yYCZ/ZxC9GPj2hm4mrhUIBy7KQ0qAfC9F0B1en48zQ6fP0xQw+s4VfjHy6Si/iHbLZAkr1fiXRCu0OrnY6ZqJ1fDGDz+zgFyOfrtHLeIdsNodtWwQC/TE614nBVV/M4PNMwi9GPh2nmy25Riq5UqlMqVSehZXEeDrpJeeLGXyeSfjFyKdjdLsll9/wNPLfDyEffwLcya2ubDaHlJJQKDgLn747XnK+mMHnmUJ/9DR85jyGAaGQRTBo1Tbgy2WXUMjCti0cxyWV8u6mY7EwUnqBeIVCiVDIxrYDOI5bsfUxicUildVSGveBfxH6zrexbroJUS6BELjLllE4+W0UTnk72F4by3UV+XyBcDhIsVhCqd7cpZumQSQSJhAwKRSKFSuiznwhV3+XXkushOM4HTnuWOSTTxL84aUEr/gZYts2dDRK8ehjyL/jnZT2fzHxeIRkMsOCBQPjxAxbt44QDtu1QD5vlRsinS4ghP/V4jM9hG7xqtmyJd3tc/GZgzTzkqvudeTzxUmJq7mcl7gaCtm1PQitIRSyx3nJGX/5C/FT3orIZtFSelVPa0S5DEJQOugg0j/8CQS3r4YGBxM4jlNTe3WLiYmrmUyuaxY+XttPMDqa6uhxA3f+gfiJJ0CphBiz2tSV33P2GxcTec+7SaezBAImtm2xdesoCxcOVEIMiwwNJRgdTSOEIJGIsm3bCK5r+L51fciiRbHZPoWG+MXIpy0mJq6Wyw75vLdBHw4HJyWuVldMuVwRrfW44jUxcTWb9RJXRSrNwIEHIEdG0KGg96ZjcRxEqUT+9DPIferTtYctK0A8HiWZTFMud34lAeMTV3O5QldctcdiGAYDA7G2013rIdesYfCQA6FQQNT5GvDmhgXF3/wW6xWvYHh4lKGhREW04JBIxNi2bZRwOIRlBdi6dYShoTgA27alkDLgF6Q+o5+Lkb9n5DNteqWSs66/FjkyjA7akwsRgGmihSD4s8shk6k93E0xQ6/iHSbSDTFD6Aff81ZEDe5HBYCUyPPO9cUMPl3HL0Y+LdNrlZz1q19tf+NG2DYilSLwlz+Pe7jTYobuJa62TqfFDPbPfzauNVcP4boEfvc7smvX+WIGn67i7zL6TEm9llzVEy4WC09qycXjXqZQJpOvWPYEG7bkUqnsmHmh8Xf8Mpls7eS0RoxZGUGHxAzZLPavbiZ4w/WYmzfBwAClVx5B5sij0IsXT/94M6SjYgbHae33CwitcTZsoLTTUl/M4NM1/L8Sn6Z0UyXnrYSgkYWP2nFH+NcDzU9QKZASvXDhpB95gXU2kUho2mIG+fhjxN/5Doy1axBao6VEuy6Be+9l4OKLyFz4Dcr/e+i0jtkJikWvmEej4ZmJGQwDbdmIUmstRh2LkcnkGBxMjHNm2Lp1lGDQrjkzDA0las4MiUQUpRS5nOvvHflMid+m86nLbAyuTqR4zLHev9RrJWmNKBYR6TS4LqHzzyP4/e8hhofHPa0dZwaZTDLwjlMw1qyGaBSVGEDFYuiBAXQshkgmib7vPRj/+lfLx+wkHXFmEILia1/rqeaaoKXEee4+6GU7TcuZoVp7gkHbd2bwaQm/GPmMQwgIBLrrJddqvEPplUfg7robolTyVkBVHBeRTEIuB1qjDQPzgQcIf+kLDBz2csy7795+jGmKGWzbYuDXNyHWrUPHYigp0Yz5IpUSHY8jMllC37ukxd9qZ+mUmKHwrlOn3jNSivy7z/D+vUVnBikFsViEfL6IaZq+mMGnJfxi5FPDMCAeD5JIdN9LriUsi9RPLsdduRJRKCJyOU+GnElTqWjoaBQ9NIROJLxVy7ZtxE5/F/Lxx2uHaUXMMFYlx49/jK605uoiBFgBrFtvmbQS6xWdEDM4+72IzBe+BDDps+pKkcuf8naKbzhu++NTOjPYKOX9t8lmc76Ywadl/GLkM64lV21nOY7b05ZcI9TKlSRv/g3Zz30ed7fdEUp5q6FgELVwIToe3y77lhKdiCOSSYI/+XHtGGPFDHLCl249lRxPPgmB5tHfOhCAchm5aeO0P1Mn6FTMROH0d5P82ZU4L3rxuMfdPfckfdE3yX71vHGy+qliJmKxMEJ4v3M/ZsJnOvhDr89gGg2umqZBOOytImY6uNrRfCGlGPyfFyGGt6FjjYf3RCaDDkcYuee+ps4MjQZXB1/4fEQyiY5GG59LsYhwHEZ/extql1068OHao5PODPKp9YitW9HxBGrVqvqzXXiF0DAkg4OJcc4M2WyOWCxKsVgim837zgx9iD/06tN3NBtcDYeDKKVRSlEu96gl1wIil0WkkugpVgI6EEAU8siR+mKGYNBuOrhaOvTlnmiiyX2aKBRwV63yvrRnkU7GTKhlO+E+7/monXduWIigUcyEIBqNUCyWsG3Lj5nwmTZ+MXqG0apKLp3O1abqe9WSmwpt2SBkQ8eAGkqBEGh7/B5RuezguopIJNR0cLV4wlsgEEBkG8jBi0VPjXbiyc0HcntAf8RMhGu/w6rYxXdm8JkufjF6hjD9eIdwbWFQKjkdVcm1jWVROuggKJebPk2USjjPez56aKj2WDXeofp9XSyWG5qaOi/Yl/wHPugdK5mEUslbKZXLiFQKUShQeuWrKLzlxI58rJky+zETdmWfyHdm8Gkfvxg9A2jfSy6LUopIJNjzllwjiieeBIbhKevqkc+DlBROOhmo7yXXSMww7jDveR+Zr12Au9ezEKUSIpNBFAqoJUvIf+SjZC66GGYgHOgknRIzTBevPWjVziGZHC9miEbDFAqFSpHyxQw+zfEFDPOYVuMdymWHcLhRvIO3qiqVHEzTGBfv4P3p9HgzWmvC53yF4Pcu8VR1oZBXbV0Xkc977bM3H0/uS18hHI00jHdoOWZCa4x//Qu5dQs6GsV5/gvAsrr8IdujWzET9QiFbMLhEEpp8vk8kUjYj5mYA/SzgMEvRvOQTsc7RCIhDMOgXC6TyXRBJTddtMb+xZUEv/89jNWV1FfDQC1fQf6UU+Ad7yQS81Z8jeIdehEz0Wu6ETMxkUDAJBIJYxiSQqFILpevrJ7DBINBP2aiz/GLkU/PmOgl5618xnvJ5XKFSjBcsKGXXC5XIBAwCQatmsmo63qecrNaiMailLdqGR3x5o1e8AIiiXjLiavxeBTDkIyMdH8l0SsikRC2bTMykuzovoyU3jyWbVuVm5Jc5aakimZwcIBSqVRRYEbYti1JPB5BCMHISIqFCwfJ572bgwULBkgmUxSLCiGaWxL5dA6/GPl0nc605BonrpqmSSIRI5XKjDE47Q/aTVw1DMnAQJxczvuM8wEhBIODcUolr2B0gmpLrro3VSyWJj1Ha41lBUgkYgwPJ4nFPOf2VCrLggWJSjvUM9OtrpSCQYstW0YRwvRXRz2in4tRf+zA+rTNdOMdEon24h3KZYdisUQkEqZcTjYbwWmPcpnA73+Pfe3VGI8+CqZJef/9KR77Btx99mn4srGDq9NtT3UkZqIe5TLGQw95UemDA7h7Pavp3E4n6WTMRL2WXKP/7hOdGfyYCZ/p4q+M5jDdaslls7m68Q5SSgYH4+Tz3hdTpxDJJNEzP0DgrrtAKbRlgVKIchkdDFJ42ynkP3jmuC900zSIRMItt+Sa0bKYYSpcF/tnPyV45RXIp9aD40LAxNnrWRRPfiulVx7Rs6I0EzHD1C25+jRyZvDFDP1DP6+M/GI0B+l2S66ZSi4UChIOBxkdTbX0BTUlWhN9z7uxfncbamBgnH0PWntzPaUS2bM/SfGkk9tuyTWjI2IG1yX82U9j33A9CIlKJDzpd6mETI5CIED+/R+kcMrbGx5CDA8jcjn0QAIdndmXRrtihlZacs3Q2hcz9DN+MfLpCJ1WybXrJTc4GK+IGTJTPncqjPvvJ37SCWjbhnD9mAexdSt6hx3I3/57IkMDQGOVXLvMVMxgXXcNkc9+Bh2J1vW0E8PDCAGpH/wI93nP2/4DrQnc/jvsX1xJ4O9/A1ehbYvSYYdTfPMJuM9+drsfaVpihum05KbGFzP0K/1cjPyh1zlC+4OrHfaSK5fJVJyaLau5s3Ur2L++GVEsQqiJe0BiAGPTJmL33VPXS64TtBIz0RClsH/xC6/F2MBcVQ8OQj6Pff21Yx7UhC6+iOiHP0Tgj3+sWBjZiFKJ4NVXEXv7Wwn87rY2P1FrzgzV7KFEIobWitHRVKXl2fbbthAz4Tsz+EzGL0Z9TqtecplM9+IdxLZtBC/5PxKHvozB5+9DdO9n4554IpG/3o1gZl8ecmMlgqFBe0ZKiQzaoDXZ1Wvqesl1gmYxE1Mhn96A+eij6Fi88ZMqXnnWHXfUHrJu+S3BH3wPTBO9447e68Nh9MAgasmOiEyWyKc/hVy3rq3PNJUzQyhk12LE0+ksyWSmI63XqWImfGcGn3r4xahPma6XXDUQr9OJq/Lxx0i8/hjC556DsW4taOXFff/yl8jj30z8a+c1dbeeCh2JNPj8AsPwNrWV46BdhRvorvNBLldAqTY83opeEu1UEd4YhmeyWslksn/2U3AcdGJg8nOFQC9ahBwdwb7x+umdz9hTK3qtsrFJt4GAycBAnHA4RKFQZGQkOe29oakRFUdxg0DArGQdRchkPOFLLOatlCwrgG1bpNM5wuEQpom/OnqG4hejPqRvWnL5PLHTTkWuW+slqQ4OQiSCjsW8dFUpMb97CaErftb2Zy2/5EBv+VcxPxUIDCkxpERrjeu6kE6jY1HK+x/Q9vu0SjVmohoy2Ap64UJ00EYUm88qiUIBtWwpSIlcvx7zwX9NFio4DmJkGLFlM2J4GK3B+vWv2vkoNaoxE6FQsOMtuUbUj5mAaDREOu218PyYCZ+x+MWoj+iHltxYrN/+BmP1E+hEwquQE9CRiLfv8cNLPUueNii9/BW4Oy1HDg8jAWl4f5Kuq7y5n3IZkctReuUR6CVL2nqPaZ1PqUypVB63kpgKHY9TOuxwz7y10Zeo44BWFI86BsCLTnfd7YmyWiM2b8Z4/DHk008jt25Fbt6EHBnGePhh5Jo1bX8m13VxHIdwONjxllwzxsdMhMhkcoRCQcpl14+Z8JmEX4z6gH5pyU3E+uWN3pdrEydoFQ4j164l9K/72/vwwSClC7+OWLwYsWkTamQEt1hEFwuI4WHk8DDO855H7qyPtnf8NmhZzFAuY957D4FbbsHd61nogQHkxqcnF+ZyGbl5E2rnnSm99kgA9MAAmCai5LXH5MaNyK1bvN93ILD9H7wVVey9ZyCf3jDtz1JtyVX3jMrlchdaco3xxQw+reKPPc8yEwdXs9n8pMHVVMq7e4zFwg0HV9PpaosuUlktpesOrk7r3LZsqbsiGodpoh2HYCZNQUxv+6g2uPqyQyj+/ArUxRdj3XYrMplCC9BDCygc+3oKp7zdW531iCmdGbTGuv5agldeiVy31isohoEKBhFCeqIMKSFg1tqP7m67k7ng616rE1A7LqX8ohcT+MPvQUrE6Kj3u574+xYCtXgxcs1qgpdeSu6Tn2rpM0wcXB0dzWCa3t9HPj8zZ4bp4Dsz+LSK/196lmg2uFrdF8pmC5MGVzMZb3C1autT7flHIqGOxzuogQGMqSxyXBctJXJggFAo1JIzw8TB1dHRFM6y5XDOueS2bMF4ch3aDODutlvD2aNuk8sVsG2bSCQ03plBa4LfvYTgDy8FAWrhQrBtcBzk8DAETNxdd0XHY4h0BrXDDpRe9WpKrzgMJog1iieeROCvf0Vu2gjKBdMa9z6Uy+hAALVgASKdxvrNr8mf8Z5aQWvE2MHVdDpbWwm5rjdbFo2GexIzsR1PzFBV7lXFDFu3jhIM2jUxw9BQoiZmSCSi5PMFXFf7g7DPEPxi1GN65SXXCWft0iuPIPDnP9UiGup+nmwWtXgxxX2eTzhkUywWm+5FTOUlpxctwlm0aMbn3gmy2RzxeLTmIABgPHA/wZ9ejg6H0AsWbH9yIIDaYQeIxTCe3kDuLR+leNwbmx6/fOBB5D7yUaIfOcsrPq7r/YFU1HY6EECtXAmBADoaRY6MYKx+AmfwhXWP18rgaiaTY2AgRjBody1mYiITxQzDw6PYtlUTMyQSsYpZbbFSpLavlHxnhmcO/p5RD+kblVyLlI58HWrxYi96u94KqVAApSi+5UTyStdybepRL3G1V1+G7VJPzGD/6mZELjsu0nwc4TBaCKwbr/dEC1NQPP4EnGc/2xODVOabdKWwubvt1lD6PpbpDK66rkuhUCQcDrX1BS8yacTwcEufbdzrfDGDzxT4K6MeICVEIjaBgFnb8+m3llw9dDxO5uJvEXv3ad4XUCCw3cQ0XwApKL36teTfdRrg3XUnErHaSg0atORm6CXXS7LZHAMDcUKhoBelcffd6HC4qeGpHhzEWLcO+fTTqOXLp3yP8gEvQW7YgLt0R+8BISYdX2Qy6GgUd9XO4x5v1JJrhteCtGpFYUpcF+uXNxL86eWYDzzgrdoGBii86U0U33IiasmOUx+D7WKGRCJGPp8cJ2ZYsCBREzPEYmHy+UJNzFAojALSXx3Nc/yVURcZq5ILBi2kFBQK5VlXyU0HZ78XkbzyagpvOREdCiFKJYTr4jznOWS/+GUyX/9GTfU1NmZCCK8lNzgYx7YDZLN5RkfTc6oQwWRnBlEuTzncqqUEpWvihakove51YNuIbNa7c5n4peu62+XtlRXZTAZXp3JmGIfjEDnrTKJnfhDzvnvRaLQUiG1bCX3zYuLHHo3x3/+09L6+M4NPM3yj1C5RL95BSkkwaCGE6Hi8Q0/IZpFbtoBteXfDde5UqzETSuna3sVM4h36hWrMhD7pJMz77kOtXNHwuWLLFgiFSV11dWvu21oT/n+fw77manQw6Mm+pfSWEvk8cngYtXIV6e9+D5YvbyveoR6txEyELr6I0AVf84xsgxOk7kohUinUqlWM/ubWyT+v+1H9mInZpJ+NUv02XYdpppKzbU8tpZRCSkEo5LXu+qEl1xKRCKrJHoYQojabI6Xoy1TYdqmKGbKvOwrzvns9Wx/bnvxE10VmMhSOOqb1GAghyH3iU+hYHPuaq5FPb/T+E2sNlo3zwv3Ifu7/Ye+267Rbcs2YUsyQzxP8yY+q09iTfy6lJ6xYs4bw+echt2zx5qkGBim98ghKR7xq0u/IFzP4NMJfGXWIduIdvLaF19rqVLzDbDFWJZfLFQiF7I7FTPQL8XgUo1igfPJbCfzj77g77DBeel4qYWzYgLt0GZmLv4Va0Xj11AixeTPW725DbtmCtm2c//kfxH77EYlGOhTvMJ5mMROB239H7B1vR0fCjQefHcdbLQuJti3Q2xfM7k7LSV/yPdy9967zQj9mYjbo55WRX4w6gNeS84LtppO4qrUiGLTHte36piXXIo0SVwMBk0QiNq9WR4YhGRiIk1u9FuPjH8P85z8RpRLaNBCOizYkauUqsp/7fzPKIarSbuLqdBBCMDgYp1QqTxIzWNddQ+yDH/BCD+utRpTyCpHjgGmiFizc/jPHQeRz6IWLSF53w6TCrLXGsgIkEjGGh5PEYl5HoCpm8PaLvEHvaiBfMGixZcsoQpj+6qhN+rkY+W26GTDTwVUvcdVLxzQMSTTqyW37oiU3BVOp5MaKGcrlZFfMOHtNTcyw80pGvvUd5L33ELjjDuSWzehYjPIBB1I++ODm2Uwt0o5Krh2qLWHPrHS8M4NODKCl4c0/1VkZiVxuu/XRxJ+bJjoSRW7dQvBHl5L7zOfGv9Z3ZvCZgL8yaoNuJa4CZLPZyrH6swjB5JZco3mhqpghny+25MwwV6iKGcY5M3SIziautk5dMUM+z+AhB3ru4bHJd9Ry0yZvVSQEOh5HBycXYZHNomNRRu6+d5Kbhi9m6D39vDLypd3TxBtcDXRlcLVQKBIKhRCiu/9Z2h1cnO7gqlKqtn9kGPPnT62dmImp6Ebi6nSoxkwEg2MEB6EQhZPf5g08FybEY1QdIwAMA23XV9LpQABRVWFOwI+Z8BmLv9ZtkV54yZXLLpZlEQ6HahZBHUMprN/+BvvKn2P+45/e4GIiQfHY11N885tROy5t+NKZDK7m8wWCQYtIJDxvxAxjnRlGRmbu8darllwzxjozFIul2hd9/t1nYDz+GNaNN0Cx6A09C+GZw2pPraATicZDwNWC0aBwV50Zqj6A3tBrhFwuWXNmqIoZqs4MCxYMEAoFKBYV4IsZ5gt+m24KutWSa6SSCwa9izKZ7OCAqOsS/txnCV79C3AVOhT0qmuxiHAc1I47kv6/7+I+a/Kme6stuWbMazFDzruZaIfZask1oqGYoerAcPllmP/6V82BQZsGxvr1qHhjR3WRTqF2243RW2+v2R1NxBcz9I5+btP5xagJ7arkZjq4OjAQQ2tIJmf+OxebNxP95NlYv7rZcwYIh1Gx2Pb5D6WQW7fhrlxB8oabas7SjVRy7RKLRTBNk9HR+SFmAO9mJBQKMjKSmhwz0YReqOTaxbYtYrFIxS1jchtXZNJQKqPjcazf3Ub09FPRpgn12nTlMqJYIPfZz1M45e1N31drRSIRQ0pZEzMkk+nKdWOzdesIQ0MJlNKMjKRYtGiQQqFIOl1ASr/B0yr9XIzmTyO/g4xPXLV7nrhatf6pDsm2i33VLxg44jAvJK9c9qx8Rkcx1q9Hbt7s7QVIiRoaxHjySaxbflszqvQ2tGF0NEUmk5txfz6bzVcGfWeuNOsXcrkCSunayrEVQiG7FqXQq8TV6VAsenM/jZJuddSLnMc0KR12OMXXvwFRKiMyme17SEohcllkIU/54EMovOXEFt5ZVPatjHExE5mMt49UjZmwrEAtZiIcDmGa+HtH8wS/GI2hXxJXHcfr30ci7TkrA1i/upnw5z+LSKa2p7WaprfcEwKRSiG3bvWe7F3RhG75LYODcSyr815yz3Qxw0y85HpNXTFDPaQke8655D98Fnpo0CtAqSQym0GHw+Tf+S7S3/0+WFPfVPliBh+/TVdhtlpyjfD69wmKxdL0xQyuS+I1r8J44nF0MOhJcIWA6tiS2B7J6i5fjrBt5LZhxPOfR+GXN3XVS25wMD4/nRkMWVfM0M8tuWY0c2aoSy6H9cc7Edu2oeNxyoe8FB2Pt/HOrTszlEplBgfjFApFUqm878zQAv3cpnvGN1v7NXHVE0HkiURCFIvF5isUpZCrV3szHYsWYjzxBMaaNahYDJlO188iAhACmckgQiFQLqWBwdYiBWZAvZiJuc7EmIkq/aCSa5dpx0yEw5ReecSM33c6MRPhcBClFJYVQOssfszE3OYZW4zmQuJqoVCsyaLrihmUwr76Kuyf/BjzscdAKzBM3GXLoFhAGhKRaiI91hqRz6MrRaFw+CvbPtdWmdfODOEgxWIJw5B9pZJrh2bODN1kameGCEp5N2ZKKbZtG2XhwkHfmWEe8Ixs0/VbS64ZpmkwMBCffGetFJHPfAr7yis8qW0oDIaEsoNIpxCFwviQNnfMykqIiim09pyX43HclatI3vDLmpqum8xnZwbwZN9zqSXXjFZiJjpNI2eGQqFEOBzEdVVt9eQ7M0yPfm7TzZ+d5BaYbZVcOzQSM9hXX4V95RVoy0YPDnkW/wHLi70eGvL6HRW1HIYxfsZD6+37AEqhBgfJXPzNnhQi7y3nn5ghFLKRUmAYklyu0HcquXZpWczQQSaKGcpltxJPYpPLFTAMieO4vphhnjE/vgmmoF9Ucu3iKYs8FwQAtMa+7CdewQnXkeAGLDAq7YqxRpamOWnwUIdCFE46ue7AazfJ5wsopYhE6kuI5woTVXKlUhnbDsz2aXWMsc4MvVxxCCEpFosIAfF4hHLZaxPmcoWaM0M6na2NIqRSWQKBAKFQAJj7NwHPROZ9Meqml1wqle5JzlBVzBAMWpimgVy9GvOxR73WXKPXVELuUAqhVM26BSm9f0wTtWyZt5IaGOjq+Tcik8lhWYGaSexcopGXXDabQ0pZCxmcD+RyBWB681QzJRwOMTDgDbmC97cyVsxgmkZNzBAOByvXSIFYLIrWyl8dzUHmbTGaiy25ZhQKRVzXJRIJe9b91RZcPQSeQq6yZ6TBWyG5rteiCwZRS5eiAwG0afZ8VVRlrJhhLrX5mw2ujhUzyEb/feYYVTFDMGhjNgrZ6xCWFWBwMFFryQ0Pj9TEDKlUBssKjIuZKBQKuK5bWykBxGIhtO6QlZZPz5h30pO5oJJrFy8mOk5g2VKv5eaUJw0UCiEQUkA0Ctu2gZS4K1d6ggatPaPLSoS03LwZZ+/n4uz7wp5/lirZbJ7BwTihUKjvxQytesl5smjPY7AbMROzQbHoXQvRaLgrYoaqAtGyApXZunzFYslzZqgW/6ozw9atowSDds2ZYWgoUXNmSCSi5PMFXFf7YoY5xPy4daswH1pyzaiKGcK77kz5wINqBQa805KGREqB1hrlumDb6FAIkUyiQyHPXTkUglIJuXkLOh4nd/YnGq+wesBcEDO0E+/QjZiJ2aZbYgavJRfHMCTJZJp0Olvz+vOdGZ459OfVP03mW0uuGVUxA+95DzoYRCRHK1tB3n9KVyl02UGMjuKuWEn2c59HL94BOTKK3LIFuXkLMpPB3X130t/6Ds5+L5rdD0R/ixna9ZIbGzMxX+i0mGFiS25kJFUTKoylGjOhta4N4YZCQcpl1xczzCPm9JyRtxffu3iHfqEaM1H88WXYnzwbslm0YYCQXusOUEsqsRB77w35PNbtv8NY/QTaMHD3fi7llxzoLSX7hH6LmehEvEMnYib6jYYxE9OgcUuuMX7MRGfo5zmjOVuMDMPbqDRN7wu1UChRLJb7cnC101QTV4UQFB/4F+5PfoL1618jshnU4sUUj30DxaOPQS9cONunOi36IWai015y7cZM9DNTxUw0IxwOEQrZqEKB3L/+jVMoonbaqSUfOz9mYub4xaiDTPSSc11vIM4wjFp/uFqYxnrJ5XKel1wotN11Qevtw4oz9ZKrS7mM8dBDiHwetXQpasWKGR1OCFExsPQSV03TnHOeZ82YbWeGsV5y2Wy+Y7/XwcEEjuPMbTFD1f8wn0cvXEBszz2m5cxgWQEikTAyl6X89W8gL78MuXkL4LmHlI48kvy7TkOtWtXwGI2cGbZuHWXhwoFKF6TI0FDCd2ZogF+MOkAriauO4yKlQEq5PTY5X8R1VW9bcqUSoe98m+CPLvUcsysfoHzAS8h/8EOUDzp42oesl7gajXqtjpGR1LzZqA2FgoTDQUZHUz1zMOh24qplBYjHoyST6bp7In2N62Jffx321VchVz+BcBXasnAOeAn26aeS3Xufpum/41pymzYjjzsO45//BOENXANehHm5jF60iNSlP/Zayw3Q2ttbDAaDDA+PMjSUqIgWHBKJWK1FZ1mBykrJW3Ft25ZCysAzviD5xWiGtOMl57oKKT11GXjzH7lcoTYs17WWXLFI7G0nY/3h957SzTC9SqpUxcjUIPP1iyi+/g0tHa5Z4uqMYib6mF7FTPQy3qFZzETf4rqEv/j/sG+4AQCVSIBpIgoFRCqJSCTgK+cwctAhdW+Gai05pbwB5w99EPuqq9DRCAQmDDorhUgmUStXMXrLbVNkILUeM1EoFCvtvBTFonrGx0z0czHqazXdTFRypVK5UgM0juMgpSAa9TY1C4XuqeRC37wY6w9/AGmAZW/3hTNNMAPguETP/CBy7dqmx2klcXWiM8N8oRfODL1OXJ2Lzgz2dddi33ADOhZDLV3qeRfaNjqRQO20HJ3LIT7zaSJbN497XT2VnPPkeqybbwIrMLkQgWfYG4sh163D+t1tTc+rGjMRCgVxHNd3Zpgn9GUx6qyXXBaldG1eQWuNELI7XnLFIsEfXVpbAdX9YIEAOA7Bn13e8DC2bbWcuDrWmWG+0E1nhtlKXJ1zzgyui331VQDoWJ27aSFQi3dAb9tG8Ne/wjRNDEMSj0eJx6M4jsPISKqmIrT+9EdELldrzdXFNEErAnfc3vTUJsZM+M4M84O+uyq6ObjqDSvmumZrYv7zH8ht27yLqhGVlp11802TX19RycViEUqlMiMjqab9+CpV81bbnjreea6QzeaRUhBq9uU1DdoZXO00uVwBpXrr8dYuxuonkKtXowYSjZ8kJdoMoH79a+LxSMPBVQCRyWz3RmyG1s0zuLYfsTKEa4xzZshkPOFL1ZnBsgI1Z4ZwOOTVO3911Jf0TTHq1eBqsVimXHa6MowostmKI8IUt/NCeM+t/d+pW3LNaBQzMZfppDNDr1tyzZgzzgy5PEK5293fGxEwEdlsZbVSbji4qhYt8mLv3SYrk2q+1uLFU56e78ww/5j1YjQb8Q7dsjVRO+7oVVU99RedWrYMmF5LrhmTYibmATN1Zpitllwz5oozg164AG1ZiGKDYV0hMEwDo1xG7bgjxWKJQCBQEwxNpPSy/0UPDY27CZv8pBIYBsUjX9fSOfrODPOLWS1Gs+UlN9bWpNHF0w7uXs/CefZzKsq5BndelZ+VT3hLWy25Rvhihu30Q0uuGXNBzKCWLqP8ohcjkslJf8vSkJimgSiXcV1F9vBXVm6GdOOboUiEwimngNKQz0++PsplRC6P86IXT8uiyhczzB9mpRj1g5dcNaOloysJIcif+WFvuVcuT77glALlolesIHTK29pqyTXDFzP0V0uuEXNFzFB8y4noaBS5aaO3lyMFpmkipUQViqgn1+Puuivlww5vKWYi/+73UDzhBITjIJJJRCbj/TMyishmcV7wfNIXf4vpqFZ8McP8YVbmjAIBSCSitehgmB0vuZnYmjQj+P3vEfncZyrR35VQO628/12+HH3zzeR2WjGjlVAjTNNgYCD+jHNm6PbgajeYC84M1q9uJnzuORjJJMK2UdJAF7yVjbvrbmTOOx+1886151dtqho6M2hN4M9/wv75zwjcfTe4Du7ue1B88/EUX/0az1V+mvjODK3Tz3NGszb0ahgS11UIAdGojWkas+IlN+XF0+7ne/ghgpf9BOvXv/KiHpYvR77znRTecBxZI9DVFsEzyZmhl4OrnWYuODOEwyFCTz+FvvZa3N/8BtIZb4/oNa+lfNhh6Nh4TznDMBgYiFW6Fp2/2WqE78zQGn4xmgae75xFLlesDap200uumxfPRC+5anRyt3mmODN0y0uul/SrM0PNS06KabuOe3/zNqOjyVpseG/wnRmmop+LUd81rEsll9HRPKWSolRSFAplRkezaO3JNpVqrJJrh26JGYLBzqjk2mG+ixnC4WDfqeTapd/EDM0GV1ulK/uxLeCLGeY2fVeMxqKUJpMp4rpQLFbdE0THc4Y6efFUB1ej0c6o5NplPooZXNetmN6G+lIl1w79JGZolrg6HVoRM3QDX8wwt+nrYjQWpTSFQgnTNDs+H9SJi2emg6vdYD45M1RVckJ4/73KZXfO7A1NxWw7M7SauDodisVS14bLm+M7M8xV5kwxAshmSyilKrHHnT32TC6e2WzJNWM+ODPUG1ztlDNDPzEbzgydaMk1o1vD5c3wnRnmLnPqatYastkiUsqutJ+me/H0S0uuGXPVmaHZ4OpMnRn6kV47M3SqJdeMbu3HToXvzDA3mVPFCKBQcCiXnUpLrbOb861ePP3YkmvEXBQzjB9czdQdXO1FzESv6YWYoRstuWb4YgafVplzxQggk/Ek3d24i5zq4unXllwz5oqYob6XXLnuc7sZMzFbdFPM0O2WXCN8MYNPq8zJYuQ4Y8UMnd2cb3TxzIWWXDP6WczQrpdcp2Mm+oFuiBm61ZKTa9Zg3n035t//BpnGqby+mMGnFfrcx74x2axnGRQOhygWSx2V9xaLntVQNBommUyPG1wdHU31/UqoHmPFDKVS/2zUjh1cTaczDVdC9ajGTITDQYrF4rxR12WzOeLxaM1BoF1mMrjaDPMffyd42U8w//43RL6AlhK1cCGl17yW4oknoqOTByszmRwDAzGCQbtnN3ETxQzDw6PYtlUTMyQSscrvxRMzbN06QjhsE49Hn3HODP1A3zkwTIdg0CQW81o6mUxnnQaqzgzVX08uV5hTK6F69JMzQye95CY6M8wHZuLMYBiewMeyApX/1vmOiRMCd/6B8P/7HHI0iRoaREci4LrI0VFELk/5xS8m+9VzJ9kEwTScGbTGvPcezAceAKVwd9+d8iEvrZ+e3BK+M0OVfnZgmNPFCGBgIEQgYHZ0xWKaBpFImEDARGvNyEiq40qj2SIYtIlEQiSTs7PX1Q0vuUDAJJGIkUplxvgUzoQcQjhobQO9kyWPxTAkAwPxaa9owuEQoZCNUopMJtdRcYIYGSF+4gmIrVtRy3ea7K5dKGA8vZHCW99G/n3vn/x6IRgcjFMqlRvePJp//xvhz34a8z//8VzuvReilq8g9/GzKb3yiGmft9YaywqQSMQYHk4Si0XQWpNKZVmwIFHZLxLEYuGah10waLFlyyhCmPNqddTPxWhO7hmNpZNihokquWQyVXEL74FVS6mE2LgRMTzcOAupA8ymmKEVlVw7dErMIOVaAoFfEwz+CNv+IcHg9wgEfo8QW2Z8jtNlumKGXqjkrNtuRW7ehFq2tH7MQzCIjoQ9c+A60eFTiRnMv91H7JS3Yj74INq20YkEemAAHQ4j164h+oH3Yf3yxmmfty9mmBvM+WLUKTFDPZVcuex2XQkkn1pP+NxzGDz4QAZf/jIGDjmQ+JvegHXdtc0jmmdAr8UM01HJtctMxQym+Tcs6xoCgb8i5QYM498EAncRDF5EKHQupvnXjp5vK7QiZuilSs689x60EE3bZWpwELltG8a//1335w3FDEoR+fSnEKkUenAQbHt7wQsE0AMDUC4T+fxnm4olGuOLGfqdOV+MYGbODFOp5LqpBDIefJD4G48j+N1LEMlRtGGCEJj/+AfRj32UyEfPgg7mLFXplTNDLxNXq2KGdpwZpFyDaf4eIbZiGA8SCPwRw1gNFNE6gmE8TDB4Eab5l86f+BQ0c2boxeDqWEQuP/W+jWGAUohS4/3VesPl5r33YDz6iLcHVe9vUgh0LIYYHsa++abpn7vvzND3zIti1I4zw3QGV7tia5LNEnvfe5CbNqIHh9CJAS9YLBxBDy1AB4PYN9xA8Pvf7dx7jnv77jozdKsl14x2nRkM435M01sJSfkkWgcBAyGGkXIzWg8hRBbLuh4p13bn5BtQz5mh14OrVdROyxDl5itakcuhgzZq8eKGz6k3XG7ef7+3R2Q1Wa1XCqH5wP3TP3l8Z4Z+Z14UI5ieM8N0B1e7YWti/fY3yPVPekWo3p5AKARSErz8cih0vu3SLWeGXrTkmjFdZwYh0gQCf0DKpxDCRamlaB1B6zBaDwAmUj4FSKR8CsOo337qJlVnhkgkNCuDq1VKrzgMbduIRm0yrZFbt+I8+zm4ez2r6bEmDZcrFxCtRY7P4KamXWcG0P7qqMvMm2IEU4sZZjK42mlbE+u3v/GujCZ7UToaRW7eROC+ezvynhPppJihly25ZkxXzCDENgzjKbQWFfXc+Bd5j5kIkQICGMYTlX/vHa6rcByXYNDuWUuuHs6+L6S8/0uQW7ZAdkJUulLIp59GhyMUTzxpyqIyUczg7rY7oKHZyqvyed3ddmv7M7QiZnAcB6UUg4NxTNOLJV+wIO6LGbrMvCpGjcQMnfCS67StiRwerr8iGotpgqsQyeSM368RnRAzzEZLrhnTETMIsQkoI4QC6q8QtQ4hRBatJVAGehfkV23JmaaB1hrHcWcvolxKcp/9HKVDXoYcHUWuWYvcsAH55JMYa9ehwxFyH/ko5YMPaelwY/djyy99GWrZMm/V1eC6FJmMV+yOOnqGH2S7mCEUsmt7Q5ZlIYRgaCiBlBKj0hYsFksYhuGLGbrMvCpGMF7MkEyOcvXVv6BcLnTES66TYga1YMH2OYpGOGUwDNTA4Izfr+FbzEDMMNstuUZMR8wghEapBYBb+acRLhAFAkD3VYj1VHKZTO9jJiai43Gy555H5vyvUzrySNy9noWz737k3/s+0j/+CaXXHjmt49X2Y2NRch87GwKWd/M1VkmqFCKdBq0pnHEGetGiGX2GqhmtEN6eabXoVAUMAMPDSfL5IoZhkExmfDFDD5izdkCN0BpSqRy/+c1NXHDBBSSTSRKJBIcffkRH/og6ZWtSevVrsH53m9eWCNTf3xCZDGrpUpwXvajt92mFbDaPZVmEw6GWnBkmDq6Ojs7uSqge+XyBYNAiEglP4cxgovUCYCNCrK88ZqN1teAohEhV9pAkrrsLWk92F+gkYwdXk8l0bSVUKqmamKEdZ4aOYZo4BxyAc8ABMz7U2P3Y0SOPJFMqEfnC5xGjo94TtPaUdOEwhTPeQ/7d75nR+wWDVq3Vnk5niURCtZvMWCxCMpnBNA3i8WjNmaEqZliwYIBQKECx2HgV7dM+864YPfTQg1xwwbn85z8PEY1GOeusj3Dooa/o2N3M2IunVCo1tzVpQumww3FX7Yyx+gn0wOBkyWwu690Jnvy25gqjDlAVM3gXZrHpynEmXnK9JpPJkUjEsKxAA2cGDeSRciNaS6R0kHJ1pfCEgEjl78ZC6zha74jrPqdr59uKl1w2m2NgIE4oFOypeKGb5HIFbNsrEpljjqX88ldg3fTLih2Qi7v7HhRfdxR6hx3afg/TNIhGw5imSaFQrFkkKaVIJGLk88lxYoYFCxI1MUMsFiafL9TEDIXCKCDnlTNDPzDn7YDG8oMfXMKPfvR9tNa8+tWv5ROf+DiDg4OMjnb23FuxNWkF49FHiJ36TuSTT4I00LaFUBqKBTAMCm86ntxnPzcDT67p4XnxQTI5+ffVSS+5XhKLRTBNk9HR5KTzNYyHCARuxzAeQogMWgcxjEeRcivgonUEpZYiRAHXfTaFwim47j4dP8fxXnKrKRSeRimNUkvQemjS86srpzljU1VtswE6Fqu7V2rbFrFYpNJG76CFkRBEIiGCQRvHcchkcuNutrT2ipGUkmQyU/GlSxMImASDNlu3jjA0lEApzxZs0aJBCoUi6XQBKefevXw/2wHNq2L0sY99iG3btvH+95/JPvs8n2jUIhSyyWSyFAqd3XTu1MUjtmwheNWV2L+4ErF1G0iBs9+LKBz/Fsovf/nUIocOYpoGAwNx0uksxaL3++qGl1wvkVIyOBgnn/cKaBUh0ljW1QjhoFQM0/wHhrEJpUyEKCHEVqTcitZRSqVXUCq9CaV27fj5bW/JPUGx+BvgvwjhKdW0HsBx9qZcPmRSURocTOA4Ts26pi/J57Fv+iX2ddcg16wBQO20nOIxx1I88nUQjY57uicwEoyOdqYFObYll8vl634HaK0xDMngoOdRVxXzbN06ysKFAxSLJfL5IkNDCUZH0wghSCSibNs2gusac2515BejWUIIGBqKADAyMvnOeKZ09OJRCpHLogOWZ4UyS0Sj3h36yEiqdjF7SsJcX7fkmhEKBQmHg4yOpmqF1DD+jWX9BtfdDU/Hk8cw1iPlOoTIVuTbZZRaQj7/XpR6FmNl30KkkfJpPHVdANddBkRaPqexLbl8/t/ATxBiGKV2ROsE3l7VMFJuwnV3oVg8vrK3tf318Xh03J5SPyFSKSJnnUngr3eDkOio97sRmSxohbPvfmQuuNCz/qlQdcrPZvMz2o+t15Jr9jWntTcoHQwGGR4eZWgoUYvvSCRiNfNUywpUVkrenuFcjJnwi9Es0ouYiZlePP1EVdqqtUYIMadacuPJIeVGhCihtU0isReuG6iJGUzzD5jm/Si185jXlDGMf2Ca/0KI0cqXTJly+UWUyy/DcQ5G6yim+bdKay+JEN4eu9aDuO5zcJwX4Cnu6jM53iGJZf0fhrG+UhgnfrG5GMZ/KJcPoFQ6btxPZhIz0W3Cnzwb+8YbUYsWQnCC0XCxiNy8mdLhryR7/oXjftRyzEQdpmrJNeeZETPRz8Vo7jU9p0mh4BAMOjX1WydjEzolZugXqi256p1eOp3tUCRDLyljmv+sFIvhyuyloFi8m3D4f7Cs3SiVxrYZNeAAJQKBuzDNB9A6gNaLKqKGrRjGBqS8GSm3ofUghvE4Si1AqV3wVlUKIbYRCNyJEFnK5UOop7aqp5IzjEcwjCdx3ZVMLkQABkotxTQfplzejNbbbXb6Vcwg163Duv136HhsciECqDhyB/70J4zHHq0MvHqMEzNM4+ZxbEuunbZ81ZnBFzPMHvO+GIHnzDAwECEaDXdczNDuxdNvTFTJhUJBQqHgHCtGDoHAHzHNv6PUUGXVYwAOUm6lXP41kchBlMvPResEUq7BMB5Gyq0IsQ0pt1SK0MLK6woolcB1VyHECIHAb4EQ5fKLKvLu6n6eROtFuG4Y07wf111ZKVQezVRyXqvPoVluktYDSLkRKTfiutuLkRczUawk3Zb6RswQuPMPiGwWtXRpw+foWAz51AYCd945rhhVh8tjykFdeQXy7rugVEKtXEnx6GNw99hz3HGm25JrxERnhqqYYawzw9gk2GobOxYLkU4XEOIZ8VXaVZ4Rv8GqM0MoZBMMWh0VM9QunliEQqHUUSVQL2ikknNdxcBAHNu2amKGfscwVmMY/8J1lwNjB5NNlFpCsZgmErmXcHgIx/kTgcB9aO2idQwptyBEGq9wlVBqJ4TIodQOCKGQcjOG8TAAUq5D6yEcZy9cd+8x7xWpnMcjKLVLi4mrivororF4Pxdi8qo+l8tj2xaRSKhvxAwikwYhm4tvhPCs6Oq4i+gbb0R/5lOEtm1Du8r7+EIQ/OGlFI86muznv4AIBse15DoTruk5M1TdRKoxE1u3jhIM2rWYiaGhRC1mIpGIks8XcF3tr45myLxzYGjETGImpqKbMRPdYiovuV7FTHQOjZT/wfuTrv/fQakYpVK+Ep73BxxnKRBCyiRC5Knu9Ui5EcN4HK2jaB3CNP+OYawBSmhtVOyBUljWnVjWr2rqN+89Ekj5NOFwoKV4B8+MVdPc/SGH1jZKDdT9abOYidlAx+KgVXOHEa1Bg04kxj0c+OOdRM/8IHrbNhgYgEUL0QsWoAcH0UJgX/UL4p/7DIMD3vxYJpOdkavKWPyYidnlGVOM2omZmA5diZnoEq16yXU7ZqI9MggxCuQnPJ6vxD0MjHls/JeDEFlcdz1K3YBhrMc0H0fKDUi5AUgBqYqKrogQo7huDMN4HCFGKse1K5vVQbRejFJLMIzVmOYdSLkaw/gHlvUw4fAmQqFUS/EOrrsnWi9Ayk0Nn2MYT6HUSpRaWffn9WImZpPyS1+GjkRrs0X1EOk0Ohyi9NKXbX9Qa0Lnfw3yeS/hVY7ZixECIhFEKIR1/XWU//b3itFxZ1ftfszE7NEft1I94pkuZpju4Op0nBm6jZRrMYyHKqF3ZcCq7J+E8ex7NEJsBcJIuQkhtiCEQqkYSu0ISEzzv0h5PzCMYQSBIttNT028L5PqF0qWQOA+vOFXG8hVlHmC7W21AFqbmOZ9GEYGKRdgmiM4Tppc7nLK5RcA+9Lsnk/rOKXSIdj2L5FyI0otHvN8p5KvFK6IIhofp5/EDGqnnSi9/BXYN1yPtu26ajqRTFE6/HDUrttnt4wHHsB8+KFawF5V0SmFQIP3v+Ewets23MsvR3/mc105f1/MMDvMWjFav/5Jfv7zy/j3vx9k9erHWbFiJZdd9ospX6e15vLLf8x1113F6Ogou+++B+9735nsvfdzW3rfZ6KYYSZecoVCsebxVs+ZoReY5t8xzT8gRBGlFqC1RSDwEIHALYDEcfYCEpjm3ZUVzU5U92+kHKm02LJoPYgQBaCE64bwRApRoIC30qru3xiAQMrNlTOoPtdBCAMpN6HUQoRwESKPlCWkDKHUIMViiVLp+YBJIPBHtA7gus9r+vkc5yUIoQkE7qzsS5lUV3VKLaFUeiWuu1fTY/SbmCH/sY8ht24hcNddILw4FBgzZ/TiF5P79GfHvcZ44nEolSC2XX6stUZWvtyV9jKFBGA88kjXzt0XM8wOs/ZbW736ce666888+9nPQWvV8sVz+eU/5tJLL+H009/LrrvuzrXXXsWZZ76XH/7wpyxbttOUr5/vYgaRTBK443bMBx+Ecglj112xjnwtemDXtr3kPHPY2REzSLkO07wTrYMotQJQlTmgrZW2VQYpt6JUCK+AjCJEGaUSeH/envRays24rkSIEbyCUxUqeLLu8UICl+2Sb1H5dwGE0TpYsQvKI0QAIQJIaeE4KVwXXHcVWi+szCk9hW1fSrn8MpTaA9ddRf3BWEm5fDCOszeG8V+k3IIn6d4Rx9mjwWsm009iBh2Lk7nwG9i/uhnr2mswVq8GwN1rL4rHvp7ia16LKJcJ/OmPUC6jdtrJi0ypDm4JgZSy9tuHMfENWjc0F+4cvpih18za0KtSCllR23zpS5/jP/95aMqVUbFY5HWvO5xjj30jp53mufeWy2WOP/5Y9t//QM466+MtvfeccmaYBoHf3Ubo4ouQmzZ5YiXDQCiFikYpvOrV5M94b9umq2OdGXq5URsI/AbT/AeuuwcAUm7BNO9BqcGKbc8whrGu8v1VBLII4anhtF6CV3TW4bXkTLQuYRieu4J3vHLlRkizvehM/HwGEEapVXiJr8N4jg0a1x0AsjjO3jjOvrju8ko7cAPgIkQa190drRMotQPl8ssrRbU79KUzg9aewg68vaTRUULf+TbWTb9EpJIIpdG2hbPXXgT+9jewLGQ0iobaTaqUEq012nURo6PkzvoIhRk6eE992vPPmaGfh15nTcAg2/Bce/DBB8hmsxx66CtqjwUCAV760v/l7rv/3PJx5qOYwfzLXwh/9RzkyDBil50x9twTdtmF8qpVKGlg/+JKQt/+ZtvHnx0xQw7DeAKlFtYekXJj5X8zGMYTlVWEtyLaPq8TQIiRyj9ZqqseIcpIqdA6QHXl433XSbZfCmMLUfXLpLrCKiFlECk96x/X1Sglcd3llEovx3X3xDT/jZRPoFS8EmGeQKnFuO6uCLENy/ptJdCvO/SbmAHw9n9icXQsjhgdJXbqOwle9hNEPoceHEItXIgOWATuvx/hOF50SiVttUq1PSdSKXQkQvGY1/fgtH0xQy+ZU2q6tWvXALBixapxj69cuTObNm2kWGx947ZQcCiXnUpya+fsPMTICMbVV1H+9ncI3/JbZGGi6qsLaE3wJz9CZjMYO++MDARwHKciOBDooSF0YgDr5puRTzzR5lt4YoZg0Oro76sZQjh4BWZsSyaN13Z7qnJegxWBQREv9G4Arb27P9ddiFLL0XoHlFqG1gZQRusBtA5SbccZhqK+tNpk+/6NQsoCUopKEQrira4kjrMvEMQ07yYQuBsphzHNJyqrowLeZWag1M4IsQ3TfKjDv6nxZLO5WoBcvxH6xtcxH3wQtWCBF51imgjTxIjHkEuXemIHx4HhYcjlaqmvuliE4WGEaZL72NnoJUt6cr5VMUMoFMRx3HFiBtM0amKGcDhYuUY8MYPWypd6T5M5tdOWTqewLAt7gpFoLBarOAekse3WL8COihmyWSJf/iL21VchsrnaoN7g0BC5U95B/r3v61oUhP2fh7EfexSWLkUpjetO/mLVg4PIJx7HuuN2CrvsUucoU9NrMYNXZIJ44oJqe0EiRBJv5scz2RSijBC6suIBb3VURAijYjwawDDWVKLFwdv7cSurJneCmMPbY/JacwZekZIYBrjuKI7jiRuqr1UqgVILKoq6x71Wkg4ihFtpDwq2K/YESi3EMB7BcfarFc1O029ihipi61bsX9+MDgW9PR/hdUhkRTnnKo1euAjpurgrV2Gsf9IrSkKAlKiVqzA+9Uncw47wClYvztkXM/SMZ/RvqmNihnye+FtPInDPX9FSoiNhb/rcdZEjI4TPPw+5bh3Z877WfiREoUDgz39CbtwIlkV53xfC7rt5KrnkCDqfp7zDDuPjmsciBEjDy06aAb0VM9g4zl4EAn/EdRcBAq2HKiKE6he5t9+jVJjtq6gSEK44Kii0TuCF5bl4wXnByjzR9v0hKaszmmO/uE2klCglcZzFaF1dqSm8wL0oQuSxrFsrq60wQsjKz3RlkNaq7GktQetI5TmbGV9gO08/iRmqmH//OyKdRi1chJCi1qp3lUJXRyEMA6SBu8cepP/vuwTuu9cTOCxfTvmgg0kMDRDt+X6sL2boBXOqGMVicUqlEsVicdzqKJ32ckZiself3NlsCdsOEA578cPtrKyDP/6hV4hs21MEVTEMb2aiWCR49S8ovepVlF9x2PQOrjX21VcR/OEPkBue9ibbtUZEIohDDkF/+tPkSmUspUBpkE3+8LWGGU7pj3VmKJW6P3Xuus/CNB9CyjUotaqyf2TiteWCCDGKUgMVyXWy0orTY1Yd3ipHa7uy0lIVA9UC20ULXiHaXpDA24cCpXTFdSFSKTBmxQkhB4TQ2sIwnsArUuDtV+WBAlrHUWoFQoxUfOV2rTyvuurqLtlsjng8Wtt0n21EqQhaYwRMhJQorb1V28Q/ISkQxSJq110pjplDgurNUKw2K9iT857gzDA8PIptWzVnhkQiVvEcLFaK1PaVUj+LGfqNObVntHLlKgDWrVs77vG1a9ewww5LptWiqzJjMYPrErzsMu/fzclf9FrrWj5R8Cc/nvbhgz+8lPA5X0Zu3IhauAC9007IFSsQloX+9a9xTzyJYmIAHU8gRkcaH8hxQAicFuexmtFLMYPWiyiVjgASGMZ/8RJZ4wgxipQb0DqE6+5a2RMSQAqtt0u6hUhiGI8gRBalBlEqhtfCmzwHppREiACGYeGttqp7kBGUcivHCAIlhDBxnGeh9UKU2g2tI0iZRojhymuXotSqyt5UqGKIClJuqyS4Dk56/07TT2IGIQT2rrsgg0EoFHBdhXLrFCIvjwN3eX3F4djhctnsxqvD+GKG7jOnitHee+9DJBLhjjtuqz3mOA533nkH++9/YNvHnYmYQT75JPKpp9BTSaalJHD33Uxn6SXXrCH4/e+iTRO1ZAlGKIRpGGghcCNR3CVLkI89hn39dZQPPhgxPFK/l6414ukNqMWLKf/vodP6fPXotZhBqVUUi2+kXH4VWi/BdZ+LUstxnGej1CKkTFaetxillqPUcoQoVNpoRbQuIUSuYukTrjkpeHtM1cIFUiqkdMZ0Og2U2gGtQxjG5op0HCCI6+6K6+4CGLjuMlx3bxxnN7ReiOsuquxVWZXfl4k3MJtECAfXfQ69uvT6QcwQDFoMDsYJHLA/zm67oUdG0I32sfJ5dCBA6bWvbXi8XM5b1fbapsoXM3SXWWvTFQoF7rrrTwBs3Pg02Wy2VmSe//wXMjg4yAc+8G42bnyaK6+8HgDbtjnxxFP44Q+/y8DAILvuuhvXXXcVyWSS448/cUbn066YQThlJt/ejadqayKU6/WBWhQy2Df/EpHOwIrlGJXXuK6Lqv5hmyY6GsG67VZS3/kuxiOPYPz3P+jBIS9BUwjIZpGbN6NjMfIf/BA6Hm/5szWj92KGBI6zL46zL0IksawbKsOuA1RFBl4Q3cMYxlpcdzmOs2clTnwYpeJovSNCbKi10bZLt2Vlb8hh+7CrtydUlYl7rT8LKXMoFUWpJcACwESIcmUvakeUMvBSYDehdQQYoCpgkHILjvMiXHd8DEI3mU0xQ714B/PU04l+9CzEtm3ooaHte6haQz6PTKcoHfpynH1f2PC4szVc7osZusus/XZGRob59KfHD6lW//9FF/0fg4P74bruJGXYiSe+FdBcccXljI6OsNtue3DBBRe35L7QjHbFDO6SHSEUgny++VS44yCe9SxM22754gn88x/IgAmGgVL1XSp0PI7cvBkjOUrm3K8R+v53Cfzpj8g1awANwRDOC15A4eS34ey/f0vv2yqz5cygdYJy+eUEArcj5dOVQmBXVjwLcZwdcd1lSLkJKfO47qrKwKoBrMMrXBZesisVqXYAT/zgrY6833UBKbfiukOVIdoBvOKikHItYKHUUgzjYbSOVpJlt6JUAi924mlgPaAolQ6lVHo1rvsserFfNJZeixkmJq6OjXcoH/5Kcskk4XO/ityy2ZtBkhLhuOiASel/DyV7zleZylq/WCwRDNqVm0dfzDAfmPex49OhXWeGyCfPJnjZT9ChUH21nOsiCgXUueeiT3/3lBdPzUvuhONRf/sbavEO6EarL9dFbtxI5uJvUT7kpd7rn96A8fDD4CrUjjviPuc5U17c7TJbzgxAZQWyprInlEHrKK67R2WvJoZt/xTLurHSFhNAnkDgr0j5JFIWUUrgrao8dwZPRi7wihCVgVYvKM8L04Nq0qq3usrguntiGI8j5bqK5dBClHrWmOM8BSgc5yCKxTdWXCF6T6+cGcYmruZy+YY3dfKp9Vi/vJHAXXchigXcnXeheNQxOC9+ccuKU8MwGBiIkc3meyZmgLntzNDPDgz+unEMVTFDLBYiEgm3bHaaf9dpWDffhBweRgeD49twjoMoFnF32430kUczUHFmaHTxjE1cLe66G+Zf7kJr1bCYiGwWHQrjVsQdAGrHpagdG6dsdpJsNo9leV9A2Ww3zGELGMYTGMbDlfkiG9fds2ax47rPxXXriTJ0xfHaotqOMwzP/sczNc2x/c9fsD1p1cGbHxJAFKV2R+shoIAQDlqX8dy6vUwjITK47i4Yxr/w2nERhMggRBlPUbcU1312Zdj1fsrl2SlGY8UMIyOdX0lMN3FVLduJwulnUDj9jLbfc7ac8qtiBtu2a2KGWCxCLpesiRlGRlIsXDhYEzMsWDBAKBSgWKzOsPlMZE4JGHpBO2IGtWoVqZ/8FHfpUkQ+j8hkEJkMZLOIUgnn2c8hdfnPcCORhkqgQMBkYCBOOByiUCgyMpIkd8SrIRhsnAujFGI0SXn//VEr62fddJtuihmEGMa2r8G2r8YwHkHKFFJuwLJuwrZ/hpSPNXm1Z/ujtYkQesywtMZxgngtuercULUYWZXHvX83jB0qszCeks51IxUn7yze3lKkElk+jFck962tnJSK4TjPw3H2Q6kFKLUDhvFY5bmzQzfEDFX12MCAd/c/Opoik8n1bJXsixnmD/7KqA7tiBncffZh9A9/wvrNr7F+8xtEchS9ww4UX3eU1z6rrJYmxkw0i3dwn/tciq9+DfZ114JSnvig2sIolZCbt6AXLaRw6uld+T20SnfEDAUs69cYxqO47m6MtwRSSLkOy/o1pdIbKnlFE/HcF2x7NabpSbILBaPiLZerKe0giVdYPGsfz0xV4OUlFTGMp/BECjm0NtE6gBDpyiqtgFeoHFx3V8rlg6juO028z9sebZ6prLR6T6fFDGNbcplMtuNBd63gixnmD/5vpA5tOzPYNqWjjqZ01NENnzL24tFaEwzaFSujOvEOQpD7xCchaGPdeANyw4aavT5S4q5aRe5zn8d99rPb/7AdotNiBq8193idQgQgUWoVUv4Hw3iwbjGyrACRyP5IuRrHGcZxnqoIEHZCiG2VrmegopiTQJyqI8P2O9cchrEcrYO4brBSUAoo5QX7SZlEqZ1w3Z0wzSfGnGe9hkM1omJ2mxGdEDNMtyXXbXwxw/zAL0YN6IQzQyOUUrVCNGXiqm2TO/uTFE44EeuW31bsgAKU992P8iGH1AZqZ5tOOzN4CjWTyYVoO1ovwjD+Q7l8AF5IHhiGN7xsWQGKxRWUy7sihEaIAkIMV2aLosBmwKkUqABei67qyKAQQqG1heOEMc0srjuIF7KXxTT/jdZrawO33uNlPDFE/ValEMMoNYRSs7MqGku7zgzNVHKzje/MMPfxi1ED2hUzNGNiS840TVxXtVTo1MqVFN516ozPoZt0UszgtcGaOwdoHULKbbUB13A4RChko5SqqMZMpDwY01SV6IlBhNCUSosxzQcrsvDq+2XwBAshpMziujuhtYFhrEepBRhGHHis0mYLIMQ2XHcfhEhjmv8Cskj5VIOsojJSDlMuv2zKz9QL2hEz9ENLrhm+mGHu4xejJhQKDsGgU7vbmsld4FiVXLUlF4mEen7xdJOqmCESCVEszuz35cmstzV9hqdYMwgEQkQiCaQUlTvR7VEiSi2jXH4tUj5RkYCnEEJW3BxAyjUIsQ3D2IzXSnNRKlZZwWhc10ApG9t+BMjiumG89t4ASu1eiYVIYhgpvPykMq67BC+d1fPB82aV9sRxmseP95Js1murhkLBcb+vifRbS64ZE/dje0VVzJBIxMjnk+PEDAsWJGpihlgsTD5fqIkZCoVRPBd6f3UEfjGakpnGTAQCJpFIGMOQk1pys3XxdJNOiRlcdw8M4xHqiQGqGMY2TPN5BALLKBbLZLP5+oPBOo7reoXANO+tRElkEEIDi3GcZ1MsPhutLSzrHgzjn5UhV6+tJuUTmObfEGKnio1QpOL6XbX78QL0PDPWhUj5JEJswHMZH6BcPqiSeTT7q6IqU4kZ+rkl1whfzDC38X8LU9CumKGZSq7KbF083aYTYgbX3R2ldkDKdSi1ku3WPR6WlcayQij1fJLJzJR7H4ZxP5b1e5SKVEQR1QJXQsr1CPEA5fIRlMuHAJmKY4N3eQhRolwexLZXYBgu5bI3o+SZoHootRApRyiVDqYqBfeEFouo7mf1G43EDP3ekmuGL2aYu/hzRi2QzXp3juFwqCUjg1DIrv1RptMZksnJhahKsViiXHb6wlm5U4wVM7R7kWmdoFQ6DK3DSPlfhNgK5DDNNJHIeiwrQ6FwICMjO05ZiLx9nb+hVBStd2D8n72FUjsj5TCG8c/KXtHCSpx59fUltDYplx1M08Awkmg9NMF526I6MKv1EpTaFaV2pl8LUZVsNodtWwQCJqbpORpEoxFKpTIjI6k5VYiqZDI5jMpwea+YKGbwnO2piRlCIW/eqCpm8MQj3p6SUt2PYpkL+MWoBVqNmag3uDpJrl2HVi4esWUL8vHHEVu2NHxOP9GJmAmldqNUegOO8xKk1IRCKUIhB9fdi2TytWSz+zFxxVQPKdci5QhaL2zwDIFSSzCM1QiRrbTUShXRg6q4LZRxnBJKbcYwghXH7u2XTzVIz9vrmjtUxQyxWHTWBlc7jR8zMTfx23Qt0kzM0EpLrhnNlECBP/8J++c/I3DPX6HsQMCk/OL/oXj8CZQPPKijn7GTdErMoNSOBIO7EAo5KJUhmSxTLkdopQhVEWIUr3A0vvfyZog2IUQK190L0JjmfUj5BELkK7NJZRxnEba9D4YxMK6t6jlyP6siFZ87VJ0zhPBW6R0zUtUa4+GHMf/5D3DKqKXLKB90MAR7U6x9McPcwy9G02CimEEpVVPENRxcbZF6F499+WWELzgfUSygIlF0JIwolbHuuJ3AX/5C7kNnUjzp5E5+xI4yUzGDN7garqjkNPm8zXYPuekgmSrmA7IV5dujaG1X8opWYRjrEGIE00wg5RaKxech5RC2LXFdB601Um6sDMY+p41zmx0mquSqc29elMbM7tLl448TOefLmP/8JxQLICQIUDvuSP7U0ygdfWzXjHurzKaYwXEcXNdlYCBGPl+o3agWCkVfzNAE37V7mkSjFoYh+O53v8ull17KWWedxTHHHNt8cLVFbNsiFot4qr277yJ22qlopbzcl7EXr9aI4WGElKT/7xKcF714Zm/cRbx9iDjpdLZlMcP4wdVSQ5VcqxjGf7Gsm3DdnZl4/yVECikfxTTvR4itaL0AiOG6u1AqHYbjvACIIkSKQOD2SsS4STi8gHK5QLk8jFKDOM5BlRVVfzNRJZfJ5Gqr1sHBBI7jzGh1JNesIfbu05BPPokeHEBHIt7fbqmEHB4GaXg3USee1KmP1JREIoYQomdihlAoWPOjq65yxq52tPYcPhzHxbICtRuBUCjIyEiScll0dXXUz67d/p7RNLn99js58sgjufjiiwmFQixfvqIyezHzY48VM9hXX+WlXk4sROBlwAwNQSHvPa+Pma6YIRwOMTAQxzAkyWSadDo74zt1LwZiMVJuGPe4t+K5i0Dgz0i5HhjEdZejtYVhPEgo9F1s+xqESKJ1nFLpVZRKr8VxdqFYNAkEdsB1X06pdMycKETVxFXLCpDJZBkdTY9rn44VM7RL6FsXI59ch1q6Izoa3f63a1moJUvQAkLf+Tby6Q3ND9QheiVmCARMBgfjhMNB8vkiw8Mj5PMFtIZt20ZQSlMsligUvL1nrTWuq7Btq2ZcOzAQf0aLGZ65a8JpsnnzJi666Hx+//vbMQyDt73tbbzrXafS6XqeyeQYCAaQd/4BFQ43bmcIgQ6FCdz5By/YL9Rb1+Lp0Iozw/iWXKHpIOb0CVIuH0ggcBtSrq6ktHoFxxuETaPUMpTaBU9dFwEGMYyNBAJ3odQQ5fJr8Zy598B196BchkAgTjCoKJUyHTzXztPq4OpMYybkk08S+OMfPUPfBmnGesEC5IYNWDffTOGd75r2e0yXbjszjN0vLpXKpFLV/eLtzgxe6z1LLBZh27YkhmEgpWTbtlEWLhwkl8tTKpUZHIw/o50Z/JVRi3z1q1/i97+/nec97wVceulPOeusj7Bw4YKOxya4rktheAShFJhT3CuYJsJxEPl8R8+h0zSLmTAMSTweJR6P4jgOIyOpDhciD6V2oVw+AqVWIOVmTPNvlYykMkotrQToWWNeYaJUHC8N9mGE2DTpmJlMDssKYFlNEn5nkXbiHWYSM2E8/DAim0HHmrSCpAQhMP71wLSP3y7dipkIhYIMDiYwTZNUKjOmEHlMJ2bCdd1nfMyEvzJqkVNOeSdHH30sBx30UoQQM3ZmaEZOmgRDIWQ6TVMNWqmEjkS8dkifU0/MMNlLrrubzEqtoFTaCSk3Egj8CSk3olQW111OPXWe1jGE2ISUWzCMp3Gc8cF45bJDsVgiEglTLreeDNwL2h1cnUnMhNCV507VjhUC0UM3h06LGQIBk2g0jJSSfL5IPl+/Te87M0wPf2XUInvvvQ8HH/yy2r5H1ZnBNE2CQWuKV08PHQhQetWrkYVCYwGz1ohCgdKrXw1WZ9+/W2QyuYo9UojBwQShkE0uV2BkJNX1QrQdWVkJLUHrxLgk2MlUN6CreUeTyWbzSCkI9UmbtBODq7lcHqW8WZnp4O68M4RCiGwTAYTWoBTunntO69gzpRPD5VIKYrEIiUQM11WMjqZaEC6Jyr6VMc6ZIZPxuhlVZwbLCtScGcLhEKbJM2515BejGTBdZ4bpkDv29eihIYxNG2Hi3alSyE2b0IMDFN9wXGffuItUN229tkX3WnKtnUusEqKnoeH6s4TXu7fQuv4Xs1KKXK5AKGRjGLN3OXU6cbUdMYO7+x6UX7AvYmSURt/QIplEhyMUX/Pats5rJsxEzDBVS64RvjND6/jFaAa06szQDu5uu5P58jmwYAHGpo3IrVsQyVHk1i0YG59GDyTIfvkc3N336Oj7douqSq4aXqeUnrFKbia47iqU2gkvxbX+Zr2Uo5WZo50q/nj1yecLlZmz2bF0mkol1w5jxQwtIwT5M96DHhr0giBLY1ZkSnnjCLk8xePeiNp11xmdXzu048wwUSU3OupFQ0wH35mhNfxiNEMKBYdy2XNm6LSYoXjQwRSvuhrOPBO1wxIwTNQOO5A//QxSP72C8ktf1tH36waWFZjUkstmPTGD0UBx1Qu0HsRxXojWUaRMVfKMaj9FymG88L0ojvM8tI43Pd5siBm67SXXjpjBfd7zyZx3Pu7Klcit25Drn0I+9ZRXnAyTwtvfQf6DH+rYOU6XVsUM7bXkGjMdMYMn+HnmiRn8odcOYJqCgYEIrut2XMwghGBwME6pVCaTynhqpDnAVIOrAwMxtGZGMRMzxyEQ+BOBwI2VYVaNp+nxpLWuuxvl8isplw+mFa1PLBbBNE1GR7srZmg2uNppqiKTkZHU9FayxSKBP/wB84F/Ikpl1LJllF75StSSyRHxvWbscHk9MUN1cFUpTTabm/ZKqBFaKxKJGFLKmpghmUwTCJgEgzZbt44wNJRAKc3ISIpFiwYpFIqk0wWk7IyYoZ+HXv1i1CGiUYtQyO6K5f5UF0+/MVYll8nk6ooT2nFm6A4aITZhmvdiGA9VDFUHcJzn4rrPQ6mltNpAkFIyOBgnn/dyq7rBWJVcLpfviat2J5wZ+o16zgytquTaRWuNYUgGBxOk01kCARPbtti6dZSFCwcoFkvk80WGhhKMjqYRQpBIRNm2bQTXNTrizOAXo2cAQsDQUASAkZEO3RkXi1i33Yp5373YaFi+nOShh6FWrerAwTvPdAdXo1Fv5TQykpo3rYjqXfXoaGpaZrlTMZuJq5YVIB6P9kR+3ysMw2txZrN5SqXSuMHVbDbX0f92Y9Ha21sMBoMMD48yNJSoiBYcEokY27aNEg6HsKxAZaXktYe3bUshZWDGBckvRj1m7do1XHjhuTz44AOEwxGOOOLVvOtdZxAINO/nv+ENR7Jx49OTHv/d7/6MbU+twAkGTWIxLz5ipk7B5l/vJvKJszGeWu81nLVGSIkOBikccyy5j38CWjinXtCul5zXgkxUXjM/km4BBgfjuK4ilZq5M0MvW3LNiMejGIZsy5mhVeTq1QR/cQXWb36NSGdwd1xC6dg3UDzmWPTAQMffr/p7BTrekmuOZnBwgFLJk5tXnRni8QhCCEZGUixcOEg+X6BQKFbaeSmKRYUQM9tn7ediNO+mqlKpFO9//+ksX76CL33pPLZs2cw3v3khhUKBM8/82JSvf9nLXs6b33ziuMesFud4msVMTAfj/vuJvfc9iFQKNTgAlSIqhUBkMgR//jNEoUj2y1/puvvxVMxkcHVszEShUMR1+zvWulUymRyJRAzLCszoy62fElezWS+9NxQKdkWOb113DdFPfsKzthICpMTcthXzXw8S/P73SP/gUty9ntWx9wsEzJrYxHUVyWSqZ0PLfsxEfeZdMbrhhmvI5bJ8+cvnEY8nAE/SecEFX+Xkk9/OwoWLmr5+aGiIvfd+btvv3wlnhtDFFyGSo6jFi8cVG6U1RjwOQmDddCOFNx+P+7zntX2uM6FTXnJVZ4ZotL2YiX5kps4Ms9mSa8RMnBmmwrzrLqIf/xiUy56v3dgvW9dFPrWe2DtOIXnTr9GDg40P1AITveQ8E98whmH2NGbCd2aYzNyQZk2Du+/+C/vt9+JaIQI49NDDUEpxzz13d/39Z+rMIB9/nMA9fx3veDwGpRQyGkWUStjXX9eJU54W3fCSqzoz2PbccJJohXacGTo9uNpp2nVmmIrQJd+BYtHztJv4N28Y6FgMuWED9nXXzux96gyu5vPFGTsztIfvzDCReVeM1q5dw4oVq8Y9FovFWLBgIWvXrpny9bfc8hv+938P4LDDDuass97P448/Nu1zmIkzg7H6CUSxgG7wJaa1RiMQponx8EPTPreZ0I14B5h+zMRcYLrODN0YXO0GnYiZGIt8egOBv/wFbduNW86VeTT76l+09R5TDa72KmZiLL4zw2TmXTFKp1NEo5M36WKxGKlU883Xgw46hDPP/Chf//q3OfPMj7F+/XrOOOMdPPXU+mmdQ1vODFpj/OtfWL+6GfJ5RDIJDfZQlFLe83s0YFlvcLXTqirvYhQdd1aeTVpxZuj24GqnacuZoQli82ZwnZYc6uXTk8VFzWh1cLUdZ4ZO4DszjGfeFaOZ8MEPfoTDD38Vz3veC3jVq17LN7/5XQB+/vPLp32s6TgzyLVriR//JhKvPwb7umsRhQJy82aM1asRW7ZM8vnSWnm99AMP7OrF06t4BxgfMzGbzgydppEzQ7+35Joxk5iJSYRC3iD3VCtspdCh1gvgdL3kuhUzMRW+M8N25l0xisXiZLOTJbXpdJp4vLmly0QWLlzIPvs8n//+9+G2ziWTKaC1bnoXKTc8RfykEzDv+Ss6YKIHB72oZvAMUUdGkJs3jytIIplEhULwxjd27eLpVkuuGVVFXe/7991jrJih2oWaKy25RowVM8gZOoK4u+6Gu3IVotDkJqfi9F064lVTHq9dL7lqzIR389g7gcBEMUMqlcGyAuPEDIVCAdd1ayslgFgshNZz52+mFeZdMVq5ctWkvaFMJsO2bVtZuXJVT8+lFTFD6JsXI9ev91REwaCX4BqP1+Tc4BUfCgUolxFbtyJcRf7d7yG7ZGnHL55etOSaMZ/FDJFIeE615JrRMTGDYVB461u9/aJ6BUlrRDoNtk3xTW9qeJhOeMl1ImaiPTwxw7ve9S7OP/888vkC6XSSTZu2As8cMcO8K0b77/8S7rvvHtLp7TLhO+64DSklL37x/tM61tatW3jggX/yrGc9u+3zaSZmECMjWL+80Ss8Y1tTpolauBAdrLRBlMLYuBE5mkQv3oHspz9D4dTTOnrx9LIl14z5KGbQWuM4bm2DfC615JrRKTFD8fi3UHrdUYhSybvxKpXAcaBQQCRTYJpkP/t53D33qvv6duMd6jGbYgalFNdcczV//OOfeOMb38hHPvIhksk09957Dw88cP+8FzPMOweGVCrFSSe9keXLV3DyyW9ny5bNXHzxhRx++BHjhl4/8IF3s3Hj01x55fUA3Hrrb/jLX/7EAQccyMKFi9iwYT2XXfYjUqkUP/jBZSxduqztc2rkzGDefTfxE4/32nKNVjflMmJ0FD00RObcr1E+5KXeCqrCWFuTQqHY1vm14iXXS+aTM8PYwVXwim0nnBn6hY45MzgOwcsvI/iTHyPXrfVac4aB86IXkz/1tLoO9d3ykotEQti2zehoEqW6/0XvBU6GeeyxRzn22GNZsWIFe++9N7/85S/59Kc/zeWXX86WLVv46U+v5NFHH+b++x/g9NPPYOHCwWk7M/gODD0kHo/zjW98hwsvPI+zz/4w4XCEI488mlNPPWPc81zXHTfxv+OOy9i6dQsXXXQ+6XSaWCzGvvu+iHe+87QZFSJo4sygtWcU3YxAAGwbPTRE+fBXTvrxWCVQqVSa1sXTqcHVTjMfnBnqDa6aptERZ4Z+omPODKZJ4W2nUDjpZIxH/ovIZlGLFqNWTs6Rmji4OpOVUD1yuQK27d1EzNTWqxljP4fWmhUrduG4497EFVf8jMMPfyXRaJSLL76Y008/nXPOOYcf/OASbDvIVVf9glWrdmbPPffg05/+FJ/4xGfYa6+953wnYd6tjPqVejETYvNmBg59KcJxtosWJqI1YnSU0muPJHPRN+s+ZVzMRAsXT7tecr2mP2ImpsdUXnK9ipnoJW3HTLRBt+IdJtJtp/zq5/AEDA6ZTBHXVWQyGU444fXk8zmOP/5kLr30Eo499vU88sgjPPjgv7j44ov52Mc+Rjgc5mtf+xpve9vbeNaznsW3v/19AoGpW4v9vDKad3tG/Uo9MYNevJjS4a+EYrGxtLVYBMOg+KY3Nzz2dJRAs6GSa5e5JmZoRSXXjjNDX+G6iNFRyG6Pk+iWM8NYOpG4Oh26JWYIBEwGBuJEIiGU0qRSeZLJfG1lF41GOeOM95PP5wHNrrvuznXXXcvrXncsQgi+8Y2LeMc73snWrVu5/fbbOfbYY3n44Yf5/e9vwTTn9tf53D77OUY9MUP+ve9HLV68feO2erusNSKbReTzlI54FeUDXtL02FNdPLOtkmuHuSJmmM7g6nSdGfoFsWkTwf/7DonXvorEEYcxcNihRN/zbgK/uw2U6rgzQ5VOJ65Oh06KGcZ+DsOQ5HIlRkayFIuTr8FXvvLVfP7zX+HII4/mzDM/hhCCTZs2cuSRR/PYY48ihMnKlau4/PLLefnLjyAWi3HBBRcyPDwy4/OcTfw2XY+pJ2YwHn6I6Jkfwnj0UdBjVimWRfGY15P9zGfHiRYaUU/MMFdaco3oZzHDTOIdOhkz0W2M//6H6Ic+iHxyHQQCnlWVUohMFkyT4hvfRO5jHydeWXF3KmaiVy25ZnRCzNCoJdcq69atZfHiHSgWC7ztbSdw0EEv5ZBDXsaHPvQe9t13P1760kO58MJzee1rj+LjH/9002P1c5vOL0azwMBAiEDAZHQ0tf3Ly3UJ3PUXAn+8E5HPo5YsoXjkUajly6d17LEXTzAY7CuVXLsEgzaRSIjR0XTfiBlmmrgaCJgkEjFSqUx/ixlyOeLHvxHj8SdQOy4ZP4IAiFQKkc2R+/jZOCeeyMBAfMZimG4nrk6H6e7HjqWqkjNNA9dVZLPFuiuh6VAqea1+KSVf+9o5PPnkWi644Ju8610n88gj/+VHP/o5u+22e8PX+8XIZxz1xAydonrxgEAI+kolNxP6RczQyXiHuSBmsG76JZFPfBy1aNG4QeyxyI0bcVesJHXNdYQT8bbFDBNVct1MXJ0O0xUzTFTJ5fNlcrliV/8b//e//+FrX/syn/zk51m1aueGz/OLkc8kolGLUMjuaGja2JYc0P933dPA25eJk05nKRZ771rQjcRVKSWDg3Hy+SK5XL5DZ9pZIh/6ANZtt6KWNRlvKBaRo0nS3/s+zn4vYnAwgeM4NeuaVuiHllwzEokYQghGR5u3IGfakusE69c/yc9/fhn//veDPPHEY1iWjee7F+GYY47mgx/8YN3AUK013/ve9/jZz37G8PAw0WgUgFwux0477cRb3vIWjj/++K6d99zZQZ1nzCRmoh4TVXLlsjOvHLBnU8zQLS+5uSBmkNu2Te2oHQiA4yAqrvjTETP0WiXXLlOJGaZSyfWS1asf5667/swOOyypXCuaL33pPE499QyuuOIKDjvsMJ7//Odz4IEHcu6551IqeTd33/ve97jooot429vexs4770w6nSaTyfD5z3+egw8+mM997nO86U1vYv/992efffbhVa96FTfeeGPHzrs/r4BnAG3FTNShkUpu0sWjNcaDDxL69jcJn3sOwf/7NsZ//9OhT9Mbeh0z0Yt4h1ZiJmYTNTTkWfM0o1wG0/Q8FWktZmI2VXLt0ChmYjoquV5x4IGHcO21N9cSq3fYYQn/8z8HcMgh/4sQgo0bN/KFL3yBD33oQ7Xi9LznPY8LLriAZz/72Rx++OH85z//4dOf/jQLFy7kH//4B6eccgqWZbF69Wq+8IUvcMkll3D88cdTKpX40Y9+xJ577slpp502o/Oedw4Mc4mGzgwtMJVKbuzFU37ySUKf+TSBe+/xzCiFAK0J/eD7lF5yELnPfX7Gcc69oFfODBNbcuOEJl0gk8n1rTND+RWHYd3+O6/gNNozGh3F3Wk5zvOeX3usmTPD2JbcXGol53IFzj33qzzyyKOcf/6FxGLRWW/J1aPqpH733X9hwYKFtf9/ww3X4LouQgjK5TKHHXYYX/nKV9i4cSOnnXYal1xyCf/973954xvfCMC5557LihUr+MMf/kA2myUYDLLXXntx2GGHAXDAAQewZcsWjjjiCILBIPfeey8veMELiMVivOhFL+LMM89kWbP27sTz7vDvwWeatBIzMZFWB1dzuQKMjhA/84ME/ngnOhhELV1a+0dbFtZttxI984OQ6y/ZdCO6HTMxG/EO9WIm+oXSoS/HXbWzF2NSp/iLdBqUovjm48cVq3oxE3OlJdcIrTVaw3333ctNN93YFy25Zqxdu6a27wNecXrJS17CokWLeOKJJ7jiiitqxenpSnChYRhs2bKFPfbYg3g8zqOPPsqGDRu46aabyOVyvOUtbxn3Hueddx577703WmsWL17Mt7/9bT7+8Y/zyCOPcNxxxzE8PNzy+frFaJZpJWaiynQHV7XWlH5yGcYDD6B32MGzHKp+2wmBjkZRixZi/u0+7F/d3MmP1VW64cww24mrfevMEA6TPe9rqJ2WI5/eiNy8GZFOI5JJ5FMbELk8xTe9meLxJ0x6adWZIRoNz6mWXCOkFLznPWcwODjIt771TdasWT/rLblmpNMpTHP7DcLatWvYZZddSCQSJJNJ7rzzzlpx2rBhA4ZhoJRCCMFb3vIWdt9999p+klKKo48+mssuu4znPOc5HHjggXz4wx/m1ltv5bOf/Sz77LMPK1eu5IADDuDVr3413/ve9xgeHub6669v+Xz9YtQHTCVmaDvewXWRV16JkhLDbjBFXnncuubqSYmy/UonxQz9krjaz2IGd8+9SP3wx+Tf+17U4sXeCkkIygcfROa8r5H7+Ce8tNY6lMtlLCvQkXiH2aQaU7Fo0SI+9KEPk8vl+NrXzpsrlwzgFaexAaNPPPFErTgVCt7e5Ute8hIWLlzIj370I9asWcOb37zdhuzqq68mHA7zgx/8gJNPPpmbb76Zvffem1122WXSdbhkyRKGhobYvHlzy+fn7xn1AVUxQywWIhIJjxuuGxvvUFXJtYoYHsbYtAkVjmAIgZSybjtPRyIYa1Z7+0n9dmfegGw2j2V5g6ftOjOMHVztpMS+XfL5AsGgRSQS7jtnBr1kCYXTz6DwzlMR6TQ6EIAxLaCJjB1cre7tzaWWXJXJg6sFXvayw9l7719w662/4cgjj2bfffeb7dOsSywWx3Em/86TySSJRIJUantxsqyqc/gKHnroIVavXs2NN97I/fffX3vdsmXLePjhh9l///159NFHicVi/POf/6RQJxRx9erVbNu2jV133bXl8+2vW7BnMIWCQ7nsiRmKxQK/+MUVrF+/bmZeclKCANBopZBSIqizktAa6j3ex1TFDMGghWG0luVSZbZbcs3IZHJYVqA2K9Z3mKYndmlQiOqp5FKpDFJKQqGpLa36hWYqOSklZ575UaSU3HjjdbN9qg1ZuXIVmcz2m5pYLM62bdvYsmULu+yyS+3xZDLJkiVLAHAch1KphBCCPfbYgyeeeKJ2fe2zzz5s3ryZp556iosuuoi3v/3tlEol1q5dO+59tdZ88YtfZPHixbzmNa9p+Xz9lVEfkU7nueuuOznnnHPYvHkzIyMjrFixqm0vOT04iLtiBcYjj+BGY5jSU9q4avxGtMjmcPbbb86siqoUCkWCQYtoNNySM0OvVXLtMFbMUC73rzNDPZqp5KpihmKx1PfeiK0Mru6xx15cdNH/sWDBwlk6y6nZf/+X8P3v/19tH3LlylX89a9/RUrJgQceSDy+vTjtv//+/OpXv+KRRx6hXPbSY//9739zyy23EA6HSafTPP300yxYsIBLLrmEPffckz333BOA4eFhHMfBcRxSqRSXXnopd999N9///vcJh1sXGvkODH3C6tVP8PWvn8ff/nYvtm3zzne+k9e//o3YjfZ6WsT++c8If/mLqAULkMEQhiFxXHf7nkg+jxxNkv3ilyi97qgOfJLe0qozw0y95HrJXHBmGEurXnLtODP0km54yc0GhUKBu+76E/l8nnPP/TJCwAknnMy99/6Vhx56kOOOO44nn3ySf/zjH+yyyy48/PDDLFu2jOHhYYrFYmXuLYLWGtd1sSyLcrlMoVDgAx/4AHfddRf33HNP03P40pe+xBve8IZpnbdfjPqAm266nvPO+wqu63LIIS/jM5/5FMuWLWNkpAN3xrkcsfe/F/Puu9DRKHJgACElTrlcMbnMUv7fQ8mcfyHUsQiZC0Sj3rzVyEhqkvCgk15yvaR6dz46murbDf/peslZVoB4PDrtvc9uMxtect3k6ac3cNxxr6v7M8uy2GeffUin06xdu5ZCocCiRYuwLIslS5awbt06tmzZAkAikahYII0yMDDA6OgoJ554IrvtthsPPvgg1113Ha95zWt4wxvewJe//GUKhQLr1q3jne98Jx/+8Ienfd5+m64P2LRpEzvvvCunnXYGBxxwEMGgWXNmmHHscThM5oKvEzr3HOzbboWnngLDwFAKFYlQfPPx5M48a84WIqgvZpgLLblm9LOYAdobXB3rzNCpmImZ0g9ecp1mxx2X8qc/3Vf3Z6nUZr7whS+wdu1awuEwQghWrlzJu9/9bq688kr+9re/1YrT7bffzlVXXcWnPvUpIpEIn/3sZ/n2t7/NlVdeyeLFi/nABz7AqaeeWlPSrV27lje96U1tFSLwV0Z9S92YiRkin1pP4M47sUsFzIWLSL7oxbiLd+jIsWebsTETgYAxZ1pyzejHmImZxjsYhuxIzMRMmS8tueky0bX78ccf5wtf+AL/+Mc/CIfD5PN5nvOc5/Dud7+bTZs2cc455xAMBgkEAtx+++0AvPWtb2XDhg3ceuuttWMceeSRBINBvv/979eGnAGGhoZYsWJFS+fmF6M+pRcxE+1ktPQzg4NxTzEoxJxqyTWjX2ImOhnvUB1XaCdmYqbMt5bcdJkqQmJscYpEIhx11FF86EMfGufyfdJJJ/HUU0/VitO1117L2WefXfd4xxxzDOecc05L5+YXoz4mGrUJhayuzMBMN6OlnxnbkgNvNZTLzf0MJ+gPMUM34h1mQ8wwH1ty06Wf84z8PaM+JpstYtsm4XCIYrHU0bu3YrFEMGgTjYanzGjpZyYOrnq2Sjb5fHHOr4pguzODJ4vu7ZdnNxNXs9kc8XiUQqHYdTFDvcHVZ0JLbq7hD732MZ2KmWjEVBkt/UyjwdVex0z0gl7HTPQi3qGVmImZ0o/xDj6N8YtRnzPWmcE0p+c0MBWNMlr6mam85GbizNDPdMWZQalJfoRVD7ZeeMlls7muOTNUP4e3x+UwMpIjm33m7A3NRfw23RwgkykwMBCptNQ6u3eXyxWwba/V1e9ihla95KbrzDAX6JgzQz6P9etfYV/1C8zHHgUhKe+7L+7xxxN83ZFI0+x4S64RY2MmOuXM4Lfk5i6+gGGarF27hgsvPJcHH3yAcDjCEUe8mne96wwCDYLHqmitufzyH3PddVcxOjrK7rvvwfved2YtjXEqWhIzKIX5179iX3Ul5qOPoAMW5QMPovjGN6GWL2947H4XM7QzuNqqM8NcYqZiBjE8TPT97yXwt/tAgw4FQWtksYgwTdyjjiL1+S/gGr29R+2EmOGZrpJrlX4WMPjFaBqkUilOOumNLF++gpNOOoUtWzbzzW9eyOGHv4ozz/xY09dedtmPuPTSSzj99Pey6667c+21V3Hffffwwx/+lGXLdpryvYWAoaEIQH1nhkyG6Aff76VyTrzDtG1yZ3+SwttOaXj8RCJWmbbuHzHDxMHVTCY3rZmrZs4Mc5W2nRm0Jnr6qVi//z1qaBAsCykkotKeVek0Ip0hf+pp5M9sb2ixXWbqzOCr5FrHL0bzhMsu+yE/+cmlXHPNTcTjCQBuuOFaLrjgq1xzzU0sXLio7uuKxSKve93hHHvsGznttPcAXs7L8ccfy/77H8hZZ328pfcPBk1iMS9ye1xLrfpF89vfoG3bc1Oo5otojchmQUgyXzuf0jHH1j22YXiCgGw2T6FQbPE30j064SXnzVMlKrHs/d2CnA6Dg3FcV03LmcF44AHiJx6PtixEJIqsZCZppVHa++IWIyPocITkb29FJxJdOfdGxONRDENOy5lhNgZX169/kp///DL+/e8HWb36cVasWMlll/1iytfNtDPSKfq5GPkChmlw991/Yb/9XlwrRACHHnoYSinuuefuhq978MEHyGazHHroK2qPBQIBXvrS/+Xuu//c8vs3EjOY//wH1m23oi3LC8sbG3QlhJfw6pQJf/3CutHR0D9ihk7GO/hihu1Yt96CKJWQUe9Lv2qCWS1EADoeR46OELjj9m6cdlOmI2aYTZXc6tWPc9ddf2annXZi1aqdW37d5Zf/mEsvvYQ3vekEzj33QhYsWMiZZ76Xp55a38WznVv4xWgarF27hhUrVo17LBaLsWDBQtauXdP0dcCk165cuTObNm2kWGx9QDOTKaC1HieJta+91isyjRy+hUCHw8gn1xG4+67tj+fzBH53G/bVV2H99jfkN20G9KzIoruVuFooFHFdt6sS4l4zVszQatCtlU4hACElrlL1xQKGAUIgR0bGP+44XU8BHitmkA1SY2H2VXIHHngI1157M1/84rnsscdeLb2mWCxy+eU/5M1vPpE3vekt7Lffi/n8579MPB7n5z+/vMtnPHfw1XTTIJ1OEY1OXubGYjFSqcbthXQ6hWVZk+IgYrEYWmvS6TS23Zq81XE0hUKZUMgiGLQoFErINU94XxbNvplME5HLIdetg/1dgt+7hOCPf4TcssXbYxICPThI+YS3EPzMpymYZs/EDN1OXM1kcgwMxLFta96IGbLZPIODcUKhUFMxQ21wdSABQtRSV+tSkXrrSASxeTPBK6/AvvIK5JYt6IBJ+eWvoHDCW3D+Z/8ufCKvHWvbFpFIaJKYoV9Ucs0KZSOadUb+8Ic7Onl6cxp/ZTQHyWa9zJFwOIQQoEMt3vVr0IEAkU9/kvDXzkNu3YqOxdALFqATCUQ6TeBb30SdfDJRq/v3Kb1KXHUcrwUZiYRqDsNznaozQyhkYxiTL+OJg6uZ/Q9AG4YXLd8AkcmgIxHUDjuQOPI1hM7/GvKp9aAVolDAuuF64ieeQOiib3RtpZTN5rjnnr/y97/fN+lzzNXB1U52RuYzfjECisUCJ5zwek444fXj/jBSqSRHHfVKTj/97biuSywWJ5udvGmcTqdrWfL1iMXilEolisXxwoB0Oo0QglhsepuKE50ZnAMP8lZFTeY0RKGADgbBcbCvvgpt2+iBATArRccw0PG4t790yy0YP/tpR5wZ5JNPYl9+GcHvfAv7p5cjn1rftZZcM55Jzgz1BleLL94fZ6+9kKPJ+vuGpRIil6P0skOJnP0x5KaN6FjU+5sIhdCRCDoeB60JfeNCrBtv6MpnKpXKfP3rX+essz7Mtm1b58XgaiudER+/GAFg20E++cnP89RT6/nud79de/z8879KJpPhE5/4LIZhsHLlqkl7Q5lMhm3btrJy5aqGx6/+bN268Vnxa9euYYcdlrTcohvLWDGD+/pj0fEEIpOpf8fqulAuUzrsMKxbb/H+f6M4YNsGDeoHPyActNsWM4hUisgnPk7i9UcTPufLhL79bSJf+RIDxx7N0Bc/j1UskMlkK7NN3c8ZeiaIGQIBk8HBOOFwkHy+yOhocrupqZRkzrsAd9Uq5JatiOFhyOchn0ds2YIcHaW834tw99gDuWEDOhqFiS2pqhjGdQld8n9dWx2deOJJFItFLrzw/EpeUp5kMu/Ltec5fjGq8Jzn7M0JJ5zMVVddwf33/4M77riN3/3uFk477b2sWLES8DLl77vvnnF3MnfccRtSSl784sZ99L333odIJMIdd9xWe8xxHO688w723//Ats+5KmaI7LSM7LnngW0jUikoFr0vCqUQuRwim0WtWkX2k58icM9fpwzS06Eg4rHHYOPT7a0kcjmiH/oA1g3XoxGoHZagd1yCWLrU67n//OeU3v4OCj2eaZqvYoZSqdSSl5zaeWdSP76M/GmnowcGEYUiolhErVhJ7qyPkr7ke1i3/NZ7cpOCrYNBjEf+i/Hwwx39LNWW3NFHH8VLXvIS7rjjDm666TdzqiVXj053RuYrvoBhDG9/+6n85S9/5Itf/Bz5fI7nP39fjjvuzbWfH3XU67n66is5++wPc/LJb2fLls1861vf4Kijjh03Y/SBD7ybjRuf5sorrwfAtm1OPPEUfvjD7zIwMMiuu+7GddddRTKZ5PjjT2z7fMeKGeTRR5GOxQidfx7mAw94RUkIdChM8XVHkfvox9FDQ6A0eqp9EyFAa3LJNNGddqJQKE1LzGDfcD3mPX9FLViIsG0MKZFSoLXGicXQZoDAn/+M9aubKR37+rY/fzvMNzFDKBSsuX8Ui6UpXQz0kiXkz/ww+Xefgdy4EQwDtXRprV0rN29qWogA77nFInLrFjq1pp04uPq+932Ye+65hwsv/BovfOGL2uoe9AtjOyO7775H7fGZdEbmI34xGkMgEODssz/DO995MpZl84lPfHbchnc8Hucb3/gOF154Hmef/WHC4QhHHnk0p556xrjjuK47SbV04olvBTRXXHE5o6Mj7LbbHlxwwcUtuS80Y2zMxMhBB5F6yYEYDz2EsXYN2jRxnv8C9OLFteerpUsxVj/htVsaIEoldDxOIZ7ALjvTi5lQCvuaqwGBDG2X6Xpy4sqtejAIaOyrr/KGcHsoKhgrZiiVyn3hzCCffBK5ZTM6GMLdY4/t+3hNmBjvAJpQKIhhyNbaWaEQaufJczI6kYAnn2z+WtcFKdEduKNvpJJbvnwlb3rTW/jpT3/MNddcxQknnDTj95otxnZGqsWoE52R+YZfjCbw1796czilUpH1659k6dJl436+atXOfOMb36730hrf/OZ3Jz0mhOCkk07hpJMaW/K0Q1XMEIuFiETCZDI53Oc8B/c5z6n7/OKbjyf85S96syP1vvSUAseheMzrIRSqrCRiBIN2S84MIpnEeHIdMh5DSIlSGqUUE7/ydSSK8fjjkM1CNNrGJ2+fbDaPZXly8tl0ZjDvuovgZT8icM+9UC6BNHBXLKf4hjdSfPPxUMfvcGLi6lhXbU8WHZ6WM8NESq9+DaEH/+39HTSQMYtCAbViJc5z92n7fSZ6yeVypUlecm996zt47LFHGRgYaPt9Ok2hUOCuu/4EwMaNT5PNZmvt9+c//4UMDg72rDMy3/DtgMbw2GOP8q53ncxhhx3BY489wujoKD/5yZVEe/xl2Q4DAyECAZPR0VRTQYBIJokfdyzG4497m9Rj948cB5FMoZYsIfWLq1E7eau2SCSEbduMjia3r27qHVsIIoUcwZe9FC0lbiTScI9bpFOgNcnf3YGuM7vVbYJBm0gkxOhouvnsTZewfnkjkf/3echl0bG4Z+PkusiU93spvepVZL/0lXEFaarE1UDAJJGIkUpl2k5jFZs2MXD4yxHJpKeem7hqLRQQpRK5z3yOwilvb+s95rKX3NNPb+C4415X92cXXfR/7Lvvfrz3vaeycePTXH31L2s/8+yAfsR1111d64y8//1nsvfe7Rf0duhnOyC/GFVwHIdTT30r6XSaH//452zYsKFWmD7xic/O9ulNiWkKBgYiuK47ZcyEfPJJYu8+DeO//9kuB68MzaoVK0h/8zvjVlaex1ucUqncMGaiNriqFOrQQxGPPYbaYUnjc9j4NO5ezyL1i6t72qYby8BADK3pecyEXLuW+PFv9IQlixZP+vwil0Wk0uQ++jGKJ508rcTVWCyCaZqMjrYfMxH4/R3E3nOGt2o1DXQg4IlhikWQkuKxryf71fOm3luaeNxZ8JLzGU8/FyNfTVfhxz/+AY8++ghnn/0ZwuEIu+22O2972zv51a9+WVuW9zNVMYMXu91cLaeWLyd5/Y2kv3MJxaOPofySAym95rVkvn4Ro7++ZVKLT2tNNpuveOKNb+1NGlxNZsgfc6xX5EoNBALFImgovuG4WStE4IkZAgET227+++o09i9vQCaTdQsRgA5HQEDwmquIheyWEldFOuXNcb385cjddmXwwAOIfPJsjPvvn/b5lV/2vySvuobiG94Alo0olxFK4z73uWTPOZfsuV+bViGaD4OrPt3HXxkB//3vfzj11LdyzDFv4IMf/Ejtcdd1Of30U9iyZQuXXfaLvpdgThkzMUPGxkw0i3cQ6RTR007F/Oc/0YmEJ5aoKPRENoNMpSi/cD/S37kEmggpekHPYyYch/hxr8d44gnUGGHJRGSxgMzlUDfcSHbnXZq23eTatcTe9XaMxx4HAQQCCK3RZQcsi9wHP0Th9He3dboilUJs3QpBG7Xj0mnfPMzlltx8pJ9XRn4xmmc0jJnoANWYiVKpVJMTN4p3MP79INEPvA/j0Uc99ZVpeg4Q0SilAw8m97nPowcHO3p+U5LLEfjbfYhMBjUwiPPCFyJsu+sxEyKTxrrxRuxrrsZYuxa58Wm0YaCWLEHHxu/LCOH9nimV0NuGSf3wRzgv2LfxwQsFEse8DuO///X2eKoSbSk9GX9lby5z3vmUjjq6K5+vHn5Lrj/p52Lkq+nmGYWCQzDo1NRvnXQ38BY3Gtu2Gyeuak3wRz8kdOH5iFwOpEQoBY4LxSLF176W7Fen1+aZMaUSwR98D/uqq5BbNiNcF22aqJ2WUzjxJHJvexuRWKQ2FNtJxMaNxN57Bua/H/TmvoJBtJSIfB5j3TrUwCBq2TKEEEhDIoVAaY3O5SBgeq28Jli3/BbjkUc8mfWYFqpW2pvtisVhZJjQJd+hdOTrGirkOkUrKjkfn3r4xWgekskUGBiIVOaDZr6indiSq1JvUW1f8XPCX/2K9/PBIW8exXsyIpvBvuEG1A47kv/IR2d8Xi1RKhH52EewbrkFAgHU0ALvS7tUQq5/kvBXvkzhqfW4X/wC0Wi4s2IGpYh+9CzMf/0LtXDBdmWc1oiNG0FI5OgIwrYQO+4IeFEKSimMVIrSy/63pmhshHXD9Z74ZIIMXKM9TYoUqHAY47HHMP71AO7znt+5zzcBvyXnMxP8YjQPqRcz0S714h1s2yIWi0x2ZsjnCX3zYnCV5/YwFiHQ0RgilSJ42Y8pnniitweRz2PddqvXzjMMnL33pvzSl7U0+NkK9vXXYd12KyoWQygXuXEjwnE854F4HNAEf/ZTcoe8lNhrXtVRZwbznnsw//F31EBiXLHQ0RjaGkGUvLktsW0bauFCtJBopbzIhkiEwslvnfI9jKefbrjKVFojhUBYFmRzyM2dc0wYS7/EO/jMbfxiNE8Z68xQLJam3SYxTYNoNIxpmpNacsViiWDQnuTMYN1xO3LzJvSYJNyJ6GgUMTKM9ctfohYuJHz+1zwLmuq+iRC4y5eT++znKR98yLQ/9ziUwr7qF+A4GJs2IgqF7blPWmOkU+iAhQ4FMa+6isLLD+2oM4N1262IctnbKxuLIWH5ToinnkLn81AswVNPISwL4TjoRILcJz/dUm6QjkaburVrrRFKoaVENzLHbRO/JefTSfxiNE+p58zQChNbco2GaOs5M8h1a70v+marmsqehXXbrZgP/gscB5UY2P6aUgljzRqi7z2DzLe+Q/mgg6f1uce91aaNGI89ishkEOWyt4IYu2eiNaJURDhlAnf+gWTm/7d353FRle3/wD/nzAIzzAyY4A7oyy2XNDfA3BJ3hfRJTStNs0VNRTPKeOyrWVkuqZX1WFru/ipTnyz9ZWruC+LWYpjfNEFz14DZ9/P948DIMMMwK2eA6/168QdnzhnuoV5c3vd93delh/SBGL8qMzBFRRDn5IDR82eHrElJYO7dK36xdIICX6cPIhFsCQmAWg329m1wSiXs8Qmw9OkDU/pQ2OPjvfq55v4DID51styKCRzHgdHpwNStA2tHD4kQPqIlORJsFIyqMV+TGXzpuGqz8TXe5HIZzGYzX5lBLHF0C60oBVh85jQ4VgTugdrOL0ilsNeOBXvvLuTz30HRjv/vf7KD2cL/IbZY+GBXdkwlgdNiAVNYAM5mg15vQFSUzPtkBq0W8o8+QMR/t4EpKuI/v1gCW3w87LVrO2YtDPgEBYBPLrBzfHddKBTgjEbo57wJc1q6zx/RNOxfkK34BExBIbhaMa6f0WQCbDYwEyZAGq3yuzJDCVqSI6FCh16ruZI2E57aJvjbcVWvNwLgHAHM2rkzvzdi8lDDzmoBLPwXF13Och7DwK5UQfTXX5AcP1bhOMpjj43lO5t6Co7F1xmTCTCbfWszoddDOXkiItesAfR62GvVgj0uDnZFFET5eXy7Dr0eoitXILqSD1y9CnthIez2+0GO0WjAqaJh6dbdr8/IxcZC+/5ScIooMAUFYHQ6/vdrMvHf6w0w9U6FafJLiIqS+33GmA6uklCjmVE15ymZwdslufKUVGZwJDO0fxjWNm0h/vksOKnUddmI4/jZQ2Qkn+rtacYTEQHotBDl5vq/VCcWA9IIz8GRAx+QIiLA/nMP9oaNvG4zEbluDSQnsmGPVjnX+JNKYVco+OQCqxUwmcAV/y5YtRpcRATsDRvyJXaMRhhHjQ7ozJWldyrU6zZC/uEySI4fA6Ply/jYEhvD9NTTMD4zDqzVjlosA5lMBr3e4NP7C7Ekl5+fh2XLFuHcuV8hl0dh4MDBeOGFlxzn28ozYkQ6bt684XL9p5+OunRaJeGFglENUDaZwWKxQiaLgFLJF4CtaEnOk7LJDLq334Hy2XF8RphcDsiKZxgmIxitFpxCCWunTpAcOhSsj1c+iQScSglGrwMsxVXKS88MOA6wWsFJJODkcnBi/g+dV20mTCZEbv6aDzJlmhUyVivYW7f4JTqG4YNyqdkZYzBAdPkyuOhomHv0hD5jhv+f0WpF5MYNiFyzGqL8PKA4WcHStSv0r2TCVnxg1m63Q683Qi6PhMnkXTARaklOrVYjI2MS4uMTMH/+Yty5cxsff7wMRqMRM2fOqvD5Rx/tg9GjnathSytoKEmER8t0NUBJMgPHcdix43ukpw/GokULfVqS80Sr1UMkYvkW6K1aQ7N+Iyy9HgVjt4O5d5f/Mpth7dQJmlWfw5zah3/Q056M2cRn1rVs6f/AWBaW7j35ckRSCWCz8ktYViv/ZbOBk8kAuRy2lg869X3S6QwAmHI73YouXgR765ZTXygGDFiWhaioiH9/lnV8cdHRACtyjAscB3NqH2iXf+J/SSSLBYrJExE15w2I/roETiTiZ6QApIcOIvqJkZDs3eO43WAwwm63IyrK8xKk0Ety27dvhV6vw7vvLkZyclekpQ3F5MkZ2L59G+7evVPh8w888ADatn3I6Yvxd32SVBqaGdUQp06dxUcfLUZubi5UKhWSklKCVi6obDKDrUVLaFavBXvpIsS//QZwdtiaNoftoYf4ANOiJeQfLAWjVrtfnuI4sGo1bE2bBZRNBwCmESMgObCvuBEcA0aruV+eSKkCxzBg9TqYnhjltK/Epyp7SGawWpxmOyzDgmEZfmaiLk53L04hBwAupha46Bj+ZzPFfZ8uXy5uNOgf2WcrEPHjLr6qdunlK7GYz6LT66GcNgUFBw6Dq1sXAP8Ph+hoJaRSidtkhnDIksvOPobOnZOgKnVEIDW1H95//z3k5GRj8GDfEz1I+KOZUTWnVquxYMHbmDTpWeTm5mL48OHYsWMHuvm5YV6esskMAGBv2gzmYf+C+V/DYWvXzvGHm4uJgX7GTDAsA6bgH34WUcJiAfvPPXByOfSvZwVcNsjSoydMo5/iExRMJthj42BvFA97bBzfOlunhWngIJjc1G3zlMxgb9AQnDQCrNkMkUgEpritus1sdk6Y4Dg+WAD3s/dEYnAREWD/vup5duiJ2YzItWvcVl8o+VmcTAZGq0PkN1/f/31YrI6l1dKJFBKJGDExKkRFyWC3c1CrDSgqMgiSrp2fn4eEhMZO15RKJWrXjkV+fl6Fz+/evQu9e3dFv349kJmZgUuXLoZmoCSoaGZUza1b9wV27NiOFi1aYubMWUhJ6QKZTBrQPpE7LskMVs9LOqanxwAiEeQfLAX7zz9OsxJ7/QbQzX0Tlt6pgQ+MYaB/PQu2+HhEbtwA9trf/MFSkQhcXB0YRo+GccLz5Z6NKi+ZgalbBxg0COy2rfwZIY4vweOkZFbkpjkjY+fAScR+14oTnz3Dn0/ytCnPsgA4SHd8D8PUDMdlnc6AZ599BnFxcVi4cDEUiqiwOriq0aihcNNwUalUQq1Wu3nivu7de6J167aoW7cerl+/hnXrVuOll57D6tWb0LCh59JKRFgUjKq5kSOfRLt27dG9ey+IRKKAKzN4Ul5lBrcYBqYnn4I5PR3SXbsguvgnwLKwPtSO31MKZuYTy8I09hmYRo2G+PRpsAX/gFMqYencBZC53xMq4S6ZwdFxddo02Pb9BObOHXAxMXxAE4vBSST8TKw4Sw9yN3tCFjMsj/b2u58To9Hwwa6CYMYxDH9vKXa7HQ0bNsJPP+3F8eNHkZaWVm0OrpZuAdO+fQd06ZKCp58eji+/3IjMzNcFHBmpCAWjaq5evXqoV+9+x1V/KzN4y11lBk84hZJvslcZpFJYu3b1+TGdzgCpVFpcHkl0v+Nqo3iIPvoEildn8tlzJctzJQFGIoE9Ls414Oh0gEgM0+jRfn8Ue1wdPhDZbJ4DEsfBXq++0yWJRIxZs2bh6NEjWLhwITp1SoFYHD5pz0qlCjqd1uW6RqOBSqXy6b1iY2PRrt3DuHDhfLCGR0KE9oxqIKPRCovFWty5NbitHEonM7Bs9chgYhjAbrchIkIKu92546o1JQVFP/wI3fz3YO7XH5aUrjCNGg1Lt+7gIiP5Mz9WKx+oLBb+IKrZBONTT8HSs5ffY7K1awdrs+ZgyuumC/CVFwCYHh8OgO9xVJIll5AQjwkTnsft27fx2Wef+j2OUEhMbOyyN6TVanHv3l0kJjYWZEwk9CgY1VDeVGbwl7tkhqpKJotErVrRYBi2OKOOcVnK4hRKmEY+Ae1/PoVm/UboFi+B+suvYZj8EjiViu+Weu8u39Svfj3os2ZD/z9zA2u5zjAwTJ3Kz4oMBrist9rtgNEEW8OGMA8dWvw5+L0vs9mKggI9hg9/Eo0axWPz5v+Hv/665P9Ygiwl5RGcOpUDTanlxf3794JlWSQlVVw8trS7d+/g119/RqtWrYM9TBJk1Om1BlMoIkKSzADA0WaisFBTYTJDOJJIxFAo5PeX5AyG4k63Kmg0Ou/bTGi1kBw/DkarBlc7FpbklKDuh8k+WAbZB0v5ytzFS4RMcYaerX59GL7aDFnHDuV2XM3OPobMzAy88MJkjBv3XNDGFQi1Wo2xY59AfHwCnnlmAu7cuY3ly5ehf/+BTodep0+fjJs3b+Drr78FAOzZswvHjh1B167dEBsbh+vX/8aGDWuhVqvxxRcb0KBBQ4E+UfgI506vFIxqMIYBHniA31wvKCgKegZVdLQSDMNUnMwQRkq3RTCbLdDp9E4zIYVCDqlUgoICdVDaTASD+NRJRG7YAOnePYDJCHuDhjCNGQPx+PGIaFAfHMfBYLCUmyV34cIfiI+Ph9xdooVA8vIuY9myxTh37pfickBD8OKLzuWApk59ETdv3sCWLd8DAM6d+w2fffYxLl++BI1GA6VSiY4du+D55ye6pIrXVBSMSNiKjBRDqeQPdgY7mYGfSSih0xm8SmYQmiNLzs5Bp9O7PRTKMAxq1YqGyWT2uc1EpeA4yOQywQ+ukvAUzsGIsumqgCNHDmHVqhW4ejUfderUw9ix4zFkyGMen7lx4zpGjnS9p3Xrtli5cq3je1/bTPjCbZuJMORuSa68f6JVWJlBQNTegVRlFIzC3C+//IzZs19FWtpQTJ/+Ck6fPokFC96GXC5H7959K3x+4sQp6NChs+N7uZtun1qtETExUcXng4I7A9brjYiI4PskBXvmFaiyS3JqtdarGYTRaEJkJJ/qXVQk/IoBy7KIipKF1cFVQnxFwSjMrVv3OVq3boNXX/03AKBjx864du1vfPHFZ14Fo0aN4tG27UMe7/HUZiJQvlZmqCyll+TUaq3PTee8bTMRauFQS46QYKDU7jBmNptx5swpl6DTt29/5OVdxo0b14P2s3Q6E+x2O+RyWUAZx+6UtK0IRRq5ryQSMWrVUkEuj4TBYEJhYZFf3U9LV2YQoiJ0ONWSIyQYKBiFsWvX/obVanXJBEpMbAIAXhWNXLJkAXr2TEJaWj8sXPgO1Ooit/eVVGbgl3yCHzRKt5kQQum2CDab88FVf1XUZiIUSh9cpY6rpDqhZbowptHwKdFli0YqlXxJFE9FIyUSKYYNG4Hk5BQoFErk5p7D+vWr8ccfuVi1aj3EbgqDVtdkhkCX5MpT2ckMtCRHqjMKRpWspKxJRQI9oBcbG+tUGLJDh05o0qQpXnttBg4e3I8+ffqVM77qk8zgS5acvyojmYGy5EhNQMGoku3fvxcLF75T4X2bNm1xzIDKFo0smTH5WjSya9dukMlkuHDhfLnBqDokM/ibJeevUCUzUJYcqUkoGFWy9PRhSE8f5tW9ZrMZYrEY+fl5SE6+X226ZK8oVEUjw6bNhB9CtSTnibs2E4GiJTlS01ACQxiTSqXo2LEzDhz4yen6vn170LhxE9Sv38Cn9zt69DAMBkOFRSOrYjJDsLLk/BWsZAbKkiM1Fc2Mwty4cc8jI2Mi3n9/AVJT++Ls2dPYs2cX5s17z+m+Xr2SMXDgEGRlzQEALF++DCzLok2btlAolDh//nds2LAWDz7YGj16PFrhz60qyQyVvSRXnkCTGYRYksvPz8OyZYtw7tyvxfXfBuOFF5zrv7nDcRw2blyH//73GxQWFqJ58xaYNm1mhefZCPGEglGYa9/+YcyfvwirVq3Azp3bUbduPcya9QZSU53PHtlsNtjt9/8IN2nSBNu2bcF3322D0WhEXFwdpKU9hueem+g2k86dcE9mEGJJzhN/kxmEWJJTq9XIyJiE+PgEzJ+/GHfu3MbHHy+D0Wh0qoztzsaN67B69WeYNGkqmjZtjm3bvsHMmVOxZg219ib+o0KpxKNwbDNRGVly/hKLvW8z4ZolZ6q0LLkNG9Zg/frV2Lp1B1SqaADA9u3bsHTpQmzdugOxsXFunzOZTHjssf54/PEnMHHiFACAxWLBk08+jpSUbtTaO8yFc6FU2jMiHoVTZYZQHFwNNm8qM4TDwdXs7GPo3DnJEYgAIDW1H+x2O3Jysst97ty5X6HT6Zxm5hKJBL169UZ29tGQjplUbxSMiEfhksxQ0nFVLBZDrdYKtjfkDU/JDO46rup0lZ+unZ+f51LZQ6lUonbtWI+VPUpec1cV5NatmzCZjMEdKKkxKBiRChmNVlgsfDKDWCwK6nuXTmZgWdeZhNBZcv7gz1PpsWnTBpw9ewZA+GXJaTRql8oeAB+QPFX20GjUkEqliCjTrVapVILjOKdW4YT4ghIYiFcqO5khXLLk/GU0mrBy5UoAwPff70BsbC06uEqIBzQzIl4pqcwgFosRGSkN6nuXVGbgZ17iKrUkVx6GYfDiixNRVFSETz75WNAlOXeUSpVLZQ8A0Gg0Hit7KJUqmM1mmEzOnXs1Gg0YhoFSGb4b5CS8UTAiXgt1MoPVakN0tKJKLcm5U7IkN378OLRo0QKbN2/GiROnwyqgJiY2dtkbKqmb6KmyR8lrV67kO13Pz89D3br1EBERGeSRkpqCghHxWqiSGUqy5Er2owwGY9hlyXmjbJac2WzH9OmvguM4LFmywOkcmNBSUh7BqVM5Tns8+/fvBcuySEpKKfe5tm3bISoqCvv373Vcs1qtOHRoP1JSuoV0zKR6o2BEfBLsZIayS3L8wdFIt8kM4ay8LLn27TtgwIDBOH8+FwcO7BN6mA5Dhw6HXC5HVtYryMnJxs6d3+GTTz7E0KGPO50xmj59MkaNGub4PiIiAmPGPIuvvtqIzZu/xOnTJ/Hmm/9GUVERnnxyjACfhFQXlMBAfBaMZIbyDq5aLNZKbTMRKG/aO0ydOgMWiwUNGvhWSzCUVCoVPvxwBZYtW4ysrFcgl0chPX0YXnzxJaf7bDabS2mjMWPGAeDw1VcbUVhYgGbNWmDp0uVUfYEEhCowEL/4W5mhbJacTqd32UvxtzJDZSpbS85gsNToLLkzZ04hI2MS5s9fjF69eju9tnv3Lrz11hv49NPVaNu2nUAjJABVYCDVkD/JDN5myflamaGyhcvB1XDSoUMn1KlTF3v2/ODy2p49P6Bhw0YUiIhHFIyIX3xJZvDn4Goo2kwEKtwOroYThmEwYMBgHDt2BFrt/ZTxgoIC5ORko3//QQKOjlQFFIyI3ypKZgikllxFlRkqUzjUkqsKBg4cArPZjAMH7mfa7du3GzabDQMGDBZwZKQqoGBEAqLVGsFxnMuSWjAOrur1RgBcwA3rAkFLct5LTGyMVq1aY/fuXY5ru3fvQps2D6FRo3gBR0aqAgpGJCClKzOwLLB16zc4ceJYUA6ulq3MUJloSc4/AwcOwc8/n8Ht27dw7drf+P3332iJjniFghEJmE5nwsGDBzF69CgsXboE3377bdDaO1R2MgMtyQWmT58BYFkWe/f+iN27f4BYLEafPv2FHhapAuicEQnIjRvX8dFHS3H48AGIxWKMHz8eTz01NqgzCK1Wj5gYpaMFeqgI0XG1uomJiUFKyiP48ccfYDabkJzcFTExMUIPi1QBNDMifjtx4jjGjBmJw4cPoGPHzti6dSuysrIQHV1+oU1/hDqZgZbkgmvgwCG4dOlPXL16Bf37U+IC8Q7NjIjfjEYjGjWKx9ixz6JPn/6QSFhHMkNltJkIVNmDq9TeITi6desJpVIFjrOje/eeQg+HVBEUjIjfevXq7XTaviSZQSaTIjJS6lNlhoqUJDMolVEwGs0BV2agJbnQYRgGIpEI3bo96tKEj5Dy0DIdCapQt5kINJmBluRC7/DhAygsLMDAgUOEHgqpQmhmRIKqpDKDUilDVJQ86MVO/U1mCLcluSNHDmHVqhW4ejUfderUw9ix4zFkyGMen7lx4zpGjnS9p3Xrtli5cm2IRuq9338/h0uX/sTatZ+jRYuW6NChk9BDIlUIBSMSdEajFZGRVkfAsFptFT/kpdLJDGazGXZ7xdEk3JbkfvnlZ8ye/SrS0oZi+vRXcPr0SSxY8Dbkcjl69+5b4fMTJ05Bhw6dHd/L5eFRw+/bb7dg9+4f0KxZC8yePVfo4ZAqhqp2k5AQixnExETBZrMFPZmBYRjUqqWC2WzxOPNybe9gCovzQjNnToXBoMeKFasd1958czYuXvxfbNz4TbnPlcyM3n57gVdBi5CyqGo3qXFKV2aIjJQG9b0rqswQzgdXzWYzzpw55RJM+vbtj7y8y7hx47pAIyNEWLRMV4OdPJmNnTu/R27uOVy/fg2PPz4SM2fO8upZrVaL5cuX4tChA7BarUhOTsGMGa8hNjbWcY9OZ0JEhBhyuQwmkzmo+zMmk7l4GVAPhhFBJOILtYbbklxZ1679DavVioSExk7XExObAADy8/NQv77nJnxLlizA3Ln/hkoVjR49emHy5GlQqaJDNWRCKgUFoxosO/s4Ll78Ew8/3BFqtdqnZ+fMyUJe3l/IzMxCRIQUK1f+B5mZGfj88/WO2Uqokxlu376LQYP6o1+//pgzZ26FHVfDgUbD/54VCuflEqWSPyjs6b+DRCLFsGEjkJycAoVCidzcc1i/fjX++CMXq1atr/T6fYQEE/3fW4NNmTId06a9DIDv1Omtc+d+RU7OcSxd+jGSklIAAAkJiXj66ZE4eHA/+vTp57g3lMkMUqkULVu2xI4d32PUqCfQpUsXQbLktFot7t27W+F9DRo0DOjnxMbGIjPzdcf3HTp0QpMmTfHaazNcfu+EVDUUjGowlvVvyzA7+xgUCiW6dEl2XEtIaIzmzVsgO/uoyx9FrdaImJiooFdmkMtlmDt3LkaMGIF58+ZhzZpNYBjXvkqhtn//Xixc+E6F923atMUxA9LptE6vlcyYVCrfSil17doNMpkMFy6cp2BEqjQKRsRn+fl5SEhIBFPmVGtiYhPk5+e53B/sygyls+RatWqN4cNHYsuWzfj66y8xevSYgN7bH+npw5CePsyre81mM8RiMfLz85Cc3NVxveT3lpjYOPgDJKQKoGw64jONRu2y5wEASqWy3D2PYFRmKC9LbsKESYiJicEXX6zE3bt3/HvzSiKVStGxY2ccOPCT0/V9+/agceMmFSYvlHX06GEYDAa0atU6mMMkpNLRzKga8WXvQiKRVMKI7gs0mcFTlpxKpcKUKTMwf/6buHDhD8TGxoXiIwTNuHHPIyNjIt5/fwFSU/vi7NnT2LNnF+bNe8/pvl69kjFw4BBkZc0BACxfvgwsy6JNm7ZQKJQ4f/53bNiwFg8+2Bo9ejwqwCchJHgoGFUjvuxdBLIcpFSqcPv2LZfrGo3G456HP8kMrgdX3WfJDRqUhvbtO/g8sxBC+/YPY/78RVi1agV27tyOunXrYdasN5Ca6nz2yGazwW6/n5bepEkTbNu2Bd99tw1GoxFxcXWQlvYYnntuImXSkSqP/g+uRnzZuwhEYmJjnDqVA47jnPaN8vPz0LRpM4/PepvM4E8tuUCz1SpT9+690L17L4/3HDninOGYljYMaWnDQjgqQoRDe0bEZykpj0CjUePUqRzHtStX8vHnnxeQktLN47PeVGaQySJRq5YKERFSmM1WFBToodNRnyFCqjOaGdVgN2/ewPnzvwPgG+Vdu3YN+/fvBQCncjVl9y7atm2HpKSueO+9tzB16suQSqVYteo/aNq0uVN/o/KUV5nB2yU5Qkj1Q8GoBjtz5hTefXee4/sTJ47hxIljAJyXiMruXQDAW2+9h+XLl2LRovmw2WxISkrGyy+/5tXeRdlkBr3eGFbtHQghlY+qdhPBxMTIIJGIHXtP4VhLjpDqhKp2E+KGVmsEx3HgOFDHVUJqOFqmI4KxWjkUFuphtVIAIqSmo5kRERQFIkIIQMGIEEJIGKBgRAghRHAUjAghhAiOEhhItRXqtuqEkOChmRGptkq3VXfX8sKTOXOycPLkCWRmZmHu3Ldx5Uo+MjMzYLVSRQhCQoFmRqTaqoy26oSQ4KCZEam2QtVWnRASfBSMCCnD17bqhJDAUTAipAx/2qoTQgJDe0akygjntuqEkMBQMCJVRri3VSeE+I+CEakyqkJbdUKIf2jPiJAyAmmrTgjxD82MSLUlVFt1QojvKBiRakuotuqEEN9R23FCCKkhqO04IYQQ4gEFI0IIIYKjYEQIIURwFIwIIYQIjoIRIYQQwVEwIoQQIjgKRoQQQgRHwYgQQojgKBgRQggRHAUjQgghgqNgRAghRHAUjAghhAiOghEhhBDBUTAihBAiOApGhBBCBOd1PyNCCCEkVGhmRAghRHAUjAghhAiOghEhhBDBUTAihBAiOApGhBBCBEfBiBBCiOAoGBFCCBEcBSNCCCGCo2BECCFEcP8H0Yb14j4EZKMAAAAASUVORK5CYII="}}]}}}, "version_major": 2, "version_minor": 0} diff --git a/ml-advanced/model-selection.html b/ml-advanced/model-selection.html index 206bb161ff..40292bf2dc 100644 --- a/ml-advanced/model-selection.html +++ b/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + diff --git a/ml-advanced/unsupervised-learning.html b/ml-advanced/unsupervised-learning.html index 74b0e24981..8fc4fd0937 100644 --- a/ml-advanced/unsupervised-learning.html +++ b/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html index 9970217d1f..6742bcf98d 100644 --- a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html +++ b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/classification/applied-ml-build-a-web-app.html b/ml-fundamentals/classification/applied-ml-build-a-web-app.html index d36e426085..34f05d9722 100644 --- a/ml-fundamentals/classification/applied-ml-build-a-web-app.html +++ b/ml-fundamentals/classification/applied-ml-build-a-web-app.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/classification/getting-started-with-classification.html b/ml-fundamentals/classification/getting-started-with-classification.html index 3d53134c96..992f847050 100644 --- a/ml-fundamentals/classification/getting-started-with-classification.html +++ b/ml-fundamentals/classification/getting-started-with-classification.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/classification/introduction-to-classification.html b/ml-fundamentals/classification/introduction-to-classification.html index 555d712982..20e4e7deee 100644 --- a/ml-fundamentals/classification/introduction-to-classification.html +++ b/ml-fundamentals/classification/introduction-to-classification.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/classification/more-classifiers.html b/ml-fundamentals/classification/more-classifiers.html index af292b5731..dd6a0dbe97 100644 --- a/ml-fundamentals/classification/more-classifiers.html +++ b/ml-fundamentals/classification/more-classifiers.html @@ -27,8 +27,8 @@ - + @@ -2184,7 +2184,7 @@

13.2.4. Exercise - apply logistic regres
-
Accuracy is 0.8031693077564637
+
Accuracy is 0.8115095913261051
 
@@ -2207,8 +2207,8 @@

13.2.4. Exercise - apply logistic regres

-
ingredients: Index(['black_pepper', 'egg', 'scallion', 'soy_sauce'], dtype='object')
-cuisine: korean
+
ingredients: Index(['egg', 'honey', 'milk', 'shrimp', 'vegetable_oil', 'walnut'], dtype='object')
+cuisine: chinese
 
@@ -2259,23 +2259,23 @@

13.2.4. Exercise - apply logistic regres chinese - 0.529949 + 0.374274 - korean - 0.294966 + japanese + 0.252066 - japanese - 0.136638 + korean + 0.207289 thai - 0.037765 + 0.128032 indian - 0.000681 + 0.038340 @@ -2296,15 +2296,15 @@

13.2.4. Exercise - apply logistic regres
              precision    recall  f1-score   support
 
-     chinese       0.75      0.70      0.73       253
-      indian       0.91      0.90      0.90       230
-    japanese       0.73      0.82      0.77       223
-      korean       0.85      0.78      0.82       238
-        thai       0.79      0.82      0.80       255
+     chinese       0.73      0.73      0.73       232
+      indian       0.91      0.90      0.91       231
+    japanese       0.78      0.77      0.78       242
+      korean       0.84      0.79      0.82       243
+        thai       0.79      0.86      0.82       251
 
-    accuracy                           0.80      1199
-   macro avg       0.81      0.81      0.80      1199
-weighted avg       0.81      0.80      0.80      1199
+    accuracy                           0.81      1199
+   macro avg       0.81      0.81      0.81      1199
+weighted avg       0.81      0.81      0.81      1199
 
diff --git a/ml-fundamentals/classification/yet-other-classifiers.html b/ml-fundamentals/classification/yet-other-classifiers.html index 65ffba8589..73fe281d2d 100644 --- a/ml-fundamentals/classification/yet-other-classifiers.html +++ b/ml-fundamentals/classification/yet-other-classifiers.html @@ -27,8 +27,8 @@ - + @@ -1839,18 +1839,18 @@

13.3.4.1. Exercise - apply a linear SVC<

-
Accuracy (train) for Linear SVC: 78.2% 
+
Accuracy (train) for Linear SVC: 79.6% 
               precision    recall  f1-score   support
 
-     chinese       0.69      0.72      0.71       240
-      indian       0.88      0.93      0.91       253
-    japanese       0.75      0.75      0.75       240
-      korean       0.80      0.73      0.77       250
-        thai       0.78      0.77      0.78       216
+     chinese       0.72      0.71      0.71       249
+      indian       0.86      0.89      0.88       238
+    japanese       0.84      0.74      0.78       250
+      korean       0.79      0.79      0.79       234
+        thai       0.77      0.87      0.82       228
 
-    accuracy                           0.78      1199
-   macro avg       0.78      0.78      0.78      1199
-weighted avg       0.78      0.78      0.78      1199
+    accuracy                           0.80      1199
+   macro avg       0.80      0.80      0.80      1199
+weighted avg       0.80      0.80      0.80      1199
 
@@ -1874,32 +1874,30 @@

13.3.5.1. Exercise - apply the K-Neighbo

-
Accuracy (train) for Linear SVC: 78.2% 
+
Accuracy (train) for Linear SVC: 79.6% 
               precision    recall  f1-score   support
 
-     chinese       0.69      0.72      0.71       240
-      indian       0.88      0.93      0.91       253
-    japanese       0.75      0.75      0.75       240
-      korean       0.80      0.73      0.77       250
-        thai       0.78      0.77      0.78       216
+     chinese       0.72      0.71      0.71       249
+      indian       0.86      0.89      0.88       238
+    japanese       0.84      0.74      0.78       250
+      korean       0.79      0.79      0.79       234
+        thai       0.77      0.87      0.82       228
 
-    accuracy                           0.78      1199
-   macro avg       0.78      0.78      0.78      1199
-weighted avg       0.78      0.78      0.78      1199
+    accuracy                           0.80      1199
+   macro avg       0.80      0.80      0.80      1199
+weighted avg       0.80      0.80      0.80      1199
 
-Accuracy (train) for KNN classifier: 72.7% 
-
-
-
              precision    recall  f1-score   support
+Accuracy (train) for KNN classifier: 73.2% 
+              precision    recall  f1-score   support
 
-     chinese       0.68      0.71      0.70       240
-      indian       0.86      0.84      0.85       253
-    japanese       0.63      0.85      0.72       240
-      korean       0.88      0.52      0.65       250
-        thai       0.67      0.72      0.70       216
+     chinese       0.66      0.64      0.65       249
+      indian       0.86      0.79      0.83       238
+    japanese       0.66      0.86      0.75       250
+      korean       0.86      0.56      0.68       234
+        thai       0.70      0.81      0.75       228
 
     accuracy                           0.73      1199
-   macro avg       0.75      0.73      0.72      1199
+   macro avg       0.75      0.73      0.73      1199
 weighted avg       0.75      0.73      0.73      1199
 
@@ -1928,47 +1926,45 @@

13.3.6.1. Exercise - apply a Support Vec

-
Accuracy (train) for Linear SVC: 78.2% 
+
Accuracy (train) for Linear SVC: 79.6% 
               precision    recall  f1-score   support
 
-     chinese       0.69      0.72      0.71       240
-      indian       0.88      0.93      0.91       253
-    japanese       0.75      0.75      0.75       240
-      korean       0.80      0.73      0.77       250
-        thai       0.78      0.77      0.78       216
+     chinese       0.72      0.71      0.71       249
+      indian       0.86      0.89      0.88       238
+    japanese       0.84      0.74      0.78       250
+      korean       0.79      0.79      0.79       234
+        thai       0.77      0.87      0.82       228
 
-    accuracy                           0.78      1199
-   macro avg       0.78      0.78      0.78      1199
-weighted avg       0.78      0.78      0.78      1199
+    accuracy                           0.80      1199
+   macro avg       0.80      0.80      0.80      1199
+weighted avg       0.80      0.80      0.80      1199
 
-Accuracy (train) for KNN classifier: 72.7% 
-
-
-
              precision    recall  f1-score   support
+Accuracy (train) for KNN classifier: 73.2% 
+              precision    recall  f1-score   support
 
-     chinese       0.68      0.71      0.70       240
-      indian       0.86      0.84      0.85       253
-    japanese       0.63      0.85      0.72       240
-      korean       0.88      0.52      0.65       250
-        thai       0.67      0.72      0.70       216
+     chinese       0.66      0.64      0.65       249
+      indian       0.86      0.79      0.83       238
+    japanese       0.66      0.86      0.75       250
+      korean       0.86      0.56      0.68       234
+        thai       0.70      0.81      0.75       228
 
     accuracy                           0.73      1199
-   macro avg       0.75      0.73      0.72      1199
+   macro avg       0.75      0.73      0.73      1199
 weighted avg       0.75      0.73      0.73      1199
 
-
Accuracy (train) for SVC: 81.2% 
+
Accuracy (train) for SVC: 82.0% 
               precision    recall  f1-score   support
 
-     chinese       0.75      0.76      0.75       240
-      indian       0.91      0.91      0.91       253
-    japanese       0.81      0.80      0.81       240
-      korean       0.86      0.77      0.81       250
-        thai       0.74      0.82      0.78       216
+     chinese       0.75      0.72      0.74       249
+      indian       0.90      0.89      0.89       238
+    japanese       0.87      0.80      0.83       250
+      korean       0.82      0.83      0.82       234
+        thai       0.77      0.86      0.81       228
 
-    accuracy                           0.81      1199
-   macro avg       0.81      0.81      0.81      1199
-weighted avg       0.81      0.81      0.81      1199
+    accuracy                           0.82      1199
+   macro avg       0.82      0.82      0.82      1199
+weighted avg       0.82      0.82      0.82      1199
 
@@ -1993,75 +1989,73 @@

13.3.7. Ensemble Classifiers -
Accuracy (train) for Linear SVC: 78.2% 
+
Accuracy (train) for Linear SVC: 79.6% 
               precision    recall  f1-score   support
 
-     chinese       0.69      0.72      0.71       240
-      indian       0.88      0.93      0.91       253
-    japanese       0.75      0.75      0.75       240
-      korean       0.80      0.73      0.77       250
-        thai       0.78      0.77      0.78       216
+     chinese       0.72      0.71      0.71       249
+      indian       0.86      0.89      0.88       238
+    japanese       0.84      0.74      0.78       250
+      korean       0.79      0.79      0.79       234
+        thai       0.77      0.87      0.82       228
 
-    accuracy                           0.78      1199
-   macro avg       0.78      0.78      0.78      1199
-weighted avg       0.78      0.78      0.78      1199
+    accuracy                           0.80      1199
+   macro avg       0.80      0.80      0.80      1199
+weighted avg       0.80      0.80      0.80      1199
 
-Accuracy (train) for KNN classifier: 72.7% 
-
-
-
              precision    recall  f1-score   support
+Accuracy (train) for KNN classifier: 73.2% 
+              precision    recall  f1-score   support
 
-     chinese       0.68      0.71      0.70       240
-      indian       0.86      0.84      0.85       253
-    japanese       0.63      0.85      0.72       240
-      korean       0.88      0.52      0.65       250
-        thai       0.67      0.72      0.70       216
+     chinese       0.66      0.64      0.65       249
+      indian       0.86      0.79      0.83       238
+    japanese       0.66      0.86      0.75       250
+      korean       0.86      0.56      0.68       234
+        thai       0.70      0.81      0.75       228
 
     accuracy                           0.73      1199
-   macro avg       0.75      0.73      0.72      1199
+   macro avg       0.75      0.73      0.73      1199
 weighted avg       0.75      0.73      0.73      1199
 
-
Accuracy (train) for SVC: 81.2% 
+
Accuracy (train) for SVC: 82.0% 
               precision    recall  f1-score   support
 
-     chinese       0.75      0.76      0.75       240
-      indian       0.91      0.91      0.91       253
-    japanese       0.81      0.80      0.81       240
-      korean       0.86      0.77      0.81       250
-        thai       0.74      0.82      0.78       216
+     chinese       0.75      0.72      0.74       249
+      indian       0.90      0.89      0.89       238
+    japanese       0.87      0.80      0.83       250
+      korean       0.82      0.83      0.82       234
+        thai       0.77      0.86      0.81       228
 
-    accuracy                           0.81      1199
-   macro avg       0.81      0.81      0.81      1199
-weighted avg       0.81      0.81      0.81      1199
+    accuracy                           0.82      1199
+   macro avg       0.82      0.82      0.82      1199
+weighted avg       0.82      0.82      0.82      1199
 
-
Accuracy (train) for RFST: 83.8% 
+
Accuracy (train) for RFST: 84.5% 
               precision    recall  f1-score   support
 
-     chinese       0.81      0.78      0.79       240
-      indian       0.89      0.94      0.92       253
-    japanese       0.83      0.82      0.82       240
-      korean       0.84      0.79      0.82       250
-        thai       0.81      0.86      0.83       216
+     chinese       0.82      0.77      0.79       249
+      indian       0.89      0.89      0.89       238
+    japanese       0.90      0.82      0.86       250
+      korean       0.82      0.87      0.84       234
+        thai       0.80      0.88      0.84       228
 
     accuracy                           0.84      1199
-   macro avg       0.84      0.84      0.84      1199
-weighted avg       0.84      0.84      0.84      1199
+   macro avg       0.85      0.85      0.85      1199
+weighted avg       0.85      0.84      0.84      1199
 
-
Accuracy (train) for ADA: 70.2% 
+
Accuracy (train) for ADA: 70.7% 
               precision    recall  f1-score   support
 
-     chinese       0.64      0.45      0.53       240
-      indian       0.87      0.86      0.86       253
-    japanese       0.69      0.62      0.65       240
-      korean       0.62      0.79      0.70       250
-        thai       0.69      0.79      0.74       216
+     chinese       0.61      0.46      0.52       249
+      indian       0.87      0.85      0.86       238
+    japanese       0.71      0.58      0.64       250
+      korean       0.62      0.82      0.71       234
+        thai       0.74      0.84      0.79       228
 
-    accuracy                           0.70      1199
-   macro avg       0.70      0.70      0.70      1199
-weighted avg       0.70      0.70      0.70      1199
+    accuracy                           0.71      1199
+   macro avg       0.71      0.71      0.70      1199
+weighted avg       0.71      0.71      0.70      1199
 
diff --git a/ml-fundamentals/ml-overview.html b/ml-fundamentals/ml-overview.html index c42f8b4235..1a52d00473 100644 --- a/ml-fundamentals/ml-overview.html +++ b/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/regression/linear-and-polynomial-regression.html b/ml-fundamentals/regression/linear-and-polynomial-regression.html index 0c14459152..99db642e11 100644 --- a/ml-fundamentals/regression/linear-and-polynomial-regression.html +++ b/ml-fundamentals/regression/linear-and-polynomial-regression.html @@ -27,8 +27,8 @@ - + @@ -2213,7 +2213,7 @@

11.3.3. Correlation

-
-
-
Mean error: 2.51 (9.19%)
-Model determination:  0.9554938013125742
+
Mean error: 2.6 (9.52%)
+Model determination:  0.9505769161049876
 
diff --git a/ml-fundamentals/regression/logistic-regression.html b/ml-fundamentals/regression/logistic-regression.html index e20d99c4d7..3d8c6bc6aa 100644 --- a/ml-fundamentals/regression/logistic-regression.html +++ b/ml-fundamentals/regression/logistic-regression.html @@ -27,8 +27,8 @@ - + @@ -2099,7 +2099,7 @@

11.4.5.1. Visualization - side-by-side g

- @@ -2160,7 +2158,7 @@

11.4.5.3. Violin plot -
<seaborn.axisgrid.FacetGrid at 0x7f947ddb6f10>
+
<seaborn.axisgrid.FacetGrid at 0x7efbda001c70>
 
../../_images/logistic-regression_10_1.png diff --git a/ml-fundamentals/regression/managing-data.html b/ml-fundamentals/regression/managing-data.html index eb59966992..639e1a8a47 100644 --- a/ml-fundamentals/regression/managing-data.html +++ b/ml-fundamentals/regression/managing-data.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/regression/regression-models-for-machine-learning.html b/ml-fundamentals/regression/regression-models-for-machine-learning.html index 9b4ea5870c..911aa33b67 100644 --- a/ml-fundamentals/regression/regression-models-for-machine-learning.html +++ b/ml-fundamentals/regression/regression-models-for-machine-learning.html @@ -27,8 +27,8 @@ - + diff --git a/ml-fundamentals/regression/tools-of-the-trade.html b/ml-fundamentals/regression/tools-of-the-trade.html index 5feedae85d..bddbaf7e3f 100644 --- a/ml-fundamentals/regression/tools-of-the-trade.html +++ b/ml-fundamentals/regression/tools-of-the-trade.html @@ -27,8 +27,8 @@ - + diff --git a/prerequisites/python-programming-advanced.html b/prerequisites/python-programming-advanced.html index 5032887f07..940104ce52 100644 --- a/prerequisites/python-programming-advanced.html +++ b/prerequisites/python-programming-advanced.html @@ -27,8 +27,8 @@ - + diff --git a/prerequisites/python-programming-basics.html b/prerequisites/python-programming-basics.html index 23e96dfda7..545b725118 100644 --- a/prerequisites/python-programming-basics.html +++ b/prerequisites/python-programming-basics.html @@ -27,8 +27,8 @@ - + diff --git a/prerequisites/python-programming-introduction.html b/prerequisites/python-programming-introduction.html index 05ae0a7b90..7ff26fbcf7 100644 --- a/prerequisites/python-programming-introduction.html +++ b/prerequisites/python-programming-introduction.html @@ -27,8 +27,8 @@ - + diff --git a/search.html b/search.html index 41d3727b53..7ac5fa11ee 100644 --- a/search.html +++ b/search.html @@ -26,8 +26,8 @@ - + diff --git a/searchindex.js b/searchindex.js index 41fb7f4848..fe259dc558 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/applied-ml-build-a-web-app","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.md","data-science/data-science-lifecycle/analyzing.md","data-science/data-science-lifecycle/communication.md","data-science/data-science-lifecycle/data-science-lifecycle.md","data-science/data-science-lifecycle/introduction.md","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.md","data-science/working-with-data/non-relational-data.md","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/relational-databases.md","data-science/working-with-data/working-with-data.md","deep-learning/autoencoder.md","deep-learning/cnn.md","deep-learning/difussion-model.md","deep-learning/dl-overview.ipynb","deep-learning/dqn.md","deep-learning/gan.md","deep-learning/image-classification.md","deep-learning/image-segmentation.md","deep-learning/lstm.ipynb","deep-learning/object-detection.md","deep-learning/rnn.md","deep-learning/time-series.md","intro.md","machine-learning-productionization/data-engineering.md","machine-learning-productionization/model-deployment.md","machine-learning-productionization/model-training-and-evaluation.md","machine-learning-productionization/overview.md","machine-learning-productionization/problem-framing.md","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.md","ml-advanced/ensemble-learning/feature-importance.md","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.md","ml-advanced/ensemble-learning/random-forest.md","ml-advanced/gradient-boosting/gradient-boosting.md","ml-advanced/gradient-boosting/gradient-boosting-example.md","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.md","ml-advanced/gradient-boosting/xgboost.md","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.md","ml-advanced/kernel-method.md","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.md","ml-fundamentals/classification/applied-ml-build-a-web-app.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.md","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.md","ml-fundamentals/regression/managing-data.md","ml-fundamentals/regression/regression-models-for-machine-learning.md","ml-fundamentals/regression/tools-of-the-trade.md","prerequisites/python-programming-advanced.md","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,74,75,76,77,78,80,81,82,83,84,92,93,94,98,99,100,101,107,108,109,110,111,112,113,114,115,116,117,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,170,171,172,173,176,178,179,182,184,186,187,188,189,190,192,193,194,195],"00":[25,29,38,57,59,60,123,167,172,179],"000":[7,29,33,41,50,56,63,65,117,132,159,179,192],"0000":[29,61,118,180],"000000":[38,58,61,64,74,116,122,123,145,148,155],"00000000":[118,180],"000000000":38,"000000001":38,"000000002":38,"000000003":38,"000000004":38,"000001":92,"000004":145,"000006":123,"000035e":59,"0001":[54,56,61,64,74,128,130,141,182,188],"000169":145,"000187":145,"0002":193,"000234":145,"0003":147,"00030352119521741776":14,"000335":123,"0004":147,"00043378":116,"0005":[37,66,136],"000537":145,"00058":74,"000581":61,"0006070423904348355":14,"000665":145,"000681":163,"0009105635856522532":14,"000z":118,"001":[14,31,33,34,35,37,45,54,60,64,66,81,93,130,134,135,141,189],"001214084780869671":14,"001238e":59,"0012919896640826":74,"001413":38,"001667":148,"002":193,"00228":136,"00259226":170,"002962":155,"002973e":123,"003411e":59,"003750":155,"00390625":134,"00398532":74,"005":[56,127,145],"005231":123,"00561v3":133,"006457":155,"007000":145,"007185":[63,65],"007273":38,"007380":155,"0078125":134,"008080":155,"008281":155,"008524":123,"008906e":59,"0092":147,"0098":147,"01":[1,14,29,31,35,38,45,48,50,54,56,59,60,64,74,78,82,114,118,122,123,126,135,147,152,158,176],"010000":61,"010309":116,"010a691e01d7":[118,180],"01130490957":74,"011305":61,"01171875":134,"012114":38,"01246024":[61,74],"012499":123,"013246":148,"01324612":148,"013417":155,"013547":155,"01355":135,"013696e":123,"014371":155,"014940":38,"01497":135,"015":145,"0152":147,"015625":[59,134],"016186":155,"016305":145,"01632993161855452":64,"016667":38,"017":166,"0170":59,"017500":38,"01764613":170,"017692":38,"0183":35,"0189":38,"019231":38,"0195":38,"01953125":134,"0196":[38,147],"0198":38,"01990749":170,"02":[14,35,37,38,56,59,122,123,128,150],"0204":38,"0205":38,"0207":38,"020724e":38,"0210":38,"0212":38,"0213":38,"02137124":158,"021448":38,"0215":38,"0218":38,"02187239":170,"021919":29,"0220":38,"022002":122,"022331":[63,65],"022377":29,"0226":38,"022738":38,"0229":38,"0230":38,"0231":38,"0233":38,"0234":38,"0234375":134,"0238":38,"0246":38,"024613e":59,"0255":[38,147],"025568e":59,"025820":148,"0260":38,"026109":74,"02653783":74,"026571":123,"0268":38,"02689146":[61,74],"02734375":134,"0276":38,"02763018":74,"027800":145,"028300":145,"0289":14,"0292":38,"029322":123,"0296":38,"02d":36,"03":[14,29,35,37,38,59,118,122,123,180],"0302":38,"030803":123,"0311":38,"03125":134,"031506725":29,"031851":123,"03265986323710903":64,"0327":38,"0328":38,"032983":123,"033203":123,"03385":132,"033892e":38,"0339":38,"0342":38,"03482076":170,"035066":123,"035077":148,"03515625":134,"0352":38,"0353":38,"035499e":59,"035711":[63,65],"035785":148,"0358":38,"03676084":74,"0372":38,"0375":38,"037540":38,"0376":38,"037692":38,"0377":38,"037765":163,"03807591":170,"038225":123,"0383":38,"038328e":123,"0386":38,"0390":38,"0390625":134,"039105":148,"039164":38,"0392":38,"039250":145,"0393":38,"0394":38,"03942163":74,"039471":123,"039738":148,"039893":38,"0399":38,"039980":123,"03_intellij":38,"03d":[31,37],"04":[14,29,35,38,48,59,111,116,122,123,140],"0400":38,"04000000001":38,"0402":38,"0404":38,"0407":38,"04124236":74,"0416":38,"0418":38,"0418559735628448":122,"041856":122,"0420":38,"042143e":59,"0423":38,"042321":29,"0424":145,"04251990648936265":158,"04296875":134,"0430":38,"04340085":170,"0435":38,"0436":38,"044":145,"0440":38,"0442235":170,"044444":116,"04460606335028361":166,"0447":[38,145],"0448":38,"045000":38,"04555172":74,"045561":38,"045637":38,"0458":38,"04597":133,"0463":38,"0467":38,"046875":134,"04690235":74,"047079":123,"0471":38,"04764906":74,"04861":132,"048622":74,"0496":38,"049672":74,"049934":123,"04d":130,"04t22":57,"05":[14,35,36,38,47,59,66,78,82,121,123,127,141,147,154,158],"0500":152,"0506":38,"05068012":170,"05078125":134,"05093587":119,"051164":59,"05129013":74,"051489":123,"05163977794943221":64,"051695":38,"0517":38,"052646":38,"0528":38,"05283644":74,"053398":122,"053607":38,"053899":148,"053903":38,"054000":64,"0541":38,"054430e":59,"0546875":134,"054761":123,"055120":123,"05558296":74,"05587v3":133,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":59,"057504":[63,65],"05859375":134,"0589":38,"059025":29,"059100":145,"059136e":59,"0595":38,"05_fco":135,"05d":[37,130],"06":[14,35,38,59,123,166],"0612":35,"061476":148,"06156753":[156,184],"06169621":170,"061881":148,"0621118":147,"0625":[134,156,184],"062868":38,"065508":74,"06576":127,"0660":35,"06640625":134,"066773":123,"0668":38,"067482e":59,"067630":123,"067708e":123,"068415":59,"06870":135,"068784":123,"0688":59,"0694":38,"069473e":59,"06993":132,"07":[1,29,35,38,50,59,121,122,123,141,147,166,179],"0703125":134,"070833":38,"071203171893359e":179,"071268":38,"0713":38,"071856":58,"072234e":123,"072431":123,"07272727":82,"073598":123,"07364156":116,"07383654":74,"07421875":134,"074246":38,"07432988":74,"074776":148,"075":186,"0754":38,"075650":145,"07604103":74,"076923":38,"07737338323":61,"077500":38,"077712":148,"078125":134,"07878788":82,"078843":38,"078910":[63,65],"078934e":59,"079167":38,"07959982":74,"07_detr":135,"08":[29,35,38,48,59,92,111,116,118,123,140,166,171,176,193],"080870":38,"081242":122,"0819":38,"08203125":134,"0822":145,"0829":145,"083333":38,"0839":35,"083991":123,"08484848":82,"085":186,"085537":179,"0859375":134,"086798":29,"087":145,"088730":148,"088992":38,"0893":38,"089525":145,"08984375":134,"09":[25,29,35,38,59,74,123],"090000":38,"090298":38,"090321":145,"090548":38,"090622":122,"090717":38,"09090909":82,"091439":38,"091489":38,"091574":59,"092215":122,"0924":35,"092939":145,"093100":122,"09375":134,"094025":38,"094383":38,"0944":35,"094493":38,"095000":38,"095163":38,"095922":38,"096164":38,"0964":145,"096545":38,"096688":38,"09704554168":74,"097061":38,"097124":38,"097299":122,"09736372":74,"097565":38,"09765625":134,"097692":38,"097950":145,"098004":38,"098200":29,"098327":38,"098485":38,"0985":38,"098512":38,"099139":38,"099198":38,"099369":38,"099380":38,"099428":38,"099534":38,"099587":38,"099596":38,"099674":38,"0a":[121,122,123],"0aarrai":121,"0ad":123,"0adel":123,"0adf":[121,123],"0adf1":[121,122],"0adf2":121,"0adfd":122,"0adfl":122,"0aimport":[121,122,123],"0aindex":121,"0al":121,"0amask":122,"0anp":122,"0aother":121,"0as1":122,"0ax":122,"0cm":46,"0f":41,"0n":32,"0nb81h2lf3u6tgo":59,"0rvhljoesr6bt4cmi":59,"0s":[29,35,38,54,60,61,74,158,165],"0th":[41,122],"0x0000017f450a19d0":121,"0x132a05eb0":178,"0x1f49b239f08":74,"0x1f4a26c7b08":74,"0x1f4a26efc48":74,"0x1f4a2788808":74,"0x1f4a27bb588":74,"0x1f4ad02ae08":74,"0x1f4ad061988":74,"0x227c78bf790":58,"0x28523a37dc0":145,"0x7e1538110d60":158,"0x7f40c9176970":166,"0x7f40d3e347c0":166,"0x7f556a5e1ad0":119,"0x7f66f5f9ad30":111,"0x7f947ddb6f10":167,"0x7f948b8a8df0":167,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,51,55,62,63,64,66,67,76,77,78,81,84,92,93,94,95,96,98,99,100,101,107,108,109,110,111,112,114,115,116,117,121,122,123,124,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,186,187,189,192,193],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,74,75,78,80,82,83,84,92,93,101,104,106,109,112,114,116,118,119,121,122,123,128,129,134,136,137,140,141,142,143,145,146,147,148,150,151,155,156,158,162,164,166,170,171,172,176,178,179,184,186,187,188,189,190,192,193,194,195],"100":[7,14,18,31,34,35,36,37,40,41,46,47,48,49,50,52,53,54,56,60,62,63,64,65,66,68,74,75,76,77,80,82,83,92,110,119,127,130,131,133,134,141,142,143,145,147,150,154,155,156,158,159,164,166,167,171,172,178,179,182,184,186,187,192,193,194],"1000":[3,14,18,31,33,47,50,54,56,58,60,61,64,81,82,84,102,107,116,126,128,133,134,141,147,148,150,152,154,158,167,171,174,178,187,189,190,193],"10000":[14,29,33,37,56,64,82,128,130,132,159],"100000":[54,64,128],"1000000":[171,173,179],"1001":142,"1003":142,"1004":134,"100486":38,"1005":142,"1006":134,"1007":[74,142],"100878":29,"1009":[134,142],"100942":38,"100k":164,"100m":141,"100tl":35,"101":[134,148,158],"1010":145,"10119387961131":[63,65],"1012000":111,"1014":134,"101451":38,"1015":134,"1015625":134,"1018":38,"102":[50,59,134,145,148],"1020":[109,178],"1021":134,"10220":52,"1023":134,"1024":[32,33,37,62,128,131,132,133,182],"1024n":32,"1026":134,"102657":38,"1027":134,"102724":38,"1028":[34,134],"1029":134,"102b":142,"102k":50,"103":[50,56,59,134,147,148],"1030":[34,134],"103095":38,"1032":134,"1033":134,"103500":145,"1036":134,"1038":134,"103997":38,"104":[50,59,147,148],"1040":[110,134,178],"1040000":111,"104412":38,"10444444444444445":158,"10452":38,"104600":122,"10471":121,"10472":121,"10473":121,"1048":[38,134],"10486":121,"10487":121,"10488":121,"10490":121,"10491":121,"10492":121,"10493":121,"10494":121,"10495":121,"10496":121,"10497":121,"10498":121,"10499":121,"105":[134,142,145,146,158,162,166],"1050":[109,134,178],"10500":121,"10501":121,"10502":121,"10503":121,"10504":121,"1052":134,"105237":74,"1053":74,"10546875":134,"105586":38,"1056":134,"105651e":38,"105748":148,"105937":155,"106":[59,134],"1063":134,"1064":134,"1065":122,"10655":155,"1066":[109,122,178],"106649":38,"1067":122,"1068":[122,134],"10689":143,"1069":[38,122],"107":[50,134,147],"1070":122,"1071":134,"1072":[110,122,178],"107282":38,"1073":[122,134],"1075":134,"108":[134,182,193],"108032":38,"108342":123,"1084":134,"1085":134,"1086":123,"1087":134,"1088":[123,134],"1089":123,"1090":123,"109091":116,"1091":134,"109167":38,"10928802805393":58,"1093":134,"109375":134,"10944738":116,"1096":[134,179],"1097":57,"1098":134,"1099":33,"10k":127,"10m":[112,176],"11":[14,22,25,29,35,38,47,48,50,57,59,60,62,64,84,92,93,98,99,100,101,102,107,108,109,110,111,112,113,114,115,116,119,121,123,130,134,137,140,144,145,146,147,148,150,157,158,160,161,162,163,164,166,167,171,172,174,193,194],"110":[14,50,58,59,66,147,171],"1100":145,"110000":38,"1104":134,"110426":59,"1105":[61,74],"1106":[61,74,134],"1107":134,"11088":25,"1109":143,"111":[35,59,75,130,134,145],"111000":145,"11109":92,"1111":[124,180],"111101":38,"11111":92,"1112":134,"1114":134,"1116058338033":64,"111618":38,"1117":134,"111700":38,"111752":38,"111942":123,"112":[64,134,145],"112151":155,"112270":123,"1123":134,"11239":128,"1123949416":180,"1124":134,"112425":38,"11250":66,"112522":29,"1128":134,"1129":134,"113":[38,50,57,109,134,147,178],"1130":145,"1132":134,"11328125":134,"1133":134,"113362":38,"113402":116,"1135":38,"1136000":[111,178],"1137":134,"1138":[61,74],"114":[50,61,74,134,147],"1142000":111,"1144":[110,178],"1145":134,"114509":122,"114639":[63,65],"1147":38,"114700":74,"115":[57,59,134,145],"1151":35,"115237":61,"115238":74,"1153":134,"11530945":[156,184],"115337":148,"1157":134,"116":[35,64,109,134,145,178],"1160":[29,134,145],"1160103":38,"11609933":74,"1162":134,"1163":134,"1164":134,"1166":[61,74],"11663747":74,"1167":134,"1168":29,"116819":148,"116951":122,"117":[61,127,134],"1170px":121,"1171875":134,"11742":74,"1175":134,"117513":61,"117522":145,"117564":123,"1176":[124,180],"11761":58,"11770":25,"118":[61,74,134],"1180":134,"118211":123,"1183":134,"1184":134,"1187":134,"119":[61,74,134,158],"119048":38,"1191":[59,134],"1192":134,"1196":155,"119621":29,"1197":147,"1197000":111,"1198":147,"11983416102879":158,"1199":[134,163,164],"11th":44,"12":[14,22,25,29,35,37,38,39,41,43,44,49,50,51,52,53,54,59,61,66,68,74,80,92,93,101,109,111,116,119,121,122,123,132,134,140,145,146,147,148,150,152,155,158,159,167,171,172,178,186,189,190,193,194],"120":[14,37,38,60,64,92,134,156,184,193],"1200":[56,134],"12000":155,"120000":[61,74,172],"1201":134,"1202":132,"1207":134,"121":[47,50,61,64,74,134,143,147,158],"12108":58,"12109375":134,"1211":38,"121237":59,"1213":134,"121358":38,"121669":[63,65],"1218":134,"1219000":111,"12195403":74,"122":[47,50,61,74,134,147,158,187],"1220":[33,134],"122021":38,"1222":134,"122411":38,"1225673588504812":66,"1227":134,"122763":123,"122784":38,"122785e":59,"1229":134,"123":[14,50,92,121,134,147,155,172],"1232":134,"12326000":[111,178],"123332":123,"1234":[134,172,194],"123431":29,"12345":[38,172],"123456789":92,"123492":59,"1235":134,"123588":145,"1236":34,"1237":34,"1238":134,"1239":134,"124":[38,58,61,74,134],"1240":134,"124210":38,"1245":134,"124505":38,"124878":123,"125":[31,58,64,134,145,172,179,194],"1250":134,"12508105":116,"1251":74,"125115":142,"1253":134,"1254":134,"125457e":59,"125479":38,"125644":123,"1259":42,"126":[38,61,74],"126299":38,"1264085":38,"12647":155,"126540":122,"12669":155,"1267":134,"12693":25,"12697628":119,"127":[59,66,128,134,145,158,182],"127304":74,"12733734668670776":66,"1274":[61,74],"127469":38,"1275":134,"1276":134,"127696":38,"1279":134,"128":[31,32,33,34,36,37,39,41,50,58,82,126,127,128,132,133,134,147,172,192],"1280":60,"128188":148,"128225":123,"1284":134,"1285":134,"1286":134,"1287":134,"1288":122,"12882135":179,"1289":122,"12890625":134,"128n":32,"128x128":133,"129":[38,46,61,74,134,145],"1290":[122,134],"1291":[122,134],"12919":38,"1292":122,"1293":134,"1295":134,"129527":38,"1297":134,"12985994":74,"12e4":[172,194],"12px":159,"13":[14,25,38,49,50,52,55,92,93,98,99,100,101,107,108,109,110,111,112,113,114,115,116,119,121,122,123,132,134,139,140,144,145,147,148,150,152,157,158,160,161,162,163,164,166,171,172,193],"130":[9,14,100,101,109,145,178],"1300":[54,158],"1300131294":[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,145,146,158,162,163,164,166,178],"1301":152,"1306":134,"130634":38,"1307":134,"130748":145,"1308":134,"131":[29,64],"1310":134,"1311":134,"1312":134,"1313":134,"1315":134,"1316":38,"131667":38,"13168":74,"131688":145,"131692":122,"1317":134,"131741":38,"131905":123,"132":[29,58],"1320":29,"1321":[122,134],"1322000":111,"1323":122,"1324":122,"132500":38,"13255":25,"1326":[122,134],"132640":122,"13265":155,"1327":122,"1328":134,"1328125":134,"132931":38,"133":[29,145],"13326":74,"133260":61,"1334":[44,134],"133581":123,"133658":123,"1338":155,"13390011":74,"133927":74,"134":[29,46,83,158,186],"1340":134,"134156":38,"134412":123,"1345":134,"1346":134,"135":[29,109,134,143,151,158,178],"1350":134,"135000":38,"135033e":123,"135088":38,"135117":38,"1354":134,"1356":134,"1358":134,"135893":122,"1359":134,"136":[29,59,134],"1361000":[111,178],"1362":134,"136302":[63,65],"1364":134,"136638":163,"136687":123,"13671875":134,"1368":134,"1369099078838":[63,65],"136m":35,"137":[9,29,50,100,101,134,147],"1371":134,"137210":38,"137321189738925e":116,"137593":123,"1376":134,"138":[29,123,134],"1382":134,"1385":134,"1386":[124,180],"1387":74,"1388":134,"139":[29,57,59,134],"1391":134,"139167":38,"1393":134,"1394":134,"1396":38,"1397":134,"1399":134,"14":[14,25,29,38,50,54,58,59,61,64,92,93,101,119,122,123,134,135,137,140,143,145,148,150,152,158,172,186,193,194,195],"140":[14,29,56,59,132],"140000":66,"1405":134,"1406":131,"140625":134,"1407":134,"140769":38,"1409":132,"141":[29,134],"14100":172,"1411":[133,134],"1412":134,"141297":179,"1413000":38,"1413001":38,"1414":134,"14159":[172,173,194],"141592653589793":193,"1416":146,"1419":134,"142":[134,172,194],"1422":[61,74,134],"14236085563166023":123,"14236086":123,"142361":123,"1425":134,"142543":74,"14260":66,"143":46,"1430":134,"14318":59,"1432":33,"1432780985872142341":118,"1438":134,"1439":134,"144":[46,64,110,166,171,178],"1440":134,"144000":145,"1441":134,"1442":134,"144218":38,"1443":34,"1444":[34,134],"1445":[61,74,124,180],"14453125":134,"145":[29,63,64,65,117,148],"146":[64,117,148],"1461":134,"1464":[122,134],"1465":122,"1466":[122,134],"1467":[61,74,122],"1468":[74,122,134],"1469":[122,134],"146901":123,"147":[46,64,117,134,148],"1470":[122,134],"147308":145,"1475":134,"147704":148,"148":[50,64,117,134,147,148],"1480":134,"148420":123,"1484375":134,"148495":[63,65],"1485000":[111,178],"148533":145,"14857187":148,"148572":148,"1488":134,"148822":[63,65],"148884":29,"14888888888888888":158,"149":[60,64,117,134,148],"1490":[38,134],"149000":101,"149088":123,"1492":134,"14927":123,"1498":134,"14999":[61,74],"149995":179,"14m":35,"14x14":32,"15":[3,14,18,25,31,32,33,36,38,40,48,49,50,51,52,53,54,55,57,58,60,61,64,66,74,83,92,101,104,106,111,116,119,121,127,133,145,147,148,150,152,155,158,166,172,178,186,193,194],"150":[7,14,39,46,50,60,64,74,82,117,130,134,142,148,150,186],"1500":[31,54,56,58,110,178],"150000":38,"1505":133,"1506":135,"1508":[127,134],"150800":74,"1508000":111,"150px":159,"151":134,"1510":38,"1511":133,"1512":132,"151462":29,"1516198":74,"151882e":59,"152049":145,"1521":134,"1522":134,"1523":134,"15234375":134,"1524":155,"1525":134,"1526":155,"15262765526":61,"1527":134,"152993":123,"153":134,"1530":134,"1531":134,"1532":134,"1533":155,"1536936":38,"154":134,"154016":123,"1541":134,"1544":134,"1545":134,"1548000":111,"154961":123,"1555":[57,122],"1556":[122,132],"1557":122,"1558":134,"155833":38,"1561":122,"15625":134,"1563":122,"1564":122,"1565":122,"1566":134,"1567":[109,178],"157":[134,142],"1570":134,"1572":134,"1576":[38,134],"157729":[63,65],"15777777777777777":158,"158":38,"1580":134,"1583":134,"1586":122,"1587":122,"1588":122,"1589":122,"159":134,"1590":[122,134],"159000":[111,178],"1593":134,"1594":134,"1594000":[111,178],"1595":134,"1599":[48,134],"15e":116,"15m":35,"16":[14,25,29,30,31,32,33,36,37,38,43,44,46,48,50,51,54,56,58,59,61,62,74,92,93,101,102,110,119,128,131,132,133,134,135,137,145,147,148,150,152,155,156,158,166,167,172,178,179,184,186,193,194],"160":[29,116,134,166,167],"1600":54,"16000":[58,111,178],"1600000":111,"1600x1200":155,"16015625":134,"1604":134,"1605":134,"1607":134,"1608":132,"161":[50,134,147],"16111":[57,186],"1612":134,"1614":122,"1615":122,"1616":[122,134],"161677":58,"1617":38,"1618":122,"1619":122,"162":[50,134,147,167],"1620":122,"16200":57,"162016":148,"1621":134,"162308":38,"16259":59,"1627":[61,74],"162754":123,"162829":155,"1629":134,"163":38,"1630":166,"1630251618197":[63,65],"1630537000":118,"1630544034":[118,180],"1632":134,"163312":123,"1635":134,"1636":74,"163636":116,"1639":[29,59],"163mb":127,"164000":145,"1640625":134,"1641":134,"1644":134,"1645":134,"1646353":38,"16465":25,"164702":122,"1648":134,"1649":34,"165":[109,123,134,178],"1650":34,"165150":123,"1653":134,"1654":74,"16578108":74,"1658":134,"166":[50,134,147,167],"1660":134,"1665":74,"16666667":179,"166667":38,"1669":38,"167":58,"1671":134,"167573":38,"1676":134,"1679":134,"16796875":134,"168":[110,121,178],"1682":134,"1683":[124,134,180],"16837":74,"1685":134,"168525738":171,"1686":134,"1687":134,"1688000":[111,178],"169":[121,134],"1690":[124,180],"1692":134,"16928":52,"16933":155,"1694":167,"1695":[134,167],"1696":167,"1697":167,"169771":122,"1698":167,"169811":145,"169958":122,"16m":35,"16x16":133,"17":[14,25,38,50,55,57,58,59,61,74,92,101,102,119,123,134,142,145,148,150,152,158,166,167,172,174,186,193,194],"170":121,"1703":[134,135],"170312":179,"1704":132,"170446e":59,"1706":133,"17082872753491":35,"1709":134,"171":121,"1710":134,"1712":134,"1713":134,"1715":38,"1718":134,"171875":134,"171909":59,"172":58,"1720":134,"1723000":111,"1725":[61,74],"1726":29,"17296777":119,"173":[57,64,186],"1731":134,"173211":[63,65],"1733":134,"173400":74,"1738":166,"1739":166,"174":[38,134],"1740":166,"1741":[134,166],"1742":[134,166],"174252":123,"174330":38,"1745":134,"1747":38,"1748":134,"17482":25,"1749":134,"175":179,"1750":134,"175000":38,"175135":145,"1752":134,"1757":168,"17578125":134,"175833":38,"175946":123,"175m":38,"176":[58,116],"1760000":111,"1762":155,"176277":38,"1764":134,"1765":134,"176653":123,"176m":38,"177":[61,74],"1770":134,"177000":145,"1775000":111,"177517":122,"1776":155,"1777":155,"17770":154,"1779":[124,180],"177m":38,"178":[66,134],"1782":108,"1784":147,"178449":59,"178456":38,"1788":[134,155],"17889":25,"178930":59,"17897":59,"17898":59,"178m":38,"179":134,"1790":[63,65],"179056":38,"1795":134,"1796875":134,"1798":134,"179800":[61,74],"179m":38,"17m":35,"18":[14,25,36,38,50,51,54,57,58,59,61,62,74,77,92,101,116,118,119,132,134,137,142,145,152,158,166,171,173,180,188,193],"180":[112,116,130,156,184],"1800000":111,"180088":38,"1803":134,"1805":134,"1806":134,"180669e":123,"1807":134,"1808":134,"180833":38,"180988":123,"181":121,"1810":134,"181033e":59,"1811":134,"1811000":111,"1812":134,"181408":29,"181500":66,"1817":134,"181916":38,"181m":38,"182":[29,116,121],"1820":155,"182000":123,"18215":25,"1823":134,"1827":134,"1827000":111,"182731":123,"182m":38,"183":[38,121,134],"183150":148,"18327947":116,"183580":29,"18359375":134,"1836":134,"1836633":38,"1839":134,"18390":[61,74],"183914":29,"183m":38,"184":[116,134],"1840":134,"18421":25,"1847":134,"1848000":111,"184m":38,"185":[42,56,116,121],"1852":134,"1855":34,"18557502":[61,74],"1856":[110,134,178],"1857":134,"18576":[61,74],"1858":34,"185946e":59,"185m":38,"186":[50,61,74,134,147],"1860":74,"18614641":116,"1862":134,"18677":74,"1869":134,"186m":38,"187063":123,"1871":74,"1872":134,"1872000":111,"1874":[124,180],"187449":29,"1875":134,"1875693":38,"18772155":74,"1879":134,"187m":38,"188":116,"1880":[1,134],"188054e":59,"1882":[38,134],"1885":134,"188575":122,"1889000":111,"188m":38,"189":[116,134],"1892":134,"1893":134,"1896":134,"18965517":74,"1897":29,"1899":134,"189m":38,"18m":35,"18th":108,"19":[38,50,59,61,77,92,101,112,119,123,127,132,134,139,142,143,145,158,166,173,176,177,179,186],"190":[56,61,74],"190222":38,"1904":135,"19053":25,"1906":147,"1908":134,"190m":38,"19126407":38,"19140625":134,"1915":134,"19157667":74,"191m":38,"192":[59,110,127,178],"1920000":111,"1921":134,"192380":38,"1925":134,"192626":122,"19269777":74,"192m":38,"193":179,"1930":[109,134,145,178],"193100":74,"193137":29,"193203":38,"1933666654":[109,178],"1936":7,"193633":148,"1939":134,"193m":38,"194":[116,193],"194096":122,"1941":134,"194167":38,"1943":136,"1944":134,"1944000":[111,178],"194412":122,"1945":134,"194532e":38,"194590":123,"194763":38,"194m":38,"195":[50,63,65,147],"1950000":111,"195256":38,"1953125":134,"1954":134,"1954000":111,"19541375872382852":158,"1955":134,"19552860":179,"1959":[63,65,165,191],"195m":38,"196":[50,134,147],"1963":59,"1964":134,"1965":[63,65],"19651127":179,"196923":38,"196m":38,"197":[50,116,134,147],"1970":38,"1972":[112,134,176],"1973":134,"197317":76,"1974":[112,134],"1978":143,"197m":38,"198":[58,134],"1980":[139,140],"1981":134,"198279":38,"1984":134,"198667":64,"199":[116,167],"19902":25,"1991":[134,173,195],"1992":[50,59],"19921875":134,"1993":[59,112,176],"199305":145,"1994":147,"1995":59,"1996":[49,52,112,134],"1997":[50,165,191],"1998":[49,52,111,112,135,145,178,181],"199833":59,"1999":[111,151],"199900":123,"1999000":111,"199m":38,"19m":35,"1\u0435":150,"1_bar":128,"1d":[38,43,44,57,123,129],"1e":[14,32,82,92,127,128,132,141],"1e10":[156,184],"1e6":[156,179,184],"1f":[34,45,46,47,48,51,64,110,158,164,178,192],"1h":[61,74],"1min":186,"1pjb":38,"1px":159,"1s":[29,61,74,158,165],"1st":[7,14,18,22,37,54,119,126,127],"1stflrsf":54,"1u":38,"1x":[135,172],"1x1":132,"1x784":127,"1xcxhxw":135,"1xfhxfwx":135,"1xfhxfwxna":135,"1xn":127,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,45,46,47,48,55,59,63,64,65,66,74,76,77,78,82,83,92,93,94,95,96,100,101,106,108,109,110,111,112,114,116,117,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,185,186,187,189,191,192,193],"20":[7,9,14,18,29,30,31,32,34,37,38,39,40,44,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,65,66,68,74,77,80,83,92,100,101,104,108,109,114,116,119,121,122,123,130,132,133,134,136,137,139,141,142,143,146,150,158,168,173,178,179,186,187,192,195],"200":[17,31,38,46,48,50,52,53,54,56,60,64,82,101,116,121,122,130,131,133,134,146,156,158,184,186,192],"2000":[14,35,54,58,109,111,123,158],"20000":[14,111,126,127,173],"2001":[111,143],"200126e":38,"2002":[35,111],"2003":[111,137],"2004":[111,179],"2005":[111,131,134,137],"2006":[66,111,128,140,158],"200611":38,"2007":[66,111,112,176],"2008":[50,66,111,139,179],"2009":[48,111,134,143],"201":[38,58,116,121,122,134],"2010":[111,122,137,140],"2011":[111,151],"2012":[111,121,122,179],"20123":121,"2013":[31,112,122,140,176],"20130101":122,"20130102":122,"20130104":122,"2014":[57,132,143,145,179,182],"2015":[22,102,132,143,145,174],"2016":[50,56,145,151,165],"2016000":111,"2017":[108,121,141,143,145],"2018":[35,38,45,47,48,92,93,106,112,118,124,134,145,171,172,176,180,193],"2019":[17,112,124,134,139,141,145,176,180],"2019\u7248\u5b89\u88c5\u6559\u7a0b":38,"201m":38,"202":[121,122,123],"2020":[1,14,38,54,57,92,112,114,121,124,127,134,139,141,142,143,145,165,176,180],"2020060289":14,"2021":[1,38,102,112,118,134,135,139,140,143,174,175,176,180],"2022":[14,102,106,108,112,114,118,127,139,140,141,142,166,167,174,175,176,180,195],"2023":[25,29,38,92,121,122,123,128,132,133,135,175,177,180],"2024":121,"2025":112,"202500":38,"2026":121,"202699":123,"2028":134,"202895":38,"203":[116,121,122,123],"2030":[102,121,143,174],"203125":134,"203216":123,"2033":121,"2033000":[111,178],"203450":38,"203488":38,"2035":[63,65],"20350":121,"203578":148,"2037":134,"20370":121,"203848":38,"204":[34,58,116,121,122,123,134],"2040":134,"20433":74,"204445":38,"2045":134,"204565":38,"2048":[32,133],"2048n":32,"205":[34,58,116,121,122,134],"2050":[109,178],"205000":38,"205084":123,"205244":148,"2053":134,"2054":134,"2055":134,"2056":134,"206":[58,121,122,145],"2060":29,"2061":[61,74,134],"2062":34,"2063":134,"20635":74,"20636":74,"20637":74,"20638":74,"20639":74,"2064":61,"20640":[61,74],"206814":123,"206881":[61,74],"2069":134,"206937":[63,65],"207":[35,58,121,134],"2070":134,"20703125":134,"207410":123,"207495":38,"207758":145,"207m":38,"208":[58,121,122,134],"208342":145,"208500":66,"208516":38,"20876306":158,"2089":134,"208969":38,"209":[58,116,134],"209286":122,"209435":38,"20944":14,"2099":38,"209m":38,"20a":[121,122,123],"20c":121,"20column":[121,122],"20df":[121,122,123],"20df1":122,"20dfd":122,"20dropna":121,"20dtype":122,"20fals":122,"20gemi":35,"20how":121,"20index":[121,122,123],"20io":[121,122,123],"20lambda":122,"20left_on":121,"20list":122,"20lsuffix":121,"20name":121,"20none":121,"20np":[121,122,123],"20numpi":[121,122,123],"20on":121,"20panda":[121,122,123],"20pd":[121,122,123],"20period":122,"20px":159,"20random":122,"20rang":121,"20right_on":121,"20rsuffix":121,"20speed":121,"20th":55,"20true":122,"20verileri":35,"21":[14,29,38,59,61,68,74,80,92,93,101,102,119,123,134,139,142,143,158,166,167,171,173,186,193],"210":[116,121],"210113":38,"2103":[134,143],"210424":38,"2105":134,"2107":134,"2109":134,"2109375":134,"211":[50,158],"2112000":[111,178],"2115":134,"211667":38,"2117":134,"211714":38,"211771":38,"2118":134,"212":134,"212177":122,"212514":38,"212563":38,"212626":38,"2127":[61,74,134],"212782":38,"212m":38,"213":[38,116],"213043":123,"213350":123,"2135498425":121,"2137":134,"214":[134,155],"214141":38,"2144":134,"2145":134,"214693":38,"21475352":158,"214756":38,"2148":[110,178],"214824":38,"21484375":134,"2149":134,"215":116,"215058":38,"2153":155,"2155":134,"2156":134,"215643":38,"21567622":158,"215682":61,"21578029":74,"2158":134,"216":[134,164,172],"216148":38,"216719002155":158,"2169":[61,74],"216924":38,"217":142,"2173424":38,"217478":38,"2175":134,"2176":134,"217637":123,"217642":122,"21764232439885461":122,"217739":38,"2178":134,"2180":74,"21806371":158,"218161":[63,65],"218217":38,"218509":145,"218612":38,"21875":134,"218909":123,"218966":38,"219":[61,74,116,134,158],"2190":38,"219367":38,"219453":148,"219544":38,"2196":134,"2198447506":193,"21m":35,"22":[14,38,46,50,54,59,61,74,77,110,112,119,121,122,123,133,137,142,150,152,158,173,176,178,180,193],"220":[38,58,116,134,171],"22000":111,"220173":38,"2202":134,"2203":134,"2204":134,"220500":145,"2207":134,"2208":134,"2209":134,"221":[116,134],"22102":74,"2217":134,"2218":134,"221846":38,"2219":[74,134],"22199004":74,"222":33,"2222":134,"222222":116,"222298":145,"222337":[63,65],"2224":134,"22265625":134,"223":[38,59,74,134,163],"223242233890716":35,"2235":134,"223500":66,"223634":122,"223854":38,"223910":38,"224":[127,134],"2241":134,"22426":25,"2243":134,"2246467991473532e":193,"225":134,"2250":134,"2251":134,"2254":74,"2255":134,"2259":134,"226":134,"22615":155,"2265":134,"2265625":134,"2268":134,"227":134,"227031":38,"2272":134,"227546":38,"2278":134,"228":134,"228077":29,"228120e":38,"2282":134,"2284":[110,178],"228460":123,"2287":134,"2288":134,"22882358":116,"2290":134,"2291":134,"2292":134,"2293":134,"229673984":38,"22a":[121,123],"22b":[121,123],"22bar":123,"22boolean":122,"22c":[121,123],"22d":123,"22flag":123,"22foo":123,"22one":123,"22one_trunc":123,"22two":123,"22type":121,"23":[14,38,46,61,74,77,92,110,119,134,139,142,145,158,166,171,172,178,180,193],"230":[59,134,163],"23000":111,"230000":38,"23046875":134,"230769":38,"230m":38,"231":[38,116,134,158],"2310":134,"231287":123,"2313":134,"231342":38,"23157000":[111,178],"231640":38,"23170093":74,"231768":38,"2318":134,"232":[58,134,158],"2326":134,"2327":134,"2328":134,"2329":134,"233":[134,171],"2332":134,"2333":134,"2334":134,"2335":134,"234":134,"2340":134,"234330":38,"234368":29,"234375":134,"234571":59,"235":[61,74],"2353":134,"235394":123,"2354":134,"235449e":38,"2355":134,"235636":38,"2357":134,"236":134,"2360":134,"236000":38,"2360000":111,"23606797749979":92,"2361":134,"2364":134,"2365":134,"2366":134,"2367":134,"2369":134,"237":38,"237185":38,"2373":134,"2376":134,"237692":38,"2377":134,"2378":134,"2379":134,"238":[134,163],"2380":134,"2381":134,"2383":134,"2384":[61,74],"238462":38,"2385":134,"2386":134,"238683":122,"2387":134,"2388":134,"2389":134,"239":134,"239001e":59,"2392":134,"2394000":111,"2395":134,"2396":134,"2397":134,"2398":134,"239929":123,"24":[14,32,38,49,52,58,59,61,74,77,102,119,121,123,127,134,141,142,146,150,158,166,167,174],"240":[134,164],"24000":111,"2401":[61,74,134],"2403":134,"2404":134,"2405":155,"2408":134,"2409":134,"240986":123,"241":134,"2411":134,"241108":74,"241287":38,"2413":134,"2416":134,"2418":134,"2419000":111,"242":134,"242098":145,"2421875":134,"242225":59,"2426":134,"2427":134,"243":[50,147],"2430a9896ce5":[118,180],"2433":134,"243338e":38,"243422":38,"2435":134,"243525e":123,"243534":38,"243875":38,"244":[50,147],"244215":38,"2443":134,"2444":38,"2446":134,"244655":38,"2447":[134,162],"2448":162,"244898":148,"245":[134,142],"2450":134,"2451":134,"245820":38,"24591009185":74,"246":134,"2460":134,"246046":38,"24609375":134,"2465":134,"247":134,"2472":134,"247248":122,"2475":134,"2477":134,"2479":134,"248":132,"2480":134,"2481":134,"2483":134,"248440":123,"2488":134,"2489":134,"249":[63,65,134],"249357":123,"2495":134,"249668":123,"2498":134,"24c5":32,"25":[7,14,31,32,35,36,37,38,39,40,41,49,50,52,54,55,58,59,61,64,74,82,83,92,93,101,116,119,121,123,127,130,134,136,137,142,145,147,151,154,155,158,166,167,172,173,179,187,189,190,192,193,194,195],"250":[34,58,60,127,134,136,158,164,195],"2500":152,"25000":111,"250000":[38,64,66,155],"2503":134,"250448":38,"2505":134,"250522":29,"251":134,"2513":134,"252":59,"2520000":111,"2522":134,"2524":134,"2525":134,"2526":134,"2528":134,"2529":134,"253":[134,163,164],"253000":111,"2532":134,"2537000":111,"25390625":134,"254":[50,134,147],"2547":38,"255":[29,30,31,32,36,40,41,47,126,127,132,133,163,192],"255000":145,"2555":134,"25551336":158,"2556":134,"2559":134,"256":[31,32,33,34,36,37,38,39,58,60,62,119,126,127,128,131,132,133,154,155,182,192],"256217e":59,"256221e":59,"2568":134,"256952":38,"256n":32,"256x256x3":119,"257":193,"2574":[61,74],"2577":134,"257740":29,"2578125":134,"258":39,"258445":[63,65],"2586":134,"2586000":111,"2587":134,"258713e":123,"259":[38,59,61,74],"2593":134,"2599":134,"25th":54,"26":[38,50,58,59,64,74,111,119,121,134,142,143,147,152,158,166,167,173,176,179,188],"260":38,"2600":[38,61],"260000":[9,100,101],"260497":122,"260c2de0a050":181,"261":134,"2613":[52,134],"26150":74,"2617":134,"26171875":134,"262":134,"262048":38,"262207":38,"2624":134,"2625":134,"2629":134,"263":134,"2631":[61,74],"263445":122,"263694e":38,"263762":122,"263863":38,"2639":134,"264":[64,134],"2640":[38,134],"26448193":179,"264700":[61,74],"265":[50,134,147],"265056":[63,65],"2652":121,"2654":121,"265412":145,"26541833":74,"2655":121,"265625":134,"2657":121,"2658":121,"2659":[121,134],"26590556":119,"265909":155,"266":[58,134],"2660":121,"2661":131,"2664":134,"2664364997":62,"2666666666666666":14,"267":166,"2670":134,"267059e":59,"2671":[121,134],"2672":[121,134],"2673":134,"2674":[134,155],"2677":134,"267986":122,"268":134,"268016":29,"2681":134,"2687":134,"269":[58,134,137,192],"2692":134,"26953125":134,"269534380":123,"269573":59,"26th":139,"27":[38,46,50,58,61,119,121,134,141,147,155,158,166,171,172,176,194],"270":[134,166,167],"27000":[111,178],"2701":134,"27017952":74,"270551":38,"2706":134,"270833":38,"2709":134,"271":38,"2710":134,"2713":134,"2716":134,"271796":38,"271869":122,"2719":134,"27196741":116,"272":134,"2720":145,"2723":74,"2725":134,"2727":134,"27298934":74,"273":[134,151],"273000":74,"2732":134,"27342931":[61,74],"2734375":134,"2738":134,"274":[59,134,166],"274082":[63,65],"275":134,"2751":38,"2752":134,"2753":134,"275384":122,"2759":134,"276":134,"2761":134,"2763":134,"2768":134,"276923":38,"277":74,"277078":61,"277273":155,"27734375":134,"277392":29,"27745":74,"277600":38,"2778":74,"278":[74,134],"2780":134,"2784":74,"2785":74,"2787":134,"279":[61,74,134],"2794":134,"28":[29,30,32,38,40,41,47,50,57,59,61,68,74,80,82,84,92,116,119,121,122,123,126,127,131,134,143,147,152,158,173,182],"280":[38,61,74,122,134,166,167],"2807":134,"2809":134,"2809000":111,"281":[38,121,123,166],"2810":[121,122],"28109":25,"28125":134,"281427e":38,"2815":134,"2816":134,"2820":155,"2824":134,"2831":134,"2832":134,"28327":25,"2833":[134,152],"2836":134,"2838":134,"284":134,"2840":134,"28433":25,"284722":123,"2849":134,"285":122,"28515625":134,"2854":134,"2855":134,"28566":[61,74],"28571428571428414":158,"285843":29,"28585348":158,"286":[122,146],"2860":134,"286641":122,"287":[122,134],"287003":123,"287748":123,"288":[38,134],"2880":134,"2881":155,"2882":134,"289":162,"2890625":134,"28964":25,"28arrai":121,"28by":121,"28d":123,"28df2":121,"28l":121,"28level":121,"28list":122,"28np":122,"28other":121,"28rang":122,"28x":122,"28x28":[29,30,32,41,127],"29":[14,25,38,50,58,59,61,74,92,119,121,122,123,134,147,158,166,167],"290":134,"2900":58,"2904":134,"29040966":158,"290833":38,"291":134,"2911":134,"291123":123,"2915":134,"2916":134,"2919":134,"292":[110,134,178],"292181e":59,"2922":134,"292669":[63,65],"29296875":134,"2933":134,"293515":123,"2938":[63,65],"293846":38,"29399768":158,"294":[38,134,158],"2945":134,"294966":163,"295":[61,74,134],"29513185":74,"295240":122,"2954":134,"296":[29,134],"2962":134,"2963":134,"2966":134,"296875":134,"297":[132,134],"2971":134,"2974":134,"2975":134,"2976":134,"2977":134,"297727":155,"2978":134,"298750":145,"299":[50,74,101,134,147],"2995":134,"2998":38,"2\u5347\u7ea7\u8865\u4e01":38,"2_2":126,"2_intro_to_tensorflow_for_deeplearn":43,"2_k":130,"2_p":128,"2_q":128,"2a":133,"2b":133,"2c":133,"2d":[1,33,43,78,83,109,110,123,128,156,166,168,186],"2d2d2d":159,"2e":[128,131],"2f":[18,50,116,127,137,146,150,152,158],"2fe":147,"2g4adil3rc2ig":59,"2j":[119,172,194],"2m":38,"2nd":[18,22,37,54,64,119,122,126,127],"2ndflrsf":54,"2p_":50,"2s":[61,135,158,186],"2urviv":152,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":59,"2vtlmaj":82,"2x":[57,75,172],"2x_i":75,"2xbdtm2l70p":59,"2yf":151,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,40,41,44,46,47,48,51,59,62,63,64,65,66,71,75,76,78,82,83,84,92,93,94,96,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,127,128,129,130,131,132,133,134,135,137,139,140,141,142,144,145,146,147,148,150,151,152,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,180,184,186,187,189,190,191,192,193],"30":[7,14,18,29,32,35,38,40,47,49,50,51,52,55,56,59,60,61,62,63,65,66,92,93,101,104,109,110,119,121,127,134,137,142,145,147,150,151,156,158,171,172,173,178,179,184,187,189,190,193],"300":[18,49,52,53,54,142,150,151,156,158,171,184],"3000":[14,18,54,134],"30000":[14,111,188],"300000":64,"3000000000":173,"300000012":154,"3005":134,"30078125":134,"30082566":158,"300k":143,"300px":159,"301":[38,134],"3010":134,"3014":[61,74],"3015":134,"301821":123,"3019":134,"302":38,"3022":134,"3028":134,"303347":38,"3046875":134,"304888":[63,65],"3049":134,"305":134,"3054":134,"3055":134,"3064":134,"3067":134,"3071":[134,155],"3075":134,"3078":134,"308":134,"3080":134,"3081":134,"3082":134,"3085":134,"30859375":134,"3086":134,"3087":134,"3089":134,"30927452":74,"30957512":74,"30990":25,"30px":159,"31":[1,38,50,57,59,68,74,80,92,101,119,134,141,142,145,158,186,188],"3100":[58,134],"3105":134,"3106":134,"3107":134,"3109":134,"311":134,"3111":134,"3112":134,"311232":123,"3113":134,"31131265":123,"3113126514940179":123,"311313":123,"311377":29,"311438":123,"3116":134,"31168387":74,"3117":134,"312":[49,52],"3120":134,"312037":76,"3125":134,"3127":155,"3128":134,"3131":134,"3133":134,"3134":134,"313765e":38,"314":38,"3140":134,"3141":134,"3145":134,"3146":134,"3148":[110,178],"3149":[61,74],"315":116,"315000":38,"31501":122,"3159":134,"316":134,"316004":122,"3161":134,"3163":134,"31640625":134,"316667":38,"3168":134,"317":134,"3170":134,"317314":122,"3177":134,"3179":134,"318":[38,122],"3181":134,"318209":123,"3184":134,"31856":25,"318823":29,"319":[122,134],"3191":134,"319271":122,"3196":134,"31t19":118,"32":[29,31,32,33,34,35,36,37,38,39,40,42,43,44,50,55,58,61,63,65,74,82,92,104,119,123,127,128,132,133,142,147,158,171,172,193],"320":[38,39,122,162],"32000":[58,111],"3202":134,"3203125":134,"3208":134,"320833":38,"321":158,"3210":134,"321097":29,"3213005518":121,"32137599":158,"322":[38,61,74,122,134,158,192],"322003":122,"32208":38,"3224000":111,"322500":38,"322727":155,"3228":134,"323":158,"323328":59,"3234":134,"3235":134,"3238":134,"324":158,"3242":134,"32421875":134,"3245":134,"3246":134,"3248":134,"3249":134,"325":[134,158],"3252":[61,74],"3255522":[172,194],"32561":51,"325985":123,"326":[38,134,158],"326012":123,"3261":134,"326460":[63,65],"326667":38,"32674535":[61,74],"3269":134,"327":134,"3270":134,"327500":38,"328":[38,134],"328086e":38,"328125":134,"328333":38,"3285":134,"3286":134,"3288":134,"328865":155,"3289":59,"328947":116,"329":[38,134],"3291":134,"329167":38,"3293":155,"329816":38,"329891e":123,"32995317":158,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,127,132,133],"33":[38,50,59,61,74,119,121,134,142,143,147,156,158,167,170,184],"330":74,"3300000":[111,178],"3301":134,"3306":[59,134],"3308":134,"3309":134,"331":134,"3310":[109,178],"331000":145,"331179":123,"33146":122,"3316":134,"3319":134,"332":134,"33203125":134,"3323":134,"332354":58,"3326":134,"3327":134,"333":[32,172,194],"3331":134,"3333":134,"333333":38,"333701":145,"3338":134,"333884":29,"3339440331":186,"334":134,"33416821":74,"3342":134,"334288":76,"3346":134,"3349":134,"335":134,"3357":134,"3359375":134,"336000":111,"336175":122,"336342":[63,65],"337":134,"337404":122,"3374040853531507":122,"337692":38,"3377000":111,"3378712":74,"3379":134,"33812285":[156,184],"338150":123,"338224":29,"3385":134,"339":[74,134],"3394":134,"33984375":134,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":59,"34":[38,50,58,59,61,64,74,93,111,119,134,146,147,158,171,172,173,194],"3404":134,"3406":134,"340769":38,"340830":122,"341":134,"34108564":116,"34110223":74,"3412":134,"341300":[61,74],"3414":134,"341649":59,"342200":[61,74],"3425":134,"343":[134,172],"3436":134,"34375":134,"34376245":119,"344":[38,134],"3444":134,"3445000":[111,178],"344698":61,"344828":116,"345":[33,74],"3455":134,"346":134,"3468":134,"3471":134,"34765625":134,"3477":134,"348":134,"3480":145,"348173":123,"3483":134,"349":[74,134],"349388":38,"3497":134,"349751":29,"35":[14,31,35,38,61,68,74,80,93,119,123,133,134,150,152,158,167,172,194],"350":[121,134],"3500":[61,172],"35000":[111,172,194],"350000":64,"3502":134,"350816":29,"3509":134,"3510":134,"35119":25,"3513":134,"3514":134,"3515625":134,"3516":155,"3519":[59,134],"352100":[61,74],"3522":134,"353":134,"3530279":116,"3537240779558":[63,65],"353760":123,"35410":25,"3544":167,"3548":134,"355":134,"3554":155,"35546875":134,"3555":134,"35554":74,"3557":134,"3558":134,"356":[74,134],"3561":139,"3562":139,"35656222554887711":[172,194],"3571":134,"358":186,"3580":59,"358047":122,"358500":[61,74],"359":134,"359375":134,"3595":134,"359573":123,"3596":134,"359682":123,"35e3":[172,194],"36":[38,50,63,65,74,100,119,121,134,158,172,193,194],"360":[34,66],"3600":145,"36000":111,"3605":134,"360691":123,"360769":38,"361":186,"3611":134,"3612":134,"36155096":148,"361551":148,"36159148":158,"3618":134,"3619":134,"362000":145,"362069":116,"3623":134,"3625":134,"3627":[134,155],"362759e":59,"3628800":92,"3630":134,"363270":38,"36328125":134,"363636":166,"36398808":74,"365":134,"3650":134,"365349":38,"3664":134,"3670":134,"367122":123,"3671875":134,"3672":134,"3673":134,"368":[38,110,178],"3681":134,"368430":38,"369":134,"369634":123,"3697":134,"37":[38,50,59,61,63,65,74,92,119,133,134,147,151,158,179,187],"370":121,"370000":38,"3703":134,"370443":122,"371":134,"37109375":134,"3715":134,"371667":38,"371682":29,"372294e":59,"3723":134,"37244833":116,"3725":38,"3730":134,"373036":123,"373333":38,"373485e":123,"37350000":[111,178],"3737":134,"374":[74,158],"374603":116,"374637":123,"374726":122,"3748":134,"375":[121,134],"375147":193,"3752":134,"3756":134,"37570172":[61,74],"375833":38,"3759":134,"376":134,"3760":38,"376041":29,"376220":123,"3764":134,"3769":134,"377":134,"377175":155,"3773":134,"377419":123,"3776":134,"378":121,"3781":134,"3782":134,"378264":123,"3782643792341864":123,"3788":134,"37890625":134,"379":[61,74,134],"3791":[38,134],"379601e":38,"38":[9,38,50,51,59,64,74,100,101,116,119,134,147,152,158],"380":[57,74,121,134,162,163],"3800":134,"38000":111,"380000":38,"3801":[123,134],"3802":[123,134],"3803":123,"380350":38,"3804":123,"3805":[123,134],"3806":123,"3807":123,"3808":123,"3809":123,"381":[57,121,134,162],"3817":134,"3819":134,"382":[121,134,163],"3822":[38,134],"382308":38,"3824":38,"3828125":134,"382842e":123,"3830":38,"3830571":38,"38332521":179,"383564":29,"3836":134,"3837":134,"3838":134,"3839":134,"384":[127,134,162],"384272":122,"3843":134,"384615":38,"384761":29,"384782":122,"385":[38,57,134,162],"3852":134,"385733e":38,"386":57,"3861":134,"3862":38,"38671875":134,"387":[57,134],"387129":142,"3877":134,"3878":38,"38828582528":61,"3884":122,"3886":[74,122],"3887":122,"3888":[29,122],"3889":[122,134],"389":[57,134],"3890":122,"3891":122,"389167":38,"3892":122,"3894":134,"3895":122,"3896":122,"389648":123,"3897":122,"39":[35,38,59,60,63,65,74,119,134,158,193],"390":[57,121],"3900":122,"3901":122,"3902":122,"3903":[122,134],"3904":[38,134],"390566":145,"390625":134,"390855":122,"3909":35,"391":[121,134],"3915":155,"39155156":116,"3916":[110,134,178],"392":[57,134],"3922":155,"3925":134,"3929":134,"393":[57,121],"39320":[61,74],"393580":59,"3937":134,"3939":134,"394":134,"3942":134,"394229":29,"39453125":134,"3950":134,"3952":134,"3954":134,"395833":38,"396":38,"3966":134,"3967":134,"39696":145,"397":38,"3974":134,"3975":134,"3976":38,"39761905":147,"398":134,"3980":38,"3984375":134,"398765":123,"399":134,"3991":74,"3994":162,"399419":123,"3995":162,"3998":38,"39th":143,"3a":[121,122,123],"3a10":122,"3a3":122,"3a4":122,"3a5":122,"3a6":122,"3d":[38,75,78,119,121,122,123,156,166,168,179,186],"3d0":121,"3d5":122,"3ddf":123,"3dfals":121,"3dindex":121,"3dlist":122,"3dpd":122,"3e":[122,123],"3f":[38,172,186,194],"3g":[68,80],"3int8":119,"3j":195,"3ltlqmqsncb9d0rthglvb3gjj3":59,"3rd":[22,37,54,119],"3s":[38,59,61,158],"3ssnporch":54,"3x3":[32,33,132],"3x4":[172,194],"3yqlb":59,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,47,48,59,63,64,65,66,74,75,76,82,84,92,93,94,101,102,108,109,110,111,112,113,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,137,140,141,142,145,146,147,148,150,151,152,154,155,156,158,162,163,166,167,170,171,172,173,182,184,186,187,188,189,190,193],"40":[1,7,9,14,32,38,50,59,63,65,82,83,84,100,101,109,110,112,118,119,134,145,151,158,171,176,178,186,187,188,193],"400":[7,53,56,109,117,132,166],"4000":[14,35,54,58,158],"40000":[14,111],"400000":64,"40000000":173,"4002912":143,"40067661":119,"4007":134,"400833":38,"400mg":[1,8],"401":134,"4012":134,"4013":134,"401532":122,"4015323563287203":122,"4016":38,"4018":134,"402":57,"40234375":134,"4029":134,"403":179,"403000":145,"403011":29,"4038":134,"4038v2":133,"4041":134,"4048":134,"40480256345":74,"4050":[109,178],"405278":76,"405309e":38,"4056":38,"406":134,"40618608":158,"40625":134,"4066":134,"406667":38,"4067":134,"407":134,"4071":134,"407570":123,"4077":134,"4077193":147,"407910":123,"40791033":123,"4079103331875502":123,"408":[50,134,147,155],"4080":134,"4081":38,"408196":123,"40827":155,"408376":61,"4084":134,"4087":134,"408924":123,"409":[34,74,134,163],"40916247":116,"4093":134,"4096":133,"4098":[172,194],"41":[29,38,50,61,74,92,119,134,147,158],"410":[61,74],"410014":58,"41015625":134,"411":[34,38],"4119":134,"4120":134,"41212121":82,"412214e":38,"412259":122,"41242353":[61,74],"412602":123,"4127":[172,194],"413":134,"4139":[172,194],"4140625":134,"41420614":74,"4147":134,"4148":134,"4149":134,"415":[50,147,166,168],"4153":134,"415385":38,"4162":134,"4165":58,"416798":123,"417":[61,74,134],"4179":134,"41796875":134,"41863":25,"4189":134,"4192":134,"419621e":59,"4197":35,"4198":35,"4199":[35,134],"42":[31,33,34,35,38,40,43,44,49,52,53,56,57,58,59,60,61,64,76,82,104,119,133,134,146,150,158,167,171,172,179,186,193,194],"420":145,"4200":35,"420000":38,"4201":35,"4202":35,"4203":35,"4204":[35,134],"4205":35,"4206":35,"4208":[110,178],"421":[38,134],"421456":29,"4215":38,"421634":123,"421797":29,"421875":134,"4218916":74,"4219":134,"4221":155,"4222":134,"4223":52,"42237836":74,"422454":123,"4229":134,"423":134,"4236":134,"4238":134,"423967":179,"424":134,"4243":134,"424866":38,"424965632":38,"425684e":38,"42578125":134,"4261":134,"4265":134,"427":134,"4270":134,"427000":111,"427500":38,"428793":179,"429055":38,"4291":134,"4296875":134,"43":[38,50,58,59,64,74,92,119,134,158,171],"430":[57,68,80],"4300":134,"43000":111,"4303":134,"431":134,"43116792":[156,184],"431800e":59,"432":[29,134],"432554":123,"433":74,"4334":134,"43359375":134,"433594":64,"4336":134,"434":134,"4345":134,"434802":123,"435":[61,74],"4350":134,"43539442771396":158,"4354":38,"435833":38,"4362":134,"436250":29,"436517":148,"436546":123,"437":134,"4375":134,"438":134,"4381":134,"438906e":123,"439":[134,155],"44":[29,38,57,59,74,92,110,116,118,119,134,158,159,171,178,180,193],"440":155,"4400":134,"440000":38,"4405":134,"44085502":[61,74],"441":[68,80],"44140625":134,"4419":134,"442":[134,162,170],"4427":134,"44294":25,"4432":38,"4434":134,"44359863":[156,184],"44406":39,"4448":134,"4449":134,"444925":123,"4450":134,"4452":38,"4453125":134,"445368":64,"445375":38,"4455":38,"445716":148,"4459":134,"446":134,"44605898":116,"446873":[63,65],"4475":38,"449":[134,179],"44921875":134,"4494":134,"45":[14,31,34,38,41,49,50,52,58,101,109,111,116,119,134,145,146,147,158,164,167,175,178,179,192],"450":50,"4500":33,"450000":[38,111,178],"450436e":123,"45053314":119,"451":134,"451667":38,"452":134,"4522":134,"452600":[61,74],"4527":134,"452728":122,"453125":134,"453172e":59,"4535":134,"4539":134,"454299":123,"454335":38,"4544":134,"454545":166,"455":40,"4554":134,"4555":134,"455649e":59,"4557":134,"455850496":38,"45585107":[61,74],"4559":38,"456":[33,92,172],"4562":134,"4567":134,"456715":122,"45703125":134,"458":57,"458410":122,"4586":38,"4588":134,"4590":134,"4591":134,"459154":123,"45998":25,"46":[38,58,59,84,111,119,134,158,179,186],"460":134,"4601":134,"4602":134,"460483":148,"4608":134,"4609375":134,"4612":134,"461758453195614":179,"46175845319564":179,"461822":[63,65],"4620":38,"463":134,"463333":38,"4635":134,"463724e":59,"463988":76,"464":[47,134],"464111":123,"464186":145,"464328":122,"4646":38,"4647":134,"464776":[63,65],"46484375":134,"465":134,"4650":38,"465318":59,"4654":134,"46542":25,"4655":134,"466":134,"466732":123,"46679593":158,"4670":134,"467450":61,"4676":134,"467674":38,"468052":155,"4681":134,"468333":38,"46852095":116,"46854":25,"4686":134,"468720":59,"46875":134,"4691":[38,134],"4699":134,"47":[38,48,50,59,74,92,109,116,119,134,147,158,178,179],"470":134,"4704":134,"4705882352941178":14,"471":134,"471123":123,"472":134,"472388":123,"47265625":134,"472977e":123,"473":74,"4730":134,"473497":61,"474":134,"4741":134,"474986":29,"475":134,"4750":134,"4755":155,"4758":134,"4759332":158,"4760":134,"4762":134,"476333":29,"4764":134,"4765625":134,"476572":148,"476631":148,"47663104":148,"4767":[134,155],"4771":134,"477328":[63,65],"477492":29,"4775":134,"478":134,"4781":134,"4782":134,"4785":134,"4786":134,"479":134,"4790":134,"47943":155,"4795":134,"47992614761185":[63,65],"48":[32,38,49,52,59,74,83,92,104,119,134,145,158,179,186],"480":[58,134,179],"48017":25,"4802":134,"4803":134,"48046875":134,"4808":38,"481":134,"4815":134,"4818":134,"482":134,"4824":127,"482578":148,"4829":38,"483":134,"4833":134,"483724":76,"484167":38,"4842":134,"484375":134,"485":[74,134],"4854":[134,155],"48542":134,"486111":61,"48624811":74,"4869":134,"487439":58,"4876":134,"487864":145,"488":[68,80],"48817":134,"48828125":134,"488590":123,"48868864572551":64,"489000":38,"48909":134,"4896":134,"48965":134,"4897":48,"489919":58,"48c5":32,"49":[38,50,56,74,119,132,134,148,158,167,172,194],"490":[68,80,134],"4900":61,"490000":38,"49017":134,"490473":29,"49050":134,"4906":134,"490638":123,"490659":29,"4907":134,"490948":123,"491":134,"4914":134,"4918":134,"4921875":134,"492209":[63,65],"4928":134,"493182":155,"4932":38,"493623":123,"493678":122,"4938":134,"49381":134,"494":134,"49416":134,"49439034":158,"4947":134,"49473684":147,"495":50,"49529":134,"496":[38,61,74,134],"49609375":134,"496297":122,"49663":134,"4966309980255":[63,65],"496637":123,"497":134,"497028":122,"49719":134,"4974":134,"4975":134,"497500":38,"49752":134,"49763":134,"49791":134,"498":134,"49834":134,"49847":134,"4985":134,"499":[61,74],"499111":29,"49914":134,"4996":38,"49960":134,"49960699":[109,178],"49971":134,"49972":134,"49974":134,"49981":134,"49984":134,"4999":[56,61,74],"49c57b793eef1b8e55f297e5e019fdbf":57,"4a16":[118,180],"4ac":172,"4c":93,"4d":119,"4f":[31,33,37,51,59,64,155],"4g":[68,80],"4j":[173,195],"4px":159,"4s":[61,158],"4th":[46,119],"4x3":119,"4x4":[32,133],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,45,46,47,52,55,59,63,64,65,66,71,74,75,76,77,78,81,82,84,92,93,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,117,119,121,122,123,124,127,128,131,133,134,135,136,137,139,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,160,161,162,163,164,166,167,170,171,172,173,179,182,184,186,188,189,190,192,193],"50":[7,14,29,31,32,35,37,38,42,44,45,46,47,48,49,50,52,53,55,58,59,60,61,62,63,64,65,66,74,83,92,102,104,108,111,119,127,130,132,134,136,141,142,145,147,148,150,151,152,155,156,157,158,159,163,164,171,179,182,184,186,187],"500":[1,9,31,47,49,50,52,53,54,66,100,101,127,132,134,150,158],"5000":[33,35,47,54,56,82,127,132,158,172],"50000":[18,33,63,65,132],"500000":[38,58,64,145,155],"500001":[61,74],"5000x1000":35,"500135":38,"500216":179,"5007":134,"5008":134,"501":134,"501017e":59,"50114":134,"5012":46,"5013":134,"5014":134,"501467":123,"50159":134,"50177":134,"502":134,"5024":134,"502500":38,"5027":134,"50273":134,"50325":134,"5033":134,"50334":134,"503355363845":[63,65],"5033565506537":[63,65],"503371776776":[63,65],"50343":134,"5035673795078":[63,65],"50363":134,"503672":123,"50390625":134,"50467":134,"5047":134,"505":134,"5050":92,"50510":134,"50531":134,"5055":134,"50562":134,"50596":134,"506":134,"5060835072245":[63,65],"50635":74,"50636":134,"50641":134,"50654":134,"506579":29,"5067":134,"507":155,"5072":134,"50728":134,"50732":134,"50735":134,"50751":134,"507547":145,"50755":134,"50774":134,"507812":59,"5078125":134,"50783":134,"50784":134,"50797":134,"5079999999999996":77,"508":134,"508128e":38,"5083":134,"50832":134,"5085":134,"50859":134,"509":134,"5091":134,"50910":134,"50949":134,"5095":38,"50966":134,"50982":134,"50_startup":188,"50k":[51,112,127,176],"51":[38,48,59,74,119,134,158,166],"510":134,"5101":134,"51010":134,"51011":134,"51027":134,"51043":134,"51047":134,"5105":134,"510636288":38,"51070":134,"51078":134,"51095":134,"51101":134,"51112":134,"51133":134,"51135":134,"51167":134,"51171":134,"51171875":134,"51173":134,"511738":145,"51187":134,"511893":38,"511896":122,"512":[29,32,33,36,37,58,127,131,132,133,182],"51206":134,"51211":134,"51212":134,"51241":134,"51249":134,"51259":134,"5126":134,"51262":134,"51267":134,"51288":134,"51289":134,"512n":32,"513":[57,61],"51304":134,"51311":134,"51312":134,"5132":134,"51323":134,"513333":38,"51356":134,"51358":134,"513588e":59,"51367":134,"51368":134,"51375":134,"51378":134,"51379":134,"51382":134,"51385":134,"51390":134,"51391":134,"51392":134,"51393":134,"51398":134,"514":57,"514000":145,"51402":134,"51406":134,"51407":134,"51408":134,"51409":134,"5142":134,"51425":134,"51443":134,"51445":134,"51449":134,"51461":134,"51470":134,"51471":134,"51492":134,"51498":134,"515088":59,"51517":134,"51524":134,"51525":134,"51527":134,"51533":134,"51537":134,"5154":134,"51540":134,"51542":134,"51543":134,"5155":134,"51551":134,"51556":134,"51559":134,"5156":134,"515625":134,"51563":134,"51564":134,"51565":134,"51587":134,"51589":134,"515912e":123,"51594":134,"516":[57,134],"51600":134,"51606":134,"51610":134,"51612":134,"51615":134,"51622":134,"51633":134,"51634":134,"51635":134,"51636":134,"5164":38,"5165":134,"51654":134,"51655":134,"51665":134,"51673":134,"51676":134,"51687":134,"51688":134,"51691":134,"51694":134,"517":[57,74,134],"51714":134,"51716":134,"5172":134,"51721":134,"51729":134,"51734":134,"51742":134,"51743":134,"517460":116,"51747":134,"51750":134,"51770":134,"51772":134,"51775":134,"51777":134,"51784":134,"51786":134,"518":134,"5180":134,"51818":134,"518198":123,"51832":134,"51839":134,"51843":134,"51847":134,"5185":155,"51851":134,"51853":134,"518601":145,"51863":134,"51865":134,"51867":134,"5187":38,"51870":134,"51874":134,"518743":29,"51879":134,"51886":134,"5189":134,"51891":134,"51895":134,"51896":134,"519":134,"51907":134,"5191":134,"51912":134,"51915":134,"51918":134,"519196":29,"5192":134,"519229":29,"519278":38,"51935":134,"51941":134,"51944":134,"51946":134,"51948":134,"51950":134,"51953125":134,"519536":29,"51955":134,"51956":134,"519645":29,"51969":134,"5197":48,"51974":134,"51981":134,"51985":134,"52":[35,38,48,53,58,61,63,65,74,111,116,119,134,158,164],"52000":111,"52004":134,"52005":134,"52018":134,"5202":134,"52037":134,"52049":134,"52056":134,"52063":134,"52065":134,"52066":134,"52080":134,"52081":134,"52084":134,"52096":134,"52097":134,"521":[57,134],"52109":134,"52110":134,"52112":134,"52113":134,"52115":134,"52116":134,"52117":134,"52120":134,"52138":134,"52141":134,"52142":134,"52150":134,"52153":134,"52155":134,"52156":134,"52169":134,"52171":134,"52176":134,"5218":134,"52182":134,"52183":134,"522":[57,134],"522029":123,"52205":134,"52207":134,"52213":134,"52214":134,"52216":134,"52218":134,"52223":134,"52225":134,"52226":134,"52242":134,"52244":134,"52245":134,"52246":134,"52247":134,"522500":38,"52266":134,"52272":134,"52278":134,"52282":134,"52285":134,"52286":134,"52297":134,"52298":134,"52299":134,"52300":134,"52303":134,"52308":134,"52310":134,"52314":134,"52317":134,"52326":134,"52329":134,"52331":134,"52333":134,"52335":134,"52339":134,"5234375":134,"52346":134,"52347":134,"52350":134,"52351":134,"52353":134,"52356":134,"52358":134,"52359":134,"52361":134,"52364":134,"523656":123,"52373":134,"52383":134,"52385":134,"52389":134,"52392":134,"523965":[63,65],"524":134,"52408":134,"52412":134,"52421":134,"52422":134,"52426":134,"52427":134,"52428":134,"52429":134,"52432":134,"52436":134,"52440":134,"52442":134,"52444":134,"52447":134,"52448":134,"52452":134,"52457":134,"52460":134,"524601e":38,"52463":134,"52473":134,"52474":134,"52478":134,"52489":134,"5249":134,"52490":134,"52492":134,"52495":134,"52496":134,"5250":134,"52505":134,"52516":134,"52518":134,"52524":134,"52528":134,"52534":134,"52537":134,"525385":38,"52539":134,"52541":134,"52553":134,"52558":134,"52561":134,"52564":134,"52567":134,"52569":134,"52572":134,"52574":134,"52577":134,"52579":134,"52581":134,"52587":134,"52590":134,"52594":134,"52596":134,"526":134,"52600":134,"52602":134,"52603":134,"52606":134,"52610":134,"52618":134,"52628":134,"52641":134,"52647":134,"52650":134,"52653":134,"52658":134,"5266":134,"52661":134,"52666":134,"526667":38,"52672":134,"52678":134,"526787":123,"52679":134,"52680":134,"52683":134,"52686":134,"52689":134,"52690":134,"52691":134,"52692":134,"52693":134,"52694":134,"52700":134,"52706":134,"52707":134,"52709":134,"52717":134,"52720":134,"52733":134,"52734375":134,"52737":134,"52738":134,"52742":134,"52743":134,"52744":134,"52748":134,"52749":134,"52750":134,"52752":134,"527625":38,"52763":134,"52764":134,"52765":134,"52769":134,"52770":134,"52771":134,"52774":134,"52776":134,"52777":134,"52778":134,"5278":134,"52783":134,"52791":134,"52795":134,"52796":134,"528":57,"52800":134,"52805":134,"5281":134,"52812":134,"52819":134,"52826":134,"52828":134,"528302":122,"52833":134,"52836":134,"52837":134,"52839":134,"52840":134,"52841":134,"52845":134,"52847":134,"52850":134,"52853":134,"52855":134,"52861":134,"52862":134,"52863":134,"52877":134,"52886":134,"52888":134,"52890":134,"52893":134,"529":145,"52904":134,"52906":134,"52907":134,"5291":134,"52912":134,"52914":134,"52916":134,"5292":134,"52920":134,"529216":122,"52922":134,"529231":38,"5293":134,"52934":134,"52935":134,"52938":134,"52939":134,"52941":134,"52945":134,"52946":134,"5295":134,"52951":134,"52952":134,"52954":134,"52957":134,"52959196":116,"5296":134,"52962":134,"52963":134,"52965":134,"52967":134,"52969":134,"52970":134,"52972":134,"52975":134,"52976":134,"52980":134,"52981":134,"52987":134,"52988":134,"5299":134,"529949":163,"52996":134,"52998":134,"52999":134,"53":[38,57,59,109,111,116,119,134,146,152,158,164,178],"530":[74,145],"53000":[111,178],"530000":38,"53004":134,"53006":134,"530060":123,"53013":134,"53014":134,"53018":134,"53025":134,"53027":134,"53028":134,"53036":134,"53037":134,"53038":134,"53048":134,"53052":134,"53058695":158,"53060":134,"53061":134,"53062":134,"53066":134,"53068":134,"53071":134,"53076":134,"53077":134,"53079":134,"53081":134,"53087":134,"53090":134,"53094":134,"530m":[112,176],"530wv2bvx2w7ycwfpl":59,"53101":134,"53103":134,"53105":134,"53106":134,"53108":134,"53109":134,"53110":134,"53123":134,"53125":134,"531254":29,"53129":134,"53130":134,"53134":134,"531403":122,"531452":29,"53146":134,"53151":134,"53154":134,"53157":134,"53159":134,"53161":134,"53165":134,"53166":134,"53179":134,"53183":134,"53184":134,"53189":134,"53190":134,"53192":134,"53198":134,"53200":134,"53202":134,"53210":134,"53214":134,"53217":134,"532188e":123,"532197":29,"53222":134,"53224":134,"53227":134,"53237":134,"53238":134,"53243":134,"53245":134,"53246":134,"53248":134,"53249":134,"5325":134,"53255":134,"53256":134,"53259":134,"53262":134,"53265":134,"53276":134,"53279":134,"5328":134,"53281":134,"53282":134,"53287":134,"53292":134,"53295":134,"53296":134,"53299":134,"533":158,"5330":134,"53301":134,"53306":134,"53315":134,"53321":134,"53324":134,"5333":134,"53333":134,"5333333333333334":14,"53334":134,"53341":134,"53346":134,"53349":134,"53351":134,"53352":134,"53353":134,"53354":134,"53356":134,"53358":134,"5336":134,"53360":134,"53363":134,"53364":134,"53366":134,"53370":134,"53380":134,"53382":134,"533846":38,"53387":134,"53388":134,"53389":134,"53391":134,"53392":134,"53393":134,"53396":134,"534":134,"5340":38,"534000":145,"53401":134,"53403":134,"53409":134,"5341":[61,74],"53411":134,"53413":134,"5342":134,"53421":134,"53426":134,"53427":134,"53428":134,"53430":134,"53437":134,"53438":134,"53441":134,"5345":38,"53450":134,"534510":29,"534563":[63,65],"53458":134,"53462":134,"53465":134,"53468":134,"53470":134,"53474":134,"53475":134,"53478":134,"53482":134,"53488":134,"5349":134,"53491":134,"53494":134,"53495":134,"535":134,"5350":134,"53508":134,"53513":134,"53515625":134,"53517":134,"53518":134,"53520":134,"53521":134,"53525":57,"53529":134,"53531":134,"53536":134,"53538":134,"53551":134,"53553":134,"53556":134,"53557":134,"53560":134,"53563":134,"53566":134,"53570":134,"53571":134,"53574":134,"53580":134,"53584":134,"53587":134,"53588":134,"53589":134,"53593":134,"53594":134,"53595":134,"53597":134,"536":134,"53606":134,"53607":134,"53616":134,"53617":134,"53627":134,"53628":134,"53630":134,"53635":134,"53642":134,"53645":134,"53652":134,"53655":134,"53657":134,"53661":134,"53662":134,"53663":134,"53666312":74,"53668":134,"53672":134,"53673":134,"53674":134,"53675":134,"53686":134,"53687":134,"536879":[63,65],"53691":134,"536923":38,"53693":134,"53696":134,"53697":134,"53699":134,"537":[61,74],"5370":134,"53706":134,"53709":134,"53712":134,"53715":134,"53719":134,"53726":134,"53728":134,"53729":134,"53732":134,"53738":134,"53747":134,"53748":134,"53749":134,"53751":134,"53757":134,"53760":134,"53762":134,"53765":134,"53768":134,"53769":134,"53771":134,"53772":134,"53774":134,"53778":134,"5378":134,"53782":134,"53783":134,"53786":134,"53788":134,"53789":134,"537931":123,"53797":134,"53798":134,"53807":134,"53811":134,"53812":134,"53814":134,"53818":134,"53819":134,"53826":134,"53829":134,"538356":29,"53837":134,"53842":134,"53849":134,"538491832234":[63,65],"53850":134,"53855":134,"53857":134,"53859":134,"53860":134,"53863":134,"53865":134,"53866":134,"53870":134,"53871":134,"53872":134,"53879":134,"53883":134,"53891":134,"53892":134,"53894":134,"53897":134,"53899":134,"5390625":134,"53907":134,"53908":134,"53911":134,"53912":134,"53913":134,"53919":134,"53923":134,"53924":134,"53927":134,"53938":134,"53944":134,"53946":134,"53947":134,"5395":134,"53952":134,"539527":142,"539534":38,"53955":134,"53957":134,"53965":134,"53967":134,"53971":134,"53974":134,"53975":134,"53976":134,"53979":134,"53986":134,"53987":134,"53989":134,"53991":134,"53993":134,"53995":134,"53gib":29,"54":[29,38,57,59,74,93,158,179,193],"540":134,"5400":[57,61],"54001":134,"54004":134,"54005":134,"54010":134,"54014":134,"54027":134,"54031":134,"54034":134,"54035":134,"54040":134,"54044":134,"5405":134,"54054":134,"54055":134,"54062":134,"54063":134,"54068":134,"54085":134,"54086":134,"54090":134,"54094":134,"54095":134,"54097":134,"5410":155,"541112":38,"54112":134,"54119":134,"54121":134,"54128":134,"54134":134,"54135":134,"54136":134,"541375":123,"541410e":123,"54142":134,"54146":134,"54152":134,"54155":134,"54156":134,"54158":134,"5416":134,"54165":134,"54167":134,"54171":134,"54174":134,"54177":134,"54179":134,"54184":134,"54186":134,"54188":134,"54189":134,"5419":134,"54196":134,"542":[101,134],"54202":134,"54205":134,"54210":134,"54211":134,"54213":134,"54216":134,"54219":134,"54221":134,"54222":134,"54226":134,"54228":134,"54229":134,"54230":134,"54232":134,"54236":134,"54243":134,"54244":134,"54253":134,"54261":134,"54266":134,"54273":134,"54276":134,"54279":134,"54282":134,"54283":134,"54284":134,"54288":134,"5429":38,"54293":134,"54294":134,"54296875":134,"54300":134,"54302":134,"54303":134,"54306":134,"54311":134,"54317":134,"54318":134,"543182":155,"54321":172,"54330":134,"54331":134,"54332":134,"54334":134,"54335":134,"54336":134,"54337":134,"54338":134,"54346":134,"54349":134,"54351":134,"54359":134,"54364":134,"54366":134,"54370":134,"54376":134,"54381":134,"54383":134,"54388":134,"54389":134,"54390":134,"54394":134,"54395":134,"54396":134,"54397":134,"54398":134,"54406":134,"54407":134,"54421":134,"54422":134,"54423":134,"54427":134,"54434":134,"54439":134,"54440":134,"54442":134,"54444":134,"54445":134,"54447":134,"54454":134,"54456":134,"54457":134,"5446":38,"54461":134,"54464":134,"54470":134,"54473":134,"54474":134,"54479":134,"54485":134,"54491":134,"54494":134,"54495":134,"54497":134,"54498":134,"545":134,"54501":134,"54504":134,"54505":134,"54507":134,"54509":134,"5451":134,"54516":134,"54519":134,"54524":134,"54526":134,"54527":134,"54528":134,"54530":134,"54534":134,"54536":134,"54538":134,"54540":134,"54545":134,"54554":134,"54556":134,"54559":134,"5456":134,"54564":134,"54567":134,"54570":134,"54571":134,"54573":134,"54575":134,"54582":134,"54583":134,"545833":38,"54584":134,"545850":38,"54587":134,"54589":134,"54593":134,"54595":134,"54596":134,"54598":134,"546":134,"546021":[63,65],"54603":134,"54605":134,"54614":134,"54621":134,"54627315":119,"5463":134,"54630":134,"54634":134,"54636":134,"54640":134,"54641":134,"54647":134,"5465":134,"54655":134,"54658":134,"54659":134,"54662":134,"54663":134,"54667":134,"5466747351275563":146,"54670":134,"54671":134,"54672":134,"54676":134,"54679":134,"5468":134,"54683":134,"546875":134,"54693":134,"54697":134,"54699":134,"547":48,"54705":134,"54710":134,"54715":134,"54717":134,"54718":134,"54725":134,"54731":134,"54737":134,"54738":134,"54739":134,"54741244":74,"54750":134,"54752":134,"54765":134,"54769":134,"54770":134,"54782":134,"54784":134,"54789":134,"54798":134,"548":134,"54803":134,"54808":134,"54808703":158,"54810":134,"5482":38,"548232":122,"54824":134,"548255":123,"54832":134,"54833":134,"54834":134,"54836":134,"54841":134,"54842":134,"54843":134,"54846":134,"54848":134,"54854":134,"54865":134,"54866":134,"54869":134,"54877":134,"54878":134,"54880":134,"54888":134,"54898":134,"54901961":74,"54905":134,"54914":134,"5492":134,"54921":134,"54925":134,"54927":134,"54930":134,"54931":134,"54941":134,"54944":134,"54945":134,"54947":134,"54949":134,"54958":134,"54961":134,"54966":134,"54969":134,"54970":134,"54971":134,"54972":134,"54974":134,"54976":134,"54979":134,"54980":134,"54984":134,"54988":134,"54996":134,"54997":134,"54998":134,"55":[14,38,50,59,64,92,111,116,134,155,156,158,171,179,184,188],"550":134,"55000":[111,178],"55010":134,"55012":134,"55017":134,"55024":134,"55029":134,"55030":134,"55031":134,"55034":134,"55035":134,"55040":134,"55053":134,"55054":134,"55056":134,"55057":134,"55060":134,"550610e":59,"55062":134,"55066":134,"55071":134,"55072":134,"55074":134,"55077":134,"55078":134,"55078125":134,"55081":134,"55083":134,"55086":134,"55087":134,"550px":122,"55100":134,"55103":134,"5510652":119,"55107":134,"55110":134,"551120":123,"55116":134,"55120":134,"55124":134,"55126":134,"55127":134,"55135":134,"5514":134,"55142":134,"55149":134,"55158":134,"5516":134,"55161":134,"55164":134,"55168":134,"55179":134,"5518":134,"55181":134,"55183":134,"55186":134,"55187":134,"55191":134,"552":134,"55200":134,"55204":134,"55209":134,"55212":134,"55220":134,"55225":134,"55231":134,"55234":134,"55236":134,"55241":134,"55246":134,"55250":134,"55253":134,"55255":134,"55259":134,"5526":134,"55263":74,"55264":134,"55265":134,"55268":134,"55276":134,"55281":134,"55284":134,"55287":134,"55288":134,"55290":134,"553":48,"553074":123,"55309":134,"5531":134,"55310":134,"553206":123,"55329":134,"55330":134,"55348":134,"55350":134,"55355":134,"55359":134,"55364":134,"55366":134,"5537":134,"55373":134,"55381":134,"55386":134,"553999e":123,"554":134,"55408":134,"55415":134,"55426":134,"55428":134,"55433":134,"55454":134,"5546875":134,"554761":123,"55477":134,"55481":134,"55486073":116,"55487":134,"554887e":123,"55491":134,"555":134,"55501":134,"5552":134,"55523":134,"555233":123,"55526":134,"55527":134,"55531":134,"555312":38,"55535":134,"5554":134,"55546":134,"55547":134,"55549":134,"55550":134,"55552":134,"55553":134,"55556":134,"55557":134,"55559":134,"55563":134,"55567":134,"5557":134,"55570":134,"555784":29,"5559":134,"55592":134,"55598":134,"55606":134,"55609":134,"55613":134,"55620":134,"55621":134,"55623":134,"556336":122,"55635":134,"55636":134,"55637":134,"55645993":119,"55649":134,"5565":38,"55653":134,"55656":134,"55662":134,"55666":134,"55668":134,"55670":134,"5568":74,"55697":134,"557":134,"55701":134,"55703":134,"55706":134,"55713":134,"55716":134,"55718082144":74,"55727":134,"55731":134,"55737":134,"55748":134,"55758":134,"55761":134,"55782":134,"55788":134,"55791711":74,"55799":134,"558":[61,74],"55801":134,"55812":134,"55830":134,"55844":134,"55846":134,"558500":145,"55851":134,"55859375":134,"55866":134,"55867":134,"55870":134,"55881":134,"5588235294117647":14,"55884":134,"55888":134,"55892":134,"55895":134,"55896":134,"559":[38,134],"55902":134,"55910":134,"55912":134,"55954":134,"55957":134,"55976":134,"55978":134,"55981":134,"55988":134,"55989":134,"55994":134,"55995":134,"56":[48,92,109,116,148,158,168,178],"560":116,"5600":172,"560000":38,"5600000000000002":77,"56012":134,"56015":134,"5603":74,"56035":134,"56039":134,"56045":134,"56048":134,"56057":134,"56058":134,"56060":134,"56062":134,"56065":134,"56069":134,"56090":134,"56093":134,"56098":134,"561":134,"5610":134,"56102":134,"56113":134,"56115":134,"56116":134,"56119":134,"56120":134,"56125":134,"56127":134,"56135":134,"56137":134,"56139":134,"56148":134,"56152":134,"56159":134,"56163":134,"56171":134,"56190":134,"562000":111,"56212":134,"56217":134,"5622":134,"56220":134,"56226":134,"56231":134,"56242":134,"56244":134,"56245":134,"56247":134,"5625":134,"562500":59,"56255":134,"56261":134,"56262":134,"56267":134,"56276":134,"5628":134,"56303":134,"56306":134,"56308":134,"5631":134,"56335":134,"56342":134,"56352":134,"5637":134,"56376":134,"5638":134,"56381":134,"56390":134,"56394":134,"56396":134,"564":[38,134,145],"5640":134,"56424":134,"56427":134,"5643":[61,74,134],"56431":134,"56435":134,"56439":74,"56447":134,"56454":134,"56466":134,"5647":38,"56471":134,"56474":134,"56499":134,"565":[38,61,74],"56504":134,"56508":134,"56509":134,"56510":134,"56521":134,"56526":134,"56538":134,"5654":134,"56544":134,"56546":134,"56550":134,"56558":134,"5657":134,"56574":134,"56576":134,"5658":38,"56596":134,"566":134,"566126":29,"56624":134,"56636":134,"56637":134,"56639":134,"56640625":134,"56646":134,"56647":134,"56649":134,"56660":134,"5666666666666667":14,"5669":134,"56699":134,"567":134,"567088":29,"56721":134,"56729":134,"567306":59,"56735":134,"56740":134,"567453":61,"567530":61,"56755":134,"56770":134,"56771":134,"56777":134,"56790":134,"567906":142,"56791":134,"568":[74,134],"56805":134,"56806":134,"56812":134,"56823":134,"568350":123,"56837":134,"56852":134,"56858":134,"5686":38,"56886":134,"5689":134,"56895":134,"569":134,"56917101":119,"56918":134,"56919":134,"56922":134,"56928":134,"56949":134,"5695":134,"56982":134,"5699":134,"56993":134,"56997":134,"57":[38,59,74,109,132,158,178],"570":192,"5700":134,"570000":38,"57006":134,"57013":134,"57026":134,"5703":134,"5703125":134,"57033":134,"5704":134,"57046":134,"57060":134,"5706829878497204":77,"57070":134,"570743":122,"57084":134,"57085":134,"57098":134,"571":134,"57110":134,"57115":134,"57123":134,"57143":134,"57147":134,"57153":134,"57157":134,"57161":134,"57163":134,"57166":134,"57172":134,"57178":134,"57196":134,"5720":134,"57214":134,"57228":134,"57242":134,"57250":134,"57260":134,"57268":134,"57276":134,"57290":134,"57294":134,"57297":134,"57299":134,"573":[38,134],"57307":134,"57323":134,"57328":134,"573333":38,"57336":134,"5736":38,"57389":134,"57391":134,"57395":134,"57401":134,"57415":134,"57417":134,"57418":134,"57421875":134,"5745":123,"57467":134,"57489":134,"57498":134,"575":134,"57508":134,"5753":[123,134],"57538":134,"57542":134,"57547":134,"57553":134,"57554":134,"57556":134,"57560":134,"57570":134,"57593":134,"57595":134,"57597":134,"576":134,"5761":134,"57637":134,"576487":59,"57652":134,"57654":134,"5766":134,"57669":134,"5767":134,"57679":134,"57685":134,"57690":134,"57693":134,"57704":134,"57744":134,"5777":134,"57789":134,"57799":134,"578":134,"578125":134,"578142e":59,"57819":134,"57840":134,"57841":134,"57852":134,"578621":29,"5789473684210527":14,"57909":134,"579137":123,"57916":134,"57929":134,"57942":134,"5796":155,"57961":134,"57987":134,"57993":134,"58":[35,48,59,116,134,158],"580000":38,"58000000000":173,"58001":134,"58019":134,"5802":134,"58023":134,"5803":134,"58042":134,"5805":134,"5807":134,"58078":134,"580px":122,"581":134,"58110":134,"5811388300841898":24,"58113883008418981":24,"58137":134,"58149":134,"58164":134,"58172":134,"58177":134,"58195":134,"58197":134,"582":134,"5820":134,"582000":145,"58203125":134,"58260":134,"58294":134,"58310":134,"58313172":74,"58330":134,"583333":38,"5834":134,"58379":134,"58380":134,"584":29,"584095":29,"58454":134,"58468":134,"584805":123,"5849056603773586":14,"58494":134,"584943":38,"585":134,"5850":35,"58516":134,"58520":134,"585244e":123,"58525":134,"58526":134,"585386":123,"585387":123,"58565":134,"5857":134,"58581":134,"58585":134,"5859375":134,"586035":122,"5861":134,"58611":134,"58615":134,"58651":134,"58702":134,"58716":134,"58730":134,"587461e":59,"5875":74,"58761":134,"58768":134,"58799":134,"588":134,"58800":134,"58810":134,"5882":134,"58823529":74,"58829":134,"58832":134,"588333":38,"58840":134,"588462":38,"58860":134,"5889":74,"589":179,"589167":38,"589271":38,"58930337":158,"58936":134,"58941":134,"58946":134,"58952":134,"58957":134,"5896":[61,74],"58978":134,"58984375":134,"58986":134,"58994":134,"59":[38,48,50,74,111,134,158,172,178,179,193,194],"590":[134,179],"590000":38,"59026":134,"5908":134,"59080":134,"590909":38,"590px":166,"59114":134,"59115":134,"59139":134,"59146":134,"59171":134,"5919":134,"59210":134,"59229":134,"592330e":123,"59248":134,"59250":134,"59257":134,"593":134,"59334":134,"59337":134,"59345":134,"593450":29,"593661":59,"59375":134,"5938":56,"59421":134,"59432":134,"594450":29,"5947":134,"594807":123,"59493":134,"595":134,"5950":134,"59512":134,"5952":134,"59524":134,"59529":134,"5954":134,"59564":134,"59566":134,"5957":134,"595855":122,"596":134,"59617":134,"59670":134,"597":134,"59756":134,"59765625":134,"598":[158,162],"5981":134,"598109":123,"598150":179,"59823":134,"59831252":74,"598350":123,"59842":134,"598502":123,"59853725816836":158,"5985372581684":158,"59853725816868":158,"59854":134,"59880":134,"59886":134,"599167":38,"59970":134,"59981":134,"5b":[112,121,122,123,176],"5b0":122,"5b1":[121,122,123],"5b2":121,"5b3":[121,122],"5b380":121,"5b390":121,"5b4":122,"5b5":121,"5b7":121,"5bdf":121,"5bdfd":122,"5blambda":122,"5bmask":122,"5bnone":121,"5btrue":122,"5cm":46,"5d":[121,122,123],"5e":36,"5f":[32,127,186],"5g":[68,80],"5k":50,"5m":38,"5more":57,"5s":[61,158],"5th":[43,102,119,174],"5vbcssa6":59,"5x5":[32,127],"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,38,39,40,41,44,47,48,51,59,62,63,64,65,66,74,76,77,78,82,84,92,93,96,101,102,104,111,112,116,117,119,121,122,123,124,127,130,132,133,134,137,139,142,145,146,147,148,150,152,154,155,156,158,162,166,167,170,171,172,173,179,180,184,186,188,193,194],"60":[7,9,14,32,33,35,38,40,41,42,50,56,57,63,65,66,77,100,101,104,109,111,117,119,156,158,159,178,179,184,192,193],"600":[3,111,132,158],"6000":[33,35,58,82,84,132],"60000":[29,132],"600000":64,"60028":134,"600345":29,"60045":134,"600833":38,"600866":59,"600px":[121,122,166],"60116":134,"60122":134,"60144":134,"6015625":134,"60192":134,"60239":134,"6026":134,"603":134,"60306":134,"60320":134,"60321":134,"603333":38,"60349":134,"6036":38,"60373":74,"604":[74,134],"604039":61,"60409":134,"6041":134,"604382":76,"604384":[63,65],"60465":134,"6047":38,"604946":123,"60522":134,"60523":134,"6053":134,"60546875":134,"60550":134,"605962":61,"606":[61,74,179],"60623":134,"6065":134,"606722816":38,"607":134,"607008e":38,"6072":38,"60733":134,"60744":134,"6075":134,"6076":134,"60764":134,"6078":134,"6080":35,"6081":134,"6082":[61,74],"60850":134,"60851":134,"60863":134,"60869":155,"6088":134,"609":134,"6090":35,"60904":134,"6092":134,"60925":134,"609375":134,"6095":134,"6096":134,"60970":134,"6098":134,"6099":134,"61":[38,50,59,64,134,145,147,158,179,193],"610":134,"610000":38,"6107":134,"611":145,"611105":38,"61122":134,"6117":134,"61184":134,"61204":134,"61205":134,"61216":134,"612245":123,"6123":134,"61238":134,"6124":134,"6125":134,"613":134,"61328125":134,"61351":134,"614392":29,"6149":38,"615":[34,134],"6150":35,"61501":134,"61516":134,"6153":33,"615352":122,"615385":38,"61547":134,"616":74,"616188e":123,"61622":134,"61630":134,"616314e":38,"616364":29,"61663286":74,"616662":123,"616766":58,"617":34,"6170212765957446":14,"6171875":134,"6173":38,"617423":[63,65],"6175":134,"61760":134,"617802e":59,"618":134,"618338":122,"619047619047619":14,"61905":134,"61965":134,"62":[38,50,59,63,65,111,116,134,147,158,164,178,188,193],"6200":35,"6201":134,"62037":134,"6204":134,"620409":122,"62046":134,"6205":134,"62055":134,"62066":134,"6208":134,"62084":134,"620px":122,"621":[38,134],"6210":35,"62107":134,"62109375":134,"62110":134,"621116e":59,"6212":134,"6213":134,"62134":134,"622":134,"6220":134,"6225":35,"622625":123,"62271805":74,"6230":134,"6231532":38,"62329":134,"62374":134,"624":134,"62405":134,"62419":134,"624289":38,"6245":[35,134],"624565":123,"6246":134,"624615":38,"625":134,"6250":35,"625000":38,"6254":134,"62571878891146":158,"6263":134,"6266":38,"626937":123,"627":134,"62712":134,"627175":38,"6274":134,"62740":134,"627590e":59,"628157":123,"6283":38,"6285":38,"62860":134,"62890625":134,"62891":134,"6291":38,"6294":134,"62993":134,"63":[38,59,64,111,127,134,147,148,151,152,158,164,167,186],"630":134,"6302":74,"630217":61,"63022":134,"6303904952264":58,"6308":134,"630992":123,"630px":[121,122],"63119":134,"6312":134,"6313":134,"6315":38,"63169":134,"63197":134,"63204":134,"63256":134,"63262":134,"6327":38,"6328125":134,"633158":179,"63339":134,"6334":38,"633845":123,"634051":123,"6342":38,"6345":[35,38,134],"6348":134,"63481":134,"635":[38,134],"6350":38,"6352":38,"6353":155,"6354":38,"6356":38,"635833":38,"6359":38,"636":134,"63603":134,"63608":134,"6361":38,"6362":38,"636238":59,"636364":166,"636368640":38,"63637":134,"63655":134,"6366":134,"63671875":134,"6368":38,"6369":[38,134],"6370":38,"6371":[38,134],"6374":134,"63752":134,"63759":134,"6378":38,"63792":134,"638":134,"6380":38,"63803":134,"6381":38,"63851":134,"6387":134,"6388":134,"639":[59,134],"63940":134,"639426e":38,"63960":134,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,48,50,58,59,78,92,109,111,117,119,126,127,128,132,133,134,137,155,158,164,172,178,186,194],"640":145,"6400":35,"64000":58,"6404":155,"640625":134,"64073":134,"641035e":59,"642":134,"64206":134,"64243":134,"642977":59,"643":134,"64300":134,"6431":[61,74],"6435":134,"644":134,"644082":142,"6442":134,"64438":134,"6445":[61,74,134],"64453125":134,"64497":134,"6450":35,"6451":134,"64568":134,"645833":38,"646705152":38,"64671":134,"64681":134,"6471":134,"6473":134,"6479":134,"648":[61,74],"6482":134,"6484375":134,"64851":134,"64859406":[61,74],"649167":38,"6492":134,"6497":48,"649855":38,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,133],"65":[35,59,66,111,116,156,158,162,164,171,172,178,184,189,190,192,194],"6500":134,"650px":122,"6516":122,"6517":122,"6518":122,"652":[109,178],"6522":134,"65234375":134,"65239850433215":158,"6527":134,"653":158,"6530":[35,134],"6532":134,"65334":134,"65347":134,"6535":134,"6538":134,"65380":134,"654167":38,"65443":134,"65480":134,"65492":134,"6550":35,"65526":134,"6555":122,"655517642572828":158,"65555":134,"6556":122,"6557":122,"6559":122,"6559162":116,"6561":122,"65611":134,"6562":122,"65625":134,"656881":29,"657":186,"65732685":74,"65746":134,"65793":134,"6581":134,"6590":35,"6594504178995297":116,"65949":134,"65962":134,"66":[38,50,134,145,158,162,172,182,194],"660":134,"6600":35,"66015625":134,"66022":134,"66036":134,"660833":38,"66098":134,"660px":121,"661054":38,"661068":61,"6611":74,"6615":35,"662":134,"6621":38,"662185e":38,"662224":[63,65],"6625":38,"662633":122,"6627":38,"663":134,"6631":38,"6632":38,"66327":134,"6635":38,"66369":134,"6638":38,"663877":123,"6640":38,"6640625":134,"6641":38,"6646":134,"6647":38,"664918e":59,"66496461":74,"665":[38,121],"665000":111,"6651":[38,134],"6652":38,"6655":38,"6657":[38,134],"666":[121,145],"6660":35,"666088":122,"6662":38,"66623":134,"6663":38,"6665":134,"6666":38,"6666666666666666":50,"6666666666666667":[172,194],"666666666666667":172,"666667":38,"6669":38,"667":[121,134],"6670":134,"6671":134,"6672":122,"6674":[38,122],"6675":[122,134],"6676":122,"6678":[122,134],"6679":122,"66796875":134,"668":121,"6680":35,"6683":38,"66840":134,"66845":134,"669":[121,134],"669000":145,"6691":134,"6695":35,"66977":134,"67":[49,52,58,122,134,158,162,164],"670":[121,134],"6700":35,"67000":134,"67021":134,"670px":121,"671":121,"671131":29,"67131":134,"671875":134,"6720":35,"6722":134,"672225":59,"67225":134,"6725":35,"672864":61,"673":[74,134],"673333":155,"67374":134,"673913":123,"6740":35,"67434":134,"674452224":38,"6750":134,"6754":134,"675459":123,"67550":134,"67578125":134,"6758":134,"675833":38,"6765":[122,134],"6766":122,"676667":38,"6767":[122,134],"6768":[122,134],"6769":122,"6770":134,"6771":134,"677258":59,"6775":134,"6779":134,"6780":35,"6783":134,"6784":134,"67843":134,"67858615":[61,74],"6786":134,"678678":29,"6788":134,"67912":134,"67953":134,"679630":29,"6796875":134,"6797":134,"68":[14,59,61,66,122,134,158,162,164,179],"6800":35,"68076":134,"680851":123,"680px":122,"6810":35,"681000":145,"68141":134,"681690":123,"681744":[63,65],"6818":134,"68201":134,"6821":134,"68269":134,"683":[142,145],"683516":29,"68359375":134,"683782":59,"684":61,"6842":[38,134],"68438":74,"6844":38,"684457140":38,"6845":134,"684500":29,"68478":61,"68491":74,"6850":35,"6851":38,"685191":29,"6852":38,"68537":74,"685433":74,"6855":38,"68557":134,"6858":38,"68617":134,"686275":123,"6866":134,"6868":38,"68684":61,"6869":38,"6870":[35,38],"6872":38,"6875":134,"6878":38,"68796":134,"688":134,"688138e":123,"68849":134,"6885":38,"6886":38,"6887":38,"6888":38,"6889":38,"689":134,"6890":38,"6891":38,"6893":[38,134],"6894":38,"689655":123,"68969":134,"6897":134,"6899":38,"69":[38,116,134,146,158,162,164,167],"690":192,"6900":[35,38],"6902":38,"6903":38,"69037":134,"6904":38,"6905":38,"6907":38,"6908":38,"6909":38,"690px":122,"691":134,"6911":38,"69136631":158,"6914":38,"69140625":134,"6915":38,"6917":38,"69178":134,"692":134,"6920":38,"6921":38,"69211":134,"6922":38,"692308":38,"6924":38,"6925":38,"692500":38,"69261":134,"6928":38,"6929":38,"6930":38,"69318":134,"6933":38,"6934":[38,134],"693418":123,"6935":38,"6936":38,"6937":38,"69378":134,"69399":134,"694":134,"69400":134,"6941":38,"69411":134,"6942":38,"69456":134,"6946":[38,134],"6947":38,"6948":38,"695":[121,134],"6950":35,"69500":134,"695000":145,"6952":38,"6953125":134,"695662":179,"6958":38,"695833":38,"696":121,"6960":38,"6961":38,"696114":123,"6962":134,"6963":38,"6965":38,"6968":38,"6969":134,"697":[74,121,134],"6970":[35,38],"697299":123,"697303":122,"697426":123,"69764":134,"6976998904709748":167,"697729":122,"69779":134,"698":121,"6982":134,"6983":134,"69831":134,"6984":38,"6985":38,"6986":38,"699":[121,145],"6990":38,"69921875":134,"699648":59,"6999":134,"6a":93,"6j":[172,194],"6m":[29,38],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":59,"6qepylt4v68sypax9kxk":59,"6qwd":59,"6s":[61,158],"7":[3,7,14,22,24,29,30,31,32,34,35,37,38,41,44,48,49,54,55,59,62,63,64,65,66,68,74,77,78,80,84,92,93,101,110,112,116,117,119,121,122,123,124,127,132,133,134,135,142,145,146,147,148,150,151,152,155,158,162,164,166,171,172,173,179,180,186,188,193,194,195],"70":[14,32,38,41,50,59,63,65,66,111,116,134,147,158,163,164,166,171,178,188],"700":[56,121],"7000":[1,74,119],"700611":122,"7009":134,"700px":[122,162],"701":[121,134],"7010":[35,134],"7010426719637757":76,"7011":134,"7012":134,"702":145,"7020":38,"702500":38,"70282":134,"7030":134,"703125":134,"7032":134,"7034":134,"703499":123,"7036":134,"703982":[63,65],"704":134,"70429":134,"7048":38,"705":134,"7054":134,"70549":39,"7057":155,"705817":123,"70584":134,"70633":134,"70698":134,"70703125":134,"7073":134,"70760":134,"708":134,"70884":134,"709":134,"70935":134,"7099":[61,74],"71":[50,56,74,92,111,116,134,147,152,158,164,166,178,188],"710":[134,145],"7100":35,"710000":61,"7104":134,"710528":123,"7105280060827549":123,"71052801":123,"7107":134,"71086031":158,"7109375":134,"7110":[35,134],"711042":123,"7111":134,"71130":134,"7117":134,"712":[109,178],"7125":134,"7127411872482181":77,"7131":134,"7133":38,"713683":29,"714500":145,"71469":134,"71484375":134,"715":134,"7153":134,"71537":134,"715370":122,"71625":134,"716440":76,"7171":38,"71714":74,"71733307":[61,74],"71817":134,"7184":134,"7185":134,"71875":134,"718896":122,"7189":134,"7190":155,"719457":116,"71977":134,"7198":155,"71995":134,"72":[35,38,92,111,116,158,164,166,178],"720000":[111,123],"7203":134,"72035":134,"7209":[38,134],"72093598500494":[63,65],"72093691":116,"721":134,"72101958323096":[63,65],"72108":134,"72115":134,"72164454424515":[63,65],"722":134,"722071":142,"7222":38,"7225":134,"72265625":134,"722717":38,"723":134,"723684":116,"724046":29,"7245":38,"724590719956222":58,"7247":134,"724924":[63,65],"725":134,"72568":134,"72581411":158,"726487e":123,"726562":59,"7265625":134,"72663483920857":[63,65],"726845ca9638":114,"727":134,"7276":38,"727750":142,"72788":74,"7280":38,"7281":38,"729":134,"7293":134,"72991":134,"73":[38,50,111,116,145,147,158,163,164,166,193],"730":186,"7302":134,"73041":134,"73046875":134,"7305":134,"730px":[122,123],"731":134,"7311":[38,134],"7312":134,"73167":134,"73183":134,"732":158,"7327":134,"7329":134,"733707e":59,"73372":134,"7340":134,"734147e":59,"7343":134,"734375":134,"7345":35,"734924":[63,65],"73498":155,"735":134,"735000":38,"7351":134,"7354":38,"735822":59,"736220":123,"7363":134,"73645":134,"736769":38,"73779":134,"738":134,"7380":155,"73828125":134,"7386":134,"73886":134,"739":134,"7390":134,"73914":134,"7396":38,"74":[29,38,50,59,116,123,134,158,164,166,179],"740251e":38,"741":74,"741066":[63,65],"7415":35,"741619":145,"741661e":123,"74170":134,"742":[134,155],"7421875":134,"7422":[38,134],"7424":38,"742725":61,"74273":74,"7428":134,"742940":29,"74306":134,"74310":134,"74340771":74,"74354":134,"74360":134,"74382":134,"744":134,"744051e":59,"744216":122,"744669":59,"744769":38,"745034":38,"74569":134,"7457":38,"7457109493044":64,"7458":134,"746":134,"74609375":134,"74703":134,"74763":134,"748":134,"7483":134,"7486":134,"7488":134,"749080":76,"7493":134,"7495":134,"7499":134,"75":[7,32,33,38,48,50,54,56,57,58,59,61,64,66,74,116,127,134,137,145,147,148,150,151,155,158,163,164,167,172,179,187,188,189,190,194],"750":[50,58,134],"7500":61,"750000":[38,59,64,155],"750178363923474":64,"750px":121,"75151515":82,"75181":134,"75226":134,"753199":29,"75390625":134,"75453":134,"754680":29,"7549":134,"755":[74,134],"75555":134,"755568":123,"75572":134,"7558":134,"7561":155,"7563":134,"7567":134,"757":121,"75727":134,"757500":38,"757748":123,"7578125":134,"758":[121,134],"75837":134,"75860":134,"758667":64,"759":[121,134],"7590":134,"7592":134,"75929":134,"7596":134,"7598":134,"7599":134,"75th":[54,158],"76":[38,57,109,116,134,158,164,178,187],"760":121,"76006":134,"7603":134,"760479":58,"760623":145,"76074":134,"761":134,"761000":145,"761446":123,"76150":134,"76171875":134,"76193":134,"762":[121,122],"76219":134,"7622":134,"763":122,"763161":64,"76349":134,"764":[121,122,134],"764029e":38,"764420":64,"7645":134,"764553":123,"7647":134,"765":122,"76536":134,"765625":134,"7660":35,"76605":134,"7666666666666667":64,"7667":134,"7668":134,"766995e":38,"767":122,"76701":134,"7673":134,"76731980371954":[63,65],"7675":134,"7678":[172,194],"768":[58,121,122],"768155":123,"7682":134,"7684":155,"7688":134,"769":[121,122,134],"7690":38,"7691":38,"76921":134,"769231":38,"7692735413614223":76,"76953125":134,"76968":134,"7699":38,"77":[38,59,111,158,163,164,166,193],"770":[121,134],"77016":134,"77019":134,"7704":134,"7705":35,"7706":38,"77064":134,"770px":121,"77100":74,"7712":38,"7715":38,"7719":38,"772":134,"7721":134,"7722":38,"7723":38,"772308":38,"7724":38,"77259":134,"7727":38,"7728":[35,134],"772823":58,"7730":[38,134],"77332":134,"7734375":134,"773820":29,"773897":29,"774000":111,"77419":134,"774272":155,"77455":134,"7746":38,"7749":134,"7750":38,"77506":134,"7752":134,"77531":134,"7754":38,"77584":134,"7759":38,"7762":134,"7763":38,"776962":123,"77734375":134,"7777":38,"777777":41,"778":134,"7780":134,"7784":134,"77847":134,"7785":134,"7786":134,"7788":134,"779":134,"779576e":123,"78":[38,50,59,134,147,158,163,164],"7800":38,"78008":134,"7805":134,"7807":134,"78100":74,"7812":134,"78125":134,"7829":134,"782925":38,"78319":134,"783423":29,"783708":122,"784":[29,30,32,41,47,82,84,126,131,134,182,192],"78431373":74,"7844":[134,155],"784500":145,"78466":134,"785":[61,74,134],"7851":134,"78515625":134,"7852":134,"78573":134,"7858":134,"785px":121,"7860":134,"7866":134,"7866666666666667":64,"7868":134,"787":74,"7870":134,"7871":134,"787490":29,"78775":134,"788453":123,"78855":134,"7888":134,"7890625":134,"78911":134,"79":[38,52,59,74,109,111,134,158,163,164,167,178,179],"790":134,"7900":61,"7906":134,"7908":134,"7909":134,"791":134,"7912":134,"791419":123,"792":192,"792168":29,"7925":74,"79260":134,"79290307":158,"79296875":134,"793024":123,"7934":134,"793560":38,"7936":134,"794615":38,"7949":134,"7949491493525":[63,65],"795":186,"7951":155,"7952":134,"7954":134,"7958":134,"7959":134,"7963":134,"79641063":158,"7968":134,"796875":134,"796958":29,"797":158,"79704":134,"7971":134,"798":134,"7980":[134,145],"7984":134,"799":162,"7990":134,"7991":134,"799154":38,"79948":134,"7995":38,"79m":38,"79uxx":59,"7b":[121,122,123],"7d":[121,122,123,172,194],"7e100":172,"7m":38,"7poa":59,"7s":[61,158],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":59,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,41,43,44,47,48,49,50,51,53,54,58,59,60,61,63,64,65,66,74,75,76,77,78,84,92,93,101,109,112,116,117,119,121,122,123,124,127,128,133,134,137,145,146,147,148,150,152,155,157,158,159,164,166,167,171,172,178,179,180,186,188,193,194,195],"80":[14,31,32,33,48,50,52,59,63,65,66,74,92,132,134,136,139,141,158,159,163,164,165,167],"800":[3,56,147,158],"8000":58,"800000":64,"800232":29,"80037642":158,"8005":134,"80078125":134,"800px":[121,146,158,166],"801":122,"80117999":158,"8012":134,"8013":134,"8014":134,"8015":134,"8016":134,"80180":134,"8019":134,"802":122,"8020":134,"802422":29,"802500":38,"8027":134,"80290755":158,"803":122,"803085":123,"8031693077564637":163,"8033":134,"8034810001":179,"80351":134,"80354":134,"80389616":158,"8039":134,"804":122,"804221":38,"8045":134,"8046":134,"8046875":134,"80468775":74,"8049":134,"805":[122,186],"80577065":74,"8058":134,"8059":134,"806":122,"8061":134,"8065845639670534":76,"8066":134,"807":122,"80730058":158,"807645":123,"807712":123,"808":[122,158],"808326e":38,"808539":123,"80859375":134,"809":[122,134],"8091":134,"81":[38,57,59,66,92,109,116,119,134,158,163,164,167,172,178,194,195],"8100":134,"8101":74,"8106":134,"81093633":158,"81098":134,"810px":121,"811":[122,134],"811000":145,"8115":134,"811667":38,"8117":134,"8118":134,"81180":134,"812":[122,134],"8121":134,"8125":134,"812500":38,"8132":134,"813207":123,"8133":134,"8133333333333334":64,"8134":134,"813456":123,"8135":134,"8137":134,"8140703517587939":167,"8141":134,"814101e":123,"8143":134,"8145":134,"8147":134,"815":134,"8154":134,"8155":134,"815821":123,"816":155,"81640625":134,"8169":134,"818":134,"818000":[111,178],"818088":123,"818286":29,"818557e":59,"819":134,"8192":134,"8195":134,"8196":134,"82":[38,93,134,158,163,164],"8200":134,"8203125":134,"8206":134,"820px":122,"821":134,"8216":134,"8218":134,"822":34,"8220":134,"8222":134,"822259":145,"823":[34,134],"8231":[61,74],"8235":134,"8242":134,"82421875":134,"8243":134,"8248":134,"82485143":119,"8250":134,"825000":38,"8256":134,"8259":134,"826":134,"8260":134,"826347":58,"827":38,"827204":29,"828066":64,"828125":134,"8283":134,"8286":134,"829":134,"829500":145,"829756":[63,65],"829818":123,"83":[35,38,59,64,111,158,164,167,178],"830":134,"8307692307692308":167,"830px":121,"832":[110,178],"83203125":134,"833":145,"833333":38,"8333333333333334":158,"834":121,"8340":35,"834496":122,"835":121,"8359375":134,"836":145,"836154":38,"836667":38,"836867":123,"837":121,"837500":38,"837984":148,"838":121,"839":121,"839000":111,"839637":123,"83984375":134,"84":[40,50,57,59,66,134,147,158,164,166],"840":142,"84001001":142,"84001003":142,"84001005":142,"84001007":142,"84001009":142,"8407":35,"840774":123,"841":121,"84192557":158,"842":[121,134],"842069":29,"84236351":158,"843":[121,143],"843333":64,"84375":134,"844":121,"844925":148,"845":[74,121],"8450":66,"845000":38,"8459":35,"846":[121,134],"8462":[61,74],"846646e":59,"847":121,"84700":74,"847097":123,"84739223":158,"84765625":134,"84797838907741":[63,65],"849":134,"85":[18,38,56,57,61,74,109,110,116,134,142,158,163,164,178,179,188],"850":134,"8504":155,"850980":123,"851":134,"8510":145,"8515625":134,"851852e":38,"852":[121,134,143],"852422":122,"852500":38,"852562":123,"8529":35,"853":121,"854":134,"8544":35,"854448":155,"854724":123,"8554":35,"85546875":134,"8554913294797688":57,"856":134,"856196":[63,65],"856667":38,"8568203376968316":50,"857":186,"8572":35,"857461":123,"857898":122,"85796668":[61,74],"8584":35,"858975":123,"859375":134,"8595784":119,"86":[38,50,57,59,61,63,65,74,134,142,147,152,158,164],"860":134,"8600":29,"860146":59,"862016":123,"863":134,"863049":122,"86328125":134,"8637678":[172,194],"863846":38,"864":134,"8644":35,"8649":35,"866":134,"8666666666666667":64,"86713461558":61,"8671875":134,"8672":74,"867339":38,"867500":38,"868263":142,"868942":[63,65],"869":134,"869196":123,"869231":38,"869547":[63,65],"87":[38,50,57,142,148,158,164,172,179],"870":134,"87000":[189,190],"870000":38,"87005":74,"870053":61,"870455":155,"870815e":59,"871":122,"87109375":134,"871915":123,"872":[122,134],"873":[122,134],"8734":35,"874":[122,134],"874230":29,"874252":29,"875":[122,134],"87554":[121,123],"875750":145,"876":122,"877":[122,134],"8776021588280649":77,"878":122,"87890625":134,"879":134,"88":[40,50,57,59,61,74,123,134,147,150,152,155,158,164],"880":[61,74],"880783":123,"8808":155,"881":121,"881110":29,"88222676":116,"8823":35,"88235294":74,"882430":59,"882500":38,"8828125":134,"883":[121,134],"8830":35,"8845":35,"885":[121,134],"8855":59,"8858":59,"885964":[63,65],"886":121,"886073":29,"8861":35,"88633901":158,"8864":155,"88671875":134,"887":121,"888":121,"8883":35,"888687":29,"888888":150,"888889":116,"88889":186,"889":134,"88k":50,"89":[38,50,57,134,147,158,164,171],"890":[121,134],"890208":123,"890625":134,"892":134,"8924":35,"8926045016077171":57,"892724":123,"894":[134,145],"89400":74,"894226":123,"8942262958393035":123,"8942263":123,"89453125":134,"89488":145,"895":134,"896":134,"896291e":59,"896499":59,"896727335512334":64,"8977517768607695":64,"898":134,"8981005311027566":76,"8982142857142857":29,"8984375":134,"899":142,"899327":123,"8aaad":59,"8b":93,"8barxiv":132,"8c74a315":[118,180],"8j":[172,194],"8s":[61,133,158],"8spbdlrp3lbr9j9uejdzgqul6":59,"8x8":[50,133],"9":[7,14,18,22,24,29,30,32,34,35,37,38,41,43,45,47,48,50,54,58,59,60,64,66,68,74,76,77,78,80,84,92,93,101,110,112,116,117,119,121,123,124,127,134,136,139,145,146,147,148,150,156,158,163,166,167,168,171,172,173,178,179,180,184,186,192,193,194,195],"90":[1,7,14,31,34,35,38,39,40,50,51,54,56,57,59,63,65,82,116,134,137,147,151,156,158,163,166,167,184,186,193],"900":[56,134],"900000":64,"90022":74,"900225":61,"901429":76,"902000":111,"90234375":134,"903846":116,"90385283885":74,"904227":29,"9042344":158,"905000":38,"906":134,"90606733":116,"90625":134,"907":134,"908":134,"908113e":59,"908426":59,"9086":35,"909":134,"90909091":82,"909651":123,"91":[38,41,50,57,74,84,111,134,147,158,163,164,179],"910":134,"910000":145,"91015625":134,"9104":35,"910665":122,"911":134,"91111":186,"911815":123,"912486e":123,"912641e":38,"9136":35,"9137407":74,"9140625":134,"9142":35,"914407":29,"915":134,"916667":38,"917":134,"9171":59,"917554018630476":64,"91796875":134,"918462":38,"9187045":[61,74],"919":134,"92":[38,40,49,57,59,68,80,116,134,150,158,164,186],"920":134,"920px":122,"921":134,"921875":134,"922":134,"922500":38,"922706":38,"923":74,"92300":74,"923077":116,"9235":59,"925":134,"9250":152,"925286":29,"92578125":134,"926176":123,"92780":155,"929":134,"9296875":134,"93":[35,38,40,57,59,74,82,109,134,158,164,178],"930":134,"9300":61,"930808":155,"930833":38,"9312":59,"931818":155,"932":134,"9324":35,"933":134,"933419":123,"933541":29,"93359375":134,"934649":155,"934832":155,"935214":29,"935376":29,"935730":123,"93598814":[61,74],"937":134,"9375":134,"938":134,"938874":155,"938919":123,"939":134,"93957619863":154,"939902":123,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":59,"94":[29,38,47,48,50,57,59,68,74,80,109,116,134,158,164,166,178],"940000":38,"940000e":38,"940217":155,"9403":35,"941":134,"94140625":134,"941642":[63,65],"942":[124,180],"942500":38,"94257014456259":50,"943":134,"943324":155,"944167":38,"945":134,"9453125":134,"946":[50,134],"946246656":38,"948799":155,"94921875":134,"949230e":38,"9494233119813256":50,"95":[18,32,35,37,38,40,47,50,57,59,68,74,78,80,84,92,111,116,147,156,158,159,184,186],"9500":61,"9503":155,"950791":155,"950964":58,"951":134,"951123":155,"9511372931045574":50,"952070":123,"952074":29,"952655":155,"953":50,"953011":145,"953125":134,"953458db800a":141,"953488":122,"954":[50,134],"954000":145,"9550":66,"9554938013125742":166,"955556":116,"956":134,"9564565636458":[63,65],"9568":155,"957500":38,"958":[57,134],"958084":58,"958183":123,"958434":29,"959":74,"9591":35,"959280":59,"95k":50,"96":[32,47,50,54,59,134,158],"960":[134,192],"9600":66,"9600000000000002":64,"960304":29,"9609375":134,"961":[134,145],"961250":145,"962500":38,"963":134,"96303579":74,"96484375":134,"965":155,"965335":122,"9656":155,"965629":29,"966":134,"966000":145,"9666666666666667":64,"9666666666666668":64,"967":134,"968333":38,"96875":134,"9688888888888889":158,"96896536339727":64,"96918596":[156,184],"96945":38,"96982397":59,"97":[38,39,47,50,57,64,82,134,143,158,166,188,193],"97011173":59,"9709416":59,"971020":29,"972":[134,192],"9723201967872726":[63,65],"9725":59,"97265625":134,"973":134,"97318436":59,"973292":29,"9733333333333334":64,"974":122,"97458101":59,"975":[122,134],"975000":38,"975282":123,"9753462341111744":50,"975385344":38,"975532":59,"9756":59,"9757":74,"9759036144578314":167,"976":134,"9765625":134,"977":122,"977255e":38,"977377e":123,"9777777777777777":158,"978":[123,134],"9780321601919":140,"9783":59,"97848561":59,"97849162":59,"97876502":59,"9789":59,"97899282":[61,74],"979":[134,179],"979038":122,"979453":123,"97988827":59,"98":[47,49,58,59,60,134,158,167],"980":[123,134],"98046875":134,"980550":122,"9807":59,"981":[29,123],"9810":155,"9816":59,"98176":137,"982109":142,"9824":59,"982500":38,"9827":59,"98296089":59,"983":[123,134],"9830":59,"983000":111,"983077":38,"9832":59,"9835":59,"984":123,"984375":134,"985":123,"985000":38,"985634":122,"986":[38,123,134],"986504":123,"9866666666666667":64,"986792":145,"9868":59,"987":134,"987500":38,"987654321":92,"98828125":134,"98e3715f":101,"98gib":29,"99":[31,32,38,47,50,56,59,63,65,116,119,123,142,147,158],"990":134,"990000":[189,190],"990133":29,"991":[57,167],"9921875":134,"992212":145,"992258":29,"9924":35,"993":[134,145],"993280":29,"9940711462450593":29,"9949":59,"994f5f":36,"995":35,"9950":35,"995000":145,"995873":38,"996":134,"99609181":74,"99609375":134,"996421":142,"996650":38,"996840":29,"997":134,"997128":38,"997217":38,"997228":123,"99757":32,"998058":38,"998799":38,"998816":38,"998827":123,"999":[34,37,56,127,128],"999530266023044":58,"9996615456176722":[63,65],"9999":56,"9999965334550955":[63,65],"9999997207656334":179,"999999999601675":[63,65],"9be4c7yahuinv1h07ucme1co9p":59,"9ec22d57b796":101,"9ect":59,"9f84":118,"9f95":[118,180],"9k":38,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":59,"9s":[61,158],"\u00b5":31,"\u00b5s":179,"\u00e1":143,"\u015fimdi":35,"\u03b3":59,"\u03b3xit":59,"\u03bb":155,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":38,"\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":76,"\u5168dlc":38,"\u5b89\u88c5\u5373\u73a9":38,"\u6597\u9c7c\u89c6\u9891":38,"\u65b0\u5efa\u6587\u4ef6\u5939":38,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":38,"\u7fa4\u661f":38,"\u8bad\u7ec3\u6a21\u578b":76,"\u8c6a\u534e\u4e2d\u6587":38,"\u8d60\u54c1":38,"\u8fc5\u96f7\u4e91\u76d8":38,"\u923d":101,"\u94f6\u6cb3\u5178\u8303dlc":38,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":38,"a\u00e7\u0131l\u0131\u015f":35,"abstract":[1,8,114,119],"ayl\u00f8":145,"bia\u0142ecki":180,"boolean":[7,46,92,101,117,121,122,123,132],"break":[14,33,35,50,62,75,124,130,134,139,140,165,172,191,194],"byte":[29,68,80,119,172,179,194],"cach\u00e9":180,"caf\u00e9":155,"case":[3,7,8,14,18,29,30,40,43,49,52,54,57,58,59,64,66,74,75,78,82,92,93,101,102,106,108,111,114,116,117,119,121,123,124,127,129,133,137,139,140,141,142,145,146,147,148,150,151,152,155,156,158,162,163,165,166,167,171,172,174,176,179,186,188,193,194],"catch":[130,141],"char":172,"class":[3,7,14,22,24,29,30,31,33,34,36,37,38,40,41,43,49,52,53,54,55,57,58,59,60,61,64,68,74,76,78,80,81,82,83,93,94,100,110,116,117,119,121,122,123,128,129,130,132,133,134,135,136,141,145,147,148,150,151,152,155,156,158,159,162,163,165,166,167,172,173,178,182,186,188,189,192,194],"clion2020\u7834\u89e3":38,"d\u00fc\u015f\u00fck":35,"default":[7,22,29,33,45,46,49,50,52,53,54,57,58,62,63,65,68,80,82,85,93,101,109,117,119,121,123,127,128,129,132,133,137,141,146,150,156,158,163,164,172,184,186,187,192,193,194],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,36,40,41,43,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,71,74,76,80,82,88,90,92,93,98,100,101,102,103,104,106,108,109,110,111,112,113,116,117,119,122,123,124,127,129,130,132,133,136,137,139,141,142,143,145,147,148,150,151,154,155,156,157,158,159,162,163,165,166,170,171,173,180,186,187,188,191,193,194],"export":[140,159,162],"final":[7,31,32,33,41,47,48,50,51,54,55,56,58,59,68,76,80,82,93,106,117,123,127,132,133,134,136,140,141,142,147,150,151,152,153,156,158,159,162,165,166,167,171,172,182],"float":[22,34,35,38,43,44,46,48,49,51,55,59,92,93,117,119,123,127,131,135,146,148,171,173,179,186,195],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,35,36,37,40,41,45,46,47,48,49,50,52,53,54,55,56,57,58,60,61,62,63,64,65,66,68,74,76,80,81,91,103,111,116,117,118,121,122,123,126,127,128,132,133,134,135,136,137,139,142,147,150,152,153,155,156,157,158,162,163,165,166,167,168,170,172,180,184,186,187,188,194,195],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,38,39,40,42,43,45,46,47,48,50,55,62,63,65,67,68,74,75,76,77,78,80,82,84,86,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110,111,114,116,119,121,122,123,126,127,129,130,131,132,133,134,135,136,137,139,140,142,143,144,145,146,147,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,172,173,174,176,178,179,182,184,186,187,191,193,194,195],"int":[7,14,22,31,39,50,56,84,92,93,119,122,123,127,128,132,133,134,135,136,150,159,171,172,173,179,194,195],"long":[1,8,14,33,35,36,45,47,48,53,55,56,59,64,68,80,82,100,101,104,111,114,119,129,130,133,136,137,141,154,157,159,165,171,172,173,187,193,194],"micha\u0142":180,"new":[7,9,14,17,22,23,31,33,34,35,41,43,45,47,48,49,50,52,53,54,55,59,60,61,62,64,68,76,78,80,84,92,93,99,100,101,102,104,106,108,109,112,113,114,116,118,121,124,126,127,129,130,131,132,137,138,140,141,143,146,147,150,151,152,153,154,155,156,157,158,162,165,166,167,168,170,171,172,174,176,177,179,180,181,182,184,186,191,194],"null":[38,44,46,48,60,74,117,121,123,145,155,159,166,167],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":38,"p\u03b8":128,"pikach\u00fa":12,"public":[1,14,50,56,57,99,106,112,114,116,135,140,142,143,165,168,171,175,176,177],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,43,44,46,47,48,49,50,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,76,78,80,81,82,84,92,93,100,101,117,118,119,121,122,123,124,126,127,128,131,132,133,134,135,136,137,141,142,147,150,151,152,155,157,158,159,162,172,173,179,180,182,186,187,188,189,190,193,194],"short":[26,45,59,100,116,119,129,130,132,143,159,171,172,194],"static":[5,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,142,145,146,158,159,162,163,164,166,171,172,178,194],"super":[29,30,31,33,36,37,43,63,65,122,128,132,133,134,135,146,151,171,193],"switch":[0,7,14,47,50,141,147,171,193],"throw":172,"transient":139,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,66,68,74,77,78,80,82,92,96,97,100,101,108,109,116,117,119,121,122,123,124,127,128,130,131,132,133,134,135,137,142,145,146,147,148,150,154,155,156,157,158,159,164,166,167,168,170,171,172,173,178,179,182,184,188,192,193,194,195],"try":[1,3,4,5,7,9,11,14,16,18,25,29,31,35,36,44,45,47,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,76,78,82,83,89,92,100,101,102,104,107,108,109,110,111,114,117,118,121,122,123,124,127,133,134,135,141,142,143,145,146,150,151,152,154,155,156,157,158,159,161,163,164,165,166,167,168,169,170,172,173,186,191,194],"var":[18,38,51,55,68,80,108,128,147,150,166,178],"void":119,"while":[0,1,7,29,31,32,33,36,40,46,47,48,50,53,57,58,59,60,61,64,75,78,85,93,99,101,102,103,104,106,108,111,112,113,114,116,117,119,121,122,123,124,127,130,132,133,139,141,150,156,157,158,159,163,165,166,167,172,174,175,179,180,181,182,186,187,191,192,194],"x\u7684\u7f3a\u5931\u503c\u6570\u91cf":76,"y\u00fcksek":35,"y\u7684\u7f3a\u5931\u503c\u6570\u91cf":76,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,36,40,41,43,45,47,48,49,50,51,52,56,57,58,59,62,63,64,65,66,68,72,74,75,76,77,80,82,85,88,89,90,92,93,99,100,101,102,104,106,108,109,110,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,135,136,137,139,140,141,142,144,145,146,147,148,150,151,155,156,158,159,162,165,167,168,170,171,172,173,176,177,179,180,182,184,187,188,191,192,193,194,195],AND:[92,93,108,119,122,171,172],AS:[22,25,45,47,48,92,93,171,172],And:[31,32,40,41,43,48,49,50,52,56,58,62,68,74,76,78,80,92,100,102,104,112,116,119,126,129,130,133,136,139,140,141,142,143,147,156,158,168,172,176,180,184,187,194],As:[1,3,7,8,33,34,36,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,68,74,78,80,82,83,99,100,106,109,112,114,116,117,119,123,124,132,133,134,139,140,141,147,150,151,155,156,157,158,162,165,166,167,168,171,172,173,177,179,182,191,193,194],At:[28,40,48,50,56,59,68,75,80,106,116,119,124,130,140,141,143,147,151,152,157,165,168,170,171,172,179,191,192],BE:[92,93,171,172],BUT:[92,93,171,172],BY:[101,141,146],Be:[85,91,104,108,119,159],Being:[43,62,101,104,123],But:[33,38,40,43,48,49,50,52,53,56,57,58,59,61,64,68,74,78,80,100,104,109,112,124,127,129,131,137,139,140,141,143,146,150,151,152,154,156,157,158,165,167,170,171,172,173,184,188],By:[7,18,29,40,41,46,49,52,53,54,57,59,68,74,77,78,80,99,109,114,117,119,123,124,128,137,139,140,142,145,146,147,148,155,158,162,165,166,167,171,182],FOR:[92,93,171,172],For:[7,19,29,30,31,32,35,36,38,39,40,41,43,45,46,47,48,49,50,51,54,59,60,61,64,66,67,68,69,71,72,74,75,78,84,85,86,88,89,90,91,100,101,102,111,112,113,114,116,117,119,121,122,123,126,129,130,131,133,135,137,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,184,188,191,192,194],IN:[25,82,92,93,171,172],IS:[22,45,47,48,54,92,93,97,145,171,172],IT:[54,99,140],If:[1,7,14,16,18,29,33,34,35,39,40,41,43,45,48,49,50,51,52,53,54,57,58,59,60,62,64,66,68,69,74,76,77,78,80,82,92,93,95,100,101,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,128,129,130,131,132,134,136,139,140,141,143,145,147,150,151,152,154,156,157,158,159,162,164,165,166,167,168,170,171,172,173,180,186,188,191,193,194,195],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,36,39,40,41,43,45,46,47,48,49,50,52,53,54,57,58,59,60,61,62,64,66,68,69,71,74,75,76,77,78,80,82,83,88,89,90,92,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,135,137,139,140,141,142,143,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,179,180,181,186,188,189,190,191,192,194,195],Is:[50,93,97,99,103,106,111,112,113,128,140,141,145,159,165,167,168,195],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,77,78,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,175,176,182,186,187,188,189,191,192,194],Its:[129,150,155,167],NEAR:[61,74],NO:[92,93,171,172],NOT:[82,92,93,119,171,172],Near:[109,178],No:[7,20,29,33,50,54,56,64,82,88,93,98,100,101,110,130,143,147,156,158,163,171,172,175,178],Not:[7,40,43,49,52,54,56,68,80,101,111,117,118,134,151,163,166,167,172,187,194],OF:[22,45,47,48,92,93,171,172],ON:[124,180],ONE:7,OR:[22,45,47,48,92,93,119,171,172],Of:[50,101,102,104,114,158,173,174],On:[49,50,52,57,58,59,60,61,66,68,74,80,101,104,106,141,147,151,154,155,158,159,165,166,170,171,177,187],One:[1,7,11,28,40,43,49,50,52,53,54,55,57,58,59,66,83,98,103,104,106,108,110,114,116,119,127,129,135,141,146,148,150,156,165,166,168,171,172,173,177,178,179,184,186,191,194],Or:[32,40,50,58,74,102,104,119,129,130,141,145,148,165,171,172,187,191,194],Such:[1,7,30,40,43,49,50,54,116,141,142,166,171,193],THAT:82,THE:[92,93,171,172],TO:[54,92,93,136,171,172],That:[31,32,40,43,48,49,50,52,57,61,62,68,74,80,104,109,116,119,124,130,146,148,151,152,158,159,165,167,172,173,191],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,37,39,40,41,45,46,47,48,49,50,52,54,55,56,57,58,59,60,61,62,63,64,65,66,68,71,74,76,78,80,83,84,90,91,92,93,99,102,103,104,106,108,109,110,112,113,114,115,116,118,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,153,154,155,156,159,162,163,165,166,167,173,174,176,177,178,182,183,185,186,187,188,189,190,191,192,195],Then:[7,31,45,47,50,56,66,76,77,82,101,104,116,119,127,128,131,134,136,141,142,143,146,147,148,150,151,155,159,166,170,171,172,173,187],There:[0,1,3,7,18,28,29,30,32,34,36,37,39,40,41,43,46,47,49,50,51,54,57,59,60,62,64,68,72,74,80,85,100,101,104,106,108,109,110,113,114,116,117,118,119,121,124,126,127,129,132,134,136,137,139,140,141,142,143,145,146,148,150,151,154,158,159,161,162,164,165,166,167,169,170,171,172,173,191,192,193,194],These:[7,30,31,39,41,45,49,54,56,59,60,74,75,77,78,99,101,104,106,109,112,113,118,119,122,123,132,140,146,150,151,155,157,158,165,171,173,175,177,179,180,182,193],To:[0,1,7,14,18,22,29,33,34,36,40,41,45,46,48,49,50,52,54,58,61,62,66,68,74,75,76,82,92,99,100,101,102,104,109,110,111,112,114,116,117,119,121,123,124,127,128,129,131,132,133,134,137,138,139,140,141,142,143,147,148,151,152,154,155,156,158,159,162,165,166,167,168,170,171,172,173,177,178,180,183,186,187,191,193,194,195],WITH:[92,93,171,172],Will:[143,167,173],With:[7,40,41,43,47,50,56,60,61,62,84,99,103,104,108,109,111,112,113,114,118,119,122,123,124,129,140,141,148,150,151,156,158,165,171,180,187,192],_0:151,_1:148,_2:148,_:[18,29,31,33,37,41,51,56,81,126,127,128,130,131,132,133,134,136,137,148,151,158,171,172,182,188,189,194],____:[3,12,22,24,25,46,92,93,97],_____:[24,92],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:29,____i:93,__abs__:92,__add__:92,__all__:171,__annotations__:[171,193],__builtins__:171,__cached__:171,__call__:[63,65,128,133],__class__:[37,171],__dict__:[189,190],__doc__:[171,193],__eq__:92,__file__:[127,171],__finalize__:[121,122],__future__:[37,127],__get__:121,__getitem__:[122,123],__init__:[29,30,31,33,35,36,37,43,55,63,65,76,81,82,94,128,130,132,133,134,135,152,171,188,189,193],__iter__:33,__len__:33,__loader__:171,__main__:[35,127,130,159],__mul__:92,__name__:[35,37,127,130,159,171],__operators__:134,__package__:171,__repr__:55,__spec__:171,__str__:92,__sub__:92,__truediv__:92,__version__:[41,158,193],_aspp:133,_attach:[118,180],_bin:54,_branch:133,_build_model:35,_bunch:[57,58],_caller:121,_check_indexing_error:123,_check_params_vs_input:146,_concaten:121,_consolidate_inplac:122,_constructor:122,_conv_block:133,_conv_bn_relu:133,_conv_relu:133,_data:122,_deeplabv3:133,_deprecate_mismatched_index:122,_deprecated_arg:122,_engin:123,_etag:[118,180],_fcn_16:133,_fcn_32:133,_fcn_8:133,_fuse_bn_tensor:132,_get_axi:122,_get_block_manager_axi:122,_get_comb_axi:121,_get_concat_axi:121,_get_join_info:121,_get_list_axi:122,_get_result_dim:121,_get_slice_axi:122,_get_valu:[122,123],_get_values_for_loc:123,_getbool_axi:122,_getitem_axi:122,_getitem_lowerdim:122,_getitem_tupl:122,_i:[77,78,148,158],_identity_block:133,_ilocindex:122,_index:56,_indicator_pre_merg:121,_info_axi:121,_invalid_index:122,_is_copi:122,_is_scalar_access:122,_items_overlap_with_suffix:121,_j:[148,158],_k:130,_kmean:146,_label:57,_left:121,_lib:[121,123],_locationindex:122,_locindex:122,_m:130,_make_concat_multiindex:121,_make_stag:132,_maybe_cast_for_get_loc:122,_maybe_cast_slice_bound:122,_maybe_check_integr:121,_merge_doc:121,_merge_typ:121,_mergeoper:121,_method:179,_mgr:[121,122],_novalu:179,_other:121,_pad_1x1_to_3x3_tensor:132,_pickl:127,_recognized_scalar:122,_reindex_and_concat:121,_rid:[118,180],_right:121,_sec_1:93,_segnet:133,_self:[118,180],_sigmoid:[81,189],_skip:3,_slice:122,_static:[122,123],_subplot:74,_sum:179,_t:[118,180],_t_sne:186,_take:122,_take_with_is_copi:122,_takeabl:122,_valid_typ:122,_validate_integ:122,_validate_kei:122,_validate_tuple_index:122,_valu:123,a0958ad901d7:118,a0:[121,179],a10:123,a1:[119,121,179],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:59,a21453:172,a23:[171,193],a2:[119,121,179],a3:121,a3z5kdkfn3tbq:59,a4:121,a5:121,a7yia1n5fo6efhugqfis3dhueyjsa:59,a_:82,a_dict:172,a_i:[82,147],a_list:172,a_n:150,aaaaaa:[156,184],aafter:157,aaron:[29,50,78,131],ab:[50,63,65,77,92,93,122,127,128,135,158,171,172,194],abadi:131,abbeel:128,abbrevi:[124,128],abc:[93,122,123,172,179,195],abcd:[7,117,122,179],abcdef:122,abcmous:[112,176],abhinav:[139,143],abil:[43,52,54,68,76,77,80,108,129,139,140,150,156,159,165,171,173,184,191],abl:[3,7,10,11,14,16,20,31,40,49,50,52,53,54,57,61,62,74,76,101,104,110,112,114,118,119,123,129,137,140,142,145,151,154,157,159,162,165,166,167,168,170,176,186,189,190,193],abnorm:29,abnorml:66,abo:38,aboslut:157,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,40,41,43,46,47,48,49,50,52,53,54,57,58,59,60,61,62,66,68,77,78,80,83,84,90,99,100,101,102,103,104,106,108,109,110,112,114,115,116,117,118,119,121,123,124,125,129,130,133,135,137,138,139,140,141,142,143,144,145,146,147,150,151,152,154,155,157,158,159,161,163,164,165,166,168,169,170,171,172,173,174,176,177,180,188,191,193,195],abov:[0,1,7,11,14,19,26,29,32,36,40,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,64,66,68,74,80,92,93,104,108,110,114,116,119,121,122,123,124,127,128,129,130,132,133,135,137,139,140,141,142,145,146,147,148,150,154,155,157,158,162,165,166,167,168,169,170,171,172,173,178,187,188],above_cutoff:158,abracadabra:172,abraham:195,abs_vector:[172,194],absenc:[54,186],absent:122,absolut:[47,76,78,83,92,116,119,141,150,154,157,171,172,173,194],absolute_error:77,absolute_import:127,absolute_percentage_error:77,abspath:127,abtract:78,abund:[110,178],ac:158,academ:[112,115,138,176],academi:193,acc:[33,39,47,49,52,57,127,136,192],acc_and_loss:127,acc_output:127,acceler:[100,110,111,141,143,166,178],acceleromet:116,accept:[16,40,57,68,80,83,100,103,106,112,119,122,123,132,141,143,151,155,165,171,177,191,192],access:[6,14,16,38,41,68,74,78,80,99,101,102,104,106,108,112,118,122,139,142,143,159,166,171,172,176,177,179,187,193,194],accessor:123,accident:151,acclaim:155,accommod:[7,36,47,117,172],accompani:[116,141,166],accomplish:[88,141,151,165,186,191],accord:[18,45,50,54,63,65,99,108,109,110,111,116,119,122,132,139,142,145,147,150,155,159,163,165,166,167,168,170,186],accordingli:[41,55,76,127,145,171,193],account:[0,6,8,14,16,50,78,92,101,102,112,116,118,119,147,151,166,167,176,179],accumul:[1,50,92,106,137,148,165,172,191],accur:[15,32,33,41,50,54,59,68,69,77,80,90,101,106,112,113,116,127,129,133,135,139,142,143,147,154,157,162,165,166,167,177],accuraci:[29,33,34,39,40,48,49,50,51,52,54,56,57,60,64,68,69,76,77,78,80,82,83,84,102,112,117,127,133,136,141,142,146,147,148,150,151,153,154,156,158,159,163,164,166,167,174,176,182,186],accuracy_of_batch:127,accuracy_scor:[29,30,39,49,50,51,52,56,57,59,60,68,80,83,150,155,159,163,164,167,186,189,190],achiev:[32,33,40,48,50,54,56,59,103,106,119,130,131,132,133,139,140,141,142,150,151,152,153,155,156,157,158,171],aci_servic:[9,100],aci_service_nam:[9,100],aciconfig:[9,100],acid:48,aciwebservic:[9,100],acm:[112,139,176],acoust:[144,145,146],acquir:[6,103,106,141,177],acquisit:[3,102,106,114,137,174,176],acronym:109,across:[33,43,47,54,68,78,80,102,112,114,116,119,121,123,124,127,137,139,140,141,143,151,155,158,171,172,174,176],act:[3,14,22,24,35,53,62,93,104,112,119,123,127,130,135,165,166,179,191],act_greedi:35,act_valu:35,action:[0,7,35,40,45,46,92,93,99,103,104,112,114,117,118,119,131,140,142,159,163,165,171,172,176,191],action_s:35,actions_count:35,activ:[0,29,30,32,33,34,35,36,39,40,41,43,44,45,47,48,56,57,62,78,82,112,126,127,128,132,133,134,135,136,142,151,157,158,162,176,181,182,187,192],activateion:134,activespac:180,actor:171,actual:[7,38,40,43,46,47,48,50,51,52,56,57,59,60,66,68,74,75,76,77,78,80,82,83,84,92,101,111,113,114,116,117,118,119,122,123,127,128,129,137,139,145,151,153,155,157,158,162,165,166,167,171,173,175,177,181,188,191],actual_result:[3,14,22,24,53,93],actual_valu:[38,77],acut:150,ad:[1,7,18,22,29,32,36,38,41,43,45,48,50,52,54,59,64,68,76,80,92,93,111,113,116,118,127,128,132,138,140,141,150,151,152,154,156,165,166,172,188,194],ada:164,adaboost:[151,164],adaboost_clf:49,adaboostclassifi:[49,56,163,164],adagradoptim:141,adam:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,126,128,132,133,134,182],adamax:36,adamharlei:181,adamoptim:[127,131,141],adapt:[47,58,62,78,99,112,132,137,141,151,176,192],adaptiveaveragepooling2d:132,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,38,39,41,42,43,44,45,46,47,50,52,54,61,62,63,65,66,76,78,92,93,108,110,113,116,118,121,124,126,127,128,132,133,134,135,140,150,151,152,154,155,156,157,159,164,165,166,167,168,170,171,172,173,180,182,184,187,188,191,192,194],add_1:134,add_:31,add_artist:[110,178],add_legend:145,add_selectbox:187,add_slid:187,add_subplot:[35,37,47,75,130],add_trick:171,add_weight:132,addison:140,addit:[1,7,18,23,32,41,46,54,59,64,66,74,75,76,78,92,103,104,106,108,112,113,116,117,118,119,124,130,132,133,134,135,137,141,143,147,151,152,154,155,156,158,166,172,173,179,180,194,195],addition:[31,76,117,119,124,140,145,147,151,156,180,184],additon:32,addon:128,address:[75,76,90,103,104,106,112,137,139,140,143,147,154,165,171,176,177],adel:150,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91,116,141],adher:[48,106],adjac:171,adject:[172,194],adjunct:165,adjust:[29,33,36,45,55,57,58,75,78,132,141,150,151,156,164],admin2:142,admin:180,administr:[143,173],admonit:[121,122,123],adobe_premier:38,adolesc:171,adopt:[59,85,102,112,140,141,143,147,151,174,176,195],adult:[171,193],advanc:[35,43,66,102,112,116,120,123,125,138,140,141,143,147,165,172,180,183],advantag:[40,50,54,68,80,123,132,140,143,150,153,154,156,172],advent:[49,129,140],advers:28,adversari:[36,143,183],advertis:104,advic:141,advis:[7,46,53,58,61,117,150],advoc:112,ae:[31,128],aebf:[118,180],aeroplan:7,aerospik:180,aesthet:22,affect:[7,17,33,39,49,52,54,56,58,68,76,80,82,102,104,106,112,116,117,130,132,141,148,154,156,157,171,174,176,184],affer:136,affin:[82,145],affinity_matrix_:158,afford:[7,74,117,165],african:[112,143,176],afro:[145,146],afropop:[145,146],after:[0,7,14,29,32,33,34,35,36,39,40,41,47,48,49,50,51,54,55,56,57,60,62,64,74,76,82,104,108,114,116,117,119,124,126,127,132,133,134,136,137,140,141,142,145,146,148,150,151,154,155,159,164,165,166,168,171,172,173,187,189,190,192,193,194],afterward:[32,119],afzal:139,ag:[9,18,22,50,51,74,88,92,93,100,101,114,116,118,119,121,140,145,147,148,152,155,162,165,169,170,171,172,173,179,180,189,190,191,193,194,195],again:[7,14,17,40,41,47,49,50,51,52,53,57,58,59,68,80,82,117,123,128,146,151,155,157,167,168,171,172,173,186,187],against:[0,18,41,47,50,59,77,78,104,112,114,116,121,122,137,141,151,157,159,170,185],agaricu:110,age_distribut:24,age_median_imput:22,age_sal_tre:50,age_tre:50,agefil:22,agenc:[104,165],agenda:[102,174],agent:[112,165,191],ageron:158,agg:[18,38,158],aggfunc:121,agglom:145,agglomerativeclust:158,aggreg:[7,14,49,78,106,111,127,147,150,155],aghdkaaa:132,aghdkaab:132,agil:[139,140],agnost:140,ago:[127,129,151],agre:[22,45,47,48,112],agricultur:[102,111,165,168,174,191],ahead:[49,52,57,104,137],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:59,ai:[12,18,25,100,102,108,112,114,121,122,123,130,139,140,142,143,146,159,165,170,175,176,181,191,193],aid:[54,62,78,145,166],aim:[54,75,76,78,104,130,131,132,135,148,165,185],air:113,airbu:29,airflow:140,airlin:7,airplan:127,airport:[102,124,174,180],ajai:128,ajaymach:141,aka:[36,140],akinlua:139,akkio:175,al:[31,68,80,111,112,143,178],alabama:142,alacazam:172,albeit:[45,167],albifron:[109,178],album:145,alcohol:[48,101],alekseynp:158,alert:139,alex:[33,127,128,133],alexa:141,alexand:[125,127],alexandru:66,alexei:59,alexi:152,alexnet:132,alfredo:170,alg:56,algebra:[42,51,54,59,84,119,192],algo:151,algorithm:[3,31,41,49,51,52,53,55,56,57,58,59,60,61,71,75,76,82,83,84,90,92,99,100,101,102,112,119,127,128,129,132,135,137,138,139,140,141,143,146,147,148,152,153,154,156,157,162,163,165,168,171,174,176,184,185,186,188,189,190,191],algoritm:151,algorythm:83,alia:[119,186],alic:[172,179],align:[22,77,112,119,135,137,145,146,148,158,159,162,166,167,186],alik:[0,143,150],all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,36,37,38,39,40,41,43,46,48,49,50,51,52,54,56,57,58,59,60,62,64,66,68,78,80,82,84,89,92,93,98,99,100,101,102,103,104,106,107,108,109,110,112,113,114,115,116,117,118,119,121,123,127,128,129,130,131,132,133,134,136,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167,168,170,171,172,173,174,176,177,179,184,185,186,188,191,192,193,194,195],all_attr:31,all_clfs_acc:49,all_data:66,all_nod:1,all_photo:31,allbeit:82,allclos:82,allegrograph:180,allei:[54,66],allevi:[49,52,54],allianc:106,alloc:[29,40,50,112,182,186],allow:[1,3,14,18,48,50,54,59,75,77,78,99,100,101,103,111,112,113,114,116,118,119,121,122,123,124,126,130,132,133,139,140,141,145,151,154,155,156,162,163,166,170,171,172,173,186,187,193,194,195],allowfullscreen:[78,116,162],allpub:66,allud:50,almeida:48,almond:[110,162,163,178],almost:[7,31,36,40,43,50,57,62,102,104,117,124,150,151,165,166,171,172,187,191],alon:[106,143],along:[1,7,33,36,40,48,51,54,59,68,75,76,80,103,104,109,117,118,119,121,122,123,136,140,142,145,150,163,164,165,166,171,178,191],alongsid:[71,109,141],alot:[54,129],alpha:[36,55,66,75,77,83,109,127,147,150,151,155,156,157,158,172,178,184,186,189,190,194],alpha_:128,alpha_t:[128,151],alpha_t_bar:128,alpha_tb_t:151,alphabet:[113,118,159],alphago:[129,165],alphas_cumprod:128,alphas_cumprod_prev:128,alphas_t:128,alq:54,alreadi:[40,43,49,50,52,54,60,63,65,68,78,80,82,93,100,106,114,122,123,128,133,141,147,151,158,168,170,171,173,177,179],alright:[36,82],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,36,39,40,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61,62,63,64,65,66,68,74,76,77,78,80,82,83,98,99,101,102,103,104,106,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,135,137,138,139,140,141,142,143,147,150,151,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,179,184,186,191,192,194],altair:187,altavista:151,alter:[75,84,106,113,171,177,193],alter_imag:84,altern:[7,16,32,45,54,59,62,111,112,117,119,141,145,156,157,171],altexsoft:140,although:[30,31,49,50,52,54,55,60,66,76,84,129,132,136,139,140,147,151,155,158,165,171,172],altogeh:140,altogeth:[14,157],altunyan:102,alwai:[7,14,30,33,34,36,40,43,45,47,48,49,52,54,55,57,58,59,61,68,80,104,109,116,119,121,123,124,128,129,130,132,137,140,141,142,143,150,151,155,156,157,158,162,165,167,171,172,173,193,194],am:[0,40,59,93,172,193],amalgam:78,amax:35,amaz:[32,101,102,108,133,173,174],amazon:[99,139,140,141,143,180],ambigu:[33,106,122,171],america:[108,169],american:[112,143,176],aml:[9,100],aml_comput:[9,100],aml_config:[9,100],aml_nam:[9,100],amlb:141,amlcomput:[9,100],among:[7,56,59,64,116,119,132,140,141,150,151,155,165,167,185],amongst:145,amount:[7,17,31,56,59,75,99,100,101,110,111,114,121,124,127,129,132,139,141,151,152,156,157,159,165,168,171,172,175,176,178,179,180,184,186,191],amp:145,amplifi:[102,112],amus:145,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,36,40,41,43,45,46,47,48,49,50,52,54,56,57,58,59,62,68,74,75,77,78,80,82,83,84,90,91,92,93,99,102,103,106,108,109,110,111,112,113,114,116,117,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,162,163,164,165,166,167,170,171,172,173,174,176,177,178,179,180,182,183,184,185,186,188,191,192,193,194,195],anaconda3:38,anaconda:[121,122,123,150],anaemia:[9,100,101],analog:[49,75,116,119,123,152],analys:[7,54,99,117],analysi:[1,7,16,17,18,21,31,46,68,76,80,100,102,105,106,113,114,117,119,121,123,124,126,129,139,145,148,151,155,158,167,168,174,176,177,179],analyst:101,analyt:[1,35,51,56,99,102,119,139,147,151,155,174,175],analyticsvidhya:56,analyz:[16,17,59,99,102,105,113,114,116,139,143,145,155,158,163,166,169,178],anatida:[109,178],ancestor:151,anchor:135,and21:143,anderson:143,andon:112,andreetto:132,andrew:[78,108,116,127,132,139,141,142,165],android:159,anemia:101,anf:34,ang:166,angel:172,angelica:[162,163],angelina:50,angl:[84,108,150,157,181],ani:[0,3,7,14,17,18,22,26,30,31,40,43,45,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,68,74,76,77,80,82,92,93,99,100,104,106,109,110,112,116,117,119,121,122,123,124,129,130,132,136,137,139,140,141,142,143,145,147,148,150,151,154,155,157,158,159,162,165,167,168,170,171,172,173,176,186,187,191,193,194],anim:[121,128,147,165,182,191,193],anis:[110,162,163,178],anise_se:[162,163],ankl:[30,40,41],ann:[39,129],ann_build:44,anneal:32,anni:24,annot:[4,5,13,19,34,38,40,48,49,51,52,53,59,64,68,74,80,108,132,135,158],announc:82,annual:[124,143,180],anomagram:126,anomal:[29,45,141],anomali:[8,14,47,49,50,141,145,158],anomalies_mask:158,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[103,112,171,176,193],anoth:[1,3,7,8,10,14,30,31,33,40,43,46,47,49,50,52,54,56,59,66,68,75,77,80,90,92,99,101,104,108,109,110,111,114,116,117,118,121,123,124,127,132,137,138,140,141,142,143,144,145,146,147,148,150,151,154,155,157,158,164,165,166,171,172,178,179,186,193,194],another_tupl:172,anser:[109,178],anseriform:[109,178],ansibl:140,anspos:29,answer:[16,23,40,49,50,51,56,82,85,102,103,108,111,116,121,129,132,138,141,142,143,147,148,151,152,159,162,165,168,170,171,177],anthropolog:145,anti:[84,143],anticip:114,any_column:24,any_script_cont:3,any_style_cont:3,anymor:157,anyon:[77,112,138],anyth:[7,13,18,43,58,61,66,104,124,145,151,165,168,170,171,177,187,191],anywai:[57,167,172],anywher:[49,50,119,165,171],ap:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,116,123,145,146,158,162,163,164,166],apach:[22,45,47,48,63,65,83,84,139,140,180,186,187,188,189,192],apart:[7,36,54,62,117,123,124,151],api:[6,16,29,40,41,45,48,57,62,99,100,101,102,113,118,121,140,159,162,166,167,170,174],api_doc:128,api_kei:101,apostroph:134,app:[5,6,38,43,91,99,104,108,112,116,118,142,176,187],appar:[151,171],apparatu:[18,116],appdata:[57,62,121,123,186,193],appeal:[49,52,53],appear:[30,31,32,47,101,109,112,116,119,131,132,133,134,137,141,143,150,151,155,157,159,166,167,171,172,176,182,187,194],append:[1,3,7,14,31,33,35,36,37,38,39,42,44,46,49,50,54,75,82,83,84,92,119,121,127,128,130,132,133,134,135,136,145,146,150,152,158,171,172,173,186,193,194],append_diff_column:14,appl:[39,112,162,163,172,176,194],apple_brandi:[162,163],applet:156,appli:[1,3,14,16,28,29,31,34,36,37,38,40,45,46,50,54,56,57,59,62,63,65,66,75,81,82,83,92,102,103,106,108,109,113,114,116,118,119,121,123,124,127,129,130,132,133,137,139,140,141,142,143,145,147,150,151,154,156,157,158,159,165,166,167,168,172,178,179,184,186,187,189,191,194],appliabl:3,applic:[0,4,16,22,39,41,45,47,48,75,77,99,100,101,102,106,112,113,114,118,119,125,127,131,132,133,135,137,139,140,141,143,147,151,155,159,172,173,174,176,177,183,194],apply_along_axi:84,apply_gradi:[36,126,128,134],apply_if_cal:122,apply_kernel:33,appreci:36,approach:[1,23,29,33,45,48,50,54,58,59,66,75,82,102,106,112,114,117,132,139,140,141,142,143,144,145,148,150,151,156,158,165,166,167,171,172,173,174,177,191],appropri:[29,31,45,50,68,76,78,80,92,104,118,119,130,141,145,151,154,156,162,168,170,172,180,184],approv:[50,116,140],approx:[50,92,147,151],approxim:[7,30,48,50,81,93,131,137,147,151,155,166,188,189,192],apricot:[162,163],april:[142,166],aqi:113,aqx:54,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,72,74,75,76,77,78,80,82,83,85,88,92,93,95,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,173,175,176,177,178,179,180,181,182,183,184,186,187,188,191,192,193,194,195],arang:[29,50,55,82,119,136,137,158,179,186,189,190],arangodb:180,arbitrari:[18,47,119,121,151,155,172,192,193,194],arbitrarili:[158,172,194],arc:109,arcco:119,arcgi:102,architect:139,architectur:[33,36,62,101,106,112,118,132,133,134,135,139,141,142,147,157,159,176],archiv:[33,136],arcsin:119,arctan:119,are_anagram:172,area:[1,50,54,59,66,74,77,100,101,102,109,112,114,116,123,129,139,141,143,147,151,165,167,170,173,174,179,181],aren:[43,47,56,64,78,127,152,154,167],arff:57,arg:[22,39,47,48,92,93,127,135,151,171,193],argmax:[34,35,39,41,82,127,133,134,136,150,186],argmin:[158,186],argscop:135,argsort:[55,119,148],argtyp:127,argu:[55,114,141],argument2:173,argument3:173,argument:[7,40,50,62,92,103,104,118,119,121,122,123,127,132,133,146,154,157,172,173,192,194],arguments_dictionari:171,arguments_list:171,aris:[28,47,92,93,112,139,171,172],aristocraci:108,arithmet:[7,31,92,116,117,119,171],aritifici:176,arizona:111,armagnac:[162,163],armi:187,around:[1,3,7,10,13,16,18,20,31,33,37,39,43,45,48,54,55,77,99,104,105,108,111,112,114,116,117,124,141,142,145,151,158,159,164,165,166,170,172,176,179,188,194],arous:139,arr1:119,arr2:119,arr:[47,48,93,119,179],arrai:[1,7,18,31,34,35,39,40,41,42,43,44,45,49,50,55,57,59,60,61,63,65,66,74,75,76,77,78,81,82,83,84,109,110,116,121,122,127,128,130,132,134,136,145,146,147,148,150,151,156,158,159,164,166,167,170,172,173,184,188,189,190,194,195],arrang:[14,54,64,137,170],array_split:134,array_to_img:[36,133],arriv:[106,116,167,177],arrow:[118,170],arrowprop:158,art:[31,127,132,134,138,140,141],artemisia:[162,163],arthur:[158,165,191],artichok:[162,163],articl:[28,35,37,41,49,50,52,102,104,108,110,114,116,140,145,148,151,172,174],articul:104,artifact:[39,101,108,140],artifici:[18,39,41,50,84,102,114,126,129,136,138,142,143,189,190,192],artist:[36,145],artist_top_genr:[145,146],artistanim:128,artwork:31,arument1:173,arxiv:[127,128,131,132,133,135,143],as_cmap:38,as_default:127,as_fram:[60,158],as_list:[43,127,132],as_panda:155,asabeneh:[173,195],asarrai:150,ascend:[1,31,50,51,54,56,119,162,163],ascii:136,ascrib:108,asia:[161,162],asian:162,asid:[33,50,154],ask:[8,11,23,41,50,57,58,71,102,103,104,106,108,112,114,121,122,129,132,138,141,159,162,163,165,166,167,170,172,174,177,191],asp:[171,172],aspect:[11,13,54,56,82,105,106,108,111,114,135,139,141,143,168,178],aspp_siz:133,assembl:[36,140,171],assert:[3,14,22,24,31,46,48,53,82,92,93,94,96,97,132,133,134,135,142,158,171,172,193,194],assert_called_onc:[24,53],assert_called_once_with:[24,53],assert_frame_equ:[14,22],assert_not_cal:[24,53],assert_series_equ:14,assertalmostequ:47,assertequ:93,assertionerror:[96,97],assertrais:[14,93],assess:[23,50,76,77,98,102,103,112,148,157],asset:[12,14,15,18,22,23,24,25,46,49,50,52,53,54,56,59,60,61,62,64,67,74,82,83,84,86,101,108,128,137,139,142,147,148,150,152,154,155,159,167,168,171,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,192,194,195],assgin:54,assign:[3,6,8,11,14,16,17,19,22,24,28,40,45,46,47,49,50,52,53,54,74,76,78,90,93,100,101,102,106,108,109,110,111,116,122,124,130,132,133,138,139,141,142,145,146,150,151,156,158,159,162,163,164,165,166,167,168,170,171,172,173,186,187,188,189,193,194],assist:[101,165,186],associ:[3,7,41,92,93,100,101,104,112,116,118,119,135,140,143,148,157,165,166,170,171,172,175,176,180,191],assort:119,assum:[7,48,49,50,56,57,58,76,92,116,119,123,128,130,135,141,147,148,158,166,171,172,192,194],assumpt:[31,48,55,74,116,141,147,151,156,157,186],assur:[0,141],asterisk:[93,173],astrophysicist:6,astyp:[22,29,30,31,35,36,38,44,50,56,110,126,158,178,182,186,192],asymmetr:[139,151],asymmetri:112,asymptot:150,atlanta:[124,180],att:132,attach:[41,101,110,118,178,180],attack:[100,101,143],attempt:[8,16,45,47,57,92,119,123,146,155,171,172,187,193,194],attend:128,attent:[83,123,128,129,132,134,148,150,151],attention_ax:128,attn_dim:128,attn_output:132,attr:[3,31],attract:[19,165],attrib:158,attribut:[7,31,50,51,58,83,92,101,113,114,122,139,148,155,171,186,193],attributeerror:[135,173],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,auc:[141,152,155,167],auc_weight:[9,100],auckland:[124,180],audienc:[144,177],audio:[31,41,113,151,165,191],audit:112,audubon:110,aug_test:56,aug_train:56,augment:[76,84,133,142,165,172],augment_input:133,augment_label:133,august:[140,166],aurelion:[43,49],australia:[14,159],australian:[49,52],autauga:142,authent:[101,139],author:[12,25,57,58,92,93,99,102,108,112,114,139,142,171,172,174],authorit:142,auto:[9,59,100,124,126,141,146,150,154,155,158,159,162,166,186],autoconfig:[3,14,22,24,53,74,92,93],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:143,autograd:[31,37],autokera:143,autolayout:[62,137],autom:[0,41,100,101,102,106,112,140,141,143,165,174,175],automat:[0,31,33,36,38,43,52,53,57,100,101,114,119,123,126,127,140,141,142,143,144,150,154,165,166,171,172,191,194],automl:[10,20,121,143,163,175],automl_config:[9,100],automl_error:[9,100],automl_set:[9,100],automlconfig:[9,100],automlrun:100,automobil:[33,127],automobile_fil:33,autonom:[127,135,143,165,191],autopct:[51,110,178],autoplai:116,autoregress:131,autotun:[128,132,133],autumn:[50,156,184],autumnali:[109,178],aux_loss:135,auxiliari:[50,82],av:54,avail:[1,3,7,14,29,33,38,40,50,51,52,53,54,57,62,68,72,74,80,100,101,103,106,109,110,111,112,116,117,123,124,130,137,139,141,142,143,145,150,151,162,168,170,171,176,177],avenu:102,averag:[7,14,18,22,24,25,29,32,33,37,48,49,50,52,53,59,66,76,77,78,93,104,113,114,116,119,127,128,132,145,146,147,148,150,151,155,158,164,166,167,170,186,193],average_length_of_word:92,average_pooling2d:132,averkiev:31,avg:[38,57,59,60,127,163,164,167,193],avg_pool2d:135,avg_pool:135,avgpool2d:32,avgpool:135,avil:[57,58],avocado:195,avoid:[40,47,49,50,53,54,57,58,104,111,122,123,124,134,140,141,143,150,154,158,164,165,168,170,171,180],avx2:29,aw:[40,139,140,142,143],awai:[49,64,104,110,145,156,158,165,171,172,188,191],awar:[76,102,104,108,112,119,123,165,171,174],awcmr9f:59,awesom:[92,93,101,110,129,151,171,173],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:59,ax1:[55,137],ax2:[47,55,111,137,178],ax:[1,14,22,29,30,32,33,35,36,37,38,39,40,43,47,50,51,54,62,64,66,74,75,83,108,109,111,119,121,122,123,127,128,130,137,145,146,150,152,155,156,158,166,172,178,184,186,188],axacc:47,axes3d:[75,83,186],axessubplot:[57,59,60,61,74,109,145,162,166,167,178],axhlin:[14,77,186],axi:[1,3,7,14,22,30,31,32,33,34,36,37,38,39,42,43,44,49,50,51,52,53,54,56,57,59,61,62,63,64,65,67,68,74,76,78,80,82,108,109,111,112,116,117,121,122,123,127,128,130,132,133,134,135,137,140,145,148,150,152,154,155,156,158,162,163,164,166,167,168,170,176,178,179,182,184,186,187,192],axisgrid:[58,74,111,145,167,178],axloss:47,axvlin:[158,186],aymer:126,az:[111,178],azeem:139,azim:[83,156,184,186],azip:[156,184],azithromycin:1,azu18:118,azur:[98,99,102,106,121,139,140,142,143,159,161,169,174,175,176,180],azurecontain:101,azureml:[9,99,100],azurewebsit:140,b0:[121,179],b1:[119,121,130,179],b2:[119,121,130,179],b3:[118,130],b4ejbh5mczlor:59,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:59,b:[7,14,22,29,33,34,35,38,50,54,63,65,77,82,92,93,101,116,117,118,119,121,122,123,126,128,130,133,134,135,136,142,145,147,148,150,156,158,166,171,172,173,179,184,186,187,188,193,194,195],b_1:147,b_dtree:150,b_f:134,b_g:134,b_h:136,b_i:[134,147],b_k:150,b_n:[147,150],b_o:134,b_t:151,b_y:136,back:[1,7,29,30,31,40,43,45,46,53,74,89,93,99,100,104,114,116,117,119,123,124,128,137,139,140,141,147,157,159,165,168,170,171,172],backbon:[43,133,135],backend:[43,78,133,192],backfil:137,background:[39,95,102,132,137,159,165,191],background_color:3,backprop:[33,136],backpropag:[33,37,82,128,136,182],backpropaget:82,backpropog:43,backtick:121,backward:[7,31,33,37,82,117,128,165],bad:[7,40,49,50,61,68,80,104,108,119,141,158,159,167,171],bad_kmeans_plot:158,bad_n_clusters_plot:158,badli:[48,50,109,131,141,150,188],badrinarayanan:133,bag:[30,40,41,54,56,148,149,162],bag_classifi:49,bagging_fract:54,bagging_freq:54,bagging_se:54,baggingclassifi:[49,147,150],baggingregressor:[147,150],bai:[61,74],baidunetdisk:38,baidunetdiskdownload:38,balanc:[34,49,52,57,59,63,64,65,68,78,80,100,102,140,141,143,150,151,156,157,163,174,184],balanced_subsampl:150,baldwin:142,ball:[50,147],ballback:40,baltimor:[166,167],bam_extract_path:29,bam_zip_file_path:29,banana:[39,172,194,195],bandwidth:99,banerje:[59,155,187,192],bank:[50,102,113,118,143,145,165,180,191],banko:143,bankrupt:108,bar:[1,3,15,31,40,41,51,56,64,77,100,108,109,119,121,123,148,155,162,168,173,187],barack:92,barbour:142,barchart:166,bare:[140,150],baregg:137,barh:[66,162,178],barnrais:104,barnraisersllc:104,barometr:113,barplot:[39,54,68,80,145,146],base64:[31,59],base:[7,11,14,15,17,18,29,31,33,35,40,41,46,49,50,52,54,55,56,57,59,60,61,66,68,74,76,77,78,80,84,93,101,102,106,108,109,112,113,114,118,119,123,124,128,129,130,132,133,134,135,138,139,140,141,142,143,145,147,148,150,151,152,154,156,157,159,163,164,165,167,168,170,171,172,173,174,175,180,181,184,187,191,192,193,194],base_estim:49,base_learn:152,base_model:133,base_model_output:133,base_scor:[66,154,155],base_url:14,basebal:116,baseblockmanag:122,baseclassnam:171,baselin:[141,150,155,158],baselinems:48,basemen:[18,116],basement:54,basenam:[29,30,31,33,39,41,66],basex:180,basi:[1,22,45,47,48,50,60,61,99,119,129,151,156,173,186],basic:[7,14,15,18,24,30,36,40,48,50,55,57,58,102,108,109,111,116,117,118,121,126,129,136,137,138,140,142,146,147,150,151,155,156,157,159,162,165,166,167,168,170,171,174,175,177,178,180,181,182,183,184,185,186,187,188,189,190,191,192,193],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:136,basket:[162,166],batch:[31,32,36,41,44,45,48,78,82,127,128,131,132,133,134,139,140,141,142,143,145,162,182],batch_:36,batch_acc:33,batch_label:127,batch_loss:[33,134],batch_norm:132,batch_predict:127,batch_siz:[29,31,32,33,34,35,36,37,38,39,42,44,45,47,48,62,82,126,127,128,131,133,134,136,158,182,192],batch_x:126,batchnorm1d:31,batchnorm2d:37,batchnorm:[32,36,37,62,128,132,133],batchsiz:82,bathroom:54,batter_pow:[68,80],batteri:[68,80],battery_pow:[68,80],battl:110,bayesian:[128,133],baz:121,bb01:143,bb38:[118,180],bbox:[83,186],bbox_emb:135,bc:158,bce:31,bceloss:37,bdt:150,bdt_predict:150,beam:[141,159],bear:162,beat:[47,48,165,191],beatl:173,beauti:[107,110,111,186],beautifuli:40,beautifulli:[43,109],becam:[114,129,151],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,36,40,41,43,45,46,47,49,50,52,54,56,57,58,59,60,64,68,74,75,76,80,83,101,104,111,112,113,114,116,117,118,119,122,123,128,129,131,135,137,139,140,141,142,143,146,147,150,151,152,155,156,157,158,162,165,166,168,171,172,173,179,184,186,188,191,193],becom:[7,32,35,36,45,50,55,75,78,82,92,101,112,114,116,119,129,130,131,134,136,139,140,141,143,147,151,152,155,162,165,172,182,193],bed_room:74,bedroom:[61,74],bedroomabvgr:54,bee:[13,111,178],beehiv:[111,178],been:[3,6,7,12,14,15,17,18,23,29,30,31,40,49,52,62,78,101,102,104,106,108,110,112,113,117,119,121,122,123,129,131,134,135,140,142,143,145,147,151,152,155,157,158,159,171,173,177,182,188,193],befor:[7,8,14,16,32,33,34,35,40,41,43,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,68,74,75,76,78,80,83,84,100,101,104,106,108,111,114,117,118,123,124,127,128,130,131,132,133,137,139,140,141,142,143,145,148,150,154,157,159,162,165,166,170,171,172,173,177,178,179,188,191,193,194],began:142,begin:[1,7,14,32,33,35,47,49,50,52,64,66,78,112,117,119,124,137,141,143,147,148,150,151,157,166,169,171,172,173,177,180,182,186,188,193,194],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,46,54,67,68,69,71,72,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,124,139,145,146,159,162,163,164,166,167,168,170,173,174],behav:[7,109,112,119,124,132,145,171,172,176],behavior:[17,33,62,101,102,111,112,114,116,119,121,123,130,137,141,150,157,163,165,173,176,186,191],behaviour:[49,52,119,121,156,184],behind:[31,52,53,58,60,61,62,68,75,80,112,151,153,155,156,158,163,166,172,176,187],behold:127,being:[0,11,14,36,40,43,50,54,59,74,102,106,111,112,114,119,122,123,124,129,130,133,137,142,145,147,151,152,157,158,165,167,171,172,173,177,180,191],beings:114,believ:151,bell:[110,178],belli:[109,178],belong:[41,59,83,112,132,133,145,155,167,171,193],below:[0,3,7,12,14,15,16,17,22,24,30,39,41,43,45,46,47,48,50,53,54,57,59,60,64,76,92,93,96,97,102,104,110,112,116,118,119,121,127,129,132,139,140,141,142,143,147,148,150,154,155,156,157,158,159,164,166,171,173,178,188],belt:165,ben:166,benchmark:[48,102,141,143,165,174,191],bend:146,benefici:[30,172],benefit:[32,62,99,106,113,145,157,177],bengio:[29,50,78,131,181],benign:40,bensor:43,bereft:171,berkelei:[106,177],bernhard:59,bernoulli:151,bernulli:151,besid:[45,119,130,132,133,140,141,143,157,172,194],bespok:159,best:[1,3,10,20,22,31,33,39,40,45,47,48,49,50,52,53,54,56,57,58,59,61,66,74,76,82,83,84,101,108,110,113,119,121,124,130,137,139,141,147,150,151,156,157,158,162,163,165,166,167,168,172,178,179,184,185,187,188,191,194],best_estimator_:[52,53,56,57,58,59,60,61],best_image_add_mean:127,best_k:83,best_kmean:158,best_model:39,best_model_1:40,best_model_2:40,best_model_ann:44,best_model_ann_2:44,best_model_cnn:[39,44],best_model_cnn_2:44,best_model_lstm:44,best_model_lstm_2:44,best_model_rnn:44,best_model_rnn_2:44,best_param:54,best_params_:[50,52,53,54,56,57,58,59,60,61,84,150,158],best_run:[9,100],best_score_:[50,56,59,84,150],beta16:127,beta1:[37,127],beta2:127,beta:[37,127,132,157],beta_1:[34,182],beta_2:34,beta_end:128,beta_start:128,beta_t:128,betas_t:128,beth:169,better:[1,3,7,14,23,30,31,32,34,36,47,48,49,50,52,54,55,56,57,59,62,66,68,75,76,77,80,82,99,101,103,108,111,112,114,116,117,119,126,127,131,132,137,139,140,141,142,143,145,146,147,150,151,152,154,155,157,158,161,162,164,165,166,170,171,172,176,186,187,188],bettter:61,between:[7,14,18,21,30,31,33,34,36,40,41,47,48,49,50,52,53,57,59,60,61,62,63,64,65,75,76,77,83,86,88,92,101,102,104,106,109,111,112,113,114,116,118,122,123,124,126,127,128,129,130,131,132,133,134,136,137,139,140,141,142,143,145,146,148,151,153,156,157,158,159,162,164,165,166,167,168,169,170,171,172,177,178,180,182,184,186,188,191,193,194],bewar:159,bewild:163,beyond:[7,46,50,60,61,116,117,129,137,138,141,143,165,171,188],bfc_alloc:29,bfill:[7,117],bhwdaa:[118,180],bhwdapqz8s0:[118,180],bhwdapqz8s0baaaaaaaaaa:[118,180],bi:[99,172],bia:[37,45,54,56,63,65,74,76,81,102,112,126,127,132,136,137,141,143,147,156,174,176,188,189],bian:143,bias1x1:132,bias3x3:132,bias:[40,46,49,82,102,112,117,126,140,165,174,176],bias_add:127,biasid:132,bib:146,bibb:142,bibliographi:146,bicolor:[109,178],bidirect:134,big:[3,43,56,57,62,68,80,98,99,114,127,129,139,141,151,158,165,167,168,173,176],big_arrai:179,big_integ:[172,194],bigger:[127,141,143,145,151,166,193],biggest:[165,191],bigodot:134,bigoplu:134,bigtabl:180,bigtriangledown_:131,bilinear:[132,133,135,158],bill:[171,172,173,194],bin:[18,22,29,38,47,49,52,53,54,58,59,60,109,116,118,127,135,166,167,168,178],binar:57,binari:[22,29,36,41,50,54,56,59,68,74,78,80,84,92,119,127,134,150,151,152,155,156,158,162,163,165,170,172,179,194],binary_cross_entropi:31,binary_crossentropi:[40,182,192],binary_search:92,binaryclass:57,binarycrossentropi:[36,78],bind:171,bing:[3,131,151],binomi:156,bio:102,biolog:129,biologist:7,birch:145,birchard:173,bird:[4,19,121,127],birth:15,birth_month:15,bit:[1,7,14,39,40,66,68,78,80,82,109,111,115,117,124,129,146,151,152,156,158,162,166,167,168,170,171,184],bitwis:[119,172,194],bitwise_and:119,bitwise_or:119,bitwise_xor:119,bivari:54,bizarr:108,bj:172,black:[1,47,50,54,109,110,127,130,132,156,158,159,170,178],black_pepp:163,blackbox:[57,58,165],blank:[118,145,159,162,168,171],blend:[57,127,132,147],blend_models_predict:54,bleu:141,blind:108,blit:128,blob:[119,158,166,167],blob_cent:158,blob_std:158,blobs_plot:158,block:[37,41,57,58,74,82,92,128,129,132,133,156,159,168,170,171,172,173,187,193,194,195],block_13_expand_relu:133,block_16_project:133,block_1_expand_relu:133,block_3_expand_relu:133,block_6_expand_relu:133,block_num:127,block_siz:127,blockmanag:121,blog:[1,14,28,29,31,50,56,99,102,104,110,119,121,140,141,146,151,158,174,180],blood:[24,101,170],bloom:139,blount:142,blq:54,blue:[30,38,41,42,45,50,54,68,76,80,104,108,109,116,132,140,145,146,150,151,166,170,171,178,188],blue_count:[68,80],blueprint:[171,193],bluetooth:[68,80],bluff:188,blur:[33,127],blurri:30,bm_axi:121,bmatrix:188,bmi:170,bmi_distribut:24,bmj:139,bn:[32,37,132,133],bn_axi:133,bn_conv1:133,bn_name_bas:133,bo:[132,133,158,186],board:[22,130,165],boat:182,bob:[172,179],bodi:[15,24,109,113,116,132,159,170,171],boil:50,bold:[62,83,137],boldfac:[165,191],bonu:[16,18,28],book:[0,12,18,25,49,50,93,104,108,112,114,116,119,121,126,127,137,138,143,146,148,150,158,163,167,171,179,193],book_cov:127,book_sal:137,bool:[14,29,117,119,122,123,135,158,171,172,173,179,194],bool_vec:123,boolean_arrai:119,booleanarrai:122,boost:[50,57,58,84,138,141,150,154,158,163],booster:[54,66,152,154,155],boosting_typ:54,boostrap:66,boot:[30,40,41,57],bootstrap:[49,52,53,148,150,151,155],border:[50,133,135,146,151,158,159,162,166],bore:38,born:151,borrow:171,boser:59,boss:50,boston:[112,176],bostrom:165,bot:141,both:[1,7,14,29,30,31,32,33,40,41,43,46,47,49,50,52,54,56,57,58,59,60,61,62,63,64,65,66,68,69,74,75,78,80,82,92,100,102,104,108,111,112,114,116,117,119,121,122,123,124,129,130,133,135,137,139,140,141,143,150,151,153,154,155,156,157,159,164,165,170,171,172,176,178,180,182,191],bother:[82,168],bottleneck:128,bottom:[31,34,50,119,167,168,187],bottommost:171,bottou:181,bouhsin:44,bounc:141,bound:[43,47,50,92,109,119,122,123,130,135,141,158,165,167,171],boundari:[50,59,60,61,78,116,122,127,143,146,147,150,192],box:[18,43,50,100,108,116,127,135,150,159,165,166,168,187],box_ind:135,box_logit:135,boxplot:[18,54,59,64,146],bp:170,br:15,brace:[172,194],bracket:[119,141,172,173,194],brain:[129,165,173,191],branch:[0,112,132,140,151,155,165,171,176,191],brand:[104,151,165,191],brave:171,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:59,breach:[112,176],bread:121,breakdown:[14,113,173],breakfast:[171,193],breakthrough:127,breathtak:[102,174],breed:[37,133],breez:141,breiman:[147,150],breinman:148,breviti:171,breweri:116,bridg:[140,143],brief:[134,165],briefli:[17,28,54,112],bright:[34,127,132],brighter:109,brill:143,brilliant:162,brilliantli:151,bring:[49,52,54,78,101,124,134,140,142,151,180],britannica:114,british:[7,173],broad:[62,110,112,114,116,132,137,140,143,165,171,176,178,191],broadcast:123,broaden:102,broader:[78,112,114,138,141],broadli:112,broken:[51,59,106,113,140,148,177],brook:195,brought:[15,124],brown:[110,178],brows:[62,171],browser:[16,38,100,101,118,159],bruce:116,bruis:[110,178],brush:170,brute:142,bsmtcond:54,bsmtexposur:54,bsmtfinsf1:54,bsmtfinsf2:54,bsmtfintype1:54,bsmtfintype2:54,bsmtfullbath:54,bsmthalfbath:54,bsmtqual:54,bsmtunfsf:54,btc:38,btcdf:38,btcsave2:38,btn:159,bu:[29,116],bubbl:178,bucket:54,buddi:171,budget:[99,175],budgetari:101,buff:[110,178],buffer:[114,119,127],buffer_s:[128,133],bug:[4,47,104,134,140,141,173,193],buggi:[69,85],bui:[35,53,57,58,99,104,112,145,166],build:[1,4,8,13,33,40,43,49,52,57,58,59,64,69,74,75,76,77,82,83,85,89,98,99,100,101,102,104,106,109,110,111,112,114,116,118,121,126,127,128,129,132,133,134,135,136,138,139,140,141,142,143,147,148,150,151,154,155,161,163,164,165,169,170,171,172,174,175,177,180,183,188,190,191,194],build_vocab:134,builder:132,built:[1,3,7,12,29,40,43,50,66,69,82,85,91,108,109,110,111,112,116,119,123,124,138,139,140,142,146,151,152,159,167,170,171,172,173,179,183,193,194],builtin:[186,193],bulk:104,bulki:140,bull:147,bullet:151,bump:[112,176],bunch:[0,1,31,50,57,58,114,165,172,191],bundl:140,buolamwini:[102,174],burgeon:[124,180],burn:159,bushel:[166,168],busi:[7,99,102,104,106,112,114,137,139,140,141,142,143,145,159,174,177],buss:108,butter:121,button:[15,100,101,118,159,170,173,187],bw_adjust:109,bwteen:40,bx8rsirp:59,bx:[29,30,33,166,172],bytearrai:[172,194],bytesio:[127,136],c0:179,c1000:14,c100:14,c1:[14,22,24,53,92,133,179],c2:[14,24,53,92,133,135,179],c3:[14,92,133],c4:[14,50,133,135],c5:[32,133],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:59,c64u:59,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:59,c:[1,14,22,32,33,45,50,54,55,57,60,61,62,64,77,78,83,92,93,104,116,117,118,119,121,122,123,127,134,135,139,142,146,148,150,155,156,158,164,166,167,168,171,172,179,184,186,187,189,190,193,194],c_1:158,c_:[50,76,116,150,158],c_i:158,c_k:186,ca:[43,111,130,178],cab:[102,174],cach:[53,58,119,133,134,143,158,180],cache_data:187,cache_readonli:121,cache_resourc:187,cachedproperti:121,caerulescen:[109,178],cal_data:61,calc_grad_til:127,calcul:[6,7,8,14,18,25,29,30,31,33,36,38,40,45,48,49,50,54,59,64,68,75,77,78,80,83,96,116,118,119,121,123,124,127,128,135,136,141,143,146,147,148,150,151,154,155,156,158,166,167,168,171,180,186,194],calculate_discrimin:172,calculate_sum:92,calculu:75,calendar:[171,193],calendar_clock:[171,193],calendarclock:[171,193],california:[14,112,165,179],caliv:143,call:[1,3,18,22,29,30,31,33,36,40,41,43,47,48,49,50,51,54,57,59,60,61,63,65,68,74,76,78,80,82,92,93,99,100,101,104,108,110,112,113,114,116,118,119,121,122,123,124,126,128,129,130,131,132,133,134,135,137,140,141,144,145,146,147,148,150,151,154,155,156,157,158,159,162,163,165,166,167,168,170,171,172,173,179,180,187,191,192,194],call_func:[171,193],callabl:[59,121,123],callback:[32,39,44,66,133,154,155,157],caller:29,callout:166,cam_extract_path:29,cam_zip_file_path:29,came:[50,113,140,151],camera:[39,68,80,114,119,132],can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,36,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,71,74,75,76,77,78,80,82,83,85,91,92,93,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,182,184,186,187,188,191,192,193,194,195],canada:[14,159],canari:140,cancel:[40,112,147,165,176],cancer:40,candi:167,candid:[50,57,58,59,60,61,158,168,185],canin:171,cannot:[7,14,18,22,24,30,39,45,47,50,53,59,66,109,113,114,117,119,122,145,151,157,158,167,171,172,178,194],canon:119,canvas_orig:126,canvas_recon:126,cap:[110,178],capabl:[29,54,82,101,112,114,123,139,140,165,167,172,175,176,191,194],capac:[47,48,62,68,80,127,141],capcolor:[110,178],capit:[93,171,172],capital_gain:51,capital_loss:51,capitalize_first_lett:93,capitalize_word:93,capitalized_sent:93,capitalized_word:93,caption:[129,165],captiv:121,captur:[15,23,33,39,66,76,77,103,108,112,113,114,137,139,141,157,166,182],car:[57,58,112,113,129,130,133,139,165,176,191],car_data:57,car_label:57,car_labels_prepar:57,car_test:57,car_test_label:57,car_test_labels_prepar:57,car_test_prepar:57,car_train:57,car_train_prepar:57,carambola:39,carbon:102,card:[101,112,143,145,176],cardiovascular:101,care:[20,45,48,56,57,58,68,80,91,102,108,111,112,119,123,154,155,157,159,165,171,176],carefulli:[49,151],caregor:56,carlo:116,carnam:172,carri:[7,57,117],carrol:139,cart:[50,150,151],carton:166,carv:[146,167,169],cascad:133,cassandra:180,cassett:145,cast:[29,119,127,128,130,133,134,135,136],casted_kei:123,cat1:1,cat2:1,cat:[15,33,54,61,74,121,127,132,165,171,182,193],cat_col:54,cat_feat:[61,74],cat_feats_enc:74,cat_feats_encod:74,cat_feats_hot:74,cat_feats_pip:74,cat_feats_preprocess:74,cat_fil:33,cat_list:[61,74],cat_train:54,catalog:[16,23,102,109,174],catastroph:156,catboost_search:54,catboostregressor:54,catcher:116,categor:[49,50,52,56,58,61,66,76,78,83,111,113,116,117,118,119,121,141,150,152,165,167,170,180,191],categori:[1,7,39,41,50,51,54,56,59,60,68,74,78,80,99,104,106,108,109,110,112,113,114,127,129,130,132,133,139,141,143,146,148,156,158,162,163,164,165,166,167,170,172,177,178,179,184,191,192,194],categorical_crossentropi:[32,34,39,47],categoricalcrossentropi:[40,78,133],category_count:178,category_encod:51,cathi:179,catplot:[56,167],caught:122,cauliflow:162,caus:[1,14,18,28,46,47,49,54,57,59,62,63,64,65,68,80,101,102,111,112,114,116,117,122,123,139,140,141,148,150,154,156,157,171,172,174,184,193,194],causal:116,causat:145,caution:108,cb:54,cbar:[40,64,68,80],cbar_kw:38,cc:[29,43,49,101,127,141,146,148],ccaliva:143,ccc:148,cccc:148,ccd:111,ccp_alpha:[56,57,58],ccpa:112,cd4:140,cd4ml:140,cd:[0,140,142,145,159],cdata_estim:84,cdata_estimator_predict:84,cdc:142,cdeott:32,cdist:186,cdot:[75,78,82,148,151],ce:51,celebr:[31,50],cell:[0,3,7,17,38,40,42,43,44,45,46,47,48,57,58,60,61,66,82,96,97,101,117,118,119,121,122,123,129,134,136,137,145,146,154,155,158,166,168,170,179,181,195],cell_metadata_filt:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],censor:93,censor_word:93,cent:[38,166],cent_histori:186,center:[14,22,38,66,83,99,106,110,116,119,124,135,140,142,145,146,148,156,158,159,162,166,178,184,186,188],center_circl:[110,178],centercrop:37,centernessnet:135,centimet:[60,178],centr:156,central:[53,58,101,139],centralu:101,centric:139,centroid:[145,146,186],centuri:[108,159],cerdeira:48,certain:[7,14,33,40,41,50,54,59,74,76,78,93,106,114,116,119,127,130,136,139,140,141,142,143,145,150,156,157,163,165,166,170,171,172,177,191,194,195],certainli:[36,129,158],cfees8eopk:118,cfg:135,cg:163,cgcug0a0c6nut:59,chain:[33,41,75,82,122,139,166,171],chainer:35,chair:[132,141],challeng:[3,8,28,39,41,46,75,78,99,102,103,111,114,116,117,121,124,140,141,142,143,145,155,163,165,173,174,180,195],champion:187,chanc:[36,49,56,68,80,116,124,129,143,154],chang:[0,7,8,14,20,30,33,40,43,45,47,48,49,50,52,53,55,56,57,62,63,65,75,78,83,85,91,101,102,103,106,108,109,110,111,113,116,117,118,119,122,124,127,128,130,131,133,135,136,140,141,142,143,145,146,148,150,151,156,159,161,165,166,168,171,172,173,174,179,180,184,186,193,194],changeabl:[172,194],changer:98,channel:[31,33,36,37,39,53,58,127,132,133,135,155,177],channels_first:135,channels_last:133,chao:50,chapman:139,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,80,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,142,145,146,147,148,150,151,152,154,155,158,159,162,163,164,165,166,167,168,169,170,171,172,173,179],chapter_id:158,charact:[3,47,100,108,112,113,114,118,172,173,194,195],characterist:[30,31,47,54,58,59,77,113,118,130,141,151,165,167],charg:[23,50,68,80,92,93,101,147,171,172],charli:172,charset:[15,159],chart:[13,19,27,109,110,112,146,155,166,168,176],chart_data:187,charticul:110,chase:159,chat:139,chatgpt:[76,92,93],chaudhari:143,chdir:127,cheaper:[106,112],cheat:[131,141,143,163,164],cheatsheet:163,check:[0,3,7,10,14,20,22,24,29,31,35,39,40,43,45,46,49,50,52,56,58,60,61,63,65,76,83,92,93,99,100,101,102,103,112,117,127,128,129,133,134,138,140,145,146,148,150,151,154,158,159,162,163,170,171,173,174,186,192,194],check_dtyp:14,check_nam:14,check_str_or_non:122,check_valu:142,check_win_condit:130,checklist:[28,176],checkout:[0,140],checkpoint:134,chef:162,chen:[132,133,135,143],cheng:143,cherri:[104,172,194],chervonenki:59,chess:[129,130,165],chicago:172,chieh:133,child:[148,164,171],children:[11,22,112,148,176],children_:158,china:[14,112],chines:[162,163,164],chinese_df:162,chinese_ingredient_df:162,chiphuyen:141,chlorid:48,chloroquin:[1,8],chmax:[53,58],chmin:[53,58],chnage:[63,65],choc:129,chocol:167,choderlo:108,choic:[7,27,32,40,49,68,80,101,106,108,112,114,117,119,127,129,131,134,141,145,150,151,158,162,163,165,167,176,191,192],chollet:29,choos:[7,29,46,48,49,56,59,68,75,77,80,100,104,111,117,119,121,129,130,132,137,139,140,141,143,145,146,147,150,151,156,157,158,164,165,167,173,185,186,191],chop:162,chord:[1,8],chose:[34,69,99,123,158,179],chosen:[33,48,54,59,101,111,119,141,147,156,158,159,187],chr:133,chri:32,christina:143,christoph:139,chrome:101,chronolog:[112,176],chuck:92,chunhua:135,chunk:114,churn:[147,150,151,165,191],churn_cal:147,churn_mean_scor:147,ci:[33,111,133,137,140,142],cifar10:[33,127,131],cifar10_extract_path:33,cifar10_label:127,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,127],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_cnn_model:127,cifar_labels_fil:127,cifar_link:127,cifar_loss:127,cinnamon:[110,178],cipolla:133,circl:[108,110,145,156,178],circle_color:158,circu:173,circuit:[101,132],circuitri:101,circular:136,circumfer:111,circumst:112,cite:[57,58,115,135,142,170],citi:[12,17,23,49,52,74,102,108,112,129,141,159,166,167,168,174,176],citizen:[112,171,176],citric:48,city_:56,city_development_index:56,city_id:[12,124,180],ck:33,cla:186,claim:[92,93,171,172],claremont:102,clarif:23,clarifi:[78,103,104,155],clariti:[1,75,104,151],clasifi:83,class_busi:7,class_economi:7,class_emb:135,class_first:7,class_label:7,class_nam:[40,41,57,148],class_report:[52,57],class_weight:[49,52,57,150],classes_:163,classic:[40,41,50,60,61,83,126,130,131,152,156,162,165,167,191],classif:[9,32,36,39,43,53,58,61,64,75,85,100,101,102,106,112,116,121,126,127,129,133,134,135,136,141,147,148,150,152,153,155,156,157,158,163,170,174,176,177,182,185,189,190,191,192],classifi:[29,32,36,47,50,56,59,64,68,71,80,82,83,85,113,121,129,131,132,136,141,145,147,148,150,151,152,156,158,161,165,167,182,184,189,190,191,192],classification_accuraci:59,classification_error:59,classification_model_nam:41,classification_model_respons:41,classification_model_save_path:41,classification_model_url:41,classification_report:[39,40,47,51,52,57,59,60,68,80,84,159,163,164,167],classnam:37,claus:[118,171,172,193],clean:[3,18,20,22,36,40,46,54,76,89,102,103,106,108,134,136,137,139,141,142,146,163,164,165,166,168,174,177,179],clean_data:22,clean_fresh_fruit:[172,194],clean_text:136,cleand_df:46,cleaned_cuisin:[67,162,163,164],cleaner:171,cleanli:132,cleanprep:38,cleans:106,cleanup:139,clear:[3,7,8,12,14,25,39,40,50,51,59,77,104,111,119,121,140,148,151,164,165,167,170,172,173,194],clear_output:[82,131,133],clearer:[165,191],clearli:[1,14,16,28,36,47,48,52,57,58,104,136,137,141,143,151,165,166,173,186,191],clees:171,clever:[14,173],clf1:49,clf2:49,clf3:49,clf:[49,51,156,184,186],clf_tree:50,cli:101,click:[0,3,38,45,47,48,51,100,101,108,118,162,165,168,169,170,173,187],client:[15,17,23,50,78,99,143,147,151,158,165,171,187],climat:[102,111,174],climax:104,climb:38,clinic:170,clint:92,clion:38,clionproject:38,clip:[36,84,127,141,165,191],clip_by_valu:[29,30],clip_value_max:[29,30],clip_value_min:[29,30],clipart:38,clipboard:116,clipped_zoom:84,clobber:119,clock:[101,171,193],clock_spe:[68,80],clockwis:[34,84],clone:[0,37,140],close:[1,7,8,29,30,31,33,37,38,39,44,49,50,52,56,59,64,68,74,75,76,78,80,92,101,108,110,116,117,122,127,129,130,131,146,150,155,158,166,173,178,188],close_pric:38,closer:[14,34,48,52,53,56,59,77,82,127,140,146,148,158,168,182],closest:[40,59,101,113,145,146,156,158,186],closur:[104,171],cloth:139,cloud:[1,3,21,91,101,102,106,114,118,121,139,140,141,143,159,163,174,176,177,180,183],cloudform:140,cloudmus:38,cloudwatch:139,club:88,cluster:[30,50,106,109,114,116,126,140,150,164,165,166,177,191],cluster_centers_:158,cluster_classification_plot:158,cluster_dist:158,cluster_std:[156,158,184],clusterer1:158,clusterer2:158,clusterpoint:180,clustr:138,clustroid:145,clutter:[109,132],cm:[31,40,41,46,51,52,57,59,60,68,80,83,117,148,158,178,186,189,190],cm_matrix:[51,59],cmap:[1,31,38,41,49,50,51,52,53,54,59,68,74,75,80,82,83,84,126,127,150,156,158,184,186,189,190,192],cmd:173,cn:38,cncf:140,cnn:[39,129,132],cnn_builder:44,cnt:55,co:[1,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,102,109,110,111,116,118,119,123,128,143,145,146,148,151,158,162,163,164,166,174,178,186],coars:[132,133],coat:[30,40,41],coca:25,coca_cola_co:25,cocacola:25,code3:142,code:[0,1,3,5,7,8,9,12,14,18,31,38,41,45,46,47,48,50,56,66,68,76,77,78,80,82,85,92,96,97,98,100,102,108,109,110,114,116,117,119,121,122,123,129,137,138,141,142,146,147,150,152,154,156,158,159,161,165,166,167,168,169,170,171,172,174,176,179,184,187,191,194,195],coef0:60,coef:[66,74],coef_:[66,74,166,188,189,190],coeff:158,coeffici:[54,66,74,76,77,78,137,150,151,157,158,166],coerc:35,cognit:[1,99,119,176],coher:[26,146,180],coin:[165,191],coinbas:38,coincid:[108,128],col1:119,col2:119,col:[38,44,45,51,54,56,59,110,111,123,150,178,179,187],col_nam:[51,54,59],col_vector:119,col_wrap:[111,178],cola:25,colab:[40,43,45,47,48,129],cold:[106,177],colder:139,coll:[118,180],collabor:[102,112,140,142],collaps:[111,131],collect:[3,6,11,31,33,35,41,49,50,52,58,76,88,99,100,102,104,106,108,112,113,114,118,119,123,124,134,136,139,141,142,147,155,166,170,171,172,173,174,176,177,180,192,193,194,195],collector:39,collinear:66,colnam:123,colon:171,coloni:[13,111,178],color:[1,14,18,22,29,30,33,34,38,39,41,42,49,50,51,52,54,56,68,76,77,80,83,104,109,110,111,112,113,116,119,127,132,133,137,145,146,148,150,156,158,159,166,167,170,172,176,178,184,186,188,189,190,194],color_palett:137,colorbar:[41,186],colorblind:111,colorjitt:37,colormap:158,colour:132,colsample_bylevel:[66,154,155],colsample_bynod:[66,154,155],colsample_bytre:[66,154,155],colum:54,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,38,39,40,43,44,45,46,47,48,52,53,55,56,57,58,59,60,64,66,68,74,76,80,83,100,101,103,110,111,113,117,118,119,121,122,124,129,137,142,145,146,150,152,155,159,162,163,166,167,168,172,178,179,180,188,194],column_diff:14,column_filt:14,column_index:123,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:57,column_to_diff:14,column_to_format:46,column_to_format_uniqu:46,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[118,180],columns_to_plot:24,columntransform:[61,74,188],com:[3,12,14,18,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,47,48,51,56,66,68,78,80,104,106,108,109,110,111,112,114,116,118,121,122,123,126,127,137,140,141,142,143,145,146,148,158,162,163,164,166,167,171,172,175,176,178,180,181,182],comapani:56,combin:[33,36,40,48,49,50,52,53,54,56,59,61,62,68,74,75,78,80,81,82,84,99,102,106,108,113,127,129,132,133,137,139,140,141,142,143,147,150,151,153,154,155,156,164,165,166,170,171,172,177,188,189,194],combined_imag:36,come:[7,35,43,48,51,57,62,64,66,68,77,80,98,103,104,106,108,109,112,113,114,116,119,121,129,131,132,137,138,142,145,147,150,152,155,156,157,165,166,171,172,173,179,184,186,187],comedi:173,comfort:[7,46,54,78,117,170],comma:[93,119,164,172,194],command:[47,51,101,112,113,124,130,154,170,172,173,180,194],comment:[45,48,50,104,112,113,127,170,176,193],commerc:145,commerci:104,commiss:[17,23],commit:[0,112],committe:62,commom:[60,68,80],common:[7,31,33,40,45,46,47,48,50,54,56,59,62,66,76,92,99,103,104,106,112,113,119,121,123,124,127,134,135,137,139,140,141,142,145,146,151,154,156,157,158,162,168,169,170,171,173,175,179,194],common_el:172,common_norm:[109,178],common_runtim:29,commonest:47,commonli:[41,54,61,62,68,76,80,99,123,129,139,140,141,142,155,157,165,171,192],commun:[28,43,103,105,106,112,114,129,138,140,142,151,165,173,182],compact:127,compani:[6,104,113,139,143,151,165,172,173],company_s:56,company_typ:56,companyx:172,compar:[14,18,21,31,33,41,47,48,50,51,54,60,61,63,64,65,68,74,76,77,80,90,92,93,101,108,109,111,114,116,119,122,126,128,132,140,141,142,147,148,150,155,163,165,167,172,191,194],comparis:[63,65],comparison:[8,14,48,50,92,106,111,113,116,118,141,147,151,156,163,171],compat:[15,55,101,119,122,130,131,134,136,138],compatible_format:193,compel:78,compens:[155,158],compet:151,competit:[129,137,143,151,154,155],compexifi:50,compil:[1,7,29,30,32,34,35,38,39,42,44,45,47,48,62,133,140,173,179,182],compilaton:40,complaint:[104,112,176],compleletli:[68,80],complementari:137,complet:[1,8,21,24,34,40,41,49,50,52,53,56,57,58,62,68,69,75,80,101,106,108,112,114,116,119,121,123,127,128,132,135,136,137,139,141,143,155,158,165,166,167,168,171,172,173,175,186,193,194],complex32:119,complex:[0,1,31,32,33,49,57,58,60,61,63,64,65,66,68,76,78,80,111,114,119,124,129,132,135,137,138,139,140,141,143,147,153,156,157,158,162,165,171,173,181,182,184,185,192,195],complex_numb:171,complex_number_1:[172,194],complex_number_2:[172,194],complex_number__1:194,complexnumb:171,complexnumberwithconstructor:171,compli:112,complianc:[22,45,47,48,112,176],compliant:112,complic:[36,50,82,114,119,139,140,141,151,154,157,158,168,182],compon:[75,101,102,108,118,126,130,137,139,140,141,142,147,151,154,156,165,173,174],components_:[158,186],compos:[36,37,61,74,82,126,127,131,139,140,151,188],compose_greet_func:171,compose_greet_func_with_closur:171,composit:[119,150],compound:[172,179,194],compound_stmt:171,comprehend:49,comprehens:[93,108,123,141,166],compress:[29,30,31,106,126,129,132],compris:[39,78,101,140],compromis:[7,117],comput:[3,7,18,22,29,32,33,36,40,41,43,46,47,49,50,53,54,58,59,66,75,76,77,81,82,84,99,102,103,106,114,116,117,118,121,122,123,126,127,128,129,131,132,135,136,138,139,140,141,143,147,148,150,151,155,156,157,162,165,167,170,172,174,175,176,187,188,189,191,194,195],computation:[33,36,50,56,119,122,129,132,137,153],computationn:33,compute_reciproc:179,compute_target:[9,100],con:[7,47,56,101,112,159],concat:[22,30,36,38,42,54,56,66,128,132,133,134,135,137,162,171,172],concat_axi:121,concat_index:121,concaten:[34,38,55,76,119,121,128,133,135,168,172,182,188,189,190,194],concatenated_str:171,concav:128,conceiv:[142,171],concentr:145,concept:[3,18,29,31,47,50,59,75,76,77,101,102,114,116,118,119,123,127,131,132,138,139,140,141,142,148,151,155,156,163,167,170,172,181,194],conceptu:151,concern:[7,47,54,58,59,74,106,109,112,117,139,140,143,151,165,166,178,191],concis:[119,147,165,171,172,194],conclud:[56,59,75,102,108,116,141,148],conclus:[24,50,103,112,114,166],concret:[143,165,186],concurr:[84,100,101],conda:0,condens:130,condit:[3,22,31,39,40,45,47,48,50,54,93,102,112,119,128,132,141,148,150,151,166,167,171,172,173,193,194],condition2:54,condorcet:147,conduct:[56,100,112,176],conf:18,conf_conv:135,conf_matrix:[52,57],confer:[104,108,121,139,143],confid:[40,41,48,68,80,111,132,141,142,145,147,151],config:[9,38,50,66,134,137,147,150,186,187],configur:[10,41,45,47,99,101,136,139,140,141,165,168,169,171],confirm:[14,30,45,47,48,59,103,106,112,158,166,176,177],conflict:[93,104,112,123],conform:[113,123,139,141],confus:[7,34,40,50,52,57,60,68,80,83,104,117,119,148,150,155,157,162,171],confusingli:158,confusion_matrix:[34,39,40,51,52,57,59,60,68,80,83,84,163,164,167,189,190],confusion_mtx:34,congratul:[100,101,166,167,170,173],conjug:92,conjunct:114,connect:[6,30,32,33,41,43,45,48,62,82,92,93,102,104,112,116,127,132,133,136,141,157,171,172,182],connectionist:78,connor:139,conquer:151,consciou:7,consecut:[14,32,40,49,155],consent:[112,176],consequ:[28,102,112,130,176],conserv:[109,178],conservationstatu:[109,178],consid:[1,3,7,8,11,14,18,22,24,29,36,39,40,41,45,46,49,50,53,56,62,64,75,76,78,93,101,103,104,106,108,113,114,115,116,117,126,127,130,132,134,137,140,141,142,143,145,147,148,150,151,152,155,156,157,158,159,165,167,170,171,172,184,186,193,194],consider:[59,101,106,112,114,115,123,151,154,158,176,177],consist:[0,1,3,8,15,30,33,34,36,41,45,49,50,52,54,59,88,106,112,117,119,126,132,133,139,140,141,142,143,148,157,165,166,168,172,176,177,180,191],consol:123,consolid:75,conspiraci:62,constant:[50,63,65,75,78,119,127,128,130,132,136,141,151,155],constant_initi:127,constantli:114,constrain:[30,130,145],constraint:[30,101,106,119,132,140,141,145,157,163,186],construct:[30,50,119,123,126,128,132,137,139,145,147,150,151,152,155,171,172,194],constructor:[123,132,171,172,193,194],consult:[7,121],consum:[10,20,41,45,98,100,101,103,108,111,112,113,139,141,143,156,159,165,175],consumpt:[108,159,175,179],cont:54,cont_num_var:54,contact:[118,180,187],contagi:167,contain:[1,3,6,7,12,14,15,17,22,29,31,33,36,37,39,40,41,45,46,47,48,49,50,51,52,54,57,59,60,62,68,74,80,83,86,91,92,93,100,101,103,106,113,116,117,118,121,123,124,129,132,133,136,139,140,141,145,147,150,152,155,158,159,162,165,166,167,168,170,171,172,179,193,194],container:140,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,59,62,63,64,65,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,141,143,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,179,186,187,188,189,192,194],contest:147,context:[9,28,31,50,59,75,78,100,102,104,106,112,122,123,127,133,141,143,145,146,157,158,159,169,171,172,174,176,177,194],contigu:119,contin:[57,58],continu:[0,1,17,18,31,33,34,40,47,48,50,54,55,58,59,62,75,77,78,99,100,102,109,111,116,119,121,124,128,133,140,141,142,143,145,146,150,151,152,157,159,165,167,173,191],contour:[78,156,158,184],contourf:[150,158,189,190],contract:[92,93,101,140,171,172],contradictori:141,contrari:[122,123,143],contrarili:171,contrast:[7,50,78,90,103,119,127,131,141,150,156,182],contrib:136,contribut:[46,52,53,57,58,66,102,119,121,122,123,138,141,147,148,150,171,172,173,174],contributor:138,control:[7,11,30,43,48,56,59,61,62,63,64,65,99,103,104,106,112,114,117,119,129,130,132,134,139,140,142,150,151,157,172,177,187,194],controlflow:171,conv0:135,conv1:[127,133],conv1_1:127,conv1_2:127,conv1_add_bia:127,conv1_bia:127,conv1_featur:127,conv1_kernel:127,conv1_pad:133,conv1_weight:127,conv1d:[44,129],conv2:127,conv2_1:127,conv2_2:127,conv2_add_bia:127,conv2_bia:127,conv2_featur:127,conv2_kernel:127,conv2_weight:127,conv2d:[29,30,31,32,33,34,36,37,39,127,128,129,132,133,135],conv2d_1:29,conv2d_2:29,conv2d_transpos:29,conv2d_transpose_1:29,conv2dtr:29,conv2dtranspos:[29,30,128,133,135],conv3_1:127,conv3_2:127,conv3_3:127,conv3_4:127,conv3d:129,conv4_1:127,conv4_2:127,conv4_3:127,conv4_4:127,conv5_1:127,conv5_2:127,conv5_3:127,conv5_4:127,conv:[37,127,132,133,135],conv_bias1:127,conv_bias2:127,conv_block:132,conv_bn:132,conv_bn_relu:132,conv_input_data:127,conv_kernel1:127,conv_kernel2:127,conv_kernel:127,conv_lay:127,conv_name_bas:133,convei:[104,108,177],conveni:[7,46,54,111,116,117,123,133,148,151,166,167,171],convent:[43,45,68,80,124,129,154,171,173],converg:[36,75,109,141,145,158,165,186],convers:[1,46,77,101,104,117,141,143,165,168],convert:[1,3,7,14,31,36,38,40,41,43,45,47,49,56,57,59,64,74,76,84,86,92,93,100,108,110,112,114,121,122,123,126,127,132,134,136,155,159,165,166,168,172,187,191,192,194],convert_indic:122,convert_to_tensor:132,convex:[110,128,178],convinc:[104,173,182],convlay:37,convnet:[128,129],convolut:[128,132,133,135,165,183,191],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convolv:127,convtranspose2d:[31,37],cooki:145,cool:[31,40,68,74,80,93,97,145,167],cooler:104,cooper:171,coord:119,coordin:[43,50,62,111,119,130,135,140,163,165],cope:[39,150,151],copi:[0,1,7,14,22,29,30,31,35,45,46,47,48,54,64,68,80,92,93,117,119,121,122,123,124,137,150,162,164,168,171,172,179,186,194],coppa:112,copyreg:193,copyright:[22,45,47,48,92,93,171,172],cor:38,cord:[1,112,119],core:[7,9,14,16,29,38,57,58,59,60,68,74,80,100,101,112,115,117,121,122,123,124,132,133,145,150,151,154,155,158,162,166,179],core_mask:158,core_sample_indices_:158,corinna:59,corner:119,coronaviru:[1,142],corpor:[18,112,114],corpora:143,corr:[24,38,48,49,52,53,54,64,68,74,80,145,150,166],corr_winedf:48,corrcoef:[18,116],correct:[18,29,40,41,45,48,49,50,51,52,54,56,59,62,66,68,80,82,96,97,108,110,112,116,118,123,131,132,141,146,147,151,155,156,157,164,167,171,176,186,192,193,195],correct_label:146,correcti:[52,57],correctli:[6,34,40,41,47,48,52,54,56,57,59,68,78,80,83,103,132,140,146,151,155,166,172,186],correl:[8,14,49,52,64,102,108,109,111,112,114,137,141,145,146,150,151,156,159,165,174,176,182,186,188,191],correspond:[0,14,29,33,40,41,46,47,49,50,62,74,75,78,82,83,92,93,100,112,116,117,119,123,128,133,137,140,141,146,147,151,166,171,176,192,193],correspondingli:141,corrmat:145,corrupt:165,corrwith:24,cort:59,cortex:181,cortez:48,cosin:[119,151],cosmo:[99,180],cost:[25,32,37,48,52,56,57,63,65,68,75,76,80,101,104,106,108,114,118,133,134,135,139,140,143,157,165,175,177],cost_funct:[63,65],costli:158,costlier:101,couchbas:180,couchdb:180,could:[0,5,7,10,16,17,20,23,26,29,32,33,34,40,45,46,47,48,50,54,55,57,58,59,62,64,66,68,80,82,99,101,104,109,111,112,113,116,117,118,119,124,130,132,137,139,140,141,142,143,145,146,147,151,155,157,158,159,162,163,165,166,167,171,172,179,180,182,191,194],couldn:[112,142,176],coulumn:14,count:[1,18,22,31,34,38,49,52,54,56,57,58,59,60,61,64,74,83,103,110,114,116,117,119,127,134,137,145,155,162,166,178,192,194],count_3g:[68,80],count_4g:[68,80],count_bug:193,count_digit:92,count_occurr:93,count_vowel:172,count_word_occurr:93,countabl:116,counter:[134,171,193],counteract:78,counterintuit:141,counti:108,countplot:[34,49,51,52,54,56,57,61,68,74,80],countri:[8,12,14,46,108,113,117,119,124,142,147,159,180,195],countries_and_region:14,countries_dataset_url:14,country_region:[14,142],coupl:[33,99,104,124,148,157,180],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,39,40,44,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,64,67,68,69,71,72,74,80,82,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,123,124,127,128,130,132,133,136,137,141,145,146,147,151,152,154,155,158,159,162,163,164,165,166,167,168,170,193],courvil:[29,50,78,131],cov22:142,cov:[18,116],covari:[18,109,150,178],cover:[3,30,49,77,106,111,112,114,117,118,119,121,127,129,140,146,165,169,170,173,177,179],covert:[104,177],covid19:142,covid:[99,108,112,142,143,176],coxboost:151,cpickl:127,cpk:101,cpu:[29,31,33,37,53,58,100,101,186],cpu_cor:[9,100],cpu_feature_guard:29,cr:[109,178],craft:[104,151],crash:[141,165],crawler:142,crazi:152,creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,41,42,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,71,72,76,77,82,83,84,85,86,88,89,90,91,99,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,176,178,179,180,184,186,187,188,189,191,192,193,194,195],create_discrimin:182,create_gan:182,create_gener:182,create_ingredi:162,create_ingredient_df:162,create_mask:133,create_model:39,create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:118,createlink:108,creatinin:101,creatinine_phosphokinas:[9,100,101],creation:[82,100,101,112,114,148,151,187],creativ:[7,108,151,165],creator:[121,127,142,151,159],credenti:101,credit:[26,50,102,112,143,145,148,176],crest:[49,52,53,74,109,178],crisi:99,crisp:106,criteria:[69,71,72,85,88,89,90,91,113,143,150,186],criterion:[31,37,50,56,57,58,78,112,148,150,192],critic:[29,36,54,77,101,102,104,109,114,139,141,142,143,165,178],crop:[31,39,127,166,167,168],crop_and_res:135,crop_height:127,crop_shap:135,crop_siz:135,crop_width:127,cross:[22,36,49,56,64,66,68,78,80,106,121,122,127,128,131,132,137,141,147,156,158,163],cross_color:158,cross_entropi:[33,127],cross_entropy_mean:127,cross_val_predict:[68,74,80],cross_val_scor:[50,54,56,59,64,66,68,74,80,83,84,150,163,164],cross_valid:56,cross_validated_roc_auc:59,crossentropi:[47,82],crosstab:22,crowd:[49,110,145,147,178],crucial:[56,77,101,130,150],cruel:145,cruis:173,crypto:38,cs231n:132,cs:[104,127,132,193],csci:193,csr:74,csr_matrix:74,css:[122,123,159,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],csse:[14,119,142],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,35,38,42,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,76,80,82,83,84,86,109,110,111,113,119,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,172,178,186,188,189,190,192],ct:[9,100,102,129,188],ctc:78,ctc_batch_cost:78,cto:139,cu3tc99fx:59,cube:[172,194],cuda:[29,31,33,37],cuda_dnn:29,cuda_gpu_executor:29,cudnn:29,cuisin:[67,161,164,170],cuisines_df:[67,163,164],cuisines_feature_df:[67,163,164],cuisines_label_df:[67,163,164],cultur:[102,104,176],cummul:128,cumprod:128,cumsum:186,cumul:[130,152,166],cun:181,cur_group:132,cur_layer_idx:132,curat:[102,112,143,174],curb:78,cure:52,curl:[12,25],curli:[172,173,194],curr_scor:55,currenc:38,current:[3,14,16,33,35,41,51,54,56,59,75,78,92,93,102,104,114,119,121,129,130,133,134,151,154,155,156,163,168,171,187,193],current_numb:171,current_posit:35,curriculum:[71,99,162,166,170],curtain:39,curv:[14,45,47,48,50,54,62,66,75,77,109,137,145,150,151,156,158,165,166,191],cusin:162,custom:[3,6,16,23,43,100,102,104,106,108,112,113,118,121,128,129,139,140,143,147,148,150,155,159,165,167,171,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],custom_callback:40,custom_exception_is_caught:171,custom_lay:133,custom_loss:128,cut:[39,50,150,158],cut_df:39,cutler:150,cutoff:134,cutoff_dist:158,cv2:[31,39,128],cv:[50,52,53,54,56,57,58,60,61,64,66,68,74,80,83,84,150,153,158],cv_cb:54,cv_fold:56,cv_gbc0:56,cv_gbc:56,cv_lgbm:54,cv_results_:[56,84],cv_ridg:66,cv_score:[56,64,83],cv_xgb:54,cvd:101,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:59,cycl:[45,53,58,101,106,112,134,137,140,141,154],cycler:137,d1:33,d3:180,d8ca7e:36,d:[1,14,17,25,32,37,38,39,40,48,50,51,54,59,63,65,66,68,78,80,82,83,93,103,108,109,112,116,117,119,121,122,123,126,130,131,132,133,136,139,140,141,143,145,146,148,150,151,156,158,168,170,172,175,177,179,180,182,184,186,187,193,194],d_:128,d_b1:131,d_b2:131,d_b3:131,d_b4:131,d_error:131,d_fake:131,d_g_z1:37,d_g_z2:37,d_i:119,d_layer_d_input:82,d_loss:[36,37,131],d_loss_fak:131,d_loss_metr:36,d_loss_real:131,d_model:135,d_opt:131,d_optim:36,d_pred_fak:131,d_pred_real:131,d_predict:150,d_real:131,d_var_list:131,d_w1:131,d_w2:131,d_w3:131,d_w4:131,d_x:37,da:32,dai:[8,14,39,44,49,50,52,78,101,102,104,113,137,141,142,147,155,165,166,173,174,187,195],daili:[1,8,14,38,102,112,137,142,165,173,174,191],daisi:171,damag:[92,93,108,171,172],damien:126,damn:141,danb:154,danceabl:[144,145,146],dancehal:[145,146],danger:[108,157],dangereus:108,daniel:143,daniil:141,dark:[112,143,176,187],darker:[50,102],darkgreen:[68,80],darkgrid:54,darrel:133,dasani:[145,166,167,168],dash:[77,100,158],dashboard:[99,102,139],dat:[49,74,102],data2:[50,123],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,42,50,62,67,71,72,75,77,78,82,84,86,88,89,90,91,92,101,108,110,111,115,120,126,127,129,130,131,132,133,134,136,138,140,144,146,147,148,150,151,152,153,154,156,157,158,161,166,169,170,171,182,183,185,186,189,190,193],data_batch_:127,data_df:40,data_dir:[33,127,134,136,137],data_dmatrix:155,data_fil:[127,134,136],data_fold:131,data_format:135,data_i:[63,65],data_load:131,data_loc:127,data_nam:131,data_path:[36,44,68,80],data_prepar:44,data_sci:3,data_util:31,dataarrai:119,databas:[6,39,99,113,114,118,121,125,136,139,159,175,176,183],databrick:[99,101],dataconversionwarn:57,datadriveninvestor:126,datafi:112,dataflair:[102,174],dataflow:128,datafram:[1,8,14,17,22,23,24,29,30,31,36,38,39,40,44,46,47,48,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,76,80,84,86,109,110,121,122,124,137,145,146,154,155,158,159,162,163,164,166,167,168,178,187],dataframegroupbi:121,datagen:[32,34],datajameson:33,datalira:39,dataload:[33,37,131],datanul:48,datapoint:[7,88,133,145,146,155,162],datasci:[106,140],dataset991:57,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,36,37,38,40,44,49,50,52,53,54,56,57,58,60,61,62,63,64,65,66,68,69,71,74,76,78,80,84,86,88,98,102,103,110,111,112,113,114,116,117,118,119,126,127,128,129,131,136,137,139,141,143,144,145,146,147,148,151,152,154,156,157,158,163,164,165,166,167,168,174,176,182,184,187,191],dataset_991:57,dataset_path:[31,39],dataset_test:42,dataset_tot:42,dataset_train:42,datasets_nam:[29,31,39],datasets_respons:[29,31,39],datasets_save_path:[29,31,39],datasets_url:[29,31,39],datast:126,datastor:180,datastructur:172,datatyp:[7,48],date:[1,14,35,38,44,46,49,52,57,101,108,117,122,123,137,139,142,143,166,167,171,193],date_column:[38,44],date_rang:[14,38,44,122,123],date_split:35,date_train:[38,44],dateset:30,datetim:[1,14,38,40,122,166],datetime64:[38,137],datetimeindex:[38,122,137,166,168],datetimeindexopsmixin:122,datetimelik:122,daum:38,daunt:141,david:[93,131,140,143,158],davydov:143,day_of_year:166,dayofyear:166,db265359943e:126,db4o:180,db:[12,63,65,75,81,99,102,174,180,188,189],dbscan2:158,dbscan:145,dbscan_plot:158,dbscandbscan:158,dcab:[172,194],dcgan1:131,dd:168,de:[40,43,80,108,112,159,176],dead:171,deadlin:102,deal:[43,49,50,52,56,57,59,75,93,108,114,123,139,140,142,150,151,159,165,171,172,186,191],dealt:7,death:[1,8,14,22,101,108,142],death_ev:[9,100,101],deaths_dataset_url:14,deaths_df:14,deborah:139,debt:143,debug:[0,35,41,82,100,159,171,173],debug_log:[9,100],dec:[108,143],decad:[114,129,135,139,165],decai:[127,157,165,192],deceiv:[36,108,112,176],decemb:[49,52,162,166,175],decent:[63,65,127,141,152],decept:112,decid:[18,32,35,36,54,66,78,103,108,110,113,114,121,137,141,145,147,150,151,155,163,164],decim:[92,172,173,194,195],decion:57,decis:[3,11,47,48,49,52,53,54,56,59,60,61,62,68,77,78,80,101,102,104,106,110,112,113,114,129,130,139,141,142,143,146,147,148,151,154,155,156,163,164,165,174,176,184,186,191,192],decision_funct:[156,184],decisiontreeclassifi:[49,57,68,80,150,152,163,186],decisiontreeclassifierdecisiontreeclassifi:57,decisiontreeregressor:[50,58,150,152],decisiontreeregressordecisiontreeregressor:58,declar:[127,134,171,172,194],declin:[1,14,48,108,111],decod:[29,30,31,36,126,133,134,136],decode_raw:127,decoded_data:29,decoded_img:[29,30],decoder_b1:126,decoder_b2:126,decoder_h1:126,decoder_h2:126,decompos:92,decomposit:186,decompress:31,deconstruct:102,deconv:135,deconvolut:[126,133],decor:187,decorate_with_div:[171,193],decorate_with_p:[171,193],decreas:[33,47,48,49,50,52,54,59,64,68,80,101,111,127,132,141,147,148,150,151,157,167,182],decres:152,dedic:[54,101],deduc:14,deem:66,deep:[16,29,30,31,32,33,34,35,36,37,38,39,40,42,44,47,48,50,62,74,78,101,116,119,121,122,126,127,131,132,133,134,135,136,138,141,142,143,157,170,181,189,190,192],deepcopi:31,deepen:[54,132,167,170],deeper:[7,13,17,19,48,50,76,101,106,116,132,141,148,156,157,162,163,166,177,184],deepfunnel:31,deeplabv3:133,deeplearn:165,deeplearningbook:126,deepli:[114,139,181],deeplizard:127,deepmind:165,deer:127,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,76,78,80,81,82,84,92,93,94,121,122,126,127,128,130,131,132,133,134,135,136,137,142,147,150,152,156,158,159,162,164,172,179,182,184,188,189,190,193,195],default_n_init:146,default_target_attribut:57,defe:36,defect:[165,191],defenestr:[171,193],defin:[0,1,3,14,22,31,32,36,40,45,47,48,50,51,54,57,59,62,63,65,66,75,76,78,82,92,102,103,104,106,109,112,115,116,118,119,121,127,130,132,134,136,139,141,142,143,145,146,147,150,151,152,155,156,157,158,159,163,166,171,172,173,177,179,187,188,194],definit:[41,50,60,66,102,114,116,118,119,122,135,140,148,165,173,191,193],deforest:102,deform:132,degrad:[31,85,102,132,139,142,158,174],degre:[3,34,37,50,59,60,61,63,65,114,116,124,130,150,166,176,188],deje:143,del:[84,123,130,171],delai:[130,137],delet:[45,56,100,101,112,172,194],deliber:[170,173],delicassen:155,delicassesn:155,delici:[110,161,162],delimit:[31,38,186],deliv:[7,56,99,104,114,117,139,140,171],deliveri:[99,102,140,175],dell:104,delta:[47,55,59,78,128,171],deltamean:47,deltastd:47,deltatheta:130,delv:[75,77,78],demand:[7,49,52,99,101,111,137,139],demarc:146,demis:108,demo:[127,128,131,132,133,135,140,142,146,150,151,156,158,162,166,167],democrat:[102,112],demograph:56,demographi:142,demonstr:[3,8,18,41,45,47,48,59,62,69,76,77,109,116,117,119,140,145,148,150,166,168,170,171,172,179],demostr:32,dendrocygna:[109,178],deni:[50,112],denois:[126,128],denoise_model:128,denomin:[7,78,92],denot:[54,75,116,128,130,148,155,171,172,194],denounc:104,dens:[29,30,34,35,36,38,39,40,41,42,43,44,45,47,48,62,78,128,132,135,145,146,182,192],dense_1:43,dense_2:43,dense_3:43,dense_block:132,densenet121:133,densenet169:133,densenet201:133,densenet264:133,densiti:[4,48,116,128,145,147,150],deon:[28,112,176],deott:32,depart:[111,112,151,168,176],depend:[0,7,12,14,18,25,29,39,46,48,50,52,57,68,76,77,80,100,101,106,108,109,110,111,113,114,116,117,118,119,121,122,123,124,129,131,132,134,136,137,140,141,143,144,145,146,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,191],depict:[36,50,127,155],deploi:[5,10,20,41,43,91,98,99,100,101,112,129,132,140,142],deploy:[9,102,106,165,175,187,191],deploy_configur:[9,100],deprec:[62,119,121,158,186],deprecation_mask:122,deprecationwarn:186,depth:[7,49,50,54,56,57,58,68,80,104,108,128,132,148,150,151,152,155,171,186],depth_multipli:132,depth_radiu:127,depthwis:[132,154,155],depthwise_separable_conv:132,depthwiseconv2d:132,dequ:35,der:132,dereferenc:119,deriv:[14,16,33,50,54,57,63,65,76,82,102,111,119,123,132,137,141,145,146,155,156,162,171,173,188,193],derivedclassnam:171,desat:137,desc:31,descend:171,descent:[33,45,49,54,68,76,78,80,81,82,128,132,141,152,155,156,163,166,184,188,189,192],descr:[57,58],descreas:56,describ:[1,2,9,11,21,28,38,40,45,47,48,49,50,51,52,53,56,57,58,59,61,64,68,74,76,80,82,83,88,100,103,104,109,112,116,118,119,121,124,132,135,137,139,140,141,145,151,154,155,156,171,180,182,186],descript:[0,9,28,50,57,88,100,101,119,121,128,134,141,159,165,171,172,173,177,191,192],description_vers:57,desert:141,deserv:116,design:[7,12,18,31,32,38,40,43,54,75,78,91,101,102,104,108,112,113,114,117,119,129,130,132,137,139,140,141,142,143,147,155,156,163,171,172,173,176,194],designated_hitt:116,desir:[34,76,92,106,112,114,119,130,140,165,171],desktop:[140,173],despin:[111,178],despit:[50,132,143],dest:137,destin:[119,139],detach:[33,37],detail:[7,11,14,16,26,29,41,50,54,57,68,71,75,80,85,101,104,110,113,116,118,121,127,133,140,141,142,148,151,152,154,157,163,165,166,171,173,179,186,191,195],detect:[43,46,47,49,50,59,60,61,64,102,112,117,121,129,139,141,145,150,157,165,171,174,191,193],detector:[165,191],detergents_pap:155,deterior:154,determ:32,determin:[22,32,50,51,54,59,68,75,77,78,80,92,100,101,106,114,116,119,123,124,127,130,132,136,140,141,143,145,146,148,151,156,157,162,165,166,167,169,170,171,172,177,179,180,184,191,192],determinist:[112,130,137],detr_structur:135,dev:[47,48,116,122,158,179],devast:111,devdoc:186,develop:[7,8,40,45,47,48,54,56,59,62,98,99,100,101,102,112,114,117,121,123,129,135,138,139,140,141,142,143,150,151,155,157,162,165,170,173,174,176,182,187,195],devi:[63,65],devianc:[56,152],deviat:[7,18,29,31,47,48,59,62,64,74,77,78,103,119,128,139,148,165],devic:[15,29,31,33,37,54,68,80,114,118,132,139,141,142,143,173],devicedataload:33,devid:56,devis:75,devot:138,dexamethason:1,dexter:36,deza:170,df1:[22,121,122,123,179],df2:[22,51,121,123,179],df3:[121,179],df4:121,df5:121,df6:121,df7:121,df:[1,9,14,17,18,22,23,24,31,38,39,44,48,50,51,53,59,74,75,100,110,116,121,122,123,137,142,145,146,150,155,162,166,178,179,187],df____:24,df_attr:31,df_boxplot:24,df_corr:53,df_corr_i:24,df_corr_sex_with_i:24,df_desc:53,df_diff:14,df_filter:14,df_heat:53,df_hist:53,df_mean:24,df_null:53,df_pairplot:53,df_plot:24,df_rolling_mean:14,df_scale:44,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,38,44,62],df_train_scal:44,df_valid:62,df_y:44,dfa:123,dfd:122,dfl:122,dfm:1,dfmt:1,dfmtp:1,dfrac:152,dfx:75,dfy:75,dg77ysplly4qtmh7trbd03p9nl1g:59,dhamaa:118,dhamaiusa4o:118,dhamaiusa4ohaaaaaaaaaa:118,dhariw:128,di:[22,59,101,112,172,176],diabet:[1,9,100,101,116,176],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,43,45,165],diagnosi:[112,176],diagnost:30,diagnoz:191,diagon:[18,116,119],diagram:[1,5,8,18,50,59,106,115,116,127,139,146,153,154,155,156,158,166,176,177],diamond:171,dibia:29,dice:[78,116,122,123],dice_loss:78,dickinson:[102,174],dict1:93,dict2:93,dict3:93,dict4:93,dict5:93,dict6:93,dict7:93,dict:[1,3,22,39,83,109,127,130,132,135,137,158,172,173,178,186,192,194],dict_1:193,dict_2:193,dictat:[7,117,129],dictionari:[17,23,74,119,123,143,150,171,179,193],dictionary_for_string_kei:[172,194],dictionary_via_constructor:[172,194],dictionary_via_express:[172,194],did:[7,16,18,27,40,45,50,52,53,54,55,60,61,68,69,74,80,104,108,109,112,116,117,141,145,146,151,155,158,159,163,167,168,172,173,186],didn:[43,48,56,58,60,68,80,117,122,123],diego:131,diet:101,dietmar:143,dieu:[40,43,80],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,65,66,68,72,74,75,76,77,80,82,84,92,98,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,126,127,128,129,130,132,133,134,135,137,139,140,141,142,143,144,145,146,147,148,150,151,153,155,156,157,158,162,163,164,165,166,167,168,169,170,171,172,173,179,180,182,185,191,193,194,195],differenti:[21,75,99,126,127,132,141,151,155,156],differnt:55,difficult:[30,32,62,116,141,143,150,151,156,171,186],difficulti:[50,114,136,140,151],diffusion_models_tutori:128,difuss:128,dig:[13,19,85,109,162,163,166,168,178],digit:[16,29,31,32,41,47,82,92,102,108,112,126,139,142,158,172,174,176,186,192],digitdata:47,dilat:[132,133],dilation_r:[132,133],dilemma:112,dim:[33,126,128,192],dim_z:31,dimens:[7,29,33,43,48,59,76,78,109,117,119,126,127,128,129,132,139,156,165,191,192],dimension:[29,30,33,40,41,43,45,60,61,83,123,126,132,145,151,156,186],dimensions:33,dimenss:83,diment:[63,65],dimi:31,diminish:48,dimx:31,dioxid:48,dip:64,dir:[56,127,158,171],direct:[7,41,76,84,104,122,123,126,127,130,134,143,152,166],directli:[1,7,14,30,31,41,62,66,78,99,100,101,104,117,118,119,121,123,130,132,137,139,141,148,150,171,172,182,194],directori:[33,36,37,38,39,51,68,80,101,103,117,118,127,134,136,159,171,173],dirnam:[31,51,56,127],dirpath:31,dirti:[48,117],disabl:[109,111,150,171,172,178,194],disable_v2_behavior:[131,136],disadvantag:[31,49,156],disambigu:143,disappear:[132,167],disast:99,disc_num_var:54,discard:[47,123,155,172,194],discern:145,disciplin:[3,114],disclosur:112,discount:[35,130],discourag:119,discov:[3,4,13,19,21,36,47,103,106,108,109,111,112,113,114,115,117,125,141,144,145,163,167,168,169,170,177],discover:139,discoveri:[104,113,139],discrep:78,discret:[50,54,59,78,116,119,128,130,150,151,165],discrimin:[112,143,156,172,182,184],discriminator_opt:36,discriminator_verdict:36,discuss:[1,3,4,7,11,18,28,48,50,76,101,104,112,114,116,117,119,121,138,139,141,143,145,147,154,155,170,171,179],diseas:[8,14,101,102,142,162,165,167,170,191],dish:162,disk:[12,14,25,101,140,158],dislik:104,disord:111,dispar:[75,78,143],dispers:[128,132,186],displai:[3,7,14,29,30,33,37,39,40,41,43,45,47,48,49,52,55,57,58,59,60,63,64,65,68,76,78,80,82,109,110,111,114,116,121,122,123,124,126,127,130,131,133,158,159,162,166,167,168,170,180],display_commandlin:130,display_imag:60,display_list:133,display_nam:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],display_stat:39,display_statu:131,display_step:126,display_t:172,displaycallback:133,displi:46,disregard:[75,126],dissatisfact:114,dissemin:112,dissert:143,dissimilar:[50,78],dissoci:151,dist:54,distanc:[59,84,128,145,146,156,158,164,166,186],distance_down:130,distance_left:130,distance_right:130,distance_up:130,distant:[146,156],distinct:[51,54,130,143,148,158,162],distinctli:108,distinguish:[7,36,50,114,119,131,156,182,184],distort:109,distort_imag:127,distplot:[54,56],distract:154,distribut:[3,7,22,30,31,45,47,48,49,50,55,56,61,64,68,77,78,80,83,92,93,102,108,112,114,128,130,131,132,135,136,139,140,141,143,147,150,151,155,156,157,158,162,165,167,168,171,172,182,192],div:[3,22,116,121,122,123,159,162,166,171,193],dive:[7,16,50,101,102,111,121,141,143,165,166,178,191],diverg:[47,48,141,146],diverging_palett:38,divers:[102,112,139,140,144,161,165,191],divid:[14,25,31,36,40,41,47,50,59,68,80,82,92,109,112,114,116,118,119,124,127,129,132,139,141,145,146,147,148,150,159,163,164,165,167,172,176,180,191,194],divis:[14,47,92,119,127,141,156,171,172,173,179,193,194,195],divisible_by_2:119,divisor:[39,92],divorc:108,dl:[33,82,150,191],dll:193,dm:[59,75,106],dmatrix:[66,155],dmitri:[14,99,132,166],dna:102,dname:127,dnn:129,do_glob:171,do_loc:171,do_nonloc:171,do_noth:171,doc:[26,40,41,43,62,71,90,100,104,110,111,118,123,163,171,172,180],docker:[35,51,140],docloud:193,docstr:[74,82,122,171],doctyp:[3,15,159],document:[3,5,7,10,16,25,26,38,40,49,57,68,69,71,80,92,93,95,99,100,101,102,109,111,114,119,121,127,128,139,142,143,145,146,147,155,163,170,172,180,194],documentdb:180,docutil:[121,122,123,166],docx:38,doe:[1,3,5,7,14,16,17,30,31,32,33,41,43,47,48,49,50,52,54,57,58,59,60,66,68,74,75,76,77,80,82,83,91,92,93,102,104,108,111,112,114,116,117,118,119,121,122,123,131,132,133,135,137,141,143,145,150,151,152,154,155,158,159,162,163,165,166,167,168,171,172,173,180,186,195],doesn:[7,26,31,32,33,39,49,52,56,57,58,64,66,68,75,78,80,82,93,104,109,113,119,123,131,137,139,150,152,155,164,171,172,193,194],doesnt:54,dog:[15,121,127,132,165,171,182,193],dogwithsharedtrick:171,dogwithtrick:171,doi:[14,143],dollar:[50,74,135],domain:[7,11,16,49,54,56,77,101,102,114,115,131,141,146,168,176],domin:[68,80,145,154,195],domino:180,don:[0,7,31,32,34,40,41,43,48,49,50,52,53,56,57,58,59,60,68,78,80,99,100,101,102,103,104,106,122,123,124,126,129,137,139,141,154,157,158,159,165,167,171,172,173,174,193,194],donald:[92,173],done:[1,3,7,14,25,35,36,40,43,49,50,52,54,56,61,82,100,101,108,110,118,119,121,124,126,127,137,140,145,148,151,155,157,158,159,166,171,172,173,180,187,194],donli:145,donn:22,donoghu:139,donut:[27,108],door:[57,58,165],dosag:[1,8],dot:[18,30,50,63,65,76,81,82,111,147,150,151,158,170,171,188,189,193],dou:143,doubl:[32,50,118,145,172,173,194,195],double_quote_str:[172,194],doubled_vector:[172,194],doubt:[100,101,143,151],doug:179,doughnut:110,douyupccli:38,down:[14,26,30,45,49,50,51,52,59,68,75,80,82,84,92,101,104,106,130,132,139,140,150,151,157,164,165,172,177,191,194],down_shifted_imag:84,down_stack:133,download:[1,3,12,25,36,37,38,47,48,57,58,68,80,82,101,114,118,119,127,128,131,132,133,134,136,158,163,168,173],download_fil:[9,100],download_read_data:[68,80],download_root:158,download_url:33,downsampl:[29,30,128,132,133],downsid:[57,58,137],downstream:139,downward:[108,128],dozen:[32,62,101,142],dp0dtheta:130,dp1dtheta:130,dp2dtheta:130,dp3dtheta:130,dp_dtheta:130,dpi:[146,158],dprobability0_dweight:130,dprobability1_dweight:130,dprobability2_dweight:130,dprobability3_dweight:130,dqn:130,dqnagent:35,draft:141,drag:[7,101,110],drain:165,dramat:[104,154],drastic:[54,132,141,186],draw:[1,3,8,14,18,31,49,50,52,59,60,61,68,74,75,80,109,110,111,114,116,126,130,147,151,156,159,165,166,170],drawback:[146,172],drawn:[49,108,116,141,147,182],dream:127,dress:[30,40,41,78],drewconwai:176,drift:142,drive:[45,47,48,102,104,106,112,127,129,133,135,139,143,159,165],driven:[0,102,112,114,130,139,142,143,174],driver:[17,23,112,165],drop:[14,31,32,38,39,41,46,47,48,49,50,51,52,53,54,56,57,59,61,62,64,67,68,74,76,80,101,110,114,117,119,123,127,134,137,147,148,152,154,155,157,158,159,162,163,164,166,167,168],drop_column:14,drop_dupl:[46,117],drop_remaind:[44,128],drope:130,dropna:[7,38,46,54,66,76,117,121,123,137,152,154,159,166,167,179],dropnan:38,dropoff:[102,174],dropout1:132,dropout2:132,dropout:[30,33,34,36,39,42,44,82,126,127,131,132,133,136,141,182,192],dropout_keep_prob:136,dropout_r:132,dropoutlambda:47,drug:102,ds:[35,38,44],ds_train:128,ds_wordcloud:3,dset:37,dsse:59,dt:[38,59,119,166],dtest:66,dtl8folder:38,dtrain:[56,66,155],dtrain_predict:56,dtrain_predprob:56,dtree:150,dtyp:51,dtype:[7,14,22,24,31,33,35,38,43,48,51,56,57,58,59,60,61,64,66,74,78,110,117,119,121,122,123,127,128,132,134,135,136,137,145,146,148,150,155,158,162,163,166,179],dual:[68,80,108],dual_sim:[68,80],dube:139,duc:132,duca:180,duck:[92,109,178],due:[14,18,50,54,102,111,119,129,130,132,135,141,142,147,148,150,151,152,156,157,174,186],duel:108,dummi:[22,66,82,137,171],dummy_inst:171,dummyclass:171,dump:[9,84,100,145,159,193],dumpstack:38,duplic:[38,121,122,123,124,139,147,165,171,180],duplicate_kei:93,durabl:139,durat:[37,102,159,174],duration_histori:130,dure:[11,14,36,39,40,41,43,49,50,52,54,57,59,60,61,62,82,92,101,104,111,119,124,129,132,133,137,139,141,142,147,148,154,155,156,157,165,168,171,172,191,192,193],dutch:[173,195],dw:[63,65,81,188,189],dx:[31,116,128],dy:31,dy_pr:82,dynam:[114,137,140,171,173,193],dynamic_rnn:136,dynamodb:180,e024722:139,e23479:139,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:59,e2:132,e2ab30:36,e5ni7of:59,e87ckhmr4qc:59,e:[1,3,8,14,16,33,35,36,39,42,49,50,51,52,54,55,59,63,64,65,68,77,78,80,82,92,93,101,102,112,113,114,116,117,119,121,122,123,126,128,130,131,132,135,136,139,145,147,151,152,157,158,163,165,166,167,171,172,174,176,179,182,186,188,191,192,193,194,195],e_1:147,e_:[128,150],e_n:147,e_x:147,e_z:150,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,35,36,37,39,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,68,74,75,77,78,80,82,83,84,90,92,93,101,102,104,106,108,111,112,113,114,116,117,118,119,121,124,127,128,129,130,131,132,133,135,137,139,140,141,142,145,146,147,148,150,151,153,154,155,156,157,158,164,165,166,167,168,171,172,173,174,179,180,184,186,187,188,192,193,194],eagerli:157,earli:[40,50,56,57,59,100,112,150,154,155,165],earlier:[7,29,40,46,50,54,82,91,100,101,102,117,123,137,146,151,158,161,162,167,172],early_stop:[40,154],early_stopping_round:[66,155],earlystop:[39,40,44],earn:113,earth:[59,102,171,174,195],eas:[101,117,170],easi:[0,7,31,36,40,43,46,47,49,50,52,59,101,104,111,112,113,116,117,119,123,129,137,140,141,142,147,150,156,157,167,173,179,180,186,187,195],easier:[1,31,40,41,50,53,58,72,82,101,102,104,112,113,117,132,137,141,157,168,171,172,175,193,194],easiest:[14,40,116,119,141,186],easili:[1,7,26,39,45,46,47,49,50,57,58,59,61,68,80,104,108,111,117,119,121,123,131,139,140,141,142,143,148,150,158,167,187,189,190],eastwood:92,eat:[168,173,195],ebner:143,ebook:112,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[109,140,141,171],echo_funct:171,ecolog:108,econom:[50,77,102,112,137,174,176],econometr:50,economi:7,ecosystem:[102,159],ed:1,eda:[17,100,103,126],ede9d:36,edg:[15,101,118,136,172,180],edgecolor:[50,83,156,158,184,186],edibl:[110,178],edibleclass:[110,178],edit:[3,109,110,111,121,170,187],editor:[23,173,187,195],edu:[58,93,104,106,127,132,136,143,177,193],educ:[11,50,51,102,104,158,174],education_level:56,education_num:51,effect:[7,34,39,45,49,50,52,53,54,56,57,62,74,75,101,108,112,114,119,121,124,132,133,135,139,141,142,143,145,147,151,155,156,157,165,166,171,172,173,175,176,182,191,194],effectiviolog:104,effici:[30,32,54,59,99,101,106,114,119,121,126,129,132,137,141,147,150,155,171,173,175,177],effort:[101,102,104,113,141,174],eg8djywdmyg:162,eg:[3,7,116,166],egg:[163,171,172,193,194],ehealth:139,ei:55,eight:[84,137],either:[3,7,14,22,29,40,43,45,47,48,49,52,57,100,104,116,119,121,122,123,129,133,135,137,139,141,142,143,145,148,150,157,163,165,171,172,173,191],ejection_fract:[9,100,101],ejtdl1tzr2vxnvlm4pwxei:59,ekf6iw6gti6:59,el:[56,143],elabor:8,elaps:128,elast:[78,151],elasticnet:[66,157,166],elasticsearch:180,elbow:158,elec_data:[49,52],elec_df:[49,52],electr:[49,52,54],electrocadriogram:29,electrocardiogram:29,electron:[68,80,101],eleg:173,elem:[172,194],element:[7,13,14,18,19,29,33,39,43,50,68,80,82,92,109,113,116,118,121,122,123,127,128,132,134,143,147,150,170,171,173,179,187,192,193,194],elementwis:[33,82],elev:[83,156,184,186],elif:[35,37,39,84,93,122,123,127,130,133,135,171,172,193],elimin:[28,66,102,112,172,174],elkan:158,ell:[50,147,150],ellips:157,ellipsi:119,ellipsoid:186,els:[1,7,24,31,33,35,37,38,39,41,50,51,54,55,57,58,81,82,84,93,94,99,119,121,122,124,127,128,130,131,132,133,134,135,136,158,171,172,173,189,193],elsevi:48,email:[2,103,104,113,162,165,187,191],email_df:2,emam:143,emb:[59,78,116,128,136,140,162],embark:[22,77,152],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,126,128,129,132,134,135,136,140,142,165,171],embed_dim:132,embedding_dim:128,embedding_lookup:[134,136],embedding_lookup_1:134,embedding_mat:[134,136],embedding_output:[134,136],embedding_s:[134,136],emblemat:78,embodi:136,embrac:[165,173],emerg:[114,159],emerson:104,emili:[102,174],emiss:59,emit:130,emot:[112,119,121,177],emp:78,empath:104,emphas:[78,102,145],emphasi:54,empir:[50,114,151],emploi:[32,36,49,54,59,75,78,84,101,150,165],employ:[56,116],employe:[6,50,56,112,171,179,193],empow:[77,138],empti:[3,7,14,24,31,40,49,53,92,93,113,117,119,122,126,158,166,171,172,179,187,194],empty_tupl:172,emrebulbul23:35,emreustundag:182,emul:180,en:[3,15,30,106,109,112,118,127,140,143,172,176,178,180],enabl:[0,7,29,41,59,100,101,108,117,123,127,132,135,139,147,150,159,162,165,175,191],enable_categor:[66,154,155],enable_early_stop:[9,100],encircl:173,enclos:[171,172,193,194],enclosedporch:54,encod:[9,22,29,30,31,47,48,49,52,54,57,61,64,68,76,80,100,126,127,133,136,141,146,152,159,165,166,191],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:126,encoder_b2:126,encoder_h1:126,encoder_h2:126,encoding_dim:30,encompass:[7,78],encount:[7,34,46,104,112,116,117,145,173,193],encourag:[3,112,151],encrypt:[106,116,139,177],encyclopedia:114,end:[3,7,29,31,32,33,35,38,40,43,46,50,52,53,54,57,58,60,61,64,68,78,80,84,101,102,103,106,108,111,112,114,116,117,119,121,122,123,127,129,130,132,133,137,140,142,143,147,148,150,151,155,157,158,164,171,172,177,179,188,193,194],end_slic:122,endang:[109,178],endpoint:[114,175],endswith:[31,158],energet:145,energi:[68,80,144,145,146],enforc:[78,102,112,114,119,174],engag:[102,104,141],engin:[14,18,31,38,47,56,76,77,101,112,119,121,129,133,137,140,141,143,145,151,157,159,165,179,180,191,195],english:[141,172,194],enhanc:[75,77,78,108,109,111,165,179,191],enjoi:[75,108,145,195],enlarg:[133,151],enorm:[7,117,156],enough:[7,31,33,39,45,47,48,58,60,61,68,80,92,99,101,103,106,111,112,116,119,128,132,141,151,156,157,165,167,172,173,191],enrich:139,enrolled_univers:56,ensembl:[50,51,52,53,56,57,58,62,68,80,116,138,141,148,150,151,153,154,155,163,165,186],ensur:[31,33,47,48,78,104,106,108,109,112,113,117,119,124,132,136,139,140,141,155,157,158,164,170,176,177],entail:101,entangl:143,enter:[38,48,51,95,101,114,130,171,173,183,189,190,193],entertain:121,entir:[31,32,78,104,109,112,119,132,133,137,141,142,143,151,156,158,159,168,171,172,176,194],entireti:[106,177],entiti:[1,113,118,143,180],entri:[7,15,38,46,59,60,74,117,119,128,139,145,155,157,162,166,171],entropi:[36,78,127,128,131,148,150,152,156,157,163],entry_script:[9,100],enumer:[1,34,37,39,54,64,116,121,122,126,127,128,130,131,132,134,158,164,166,171,186,189,190,193],env:[0,35,92,93,121,163,167],env_test:35,envi:108,environ:[9,35,39,45,47,48,51,57,58,60,61,66,99,100,101,102,104,123,132,140,154,155,158,165,166,169,171,174,191],environment:101,environment_debug:35,envis:167,enzym:101,ep:[31,132,158],epic:38,epidem:[14,119],epidemiolog:142,episod:35,epistolari:108,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,75,82,128,131,133,134,136,139,141,152,157,182,192],epoch_acc:33,epoch_count:35,epoch_end:33,epoch_loss:33,epoch_seq:136,epoch_tim:37,epr:55,epsilon:[35,61,128,132,151],epsilon_decai:35,epsilon_min:35,epsilon_t:151,epub:134,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:59,eq:48,equal:[7,14,18,22,24,33,47,48,50,54,59,68,80,83,92,116,118,119,123,127,128,136,137,141,142,143,147,148,150,151,154,157,158,165,168,170,171,172,193,194],equal_var:[18,116],equat:[55,59,75,76,128,137,151,152,166,172],equilibrium:[36,131],equip:[106,114,140],equiprob:147,equit:[112,176],equiv:[15,122],equival:[7,31,47,74,78,119,121,122,123,132,137,139,141,151,171,172,192,194],era:143,eras:1,erasur:112,eratosthen:92,erc20:38,erencan:189,eric:143,eros:143,erp:139,err:[122,123,147],errd:37,errd_fak:37,errd_real:37,errg:37,erro:43,erron:109,error:[0,1,7,29,35,37,39,40,43,45,47,48,49,50,51,54,55,57,61,63,65,66,75,76,78,83,102,116,119,121,122,132,136,137,139,140,141,143,148,150,151,153,154,155,156,157,158,166,167,172,173,184,185,188,194],errord:77,errormsg:47,errr:[53,58],erwo:92,es:180,escap:[172,194],especi:[43,49,62,66,78,104,108,109,110,114,139,140,141,150,151,155,158,164,165,171,182,191],essai:26,essenc:[50,75,78],essenti:[1,7,50,75,77,99,101,114,117,131,134,151,163,179],establish:[7,33,68,80,99,112,133,137,141,146],estim:[18,49,50,52,53,54,56,57,58,59,60,61,64,82,84,101,104,109,113,114,116,119,130,141,142,143,145,146,147,150,154,156,158,164,166,170,178,185,189,190],estimators_:148,estonia:195,et:[31,35,112,143],eta:66,etc:[7,28,31,33,41,45,49,50,56,68,74,80,102,114,116,119,123,129,133,135,139,140,141,142,143,148,150,151,165,171,173,174,177,178,179,191],ethic:[102,106,115,139,143],ethiko:112,etho:112,ethos3:104,etl:139,euclidean:[92,145,186],euclidian:158,eugen:143,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:59,european:112,ev:[50,147],eva:[118,180],eval:[31,33,40,127,136],eval_epoch:31,eval_epoch_va:31,eval_everi:[127,134],eval_i:127,eval_index:127,eval_indic:127,eval_input:127,eval_input_shap:127,eval_metr:[66,154,155],eval_set:154,eval_target:127,eval_x:127,evalu:[29,33,36,50,59,66,77,78,84,102,103,106,112,117,119,121,123,127,128,132,134,140,147,148,150,151,154,155,156,157,158,165,170,171,172,173,174,176,184,185,186,191,194],evaluate_on_last_n_it:158,evaluation_s:127,evan:133,evanesc:[110,178],evauat:60,even:[1,3,7,18,33,41,46,48,50,60,62,64,66,68,78,80,92,99,104,108,110,111,114,116,117,119,122,123,129,130,137,139,140,141,142,143,145,147,150,151,154,158,164,165,166,167,170,171,172,179,186,187,191,193,194],even_numb:[171,193],evenli:[77,119,141],event:[92,93,99,116,121,139,140,142,171,172,176],event_nam:140,eventu:[54,139,147,180],ever:[82,100,118,124,165,172],everi:[3,7,33,37,40,43,47,49,52,56,59,62,64,78,82,104,112,113,114,117,118,119,122,124,128,130,132,133,134,137,141,142,148,150,151,152,155,157,158,165,171,172,173,181,186,187,191,194,195],everydai:[50,114,151],everyon:[99,104,118,142,151,162,186],everyt:151,everyth:[7,50,61,101,103,104,118,121,124,127,134,137,138,141,145,151,165,171],everytim:43,everywher:[114,166],evid:[17,18,54,104,114,116],evok:104,evolv:[1,99,111,140,155],ex:[38,54,109,112,165,178],exact:[68,78,80,100,116,139,141,147,148,151,156,157,184],exactli:[1,7,50,74,75,78,102,104,106,116,119,123,129,132,136,141,151,152,165,170,171,193],exagger:50,exam:188,exam_model:188,exam_scor:188,examin:[7,29,41,46,59,61,77,117,145,147,155,165,166,179,188],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,35,38,39,40,41,43,45,46,47,48,49,51,52,56,57,59,64,68,74,75,76,77,78,80,82,93,101,102,103,104,106,108,109,111,112,113,114,116,117,118,121,122,123,124,126,127,129,131,132,133,134,135,136,139,140,141,142,143,145,147,150,153,155,156,158,159,162,164,166,167,168,170,171,172,173,174,179,181,182,192,193,194,195],example1:[7,117],example2:[7,117],example3:[7,117],example4:[7,117],example5:7,example6:7,example_batch:127,example_tensor:43,exce:157,excel:[23,25,29,102,110,113,118,133,156,174,178,184],except:[3,9,14,22,24,30,31,43,45,47,48,49,50,53,63,65,93,100,111,119,121,122,123,127,129,132,134,135,150,151,152,165,172,173,192,194],exception:139,exception_has_been_caught:171,exception_has_been_handl:171,exception_is_caught:171,exception_messag:171,excerpt:82,excess:[59,78,171],exchang:[104,112,140,159,177],excit:[50,104,114,127,136,165],exclaim:141,exclud:[54,93,119,121,122,154,158,170,172,194],exclude_pattern:116,exclude_word:93,exclus:[99,148,171],execut:[0,3,12,14,18,22,24,25,47,53,54,68,75,80,92,93,98,99,100,101,104,106,109,110,111,116,119,121,122,123,129,130,134,138,139,140,143,144,145,146,157,158,160,161,162,163,164,166,171,172,173,193],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91],exercis:[0,3,12,33,47,88,117,139,157,166,173],exhaust:[116,150,171],exhibit:[91,116,132,141,171],exhuast:56,exist:[1,7,9,14,29,30,31,33,37,39,41,45,47,50,54,56,59,64,66,82,93,100,101,102,104,112,113,114,116,118,121,123,127,134,136,139,140,141,142,143,145,147,148,151,157,165,171,172,174,179,180,193,194],exist_ok:[36,37,158],exit:[139,173],exogen:130,exot:[151,154],exp1:119,exp2:119,exp:[31,50,54,81,82,119,123,128,142,150,151,152,156,179,184,189,190],expand:[7,117,118,119,150,151],expand_dim:[36,41,44,119,127,134,188],expans:[156,171],expect:[7,33,35,41,47,48,51,57,74,82,91,109,114,116,117,119,122,123,130,140,141,147,151,166,168,171,173,195],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,93],expected_result:[14,22,93],expected_sequ:93,expected_sorted_list:93,expectil:151,expedi:130,expend:101,expens:[33,49,50,56,68,74,80,101,122,129,137,139,140,153,168,187],experi:[1,14,16,28,35,40,41,45,47,48,50,101,102,104,108,109,110,112,114,116,117,132,133,140,141,142,151,154,165,167,178,188,191],experienc:[28,112],experiment:[35,47,132,170],experiment_nam:[9,100],experiment_timeout_minut:[9,100],expert:[49,50,104,112,141,142,143,158],expertis:[101,102,114,141,142,174,176],expir:139,explain:[5,8,24,26,33,41,50,54,69,71,76,78,85,89,102,104,106,112,119,123,127,140,141,143,146,148,156,157,158,163,165,166,174,176,181,186],explained_variance_ratio:186,explained_variance_ratio_:186,explan:[10,20,24,45,47,101,112,122,123,143,151,157,172,194],explanatori:[24,109,154,166],explic:57,explicit:[119,123,171,186],explicitli:[78,82,119,122,130,146,165,171,191],explod:[51,134,141],exploit:158,explor:[9,18,23,28,35,45,47,54,60,76,77,83,98,99,100,101,102,104,105,106,107,110,111,112,113,121,124,138,140,142,145,147,151,153,156,157,159,162,164,165,166,167,168,170,174,177,180,187],exploratori:[17,68,76,80,100,126,177],expm1:66,expn:119,exponenti:[54,119,127,151,172,173,194,195],exponential_decai:127,expos:[54,102,112,123,142,176],expose_map:54,exposit:104,exposur:[104,112],express:[1,8,22,30,36,44,45,47,48,75,78,82,92,93,104,116,119,121,122,123,134,139,147,151,165,166,167,172,173,176,188,191,193,194],extend:[33,102,112,119,140,141,150,151,165,171,172,191,193,194],extens:[0,18,40,78,98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,141,144,145,151,157,158,160,161,162,163,164,170,173,180,192,193,195],extensionarrai:123,extent:[116,132,156,158],extercond:54,exterior1st:54,exterior2nd:54,extern:[99,112,113,116,143,176],exterqu:54,extinct:[109,178],extra:[18,49,50,119,127,140,148,151,155,165,172],extract:[3,8,31,32,33,38,41,44,54,99,113,114,119,121,127,128,129,132,133,138,139,141,165,168,176,191],extract_fold:127,extract_net_info:127,extract_path:[29,30,31,39],extractal:[29,30,31,33,36,37,39,127],extracted_text:3,extractor:3,extrapol:[50,150],extratreesclassifi:150,extratreesregressor:150,extrem:[48,54,56,116,132,140,151,161,180],extremli:83,ey:[30,82,108,111,141,157,181,182,188],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:119,f10:148,f1:[40,47,52,57,60,68,80,119,148,152,163,164,167],f1_score:152,f2:[119,148],f2ac792482e3:180,f35:59,f3:[119,148],f4:[119,123,148],f4bafb1ea019:158,f50duri2g6yv8pzu8ii:59,f5:148,f6:148,f7:148,f821:[171,172],f8:[119,148,179],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:59,f9:148,f:[0,1,3,9,14,18,24,29,30,31,33,35,37,38,39,45,47,48,50,51,55,64,75,78,82,84,92,93,100,108,116,119,121,122,123,126,127,128,130,134,137,145,147,148,150,151,152,155,162,163,166,172,173,179,187,194],f_0:151,f_:150,f_i:151,f_t:[134,151],fa:[54,130],face:[31,36,39,99,102,104,121,127,129,133,140,169,173,174,176,179,182],facebook:[112,143,176],facecolor:[36,83,156,158,184,186],facemask:[165,191],facet:108,facetgrid:[111,145,167,178],facial:[102,121,174],facil:[119,171],facilit:[53,119,171],fact:[1,4,14,18,19,39,40,43,49,50,52,57,58,62,68,80,103,108,109,110,112,113,114,116,119,124,131,144,146,147,150,151,156,157,158,163,165,167,168,171,172,189,190,191,192],factor:[50,53,54,63,65,68,75,78,80,92,99,101,111,128,132,140,147,148,150,156,157,165,171,184,189],factori:[92,99,106],fad:38,fadahunsi:139,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:59,fail:[1,16,47,48,50,59,61,68,80,93,112,129,139,141,165,171,176,191],failur:[9,29,98,127,140],fair:[52,57,58,68,80,102,112,114,127,141,144,147,155,174,176],fairlearn:102,fairli:[33,49,112,127,158,176],fairseq:128,fairytal:166,fake:[36,37,131,165,182],fake_label:37,fake_samples_epoch_:37,falcon:121,fall:[41,45,47,48,62,64,78,99,104,109,116,119,123,150,162,165,166,171,191],fallaci:104,fallback:141,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,46,49,51,52,53,54,56,57,64,66,68,74,76,80,82,84,92,100,101,109,111,116,117,119,121,122,123,127,130,132,133,134,135,137,141,143,147,150,154,155,156,158,162,163,164,167,171,172,173,178,179,182,184,193,194,195],false_boolean:[172,194],false_positive_r:59,falsehood:173,famili:[5,22,104,109,110,118,138,151,155,159,164,178,180],familiar:[28,59,62,102,109,118,123,124,147,152,157,166,167,173,174],family_s:22,family_size_max:22,familys:22,famou:[140,154],fan:[102,173],fan_out:135,fanci:[66,114,179],faoconnor:139,far:[4,7,17,31,36,40,56,64,68,74,77,80,109,116,117,127,128,145,155,156,158,165,166,172,184,188,192],fare:[22,152],fare_add_averag:22,fark:35,farlei:[131,140],farmer:147,farsight:130,farther:[74,145],fascin:[110,112,169],fashion:[20,29,30,98,100,101,102,109,119,129,132,155,166,171,186],fashion_classifi:40,fashion_classifier_21:40,fashion_classifier_22:40,fashion_classifier_23:40,fashion_classifier_24:40,fashion_classifier_2:40,fashion_classifier_3:40,fashion_classifier_4:40,fashion_classifier_vi:40,fashion_mnist:[29,30,40,41],fashion_test:40,fashion_test_label:40,fashion_train:40,fashion_train_label:40,fashon:30,fast:[7,36,40,41,45,48,50,74,101,106,119,123,140,155,165,172,177,179,187],fastai:55,fasten:54,faster:[36,45,47,49,53,54,59,68,75,80,82,114,119,140,154,155,158,165],fastest:[119,155,158],fastforwardlab:126,fastgfil:127,fatal:[8,14,171,193],fater:49,father:64,fault:140,favipiravir:1,favor:[150,151,157,165,173],favorit:[100,113,116,121],favorite_hobbi:93,fayyad:50,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[68,80,110,178],fcn:135,fcos_structur:135,fe:141,feasibl:[101,141,143,147,155],feat:127,feat_df:52,feat_dict:53,feat_imp:56,feat_import:[52,53],feat_map:74,featuir:54,featur:[7,9,16,20,22,30,31,33,34,38,39,40,41,44,45,49,58,60,61,62,63,64,65,66,76,77,82,84,100,101,103,112,113,114,118,119,121,123,126,127,128,129,132,133,135,140,142,147,149,150,151,153,156,157,159,162,163,167,170,171,172,175,179,186,188,192,194],feature_1:137,feature_2:137,feature_column:83,feature_df:162,feature_fract:54,feature_fraction_se:54,feature_importances_:[51,52,53,56,148],feature_indic:148,feature_nam:[7,40,57,58,117,148,186],feature_num:127,feature_rang:[38,42],feature_scor:51,feature_typ:66,featurecolumn:45,featureidx:47,featuremap:135,featurespr:45,februari:[141,173,177,180,195],fed:[31,41,49,51,59,123,132,136,147],feder:112,feed:[3,31,32,39,40,43,54,57,82,114,119,127,129,137,143,158,165,191],feed_dict:[127,130,131,136],feedback:[104,138,140,143],feedforward:[129,132],feel:[3,7,104,128,145,168,173,177],feet:66,fell:171,femal:[22,56,102,165],feminin:108,fenc:[54,66],fence_map:54,fenugreek:162,fernandez:116,fetch:[57,186],fetch_california_h:74,fetch_dataset:31,fetch_openml:[57,58,158],few:[1,7,9,14,36,39,40,41,43,45,46,47,48,50,52,57,58,59,61,66,68,75,76,80,82,88,100,101,102,103,104,106,109,111,112,116,117,118,119,121,123,127,132,133,134,137,138,140,141,142,145,146,151,154,155,157,158,159,165,167,171,172,179,182,191],fewer:[3,50,57,59,62,71,113,116,119,147,157,164,171],fewest:132,ff_dim:132,fff:159,ffill:[7,117],ffn:132,ffn_output:132,ffoutput:38,fg86ufl9igmpwtk6aurw9v5:59,fgsymyf:59,fh:134,fhxfwxna:135,fhxfwxnax4:135,fi:148,fib_sequ:93,fibonacci:171,fibonacci_at_posit:171,fibonacci_at_position_renam:171,fibonacci_function_clon:171,fibonacci_function_exampl:171,fibonacci_list:171,fibonacci_modul:171,fibonacci_module_renam:171,fibonacci_smaller_than:171,fiction:31,fido:[119,171],field:[7,43,49,50,52,82,109,118,123,132,133,137,138,139,145,147,156,159,165,166,172,180,181,191,194],fieldnam:119,fifth:[119,172,194],fifti:36,fig:[1,22,30,33,35,37,39,44,54,59,64,75,83,109,110,111,128,130,137,150,152,156,178,184,186],fig_dim:22,fig_extens:158,fig_id:158,fight:54,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,64,66,68,74,77,80,82,83,109,110,111,126,128,133,137,145,146,148,150,152,155,156,158,178,184,186,192],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,52,53,54,55,56,57,59,61,62,64,66,68,74,75,77,80,82,83,102,110,111,113,124,126,128,130,132,133,135,137,141,143,145,146,147,148,150,155,156,158,168,178,180,186,187,192],figure_format:[50,66,137,147,150,186],figureclass:[110,178],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,36,37,38,39,41,42,45,47,48,51,54,59,66,71,76,90,92,93,100,101,108,113,114,118,119,121,122,123,127,130,134,136,140,145,146,159,162,163,164,166,168,170,171,172,179,192,193],file_conn:[127,134,136],file_id:57,file_loc:127,file_output:130,file_path:[29,30,31,33,41,66],file_path_to_metadata:1,filenam:[31,39,51,56,127,158,159],filename_queu:127,filepath:[39,44,127],fill:[1,11,14,15,18,22,24,46,48,49,51,52,56,66,68,74,80,97,101,109,117,119,121,123,128,137,148,154,156,159,165,166,178,184],fill_:37,fill_between:[29,150,156,184],fill_betweenx:158,fill_valu:121,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,46,51,54,56,66,117,137,179],film:108,filter:[7,14,16,24,31,33,34,39,46,54,109,119,123,124,127,128,132,133,145,168,180,193,194],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[109,178],filters1:133,filters2:133,filters3:133,filterwarn:[36,39,49,50,51,52,53,54,56,57,58,59,68,80,150,152,154,158],fin:[63,65],fin_col:54,final_conv_shap:127,final_df:38,final_estim:49,final_featur:159,final_imag:127,final_list:193,final_model_output:127,final_output:127,final_pip:[61,74],final_shap:127,final_st:134,final_state_c:134,final_state_h:134,financ:[6,77,102,114,174],financi:[6,121,130,151,165],find:[7,8,14,15,18,31,32,37,40,46,47,48,49,50,52,53,54,57,58,59,60,61,63,65,69,71,76,77,83,84,92,100,101,102,106,108,109,110,111,112,113,114,116,117,118,119,121,123,124,126,127,129,130,131,138,141,142,144,145,147,148,150,151,152,154,155,156,157,162,163,165,166,167,168,170,171,173,176,184,188,191,194],find_better_split:55,find_common_el:172,find_prime_factor:92,find_varsplit:55,find_wanted_peopl:92,fine:[75,77,84,126,132,133,139,141,150,154,166],finer:[7,117,140],finish:[0,3,32,54,101,137,140,152,157,159,171,173],finit:[116,130,162,167],finland:195,fintech:38,fintype_map:54,fip:142,fire:30,firecolumn1:38,firecolumn2:38,firecolumn:38,firefox:101,firegod:38,firehos:139,fireplac:54,fireplacequ:54,first:[0,1,3,7,11,14,18,31,32,34,39,40,41,43,44,45,46,47,48,49,50,52,53,54,56,57,58,59,60,62,64,66,68,76,77,78,80,82,93,100,101,103,104,106,110,111,112,114,116,117,118,119,121,123,124,127,129,130,131,132,133,134,136,137,139,140,141,142,143,145,147,148,150,151,152,154,155,156,158,159,162,163,165,166,167,169,171,172,173,176,177,179,186,187,188,191,192,193,194,195],first_baseman:[18,116],first_char_set:172,first_nam:[93,193,195],first_numb:[172,194],first_param:171,first_term:127,first_tuple_numb:172,first_word:[171,193],firstli:[46,83,141],firstnam:[118,173,180],fiscal:25,fisher:7,fit:[29,30,31,32,33,34,35,36,38,39,40,41,42,44,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,65,66,68,74,75,76,77,78,80,81,83,84,88,92,93,100,113,114,118,130,133,137,139,141,142,143,146,148,150,151,152,153,154,155,158,159,162,163,164,166,167,170,171,172,184,186,189,190],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:136,fit_predict:158,fit_resampl:162,fit_transform:[30,38,40,42,44,49,51,52,53,56,57,58,59,60,61,64,68,74,80,83,146,154,158,159,167,186,188,189,190],fitted_model:[9,100],fiumlogtswc31vrwbvd:59,five:[7,16,46,49,52,83,92,104,107,132,137,162,168,172,194],five_up:119,fix:[29,45,48,49,52,62,82,112,113,119,123,128,132,134,140,141,150,152,155,156,162,173,176,181,184,186],fixat:104,fixed_nois:37,fixedformatt:158,fixedlengthrecordread:127,fixedloc:158,fk:[12,124],flag:[3,29,33,35,123,132,141,145],flair:[102,174],flat:[39,64,145],flat_map:44,flat_output:127,flatten:[29,30,32,33,34,36,37,39,40,41,43,44,64,82,93,126,128,132,159,163,172,186,194],flatten_nested_list:93,flatten_vector:[172,194],flattened_list:93,flavor:[7,130,157],flaw:[66,69,85,91,102,174],fledg:151,flexibl:[7,66,78,99,113,119,123,124,138,139,140,151,156,175,179,180,187],flip:[68,74,80,108,127,130,131,133,165,191],flipsid:7,fll:46,float32:[29,30,31,33,35,43,78,119,126,127,128,130,131,132,133,134,135,136,158,182,192],float64:[14,24,38,44,59,60,64,74,117,119,122,123,145,150,166,179,186],float_format:[45,47,48],float_neg:[172,194],float_numb:[172,194],float_number_via_funct:[172,194],float_with_big_:[172,194],float_with_small_:[172,194],floatbox:135,floattensor:31,floor:[38,54,130,147,172,179,194,195],floppi:140,florian:133,florida:[108,179],flow:[32,34,50,109,129,172,194],flower:[60,83,108],flowform:156,flu:[102,174],flu_trend:137,fluctuat:[14,49,52,157,166],fluoresc:39,flush:193,fluvisit:137,fly:173,fma:29,fmt:[34,38,40,51,59,64,68,80,127],fn:[52,59,68,80,167],fname:31,fnlwgt:51,foconnora:139,focu:[1,14,18,49,54,59,78,82,99,102,103,106,111,113,114,119,122,123,124,139,141,148,162,163,165,166,174,180,187],focus:[46,75,78,101,102,103,104,106,110,112,113,117,118,138,140,141,142,151,164,169,170,174,176,177],foggi:130,fold:[49,50,56,57,58,60,61,64,68,80,83,153,158],folder:[14,31,33,39,100,108,127,145,159,162,168,173,178],folder_path:127,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,36,40,41,43,45,47,48,50,51,53,54,58,59,66,74,75,76,77,78,83,92,93,99,100,101,102,103,104,106,108,110,112,113,114,116,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,145,147,148,150,151,154,155,156,157,158,159,163,164,165,166,167,168,170,171,172,173,180,193,194],font:[59,110,159],fontsiz:[30,39,83,127,158],fontweight:83,foo:[119,121,123,173],food:[108,139,161,172,194],fool:[108,131,182],footbal:50,forc:[1,78,102,126,131,142,143,145,157,171],forcast:137,forcibl:193,ford:143,forecast:[38,50,77,100,106,142,177],forecasting_d:[38,44],forehead:182,foreign:124,forest:[50,57,58,62,66,68,80,116,126,147,149,151,154,164,165],forest_best:[52,53],forest_clf:52,forest_grid:50,forest_param:50,forest_reg:53,forget:[82,100,101,102,129,134,143,174],forgotten:[112,134,176],fork:0,form:[3,7,47,50,51,59,78,82,112,114,117,119,123,124,129,130,137,140,142,145,146,151,155,156,159,162,165,166,171,172,180,188,191,192,193],form_df:15,form_linearly_separable_data:50,formal:[18,50,78,112,116,132,143,148,150,171,193],format:[6,14,26,29,31,32,33,35,36,40,41,45,46,48,49,51,52,53,56,57,58,59,60,61,63,65,68,74,80,92,98,99,100,101,102,107,108,109,110,111,112,113,114,115,116,117,118,119,127,129,130,131,133,134,135,136,139,140,144,145,146,147,150,155,156,157,158,159,160,161,162,163,164,165,168,171,173,174,179,184,186,191,192,193,195],format_nam:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],format_person_info:93,format_vers:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164,193],formatfactori:38,formatted_column:46,formatted_info:93,formatted_str:[172,194],former:[43,49,61,114,119,128,132,141,143,147,148,165,167,191],formul:[165,188],formula:[18,75,76,92,118,148,151,167,172],forth:[49,104],forthcom:170,fortran:119,fortun:[7,46,68,80,117,146,151,168],forum:138,forward:[7,31,32,33,37,46,82,117,127,140,165],found:[1,9,26,32,50,54,56,63,65,68,80,84,92,100,101,103,109,113,116,119,123,127,134,135,139,141,142,151,154,155,156,171,172,173,187,193,194],foundat:[112,114,138,139,140,142,151,165],foundationdb:180,founder:165,four:[7,32,41,50,51,59,68,80,92,101,117,118,119,137,148,157,162,170,171,172,193],four_g:[68,80],fourier:119,fourteen:186,fourth:[14,32,83,119],fowler:142,fp:[59,68,80,135,167],fpath:31,fpcoor:135,fpn:135,fpr:[59,167],fr:14,frac:[14,47,48,50,62,75,77,78,93,128,131,135,147,148,150,151,152,155,167,188],fractal:119,fraction:[41,50,62,150,157,158,167,172,192,194],fragil:[62,171],frame:[1,7,14,35,36,38,50,57,58,59,60,74,117,121,123,127,129,141,145,155,162,166],framebord:[116,121,122,123],framework:[0,29,40,41,54,78,101,112,127,129,133,134,136,138,139,140,141,143,155,159],francesco:143,franci:147,frank:141,fraud:[102,145,165,174,191],free:[3,30,48,54,92,93,102,110,112,114,128,129,135,143,145,165,168,171,172,173,174,176,178],freecodecamp:181,freed_by_count:29,freedom:[102,116,123,130,174],french:108,freq:[38,44,57,64,74,123,137],frequenc:[1,3,61,64,137,139,141,150],frequent:[49,50,51,52,53,54,59,78,106,116,124,134,140,141,151,162,165,186],fresh:[69,112,155,159,168],fresh_fruit:[172,194],friedman:[50,150,155],friedman_ms:56,friend:[104,113,114,121,141],friendli:[102,108,140,141],frog:127,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,74,75,77,78,80,82,83,84,88,91,92,94,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,121,122,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,173,174,175,176,177,178,179,180,182,184,187,188,190,191,193,194],from_arrai:121,from_categor:39,from_config:[9,100],from_lat:31,from_logit:[41,133],from_logitstru:133,from_se:43,from_tensor_slic:44,fromarrai:[31,127],front:[68,80,109,172,178,194],frozen:155,frozenset:[123,172,194],fruit:[172,194,195],fruit_nam:39,fruits_copi:[172,194],fruits_dictionari:[172,194],fruits_set:172,fruits_set_via_constructor:172,fruits_tupl:172,fruits_tuple_via_constructor:172,frustrat:139,ftc:[112,176],fu:121,fulfil:[119,151],full1:127,full1_bia:127,full1_input_s:127,full1_weight:127,full2:127,full2_bia:127,full2_weight:127,full3:127,full:[1,7,29,31,37,41,43,48,49,61,68,80,93,99,100,101,109,112,117,119,121,122,123,124,135,140,141,150,151,154,158,162,163,166,171,172,194],full_bias1:127,full_bias2:127,full_bias3:127,full_layer1:127,full_layer2:127,full_model_dir:134,full_mult1:127,full_mult2:127,full_mult3:127,full_weight1:127,full_weight2:127,full_weight3:127,fullbath:54,fulli:[0,32,33,41,45,48,64,82,85,127,129,130,132,133,135,139,140,141,142,151,158,165],fully_connected1:127,fully_connected_size1:127,fulvou:[109,178],fun:[57,82,119,166,167,193],func:[92,132,171,193],func_nam:171,func_wrapp:171,function_nam:173,function_that_receives_names_argu:171,function_wrapp:[171,193],functool:127,fund:56,fundament:[52,53,58,60,75,77,99,116,119,123,125,162,165],fungi:110,furnish:[92,93,171,172],further:[1,14,36,50,54,59,60,61,75,76,92,100,101,113,114,116,119,126,127,130,140,141,147,151,153,154,155,158,159,164,165,171,179,191],furthermor:[47,50,84,103,141,151],fuse:132,futher:54,futur:[29,38,44,47,54,58,76,102,112,114,121,142,143,151,159,162,165,167,171,191],future_step:[38,44],futurewarn:[121,146,158,186],futurolog:127,fx:134,fxbyxm:59,fy:25,fykun93:59,g:[3,37,38,39,42,50,51,54,56,59,75,77,78,82,93,102,112,114,119,121,122,123,126,127,130,131,132,135,136,139,145,150,151,157,163,167,171,172,174,176,179,182,192,194,195],g_b1:131,g_b2:131,g_b3:131,g_b4:131,g_error:131,g_k:130,g_loss:[36,37,131],g_loss_metr:36,g_opt:131,g_optim:36,g_origin:127,g_resolut:36,g_sampl:131,g_style:127,g_t:134,g_var_list:131,g_w1:131,g_w2:131,g_w3:131,g_w4:131,gain:[29,48,50,54,59,76,78,99,109,121,130,139,141,148,150,151,152,155],galaxi:6,gallagh:139,gallahad:171,galleri:142,galton:147,gam:151,gambl:102,gamboost:151,game:[35,38,50,98,102,130,131,143,165,191],gamedownload:38,gamma:[35,59,60,61,66,130,132,151,154,155,158],gan:[131,142,143],gan_input:182,gan_output:182,gan_structur:182,ganlab:[131,182],gao:132,gap:[14,22,41,50,59,104,112,132,141,157,168,176],garagearea:54,garagearea_mean:54,garagecar:54,garagecond:54,garagefinish:54,garagequ:54,garagetyp:54,garageyrblt:54,garbag:[39,119],garbl:139,gari:[38,143],garlic:162,gartner:[112,139,143],gartner_inc:143,gartnerinc:143,gate:[129,173],gatewai:139,gather:[15,39,102,103,114,128,136,141,143,145,159,164,166,174],gaug:[77,78,167],gaussian:[30,59,128,145,151,163,165],gaussiannb:163,gaussianprocessclassifi:163,gave:[49,50,147],gazett:143,gb:1,gbc:56,gbdt:[54,151],gbm:[56,155],gbm_tuned_1:56,gbm_tuned_2:56,gbm_tuned_3:56,gbrt:151,gbtree:[54,154,155],gc:39,gca:[1,32,109,110,127,156,158,178,184],gcf:[110,178],gcp:140,gcv:150,gd:54,gdpr:112,gdprv:54,gdwo:54,gebru:[102,174],geeksforgeek:[141,156,193],gees:[19,109,178],geforc:29,gelu:128,gemston:180,gen_imag:37,gen_z:37,gender:[7,22,50,102,112,114,121,155,165,174,176],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,41,43,45,46,47,48,49,50,52,53,57,59,60,62,74,76,78,84,100,101,102,103,108,109,111,112,113,114,116,117,118,121,122,123,124,126,127,128,129,130,133,134,136,137,138,139,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,162,163,164,165,170,171,172,173,176,179,180,183,184,188,192,195],generalis:[54,156],generalist:104,generalizaton:34,generar:36,generate_from_frequ:3,generated_imag:[36,182],generated_paint:36,generated_path:36,generated_portrait:36,generated_text:134,generation_num:127,generator_opt:36,generd:131,genfromtxt:186,genom:102,genr:[145,146],genu:[109,178],geoffrei:[33,127,186],geograph:[61,101],geographi:142,geoloc:14,geometr:[145,156],geometri:[132,145],georg:[121,133,172,173,194],georgia:[112,135,176],geospati:[102,174],geq:151,geqq:128,gerg:130,germani:159,geron:[43,49],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,36,37,39,41,43,46,47,48,49,52,53,54,56,57,58,59,60,61,62,64,66,68,77,80,82,99,100,101,102,103,104,108,109,112,116,117,118,122,123,124,127,129,130,132,134,136,137,139,140,141,142,146,147,148,151,152,154,155,157,158,159,162,163,164,165,166,167,168,169,171,172,173,179,182,186,191,193],get_accuraci:127,get_age_by_surviv:22,get_age_group:171,get_base_model:133,get_batch:31,get_bootstrap_sampl:147,get_cmap:186,get_count:171,get_dat:[171,193],get_default_devic:33,get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,66,166],get_environ:[9,100],get_equivalent_kernel_bia:132,get_fil:[38,39,40,42,44],get_full_id:[171,193],get_grid:50,get_imaginari:171,get_index:122,get_initial_st:134,get_item:123,get_lay:[132,133],get_loc:[122,123],get_messag:[171,193],get_model:128,get_nam:[171,193],get_oper:127,get_output:[9,100],get_param:[52,53,57,58],get_pinfect:14,get_properti:[9,100],get_real:171,get_result:121,get_rolling_window:14,get_rt:14,get_shap:[127,130,132,136],get_slice_bound:122,get_smoothed_ax:14,get_std:24,get_survival_rate_by_gend:22,get_tensor_by_nam:127,get_text:171,get_the_unique_values_of_pclass:22,get_tim:[171,193],get_timestep_embed:128,get_transition_sigmoid:142,get_valu:123,get_vari:127,get_vers:133,get_xaxi:[29,30,127],get_xlim:[156,184],get_yaxi:[29,30,127],get_ylim:[156,184],getcwd:[29,30,31,33,39,41,66,127],gettint:43,gfile:127,ggplot:150,gh:[122,134],ghdoc:140,ghost:167,ghwa:132,ghwb:132,gift:168,gigabyt:[68,80],gigaspac:180,gill:[110,178],ginger:162,gini:[50,57,148,150,152],giraph:180,girshick:135,gist_rainbow:[68,80],git:[0,38,92,140],github:[5,14,35,38,51,57,58,60,61,66,75,102,119,122,123,126,127,138,140,141,142,146,154,155,158,162,166,167,170,181,182],githubusercont:[12,14,18,25,68,80,146,158],give:[1,7,18,24,36,41,49,50,51,54,56,59,63,65,74,77,100,101,104,108,109,112,114,116,117,119,121,123,129,132,135,141,146,148,151,152,155,156,158,165,166,167,171,172,173,176,191],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,40,44,47,49,50,52,53,54,56,57,58,59,60,68,74,78,80,82,92,93,99,101,108,109,110,111,116,119,121,126,129,130,132,133,135,141,142,143,145,146,148,150,151,155,156,157,158,162,163,165,166,167,168,170,171,172,178,179,185,186,188,191,193,194],gkioxari:135,glacier:139,glanc:[36,54,61,139,151,152,165],glean:104,glenc:56,glinternet:151,glmboost:151,glob:[2,31],global:[14,22,50,59,101,132,133,139,142,156,158,184,193],global_variables_initi:[127,131,136],globalaveragepooling2d:[132,133],gloss:104,glq:54,glu:[172,194],glue:139,gluon:141,gmail:165,gn:135,go:[0,1,7,31,36,41,43,48,49,50,52,53,55,57,58,60,61,63,65,66,68,74,80,82,89,98,99,100,101,104,108,109,111,116,117,119,121,122,124,128,129,133,134,139,140,141,146,148,151,154,157,158,162,165,167,170,171,172,173,175,182,186,191,193,195],goal:[1,7,8,16,29,46,71,74,95,102,103,104,106,114,126,130,141,142,143,151,155,156,157,165,166,174,176,177,182,191],goali:130,goalx:130,goe:[49,50,60,62,74,82,104,114,138,147,150,151,163,165,168,182,193],gog:38,gold:142,golden:[139,171],golovin:143,gomez:131,gone:[3,112,151,165,191],gonna:82,good:[1,3,7,18,19,25,31,39,40,41,43,45,47,48,49,50,52,53,54,57,59,60,61,62,63,65,66,68,78,80,82,84,100,102,104,108,109,111,112,114,116,117,127,128,131,132,139,141,142,143,145,146,147,150,151,152,156,158,159,163,164,165,166,167,168,171,173,178,184,185,186,187,192],good_init:158,goodby:171,goodfellow:[29,50,78,131,182],googl:[40,43,45,47,48,99,102,112,121,127,129,139,140,141,142,165,173,174,180,182,191],googleapi:127,googlenet:132,goos:[109,178],gosset:116,got:[7,43,50,51,56,82,146,151,152,158,173,187],gov:143,govern:[22,45,47,48,75,112,114,137,143,165,191],govt:112,gp:182,gpu:[29,33,36,40,43,49,54,100,101],gpu_0_bfc:29,gpu_devic:29,gpu_hist:54,gpu_id:[66,154,155],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:59,grab:[41,119],gracefulli:[122,172],grad:[33,36,127],grad_bias:82,grad_boost_clf:49,grad_input:82,grad_output:82,grad_softmax_crossentropy_with_logit:82,grad_w:82,grad_weight:82,grade:[166,167,187],gradient:[33,36,47,48,54,57,58,63,65,68,76,78,80,81,82,126,127,128,129,130,132,134,138,141,150,154,156,163,166,184,188,189,192],gradient_boost:152,gradient_desc:75,gradient_i:75,gradient_loss:152,gradient_react_3d:166,gradient_x:75,gradientboostingclassifi:[49,56],gradientdescentoptim:127,gradienttap:[36,126,128,130,134],gradual:[64,75,111,141,151,158,165,191],graduat:56,grai:[18,29,30,31,47,82,109,114,126,127,158,178,186,192],grain:[7,117,139,150,166],gram:127,grand:132,granda:116,grant:[36,50,92,93,123,165,171,172],granular:[109,140,145,164],grape:[172,194],graph:[1,3,8,14,19,24,30,33,40,41,47,54,114,116,118,127,128,131,136,137,142,145,147,150,151,154,155,156,166,168,170,180],graph_def:127,graph_obj:35,graph_object:1,graphdef:127,graphic:[8,24,43,101,116,118,119,130,147,157,165,175,180,185],graphwin:130,grasp:[75,147,164],grass:[110,178],grassi:159,gratifi:110,grayscal:[41,158],great:[16,30,40,49,50,52,53,63,65,74,76,101,102,104,108,114,116,119,141,143,146,148,150,151,158,172,173,174,194],greater:[29,46,48,50,54,92,104,109,119,123,129,148,150,151,158,171,172,178,193,194],greater_equ:119,greatest:[50,92,119,127],greatli:[48,50,114,132,141,145,150,151],greedi:[50,151,155,186],greek:112,green:[49,50,51,52,104,108,109,110,116,130,132,140,151,166,168,172,173,178,189,190,194],greenawai:25,greengrass:142,greensock:108,greet:[171,193],greet_again:[171,193],greet_funct:171,greet_one_mor:[171,193],greet_someon:[171,193],greet_with_closur:171,greeter:171,greeting_with_div_p:171,greeting_with_p:171,greeting_with_tag:171,greetingclass:171,grei:50,gremlin:[118,180],greys_r:127,greyscal:127,grid:[18,22,29,41,50,53,56,57,59,60,66,74,82,84,130,135,142,145,147,156,159,184],grid_clf:158,grid_estim:84,grid_param:84,grid_pr:60,grid_search:[52,53,57,58,59,60],gridsearch:[52,53,57,58,60,150],gridsearchcv:[50,52,53,57,58,59,60,84,150,158],gridsearchcvgridsearchcv:[57,58,60,158],grlivarea:[54,66],groceri:[155,162],gross:25,ground:[66,132,172,192],groundbreak:129,groundwork:104,group:[14,18,22,31,38,49,50,54,74,101,102,104,106,107,108,110,111,112,113,114,116,118,128,132,134,139,141,142,144,145,146,147,150,155,159,162,163,165,167,168,169,170,172,174,176,177,178,179,180,186,191,193,194],group_by_categori:93,group_kei:[22,121],groupbi:[1,14,18,22,31,38,54,83,110,121,168,178],groupby_sum:14,grouper:38,groupnorm:[128,135],grover:55,grow:[82,101,110,116,119,124,135,140,151,180],grow_polici:[66,154,155],grown:150,growth:[78,132,137,150],growth_rat:132,grunin:14,gryffindor:187,gsearch3:56,gsearch4:56,gsearch5:56,gt:[46,134],gu:142,guarante:[50,119,123,140,173],guardian:108,guardrail:112,guarrant:[68,80],guava:39,guess:[7,18,47,50,53,56,58,92,93,117,141,147,151,163,167,171],guesser:50,gui:[54,101,175],guid:[0,17,23,50,54,56,75,99,112,114,119,121,122,123,138,140,141,142,165,171,175,181,191],guidanc:[45,48,59,75,76,112,141,165,186,191],guidelin:[48,112],guido:[172,173,193,194,195],guin:116,gun:108,gupta:[139,143],gust:130,gutedbanoeu:162,gutenberg:[102,134,174],guttula:139,guyon:59,gym:93,gyroscop:116,gz:[33,127,132],h0:178,h1:[1,15,18,130],h2:[1,18,130],h2o:[140,151],h5:[38,39,40,41,42,44],h:[18,31,33,38,84,93,112,127,128,133,134,136,151,155,172,189,194],h_:188,h_t:[136,151],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,36,39,40,41,43,45,46,47,48,49,50,52,54,56,57,62,63,64,65,68,74,75,76,80,82,88,99,101,102,103,104,106,108,109,110,111,113,114,116,117,118,119,121,122,123,124,127,129,132,133,134,135,136,137,140,141,142,143,144,145,146,147,150,151,152,154,155,156,157,158,159,164,165,166,167,170,171,172,173,177,178,179,180,182,186,187,188,191,192,193,194,195],habit:[23,171],habitat:[110,178],hack:[93,112],hacker:92,had:[16,29,39,45,47,48,49,50,52,56,57,59,68,80,102,104,112,119,121,123,124,151,155,166,171,174,176],haemoglobin:101,haffner:181,haha:173,half:[1,31,33,49,50,52,92,116,119,137,158,166,168],half_dim:128,halfbath:54,hall:[139,165],halloween:[166,169],halt:171,halv:[33,141],ham:[136,171,193],hamster:165,han:143,hand:[31,34,39,41,49,54,56,103,104,108,117,123,137,139,140,145,147,152,156,157,162,165,168,170,191],handbook:[57,58,60,61,108],handi:[40,74,119,145,171],handl:[0,7,23,39,49,50,54,56,58,60,61,68,76,78,80,92,93,101,104,108,109,112,114,117,119,122,123,129,139,140,141,142,143,145,150,153,156,163,165,170,172,175,184],handle_data:3,handle_endtag:3,handle_missing_valu:74,handle_starttag:3,handler:171,handout:146,handson:158,handwritten:[29,32,41,47,82,192],hang:163,hao:135,haoyi:143,happen:[1,7,18,41,48,54,60,63,65,104,113,116,119,123,130,141,144,151,157,159,171,181,187],happi:[104,108,116,121,165,187,191],happier:[48,111],har:[77,99,140],hard:[45,49,52,59,66,104,106,129,132,151,154,158,165,168,191],hardcod:171,hardcov:137,harder:[45,47,50,62,141,142,151,171],hardest:159,hardwar:[99,101,106,140,158],harm:[28,101,102,112,174,176],harmon:[40,52,57,59,68,80],harmoni:147,harness22:140,hartwig:[132,133],harvard:[104,139,143],harvest:167,hasattr:132,hash:[46,118,173,180],hashabl:172,hashtabl:123,hashtable_class_help:123,hashtag:99,hasn:[64,157],hasti:[150,151],hat:[75,77,78,132,147,148,151,155,187],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,36,39,40,41,43,45,46,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,68,74,76,77,78,80,82,91,92,93,97,98,99,100,101,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,177,178,180,181,186,187,188,191,192,193,194],haven:[53,58,165],hawkin:139,hay:173,hazelcast:180,hbase:180,hbr:104,hd:39,hdbscan:145,hdf5:182,he:[18,116,121,132,135,137,140,147,150,159,165,191],he_norm:133,head:[1,14,15,24,29,31,35,38,39,40,44,47,48,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,68,74,76,80,83,86,109,110,111,117,123,132,135,137,142,145,147,148,152,155,159,162,163,166,167,168,178],head_dim:135,header:[18,29,38,47,116,118,127,145,172],headlin:28,headwai:105,health:[1,13,99,112,119,139,142,176],healthcar:[77,102,174],healthi:101,hear:165,heard:[28,38,74,78,104,145,151,152],heart:[6,9,33,50,98,113,143],heat:114,heatingqc:54,heatmap:[1,8,34,38,40,48,49,51,52,53,54,59,64,68,74,80,145],heav:141,heavi:[106,151,163],heavili:[127,130,140,146,165,168],heavyweight:163,height:[3,18,31,33,60,68,80,108,111,113,116,121,122,123,127,128,132,146,158,159,162,166,170,178],height_shift_rang:32,heirloom:166,held:[112,147],helicopt:130,hello:[41,93,123,127,170,171,172,173,179,193,194],hello_world_str:[172,194],helloworld:[173,195],help:[0,1,7,8,23,28,32,33,35,36,41,45,48,50,51,54,56,59,62,64,66,68,74,75,76,77,80,82,85,98,99,101,102,103,104,106,107,108,112,113,114,116,117,119,121,126,128,137,138,139,140,141,142,143,145,146,150,151,154,155,156,157,158,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,186,188,193],helper:[33,41,110,127,137],helvetica:159,henc:[7,40,48,54,59,60,61,63,65,74,126,139,147],heparin:1,her:[7,50,141],here:[1,7,11,14,18,24,28,32,35,40,41,43,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,74,75,76,77,80,82,84,92,93,96,97,100,101,102,104,106,108,110,112,114,116,117,118,119,121,123,124,126,127,128,129,130,131,132,133,134,135,137,138,139,140,141,145,146,148,151,152,154,155,157,158,163,164,165,166,167,170,171,172,173,179,180,182,186,187,188,191,193,194],hereaft:172,herebi:[92,93,171,172],hessian:151,heterogen:148,heurist:[50,141,143,151,165],hf10:140,hf:[9,100],hi:[7,49,64,116,121,127,148,157],hidden:[30,41,47,48,62,114,126,134,135,136,137,141,143,157,192],hidden_dim:135,hidden_layer_s:35,hidden_unit:192,hide:[18,47,49,52,53,57,58,68,80,171],hide_result:47,hierarch:[114,145,181],hierarchi:[113,132,133,171,181],high:[14,18,31,38,41,43,44,47,48,49,50,53,56,57,59,60,61,63,64,65,68,74,80,83,92,101,114,119,124,129,131,132,137,139,140,141,143,151,153,154,155,156,157,165,166,167,168,173,179,182,186,188,195],high_blood_pressur:[9,100,101],high_valu:142,higher:[18,29,33,39,45,49,50,52,54,56,57,64,66,74,76,77,101,102,104,109,116,119,133,137,141,148,150,154,156,157,158,166],highest:[33,41,47,132,133,155,168,192],highli:[48,52,54,74,116,130,139,141,142,143,150,173,186],highlight:[1,28,78,102,110,112,114,118,124,165,191],highlight_max:187,hilari:108,hill:143,him:151,hima:139,hing:78,hint:[3,7,14,22,24,47,53,82,92,93,100,118,146,168,170],hinton:[33,127,157,186],hipaa:112,hire:[56,102,104,112,174],hire_d:179,hist2d:[109,178],hist:[1,18,22,29,39,47,49,52,53,56,58,59,60,61,66,109,147,178],hist_df:39,histogram:[1,4,18,40,47,49,52,54,58,59,60,74,108,116],histor:[102,108,142,165,166],histori:[29,31,32,33,34,35,36,38,39,40,44,45,47,48,62,101,102,137],history_df:[36,62],history_t:35,history_va:31,histplot:[68,80],hit:[7,130],hitchhik:140,hither:171,hjd:139,hline:148,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:59,ho:[59,128,150],hoang:132,hobbi:93,hoc:140,holbrook:62,hold:[31,34,35,50,64,78,118,123,129,147,155,165,172],holder:[92,93,171,172],hole:110,holidai:166,hollow:168,holt:143,home:[50,74,159,187],homegrown:140,homeless:108,homepag:138,hometown:172,homogen:[7,119,148,179],honei:13,honestli:112,hong:193,honor:122,hood:[92,150,151,188],hope:[26,54,56,76,121,132,152,157,162,173,195],hopefulli:[41,54,61,74],hopkin:[14,119,142],hoptroff:143,horeca:155,horizon:[130,137],horizont:[14,51,108,119,121,127,133],horizontalalign:[83,186],horribl:[172,194],hors:127,horseradish:162,hospit:142,host:[48,99,102,106,113,139,140,174,175],hostel:148,hostel_data:148,hostel_factor:148,hot18:106,hot:[1,7,40,47,51,54,106,127,136,141,165,166,177],hotel:155,hotz:106,hour:[33,38,49,52,56,100,101,102,104,113,141,174,187,188],hour_df:38,hourli:[38,113],hours_per_week:51,hous:[50,54,61,129,141,142,143,165,187],house_price_test:54,house_price_train:[54,154],household:[61,74],housekeep:130,housing_median_ag:[61,74],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,38,39,40,41,43,45,46,47,48,49,52,53,54,57,58,60,61,62,63,65,66,68,69,71,74,75,76,77,78,80,82,83,88,90,99,100,101,102,103,104,106,108,109,110,111,112,114,115,116,117,118,119,121,122,123,124,125,128,129,130,134,135,137,138,139,140,141,142,145,146,147,150,152,154,155,156,158,159,162,163,164,165,166,167,168,170,171,172,174,176,177,178,180,185,186,187,188,191,193,194],howard:132,howden:[166,167],howev:[1,3,7,28,30,32,33,36,45,46,47,48,50,54,56,62,66,75,78,82,101,103,112,113,114,116,117,119,122,123,124,126,127,133,134,135,140,141,148,151,153,156,157,158,163,165,166,168,170,171,172,173,176,186,195],hpo:141,hr:[38,56,179],href:[122,123,146,158,159,162,166,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:59,hs:[128,135],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:59,hspace:[31,158],hsplit:119,hstack:119,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:59,html:[3,15,31,57,58,60,61,66,78,93,113,116,121,122,123,140,146,154,155,158,159,162,166,170,171,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],htmlparser:3,http:[3,12,14,15,18,22,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,51,56,57,58,66,68,78,80,82,93,100,101,102,106,108,109,110,111,112,114,116,118,121,122,123,126,127,128,132,133,134,135,136,137,140,141,142,143,145,146,156,158,162,163,164,166,167,171,172,174,175,176,177,178,180,181,182,186,193],http_get:3,httpmessag:158,huang:[92,93,132],hub:[16,99,102,114,142,174],huber:[44,78,128,151],hubspot:104,hue:[49,51,52,57,60,61,64,68,74,80,83,109,111,145,178],hufflepuff:187,huge:[1,64,99,129,139,165,191],human:[16,31,41,47,50,106,112,113,114,129,132,140,143,165,173,176,191],humanist:102,humbl:140,hundr:[7,128,141],hungri:[36,162],hunt:[71,82],husl:137,hutter:141,huyacli:38,huyenchip:140,hw8:59,hw:127,hxfbpxg4aih7u:59,hybrid:[78,99,137,175],hydroxychloroquin:1,hype:[38,112],hypeparamet:33,hyper:[32,60,132,134,151,185,186],hyperparam:54,hyperparamat:[49,60],hyperparamet:[33,45,48,49,50,52,53,54,57,58,60,61,63,65,68,80,84,100,129,132,137,142,151,155,156,158,165],hyperplan:[50,156,184],hypert:180,hypertens:101,hyphen:134,hypothes:[18,114,116],hypothesi:[29,63,65,155,166],hyungjin:135,i1:119,i4:[119,123,179],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:59,i8:119,i:[1,3,8,14,16,18,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,49,50,51,52,54,55,56,57,58,59,60,64,66,68,74,75,77,78,80,81,82,92,93,100,101,102,103,104,106,108,114,116,119,121,122,123,126,127,128,129,130,131,132,133,134,136,137,139,142,146,147,148,150,151,152,155,156,157,158,166,172,179,185,186,187,188,189,190,192,193,194,195],i_1:119,i_:[14,148],i_batch:37,i_i:148,i_imag:37,i_j:155,i_m:119,i_t:[14,134],i_x:134,iaa:[99,140,175],iac:140,iam:139,ian:[29,50,78,131,182],iat:122,ibm:[102,112,139,140,174,180],ic:[58,136],iccv:143,iclr:141,icml:151,icon:[7,46,101,110,117,170,173],id3:50,id:[7,12,15,29,31,54,56,57,63,64,65,66,82,100,118,121,124,159,171,180],id_out:132,id_tensor:132,id_var:64,idea:[7,31,36,38,46,49,50,52,53,58,60,61,62,66,68,80,83,102,104,116,117,119,132,138,141,142,145,147,151,152,153,155,156,158,162,163,165,166,167,171,177,187,188,192],ideal:[54,74,77,104,114,116,127,141,147,151,154,156,157,166,167,171,173,193],ident:[41,50,112,118,119,121,123,130,132,133,136,139,140,150,172,180,194],identif:[78,130,139,156],identifi:[6,11,16,23,28,29,33,36,46,49,50,52,56,57,59,62,76,78,101,102,104,106,107,112,113,114,116,117,118,123,124,129,132,135,139,141,142,151,165,170,173,174,176,177,178,179,180,181,186,191],idl:[36,101,119],idx1:39,idx2:39,idx:[31,55,158],ie:15,ieee:[7,117,143],ifram:[78,116,121,122,123,146,158,162,166],ig:50,igam:38,iglob:31,ignit:180,ignor:[36,39,49,50,51,52,53,54,56,57,58,59,64,68,80,82,92,104,118,121,136,137,150,151,152,154,158],ignore_index:[121,179],ih:134,ihm:142,ii:[18,37,59],iii:31,ij:[18,116],iljxqfj1omejrnpbca8g:59,ill:154,illinoi:179,illumin:[39,132,135],illus:[112,176],illustr:[3,8,24,29,36,50,59,102,112,118,123,126,127,128,131,132,135,137,147,150,151,156,157,171,176,185],iloc:[1,14,31,35,39,42,46,47,48,50,54,64,82,84,122,123,148,150,163,179,188,189,190],ilsvrc:132,im:[128,135],im_batch_s:37,im_shap:128,imag:[3,28,31,34,35,36,39,40,43,47,51,59,60,64,68,75,78,80,82,84,92,102,104,107,108,113,114,119,126,127,128,129,130,131,135,136,141,143,145,147,151,154,155,162,165,166,167,173,174,176,178,182,191,192],image_:37,image_arrai:[37,127],image_batch:182,image_data_format:133,image_dataset_from_directori:[36,128],image_dict:127,image_dictionari:127,image_ev:127,image_extract:127,image_h:31,image_height:127,image_label:[40,127],image_pixel:131,image_s:[36,37,128,132,192],image_segmentation_diagram:158,image_shap:135,image_uint8imag:127,image_vec_length:127,image_w:31,image_width:127,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,37],imageio:[31,127],imagenet:[127,143],imagenet_mean:127,imagenum:31,imageri:[39,104],images_path:158,images_to_vector:131,imagin:[50,78,113,124,141,145,151,157,159,162,170,180,187],imaginari:[18,92,171,172,194],imaginary_part:171,imbal:[52,68,80,139,141,162,165,167],imbalanc:[57,58,59,146,151],imbalnc:59,imblearn:162,imdb:[112,176],img0:127,img:[31,33,36,37,39,41,126,127,128,135],img_align_celeba:128,img_label:39,img_nois:127,img_path:39,img_pool:133,img_shift:127,imgplot:37,immedi:[7,43,46,50,74,104,117,130,151,159,168,171],immens:[50,123],immut:[43,172,173,194,195],imp_coef:66,impact:[28,41,49,52,54,102,104,112,130,141,143,166,174,185],impair:[50,108],implaus:182,implement:[0,16,31,33,36,46,47,49,50,51,52,53,54,57,58,59,61,68,74,80,82,92,96,97,104,112,119,123,128,131,132,133,134,136,140,141,143,150,154,156,158,165,171,172,179,194],impli:[22,45,47,48,59,64,92,93,100,136,140,141,145,165,167,171,172],implic:[16,112,136],implicit:[112,140,150,176],implicitli:[59,130,171],imporov:66,import_graph_def:127,importance_typ:[66,154,155],importantli:[101,123,175],importerror:[171,173],impos:[150,157],imposs:[114,165,191],impress:[3,40,52,60,104],improb:116,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,36,40,41,43,47,48,49,50,54,59,64,66,68,69,71,72,75,76,77,80,85,88,89,90,91,93,100,102,104,112,114,117,128,130,132,134,138,139,140,142,143,147,150,151,154,155,156,158,164,165,166,167,176,186,191],impur:[50,148,150],imput:[7,22,51,54,56,61,66,68,74,80,154,165,191],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,37,39,127,158],imsav:127,imshap:135,imshow:[1,3,29,30,31,33,34,36,37,39,40,41,50,82,84,126,127,128,133,158,182,186,192],imura:170,imwrit:127,in_channel:[31,132],in_clust:158,in_dim:131,in_plan:132,inabl:129,inaccur:[7,46,102,112,117,130,137,151,154,174],inaccuraci:[46,117],inact:101,inadequ:59,inappropri:114,inargu:40,incent:112,incentiv:112,incept:127,inception5h:127,inch:[166,167,168],incid:28,incident:157,includ:[1,3,4,8,14,31,32,36,40,41,49,51,54,56,64,74,75,78,83,92,93,99,100,101,102,105,108,109,111,112,114,116,119,121,122,123,129,132,133,135,137,138,139,140,141,142,143,144,146,148,151,154,157,158,159,162,163,165,166,167,168,169,170,171,173,174,175,179,187,188,191,192,193],include_top:133,inclus:[102,112,122,130,140,141,176],incom:[50,51,74,112,141,148,165,172,176],income_evalu:51,incompar:108,incompat:119,incomplet:[4,46,69,90,112,113,117,130],incomprehens:114,inconsist:[36,117,177],incorpor:[50,121,133,140,142],incorrect:[15,41,45,47,48,51,59,68,74,80,147,151,195],incorrectli:[40,52,57,59,68,80,139,141,151,164],increa:40,increas:[14,32,33,35,36,39,40,45,47,48,49,52,53,56,57,59,62,64,68,76,80,82,101,104,106,111,114,116,119,126,132,135,139,140,141,143,147,150,151,155,156,157,158,165,173,175,184,186,195],increasingli:[137,141,165],incred:[40,49,165],increment:[48,49,64,75,92,93,119,130,139,140,141,151,152,158,171],increment_count:171,increment_funct:171,incur:[101,143,175],ind1:119,ind2:119,ind:[119,148,179],ind_1:119,ind_2:119,ind_n:119,inde:[7,18,48,111,119,151,152,158,186],indefinit:136,indent:[84,121,171],indentationerror:195,independ:[0,54,76,77,116,119,128,130,136,140,147,150,155,167],index:[1,7,14,24,31,33,37,38,39,40,43,50,51,52,54,56,57,59,62,66,74,76,83,92,110,113,117,134,137,145,146,150,158,159,163,164,166,170,171,172,180,192,194],index_col:[46,54,137],index_nam:14,indexengin:123,indexerror:[63,65,119,122,123,173],indexin:[22,24],indexingerror:122,indi:145,india:[161,162],indian:[162,163,164],indian_df:162,indian_ingredient_df:162,indic:[1,7,14,16,22,29,41,46,47,48,54,56,64,76,77,78,82,92,99,100,102,112,113,116,117,121,122,123,124,130,132,133,134,146,147,148,157,165,166,168,171,172,173,179,191,192,194],indirect:119,indirectli:[49,171,172,192],indistinguish:156,individu:[7,14,41,49,50,54,56,62,75,102,104,112,117,118,128,141,143,147,150,165,171,172,174,179,191,194],induc:134,induct:[141,145],industri:[106,112,137,140,143,151,165,173,191],indx:37,ineffici:[101,119,151,155,172],inequ:158,inertia:[146,186],inertia_:[146,158,186],inertia_vs_k_plot:158,inexhaust:132,inf:[14,45,55],infect:[1,8,14,119,142],infected_dataset_url:14,infected_df:14,infecti:[14,142],infer:[9,78,100,101,132,133,134,139,140,141,142,143,145,159,165,179,191],infer_sampl:134,inference_config:[9,100],inferenceconfig:[9,100],inferior:50,infinispan:180,infinit:[14,56,104,130,151,171,172],infinitegraph:180,infinitydb:180,infix:119,inflection_idx:142,inflection_r:142,inflict:108,influenc:[17,52,54,75,78,106,112,130,146,159,164,165,172,177],influenti:112,info:[14,38,40,49,51,52,54,59,60,68,74,80,84,117,118,133,145,155,159,162,166,167,180],infocli:38,infograph:[104,108,114,145,146,162,166,167,168],inform:[1,4,12,14,15,17,22,23,24,25,31,38,40,41,43,46,48,49,50,52,53,54,56,57,58,68,74,77,80,93,99,100,101,102,103,104,106,109,110,112,113,114,116,118,119,121,123,124,129,130,132,133,134,135,137,139,141,142,143,145,148,150,151,155,156,157,158,165,166,170,171,172,174,176,177,180,182,193],infrastructur:[99,106,142,175],infti:[116,128,130,147],infus:164,ingest:140,ingredi:[161,163],ingredient_df:162,inher:[64,133],inherit:179,init:[30,56,81,92,127,131,136,146,158,171,188,189],init_imag:127,init_lr:128,init_notebook_mod:35,init_s:158,init_tim:128,initi:[0,3,15,33,35,43,48,49,50,54,55,63,64,65,75,82,92,93,99,102,112,113,119,126,127,130,131,132,133,134,135,139,141,143,146,150,151,154,165,166,168,171,172,174,179,186,193,194],initial_eda:51,initial_prob:152,initial_st:134,initiali:33,initialis:36,initialise_graph:130,inject:121,inland:[61,74],inlin:[49,51,52,53,55,57,58,59,60,61,62,66,74,75,82,83,84,127,150,156,158,159,184,186,188,189,190,192],inlinebackend:[50,66,137,147,150,186],inner:[38,75,92,121,122,123,124,137,171,180],innermost:[171,193],innov:[54,99,102,112,175],inordin:151,inplac:[1,7,14,22,30,37,38,46,48,50,51,54,121,137,154,159,162,167],input:[9,14,15,18,22,29,30,31,32,33,36,37,38,40,41,42,43,45,47,49,50,51,52,53,55,56,57,58,61,62,64,68,75,76,77,78,80,82,91,92,93,99,100,101,116,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,143,145,146,147,148,150,151,155,156,157,158,159,162,165,166,170,171,172,173,182,186,187,191,192],input_1:128,input_2:128,input_data:[9,48,52,53,57,58,74,100,127,131],input_dim:[35,36,45,47,48,132,182,192],input_funct:48,input_imag:[127,133],input_mask:133,input_pipelin:127,input_proj:135,input_s:[133,192],input_shap:[32,34,36,38,39,40,41,42,44,62,78,132,133,135],input_tensor:133,input_text:93,input_unit:82,input_valu:130,inquiri:[102,109],insensit:[124,150,156],insert:[63,65,75,118,119,123,151,171,193,194],insertion_sort:93,insid:[0,1,3,33,50,60,61,62,68,75,80,116,119,123,124,126,130,132,134,140,152,158,159,172,173,187,194],insight:[11,16,49,52,54,59,60,74,75,77,99,101,102,104,109,112,114,121,138,139,174,176],inspect:[41,57,58,59,68,74,80,165],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,124,126,127,128,129,130,131,132,133,134,135,136,137,141,142,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,181,186,187,188,189,191,192],instabl:50,instagram:121,instal:[0,3,12,18,25,35,43,51,98,99,100,101,108,109,110,111,116,118,121,122,123,129,134,144,145,146,157,158,159,160,161,162,163,164,166,171,187],instanc:[7,31,46,49,50,51,52,54,59,78,83,101,102,104,117,118,119,122,129,132,135,137,140,141,148,150,155,157,158,165,167,172,182,191,193,194],instant:[56,110],instanti:[43,51,59,83,123,155,167,171],instantli:138,instead:[7,22,31,32,33,43,47,48,49,50,53,54,57,58,61,62,82,99,104,108,110,112,113,114,119,121,129,132,133,137,139,140,141,150,151,152,154,157,158,159,165,166,168,171,172,173,186,187,191,194],institut:[50,142],instruct:[0,29,50,68,80,100,101,104,108,129,170,173],instrument:[102,112,145,146,147,151,159],insuffici:[16,108],insur:112,int16:119,int19:141,int32:[43,119,127,128,134,135,136,146,158],int64:[22,38,57,58,59,60,61,64,74,119,121,122,123,136,145,148,150,155,158,162,166,179],int64index:166,int8:[56,150],int8dtyp:137,int_:116,int_featur:159,int_memori:[68,80],int_seri:7,int_shap:133,intact:22,intang:112,integ:[7,12,40,41,47,53,54,56,58,78,92,117,122,123,127,130,132,133,171,173,179,193,195],integer_vari:[172,194],integr:[0,59,78,99,101,102,104,112,113,114,123,128,139,140,142,174,175],intellectu:[112,176],intellig:[39,41,99,102,114,129,139,142,143,175,176],intellisens:85,intend:[41,78,104,108,123,139,171],intenion:152,intens:[50,101,132,141,182,186],intent:[104,108,112,176],intention:151,inter:[59,116,132,140],interact:[5,7,16,29,76,99,100,101,104,108,114,117,123,130,131,138,139,140,151,156,166,170,171,173,175,184,187,193,195],interaction_constraint:[66,154,155],interactivesess:[127,131],intercept:[74,75,137,166,188],intercept_:[74,166,188],interchang:[7,78,124,165],interdisciplinari:[138,165,191],interest:[1,5,13,14,16,19,29,33,40,49,50,52,57,58,59,68,74,80,99,102,107,108,109,110,111,113,116,118,121,124,130,132,133,141,143,144,145,150,151,156,159,162,165,167,168,170,178,179,180,182],interestingli:[1,110,145],interfac:[16,98,101,110,113,119,173,175],interg:173,interleaf:170,intermedi:[18,30,133,158],intermediari:33,intern:[30,50,68,80,101,119,122,127,130,138,139,140,142,143,146,147,150],internet:[14,32,99,108,109,112,113,114,124,139,140,175],interpol:[1,31,50,127,132,133,158,162,182],interpret:[3,7,40,41,47,48,50,57,58,66,109,112,116,118,119,121,122,123,130,143,145,147,150,151,165,166,171,172,173,176,180,181,191,193,194],interquartil:54,interrelationship:104,interrupt:[101,157],intersect:[78,106,118,121,166,172],interspers:119,intersystem:180,interv:[49,52,56,111,119,128,130,139,142,147,156,184],interview:151,intimid:155,intl:[50,147],intp:119,intra:[132,135,158],intract:131,intric:78,intricaci:[77,104],intrins:159,intro:[116,140],introduc:[18,29,31,47,50,54,66,75,76,78,95,104,109,114,121,128,129,130,132,133,135,140,141,143,145,151,157,171,181,182,193],introducin:140,introduct:[7,37,43,61,105,118,120,125,130,139,141,143,165,169,172,180,181,182,183,184,186,188,191,193],intuit:[50,55,68,77,80,123,129,132,151,156,165,181,186],inv:76,inv_i:38,inv_sigmoid:142,inv_yhat:38,invalid:[14,139,171,173],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:123,invari:[132,141],invent:[151,165],inventori:[102,139],inventoryexampl:118,invers:[39,64,66,119,142,150],inverse_transform:[38,42,189,190],invert:[38,119],invest:[99,140],investig:[23,47,54,102,112,113,141,150,155,166,176],invis:[112,176],invit:119,invoc:[140,171],invok:75,involv:[7,36,43,46,50,54,75,76,77,78,101,103,104,106,112,114,117,121,123,132,155,165,167,171,175,177,191],io:[30,31,101,122,123,127,136,140,159,166,181,182],ioc:140,ion:130,iot:[114,139,159,176],iou:[78,141],iou_loss:78,ip:59,iplot:35,iplot_mpl:35,ipykernel_15370:178,ipykernel_24432:186,ipykernel_26368:121,ipykernel_30912:193,ipykernel_44:171,ipykernel_46616:123,ipykernel_5984:109,ipykernel_6984:62,ipynb:[0,145,146,159,162,164,166,168,170,179],ipytest:[3,14,22,24,53,74,92,93],ipython:[12,22,25,39,55,60,64,78,82,98,99,100,101,109,110,111,116,119,121,122,123,129,131,133,134,144,145,146,156,157,158,160,161,162,163,164,166,193],ipywidget:[156,184],iqr:[54,116],ir1:66,irani:50,ireland:12,iri:[7,46,60,83,117,123,148],iris_data:148,iris_df:[7,46,117],iris_df____:46,iris_isduplicated_df:46,iris_isnull_df:46,iris_support:60,iris_versicolor_3:60,iris_virginica:60,iris_with_drop_duplicates_on_column_df:46,iris_with_drop_duplicates_on_df:46,iris_with_dropna_1_values_on_rows_df:46,iris_with_dropna_2_values_on_rows_df:46,iris_with_dropna_on_column_df:46,iris_with_dropna_on_row_df:46,iris_with_fillna_back_df:46,iris_with_fillna_back_df____:46,iris_with_fillna_df:46,iris_with_fillna_df____:46,iris_with_fillna_forward_df:46,iris_with_fillna_forward_df____:46,iris_with_missing_value_after_fillna_back_df:46,iris_with_missing_value_after_fillna_df:46,iris_with_missing_value_after_fillna_forward_df:46,iris_with_missing_value_df:46,irrelev:[129,156],irrespect:101,is_avail:[31,33,37],is_bool_index:122,is_cnn:31,is_empti:92,is_good_enough:93,is_hash:123,is_integ:122,is_leaf:55,is_list_like_index:122,is_marri:195,is_monotonic_increas:122,is_prim:92,is_range_index:121,is_scalar:122,is_uniqu:121,isabel:59,isalignedstruct:119,isalpha:172,isbn:140,ischoolonlin:[106,177],isclos:92,isdecim:172,isdir:[39,127],isfil:[127,134,136],ish:[36,66],isinst:[14,33,51,92,93,122,132,133,135,171,172,194],island:[61,74],isn:[39,45,48,78,123,148,157,159,171],isna:[14,51,56,103],isnan:[46,119],isnt:54,isnul:[7,22,46,47,48,49,51,52,53,54,57,58,59,61,64,68,74,76,80,103,117,145,155,168,179],iso2:142,iso3:142,iso:139,isol:[7,75,117,140,143],iss:29,issu:[0,7,28,40,45,46,49,50,54,57,58,66,68,80,104,112,117,122,131,134,138,140,146,151,156,158,176],issubclass:171,issubset:14,isupp:172,item:[31,33,37,43,59,92,111,112,118,119,123,127,134,141,145,164,167,170,171,173,179,193,194,195],item_from_zerodim:122,items:[119,179],iter:[31,33,35,37,48,55,61,63,65,68,75,76,80,92,93,100,101,127,128,130,131,140,141,142,146,151,153,154,155,158,165,167,171,172,173,187,193,194],iter_n:127,iterate_minibatch:82,iterated_numb:[171,193],iteration_count:134,iterrow:137,ith:[55,155],its:[4,6,7,12,18,22,26,28,29,31,33,39,40,41,43,48,49,50,54,59,61,62,68,74,75,76,77,80,85,93,99,101,102,103,106,108,109,111,112,113,114,117,118,119,121,122,124,126,128,129,130,132,133,134,137,139,140,141,143,145,146,147,148,150,151,152,155,156,157,158,159,162,164,165,167,168,170,171,172,173,174,177,178,179,182,184,186,191,194],itself:[7,14,50,54,82,108,114,118,124,139,140,141,142,150,151,159,165,167,171,172,186,191],itslek:54,iucn:109,ium:[172,194],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:59,ix2vocab:134,ix:[127,134],ix_:119,ix_cutoff:136,ix_to_vocab_dict:134,j7z80yoo:59,j:[1,32,33,34,37,38,48,50,56,92,93,108,119,126,130,131,132,141,147,148,150,151,155,158,172,173,186,189,190,194,195],jack:[172,194],jade:180,jag:[109,150],jain:[128,139],jake:[57,58,60,61,179],jakevdp:[156,184],jam:[36,114],jame:[116,139,193],jane:93,januari:[1,17],japan:[124,180],japanes:[162,163,164],japanese_df:162,japanese_ingredient_df:162,jar:140,jargon:[150,164],jasmin:25,jason:143,java:140,javascript:[113,118,142,159,173,195],jbase:180,jcodella:176,jean:[40,43,80,131],jehx7a7:59,jellek:98,jello:[172,194],jen:[102,146,162,166,167,174],jenna:107,jerom:[150,151],jerri:[92,93],jesucristo:37,jetbrain:38,jez:140,jgzcjvracubdwr59:59,jha:128,ji:143,jian:[132,135],jiang:143,jim:[104,114],jitter:151,jl:133,jlwfklkcd5a5zdyvlszj0s5qme6nbl:59,joaquin:141,job:[3,29,31,38,59,66,84,99,101,104,113,114,140,141,143,145,150,163,165,172,191,194],joe:173,john:[14,92,93,119,139,142,171,172,173,193,194],johnson:93,joi:[102,174],join:[12,29,30,31,33,36,37,39,41,45,46,47,48,51,56,66,117,127,129,134,136,137,138,148,158,162,166,171,172,186,194],join_ax:179,join_index:121,joint:128,jointli:133,jointplot:145,joli:50,jonathan:[128,133],jone:151,joseph:139,josip:139,journal:[50,139],journei:[77,102,114,138],jovian:33,jp:14,jpeg:[31,38,127],jpg:[31,36,38,60,127],jpn:139,js:[29,138,142,159,195],json:[6,9,84,100,108,113,114,159],judgment:147,jul:[102,174],juli:[17,114,140,141],jump:[84,100,104,111,119,158,171],jun:[101,195],jungl:145,junho:132,jupit:195,jupyt:[0,12,18,25,57,58,60,61,66,68,80,83,84,100,101,116,117,138,146,154,155,158,163,166,167,168,170,171,173,179,186,187,188,189,192,193],jupyterlab:0,jupyterlab_myst:[98,99,100,101,109,110,111,116,121,122,123,129,134,144,145,146,157,158,160,161,162,163,164,166],jupytext:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],jupytext_vers:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],juri:147,juror:147,just:[0,1,3,7,9,14,18,28,29,31,40,43,44,45,46,49,50,55,56,57,59,60,62,66,75,82,93,99,100,101,104,109,110,112,114,116,117,119,121,122,123,124,127,129,132,133,135,137,140,142,143,145,148,150,151,154,155,156,157,158,162,165,166,168,171,172,173,186,187,188,191,194],justifi:[48,104,141,159],jython:[172,194],k0:121,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:59,k1:121,k2:121,k3:121,k4:121,k5:121,k5izpn8apjgrfovv82wjhtletgw:59,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:59,k8:140,k:[3,50,83,84,116,119,122,123,127,129,130,132,134,135,136,145,147,151,153,156,165,167,184,192],k_d:130,k_i:130,k_list:83,k_p:130,k_size:37,kaggl:[1,4,10,20,25,30,31,32,33,35,38,39,51,56,68,74,80,83,84,101,103,113,117,119,128,129,132,137,151,165,167,182,186,187,188,189,191,192],kaim:[132,135],kaiyang:143,kalenichenko:132,kam:150,kapoor:36,karen:132,karnika:36,karr:166,kashnitski:[50,147,148,150,151,186],kayod:139,kb:[29,38,50,60,117,145,155,166],kdd:139,kde:[22,54,56,109,145,178],kdeplot:[109,178],kdr:38,keep:[7,22,33,36,45,47,61,63,65,68,74,80,91,99,101,106,117,118,119,121,122,131,132,137,141,146,150,156,157,158,165,166,167,168,171],keep_dim:133,keepdim:[82,179],kei:[3,7,9,38,48,77,93,99,100,101,102,104,112,118,119,121,122,123,124,127,128,130,134,135,136,139,140,141,142,163,171,173,174,179,180,187,193,194,195],kendal:133,kept:[7,117,133],kera:[29,30,31,32,35,36,38,40,41,42,43,44,45,47,48,49,62,78,126,128,132,133,134,135,136,141,157,182],kernel1x1:132,kernel3x3:132,kernel:[29,31,32,33,56,60,61,127,132,133,137,145,155,164,166,183],kernel_initi:[133,135],kernel_regular:78,kernel_s:[29,30,31,32,33,34,36,37,39,132,133],kernel_valu:132,kernelid:132,kernelspec:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],keskar:141,key_cal:121,key_dim:[128,132],key_is_scalar:123,key_oth:121,keyerror:[92,122,123,134,173],keys_list:92,keyword:[3,93,100,113,114,118,119,121,124,146,157,172,173,180,193,194],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:59,kfold:[56,59,64],kfold_scor:56,kfoldcv:64,khale:143,khg:135,khsa:132,khsb:132,kilian:132,kill:173,killer:46,kilobyt:[53,58,165],kim:[30,132,135],kind:[1,7,15,22,30,31,39,43,45,47,48,49,50,51,52,54,56,59,60,61,62,64,66,68,80,90,92,93,101,107,108,109,111,117,119,122,123,126,129,131,134,137,138,145,151,155,156,157,162,163,165,167,168,170,171,172,173,178,182,191],kinesi:139,kingdom:12,kingma:31,kingpin:108,kit:[62,98],kitchen:148,kitchenabvgr:54,kitchenqu:54,kiwi:[39,172,194],kld:31,km:[139,146],kmean:[146,158,186],kmeans_:158,kmeans__n_clust:158,kmeans_algorithm_plot:158,kmeans_bad:158,kmeans_good:158,kmeans_iter1:158,kmeans_iter2:158,kmeans_iter3:158,kmeans_k3:158,kmeans_k8:158,kmeans_per_k:158,kmeans_rnd_10_init:158,kmeans_rnd_init1:158,kmeans_rnd_init2:158,kmeans_variability_plot:158,kmeanskmean:158,kneighbor:[158,163,164],kneighborsclassifi:[56,83,84,158,164],kneighborsclassifierkneighborsclassifi:158,knife:187,knight:[171,172,194],knights_nam:171,knights_properti:171,knn:[50,56,126,150,158,164,165],know:[7,17,18,23,27,33,40,43,45,46,49,50,52,53,56,58,59,68,74,80,82,84,99,101,103,104,112,114,116,117,118,123,124,128,129,133,137,141,146,151,155,157,165,171,172,173,188,191,194],knowledg:[7,31,41,50,54,59,69,99,101,106,114,116,128,130,139,141,142,143,151,154,165,166,175,176],known:[32,50,57,58,59,68,75,77,80,106,112,113,114,116,119,123,129,133,135,137,138,139,140,141,142,147,151,156,165,171,172,191],kogwl43x3ogqzqjpuoe8b:59,kool_kheart:38,korbut:141,korean:[162,163,164],korean_df:162,korean_ingredient_df:162,kosaciec_szczecinkowaty_iris_setosa:60,kotthoff:141,kpash:59,kqxjp1r14yggzhpqx_gpx6580000gn:178,kriz:[127,132],krizhevski:[33,127],ks:[132,147],ksize:127,ksv:64,kubeflow:140,kubernet:140,kullback:128,kuqvjmwrkag9whlqdvrh:59,kurtosi:59,kw:127,kwangnam:128,kwarg:[43,109,123,133,135,171,178,193],l1:[63,65,78,94,126,131,141],l1regular:[63,65],l2:[63,65,78,94,131,141,156],l2_leaf_reg:54,l2_loss:127,l2regular:[63,65],l3:131,l4lsxqfk:59,l9dkgf1pchhmpqsobc9eb:59,l:[35,50,55,78,82,116,121,126,127,130,135,136,150,151,152,155,167,172,179,180],l_1:[66,151],l_2:[66,151],l_:[78,151],l_left:50,l_p:116,l_q:151,l_right:50,lab:[0,39,40,43,58,60,61,68,80,102,174],label:[1,7,15,22,29,30,31,32,33,34,36,37,38,39,40,41,42,45,46,47,48,49,50,52,53,56,57,58,59,61,64,66,68,74,75,76,78,80,82,84,100,101,108,109,110,111,118,121,127,130,131,132,133,136,141,142,145,146,147,150,155,156,158,159,162,163,164,166,167,173,178,179,181,182,186,188,189,190],label_batch:127,label_column_nam:[9,100],label_enc:[49,52,57],label_encod:[22,52,56],label_length:78,label_logit:135,label_mod:[36,128],labelbottom:158,labelencod:[38,49,52,56,57,64,83,146,159,167],labelleft:158,labels:[62,137,158],labels_:[146,158],labels_df:162,labels_fil:127,labelweight:[62,137],labl:3,labor:141,labori:[7,46,117],lachin:101,lack:[13,26,28,130,141,142,151,171],laclo:108,ladi:[108,145],ladybug:158,lag:38,lag_1:137,lai:[104,133],laid:104,lake:[99,114,139,176],laken:48,lamb:171,lambda:[1,14,22,31,32,36,38,44,47,54,56,66,78,121,122,123,134,142,155,166,172,185,193,194],lambda_l1:54,lambda_l2:54,lambdamart:151,lamda:[63,65],land:[54,139,165],landcontour:66,landmark:112,landscap:143,lang:[15,38,121,122,123],languag:[1,22,41,43,45,47,48,59,98,99,100,101,107,108,109,110,111,112,113,114,115,116,118,119,123,124,129,134,136,138,140,141,143,144,145,157,158,160,161,162,163,164,165,171,172,173,179,180,193,194,195],lap78:143,laped:143,laplacian:151,lar:141,larg:[1,7,11,30,31,39,45,46,49,50,51,54,59,60,61,62,63,65,66,71,76,78,99,101,102,103,104,106,112,114,117,118,119,121,123,124,126,129,132,134,137,139,140,141,143,145,147,148,150,151,154,155,156,157,158,164,165,166,172,175,176,179,182,184,186,187,194],larger:[14,29,48,59,75,76,78,92,101,112,119,126,127,128,141,151,154,167,172,179,181],largest:[48,59,99,119,132],larxel:101,laser:104,laskoski:144,lasso:[66,78,151,157,166],lasso_pr:66,lasso_sklearn:[63,65],lassocv:66,lassolarscv:66,lassoregress:[63,65],last:[7,8,14,29,32,38,39,40,41,43,44,45,47,49,52,55,60,62,68,80,82,83,93,104,112,114,117,119,121,122,123,127,129,133,136,137,139,140,141,146,151,157,162,163,165,168,171,172,176,179,191,192,193,194],last_index:172,last_nam:[93,193,195],last_new_job:56,last_stat:134,last_tl:35,lastli:[32,36,45,54,104],lastnam:173,lastnewjob:56,lat:[14,142,187],late:108,latenc:[132,137,140,143],latent:[29,31,36,126,128,141],latent_dim:[29,30,36],latent_vec:31,later:[7,18,37,40,41,43,47,50,53,54,59,82,83,104,106,112,114,116,117,123,124,127,129,130,137,141,154,155,158,165,170,171,172,173,188,191,195],latest:[101,127,129,140,142],latest_iter:187,latin1:127,latin:48,latitud:[61,74,159],latter:[40,112,114,119,128,129,132,141,142,147,148,159,163,166,167],launch:[16,101,118,140,143,183],lauren:132,lavend:137,lavenderblush:137,law:[22,45,47,48,102,106,112,174],layer:[29,30,31,33,34,35,36,38,39,40,42,43,44,45,48,62,78,108,121,126,127,128,131,132,133,134,135,136,141,155,157,182],layer_1:126,layer_2:126,layer_activ:82,layer_i:82,layer_input:82,layer_nam:133,layernorm1:132,layernorm2:132,layernorm:132,layout:[119,130],lbfg:[158,163],lc:[64,109,178],lcca:133,ldot:[151,152],le:[40,64,83,108,116,146,181],lea:130,lead:[48,50,59,64,75,78,104,112,114,116,119,121,122,130,137,139,140,146,147,148,154,157,171,176,179],lead_tim:137,leader:143,leaderboard:66,leaf:[50,54,150,155],leagu:116,leak:[57,112],leakag:[54,66,165],leaky_relu:131,leakyrelu:[31,36,37,129],lean:141,lear:154,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,38,39,40,42,44,46,47,48,49,51,52,53,54,55,57,58,60,61,62,66,68,69,71,75,76,77,78,80,82,90,92,93,98,99,100,102,103,104,106,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,127,128,131,132,133,134,136,139,140,142,145,146,147,150,151,152,153,154,155,156,161,164,167,171,172,173,176,179,180,181,182,183,185,188,189,190,192,193,195],learn_curv:64,learnabl:[32,82,132,141],learned_paramet:158,learner:[54,56,78,152,153,155],learning_curv:64,learning_r:[35,48,49,54,56,63,65,66,75,81,82,126,127,128,130,134,136,155,188,189],learningrateschedul:[32,128],learnpython:172,learnt:[18,54,57,64,133],least:[4,8,11,13,16,28,39,50,51,59,109,112,114,116,119,122,137,141,148,151,156,157,158,166,167,171,172,178],leav:[49,50,52,62,66,68,75,80,101,104,110,114,123,147,148,150,155,168,173,178,195],lectur:[83,116,139,151],led:58,lee:[7,107,165],leed:50,leff:139,left:[1,7,31,32,33,40,43,50,54,55,56,75,77,84,92,101,103,106,109,118,119,121,122,123,127,130,133,136,147,148,150,151,152,156,158,165,167,171,172,177,184,187],left_column:187,left_df:121,left_i:148,left_idx:55,left_index:[38,121],left_on:121,left_output:130,left_shifted_imag:84,leftarrow:151,legaci:101,legal:[112,171],legend:[22,29,31,32,33,34,35,37,38,42,45,47,48,50,51,75,76,82,108,109,111,127,133,136,137,147,148,150,158,178,186,189,190],legibl:147,legisl:108,legitim:59,leibler:128,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:59,len:[1,14,18,22,31,33,35,37,38,39,40,41,42,44,45,47,48,49,51,52,53,54,55,56,57,58,59,60,61,64,68,74,80,82,92,93,121,122,123,127,128,130,131,132,133,134,135,136,137,147,158,164,171,172,179,188,189,190,192,193,194],len_axi:122,lend:[143,167],lenet:132,length:[3,8,14,31,41,43,46,50,60,64,83,93,108,109,114,116,117,119,122,123,129,134,136,137,145,146,147,148,169,171,172,178,186,194],lenovo:62,leo:[147,148,150],lepiota:110,leq:[50,78,119,151],leqq:128,less:[1,6,7,8,18,26,29,31,33,36,39,40,41,49,50,52,54,56,59,66,77,92,99,101,104,109,111,112,118,119,129,134,139,140,141,143,145,147,150,151,154,155,157,158,165,168,171,172,176,179,193,194],less_equ:119,lesson:[54,62,72,134,137,166,167,168],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,66,68,74,76,77,78,80,82,83,86,96,97,99,100,102,103,104,106,108,109,110,111,112,114,116,117,118,119,121,122,123,124,126,128,129,132,133,134,136,137,138,141,142,143,144,145,146,147,148,150,151,152,155,157,158,159,161,162,163,164,165,166,167,168,169,170,171,173,174,176,177,179,180,186,187,188,191,192,194],lett:92,letter:[7,93,100,108,112,114,117,121,124,159,171,172,194],level:[7,41,43,45,47,54,57,58,59,101,112,116,119,121,128,129,132,140,141,143,145,150,151,155,156,165,171,173,179,184,188,191,192,195],leverag:[0,41,49,54,55,99,138,139,140,141,143,159,162,163,164,168],lexsort:119,lfw:31,lfw_attribut:31,lg:167,lgbm:54,lgbmregressor:54,lh:55,lhs_cnt:55,lhs_std:55,lhs_sum2:55,lhs_sum:55,li:[33,45,50,108,143,193],liabil:[92,93,171,172],liabl:[92,93,171,172],liaison:108,liang:133,lib:[57,121,122,123,146,163,167,179,186,193],liblinear:163,librari:[0,1,3,7,8,18,33,35,36,39,41,45,46,47,48,56,72,74,76,77,86,101,103,108,109,110,111,117,118,119,138,141,143,145,147,148,150,151,159,163,164,166,167,168,169,173,178,179,182,187],licenc:[57,156,184],licens:[22,41,45,47,48,83,84,92,93,101,141,146,171,172,186,187,188,189,192],lidiya:195,lie:[50,108,116],lieu:151,life:[11,18,34,50,59,60,101,102,106,112,114,116,119,145,158,165,171,174,191],lifecycl:[17,23,100,102,103,140,142,143,183],lifetim:151,lift:106,light:[39,49,114,132,159,165,187,195],lightbgm:54,lightcor:29,lighter:[102,174],lightgbm:[49,152],lightgbm_search:54,lightgrai:1,lightn:155,lightweight:140,like:[7,11,14,17,18,23,28,30,31,33,34,36,40,41,43,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,66,68,74,75,76,78,80,82,99,100,102,103,106,108,109,112,113,114,116,117,118,119,121,122,124,127,129,132,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,157,158,159,162,163,165,166,167,168,170,171,172,173,174,177,179,180,182,187,188,191,192,193,194,195],likehood:151,likelihood:[78,104,128,131,156,162,165,167],likewis:[34,41,119],lili:24,limit:[7,14,16,22,28,31,45,47,48,50,56,59,68,74,76,77,78,80,92,93,101,106,112,118,119,123,130,134,135,139,141,142,147,148,151,155,165,171,172,194],limits_:[50,131,158],limits_k:50,limousin:[17,23],lin_pr:60,lin_reg:[166,188],lin_reg_2:188,lin_svc:60,lin_svr:61,linalg:[76,134,158],line2d:166,line:[1,14,18,31,41,45,49,50,52,59,60,61,76,77,82,101,108,109,112,119,121,122,123,127,130,137,145,146,151,156,158,159,162,164,167,168,170,171,172,173,179,181,188,192,194,195],line_chart:187,line_kw:54,lineag:[112,142,176],linear:[18,31,33,35,41,42,45,49,50,51,52,54,55,56,60,61,63,65,68,69,75,78,80,81,82,84,119,126,127,129,130,132,141,146,150,151,155,158,162,163,165,168,169,170,171,172,183,186,191,192],linear_beta_schedul:128,linear_model:[49,56,63,64,65,66,68,74,80,81,137,158,159,163,164,166,167,170,188,189,190],linear_reg:[63,65],linear_reward_:130,linear_scor:59,linear_svc1000:59,linear_svc100:59,linear_svc:59,linearli:[59,83,119,128,141,156],linearregress:[74,76,137,166,170,188],linearregressionlinearregress:[166,170],linearsvc:[59,60],linearsvclinearsvc:60,linearsvr:61,linearsvrlinearsvr:61,lineplot2:[111,178],lineplot:[49,52,56,64,111,146,167,178],liner:166,linestyl:[14,18,32,77,156,158,184],linewidth:[38,50,54,59,77,109,137,156,158,170,178,184],linguist:[143,167],link:[1,28,29,31,35,61,101,104,106,108,114,122,123,130,133,141,142,145,151,152,155,159,170,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],linkag:[102,158],linnerud:88,linspac:[50,75,82,119,128,150,156,158,184,188],linux:[118,132],lisa:179,lisens:[63,65],lisheng:161,list1:92,list2:92,list3:92,list4:92,list5:92,list:[1,3,7,12,14,18,28,31,33,35,38,39,40,41,43,44,45,49,50,51,52,53,54,57,58,59,61,63,64,65,71,74,78,82,83,90,100,109,110,111,114,116,117,118,119,121,122,124,127,130,131,132,133,135,136,140,141,143,148,150,152,159,164,165,168,178,179,180],list_i:34,list_of_char:[172,194],list_of_coordin:119,list_of_numb:[172,194],listcomp:[121,172,194],listdir:[33,37,38,39],listedcolormap:[189,190],listen:[0,141,172],listlik:123,listnod:94,lite:159,liter:[171,193],literari:102,litt:145,littl:[1,7,14,30,40,41,47,63,65,68,71,74,78,80,106,108,111,117,123,127,132,146,148,151,152,158,162,164,166,168,170,171,188],liu:[132,143],live:[48,50,99,101,102,112,113,137,138,145,146,159,165,183],ljust:172,lkei:121,ll:[16,22,28,29,33,41,45,47,48,50,62,64,66,71,77,82,99,102,103,105,106,108,112,113,118,119,121,122,123,124,125,128,133,137,139,141,146,147,148,151,152,154,157,159,162,163,168,169,170,171,172,179,180,194],llabel:121,llc:[45,47,48,104],lmdb:180,lmgr:121,ln:151,lo:[40,127,172],load:[2,7,9,15,17,18,23,33,40,45,48,51,66,76,82,84,86,109,117,121,122,123,127,129,131,133,134,137,139,140,145,150,154,158,159,164,166,167,170,171,186,187,192,193],load_batch_from_fil:127,load_breast_canc:40,load_data:[29,30,40,41,126,182,192],load_dataset:82,load_diabet:170,load_digit:[50,158],load_ext:[12,25,40],load_imag:133,load_images_from_fold:39,load_img:39,load_iri:[7,46,117,186],load_model:[29,30,38,39,40,41,42,44,182],load_next_batch:158,loader:[33,131],loadmat:127,loadtestsfromtestcas:47,loan:[50,165,191],lobe:159,loc:[1,14,18,22,31,32,38,47,48,50,51,54,56,62,66,82,109,116,122,123,127,136,137,146,147,150,166,168,178,179,182,186],local:[14,28,43,57,62,100,101,106,118,121,123,127,132,133,135,156,159,163,165,170,171,179,184,186,193],localhost:29,localto:133,locat:[1,9,66,74,102,106,112,113,118,119,122,123,127,130,133,135,141,148,156,171,174,180],log1p:66,log2:[50,119,150],log:[0,9,16,37,38,40,54,66,78,82,84,100,101,114,119,128,131,133,139,140,151,152,176,189],log_2:50,log_classifi:49,log_dir:40,log_imag:131,log_model:[68,80],log_reg:[49,64,158],log_reg_scor:158,log_scor:[68,80],log_templ:31,log_transform:66,logaddexp:[119,152],loganberri:[172,194],logarithm:[119,141,143,192],logdir:40,logger:131,logging_level:54,logic:[3,34,50,82,119,121,139,165,167,170,172,194],logical_and:119,logical_not:119,logical_or:119,logical_xor:119,logist:[49,56,59,75,89,102,134,151,155,158,159,162,165,166,169,170,183,192],logisticregress:[49,56,64,68,80,158,159,163,164,167,189,190],logisticregressionlogisticregress:158,logisticregressor:64,logit:[37,41,82,127,131,132,134,135,136,141],logit_length:78,logit_output:134,logitech:39,logits_concat:135,logits_for_answ:82,logits_out:136,logvar:31,lokesh:139,lon:187,london:[12,139],long_:142,longer:[7,32,36,40,45,48,49,50,52,54,62,74,75,101,106,113,123,141,154,158,171,186,193],longest:[68,80,104],longitud:[61,74,159],loo:167,looa:166,loob:166,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,36,41,43,46,47,48,49,50,52,54,55,58,59,60,62,64,66,68,71,74,76,77,80,82,83,86,88,99,100,101,102,104,106,108,109,110,111,112,114,116,117,118,119,122,124,127,132,134,136,141,144,145,146,147,150,151,155,157,158,159,161,162,163,165,167,168,170,171,172,174,178,179,180,182,186,188,194],lookback:[38,44],lookout:121,lookup:[116,118,119],loop:[33,35,56,93,108,119,123,127,130,143,146,158,165,171,172,173,179,193,194],looper:[102,146,162,166,167,174],loos:[68,80,145],lopinavir:1,lose:[66,78],loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,48,54,55,56,62,76,116,123,126,127,128,129,133,134,136,150,152,153,155,157,163,182,184,185,188],loss_acc_metrics_df:40,loss_d:37,loss_fn:36,loss_fun:134,loss_funct:54,loss_g:37,loss_grad:82,loss_histori:152,loss_vae_fn:31,loss_valu:127,lossi:31,lossless:31,lost:31,lot:[3,7,14,46,48,49,50,52,56,59,66,85,99,100,101,113,114,117,132,134,137,145,148,150,151,152,154,155,157,159,162,164,165,171,191],lotarea:[54,66],lotfrontag:[54,66],lotfrontage_mean:54,lotshap:66,loud:[144,145,146],loudli:186,loukid:112,love:[36,50,93,162,171,195],low:[18,30,38,41,43,44,45,48,49,56,57,59,61,63,64,65,68,74,80,92,98,100,102,104,116,119,132,141,154,156,157,161,166,167,168,169,172,174,182],low_valu:142,lower:[1,3,7,29,47,48,49,54,56,59,64,74,76,77,93,101,112,116,119,122,123,126,127,134,136,141,147,151,158,166,167,172,176],lower_cas:97,lowercas:[93,172],lowest:[7,158],lowqualfinsf:54,loyal:147,loyal_cal:147,loyal_mean_scor:147,loyalti:108,lr:[31,33,34,37,48,63,64,65,75,81,156,163,182,184,188,189],lr_d:37,lr_decai:127,lr_g:37,lrn:127,lrschedul:128,ls:140,lst2:39,lst:[39,92,93,172,173],lstm:[42,129,134],lstm_builder:44,lstm_model:[38,42,134],lstm_output:134,lsuffix:121,lt:74,ltd:56,ltorgo:58,ltsm:129,ltv:151,lu:[132,133],luci:[24,143],lucidchart:104,luck:[47,108],lucki:[68,80],luckili:[82,134],lug_boot:57,luggag:57,lui:58,lunch:165,lund:193,lvert:[157,185],lvl:66,lw:[50,150,156,184,186],lwq:54,lxl:143,ly:82,m1:[18,170],m2:18,m:[1,3,12,18,24,25,37,59,63,65,66,98,99,100,101,104,109,110,111,112,116,119,121,122,123,129,130,134,141,142,144,145,146,147,150,151,152,156,157,158,160,161,162,163,164,165,166,172,179,184,191],m_:18,m_dep:[68,80],maaten:132,mac:[101,132,140,170],machin:[0,3,7,12,18,25,31,33,36,39,40,43,46,48,49,50,52,53,54,56,57,58,68,75,76,77,78,80,90,98,99,100,102,106,108,112,114,116,118,121,122,123,126,129,130,136,137,138,139,140,141,142,145,146,147,150,151,152,153,154,155,157,162,163,164,166,167,168,173,176,179,181,182,183,185,188,193,195],machine_cpu:58,machine_cup:53,machine_data:[53,58],machine_label:58,machine_learning_complet:80,maco:[118,173],macro:[35,57,59,60,163,164,167],made:[16,24,29,39,43,49,50,62,68,75,80,82,100,101,106,118,119,129,132,137,139,140,145,147,151,153,165,170,171,173,180,193],madip:[145,166,167,168],mae:[29,38,54,62,76,78,150],mae_cb:54,mae_lgbm:54,mae_xgb:54,magic:[151,165,172],magic_dict:92,magnitud:[66,76,77,83,116,166],mah:[68,80],mai:[1,8,12,14,22,25,28,29,30,31,32,34,40,45,46,47,48,49,50,52,56,57,58,59,60,62,63,64,65,68,74,75,76,78,80,82,101,102,103,104,106,109,112,113,114,116,117,118,119,121,122,123,124,127,130,132,133,137,139,140,141,142,143,145,147,148,150,151,154,155,156,157,158,159,165,166,167,171,172,173,174,177,184,193,194],mail:[50,114,147],main:[3,12,18,25,31,37,43,49,50,53,54,58,59,66,68,75,80,82,99,101,106,108,114,116,119,126,127,129,133,139,143,146,150,151,153,156,157,165,166,167,171,176,177,191],mainli:[54,126,132,136,156],maint:57,maintain:[31,57,75,99,113,129,132,138,140,142,150,165],mainten:[57,99,106,143,165,171,177,193],maje:139,major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,78,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,158,159,162,163,164,165,166,167,168,170,171,172,173,181,186,187,188,189,192],major_axi:123,major_disciplin:56,majumdar:143,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,35,38,39,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,68,74,76,77,78,80,82,84,92,99,101,102,103,104,106,109,111,112,113,114,116,117,119,121,123,124,127,128,129,130,131,132,134,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,156,157,158,159,162,165,166,170,171,172,173,174,176,179,180,187,188,191,194,195],make_blob:[156,158,184],make_circl:[150,156,184,189],make_classif:[189,190],make_dataclass:123,make_df:179,make_grid:33,make_increment_funct:171,make_lag:137,make_me_smil:31,make_moon:[158,189],make_multistep_target:137,make_pipelin:166,make_regress:[63,65],makedir:[29,30,31,33,36,37,39,41,66,127,134,136,158],maketran:93,makeup:108,male:[22,56,165],malici:112,malign:40,man:[101,159],manag:[0,38,99,100,101,102,103,104,113,116,122,125,139,140,142,150,169,173,174,180],manageri:104,mandat:112,mandi:145,maneuv:108,manfr:[172,194],mango:[39,195],mani:[1,3,7,18,29,35,36,39,40,43,44,46,47,49,50,51,52,53,54,56,57,58,59,60,61,66,68,74,75,78,80,83,88,99,100,101,102,103,104,106,108,110,111,112,114,116,117,119,121,122,123,125,127,129,130,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,159,162,163,165,168,170,171,172,173,175,176,179,182,191,193,194,195],manifest:78,manifold:[30,186],manipul:[84,108,112,114,123,124,125,130,165,172,179,187,191,194],manishmsft:[118,180],manner:[7,30,50,59,102,112,114,117,123,142,166,172,176,194],manual:[1,141,142,143,157,158,186],manual_se:33,manufactur:[140,165,191],map:[1,5,7,22,30,31,33,36,39,41,43,44,48,51,56,59,68,80,92,102,109,114,119,126,127,128,129,130,132,133,134,142,145,148,156,162,165,167,171,172,175,191,192,193,194],map_data:187,map_funct:92,mapper:[30,121],mapper_fruit_nam:39,mapper_noisi:30,mapper_org:30,mappingproxi:119,mar:[141,171,195],marcela:144,march:[118,175,180],marco:132,margarin:108,margin:[60,61,82,121,122,123,127,143,159],mari:[171,193],marital_statu:51,mark:[1,64,83,92,123,156,165,191],markdown:[39,170],marker:[83,123,158,167,186],marker_s:30,markeredgecolor:137,markeredgewidth:[156,184],markerfacecolor:137,markers:[156,158,184],market:[49,52,99,112,114,130,145,165,175],marketplac:112,marklog:180,marktab:106,maroon:[110,178],marquis:108,mart:151,martin:[22,141,142],martinfowl:140,mask:[7,46,54,64,117,119,122,133,179],mask_logit:135,maskrcnn_upxconv_head:135,mason:112,mass:[24,104,109,151,170],massiv:[41,102,143,174],master:[7,14,56,68,77,80,127,145,158],masteri:128,masvnrarea:54,masvnrtyp:54,mat:127,mat_mean:127,mat_tensor:43,match:[0,7,34,41,45,48,63,65,71,78,119,121,123,124,128,132,137,145,156,165,171,186],matconvnet:127,materi:[50,102,116,117],math:[18,29,31,36,38,43,46,60,61,78,92,116,128,133,166,167,168,173,193],mathbb:[116,130,131,151],mathbf:[148,158,188],mathcal:[78,130,151],mathemat:[54,56,59,75,76,77,92,93,113,114,116,119,127,128,129,131,142,145,151,157,165,166,172,173,179,188,194,195],mathematician:116,mathfrak:148,matlab_2016:38,matlotlib:127,matmul:[119,126,127,130,131,134,136],matmul_1:134,mato:48,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,72,74,75,76,77,80,82,83,84,98,99,100,101,102,108,109,110,111,116,126,127,128,129,130,133,134,136,137,144,145,146,147,148,150,152,155,156,157,158,159,160,161,162,163,164,166,167,170,174,178,182,184,186,187,188,189,190,192],matplotlibdeprecationwarn:[62,186],matric:[45,50,66,119,136,141,156,167],matrix:[1,8,18,24,33,34,39,40,43,49,50,52,57,60,64,68,74,80,82,83,116,119,127,145,156,165,170,172,186,194],matter:[59,82,104,112,139,143,157,165,167,168,171,173,185],maverick:143,max:[3,7,18,22,32,33,38,39,41,47,48,50,57,58,59,60,61,64,74,78,103,109,121,127,131,135,136,145,150,152,155,158,159,172,178,189,190],max_ag:22,max_bin:[54,66,154,155],max_cat_threshold:66,max_cat_to_onehot:[66,154,155],max_concurrent_iter:[9,100],max_delta:127,max_delta_step:[66,154,155],max_depth:[49,50,52,54,57,58,66,148,150,152,154,155,186],max_depth_grid:150,max_document_length:136,max_featur:[49,50,52,57,58,148,150],max_features_grid:150,max_it:[56,64,75,158,159],max_ix:136,max_leaf_nod:[52,53,56,57,58,150],max_leav:[66,154,155],max_len:[136,172],max_nod:[9,100],max_pool1:127,max_pool2:127,max_pool:127,max_pool_size1:127,max_pool_size2:127,max_pooling2d:132,max_row:[45,47,48],max_sampl:49,max_sequence_length:136,max_val:29,maxbodymass:[109,178],maxim:[37,50,59,78,130,131,164,171,186],maximis:156,maximum:[3,7,22,47,48,49,50,53,56,57,58,75,78,82,100,101,109,126,127,132,150,156,167],maxiter:130,maxlen:[35,136],maxlength:[109,178],maxpool2d:[31,32,33,34,128],maxpool:127,maxpooling2d:[39,128,133],maxstep:130,maxval:[128,131],maxwingspan:[109,178],mayb:[7,62,78,104,111,122,137,146,152,164,166,168],maybe_cal:122,maybe_convert_indic:122,maze:130,maze_collect:130,maze_typ:130,mb:[29,38,59,74,162],mbox:[151,152],mcculloch:136,mcgraw:143,mckinnei:[119,121],md5_checksum:57,md:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,135,144,145,157,158,160,161,162,163,164,170],mdp:130,me:[1,36,40,106,127,132,152,166,167,173,177,187],meadow:[110,178],mean:[3,7,14,18,22,29,31,32,33,34,36,37,38,40,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,74,75,76,78,80,82,83,84,92,99,100,101,102,103,104,108,111,112,113,114,117,119,121,124,126,127,130,131,134,136,137,141,143,145,147,148,150,151,152,154,155,156,157,164,165,166,167,168,171,172,173,174,179,184,188,189,191,192,194],mean_absolute_error:[54,76,154,192],mean_actu:77,mean_confidence_interv:18,mean_cross_v:54,mean_imput:74,mean_squar:126,mean_squared_error:[38,42,53,54,58,61,74,76,137,166,192],meanarr:48,meaning:[3,16,30,41,109,112,132,139,165,177],meansquarederror:[29,30],meant:[119,140],meantim:165,measur:[7,14,24,41,49,50,52,59,60,66,68,74,76,77,78,80,101,102,106,111,112,113,114,116,128,130,137,141,142,143,145,146,148,150,153,158,165,166,168,171,176,177,186,188,191],mechan:[45,75,119,129,132,139,140,171,193],med:[1,57,167],media:[5,49,50,52,102,104,116,140,142,143,165,174],median:[7,18,22,54,57,74,123,151,165],median_house_valu:[61,74],median_incom:[61,74],medic:[1,8,40,99,101,102,112,133,139,143,145,165,170,176],medicin:[8,114,165],medium:[1,59,68,74,80,104,126,180],meet:[104,108,112,119,140,143,168,176],mega:[68,80],megapixel:[39,68,80],megatrend:112,mehdi:131,mehta:139,mel:141,melt:64,member:[5,41,50,102,104,106,112,145,147,172,174,177,194],membership:[172,173,194],memcach:180,memcachedb:180,meme:151,memmap:158,memo:104,memor:[41,68,80],memori:[29,33,35,38,49,53,54,58,59,60,68,74,80,117,119,127,129,130,133,139,140,141,145,155,156,158,162,166,172,179],memory_gb:[9,100],memory_unit:130,memoryview:[172,194],men:[56,88,112,176],menglong:132,mention:[0,1,2,8,19,39,40,43,56,59,106,114,116,118,119,123,129,133,137,139,143,148,151,157,165,171,179],menu:[40,100,101,187],merchant:[92,93,171,172],mercuri:195,mere:119,merg:[14,31,38,92,117,151,171,172],merge_dict:93,merged_dict:93,merged_list:94,mergetwolist:94,mergevalid:121,merteuil:108,meshgrid:[50,75,150,156,158,184,189,190],mess:[68,80,168],messag:[50,59,92,101,104,113,122,136,147,165,171,172,177],messi:[139,165],met:[31,40,119],meta:[15,54,141,147,159],metadata:[1,7,46,113,117,119,123,124,139,171,193],metaflow:140,metal:140,meteorologist:137,meter:[102,174],metho:[63,64,65],method:[1,3,7,14,18,24,30,31,33,36,41,46,47,50,54,56,57,58,68,75,76,80,91,92,100,101,102,106,108,109,110,111,114,117,119,121,122,126,128,132,133,135,137,138,139,140,141,142,143,145,147,148,150,151,153,155,159,162,163,164,165,166,167,170,176,177,179,183,186,193],method_nam:171,methodnam:171,methodolog:[128,141,151],methylprednisolon:1,metric:[29,30,32,34,36,38,39,40,41,44,47,49,50,51,52,53,54,55,56,57,58,60,61,63,65,74,75,76,83,84,100,101,104,133,137,139,142,146,150,152,154,155,158,159,163,164,166,167,186,189,190],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:59,mi:45,michael:143,michalbialecki:[118,180],michel:143,michigan:112,mickei:92,micro:[139,154,159],microcomput:140,microphon:141,microprocessor:[68,80],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,38,41,46,49,54,67,68,69,71,72,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,124,139,140,143,145,146,159,162,163,164,166,167,168,170,174,176,180],mid:[92,142],middl:[88,92,110,133,146,156],middlenam:173,midnight:122,midpoint:[142,167],might:[1,7,11,14,18,26,33,34,39,43,47,49,54,55,59,62,64,66,68,75,77,78,80,99,101,108,111,113,114,116,117,119,124,130,135,137,139,141,145,147,150,157,158,163,165,166,167,170,171,172,173,180,182,188,191],migrat:139,mike:24,milk:155,miller:116,millimet:[124,180],million:[32,33,102,132,165,174,191],millionair:173,mimic:[32,41,114,119,165,171,191],min:[1,3,7,18,31,38,47,48,50,58,59,61,64,66,74,83,103,109,121,123,131,132,135,136,145,150,151,155,158,159,178,189,190],min_:[57,152,188],min_after_dequeu:127,min_child_sampl:54,min_child_weight:[54,66,154,155],min_freq:134,min_impurity_decreas:[56,57,58],min_impurity_split:[56,150],min_ix:136,min_leaf:55,min_nod:[9,100],min_sampl:158,min_samples_leaf:[50,52,57,58,150],min_samples_leaf_grid:150,min_samples_split:[52,53,57,58,150],min_val:29,min_weight_fraction_leaf:[56,57,58,150],min_word_freq:134,min_word_frequ:136,minbodymass:[109,178],mind:[7,36,45,102,106,117,121,132,141,143,146,167,177],mine:[3,48,50,106,125,139,156,173],minecraft:151,ming:193,mini:[141,167],miniatur:166,minibatch:[35,37,82],minibatch_kmean:158,minibatch_kmeans_vs_kmean:158,minibatchkmean:158,minibatchkmeansminibatchkmean:158,miniconda3:146,miniconda:[163,167],minim:[29,32,41,49,50,52,53,54,55,75,76,78,89,112,114,126,127,131,136,137,141,145,146,147,151,152,155,157,158,163,165,166,176,188,192],minima:[55,141],minimis:[156,184],minimum:[3,7,48,50,53,56,58,64,75,101,109,119,150,152,155,156,157,166,172,194],minio_url:57,minist:127,minlength:[109,178],minmax:131,minmaxscal:[38,40,42,47,60,62,68,74,80],minnesota:[4,109,178],minor:[48,59,66,78,162],minor_axi:123,minu:[151,152],minut:[9,47,49,50,52,100,101,104,113,114,119,127,140,142,145,146,147,158,162,164,165,170],minval:[128,131],minwingspan:[109,178],mirza:131,misc:[127,193],miscfeatur:[54,66],misclassfi:54,misclassif:[50,64,83],misclassifi:[54,64,139,155],miscval:[54,66],misgend:102,mislead:[57,112,139,165,176,191],misleading_label:36,mismatch:[58,119],misrepresent:[112,176],miss:[14,16,18,19,22,24,25,31,49,50,52,53,56,58,61,66,76,77,103,114,119,121,122,123,137,139,141,145,150,152,154,165,166,171,191],miss_rinola:38,missclass:50,missing_count:54,mission:112,mistak:[50,54,62,66,104,130,139,151,155,173],mistaken:171,misung:143,misus:140,mit:[41,56,92,93,102,112,146,156,171,172,174,176,184],mitchel:[50,165,191],mitig:[28,102,112,157,174],mitpress:93,mittal:139,mix:[122,123,151,166,168,172,194],mixed4d_3x3_bottleneck_pre_relu:127,mixed_list:[172,194],mixtur:[145,151],mkdir:[37,130],mkframe:14,ml2:158,ml:[48,49,52,60,66,67,68,69,71,72,74,85,86,88,89,90,91,98,99,116,129,136,137,138,140,141,143,159,161,162,163,164,165,166,167,168,169,170,175,191],mlaa:140,mlb:18,mlcc:[47,48],mleap:140,mlearn:58,mledu:[47,48],mlflow:[101,140],mlop:[138,139,142],mlp:[30,43,135,192],mlpclassifi:163,mlsummari:58,mltest:47,mm:168,mmax:[53,58],mmin:[53,58],mn:54,mncb:59,mnist:[29,30,40,82,126,131,158,182,192],mnist_784:158,mnist_8x8:186,mnist_data:131,mnist_test:[32,82,84],mnist_train:[32,82,84],mnist_train_smal:47,mnistdata:47,mnistdf:47,mnistdf_backup:47,mnistlabel:47,mnistpr:47,mnprv:54,mnww:54,mo:186,mobil:[68,80,104,132,140,159,187],mobile_price_test:[68,80],mobile_price_train:[68,80],mobile_test:[68,80],mobile_train:[68,80],mobile_wt:[68,80],mobilenetv1:133,mobilenetv2:[132,133],mock:[5,24,53,78],mock_df_boxplot:24,mock_df_hist:53,mock_df_pairplot:53,mock_df_plot:24,mock_pairplot:53,mod_resourc:193,mode:[0,7,33,51,54,101,131,132,133,135,140,141,158,159,166,167,171,183],modefin:46,modefined_sklearn_iris_dataset:46,model2:135,model:[7,10,14,20,31,32,35,42,55,58,60,61,62,63,75,77,78,84,85,88,89,90,98,102,103,106,112,113,114,116,117,119,121,126,127,129,131,134,138,139,145,147,148,150,151,152,153,155,156,158,161,162,163,164,175,176,177,180,183,184,186,187],model_1:40,model_auto:31,model_definit:127,model_ev:40,model_filenam:159,model_fn:127,model_histori:133,model_lasso:66,model_learning_r:127,model_mean:128,model_nam:[9,30,31,100,131],model_output:[127,134],model_path:[38,39,40,42,44,100,134],model_perform:54,model_respons:[30,31],model_ridg:66,model_save_path:[30,31],model_select:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,74,75,80,83,84,137,150,152,154,155,158,159,163,164,166,167,170,186,188,189,190],model_url:[30,31,38,39,40,42,44],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:66,modelcheckpoint:[39,40,44],modelfit:56,moder:[64,143],modern:[62,106,129,140,142],modif:[29,132,150],modifi:[1,8,45,47,48,50,92,93,114,119,121,123,124,127,133,141,142,152,154,171,172,173,179,180,186,193,195],modifii:93,modnam:171,modul:[31,33,37,59,66,82,100,101,114,118,133,135,140,141,142,158,159,167,170],modulenotfounderror:[82,173],modulo:[172,194],modulu:[172,173,194,195],moment:[101,108,137,141,142,146,151,162,165,166,172,173,192],momentarili:179,momentum:[36,192],momentumoptim:127,mondai:[49,52],monei:[18,101,102,114,148,151,173,174],moneybal:102,mongodb:[114,180],monitor:[39,40,41,44,100,101,102,138,139,140,141,142,175],monkei:121,monoton:[122,143,150,171],monotone_constraint:[66,154,155],monster:82,month:[1,14,15,39,113,137,166,168,173],monthli:[1,113,137,166],mood:[102,174],moodle2:193,moon:31,moraga:152,moral:[6,108,112,176],mordvintsev:127,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,36,39,40,41,43,46,48,50,53,54,56,57,58,59,62,63,64,65,66,74,75,76,77,78,82,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,119,121,123,124,127,129,130,132,133,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,159,162,164,165,166,167,169,170,171,172,173,174,177,179,180,184,186,187,188,191,192,193,194,195],moreov:[50,59,62,132,151,152],mosold:[54,66],mosquera:143,most:[1,3,7,14,17,18,24,29,30,31,32,36,40,41,43,47,48,49,50,51,52,53,54,55,57,58,59,60,62,63,65,66,74,78,82,99,101,104,107,109,110,111,112,114,116,117,118,119,121,122,123,124,126,129,130,131,132,137,138,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,162,163,165,168,170,171,172,173,175,178,179,186,191,192,193,194],mostli:[7,59,114,129,141,150,151,166,167,191],motiv:[58,61,102,112,129],motor:130,motorcycl:50,mount:143,mous:92,move:[7,14,33,39,47,49,52,75,78,82,104,106,108,119,127,128,129,139,141,142,147,151,154,158,172,173],move_down:130,move_left:130,move_right:130,move_up:130,movement:[130,151],movi:[102,108,112,165,174,176],moving_mean:132,moving_vari:132,mp3:31,mpeg:31,mpimg:37,mpl:[158,162],mpl_toolkit:[75,83,108,156,184,186],mplot3d:[75,83,108,156,184,186],mrcnn:135,mri:[102,143],mrr:141,ms:[158,179],mse:[35,38,44,45,47,48,50,53,55,58,61,74,75,76,78,83,126,141,148,150,155,166,188],mse_cross_v:74,mseloss:31,msg:[47,167],msi:38,msocach:38,msr:102,msrafil:135,mssubclass:[54,66],mszone:[54,66],mtwuhpol:59,mu:[31,116,128,147,150],mu_p:128,mu_q:128,much:[1,3,7,18,30,47,48,49,50,52,54,55,57,58,59,61,62,66,68,74,80,101,103,104,114,116,119,121,124,129,133,139,141,146,147,148,150,151,152,157,158,162,165,166,167,171,179,191],mudiger:141,mug:132,mujumdar:139,mul:[31,127],multi:[30,43,47,57,78,119,121,123,132,133,137,139,140,142,145,156,162,171,179,180],multi_class:[158,163],multi_grid:133,multi_line_str:[172,194],multiclass:[133,141,156,162,163],multicollinear:[76,186],multidimension:[43,119,127],multifield:119,multiheadattent:[128,132],multiindex:[121,123],multilabel:163,multilay:132,multilin:[111,172,173,194,195],multiline_str:172,multimod:116,multinomi:[163,167],multioutput:163,multioutputregressor:137,multipl:[0,7,12,16,18,33,41,43,45,49,52,53,56,66,83,88,92,93,106,109,111,114,117,121,122,123,124,127,129,132,134,137,139,140,141,143,145,151,153,155,156,157,170,173,179,180,184,193,194,195],multipli:[43,75,82,92,118,119,132,151,154,157,166,193],multipurpos:195,multitud:154,multivalu:180,multivari:188,munich:[112,176],munigala:139,muralidhar:64,muscl:173,music:[144,145,146,147],muskmelon:39,must:[0,30,32,36,40,41,45,48,59,64,74,75,82,92,100,104,106,113,115,118,119,122,123,127,132,140,141,143,145,156,158,159,165,166,171,172,184,191,193,194],mustach:159,mutabl:[43,119,171,172,194],mutlipl:127,muufdbikxdmks9nw6kt1ryvntpqvf9:59,mv:180,mvbase:180,mventerpris:180,mx:75,mx_i:75,mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:59,my:[34,54,119,121,134,135,141,142,171,172,187,193,194],my_conv_net:127,my_dict:[92,93],my_funct:193,my_get_text:[171,193],my_imput:154,my_list:[92,193],my_mnist:158,my_model:154,my_modul:193,my_optim:127,my_own_classifi:189,my_sum:[96,193],my_tupl:[172,194],mybind:183,mybnk3dsmcymz0gwylxxqfulhrvy5axto:59,mycount:171,myct:[53,58],mycustomerror:171,myfunct:193,myhtmlpars:3,mylst:173,mymodel0:56,mymodel:56,myownlinearregress:188,myownlogisticregress:[81,189],myqcloud:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,145,146,158,162,163,164,166,178],mysql:[124,180],myst:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],mysteri:162,mythbusting_1:57,n24wr7ee6evwkotuekcka3picccvrgxpyku:59,n:[7,9,18,25,29,30,31,33,35,38,39,40,45,50,51,52,55,56,57,59,63,64,65,75,77,78,84,92,93,101,108,112,116,119,122,123,126,127,128,130,131,132,133,134,135,136,137,140,141,143,147,148,150,151,156,158,166,167,171,172,173,175,177,180,184,188,193,194],n_1:50,n_2:50,n_:150,n_anchor:135,n_arrai:43,n_batch:131,n_channel:31,n_class:[82,132],n_classifi:164,n_cluster:[146,158,186],n_clusters_:158,n_clusters_per_class:[189,190],n_col:[31,131],n_color:[137,158],n_column:48,n_compon:[30,186],n_connected_components_:158,n_core:[68,80],n_dense_block:132,n_estim:[49,50,51,52,53,54,55,56,66,148,150,155,164],n_featur:[38,63,65,81,188,189,190],n_features_in_:158,n_filter:132,n_group:128,n_head:128,n_hour:38,n_i:[50,119],n_imag:37,n_in:38,n_inform:[189,190],n_init:[146,158],n_input:37,n_iter:[54,61,81,158,188,189],n_iter_no_chang:56,n_job:[50,52,53,56,66,84,150,155],n_label:158,n_layer:132,n_layers_per_block:132,n_leaves_:158,n_neighbor:[83,84,158],n_ob:38,n_out:38,n_output:37,n_redund:[189,190],n_resnet:128,n_row:[31,48,131],n_sampl:[50,57,63,65,81,147,150,156,158,184,188,189],n_split:[56,59,64,150],n_test:[50,150],n_train:[50,150],n_train_hour:38,n_var:38,na:[7,14,46,51,54,66,117,121,122,123,135,141],na_val:51,nabla:151,naftaliharri:[146,158],nagalapatti:139,nair:[33,127],naiv:[82,119,151,154],name1:119,name2:119,name:[0,1,7,8,9,12,14,15,18,22,24,29,32,36,38,40,41,54,55,57,58,59,60,61,64,74,82,83,92,93,96,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,118,119,121,122,124,127,128,129,132,133,134,135,136,137,140,141,144,145,148,151,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,178,179,180,186,187,193,194,195],name_1:[172,194],name_2:[172,194],nameerror:[127,171,173],namespac:[121,122,123,171,193],nan:[1,14,18,38,45,46,47,51,54,56,64,66,74,116,117,119,121,123,141,154,155,166,167],nanosecond:[53,58],narr:[108,112],narrow:[45,49,50,92,110,147,164,165,178,191],nash:131,nasknxwdtb4aaaaasuvork5cyii:59,nasty_list:92,nat:35,nation:[102,159,162,174],nativ:[140,179,180],native_countri:51,native_country_41:51,natur:[1,39,43,45,47,54,59,104,107,110,111,112,114,119,122,123,129,130,136,137,141,143,145,166,168,173,188],naught:82,navig:[99,101,102,159,165,174],nax4:135,nbmake:0,nbsp:41,nbviewer:[57,58,60,61,66,154,155,158,166,170],nbyte:179,ncc:58,nchw:135,ncluster:146,ncol:[37,39,127],nconfus:39,ncss:135,ndarrai:74,ndf:38,ndframe:122,ndim:[43,119,121,179],ndimag:84,nearbi:[145,150],nearer:166,nearest:[1,31,83,84,145,146,156,158,163,165,171,182,184],nearest_neighbor:133,nearli:[49,52,68,80,135,179,188],neat:[66,166,167,171],neatli:163,necess:129,necessar:140,necessari:[0,7,12,18,20,25,39,45,50,76,77,99,100,108,109,110,111,112,116,117,119,121,122,123,127,129,134,137,139,140,141,144,145,146,156,157,158,160,161,162,163,164,165,166,168,171,172,191],necessarili:[49,66,104,116,126,141,166],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,38,40,41,42,43,44,46,47,48,49,50,52,53,54,55,56,57,58,59,62,63,65,69,71,72,76,82,83,85,88,89,90,91,92,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,127,128,131,133,137,139,140,141,142,143,145,146,147,150,151,154,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,176,177,180,184,186,187,188,191,193,194],needless:[7,119],neg:[40,41,50,51,52,56,57,59,66,68,80,92,102,116,119,127,128,129,130,131,141,143,151,156,158,167,171,172,173,182,192,194,195],neg_mean_squared_error:66,neg_root_mean_squared_error:[54,74],negative_integ:[172,194],negative_slop:37,negativs:52,neglig:48,neigh_garag:54,neigh_lot:54,neighbor:[49,52,56,83,84,130,146,158,163,165],neighborhood:54,neightborhood:54,neither:[71,152],neo4j:180,nepoch:31,neptun:195,neq:[119,130,147],nervou:136,ness:135,nest:[56,75,93,108,119,123,171],nested_list:93,nested_tupl:172,nestim:59,net50:132,net:[6,25,32,35,47,132,133,136,140,151,155],netd:37,neteas:38,netflix:[112,129,165,176],netg:37,network:[5,29,30,31,36,38,41,43,45,47,48,49,62,64,68,80,99,102,114,119,121,126,130,132,133,134,135,137,138,139,140,141,143,151,157,159,162,163,165,170,175,176,183,190,191],network_weight:127,networth:173,neural:[29,30,31,35,36,37,41,43,45,47,49,62,64,68,80,119,121,126,130,132,133,134,135,137,138,141,143,151,157,159,162,163,165,170,182,183,190,191],neural_network:127,neuralearn:128,neuron:[30,40,41,45,47,62,129,136,141,157,181],neurral:157,neutral:140,neutron:59,never:[31,40,49,50,52,54,56,57,82,101,113,119,131,132,141,157,165,171,191],nevertheless:[7,83,117,119],new_ax:121,new_column:[14,166,167,168],new_data:122,new_df:30,new_dict:172,new_imag:34,new_label:[121,122],new_pumpkin:[166,167,168],new_row:121,newaxi:[29,30,45,63,65,78,119,133,170],newbi:141,newer:[74,141,179],newli:[14,123,124,172],newlin:[134,172,193],newshap:119,newton:[92,163],next:[3,7,9,34,35,36,37,38,39,40,41,44,46,47,48,49,50,52,53,54,56,58,61,62,76,92,93,94,98,100,101,102,104,106,112,117,119,121,124,127,128,129,130,132,134,136,137,140,141,142,145,147,150,151,152,154,155,156,158,159,162,164,165,167,168,170,171,172,173,179,187,191,193,194],next_num:93,next_stat:35,nfals:59,nfold:155,ng17:141,ng:[78,108,127,139,141,142,165],ngo:56,nh:135,nhwc:[131,135],ni:[172,194],nice:[47,50,66,109,152,162,172,186,194],nicer:[1,14,171],nichol:128,nick:[106,127,134,136,165],nigeria:144,nigerian:[145,146],night:[50,127,147,159,188],ninfav:14,ninfect:14,nip:[127,143],nipy_spectr:186,nitin:139,niven:188,nj:[140,147],nl:57,nlargest:38,nlookup:119,nlp:[1,59,132,141],nlp_rake:3,nltk:1,nmodel:56,nmultilin:173,nn:[31,33,37,40,126,127,128,130,131,132,134,135,136],nn_vi:181,no_enrol:56,no_exceptions_has_been_fir:171,no_grad:[31,33],no_missing_data_df:46,no_missing_dup_data_df:46,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:141,node:[1,29,30,41,50,100,101,108,118,127,134,140,148,150,155,180,195],node_id:148,nois:[3,29,31,36,37,41,45,50,59,64,68,80,126,127,130,131,143,145,150,151,156,157,158,182,184,188,189],noise_factor:[29,30],noise_s:131,noise_shap:47,noisi:[29,142,145,146,150,151],nol20:114,nolli:114,nomin:[54,57,155],non:[1,14,18,29,38,44,54,56,59,60,61,74,92,93,101,112,117,119,121,122,123,125,126,127,128,131,134,141,143,145,148,150,151,155,156,157,165,166,171,176,183,193],non_block:33,non_cor:158,non_core_mask:158,none:[3,9,14,18,22,24,29,35,36,38,39,45,47,48,49,52,53,55,56,57,58,63,65,66,68,76,80,81,89,93,94,100,101,110,111,116,117,119,121,122,123,128,130,131,132,133,135,136,137,146,147,150,154,155,156,157,158,162,166,171,172,178,184,186,188,189,194],nonetheless:158,nonetyp:[172,179,194],nonexistent_column:14,nonflat:145,noninfring:[92,93,171,172],nonlin:45,nonlinear:[32,45,61,76,127,129,132,141,157,166],nonoptim:141,nonparametr:[150,163],nonzero:[55,119],nooooooo:173,noqa:[171,172],nor:71,norm1:127,norm2:127,norm:[112,127,135,157,158],norm_hist:54,normal:[7,29,30,31,32,36,37,40,43,45,49,50,52,59,66,68,74,76,80,82,117,119,126,127,128,129,131,132,133,134,135,139,141,146,148,150,151,157,165,168,171,182,186,192],normal_:37,normal_goal_i:130,normal_goal_x:130,normal_i:130,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:130,normalizaiton:32,normalization_matrix:127,normalization_mean:127,normalized_data:[68,80],normalizedata:48,norri:92,north:[74,169],northgat:180,norwai:195,norwegian:171,nosql:[114,176],nostruct:119,not_equ:119,not_existing_charact:[172,194],not_existing_vari:171,not_ther:119,notabl:[61,129,165,180],notat:[54,113,118,119,123,171,172,194],notclean:38,note:[0,1,7,8,14,18,29,36,40,41,47,48,50,52,53,54,57,58,61,66,68,80,83,84,100,101,103,111,112,113,116,117,119,121,122,123,127,128,129,133,141,143,145,147,148,150,151,152,156,158,166,168,170,171,172,186,188,194],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,36,40,41,49,53,54,57,58,60,61,63,64,65,66,68,69,72,80,82,83,84,85,89,101,102,103,116,117,129,138,145,146,154,155,158,159,163,166,167,168,169,173,174,179,183,186,187,188,189,192],notebook_path:[29,30,31,33,39,41,66],noteworthi:[78,128],notexist:3,notfittederror:152,noth:[7,41,57,60,62,82,111,119,147,151,152,154,155,158,171],notic:[7,29,40,48,92,93,102,104,106,109,110,111,116,117,118,124,137,157,159,165,168,171,172,177,179,180,188,191,193],notifi:[112,176],notion:[49,58,165],notnul:[7,46,51,117,179],notori:[36,108],notwithstand:[7,117],noun:132,novel:[108,133,135],novemb:[108,137,140,141,142],novic:104,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,36,40,41,43,45,46,47,48,49,50,51,52,54,56,57,58,59,60,61,62,66,68,74,75,78,80,82,83,89,91,99,100,101,102,104,110,111,112,113,114,116,117,119,121,123,124,127,133,134,135,136,137,140,141,146,147,148,150,151,152,155,156,157,158,159,162,163,165,166,167,168,170,171,172,173,174,180,186,187,188,194],nowadai:[114,156],nowdai:165,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,78,81,82,84,86,116,117,119,121,122,123,126,127,128,130,131,132,134,135,136,137,142,147,148,150,152,155,156,158,159,162,163,164,166,167,170,179,182,184,186,187,188,189,190,192],np_util:32,npm:108,npredict:39,npy:34,npython:173,nrow:[33,37,39,127],ns:38,nsampl:[38,44,133],nsecond:172,nshape:[63,65],nstandard:18,nswdeman:[49,52],nswdemand:[49,52],nswprice:[49,52],nt:[109,178,180],ntest:[40,41,192],nthe:[40,49,52,53,57,58,60,61,68,80],ntrain:64,ntree:150,ntrue:59,nu:152,nudg:[112,176],nuforc:159,null_accuraci:59,nullifi:78,num1:193,num2:193,num3:193,num:[61,74,92,119,126,128,131,133,134,172,193,194],num_anchor:135,num_batch:[131,134,136],num_block:132,num_boost_round:[66,155],num_categori:135,num_channel:127,num_class:[32,78,132,133,135],num_col:[41,54],num_conv:135,num_correct:127,num_epoch:[33,131],num_exampl:133,num_feat:[61,74],num_feats_imput:74,num_feats_pip:74,num_feats_preprocess:74,num_featur:[82,126],num_filt:132,num_gens_to_wait:127,num_head:[128,132],num_hidden_1:126,num_hidden_2:126,num_hours_studi:188,num_imag:41,num_img:36,num_input_data:[68,80],num_label:192,num_lay:132,num_list:[61,74],num_memory_unit:130,num_output:82,num_parallel_cal:133,num_parallel_tre:[66,154,155],num_patch:132,num_pip:61,num_preprocess:61,num_queri:135,num_row:41,num_scal:74,num_target:127,num_test_sampl:131,num_thread:127,num_to_plot:148,num_unit:[82,136],num_vowel:172,num_work:33,numa:29,numa_nod:29,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,38,39,40,41,43,45,46,47,48,49,50,52,54,55,57,58,59,62,63,64,65,68,74,75,77,80,82,83,84,100,101,104,106,108,109,110,111,113,114,117,121,123,124,126,127,128,129,130,132,133,134,135,137,140,141,142,145,146,147,148,150,151,154,155,156,157,159,162,163,164,165,166,167,168,170,171,176,178,179,182,184,186,187,188,191,193],number_imgs_each_part:39,number_limit:171,number_of_iter:[171,193],number_of_part:39,number_to_be_found:[171,193],numbug:193,numclass:47,numcol:[111,178],numer:[1,8,31,33,40,43,46,49,52,57,58,61,66,68,78,80,82,92,101,103,108,109,110,111,113,116,117,118,119,124,127,129,130,141,146,148,150,164,165,166,168,170,172,178,180,191,194],numeric_:54,numeric_feat:66,numeric_train:54,numeric_v:92,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,78,82,83,84,86,98,99,100,101,102,109,110,111,116,117,121,122,123,125,126,127,128,129,130,131,132,134,135,136,137,144,145,146,147,148,150,152,155,156,157,158,159,160,161,162,163,164,166,167,170,171,174,182,183,184,186,187,188,189,190,192],numvehicl:137,nuniqu:51,nusvc:59,nvalid:64,nvarianc:18,nvidia:29,nw:135,nx0:135,nx1:55,nx4:135,nx:[38,44,119],nxcx:135,nxn:127,ny0:135,ny:[38,44,119,143],nyandwi:[40,43,49,52,53,68,74,80,165],nyc:[102,106,108,174],nyu:193,nz:37,o4yuzatazi:59,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:59,o:[12,25,42,51,54,55,59,83,112,119,130,135,136,139,143,147,158,172,192,194],o_lay:127,o_t:134,ob:35,obama:[92,143],obei:[40,119,156],obes:101,obj:[119,121,122,171,179],object:[3,7,9,14,16,24,31,36,38,43,44,47,48,50,53,54,56,57,59,64,66,74,77,82,83,100,102,108,110,113,117,118,121,122,126,127,129,131,132,133,134,137,140,141,142,144,145,151,154,155,156,157,159,162,163,165,166,172,173,174,178,180,181,192,193,194,195],object_:119,objectdatabas:180,objectdb:180,objectstor:180,observ:[1,3,7,18,30,38,47,53,59,77,78,113,114,117,123,128,130,137,139,141,145,146,147,148,151,154,162,166,167,186],observablehq:166,observepoint:104,obtain:[3,22,24,45,47,48,50,58,59,82,92,93,114,116,119,128,141,148,150,153,155,166,171,172,176,194],obviou:[18,56,110,116,132,150],obvious:[50,56,111,156,182],ocademi:[0,12,18,25,97,122,123,138,146,173,181,193,195],occam:157,occasion:[78,171],occlud:[132,135],occlus:[39,132],occup:[51,155],occur:[1,7,8,28,49,52,59,75,112,119,127,134,137,141,157,159,168,171,172,187,193],occurr:[1,2,8,28,46,47,54,59,117,167],ocean:[61,74],ocean_proxim:[61,74],oceanproxim:74,octav:127,octave_n:127,octave_scal:127,octob:[112,168,180],od:171,odaba:180,odd:[92,193],odor:[110,178],odot:128,odunsi:145,ofcours:129,off:[30,34,36,37,39,40,46,49,50,52,56,59,61,62,68,77,78,80,82,106,127,128,130,132,133,134,137,147,150,155,157,158,165,171,177,182,192],offer:[21,40,75,78,99,108,109,110,112,119,132,139,145,154,162,163,164,167,168,176,179],offic:[114,132,137],office16:38,offici:[43,119,155],offlin:[35,159],offset:[119,151],often:[1,3,7,8,40,41,46,49,50,52,54,59,62,68,76,78,80,101,102,108,112,113,114,116,117,119,128,130,132,134,137,140,141,147,148,150,151,157,158,163,165,167,168,169,171,172,176,179,193,194],oftentim:114,oh:[47,134,147],ohadlight:132,ohh:[49,52,57,68,80],oil:36,ok:[118,123,124,147],okai:[41,57,58,158],old:[50,121,140,146,162,173,193],older:[116,119],oldid:180,oleksii:[92,93,171,172],ols:156,omar:56,omega_t:136,omit:[1,29,116,121,147,151,171,172],on3sx3y9kwmxfjcw:59,on_bad_lin:38,on_epoch_end:[40,133],onboard:[104,139],onc:[0,7,41,43,45,48,53,55,58,74,76,82,100,101,112,114,116,117,119,121,131,134,137,139,140,141,151,152,155,157,159,164,165,167,171,173,193,195],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,65,66,68,69,72,74,75,77,80,82,84,85,90,91,92,93,99,101,102,104,106,107,108,109,110,111,112,114,116,117,118,119,121,122,123,124,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,150,151,154,155,156,157,158,159,162,163,164,165,166,167,169,170,171,172,173,174,178,179,180,184,187,188,191,192,193,194,195],one_hot:[7,74,127,131],one_hot_data:7,one_hot_encod:[22,74],one_trunc:123,onefield:119,onehotencod:[51,61,74,188],ones:[7,11,36,37,43,46,49,50,56,63,65,66,76,78,101,102,104,108,117,119,126,128,132,139,145,146,150,155,157,167,168,173,174,179,182,188],ones_for_answ:82,ones_lik:131,ones_tensor:43,ones_tensor_1:43,ongo:[106,143,177],onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,36,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,63,65,66,68,74,78,80,82,90,92,93,98,99,100,101,104,106,109,112,113,116,117,118,119,121,122,123,124,127,129,130,131,132,135,137,139,140,141,143,145,148,150,151,155,156,157,158,159,163,166,167,168,171,172,173,175,177,180,184,186,193,194,195],onlin:[1,28,112,114,116,119,121,140,141,143,159,165,171],only_path:39,onnx:[140,159],ontario:14,onto:[47,51,104,126,142,186,188],ontotext:180,onward:14,oob:147,oob_scor:150,oocademi:173,op:[121,127,134,136],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,36,37,38,39,40,41,42,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,179,186,187,188,189,191,192,193,195],open_access:146,opencv:[38,128],openinsight:180,openlink:180,openml1:57,openml:[53,57,58],openporchsf:54,openqm:180,oper:[7,18,25,29,33,40,49,56,59,75,92,99,101,112,114,116,118,121,122,127,130,132,134,138,139,140,141,142,167,171,173,175,176,195],operand:[119,172,179,194],operation:[112,176],opinion:141,oppon:131,opportun:[54,101,102,103,141,143,159],oppos:[123,154,171,172],opposit:[7,108,126,144,152,157,167,182],oppurtun:151,opt:[99,146,165],opt_func:33,optic:[140,145],optim:[29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,47,50,52,54,57,62,75,77,78,83,101,102,104,109,116,119,123,126,127,128,129,130,131,132,133,134,136,139,142,143,146,148,150,151,152,154,155,156,163,166,167,182,184,186],optimis:156,optimist:[49,147],optimizerd:37,optimizerg:37,optimum:[56,146],option:[1,7,15,16,43,45,48,50,68,74,80,93,94,100,102,106,111,112,117,118,119,121,123,137,139,140,143,151,158,159,163,164,171,172,173,174,179,192,193,194],oracl:[124,180],orang:[39,50,108,109,116,130,162,167,172,178,194,195],orchestr:[139,140],ord:133,ord_col:54,ord_enc:57,order:[1,3,6,7,14,18,31,40,43,46,47,50,53,54,55,57,58,64,68,74,75,80,82,83,92,109,110,112,113,114,116,117,118,119,121,122,123,128,130,132,135,137,141,142,143,147,150,151,152,155,156,159,165,166,167,171,172,173,176,178,180,186,188,191,193,194,195],ordin:167,ordinal_map:54,ordinalencod:[57,74],ordinari:[57,74,137,167],ordinary_encod:74,oreilli:104,org:[3,22,45,47,48,57,58,60,61,66,104,123,127,128,132,133,134,135,141,143,154,155,156,158,166,170,171,172,180,181,186,193],organ:[34,40,99,100,102,106,109,112,113,114,117,118,119,132,139,140,165,170,174,176,177,178,180,186,187,191],organiz:112,orgin:[53,58,74],orient:[36,129,132,139,170,171,172,173,194],orientdb:180,origin:[3,7,14,29,30,31,34,36,39,45,49,50,55,57,58,59,63,65,80,89,92,93,111,114,119,121,123,126,127,131,137,139,140,145,147,148,150,151,152,155,156,158,162,166,167,168,172,180],original_featur:127,original_imag:127,original_image_fil:127,original_image_weight:127,original_label:122,original_lay:127,original_layers_w:127,original_loss:127,original_minus_mean:127,original_norm:127,original_str:[97,172],originl:55,ornella:102,orthogon:[126,186],os:[29,30,31,33,35,36,37,38,39,41,45,47,48,51,56,59,66,82,84,98,99,100,101,109,110,111,121,122,123,127,129,130,134,136,140,144,145,146,157,158,160,161,162,163,164,166,171],oscil:131,ossif:112,ot:127,other:[3,7,14,17,18,20,31,33,35,40,41,43,44,46,48,49,51,52,53,54,56,57,58,59,62,64,66,74,76,77,78,82,83,85,88,92,93,98,100,101,102,104,109,110,111,112,113,116,117,118,121,123,124,126,128,129,132,133,135,137,138,139,140,141,142,143,144,145,146,147,148,150,151,154,155,156,157,158,161,162,165,166,168,169,170,171,172,173,179,180,186,188,189,190,191,192,193,194],other_nam:[171,193],otherwis:[33,61,78,82,92,93,119,121,122,123,124,127,132,141,143,145,150,154,165,166,168,171,172],ouch:158,our:[1,3,7,14,18,29,30,31,32,33,34,36,39,40,41,43,46,47,48,50,52,54,55,56,57,58,59,60,63,65,66,68,74,75,76,77,78,80,82,83,102,103,104,110,111,112,114,116,117,121,124,126,127,128,129,132,135,137,138,141,142,143,145,146,147,148,150,151,152,155,157,158,159,162,163,164,165,166,167,170,171,173,176,179,180,186,187,191,195],ourselv:[48,54,137,151],oustand:49,out1:132,out:[3,7,8,14,15,18,29,33,34,35,37,41,43,48,50,53,54,56,59,62,64,66,68,80,92,93,99,100,102,104,108,109,111,112,113,114,116,117,119,122,123,124,127,128,129,130,131,132,133,135,137,138,140,141,143,145,146,148,150,151,154,155,157,159,162,163,164,165,167,168,170,171,172,173,179,180,186,187,191,193],out_channel:[31,132],out_col:54,out_conn:134,out_dir:131,out_filt:133,out_sampl:128,out_sent:134,out_siz:133,outbreak:14,outcom:[7,16,56,59,78,102,106,112,114,116,117,128,139,147,162,166,167],outer:[75,162,171,179],outermost:[121,171],outfield:116,outli:141,outlier:[7,45,46,47,60,61,74,76,77,78,107,109,116,139,141,145,146,147,150,151,156,158,178],outliers_influ:[54,64],outlin:[54,104,112,137,140],outlook:165,outperform:[49,141],output:[7,9,29,30,31,33,36,37,38,40,41,43,46,47,48,50,51,56,75,78,82,99,100,101,117,119,122,123,124,126,127,129,130,131,132,133,134,135,136,137,141,142,143,145,147,148,150,151,152,155,157,158,159,162,165,166,167,171,172,173,179,180,181,182,187,191,192,194],output_channel:133,output_class:133,output_everi:127,output_fil:127,output_file_nam:130,output_final_layer_before_activation_funct:130,output_gener:127,output_imag:37,output_indic:127,output_loc:127,output_memori:130,output_prepar:[38,44],output_s:132,output_stag:133,output_unit:82,outsid:[54,104,116,119,121,154,163,171,193],outwork:165,over:[1,7,8,13,14,24,31,32,33,36,40,46,48,49,51,52,54,59,68,78,80,82,90,93,99,102,104,108,111,112,117,119,124,126,127,129,130,131,132,134,135,136,137,139,140,141,142,143,145,147,148,150,151,152,155,158,159,162,163,164,167,169,171,172,173,174,175,178,180,193,194],over_sampl:162,overal:[7,13,14,30,31,48,49,50,54,56,102,103,111,113,114,117,141,148,151,165,166,191],overallcond:54,overallqu:54,overcom:[49,52,57,58,156],overdu:50,overexcit:157,overfit:[32,33,40,41,47,48,49,50,52,53,54,57,58,60,61,62,63,65,66,68,76,78,80,82,137,141,147,150,151,153,154,155,156,164,184,192],overfit_cat:54,overfit_num:54,overflow:121,overhead:[135,179],overlap:[18,116,119,121,145,146,171],overli:[49,50,78],overlin:[128,148],overload:156,overlook:[112,165],overrid:[123,171,193],override_groups_map:132,oversampl:162,overshadow:143,overshoot:[75,152],oversimplif:104,overtim:165,overtrain:64,overview:[50,71,101,104,106,109,129,139,141,183],overwhelm:114,overwrit:[130,172,193,194],ovr:[158,163],owlim:180,own:[0,11,17,28,39,41,50,62,88,90,99,100,101,102,106,108,112,116,119,121,126,130,132,139,142,143,147,150,151,156,157,158,165,171,177,191],owner:[139,148],ownership:[50,112,176],ox:134,oxford:[112,176],oxford_iiit_pet:133,ozair:131,p1:193,p2:[32,128,193],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:59,p:[3,18,32,37,48,50,55,56,57,78,116,119,121,122,123,128,130,131,137,141,146,147,148,150,152,155,156,157,158,159,162,165,166,171,172,184,188,191,193,194],p_1:[50,116,128],p_2:[50,116],p_:[50,128,131],p_i:[50,78,128],p_k:50,p_n:[116,128],p_sampl:128,p_valu:116,p_z:131,paa:[99,175],pace:[41,75],pack:[119,170,172,193],packag:[18,35,51,57,102,116,119,121,122,123,140,145,146,151,159,162,163,165,166,167,168,170,174,179,182,186,193],packed_tupl:172,pacsuta:130,pad:[1,14,18,29,30,32,33,34,36,37,39,54,119,126,127,128,132,133,135,136,158,159],pad_bord:135,pad_sequ:136,padding_11:132,paderborn:130,page:[3,21,26,40,43,57,58,60,61,66,78,101,102,104,113,114,121,142,154,155,158,159,166,167,170,174],pagefil:38,pai:[18,59,83,99,112,129,134,148,150,166,175,176],paid:[112,129,176],pain:158,paint:[36,118],pair:[7,50,78,90,93,116,118,119,150,151,158,163,171,172,173,180,193,194,195],pair_list:3,pairgrid:[58,74,167],pairplot:[58,68,74,80],pairwis:[83,150],pal:36,palett:[39,51,56,68,80,108,109,111,137,178],palette_kwarg:137,palette_kwargs_:137,palinami:[63,65],palyground:166,pamphlet:50,pan:133,pancak:130,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,80,82,83,84,86,98,99,100,101,102,109,110,111,116,117,119,122,125,129,134,137,138,142,144,145,146,147,148,150,152,154,155,157,158,159,160,161,162,163,164,166,167,168,174,177,178,182,183,186,187,188,189,190,192],pandasarrai:123,pandastutor:[121,122,123],pandem:[1,11,119,142],panel:187,papandr:133,paper:[7,14,21,26,28,49,50,102,114,116,127,129,131,133,134,135,155,158,167,174,181],paperback:137,papercodereview:135,papiu:66,par:66,parabol:166,paradigm:[114,165,191],paragraph:[88,90,134,171],parallel:[37,54,99,101,133,150,154,155],param:[29,47,48,61,63,64,65,66,127,133,155,171],param_distribut:[54,61],param_grid:[50,56,57,58,59,60,158],param_lst:54,param_test1:56,param_test2:56,param_test3:56,param_test4:56,param_test5:56,paramet:[3,7,10,22,31,32,33,34,41,45,48,49,52,57,58,59,60,61,62,63,64,65,66,68,75,78,80,81,82,84,100,101,109,111,116,117,119,121,122,126,127,128,129,132,133,134,136,137,141,142,151,152,154,155,156,157,158,163,164,166,167,171,172,173,185,188,189,193,194],parameter:78,parameteriz:142,parameterless:171,parameters_input:173,parameters_output:173,parametr:156,params_grid:[52,53,57,58,60],paramt:[33,152],parch:22,paremet:[60,74],parent:[6,22,112,122,171,176],parenthes:[7,171,172,193,194],park:159,parma:[63,65],parmet:157,parquet:114,parquet_url:57,parrot:[121,171,193],parrot_typ:171,pars:[3,117,137],parse_d:137,parsed_data:3,parsefromstr:127,parser:[3,171],part:[1,7,8,11,30,33,34,39,43,47,50,54,68,78,80,82,92,99,100,103,104,106,107,108,112,114,115,117,118,119,123,126,130,131,132,133,134,135,137,138,139,140,141,142,143,145,146,147,150,151,156,157,159,164,165,166,168,169,170,171,172,173,178,182,184,191,193,194,195],parti:[99,104,114],partial:[39,85,110,119,139,141,145,151,152,155,178],partial_deriv:128,partial_fit:158,partially_propag:158,particip:[50,112,136,147,151,176],particular:[7,31,43,49,50,51,57,59,74,78,92,93,103,106,110,111,113,117,118,119,121,123,129,131,141,147,148,151,158,165,166,171,172,177,191,194],particularli:[7,46,109,111,112,117,145,146,168,172,194],partit:[50,118,119,139,146,156],partner:[112,176],pascal:171,pass:[0,3,7,31,36,40,46,48,50,54,56,57,58,59,82,92,103,104,109,112,119,121,123,127,128,129,132,152,157,163,166,171,172,173,178,187,193,194],passag:108,passeng:[7,17,22,23],passenger_class:22,passengerid:152,passion:[104,172,194],passthrough:188,past:[49,50,54,112,124,127,132,135,136,137,140,142,143,159,181],pastel2:158,patch:[24,49,53,99,132,166],patch_dim:132,patch_project:132,patch_siz:132,patchifi:132,patel:139,path:[0,2,15,17,23,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,68,76,80,100,110,112,119,127,128,133,134,136,137,143,151,152,158,164,171,178,193],path_to_param:127,pathcollect:166,pathlib:137,pathnam:[45,47,48],patienc:[39,40,44],patient:[24,40,100,101,102,141,170],patrick:56,pattern:[36,54,55,56,62,64,76,77,78,102,103,106,111,112,114,129,137,140,143,144,145,153,157,165,167,170,171,176,177,191],paul:[38,173],paus:130,pave:66,pavithra:[63,65],pawel:195,payment:50,paz20:143,pazzanes:143,pb:127,pbar_out:31,pc:[68,80],pca:[126,165],pci:29,pclass:[22,152],pclass_xt:22,pclass_xt_pct:22,pcolormesh:50,pctdistanc:[110,178],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,80,82,84,86,109,110,111,116,117,121,122,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,178,182,186,187,188,189,190,192],pdf:[132,133,193],peac:104,peach:39,peak:154,pear:[39,172,194],pearsonr:66,pedestrian:165,pedoia:143,peek:[84,92,167],peep:40,peer:102,peke:193,penal:[76,78,129,151,165,182,191],penalti:[59,78,112,126,132,151,156,157],pendant:[110,178],peopl:[3,14,31,40,46,49,56,74,93,99,101,102,104,106,108,112,114,116,117,118,119,121,140,141,143,165,172,175,176,180,191,193],people_info:93,people_to_check1:92,people_to_check2:92,pep557:123,per:[33,39,45,47,48,49,50,60,109,111,119,123,127,128,132,133,135,141,158,162,166,168,178,179],per_image_standard:127,perceiv:[145,165,191],percent:[1,186,192],percentag:[14,34,41,50,52,59,62,68,74,80,101,141,150,167],percentil:[116,147,158],percentile_closest:158,percept:[145,165],perceptron:30,perceptu:132,perceptualedg:104,perfect:[47,49,59,64,78,93,109,157,158,178],perfectli:[7,50,64,68,78,80,117,141,147,156,166,184],perform:[1,7,18,29,31,32,33,39,40,41,48,49,50,51,53,54,56,58,59,61,62,64,66,74,75,76,77,78,82,83,84,89,93,99,101,106,114,116,118,119,124,128,129,130,132,133,135,138,139,140,141,142,143,145,147,148,150,151,152,154,155,156,157,158,162,163,166,167,170,171,172,173,175,177,179,185,187,188,193,194],performcv:56,perhap:[4,47,48,62,78,109,128,133,137,145,158,159,165,182,191],period:[13,14,38,39,44,49,52,101,102,122,123,137,143,171],period_rang:137,periodindex:137,perm:93,permiss:[22,45,47,48,92,93,101,112,171,172],permit:[92,93,119,171,172],permut:[31,33,82,93,131,136],perpendicular:[50,59],perplex:141,pers:78,persimmon:39,persist:[9,130],person:[6,7,14,28,31,36,50,51,57,92,93,100,102,104,112,113,114,116,118,129,137,140,165,170,171,172,173,176,191,193],person_id:31,personsdata:118,perspect:[78,102,112,132,151],perst:180,persuad:104,persuas:104,pervas:[112,114],pet:15,petabyt:[102,174],petal:[46,60,83,117,148,186],petallength:[83,123,148],petallengthcm:64,petalratio:123,petalwidth:[83,123,148],petalwidthcm:64,peter:[116,172,194],petra:139,petrova:14,pfa:140,pg100:134,pg4mtoh4b05qn5dt:59,ph:48,ph_delta_weights_list:130,phase:[33,56,103,104,142,145,165,191],phd:56,phenomenon:143,phi:128,philip:139,phillip:143,phone:[6,68,80,104,112,113,114,172,176,187,194],phonem:134,photo:[31,34,43,98,105,107,121,125,161,169,182],photo_id:31,photo_numb:31,photo_path:31,photograph:[114,121,144],photoshopcs6:38,php:[180,193],phrase:[29,132,165,177],physic:[50,101,130,140],physicochem:48,physiolog:88,pi:[128,130,148,172,173,193,194],pi_j:148,pi_valu:[172,194],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,36,64,66,68,80,90,104,111,118,127,130,146,150,152,155,158,168,170,180],pickl:[134,140,193],pickler:193,pickletool:193,pickup:[102,174],pictur:[1,3,14,30,31,37,50,51,59,60,114,116,119,121,129,141,147,148,151,165,182,186,191],pid:130,pie:[27,51,68,80,108,166,168],pie_pumpkin:166,piec:[46,51,59,97,103,114,117,139,142,154,170,182],piecewis:50,pieter:128,pii:112,pil:[31,36,127],pillow:171,pin:[121,187],pin_memori:33,pineappl:[172,194],pinfect:14,pink:[1,108,110,178],pinpoint:54,piotr:[135,141],pip:[3,12,18,25,98,99,100,101,109,110,111,116,121,122,123,129,134,144,145,146,157,158,159,160,161,162,163,164,166,187],pipe:57,pipelin:[53,56,57,58,60,61,64,100,101,127,133,139,140,141,142,158,166],pipeline_scor:158,pipelinepipelin:[158,166],pipeln:64,piplin:[127,130],pitaya:39,pitch:142,pitt:136,pivot:[38,78,114],pivot_t:121,pix2pix:133,pixel:[29,30,33,36,39,40,41,43,47,50,68,80,84,119,132,133,135,141,165,186],pk:[12,124],pkl:159,pktfrwjz:59,pl:148,place:[7,33,46,50,54,92,93,101,103,104,108,114,117,119,123,129,139,147,162,165,167,170,171,172,173,194],placehold:[127,130,131,132,136,159,173,187],plai:[3,14,18,43,48,50,56,74,75,77,100,114,116,139,151,156,164,170,171,184,187],plain:[3,132],plainli:110,plan:[1,50,99,104,139,142,147],plane:[50,132,145,156,166,186],planet:[6,102,174,195],planetari:[102,174],plastic:145,platelet:[9,100,101],platform:[10,20,29,43,76,99,101,104,139,140,143,151,159,165,173,175,191],plausibl:182,play:75,player:[18,102,116,131,140,165],playground:[142,151,162],playgroundn:166,pleas:[15,29,45,46,47,48,49,52,57,58,60,61,66,82,100,123,127,132,154,155,157,158,159,166,170,171,183],plenti:[108,139,141,143,151,158],plot:[1,3,8,14,15,18,19,29,31,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,54,56,57,59,60,61,62,64,66,68,75,76,77,80,82,83,88,108,114,116,123,127,128,130,133,134,136,137,141,145,148,150,152,156,157,158,162,163,165,166,168,170,184,186,188,189,190,191,192],plot_3d:[156,184],plot_accuraci:33,plot_align:22,plot_centroid:158,plot_clust:158,plot_clusterer_comparison:158,plot_color:22,plot_dat:35,plot_data:158,plot_dbscan:158,plot_decision_boundari:158,plot_galleri:31,plot_imag:41,plot_import:155,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,37],plot_model:192,plot_multistep:137,plot_param:137,plot_profit:35,plot_spectral_clust:158,plot_support:[156,184],plot_surfac:75,plot_svc_decision_funct:[156,184],plot_svm:[156,184],plot_titl:22,plot_train:39,plot_tre:[57,148],plot_value_arrai:41,plotli:[1,30,35,44],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,74,75,76,77,80,82,83,84,109,110,111,116,126,127,128,130,133,134,136,137,145,146,147,148,150,152,155,156,158,162,166,168,170,178,182,184,186,188,189,190,192],plu:[32,50,81,108,119,123,188,189],plugin:0,pluginfil:193,plum:39,plumag:171,plymouth:147,pm:[106,116,171,193],pmlr:143,pmml:140,pneumonia:1,png:[3,36,37,39,59,66,130,158,166,167],po:[54,130,135,158],poc:101,poem:102,poetic:102,poetri:[102,174],poignant:111,poin:64,point3d:123,point:[7,8,11,15,16,28,29,30,31,33,36,40,41,47,48,49,50,52,59,60,61,62,68,74,75,76,77,80,84,104,106,108,109,111,113,116,117,119,122,123,130,131,135,136,137,140,141,145,146,147,150,151,155,156,157,158,159,162,164,165,166,167,168,169,170,171,172,179,185,186,187,188,191,192,194],pointer:[92,119,124],pointwis:132,pois:121,poison:[110,178],pojo:140,polar:38,poli:[59,60,61,166],polic:102,polici:[99,106,165,191],polli:121,poloclub:[181,182],poly_best:60,poly_pr:60,poly_svc100:59,poly_svc:[59,60],poly_svr:61,poly_transform:188,polynomi:[60,61,69,76,156,157,169],polynomialfeatur:[166,188],polynomialfeaturespolynomialfeatur:166,pomegran:39,ponder:75,pool1:127,pool1_pad:133,pool2:127,pool3:127,pool4:127,pool:[32,127,129,132,133],pool_layer1:127,pool_layer2:127,pool_siz:[34,39,132],poolarea:[54,66],poolqc:[54,66],poor:[31,40,53,58,59,64,68,74,80,119,134,141,145,151,157,165],poorer:77,poorli:[33,59,78,85,141,156,157,165,185],pop:[7,14,35,92,104,123,128,145,146,172,179,194],popul:[4,13,14,61,74,110,113,116,124,137,147,150,151,166,168,170,178,180],popular:[1,43,45,50,59,103,104,106,113,118,129,138,140,141,142,143,144,145,146,151,152,153,155,162,167,172,173,186],porch:54,port:22,portabl:[112,128,193],portal:[9,50,101],portion:[33,50,78,92,93,119,132,139,141,170,171,172],portrait:36,pose:[36,39,49],posit:[3,28,35,40,50,51,52,54,56,57,66,68,75,78,80,92,102,116,119,123,129,130,132,135,141,148,151,156,167,171,172,173,181,186,188,193,194,195],position_embed:132,position_salari:188,positionalembed:128,positive_integ:[172,194],positive_vector:[172,194],positv:59,possess:[54,68,74,80,165,191],possibl:[1,11,34,40,43,45,47,48,50,52,54,59,61,68,74,78,80,92,102,108,114,116,119,121,123,127,128,129,132,134,137,139,140,141,142,147,150,151,155,156,158,165,166,171,172,174,191,194],post:[0,1,14,28,29,32,43,50,119,121,135,136,159,175],postdoc:173,posterior:150,posterior_vari:128,posterior_variance_t:128,postur:36,potenti:[23,28,40,47,54,57,77,101,102,104,106,109,112,114,116,119,122,123,127,129,130,140,141,143,155,162,168,174,176,185],pothol:[112,176],potrait:36,potrait_gener:36,potraits_gener:36,pouget:131,pound:[111,147,168],pow:[31,126,130],power:[1,7,33,43,49,52,53,57,58,59,60,61,77,98,99,102,104,108,119,121,123,127,129,130,141,143,151,155,156,165,166,171,172,173,174,179,193,194],power_of:[171,193],ppf:18,pprint:31,pq:57,practic:[4,7,16,30,40,45,47,48,50,53,58,59,61,78,102,106,112,114,116,117,119,124,129,131,132,133,134,136,137,140,141,143,147,151,154,156,157,159,165,167,170,171,172,173,176,186,193],practical_dl:82,practis:156,practition:[77,112,137,176],prafulla:128,prashant111:51,prashant:[59,155,187,192],pre:[3,9,41,47,99,101,121,133,140,141,142,143,154,157,166,170],preced:[47,75,119,132,171],precis:[29,40,46,47,52,54,57,60,66,68,75,77,78,80,82,92,103,119,136,141,142,157,163,164,167,171,188],precision_recall_curv:[163,164],precision_scor:[29,30,163,164],precison:[52,57],precomput:123,pred:[29,33,39,40,49,52,53,54,56,57,58,66,127,137,152,166,186],pred_class:39,pred_mask:133,predefin:[33,116,118,130,145,164,180],predf:55,predi:55,predicit:152,predict:[9,22,29,33,34,35,36,38,40,43,44,45,47,48,49,51,52,53,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,81,82,84,102,106,112,114,116,127,128,129,130,131,132,134,135,136,137,139,140,141,142,143,146,147,148,150,151,152,153,154,156,158,159,162,164,165,166,167,168,169,170,171,174,175,176,177,182,191,192],predict_class:47,predict_imag:33,predict_proba:[56,152,158,163,167,186],predict_row:55,predicted_column:[38,44],predicted_correctli:127,predicted_df:[38,44],predicted_label:41,predicted_nois:128,predicted_pric:42,predicted_valu:[38,77],prediction_text:159,predictions_arrai:41,predictions_on_train:[68,80],predictions_singl:41,predictor:[49,56,66,141,148,154,155,158,166],predominantli:[36,102,174],preds_test_cb:54,preds_test_lgbm:54,preds_test_xgb:54,prefer:[48,56,64,74,78,102,112,116,119,141,150,155,157,158,165,167,169,172,173,174,194],prefetch:[44,127,128,133],preffer:64,prefix:[22,56,171,172,194],preiousli:36,preliminari:146,preload:166,premis:[99,106,140,162,177],prep:[38,162],prepackag:170,prepar:[18,22,43,49,52,53,57,58,68,74,80,100,101,103,104,106,108,125,126,139,158,165,175,177,186],prepend:171,prepocess:36,preprint:[14,50,143],preprints202006:14,preprocess:[32,34,38,40,42,43,44,50,51,54,59,62,64,76,83,132,136,141,146,159,166,167,170,188,189,190],preprocessor:62,prerequisit:[0,127,138,171],presenc:[54,141],present:[1,3,4,5,7,9,13,14,19,21,26,27,35,46,49,51,52,54,57,69,71,85,89,90,92,93,102,104,108,110,116,117,119,121,122,123,132,134,135,138,139,142,143,162,163,165,171,173,174],preserv:[46,84,112,117,119,121,123,129,158,167,171],preset:16,press:[38,51,130,137,139,170,173,187],pressur:[24,101,113,114,170],presum:[36,145],pretend:[18,151,171],pretrain:[129,133,182],pretti:[7,31,54,57,58,60,64,66,145,146,148,154,158,163,164,165,167,168,188],prevent:[28,30,32,41,43,47,50,54,78,101,102,119,121,128,130,141,142,147,150,156,157,171,172,184,194],preview:[59,101,102],previou:[7,14,17,32,35,40,47,48,49,50,55,56,57,75,82,100,103,108,109,113,116,117,118,119,121,128,132,133,134,137,141,143,146,147,150,151,152,153,154,155,158,159,163,164,165,166,168,171,172,191,194],previouli:49,previous:[18,41,54,57,75,117,119,140,146,147,164,167,179],previous_numb:171,prgn:[68,80],price:[22,38,49,52,54,57,66,68,74,77,102,111,129,141,148,162,165,166,167,174,190,191],price_add_averag:22,price_rang:[68,80],priceperlb:[111,178],pricier:168,prim:171,primari:[6,7,46,56,68,75,80,100,101,113,114,117,122,123,124,155,180,181],primarili:[7,75,78,104,123,148,165,170,191],primary_metr:[9,100],prime:[92,171],prime_factor:92,prime_text:134,primit:[172,194],princ:55,princip:[126,165],principl:[31,45,47,48,50,56,99,102,114,124,130,147,155,156,157,171,176],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,63,64,65,66,68,74,75,76,77,78,80,82,83,84,92,100,110,116,117,119,126,127,128,130,132,133,134,136,137,146,147,148,150,152,154,155,158,159,162,163,164,166,167,168,170,171,172,173,178,179,182,186,188,189,190,192,193,194,195],print_four_numb:193,print_funct:[37,127],print_stat:29,printfeatureimport:56,printmd:39,prior:[59,101,108,111,127,136,155,175],priorit:141,prioriti:101,privaci:[106,112,143,176],privat:[56,99,106,140,175,177],privileg:171,prix:132,priya:42,prize:[112,176],pro:[7,38,47,56,101,112,159],prob:[38,152],proba:163,probabilist:[59,128,129],probability_model:41,probabl:[7,31,33,40,41,48,49,50,52,55,56,58,78,82,98,101,102,103,104,106,109,113,114,115,124,128,129,130,131,132,141,145,146,147,150,151,152,158,164,165,166,168,170,172,182],probalist:129,probe:[6,59],problem:[7,11,23,29,36,41,45,46,47,48,49,52,54,56,57,58,60,62,64,75,76,78,84,90,100,103,104,106,108,112,114,116,117,119,121,129,130,131,132,133,134,135,137,138,140,141,146,147,148,152,155,156,157,158,162,163,168,172,176,177,184,185],problemat:[18,26,141],proce:[36,54,68,76,80,82,155],procedur:[47,50,54,137,143,147,150,151,155,166],proceed:[50,139,143],process:[1,3,7,11,18,28,30,31,32,34,36,41,42,43,45,46,48,50,51,53,56,57,58,59,62,68,75,76,80,82,90,92,99,100,101,102,103,104,112,113,114,119,126,129,130,132,133,136,137,138,140,141,143,146,147,150,151,152,153,154,155,156,158,159,162,163,164,165,166,170,171,172,173,174,175,176,179,185,186,187,191,192],processed_data:31,processing_d:57,processor:[68,80,84],prod:[119,140],produc:[7,29,31,32,36,46,51,57,59,62,78,101,108,109,111,114,117,119,131,135,137,139,140,145,147,155,157,165,168,171,172,176,182],product:[11,13,49,92,99,101,102,104,111,112,113,114,116,119,123,128,132,137,138,139,140,141,142,159,165,167,174,175,176,178,187,191,192,193],production:[46,142,143],prodvalu:[111,178],profession:[99,140,145,155,165,173,176],professor:[151,165],profil:[59,112,177],profit:[35,118,139,151,180],profium:180,prognosi:165,program:[38,41,50,57,99,101,112,113,123,124,128,129,138,139,140,141,156,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,192],programm:[113,165,171,173,191,195],programmat:[7,101,117],progress:[14,36,40,45,47,111,127,139,141,164,165,170,171,182],progress_info:127,project:[5,7,9,16,22,30,31,36,38,58,59,66,75,92,93,99,102,104,106,110,112,117,119,126,127,128,130,131,132,133,134,135,136,138,139,140,141,142,143,156,162,165,170,171,173,174,175,177,184,186,187,191],project_fold:100,project_root_dir:158,promin:50,promis:[45,82,112,176],promot:165,promote_typ:119,prompt:[6,101,159,173],prone:[66,150],pronounc:[124,170],proof:[28,101,145],propag:[7,31,82,117,122,123,137,145,158,192],propens:154,proper:[18,49,52,53,57,58,68,80,104,119,127,131,145,165],properli:[5,46,64,82,91,117,139,141,147,153,165,167,168,191],properti:[9,14,31,33,36,47,48,50,55,83,100,112,116,118,119,121,141,148,150,151,156,166,171,172,176,180],proport:[50,59,62,76,77,108,116,150,151,157],propos:[59,103,104,128,131,132,134,135,143,147,150,156,158,177,184,192],proposals2:135,proprocess:40,prose:31,prospect:104,protagonist:108,protect:[14,99,102,112,139,165,174,176],protocol:[122,139],prototyp:[47,48,101,102],prove:[18,26,28,50,108,114,116,141,145,147,150],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,40,41,45,46,48,49,50,52,53,54,57,58,59,74,75,76,77,78,82,92,93,99,101,102,103,104,106,108,112,114,117,118,119,121,122,123,124,126,127,129,132,135,137,138,139,140,141,142,145,147,148,150,151,155,157,158,159,163,165,168,170,171,172,173,174,176,177,180,182,191,192,194],provinc:14,province_st:[14,142],provis:[100,140],provisioning_configur:[9,100],proxim:[74,145,150],prp:[53,58],prune:[50,132],pseudo:[18,151],pseudocod:151,pseudonym:116,psgk:59,psycholog:145,pt:58,pth:[31,33,37],public_dataset:[68,80],publicli:[101,142],publish:[50,53,58,59,92,93,101,116,139,140,171,172,175],publish_tim:1,pubu:[68,80],pull:[50,108,112,123],pullov:[30,40,41],puls:59,pulsar:59,pulsar_star:59,pumpkin:[72,89,91,162,166,167,169],pun:171,punctuat:[92,93,134],pungent:[110,178],purchas:[99,104,111,114,166],pure:[40,48,59,82,116,122,150,171],puriti:148,purpl:[30,108,110,178],purpos:[16,30,35,47,48,58,59,60,61,75,92,93,106,112,119,123,127,129,131,141,145,155,158,159,165,167,170,171,172,173,176,177,179,191,193,194,195],pursu:[102,141,159,165,191],pursuit:75,push:[0,47,92,104,108,130,140,171,179],pussin:[92,93],put:[38,40,43,50,55,62,78,101,104,112,124,129,136,147,151,157,165,170,171,172,173,191,193,194],pval:[18,116],pvt:56,pw:148,px:[30,33,44],px_height:[68,80],px_width:[68,80],pxi:123,py39:121,py3:193,py:[9,57,62,100,109,121,122,123,127,130,146,159,163,167,171,172,173,178,179,186,193,194,195],pycharm:38,pycharmproject:193,pycon:121,pydata:[119,121,123],pygment:116,pylab:22,pylint:[171,172,194],pyobjecthasht:123,pypi:[172,194],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,74,75,76,77,80,82,83,84,109,110,111,116,126,127,128,130,133,134,136,137,145,146,147,148,150,152,155,156,158,162,166,168,170,178,182,184,186,188,189,190,192],pyramid:[133,142],pytest:[0,3,14,22,24,53,74,92,93,138,171,172,194],python37:193,python38:[57,186],python3:[92,93,98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,146,157,158,159,160,161,162,163,164,167,179],python3_7_4:193,python:[0,1,3,7,18,22,23,33,35,38,43,46,49,51,56,57,58,59,60,61,76,82,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115,116,117,121,122,123,125,127,128,132,134,136,138,140,144,145,157,158,159,160,161,162,163,164,168,174,175,176,177,178,180,181,182,183,184,185,186,187,188,189,190,191,192],python_3_2021:193,python_cast:172,python_datatyp:172,python_dictionari:172,python_funct:193,python_numb:172,python_oper:172,python_ref_str:172,python_set:172,python_str:172,python_try_except:171,python_tupl:172,python_vari:172,pythonista:172,pythonpath:171,pythontutor:[171,173],pythonwin:193,pytorch:[31,33,101,129,159],pytutor:0,pyvideo:121,pywaffl:[110,178],pyx:[121,123],q1:116,q3:116,q:[22,35,50,119,128,132,167,193],q_:[128,130],q_sampl:128,qbcdxtzitda:59,qgl:59,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:59,qizx:180,qmcrlph5c7vc:59,qmqvejnztng9kv28rwerdmjfiwjrgfn:59,qq:[3,14,22,24,53,92,93],qqpcmgr_docpro:38,qty:118,quad:[75,147,151],quadrat:[54,59,78,150,151,156,172],quadraticdiscrinationanalysi:163,qualit:[6,24,104,113,139,165,176],qualiti:[0,39,46,47,48,53,54,56,62,66,82,85,101,103,106,109,112,113,116,132,140,142,143,145,147,148,150,164,165,166,167,168,176,177,186],quan:57,quantifi:[59,75,77,78,106,177],quantil:[54,103,151],quantit:[6,50,54,104,113,139,165,176],quantiti:[4,106,110,114,118,130,137,165],quantiz:[132,141],quarter:132,quarterli:113,quartil:[7,18,54],quebec:14,queliti:31,queri:[2,12,16,25,46,99,113,114,117,123,124,128,139,159,177,180],query_emb:135,question:[0,16,17,23,28,32,47,49,50,51,57,58,59,71,75,102,103,104,106,108,111,112,114,116,121,129,131,138,141,142,143,151,152,156,159,162,165,166,170,176,177,179,191],queue:[104,127],qui:140,quick:[40,48,49,52,53,54,61,77,83,101,123,141,143,145,156,162,165,168,169],quickli:[7,14,40,45,47,48,58,68,74,80,101,109,111,117,119,128,139,140,151,155,166,167,179,182],quicksight:139,quickstart:140,quiet:[3,12,18,25,98,99,100,101,109,110,111,116,121,122,123,129,134,144,145,146,157,158,160,161,162,163,164,166],quirk:172,quit:[1,3,7,18,33,34,36,39,40,50,59,60,61,68,80,110,111,121,124,135,141,147,148,150,158,163,164,165,166,170,172,191],quora:143,quot:[121,171,172,173,194,195],quotient:[92,119],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:59,r2:[63,65,76],r2_score:[63,65,76,77],r2_socr:[63,65],r:[22,29,30,31,33,36,37,39,55,59,64,74,76,82,111,116,119,127,130,133,134,136,139,140,145,150,151,156,158,159,172,178,184,186,188],r_0:14,r_:[50,78,84,130,151,158],r_k:130,r_p:116,r_t:[8,151],rabbit:193,race:51,racial:102,radial:[60,61,156],radic:132,radio:[59,187],radiolog:127,raffael:114,rai:102,rainbow:111,rainfall_id:[124,180],rainforest:113,rais:[3,14,22,24,53,92,93,96,97,102,112,119,121,122,123,133,141,172,174,193,194],rake:3,ram:[39,53,68,80,101,150],ramif:164,ran:[10,20,29,173],rand:[18,35,49,50,76,150,179],rand_i:127,rand_index:127,rand_tensor:43,rand_x:127,randint:[31,37,50,127,147,179,182,192],randn:[31,37,76,82,122,123,187],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,43,44,45,47,50,55,56,57,58,59,60,61,62,64,66,68,76,80,82,103,119,122,123,126,127,128,130,131,132,133,134,136,141,146,147,149,151,154,155,157,158,162,164,165,179,182,186,187,192],random_bright:127,random_contrast:127,random_flip_left_right:[127,128],random_index:[40,128],random_norm:[126,127],random_normal_initi:135,random_se:33,random_split:33,random_st:[29,30,31,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,74,83,146,148,150,152,154,155,156,158,159,164,166,167,184,186,188,189,190],random_strength:54,random_transform:37,random_uniform:[131,136],randomappli:37,randomflip:133,randomforest:56,randomforestclassifi:[49,50,51,52,56,148,150,163,164],randomforestregressor:[53,148,150],randomhorizontalflip:37,randomizedsearchcv:[54,61],randomizedsearchcvrandomizedsearchcv:61,randomli:[30,34,50,54,55,62,66,77,127,128,132,133,147,148,150,157,158,186],randomnorm:[126,132],randomrot:37,randomst:[150,179],randomtreesembed:150,randrang:35,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,50,51,52,53,54,55,56,57,58,63,64,65,68,74,75,76,81,82,83,84,93,99,101,102,109,112,114,116,119,121,122,126,127,128,130,131,132,133,134,135,136,137,139,140,141,146,148,152,153,154,158,167,172,175,176,179,182,186,187,188,189,190,192,193,194],rangeindex:[38,59,60,74,117,145,155,162,179],rank:[43,112,119,122,141,145,148,151,163,176],rankboost:151,rapid:[102,173],rapidli:[119,139],rare:[54,59,106,131,141,145,150,151,179],raschka:[50,126,131,134,136],rate:[6,8,14,22,33,35,47,48,49,55,62,64,75,101,102,104,108,113,127,129,130,132,133,134,141,142,148,152,154,155,157,158,165,167,186,191,192],rater:47,rather:[7,31,36,46,54,68,75,78,80,99,111,114,117,119,123,124,140,145,150,156,158,165,166,170,171,172,179,187,191,194],ratio:[14,40,46,49,52,57,59,123,141,148,158],ration:[40,104],rational:148,ravel:[50,56,57,150,152,156,158,163,164,184,189,190],ravenclaw:187,ravendb:180,raw:[6,12,14,16,18,25,43,45,57,58,62,68,78,80,113,114,116,117,123,132,139,141,142,146,158,159,165,168,179,191],raw_data:29,razor:157,rb:[127,159],rbf:[60,61,158,184],rbf_score:59,rbf_svc:59,rbk:59,rbkzduqmatb85:59,rbr_1x1:132,rbr_dens:132,rbr_ident:132,rbr_reparam:132,rc:[22,36,62,137,158],rcl:[147,150],rcnn:135,rcparam:[14,59,66,150,178],rdbm:180,rdss:92,re:[3,7,15,31,34,38,40,41,45,47,48,52,57,62,64,66,68,78,80,82,102,104,106,117,118,119,121,122,123,124,127,132,133,134,135,136,141,142,151,152,157,159,162,165,166,170,171,172,174,180,187,191],re_fit:60,reach:[33,36,41,48,50,55,75,106,131,148,150,154,156,171,172],react:[166,195],reaction:138,read:[16,29,31,40,45,47,53,54,58,68,80,82,101,108,109,110,111,112,114,116,118,119,127,134,136,138,141,162,163,166,167,170,171,172,193],read_cifar_fil:127,read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,35,38,42,44,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,76,80,82,83,84,86,109,110,111,116,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,178,188,189,190,192],read_data_set:[127,131],readabl:[0,110,140,159,172,173,194,195],reader:[99,127],readi:[34,40,41,49,51,52,59,68,80,101,139,140,141,142,143,145,152,159,163,164,165,166,168,170],readm:[5,108],readthedoc:30,real:[0,7,11,28,29,33,34,35,36,37,38,39,40,42,45,46,50,53,57,58,59,60,78,92,112,114,117,118,119,121,130,131,132,135,137,139,140,142,143,147,151,157,158,165,166,171,172,173,176,179,180,182,183,188,191,194],real_imag:[36,37],real_label:37,real_part:171,real_sampl:37,real_stock_pric:42,realist:[39,131,182],realiti:[7,56,112,129,141,167,180],realiz:[106,130,136,151,167],realli:[40,49,54,56,60,61,66,68,80,100,104,111,155,157,163,165,167,171,172,191,194],realm:[50,77,78,180],realpython:171,rearrang:[75,108],reason:[7,11,14,40,46,49,50,60,62,66,68,74,78,80,82,99,114,116,117,119,127,140,141,147,148,152,154,155,165,170,172,175,191],reassign:172,reboot:102,rebuild:[29,40],rec:54,recal:[29,40,47,50,52,57,60,68,80,103,119,141,147,152,163,164,167,179],recalcul:148,recall_scor:[29,30],receiv:[6,41,59,82,100,103,104,113,123,130,142,151,167,171,177],recent:[14,43,82,104,119,121,122,123,137,143,146,151,163,179,193],recept:181,recgon:192,recip:[151,188],recipi:113,recogn:[40,43,62,68,80,102,119,129,132,135,139,165,171,174,191],recognit:[30,39,41,78,127,129,132,134,142,165,191],recommend:[15,45,49,101,102,104,111,112,114,118,119,121,123,127,141,148,150,151,158,170,171,173,176],recon_x:31,reconstr_img:126,reconstruct:[29,30,31,126,143],reconstructed_imag:126,record:[9,15,100,112,113,119,127,128,129,137,139,142,145,151,165,171,179,191,193],record_byt:127,record_length:127,record_str:127,recov:[14,142,151],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,38,99,139,142],recreat:[48,109,110,126],recruit:112,rect:[37,186],rectangl:[50,118,130],rectifi:[82,112,127,129,132],rectifier_:127,recur:47,recurr:[28,162],recurs:[50,92,93,136,171],recycl:38,red08:139,red:[14,38,41,42,45,48,49,50,52,56,62,76,77,101,104,108,109,110,116,132,148,150,156,157,158,166,172,173,178,184,188,189,190,194],red_win:62,reddit:108,redefin:[47,103,106,171],redhat:140,redi:180,redman:139,redo:[91,139],redshift:139,reduc:[7,30,32,36,40,45,47,49,50,52,54,56,57,58,61,64,75,78,92,101,106,119,127,129,132,133,140,141,145,147,150,151,154,155,157,158,159,165,167,172,186,191,192,193],reduce_max:29,reduce_mean:[78,126,127,131,132,134,136],reduce_min:29,reduce_sum:[78,127,134],reduct:[31,50,54,126,137,147,148,150,165,191],reduction_model:30,redund:[126,155,171],ref:[30,140,164],refer:[3,17,22,23,24,33,34,43,46,49,50,52,54,56,57,58,60,74,75,77,78,99,100,103,104,106,108,112,116,118,119,122,123,124,126,127,128,129,130,132,136,139,141,142,143,145,146,147,157,159,164,165,166,171,172,191],referenc:[50,171,172],reference_answ:82,referenti:114,refin:143,refit:[52,53,57,58],reflect:[7,28,39,40,78,91,112,139,145,159],reformat:41,refram:38,refresh:[101,140,142,168],refus:[45,112,176],reg:[54,66,78],reg_alpha:[54,154,155],reg_lambda:[54,154],reg_model:74,reg_tre:50,reg_tree_pr:50,regard:[7,33,50,111,117,119,130,150,151,155,167,172],regardless:[46,116,119,140,143,145,171,172],regener:[48,136],regex:[166,168],regim:157,region:[14,74,101,112,135,142,146,155,161,171],regist:[9,100,101,193],register_model:[9,100],registr:[1,119],registri:[101,140],regplot:[54,137],regress:[40,43,45,47,49,52,54,55,56,57,59,60,66,75,91,100,106,116,129,141,146,147,148,150,152,153,155,158,159,161,162,164,177,183,185,191,192],regressor:[42,49,50,76,141,150,152,188],regressorchain:137,regul:[106,143,164],regular:[1,8,36,41,52,53,57,59,61,64,68,76,80,126,127,137,141,150,151,155,156,158,164,184,192],regularioz:[63,65],regularis:[156,184],regularization_weight:127,regularli:[142,143],rei:48,reilli:[112,143],reimport:[29,171],rein:78,reindex:[121,137],reindex_index:121,reinforc:[31,112,130,143,151],reinforcement_learning_course_materi:130,reinvent:143,reiter:[104,139],reject:116,rekognit:143,rel:[1,36,39,41,49,51,52,53,58,75,76,78,92,109,114,116,122,123,124,128,132,141,145,151,159,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],rel_tol:92,relat:[1,3,16,18,28,47,56,78,95,101,104,111,112,113,116,123,125,128,136,141,142,150,157,165,167,171,173,178,183,191,192],relationship:[1,33,40,49,51,52,56,64,66,68,76,77,80,83,86,88,103,106,108,109,114,116,118,129,137,142,145,156,157,162,165,166,167,168,169,170,171,177,188,191],relax:[119,130,156],releas:[112,119,140,173,176,186,195],release_d:[145,146],relev:[3,16,28,99,102,112,114,116,119,129,130,141,151,165,167,174,191],relevent_experi:56,reli:[57,62,68,78,80,106,113,114,117,118,165,167,172,194],reliabl:[77,99,102,112,140,150,165,175,176],relief_pitch:116,reload:[46,47,117],reloop:55,relplot:[111,178],relu1:127,relu1_1:127,relu1_2:127,relu2:127,relu2_1:127,relu2_2:127,relu3_1:127,relu3_2:127,relu3_3:127,relu3_4:127,relu4_1:127,relu4_2:127,relu4_3:127,relu4_4:127,relu5_1:127,relu5_2:127,relu5_3:127,relu5_4:127,relu:[29,30,31,32,33,34,35,36,37,39,40,41,43,44,47,48,62,78,82,127,129,132,133,135,182,192],relu_conv1:127,relu_conv2:127,relu_grad:82,remain:[7,50,54,59,62,68,78,80,92,93,112,117,119,123,128,132,139,147,155,171],remaind:[92,118,119,171,172,173,188,194],remark:[49,57,60,61,68,80,143,147,173,195],remdesivir:1,rememb:[7,35,48,52,57,68,80,104,114,119,131,134,137,141,147,151,152,157,167,170,172,181,188],remind:166,remix:102,remot:[0,140],remote_run:[9,100],remov:[1,3,14,29,31,36,37,49,50,51,52,55,59,62,64,68,80,82,92,106,109,111,112,134,141,145,146,157,162,165,167,171,173,177,186,194],remove_dupl:[93,172],ren:[132,135],renam:[1,18,59,121,123,171],render:[16,54,57,58,60,61,66,78,154,155,158,159,166,170,172,187,194],render_deepdream:127,render_templ:159,rent:99,rep:104,repack:[166,167],repai:165,reparameter:31,repay:[165,191],repeat:[36,38,44,50,55,75,84,93,114,119,123,133,139,146,147,150,151,155,158,166,172,186,194],repeat_delai:128,repeatedli:[92,154,193],repetit:[49,52,53,58,141],replac:[7,14,22,30,31,32,35,41,46,49,51,54,55,56,66,76,77,82,101,117,119,131,132,134,137,141,147,158,166,171,172,194],replai:35,replec:49,replic:119,replica:29,repo:[0,5,133],report:[14,33,39,40,52,56,57,60,104,112,142,159,163,164,167,168,171,176],repositori:[0,1,14,58,75,119,136,138,140,165],repres:[1,7,18,30,31,35,36,39,40,41,43,46,47,48,50,51,52,54,56,57,59,64,74,75,77,78,92,100,102,103,104,110,112,113,114,116,117,118,119,128,129,132,137,141,145,146,147,148,151,152,158,172,173,179,180,186,194],represent:[7,22,29,30,36,41,50,57,58,60,61,64,66,68,74,80,92,103,106,109,117,118,119,126,130,132,136,138,154,155,156,157,158,165,166,170,179,180,193],representative_digit_idx:158,representative_images_diagram:158,reproduc:[39,45,48,141,147,148,155,179],reproduct:14,repvgg:132,repvgg_convert:132,repvggblock:132,request:[3,16,29,30,31,33,36,37,39,41,61,66,68,74,80,82,100,102,112,114,123,127,134,136,143,158,159,165,172,191,194],requir:[0,1,15,22,24,31,33,41,43,45,47,48,56,59,61,74,78,86,93,99,101,102,104,106,112,113,117,118,119,133,135,137,139,140,141,142,143,145,150,151,154,158,159,165,170,171,172,175,176,177,194],requires_grad:33,requisit:9,rerun:[40,43,57,58,60,61,66,154,155,158,166,168,170,187],res_block:128,resblock:128,rescal:[40,62,74,165],research:[1,16,28,99,104,109,110,111,112,123,129,139,141,142,143,151,162,164,165,170,175,176],researchg:50,resembl:[74,75,144],reserv:[50,82],reset:[35,45,47,48,121,130,134,157],reset_default_graph:[127,134,136],reset_index:[1,14,38,39,47,48,54,64],reshap:[29,30,31,32,34,35,36,38,42,43,44,47,50,82,84,121,126,127,128,131,132,134,135,150,156,158,163,166,179,182,184,186,188,189,190,192],reshaped_dim:127,reshaped_imag:[84,127],reshaped_output:127,reshuffle_each_iter:128,resid:[74,159],residu:[48,55,66,127,128,132,151,153,155],residual_block:132,residual_sum_squar:77,resili:78,resist:48,resiz:[31,37,39,127,128,132,133,134,192],resize_bilinear:127,resize_image_with_crop_or_pad:127,resize_with_pad:128,resizemethod:133,resnet101:133,resnet152:133,resnet50:133,resnet:[128,133],resolut:[31,39,41,68,80,122,128,135,158,171],resolv:[15,46,50,103,117,123,133,141,171],reson:[43,74],resourc:[28,40,43,75,99,100,102,106,112,114,119,121,124,139,140,141,143,145,165,171,172,175],resource_group:9,respect:[1,14,30,33,35,47,49,50,52,54,66,74,78,82,112,119,123,124,126,128,132,134,148,155,158,165,170,172,191],respond:[137,170],respons:[3,9,17,36,37,50,75,100,101,102,112,127,134,139,148,150,166,170,176,177,188],rest:[50,57,100,101,117,118,119,140,151,157,158,163,166,167,171,172,180,194],rest_of_the_numb:171,restart:159,restat:104,restor:[30,128,151],restore_best_weight:40,restrict:[7,48,92,93,113,117,150,171,172],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,36,37,38,44,45,46,47,49,50,51,52,53,54,57,58,60,66,68,74,75,76,80,84,91,92,93,100,101,102,103,106,112,114,116,117,119,121,122,123,124,126,127,129,130,132,133,139,140,141,142,143,145,146,147,148,150,151,154,156,157,158,159,162,163,164,165,166,167,171,172,173,176,177,182,184,186,187,191,192,193,194],result_typ:119,resultdf:163,resulting_height:127,resulting_width:127,results_df:84,resum:113,ret:135,retail:[137,139,155],retain:[31,132,165,186],rethinkdb:180,retina:[50,66,137,147,150,186],retrain:[40,45,47,52,53,85,112,127,141,165],retri:167,retriev:[3,25,53,68,80,93,103,106,108,112,118,126,140,141,167,171,175,177,193],retrospect:151,retun:[63,65],return_count:192,return_sequ:[42,44,134],return_st:134,return_valu:[24,53],return_x_i:[158,170],reus:[117,127,129,132,133,150,171,193],reusabl:[140,173],reuse_vari:127,reveal:[26,138],revel:[26,180],reveng:108,revenu:[25,104],revers:[35,108,112,116,133,194],reversed_list:172,reveurmichael:126,review:[45,99,101,102,104,108,112,128,139,140,145,151,164,165],revis:112,revisit:[102,104,109,133,143,167,174],revolutionari:[68,80,159],revolv:43,reward:[35,112,165,191],rewritten:[82,134,151],rex:119,rezend:31,rf:[12,25,40,150],rf_predict:150,rfc:[51,148,150],rfc_100:51,rfi:59,rfst:164,rgb:[33,36,39,119,132],rh:55,rho:[150,151],rho_t:151,rhs_cnt:55,rhs_std:55,rhs_sum2:55,rhs_sum:55,rhythm:29,ri:[33,148],ri_j:148,riak:180,rice:162,rich:[43,114],richard:143,richer:158,rid:[1,14,127,129,145,166,172],ridg:[66,68,76,78,80,157,166],ridge_sklearn:[63,65],ridge_sol:66,ridgecv:66,ridgeregress:[63,65],right:[1,22,27,30,31,36,38,41,45,47,50,51,54,55,56,57,58,62,64,66,68,74,77,80,82,84,92,93,104,110,111,112,114,118,119,121,122,123,127,129,130,132,140,141,143,145,146,147,148,150,151,152,154,156,157,159,165,167,170,171,172,173,176,178,184,187,191],right_column:187,right_df:121,right_i:148,right_idx:55,right_index:[38,121],right_on:121,right_output:130,right_shifted_imag:84,rightarrow:147,rightmost:[119,148],rigid:132,rigor:48,ring:[110,178],ringo:173,riot:38,rise:[1,104,109,111,116,138,157,167,183],risk:[100,101,102,112,119,140,143,156,184],riski:151,riskiest:140,ritonavir:1,river:[140,180],rk:33,rkei:121,rkswahlyepd0yioe0t4oe3i3:59,rl:66,rlabel:121,rm:[12,25,40,193],rmse:[38,53,54,58,61,66,74,76,137],rmse_cb:54,rmse_cross_v:74,rmse_cv:66,rmse_lgbm:54,rmse_xgb:54,rmsle:66,rmsprop:192,rmspropoptim:136,rnd_indx:37,rnd_search:61,rng:179,rnn1:136,rnn2:136,rnn3:136,rnn4:136,rnn:[131,134,136],rnn_builder:44,rnn_cell:136,rnn_model:42,rnn_size:[134,136],rnplwnsp1zaqp:59,ro:[33,75,186],road:[68,80,114,129,165],roadwai:[112,176],roam:193,robert:150,roberto:133,robin:[92,171],roblem:146,robot:[112,135,165,191],robust:[7,36,39,49,54,60,62,78,133,143,150,151,155,156],robustscal:[51,54],roc3qtujlwlgnjug8xyjhmyab7mslm:59,roc:141,roc_auc:[56,59],roc_auc_scor:[56,59,152,167,186],roc_curv:[59,167],rocket:[39,180],roi:[104,135],roi_align:135,roialign:135,role:[14,18,56,74,75,78,95,106,114,116,119,129,139,143,151,156,168,181,184],roll:[14,116,127,134,140,171],rollback:[139,140],rollout:140,rom:131,ronald:7,room:[39,49,74,114,121,142,148,165],root:[50,53,58,61,63,65,76,92,108,110,112,128,131,145,148,159,168,172,192],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:59,ropsasrsaeuchxukvv2ymdhz:59,ross:[109,135,178],rossii:[109,178],rossum:[173,193,195],rotat:[1,3,18,22,34,39,41,51,54,84,130,135,145,146,158,178],rotate_in_all_direct:84,rotated_imag:84,rotation_rang:[32,34],roug:141,roughli:[14,45,47,50,116,131,158],round:[39,40,46,48,59,64,83,84,92,127,140,145,154,155,172,186,194],rout:[7,102,117,139,159,174],routin:119,row:[2,6,7,14,29,38,39,40,41,43,45,46,47,48,49,51,52,54,55,56,57,58,59,64,66,68,76,80,101,103,110,111,113,117,118,119,121,123,124,136,137,142,146,152,162,163,166,167,168,172,178,179,180,188,194],row_index:123,row_vector:119,rowsum:119,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:59,rpn:135,rpn_head:135,rrgtp8yqcvnf:59,rror:147,rsuffix:121,rt:[14,152],rt_with_na_fil:14,rtol:14,rtx:29,ruhi:139,rule:[40,43,50,74,75,82,92,103,113,114,123,129,139,141,143,145,150,151,158,163,165,172,179,191,194],run:[0,5,7,14,32,33,38,39,40,43,45,47,48,49,51,52,53,56,57,66,68,75,80,82,83,84,91,96,97,99,100,101,108,114,116,117,118,119,121,126,127,130,131,133,134,135,136,139,140,141,150,151,154,155,157,158,159,163,165,166,171,173,179,186,187,191,193,195],run_functions_eagerli:134,run_optim:126,rundetail:[9,100],runner:140,running_loss:31,running_mean:132,running_var:132,runtim:[0,40,140,143,154,159],rush:[113,143,145],russian:31,rutherford:173,rutwik:143,rvert:[157,185],rx:[33,186],ryan:62,ryanholbrook:137,s1:[24,55,119,121,122,170,172,194],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:59,s2:[55,121,123,173],s3:[119,139],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,36,37,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,69,76,77,78,80,82,83,84,86,91,92,93,96,97,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,150,152,154,155,157,158,159,161,162,163,164,165,166,169,170,171,173,174,180,185,186,187,188,191,192,194],s_0:50,s_1:[50,116],s_2:50,s_i:[50,116],s_j:116,s_n:116,s_o:50,s_text:134,s_text_ix:134,s_text_word:134,sa:123,saa:[99,139,159,175],sack:168,sacrif:78,sacrific:50,sad:104,saddl:140,sadli:48,safari:101,safe:[60,127,140,165,186],safefi:57,safeti:[57,58,102,112,127,165,174,176],sag:[159,163],saga:163,sagemak:[139,140,142],sahara:141,sai:[7,31,33,36,48,49,50,52,57,58,59,66,68,74,80,99,112,116,117,119,129,137,141,144,147,151,157,165,167,171,172,182,186,194],said:[7,40,43,49,50,58,64,104,132,165,191],sake:[54,133,148,150],salari:[18,50,188,189,190],salary_data:188,sale:[77,137,165,166,167,168,172,191],salecondit:66,salepric:[66,154],saletyp:[54,66],same:[0,1,7,9,18,29,30,31,32,33,34,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,57,58,59,61,62,63,65,68,74,75,78,80,83,88,93,100,104,106,110,111,113,116,117,118,119,121,123,124,126,127,128,131,132,133,134,135,136,137,139,140,141,145,147,148,150,151,152,155,157,158,162,164,165,166,167,171,172,173,177,179,187,193,194,195],sameep:139,samll:[63,65],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,40,41,47,48,49,50,53,56,57,59,60,62,63,64,65,66,68,72,77,78,80,82,83,93,100,101,111,112,116,117,118,127,130,134,135,140,142,143,146,147,148,150,151,155,156,157,159,162,164,165,166,167,170,173,177,184,191,192,195],sample_imag:[33,133],sample_kernel:33,sample_mask:133,sample_s:18,sample_time_series_covid19_deaths_u:142,sample_weight:150,sampledb:118,sampler:33,samuel:[92,93,165,191],sandal:[30,40,41],sanit:[102,174],saniti:[48,134,141],sankei:1,santino:145,sape:[172,194],sar:1,satellit:133,satisfi:[48,54,119,141,142,151,172,194],saturn:195,saurabh:143,save:[1,29,30,31,33,36,40,41,45,47,48,51,56,66,76,82,101,119,127,128,133,134,136,141,147,150,151,156,158,162,163,171,182,187],save_best_onli:[39,40,44],save_everi:134,save_fig:158,save_format:[29,30],save_imag:37,save_images_from_dict:127,savefig:[130,158],saw:[10,13,20,40,47,49,50,52,57,68,80,100,108,137,147,151,157,158,165,167,168,172,191,194],say_goodby:171,say_hello:[171,193],sc1:158,sc2:158,sc:[42,64,158,189,190],sc_h:[68,80],sc_w:[68,80],scalabl:[50,99,101,102,112,139,140,150,156,175,176,184],scalar:[43,130,133,151,186],scalar_tensor:43,scale:[0,7,15,38,40,41,45,47,49,53,56,57,58,60,61,62,64,76,99,101,102,108,112,117,119,127,132,133,135,140,141,143,146,150,157,165,170,175,180,182,186,191],scale_feat:[68,80],scale_pip:[53,58,60],scaler:[38,40,44,51,53,54,58,59,60,61,64,68,74,80],scaler_i:44,scali:[110,178],scallion:163,scam:165,scan:[102,129,145],scari:169,scatter3d:[156,184],scatter:[18,24,45,50,60,66,76,77,83,108,109,110,111,116,123,145,146,150,156,158,166,168,170,178,184,186,188,189,190],scatter_3d:30,scatter_kw:137,scatterplot:[19,24,49,52,60,61,68,74,80,109,145,146,166,167,168,170],scaveng:71,sceipt:140,scenario:[26,39,49,52,53,75,99,104,112,114,140,143,165,191],scene:163,schedul:[49,52,139,142],schema:[101,114,139],schema_max:48,schema_min:48,scheme:[50,111,163],scholar:139,school:[11,50,56,102,193],schroff:133,sci:[62,170],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,46,48,54,56,57,58,60,61,101,103,104,108,109,110,111,113,115,116,117,118,119,121,123,124,137,138,139,151,159,170,173,179,183],scientif:[1,50,59,114,119,138,143,162,172,176,194],scientificnam:[109,178],scientist:[3,6,7,21,56,77,99,100,101,102,103,106,107,108,111,112,113,114,115,116,139,140,141,151,162,165,168,169,170,174,175,177,178],scikit:[7,40,46,47,49,51,57,58,61,62,66,69,71,98,99,100,101,109,110,111,117,129,134,137,140,143,144,145,146,147,150,154,155,157,158,159,160,161,162,164,167,169],scipi:[18,66,74,84,116,121,127,156,184,186],scoop:171,scope:[60,61,127,129,163,165,172,188,191,194],score:[9,35,40,41,45,47,48,50,51,52,54,55,56,57,60,63,64,65,66,68,74,78,80,83,84,100,101,102,114,133,135,141,144,148,150,152,154,158,163,164,166,167,188],score_cb:54,score_lgbm:54,score_xgb:54,scoreboard:167,scoring_file_v_1_0_0:[9,100],scout:102,scrape:[102,113,174],scrapi:[102,174],scratch:[43,99,100,127,141,190],screen:[68,80,108],screenporch:54,screenshot:[16,104,135],script:[3,100,101,127,138,171,173,187,193,195],script_file_nam:[9,100],scroll:[108,121,122,123,146,158,162,166],scrollytel:108,scrutin:112,scullei:143,scylladb:180,sd:59,sdjfhhes1figky8fmsto5n:59,sdk:[98,101,121,140,175],sdpzzf8euy6hn86ydqexmfsez:59,se4ml:143,se:18,sea:74,seaborn:[22,30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,72,74,80,83,108,109,111,137,145,146,147,148,150,156,167,178,184,186],seali:116,seam:124,seamless:101,search:[1,46,50,52,53,56,57,59,60,61,62,66,84,100,101,102,104,109,112,113,114,117,119,121,122,141,142,143,145,150,151,155,171,172,174,194],searchitoper:140,searchsort:119,season:[17,23,49,52,102,113,137],sebastian:[50,126,131,134,136],second:[0,7,18,31,32,39,40,41,43,48,49,50,57,101,109,112,116,118,119,123,127,131,132,137,141,147,148,151,152,155,158,159,164,165,166,171,172,173,187,192,194,195],second_baseman:[18,116],second_char_set:172,second_numb:[172,194],second_term:127,second_term_numer:127,second_tuple_numb:172,second_word:[171,193],secondari:[6,113],secondli:151,secret:[26,92,143],section:[2,3,7,13,15,16,17,19,21,28,29,36,45,47,48,54,59,64,69,76,85,89,90,91,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,125,127,128,130,139,140,141,142,143,145,146,147,152,153,154,155,156,157,159,161,162,163,164,165,166,167,168,169,170,172,173,177,179,180,187,194,195],sector:[50,56],secur:[99,102,112,159,174,175,176],sedol:165,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,36,40,41,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,64,66,68,74,75,78,80,82,83,92,98,99,100,101,104,109,110,111,112,114,116,117,119,122,123,124,127,129,130,134,135,136,137,139,141,145,146,147,150,151,152,155,156,158,159,162,163,165,166,167,168,170,171,172,173,180,186,188,191,193,194],seed:[33,36,38,39,43,44,50,64,76,82,122,133,146,147,150,151,152,155,158,179,186],seed_numb:43,seek:[74,104,156,165,166,170,184,191],seem:[7,17,22,30,32,33,40,48,49,50,52,62,66,68,80,109,111,112,116,117,124,137,141,145,151,157,166,168,176],seen:[1,7,28,30,40,41,46,49,52,54,58,59,78,109,111,112,116,117,119,124,126,129,131,132,141,147,150,151,156,159,165,166,171,172,191],segment:[43,78,102,110,129,135,145,151,162,165],segmentation_mask:133,segmented_img:158,segreg:59,seir:142,select:[3,12,14,15,16,22,24,25,29,31,47,48,50,59,62,64,66,78,101,103,108,109,110,112,118,119,120,124,125,127,132,136,142,143,146,147,148,150,151,155,156,158,159,167,168,170,171,180,183,186,187],select_dtyp:[54,110,154,178],selected_featur:[159,167],selector:187,self:[3,14,18,22,24,29,30,31,33,35,36,37,40,43,47,53,55,63,65,76,81,82,92,93,94,122,123,128,132,133,134,135,138,152,156,165,184,188,189,193],self_dense_2:43,self_dense_3:43,sell:[35,92,93,112,166,171,172],selu:[44,129],sem:18,semant:[114,122,123,133,171],semi:[6,113,114,145,158,165,176],semicolon:[172,194],send:[100,104,139,177],sender:[104,165,177],senet:132,sens:[1,3,7,18,32,46,49,50,53,66,68,74,80,92,101,113,114,116,117,119,123,129,147,152,165,166,168,171,180,188],sensibl:141,sensit:[38,50,59,76,77,124,132,139,141,143,153,172,181,186,194],sensor:[113,114],sent:[100,113,129,139,142,159,165],sentenc:[88,93,129,134,172,173,195],sentiment:[102,114,129,174],sentinel:179,seok:30,sep:[9,18,24,31,47,102,116,171,172,193],sepal:[60,83,117,123,148,186],sepal_ratio:123,sepallength:[83,123,148],sepallengthcm:64,sepalratio:123,sepalwidth:[83,123,148],sepalwidthcm:64,separ:[1,7,29,50,61,75,83,106,114,116,118,119,123,124,127,132,135,137,141,142,146,151,156,166,168,171,172,186,194],septemb:[106,162,168],sequel:124,sequenc:[14,18,38,41,43,49,74,78,102,116,119,129,132,134,136,137,148,171,172,173,193,194],sequenti:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,54,56,62,78,82,129,130,132,136,152,153,155,172,182,186,192],sequential_2:29,sequential_3:29,sequential_window_dataset:44,ser1:179,ser2:179,ser:[123,179],sercostams:83,sergei:[31,158],seri:[7,8,14,18,22,24,31,34,38,46,49,50,51,52,56,57,58,60,66,74,108,117,118,121,122,129,132,133,136,142,146,151,163,169,171,173,180],serial:[137,140,159,193],series_to_supervis:38,seriou:59,serum:101,serum_creatinin:[9,100,101],serum_sodium:[9,100,101],serv:[43,75,77,78,100,106,108,119,123,141,142,143,171],server:[99,106,114,124,140,159,170,173,180],serverless:139,servic:[1,9,50,99,100,101,102,104,106,112,119,121,129,139,140,141,142,147,148,159,165,174,175,176,191],sess1:127,sess2:127,sess:[127,130,134,136],session:[78,83,127,131,136,142,192,193],session_st:187,set1:[51,83],set2:56,set:[0,3,7,14,17,22,29,31,33,34,35,36,38,39,40,43,44,45,46,47,48,50,56,58,60,61,62,63,64,65,66,68,69,75,78,80,82,84,85,92,93,99,100,101,102,104,106,109,111,112,113,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,140,141,142,145,146,147,148,150,151,154,156,157,158,159,162,163,164,165,166,167,168,169,170,171,174,178,179,184,186,187,191,194],set_aspect:137,set_axis_off:37,set_color:41,set_grad_en:31,set_index:[1,14,38,121,137],set_major_formatt:158,set_major_loc:158,set_printopt:188,set_prop_cycl:137,set_properti:137,set_se:[43,44],set_styl:[54,83],set_them:145,set_ticklabel:[83,186],set_titl:[1,22,37,39,51,55,59,64,75,83,137,156,184],set_vis:[29,30,127],set_xlabel:[22,47,55,59,75,83,137,150,156,184],set_xlim:[156,184],set_xtick:[1,33,158],set_xticklabel:[1,51],set_ylabel:[22,47,55,59,64,75,83,137,150,156,184],set_ylim:[14,32,150,156,184],set_ytick:[1,33],set_yticklabel:1,set_zlabel:[75,83,156,184],setfil:130,setosa:[60,64,83,123,148,186],settl:[112,176],settlement:[112,176],setup:[0,45,47,56,127,130,140,166,170],sever:[7,8,14,21,35,41,45,51,54,56,63,65,72,76,77,99,101,109,110,111,114,117,119,121,124,132,134,135,140,141,145,147,152,155,159,162,163,164,166,167,168,170,171,172,173,186,192,193,194],sew:151,sex:[9,22,51,100,101,152,170],sex_distribut:24,sex_val:22,sgd:[33,40,45,49,62,68,80,141,192],sgd_classifi:49,sgd_clf:[68,80],sgd_score:[68,80],sgdclassifi:[49,68,80],shade:[39,47,102,108,112,174,176],shadi:108,shadow:[39,51],shah:143,shakespear:134,shakespeare_fil:134,shakespeare_model:134,shakespeare_url:134,shall:[92,93,171,172],shallow:[119,133,141,165,172,191,194],shanghai:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,116,123,138,145,146,158,162,163,164,166,193],shanmukha:139,shannon:50,shaoq:[132,135],shape:[29,30,31,32,33,34,36,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,63,64,65,66,76,81,82,84,110,116,117,119,126,127,128,131,132,133,134,135,136,140,146,150,156,158,159,162,166,167,168,170,178,179,181,182,184,186,188,189,190,192],shape_i:[63,65],shape_img:39,shape_y_0:[63,65],share:[28,33,50,51,57,59,102,103,104,106,111,112,113,114,117,119,121,135,138,140,142,147,148,151,163,165,167,171,174,179,191],sharei:[50,55],sharma:139,sharmila:143,sharp:[141,147],shashank:139,shazia:139,she:[18,141,165,191],sheet:[141,143,163,164],shelham:133,shell:[171,195],shen:135,shepb1jhw5o:78,sherjil:131,shg:143,shift:[8,14,38,44,51,54,62,68,80,84,93,127,136,137,140,142,145,156],shift_in_all_direct:84,shift_in_one_direct:84,shifted_imag:84,shine:[151,159],ship:[49,62,127],shipment:139,shirlei:108,shirt:[30,40,41],shop:[39,145],shortcom:132,shortcut:[132,133,171,173],shorten:59,shorter:[21,26,101,123],shorthand:[119,171],shortli:[145,170],shortsight:130,shortstop:116,shot:36,should:[7,18,29,32,33,36,39,41,45,46,47,48,50,51,58,59,63,64,65,82,83,92,93,100,101,103,104,106,108,112,114,116,117,119,122,123,124,127,129,130,132,133,134,136,139,140,141,142,143,145,146,150,154,155,157,158,159,162,163,164,165,166,167,169,170,171,172,173,176,177,182,187,188,192,193,194],shouldn:[56,104],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,38,39,40,41,42,44,45,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,66,68,75,76,77,80,82,84,100,102,103,104,109,110,111,116,117,118,119,121,123,126,127,128,129,130,133,134,135,136,137,140,141,142,145,146,148,150,151,152,154,155,156,158,162,163,165,166,167,168,170,173,178,180,182,186,188,189,190,191,192],show_centroid:158,show_generated_img:37,show_imag:33,show_images_batch:33,show_img:36,show_nam:193,show_new_sampl:34,show_output:[9,100],show_point:30,show_predict:133,show_xlabel:158,show_ylabel:158,showarrai:127,showcas:[28,66,102,174],showclassificationresult:47,showdown:110,showexampl:47,showmean:18,shown:[0,7,14,16,30,32,49,50,52,59,69,101,116,119,132,142,143,150,156,158,165,167,171,191],showregressionresult:48,shp:135,shrink:[38,158],shrinkag:152,shrivastava:143,shuffl:[29,30,33,37,38,39,40,43,48,56,64,82,108,127,128,131,133,134,136,137,141,150,164],shuffle_batch:127,shuffle_tensor:43,shuffled_ix:136,shufflenet:132,shuga:145,shut:62,sibl:22,sibsp:[22,152],sicp:93,sid:108,side:[7,8,14,54,55,59,68,74,80,111,122,130,143,151,156,163,171,172,173,194],siev:92,sieve_of_eratosthen:92,sigh:141,sight:[159,163],sigkdd:139,sigma:[116,128,134,136,147,148,150,155],sigma_ix_i:116,sigma_p:128,sigma_q:128,sigma_t:128,sigmoid:[29,30,31,36,37,40,43,60,61,81,126,129,130,134,135,142,152,167,182,192],sigmoid_cross_entropy_with_logit:131,sigmoid_svc100:59,sigmoid_svc:59,sign:[50,53,56,63,65,101,104,118,119,150,151,165,172],signal:[48,59,66,68,80,104,141,146,148,157,165,170,177,182],signatur:[102,123,172,174,194],signifi:[7,75,77],signific:[18,40,48,54,75,101,104,114,116,147,148,150,156,172,181],significantli:[47,50,75,139,141,145,150,151,158,166,172,186],signup:56,silenc:186,silent:[46,54,154,172],silhouett:158,silhouette_analysis_plot:158,silhouette_coeffici:158,silhouette_sampl:158,silhouette_scor:[146,158],silhouette_score_vs_k_plot:158,silu:128,silver:151,sim:[68,80,151],sim_count:[68,80],simcard:[68,80],similar:[3,6,7,14,29,31,39,43,47,50,52,59,63,65,68,76,80,104,106,112,114,116,117,118,119,123,126,127,133,135,136,137,140,141,142,143,145,146,147,151,156,159,162,164,165,166,171,172,173,177,179,191,194,195],similarli:[18,49,50,57,59,64,75,119,123,139,141,154,172],simonyan:132,simpl:[1,3,15,30,33,34,40,41,43,47,48,49,50,54,55,59,64,68,74,75,76,77,78,80,83,84,103,111,114,119,123,126,127,129,132,133,135,137,140,150,151,155,156,158,165,170,171,172,173,178,181,182,186,191,194],simplefilt:137,simpleimput:[54,61,74,154],simpler:[31,45,47,48,119,140,141,158,165,179],simplernn:44,simplest:[3,18,32,43,47,48,50,82,114,119,140,141,151,157,158,165,171,186,192],simpli:[0,7,30,33,43,46,47,48,49,50,51,75,76,78,82,100,104,108,117,121,123,129,133,141,147,151,154,156,157,158,165,166,171,172,179,187,191,194],simplic:[78,100,132,137,148,150,151],simplifi:[1,29,30,48,55,75,102,114,119,128,139,140,141,145,151,174],simpson:38,simul:[0,119,142,143,171],simultan:[36,116,132,135,140],sin:[18,119,128,151,193],sinc:[18,22,30,32,33,35,36,40,41,45,47,48,49,50,52,53,54,56,58,59,60,61,62,64,66,68,74,80,82,101,112,114,116,119,121,122,123,127,129,132,133,134,135,137,140,141,147,148,151,154,155,156,157,158,159,163,164,166,167,170,171,172,176,186,192,193,194],sine:119,singh:143,singl:[7,32,34,41,43,47,49,50,54,56,59,68,78,80,92,99,111,113,117,121,122,123,127,132,135,136,137,141,142,150,153,154,155,158,165,171,172,173,191,194,195],single_quote_str:[172,194],singleton_tupl:172,sink:99,sinn:125,sinusoid:128,siobhan:139,sir:[14,142],sirkap:102,sit:[57,58,106,165,177],site:[16,57,99,108,112,114,121,122,123,143,145,146,163,167,170,179,186,193],situat:[28,54,59,78,104,114,116,130,139,141,143,148,151,166,171,172],situp:88,six:[39,127],sixth:[172,194],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,62,68,74,75,76,80,82,83,84,92,100,101,110,111,116,117,119,123,126,127,129,131,132,133,134,135,136,141,143,146,147,150,151,155,156,157,158,159,165,166,167,172,178,179,182,185,186,191,192,194],sjoerd:[172,194],ska20:141,skalski:141,skalskip:[83,84],skeeter:156,skeptic:151,sketch:173,sketchnot:170,skew:[7,22,54,57,59,66,68,80,109,146,162],skewed_feat:66,skf:150,skill:[38,47,101,102,108,109,114,124,174,178,195],skim:[100,168],skimag:127,skin:[102,174],skip:[0,3,31,38,41,43,47,48,109,133,171,172,178],skip_head:186,skiprow:31,skiti:[63,65],sklearn:[7,29,30,31,32,34,38,39,40,42,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,75,76,80,83,84,117,137,146,147,150,152,154,155,156,157,158,159,163,164,166,167,170,188,189,190],sklz5kcmqsshyyfixsjcin0srf5:59,sl:148,slate:118,slaughter:147,sleep:187,slept:188,slice:[51,59,82,127,171,172,179,194],slice_index:122,slice_loc:122,slice_obj:122,slicer:122,slide:[14,33,104,116,138,142,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],slideshow:183,slight:[56,150],slightli:[18,30,32,41,49,50,56,64,66,78,104,127,128,150,151,157,166,171],slope:[75,166],slow:[14,40,49,62,74,119,135,140,179],slower:[7,75,101,127],slowest:158,slowli:[45,48],slytherin:187,sm:[136,167],small:[0,15,29,32,33,41,48,49,50,57,58,60,61,63,64,65,66,68,74,76,78,80,82,101,116,118,119,121,127,128,132,133,134,135,139,141,143,147,150,151,154,156,157,158,159,165,166,167,170,171,173,176,182,186],smaller:[7,18,30,33,36,48,62,75,82,92,109,117,119,126,132,141,147,150,154,167,179],smallest:[92,141],smart:[119,141,154],smartphon:[68,80,114,129],smartwatch:[6,113],smelyanskii:141,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:93,smo:[156,184],smoke:[9,100,101],smoker:162,smooth:[14,50,78,109,110,127,142,150,178],smoother:109,smoothli:[59,109,167],smote:162,smsspamcollect:136,smv:[60,61],sn:[30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,74,80,83,109,111,137,145,146,147,148,150,156,167,178,184,186],sna:186,snake:50,snapshot:[39,101,110],sne:[158,165,186],sneaker:[30,40,41],snippet:[7,50,76,142,172],snow:[19,109,178],snr:59,so:[1,4,7,15,17,18,29,30,31,32,33,34,36,39,40,41,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,76,78,80,82,92,93,97,101,102,104,108,109,110,111,112,116,117,119,121,122,124,126,127,128,129,131,132,133,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,179,186,191,194],social:[5,102,104,108,112,114,174,176],social_network_ad:[189,190],societi:[112,143],socio:[102,112,176],socr:18,socr_mlb:[18,116],soda:[118,180],sodium:101,soft:[59,158],softmax:[32,34,39,40,41,47,82,127,129,130,132,134,136,192],softmax_crossentropy_with_logit:82,softwar:[0,22,23,45,47,48,92,93,98,99,106,116,118,139,140,141,142,143,159,170,171,172,173,175,180,195],sold:[25,54,168],sole:[54,75,78,141,150,171],solid:[19,48,159],solidifi:151,soluion:[63,65],solut:[11,28,50,66,69,75,92,99,101,102,104,108,112,139,140,141,142,143,150,151,156,158,159,165,168,172,175,176,180,184,188],solv:[50,52,54,57,100,103,104,106,116,119,121,129,130,132,135,140,141,143,151,155,156,158,162,163,165,172,177,191],solvabl:[142,151],solver:[130,158,159,163],somber:104,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,36,39,40,41,43,45,46,47,49,50,52,54,55,56,57,58,59,60,62,64,66,68,72,74,76,77,78,80,82,83,85,92,99,101,102,103,104,105,106,108,109,110,111,112,113,114,116,117,118,119,121,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,144,145,147,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,173,175,176,177,179,180,182,184,188,191,194],some_digit:84,some_digit_imag:84,somehow:[7,116,119,168],someon:[7,49,98,99,104,106,139,141,151,165,166,171,177],someth:[7,43,54,62,68,80,82,104,109,113,114,118,119,123,124,129,143,152,157,165,166,171,172,180,181,182,191,194],sometim:[7,30,46,49,59,62,75,110,113,114,116,117,119,122,123,124,126,130,132,137,139,141,142,143,151,154,165,166,167,171,172,179,191,194],somewhat:[7,47,110,158,166,167,187],somewher:[116,151,165,166,167],sonali:104,song:[144,145,146],soo:68,soon:[29,40,151],sophist:[49,108,109,140,147,150,165,178,191],sore:129,sort:[22,39,45,50,54,62,92,114,121,122,127,132,145,150,158,162,165,168,171,172,178,187,191,193,194],sort_i:55,sort_idx:55,sort_index:122,sort_valu:[1,31,50,51,54,56,66,162,163],sort_x:55,sosa:166,sosb:166,soshnikov:[14,99,166],sound:[7,18,31,45,116,117,129,147,154,165,191],sound_packag:171,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,39,40,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,107,108,109,110,111,112,114,116,117,118,119,121,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,158,159,162,163,164,165,166,167,168,170,171,172,173,179,181,186,187,188,189,191,192,193,195],source_indic:1,sours:136,south:[49,52],soy_sauc:163,space:[1,6,29,31,36,39,50,82,92,93,102,108,110,116,119,121,126,130,132,135,141,142,148,150,151,155,156,159,164,167,168,171,172,173,174,178,186,193,194,195],spacing_h:135,spacing_w:135,spam:[136,162,165,171,172,191,194],span:[111,172,194],spanish:50,spark:[139,140],sparki:145,spars:[74,78,126,150,151,155],sparse_categorical_crossentropi:[40,47,134],sparse_softmax_cross_entropy_with_logit:[127,136],sparsecategoricalcrossentropi:[40,41,133],sparsiti:[78,155],spatial:[102,129,132,133,135,186],speak:[104,108,111,139,141,159,171],speaker:141,speci:[60,64,83,109,110],special:[7,29,31,54,62,78,101,114,117,119,129,145,155,156,165,167,170,171,172,179,193],specialti:168,specif:[3,7,14,22,28,31,39,40,43,45,46,47,48,49,50,52,62,68,75,77,78,80,99,102,103,112,113,117,119,121,123,124,132,133,136,139,140,141,143,145,147,150,151,152,156,164,165,166,171,172,173,181,186,193,194],specifi:[1,7,14,22,31,33,34,40,43,46,48,75,84,99,117,119,121,123,127,132,142,150,154,155,163,165,171,172,191,194],spectral:145,spectralclust:158,spectralclusteringspectralclust:158,spectrum:116,specular:39,speech:[41,78,99,129,165],speechi:[144,145,146],speed:[14,40,54,62,68,80,82,101,106,112,119,121,132,135,141,142,143,154,155,165],spend:[23,49,68,80,99,104,140,151,154,165],spent:[104,141,151],spepal:46,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:59,spike:[1,107,108,111,178],spinach:168,spine:111,spline:151,split:[31,33,35,38,40,49,52,55,56,60,61,62,64,76,82,83,119,121,124,130,131,132,133,134,135,136,137,139,141,147,148,150,151,152,156,158,165,166,167,170,171,172,173,179,180,184,186,193,194],split_col:55,split_data:152,split_nam:55,splitidx:48,splitted_str:172,splitted_sub_str:172,splitter:[57,58],sponsor:[106,140,177],spore:[110,178],sport:102,sports_hobbi:93,spot:[7,46,117,119,157,165,191],spotifi:145,spous:22,spread:[14,114,116,124,128,130,145,151,168],spreadsheet:[6,23,25,27,71,113,121,123,124,159,165,168,191],spring:[142,171],springer:141,spruce:168,spuriou:[59,62,108],sql:[12,25,99,114,118,121,123,124,139,180],sqlite:[12,25],sqrt:[38,52,53,54,55,56,58,61,66,74,76,77,93,116,128,131,132,135,148,150,166,186],sqrt_alphas_cumprod:128,sqrt_alphas_cumprod_t:128,sqrt_iter:93,sqrt_one_minus_alphas_cumprod:128,sqrt_one_minus_alphas_cumprod_t:128,sqrt_recip_alpha:128,sqrt_recip_alphas_t:128,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:59,squar:[38,40,45,48,50,53,58,61,63,65,66,68,75,76,78,80,92,110,119,126,127,128,130,137,141,145,146,147,150,151,155,156,157,158,166,167,172,187,188,192,193,194],square_root:92,square_tupl:[172,194],squared_error:[58,77],squarederror:54,squeez:[29,30,31,36,37,127,135,156],sr:135,src:[78,108,116,121,122,123,135,146,158,162,166],ss20:[126,131,134,136],ssh:101,sssg17:143,stabal:62,stabil:[82,111,141,146],stabl:[1,66,119,123,141,158,186],stack:[1,22,31,33,40,54,108,119,121,129,132,135,139,151,178],stack_clf:49,stackingclassifi:49,stackoverflow:18,staff:148,staff_id:[171,193],stage0:132,stage1:132,stage2:132,stage3:132,stage4:132,stage:[17,23,55,56,59,103,104,106,132,133,135,140,155,157,165,177],stai:[48,74,141,159,187],staircas:127,stakehold:[104,106,177],stalk:[110,178],stamp:[49,52],stand:[49,59,62,68,80,104,111,152,155,168],standard:[7,18,29,31,46,47,48,59,62,64,74,89,103,106,112,117,119,123,124,129,137,139,140,142,148,151,154,156,165,166,168,171,193],standard_d2_v2:[9,100],standardscal:[44,53,58,59,61,62,64,74,189,190],standpoint:78,stanford:[37,102,132,151,165,166,167],stapl:78,star:[59,162,172],starri:127,starry_night:127,start:[0,1,3,8,11,13,18,29,33,34,37,41,43,45,46,47,48,54,56,59,61,68,75,76,80,82,84,92,93,99,100,101,102,103,104,108,109,111,112,114,116,117,118,119,122,123,127,128,130,131,134,136,137,138,142,146,148,150,151,152,154,155,156,157,158,159,162,164,165,166,167,168,171,172,173,175,179,181,182,186,187,189,190,191,194],start_idx:82,start_queue_runn:127,start_slic:122,start_tim:39,starter:[31,108,167],starti:130,starting_pitch:116,startswith:[3,158],startup:[43,56],startx:130,stat453:[126,131,134,136],stat:[18,40,49,53,54,58,64,66,116,141,142,147,156,184],stat_interv:147,state:[9,13,14,15,31,35,49,50,52,59,100,102,108,111,113,119,123,124,127,129,132,134,136,139,140,141,142,147,152,159,162,164,165,168,171,178,180,187],state_c:134,state_dict:37,state_h:134,state_s:35,statement:[31,33,96,97,112,113,116,118,124,130,170,173,180],stationeri:38,statist:[7,39,47,50,52,54,59,61,76,77,78,106,111,112,114,115,119,128,136,138,141,142,143,145,147,150,151,156,162,165,166,177,179,182],statsmodel:[54,64],statu:[22,57,100,101,109,130,131,140,142,178],std:[18,24,29,31,38,47,48,58,59,61,64,74,82,116,119,132,145,150,155,158,179],std_agg:55,stdarr:48,stddev:[127,128,131,135,136],stderr:47,stdout:193,steam:38,steep:[142,167],steer:41,stellar:59,stem:[7,56],step:[0,7,9,16,28,31,33,35,36,37,38,39,40,41,43,44,47,48,49,50,52,54,59,60,61,62,64,75,76,77,82,92,99,100,101,102,103,104,106,109,112,114,117,118,119,122,124,126,127,128,129,130,132,134,136,139,140,141,142,143,146,147,148,155,158,159,162,165,166,168,171,172,176,179,186,189,190,191],steps_mean:130,steps_per_epoch:[32,133],steps_taken:130,stepwis:166,stereotyp:112,stick:[48,104],sticki:110,stiff:171,stikeleath:104,still:[7,18,36,48,49,52,53,57,75,78,116,117,119,121,122,123,129,133,134,136,137,139,140,141,143,151,158,165,171,172,187,194],stochast:[82,128,130,151,163,165,192],stock:[111,130,165,178],stockast:[49,68,80],stop:[33,39,40,50,55,75,100,119,122,123,128,150,154,155,171,179,189,190],stop_gradi:135,stop_train:40,storag:[11,33,99,101,106,114,124,127,166,167,175,176,177,180],store:[6,7,11,12,29,30,31,33,39,41,46,50,53,64,66,68,80,92,93,96,99,104,113,114,117,119,121,124,125,126,127,128,129,131,134,137,139,140,141,142,143,148,154,156,171,172,173,175,180,187,194,195],stori:[4,13,19,50,107,108,143,172,177,178,194],storymap:102,storytel:[19,26,177],stott:7,str1:[48,172],str2:172,str:[1,9,14,33,35,37,47,48,54,56,59,66,68,80,83,100,121,122,127,128,133,135,148,154,166,168,171,172,173,179,193,194,195],straight:[43,45,50,104,154,156,166,170,184,188,192],straightforward:[31,75,114,119,141,154,159,167,170,171],straightfoward:137,strang:[18,108,168],strateg:[130,165],strategi:[7,29,41,47,49,52,61,68,74,78,80,104,112,130,133,141,142,162,165,191],strategist:104,stratifi:[150,186],stratifiedkfold:[64,150],stratifiedkfoldcv:64,stream:[47,50,99,129,130,135,139,140,143,165,191,193],stream_executor:29,streamlin:[132,138],streamlit:142,street:[60,61,66,112,176],strenghten:55,strength:[1,54,137,141,156,184],strengthen:[99,151],stretch:[1,8,119],strftime:38,strict:[106,122,141],strictli:171,stride:[29,30,31,32,33,34,36,37,126,127,128,132,133,135],strike:78,string:[7,14,22,39,54,56,59,83,117,119,121,122,123,134,168],string_input_produc:127,string_vari:[172,194],string_with_whitespac:[172,194],strip:[3,14,59,134,171,172,194],stripe:167,stripplot:167,strive:[36,78],strong:[18,43,49,52,54,64,66,109,111,116,131,132,134,145,147,151,153,155,165],stronger:35,strongest:[54,112],strongli:[116,151,158,165,191],struc:78,struct:119,structur:[6,7,12,22,30,31,38,40,41,50,57,58,90,92,112,113,114,118,120,124,125,126,127,129,130,131,132,133,135,139,152,155,156,159,163,165,166,168,171,173,176,178,180,181,184,186,191,193],struggl:[141,147],strutur:154,stubbornli:45,stuck:[62,141],student:[16,18,64,114,116,118,142,157,166,170,180],student_admiss:193,studi:[14,16,33,39,50,129,151,156,161,163,165,174,176,179,188,191],studio:[7,9,100,102,166,168,169,170,174],study_15:57,study_1:57,study_20:57,study_41:57,study_7:57,stuff:[82,171],stump:151,stun:57,style:[0,3,32,36,38,51,62,91,119,121,122,123,132,137,138,142,145,146,150,158,159,162,166,174,175,176,177,178,179,180,181,182,184,185,186,188,189,190,191,192,193,194,195],style_expect:127,style_featur:127,style_gram_matrix:127,style_imag:127,style_image_fil:127,style_image_weight:127,style_lay:127,style_loss:127,style_minus_mean:127,style_norm:127,style_shap:127,style_weight:127,stylesheet:[122,123,159,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],sub:[1,89,119,127,134,136,141,166,167],sub_str:172,subarrai:179,subclass:[3,29,134,171],subdimension:119,subgroup:[50,102,112],subitem:171,subject:[1,7,31,36,45,50,92,93,102,104,112,113,119,171,172,174,176,182],sublicens:[92,93,171,172],sublist:93,subm:54,submiss:54,submit:[9,15,66,72,88,100,104,141,159],submodul:171,subnet:139,suboptim:158,subpackag:171,subplot:[1,29,30,31,33,34,36,37,38,39,40,41,50,51,54,55,59,64,82,109,111,127,128,133,137,145,146,150,152,156,158,178,184,186,192],subplot_kw:39,subplots_adjust:[31,34,156,158,184],subregion:127,subsampl:32,subscrib:[112,140,176],subscript:[99,101,112,165,176],subscription_id:9,subsect:[7,46,117],subsequ:[31,32,49,54,75,119,130,150,154,155,164,172,187,194],subset:[7,18,33,41,46,49,50,68,74,80,83,86,89,112,116,117,119,122,123,126,129,140,141,150,151,154,155],subspac:[49,119,150,186],substanti:[92,93,147,148,171,172],substitut:[7,11,121,171,193],substr:[1,172,194],subsubitem:171,subtl:[7,117,154],subtract:[77,92,119,127,133,172,173,179,194,195],subtre:50,subtyp:172,subwai:102,succe:165,succeed:155,success:[102,104,112,119,132,141,142,143,151,165,171,172,188],successfulli:[36,37,50,56,130,141,142,151],succinct:104,sudden:64,suddenli:64,sue:179,suffer:[56,57,58,129,137],suffici:[30,32,116,147,151,155,156,172],suffix:[121,159,170,171],sugar:[48,119,171],suggest:[11,14,18,33,59,77,116,148,150,151,165,166],suit:[43,47,59,60,61,122,146,165,167,178],suitabl:[3,54,60,119,129,139,143,151,163,165,171,192],sulfur:48,sulphat:48,sum:[1,7,14,18,22,25,31,33,38,47,48,49,50,51,52,53,54,55,56,57,58,59,61,63,65,66,68,74,76,77,80,81,82,116,118,119,121,127,128,130,131,136,137,145,146,147,148,150,151,153,155,156,158,162,166,168,171,179,184,188,189,192,193],sum_:[50,75,77,78,128,130,131,136,147,148,150,151,155,157,185,188],sum_i:[126,147],sum_inertia_:158,sum_of_list:92,sum_of_valu:92,sum_t:151,summar:[51,59,74,78,103,104,116,132,134,148,165],summari:[7,29,30,36,46,47,49,52,53,58,75,76,101,104,117,119,128,129,171,176,179,182],summaris:59,summat:[75,132],summer16:193,summer:[17,102,106],sun:[57,132,135,143],sundai:[49,52],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:39,sup:48,supercalifragilisticexpialidoci:[172,194],supercharg:108,superclass:132,superimpos:[45,111],superman:92,supermarket:39,superpow:58,supervis:[29,36,38,50,52,53,57,58,59,60,61,68,80,132,133,138,141,143,144,145,150,151,155,156,158,162,163,164,170,186],supervisor:130,suppli:[7,49,52,88,102,111,119,139,171],support:[0,1,7,18,29,43,47,48,49,50,52,54,57,58,68,78,80,82,101,102,103,104,106,108,110,112,113,116,119,122,123,133,138,139,140,141,145,147,150,151,155,158,159,163,165,167,170,171,172,179,187,194],support_vectors_:[156,184],suppos:[18,49,50,114,116,119,133,147,148,156,168,172],suppress:[121,122,146],supris:40,suptitl:18,sure:[0,4,9,11,46,49,50,52,78,82,104,108,110,112,113,116,117,119,127,137,140,141,143,146,152,158,162,163,165,166,170,171,172,176],surfac:[50,54,75,76,110,178],surmis:146,surpass:29,surpris:[7,117,119,145,165,168,171],surprisingli:[53,167],surround:[114,133,165,166,172],survei:[6,7,114,139,148,176],surveil:[114,135,143],surviv:[22,142,151,165,191],survivor:22,suscept:142,suspect:[59,188],suspicion:139,sustain:[16,101,140],sustract:152,sv_classifi:49,svc:[49,56,59,60,156,163,184],svcsvc:60,svm:[49,56,78,126,163,164,165],svr:61,svr_rnd:61,svrsvr:61,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:59,sw:148,swap:[93,119,123,172],swarmplot:167,sweden:195,sweet:157,swiss:187,switzerland:137,sx:127,sy:[3,12,18,25,29,38,47,82,98,99,100,101,109,110,111,116,121,122,123,127,129,134,144,145,146,157,158,160,161,162,163,164,166,171,193],syllabl:172,symbol:[44,56,171,173],symmetr:[135,139,151,172],synaps:99,sync:116,synchron:143,synonym:[59,78,132,179],synset:132,syntact:[119,171,193],syntax:[119,123,124,159,171,179],syntaxerror:[171,173],synthes:84,synthesi:[84,139],synthet:[50,141,142,143,162],syphili:[112,176],system:[14,38,39,41,48,50,74,99,101,102,104,106,112,113,118,119,129,130,136,138,139,140,141,142,143,151,159,170,173,174,176,180,182,195],systemat:[112,139,143,165],sz:127,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,36,38,39,40,41,43,45,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,65,66,68,74,75,76,78,80,81,82,93,99,100,101,102,103,104,106,108,109,112,113,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,134,135,136,137,139,141,142,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,176,178,179,184,186,188,189,190,191,193,194],t_1:[116,150],t_2:116,t_:130,t_dim:128,t_fix:130,t_grad:127,t_index:128,t_input:127,t_k:130,t_loss:31,t_maze:130,t_n:150,t_obj:127,t_preprocess:127,t_score:127,t_valu:116,ta:54,tab:[22,31,100,101,118,123,171],tabl:[11,12,14,46,71,108,110,114,116,118,119,123,139,141,142,145,148,163,166,167,171,172,187,194],table_data:[172,194],table_str:[172,194],tableau:[104,110],tabular:[40,51,59,101,119,129,154,165,172,180,191],tac:171,tack:119,tackl:[50,54,60,61,102,121,138,141,155,158,168],tag:[3,9,57,100,113,122,171],tag_nam:171,tags_decor:171,tags_to_skip:3,taha:44,tail:[38,46,49,52,54,66,68,74,80,117],tailor:78,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:59,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,36,39,41,43,45,47,48,49,50,52,53,54,56,57,58,59,61,64,66,68,74,75,76,77,78,80,82,83,88,92,99,100,101,102,103,104,106,108,110,111,112,113,114,116,117,119,121,122,123,124,126,127,128,129,130,132,133,134,138,139,140,141,143,145,146,147,150,151,154,155,157,158,159,162,163,164,165,166,167,168,170,171,172,173,176,182,186,191,193,195],takeabl:[122,123],takeawai:[7,24,46,104,117],taken:[1,24,28,34,35,46,56,106,114,116,117,119,130,137,155,168,177,188],talent:102,talk:[16,18,50,62,68,80,102,104,108,112,114,116,138,152,155,165,167,174,176,188],talk_tim:[68,80],tall:[111,130,132],taller:[18,116],tan:[110,119,178],tandem:193,tang:141,tangent:119,tangerin:[172,194],tangibl:99,tanh:[36,37,45,131,134,182,192],tape:[0,36,130,134],tar:[33,127,132],tarantool:180,tarfil:[33,127],target:[1,9,29,30,35,37,40,49,50,52,53,55,56,57,58,60,62,63,64,65,66,68,74,75,76,78,80,82,88,92,100,101,126,127,134,135,137,139,140,141,146,147,148,150,151,152,156,158,165,170,171,186,188,191,192],target_class:59,target_f:35,target_fil:127,target_indic:1,target_nam:40,target_s:127,target_shap:127,tarih:35,task:[7,8,9,16,29,36,41,43,46,47,51,57,58,59,60,68,76,77,78,80,95,99,100,101,103,106,107,108,109,112,114,117,118,119,121,129,132,133,135,138,139,140,141,143,144,151,152,153,155,156,158,159,161,162,163,164,165,167,168,169,170,173,175,178,188,191,193],task_typ:54,tast:[144,145],tasti:[110,178],taught:[54,145],tax:36,taxi:[17,106],taxicab:[102,174],taxonom:7,tbd:[126,127,128,130,131,132,133,134,135,136,137,145,146,147,148,150,151,152,154,155,165],tc:170,tcl:152,tdd:138,tdsp:106,teach:[40,108,195],team:[17,18,23,102,104,106,112,116,138,140,143],teammat:[95,104],tecent_fil:38,tech:[43,165,191],technic:[38,43,50,112,124,139,140,143,151,152,154,165,176,180,191],techniqu:[1,4,7,15,17,32,34,41,46,49,50,54,56,57,58,59,60,69,71,74,75,76,77,78,84,85,102,103,106,107,111,112,114,116,117,119,120,125,129,141,145,146,147,150,154,155,157,162,163,164,165,166,167,168,170,172,177,188],technolog:[56,99,102,113,139,143,151,159,165],tediou:[106,118,156,166],telecom_churn:[50,147,150],telecom_data:147,telemetri:29,televis:104,tell:[4,7,13,19,36,50,54,55,56,60,68,80,102,104,107,108,112,116,129,137,150,157,165,178,182,191,193],temb:128,temp:[38,62,121,123,127,172,186,193],temp_accuraci:127,temp_original_loss:127,temp_output_:127,temp_test_acc:[127,136,150],temp_test_loss:136,temp_train_acc:[127,136,150],temp_train_loss:[127,136],temp_train_pr:127,temperatur:[113,114,169],templat:[38,118,142,159],tempo:[145,146],tempor:78,temporari:[119,127],temporarili:[33,75],temporary_attribut:171,tempt:[48,116],temptat:48,ten:[47,56,74,127,132,162],tencent:38,tend:[40,49,52,53,56,57,58,59,62,108,109,119,121,129,146,147,165,180],tendenc:[107,178],tens_reshap:43,tension:133,tensor2tensor:128,tensor:[33,78,127,132,133,134,179,192],tensor_0:43,tensor_1:43,tensor_1d:43,tensor_2:43,tensor_2d:43,tensor_3d:43,tensor_nam:43,tensor_shuffl:43,tensorflow:[30,36,38,39,41,42,44,45,47,48,49,57,58,62,78,101,126,128,129,130,131,132,133,134,135,136,138,140,141,142,143,159,162,170,182,192],tensorflow_addon:[128,132],tensorflow_cookbook:[127,134,136],tensorflow_dataset:[132,133],tensorflow_exampl:133,tensorflow_inception_graph:127,tensorpack:135,term:[1,3,31,47,49,50,52,57,59,75,76,77,78,100,102,111,114,118,119,124,127,128,129,130,132,136,139,143,145,146,151,156,157,158,164,165,166,167,171,174,180,184,188,191],termin:[0,40,100,101,108,130,159,168,171,173],terminolog:[1,59,112,118,124,145,164],terribl:47,territori:14,test:[0,14,15,22,29,31,32,35,38,39,40,41,50,55,58,60,61,64,66,68,80,84,93,99,101,102,109,112,114,119,126,127,131,132,133,134,136,137,140,141,145,146,147,150,151,152,157,158,159,163,164,165,166,167,170,171,173,182,185,186,191,192],test_absolute_valu:92,test_acc:[41,127,150],test_accuraci:[127,136],test_addit:92,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[127,133],test_calculate_happy_cas:93,test_calculate_with_invalid_c_input:93,test_calculate_with_none_input:93,test_calculate_with_str_input:93,test_capitalize_words_default:93,test_capitalize_words_exclude_word:93,test_censor_word:93,test_censor_words_no_censor:93,test_censor_words_partial_match:93,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:92,test_cont:3,test_count_occurr:93,test_count_occurrences_empty_list:93,test_count_occurrences_str:93,test_count_word_occurr:93,test_count_word_occurrences_empty_text:93,test_count_word_occurrences_same_word_rep:93,test_data:[29,49,52,53,57,61,74,126],test_data_path:[68,80],test_data_schema:48,test_dataset:33,test_df:[14,22,24,53,82,84],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:53,test_df_hist_with_empty_df:53,test_df_hist_with_none_df:53,test_df_pairplot_happy_cas:53,test_df_pairplot_with_empty_df:53,test_df_pairplot_with_none_df:53,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:[127,136],test_divis:92,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:48,test_empty_list:92,test_equ:92,test_existing_el:92,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:93,test_fibonacci_sequence_single_term:93,test_fibonacci_sequence_zero_term:93,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:93,test_flatten_nested_lists_empty_list:93,test_flatten_nested_lists_no_nested_list:93,test_float_numb:92,test_fold:127,test_format_person_info:93,test_format_person_info_empty_list:93,test_format_person_info_single_person:93,test_funct:171,test_function_scop:171,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:171,test_group_by_categori:93,test_group_by_category_empty_input:93,test_group_by_category_no_categori:93,test_group_by_category_single_categori:93,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[38,154],test_imag:[41,127,131,133],test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:150,test_init:3,test_input_data:[61,74],test_input_dim:48,test_insertion_sort:93,test_insertion_sort_empty_list:93,test_insertion_sort_single_element_list:93,test_insertion_sort_sorted_list:93,test_is_empti:92,test_label:[29,41,61,74,127],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:92,test_load:33,test_loss:[29,41,136],test_lstm_model:134,test_merge_dicts_with_list:93,test_merge_nested_dict:93,test_merge_three_dict:93,test_merge_two_dict:93,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model_output:127,test_ms:[61,74],test_multipl:92,test_nam:[66,127],test_negative_numb:92,test_nois:131,test_non_existing_el:92,test_nul:48,test_one_as_input:92,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_output:127,test_permut:93,test_permutations_empty_list:93,test_permutations_single_el:93,test_pop:92,test_positive_numb:92,test_pr:[60,61,74,127],test_pred_poli:60,test_predict:127,test_preprocess:[61,74],test_push:92,test_rang:48,test_remove_dupl:93,test_remove_duplicates_empty_dict:93,test_remove_duplicates_empty_list:93,test_remove_duplicates_no_dupl:93,test_remove_duplicates_str:93,test_respons:66,test_result:33,test_rms:[61,74,137],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:92,test_sampl:[9,100],test_save_path:66,test_scal:[53,60],test_scor:[56,64],test_single_element_list:92,test_siz:[29,31,32,34,40,49,50,51,52,53,54,56,57,58,59,60,61,74,83,137,150,152,154,155,159,163,164,166,167,170,186,188,189,190],test_sqrt:93,test_sqrt_non_perfect_squar:93,test_sqrt_perfect_squar:93,test_square_funct:92,test_str:93,test_string_input:92,test_string_numb:92,test_string_upper_empty_str:93,test_string_upper_happy_cas:93,test_string_upper_none_str:93,test_subtract:92,test_target:127,test_url:[3,66],test_vari:171,test_wrong_target_typ:92,test_x:[38,63,65,154],test_xdata:127,test_zero:92,testabl:138,testappenddiffcolumn:14,testbinarysearch:92,testcalcul:93,testcalculatesum:92,testcapitalizefirstletterp:93,testcapitalizeword:93,testcas:[3,14,22,24,47,53,93],testcensorword:93,testcleanfar:22,testcolumnfilt:14,testcomplex:92,testcountdigit:92,testcountoccurr:93,testcountwordoccurr:93,testdfboxplot:24,testdfhist:53,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:92,testfibonacci:93,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:92,testflattennestedlist:93,testformatpersoninfo:93,testgcd:92,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:93,testgroupbysum:14,testimoni:104,testinsertionsort:93,testlabelencod:22,testload:47,testmapfunct:92,testmean:47,testmergedict:93,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:93,testremovedupl:93,testrtwithnafil:14,testset:[42,54],testsieveoferatosthen:92,testsqrt:93,testsquareroot:92,teststack:92,teststd:47,teutschmann:169,texa:[112,159,179],text3d:[83,186],text:[1,12,15,23,38,40,41,43,48,57,58,59,66,68,74,78,80,93,99,102,104,108,113,114,118,119,129,134,136,139,141,145,146,148,150,151,158,159,162,165,166,170,171,172,173,174,175,176,177,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],text_data:136,text_data_target:136,text_data_train:136,text_process:136,text_represent:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,144,145,157,158,160,161,162,163,164],text_str:136,textbar:140,textbf:148,textbook:[50,151,165],textbox:85,textcolor:157,textcoord:158,textrm:75,texts_to_sequ:136,texttestrunn:47,textual:[1,8,108,110,171],tf0btgg9:59,tf:[29,30,36,38,39,40,41,42,44,45,47,48,78,126,127,128,130,131,132,133,134,135,136,141,157,162,182],tf_data:131,tfa:[128,132],tfboard_callback:40,tfd:[132,133],tfdetect:135,tffunc:127,tfv1:135,tgz:33,th:[50,77,116,119,128,147,150],thai:[162,163,164],thai_df:162,thai_ingredient_df:162,than:[1,2,7,8,14,18,29,30,31,32,33,35,39,40,41,43,45,46,47,49,50,52,54,56,57,59,60,61,62,64,68,71,78,80,82,92,99,101,104,109,111,112,114,116,117,118,119,121,123,124,127,128,129,132,134,137,140,141,143,145,146,147,148,150,151,154,155,156,157,158,163,164,165,166,167,168,170,171,172,173,176,179,180,184,186,187,188,191,193,194,195],thang:132,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,141,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,186,187,188,189,192],thecodeship:171,thedatasciencevenndiagram:115,thee:172,theguardian:108,thei:[1,6,7,12,15,18,23,25,31,40,41,43,46,47,48,49,50,52,56,57,58,59,62,66,68,74,75,78,80,82,90,99,100,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,137,139,140,141,143,145,147,148,150,151,155,156,157,158,159,165,166,167,168,170,171,172,173,174,176,177,179,181,186,191,193,194,195],them:[0,1,3,7,15,21,26,31,33,34,36,39,40,41,43,45,46,49,50,52,54,56,57,58,59,60,61,64,68,74,75,76,78,80,82,83,85,90,93,99,100,101,103,104,106,108,110,111,112,114,116,117,119,122,124,125,126,127,128,129,132,133,134,135,137,138,139,140,141,142,143,147,150,151,152,154,155,156,157,158,162,165,166,167,168,170,171,172,173,175,176,180,186,191,192,193,194],theme:[30,38,104],themselv:[7,62,104,106,119,129,151,165,167,191],theorem:147,theoret:[114,141,147,150,156,170],theori:[50,103,108,116,128,131,136,151,156],thereaft:130,therebi:[145,156],therefor:[7,30,32,45,50,54,101,119,128,130,132,139,141,150,151,152,155,156,158,171,172,186,194],thereof:179,theta:[78,128,150,151,152,188],theta_0:151,theta_1:[150,152],theta_2:150,theta_i:[150,151],theta_n:152,theta_t:151,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,75,76,77,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,168,169,170,171,172,173,174,176,177,178,179,180,181,186,187,188,189,190,191,192,193,194,195],thick:1,thicksim:[128,131],thing:[1,7,40,43,49,50,52,53,57,60,63,65,66,68,74,80,82,100,101,103,104,106,108,112,114,116,117,119,122,123,124,129,137,142,144,145,151,158,159,162,165,171,172,180,182,186,187,191,194],think:[7,11,18,26,28,31,34,41,43,47,48,49,50,55,62,68,80,102,104,108,112,114,119,123,124,141,142,145,146,156,157,162,164,165,167,168,170,171,172,184,186,194],thinkhdi:104,third:[14,32,40,49,50,64,99,104,116,119,131,148,151,171],third_baseman:116,third_term:127,third_tuple_str:172,thisag:173,thisplot:41,tho:[172,194],thoma:139,thon:[172,194],thorough:140,thoroughli:103,those:[1,7,14,16,18,32,39,44,47,49,50,52,56,57,62,68,74,78,80,101,103,104,106,109,110,111,112,113,114,116,117,119,121,123,127,130,134,136,137,139,140,142,145,147,148,151,154,156,162,165,166,171,172,177,191,193,194],thou:134,though:[7,41,47,62,102,104,111,119,121,123,131,137,141,142,154,164,167,171],thought:[7,16,30,34,53,58,68,80,104,114,119,140,165,177,179],thoughtfulli:90,thousand:[29,49,50,74,108,142,155],threadpoolctl:146,threaten:[109,178],three:[7,13,14,19,21,27,29,32,36,39,48,49,50,52,56,60,71,74,83,88,92,93,98,99,102,110,113,118,119,123,127,132,133,135,137,139,141,142,143,145,146,156,158,159,171,172,174,179,184,193,194],three_g:[68,80],thresh:[7,117],threshold:[1,18,29,46,47,50,54,59,116,139,141,150,151,167],through:[1,3,9,10,20,24,30,31,41,45,47,48,54,61,62,63,65,76,82,90,92,99,100,101,103,104,106,108,109,112,113,114,118,119,121,123,127,128,130,131,132,133,134,136,137,138,139,140,141,142,143,145,146,151,152,154,157,162,163,165,166,170,171,172,173,176,179,182,183,188,191,193],throughout:[76,82,104,106,116,151,165,166,177,191],thrown:119,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:59,thu:[3,14,32,43,47,49,50,53,54,57,59,78,101,111,114,116,119,121,123,129,145,147,148,150,154,155,156,157,165,166,167,168,169,171],thunder9:38,thunder:38,ti:[78,104,136],tial:[63,65],tian:135,tibco:180,tibshirani:150,tic:171,tick:[3,100,145,148,158],tick_param:[54,158],ticker:158,ticket:104,tid:108,tidi:168,tier:139,tight_layout:[18,31,37,39,41,54,109,158,178],tightli:78,tiktok:143,tile:[101,127,158],tile_s:127,till:[56,157],tim:188,time:[0,1,7,8,9,13,14,29,31,32,33,35,37,38,39,40,42,43,45,49,50,52,53,54,56,58,59,60,61,62,63,65,66,68,74,77,80,82,100,101,102,103,104,106,108,110,111,114,116,117,119,121,123,124,127,128,129,130,131,132,133,134,136,139,140,141,142,143,146,147,148,151,154,155,156,157,158,159,163,165,166,167,168,170,171,172,173,174,175,178,180,186,187,188,191,193,194],time_model:39,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[145,146],time_step:128,time_t:35,timeit:[158,179],timelin:[95,142],timeseri:44,timeseriesclassif:29,timestamp:[38,113,122,137,139],timestap:44,timestep:[38,44,78,128,136],timnit:[102,174],tin:150,ting:166,tini:[33,78,158],tiniest:165,tip:[17,23,82,104,167],titan:152,titanic_train:22,titanic_train_and_test:152,titl:[15,22,29,30,31,32,33,34,37,38,39,40,42,45,47,48,50,54,55,56,59,64,66,68,75,77,80,82,83,109,110,111,113,116,121,122,123,127,133,134,136,145,146,148,150,158,159,170,172,178,180,186,188,189,190],title1:158,title2:158,title_cas:97,titlepad:[62,137],titles:[62,137],titleweight:[62,137],tj:38,tl:35,tl_start:35,tld:59,tmp:[12,25,29,30,31,33,36,37,38,39,41,66,109,134,136,171],tmp_folder_path:[29,30,31,33,39,41,66],tmp_zip_path:39,tn:[52,59,68,80,167],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:59,to_categor:[32,39,192],to_csv:[66,76,162],to_datetim:[1,14,35,38,44,166],to_devic:33,to_fil:3,to_fram:[121,162],to_lat:31,to_numer:[35,56],to_numpi:[44,123,166],to_pandas_datafram:[9,100],to_period:137,to_print:130,to_pydatetim:122,to_renam:121,to_seri:38,toarrai:74,tobacco:101,tobia:132,toc:140,tocilizumab:1,todai:[108,112,134,138,139,141,143,151,152,165],todd:143,toe:171,togeth:[0,1,3,7,8,14,38,40,41,46,49,50,93,104,110,116,117,118,119,124,128,140,145,148,151,155,157,171,172,173,180,193,194],toggl:101,toh:30,toi:[18,148,151],token:[43,132,136,173],tokyo:[14,124,180],tol:56,told:104,toler:[123,143],tolist:[38,39,44,49,148],tom:[24,165,173,191],tomato:[39,168],tomomi:170,tomorrow:192,tone:102,tong:135,tongchuan:38,too:[18,32,47,48,49,50,52,53,54,57,58,61,64,66,74,78,108,109,111,122,128,129,131,137,140,141,145,146,147,151,154,157,163,165,166,167,168,171,172,194],took:[17,20,39,50,104,151,158],tool:[7,35,40,51,54,59,99,101,102,103,106,112,113,114,117,121,123,128,138,139,140,141,143,146,151,161,166,168,169,171,172,174,175,179],toolbox:[114,151],toolchain:140,toolkit:[102,140],tooltip:108,top:[3,7,16,30,31,34,40,41,45,50,52,54,57,64,74,82,84,92,101,104,111,118,119,123,135,138,139,142,145,146,147,162,167,168,171,179,187,188,195],top_pol:38,top_sen:38,top_tweet:38,top_vol:38,topic:[1,99,102,103,104,110,112,116,117,118,119,138,143,189,190],topilimag:33,topolog:30,toppredict:163,torch:[31,33,37,131],torchvis:[33,37,131],torgo:58,toronto:[127,132,157],tort:[92,93,171,172],tosin:139,total:[7,29,31,35,37,38,40,43,48,50,51,54,56,57,58,59,60,61,68,74,75,77,80,92,108,111,116,117,118,119,127,132,142,145,147,148,150,155,158,166,172,186,192,193],total_bedroom:[61,74],total_incom:172,total_len:31,total_na:51,total_profit:35,total_room:[61,74],total_s:127,total_sum_squar:77,total_var_i:127,total_var_x:127,total_variation_loss:127,total_volum:172,totalbath:54,totalbsmtfin:54,totalbsmtsf:54,totallot:54,totalporch:54,totalprod:[111,178],totalprofit:35,totalsf:54,totensor:[33,37,131],totrmsabvgrd:54,toucantoco:104,touch:[60,61,68,80,114,165],touch_scr:[68,80],touch_screen:[68,80],touchscreen:[68,80],tour:108,toward:[59,75,104,112,119,150,159,172,176],towardsdatasci:[114,141,180],tp:[52,59,68,80,167],tpr:[59,167],tpsnva:104,tqdm:[31,36,37,82],tqdm_notebook:37,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:59,traceback:[82,119,121,122,123,146,179,193],track:[3,36,40,45,47,93,101,102,104,112,118,122,134,141,142,151,158],tractabl:128,trade:[49,56,68,80,130,132,150,157,165,169],tradeoff:[7,52,57,68,80,117,141],trader:38,tradit:[3,45,54,101,104,116,132,140,141,142,143,161,165,170,180,191],tradition:[104,139,141],traffic:[102,113,114,140,165],trail:[59,119,164,172],train:[9,10,20,29,38,42,43,44,45,48,50,56,62,63,65,66,75,76,78,84,91,98,102,104,106,112,114,116,121,126,127,130,132,134,135,136,137,139,140,143,145,147,148,150,151,152,153,154,156,157,158,159,163,164,166,167,170,174,175,176,182,184,185,186],train_acc:[127,150],train_accuraci:[40,136],train_batch:133,train_d:33,train_data:[29,37,49,50,52,53,57,61,68,74,80,126],train_data_path:[68,80],train_dataset:128,train_df:[82,84],train_dict:[127,136],train_dir:127,train_dl:33,train_fold:127,train_i:[38,154],train_imag:[41,133],train_index:150,train_label:[29,37,41,50,127],train_length:133,train_load:[33,37],train_log:[82,127],train_loss:[29,31,33,40,127,134,136],train_nam:[66,127],train_on_batch:182,train_op:[127,134],train_respons:66,train_rms:137,train_save_path:66,train_scor:64,train_siz:[33,64],train_step:[36,127,134,136],train_test_split:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,74,75,83,137,150,152,154,155,158,159,163,164,166,167,170,186,188,189,190],train_url:66,train_va:31,train_x:[31,38,154],train_xdata:127,trainabl:[29,62,126,127,128,132,133,163,182],trainable_vari:[126,134],trainable_weight:[36,128],trainhistori:[45,47,48],training_block:128,training_data:[9,100],training_data_preprocess:[61,74],training_fin:[68,80],training_hour:56,training_input_data:[61,68,74,80],training_label:[61,68,74,80],training_loss:64,training_s:64,training_sc:42,training_seq_len:134,training_step:[33,126],trainset:42,traj1:130,tran:[166,167],trane:[63,65],trang:82,transact:[6,17,124,145],transcrib:143,transcript:143,transduct:[141,145],transfer:[31,33,49,52,118,126,129,133],transform:[7,22,30,33,37,40,41,42,44,45,46,47,49,50,51,52,53,54,56,57,60,61,62,66,76,82,83,99,109,117,119,123,126,127,128,131,132,135,137,138,139,141,146,148,154,156,158,165,186,188,189,190,191,193],transform_fpcoor_for_tf:135,transformed_df:162,transformed_feature_df:162,transformed_label_df:162,transformer_block:132,transformerblock:132,transfrom:60,transit:[99,132,142,151],transition_block:132,translat:[41,93,104,114,129,139,142,165],transmit:114,transpar:[112,143,176],transpos:[29,37,40,45,61,74,82,119,126,127,135,136,172,194],transposed_matrix:[172,194],transposed_row:[172,194],trap:[112,141,176],trash:170,travel:137,travers:[31,172],treat:[1,7,56,59,68,75,80,112,117,119,121,122,123,124,132,140,141,171,176],treatment:[112,119,143,170,176],tree:[31,49,52,53,54,55,62,68,80,127,130,141,147,148,151,152,154,163,164,165,186,191],tree_best:[57,58],tree_clf:[57,68,80],tree_grid:50,tree_list:148,tree_method:54,tree_param:50,tree_pr:50,tree_reg:58,tree_reg_sc:58,tree_scor:[68,80],treebeardtech:0,trees_grid:150,trekhleb:[92,93,171,172],tremend:7,trend:[14,49,52,76,77,102,104,108,112,113,157,174,176,178],treshold:1,trevor:[133,150],tri:[36,50,56,58,63,65,147,157,165],triag:140,trial:[48,141,163,170],triangl:158,triangular:145,trick:[32,36,108,112,126,141,154,155,156,157,165,171,176],tricki:156,trickier:[124,180],trigger:[0,112,119,139,140,142],trim:134,trip:[23,102,174],tripadvisor:148,tripl:[119,172,173,194,195],triplestor:180,triu:64,triumphantli:141,trivial:[82,129,132],troubl:[62,108,145,150],trouser:[30,40,41,50],truck:[127,129],true_boolean:[172,194],true_label:41,true_positive_r:59,truli:[49,54,57,64],trump:173,truncat:136,truncated_norm:[127,130,136],truncated_normal_initi:127,truncated_normal_var:127,trust:[57,58,60,61,66,104,108,143,154,155,158,166,170,183],trustworthi:143,truth:[108,119,132,143,172,173,188,192,194],ts:137,tsl:29,tsne:186,tstep:130,tsv:[18,24,116],ttest_ind:[18,116],tthoe3gp290gz:59,tue:57,tumor:145,tunabl:[50,192],tune:[47,49,50,59,60,66,68,75,77,80,84,126,137,150,151,153,155,165,185],tup:122,tupl:[33,34,49,122,132,133,135,170,171,180,186,194],turn:[3,7,30,33,40,41,48,50,75,138,157,187,191],turntabl:144,turori:140,turtl:119,tuskege:[112,176],tutor:138,tutori:[1,29,31,59,77,110,119,121,127,131,133,138,157,168,170,171,172,173,182,188],tv:104,tval:[18,116],tweak:[85,110,146,164],tweet:[99,118],tweet_vol:38,twenti:88,twice:[119,136,171],twinx:[111,178],twitter:[99,118,180],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,36,38,39,40,41,43,45,46,48,49,50,52,53,54,56,57,59,60,61,62,63,65,68,72,74,78,80,82,83,84,90,92,93,98,101,102,104,106,108,109,110,111,112,116,117,118,119,121,122,123,124,126,127,128,129,131,132,134,135,137,140,141,142,143,145,148,150,151,155,156,157,158,159,162,163,164,165,166,167,170,171,177,180,182,184,187,191,193,194],twofield:119,twon:130,txt:[31,127,130,134,136,159,165],type:[1,6,7,9,15,19,20,29,31,33,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,64,68,74,76,80,93,94,100,101,102,106,109,110,111,112,113,116,117,118,121,122,123,124,126,127,128,130,132,133,136,137,139,140,141,143,145,146,151,153,154,155,156,159,166,167,168,169,170,171,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,192,193],typeerror:[92,93,119,122,123,146,173,179,193],typic:[3,8,14,22,32,43,45,46,47,49,50,56,62,64,68,74,75,76,78,80,99,106,113,114,116,117,119,123,126,129,137,139,140,141,142,143,150,151,154,155,162,166,167,171,188],u10:[119,179],u2:180,u:[66,111,130,133,148,172],u_:130,u_k:130,ua:[15,193],uber:[102,174],ubuntu:140,ucb:[106,177],uci:[48,58,136],ucl:[165,191],ucla:142,uclaacm:166,ufo:159,ufunc:7,ugli:[108,172],ugqbzwiq8iiufasvi9dz:59,ugqprfa:59,uhbmv7qcey4:56,ui:[101,140,187],uid:142,uid_iso_fips_lookup_t:14,uint8:[31,36,119,127],uk:[14,130,159],ultim:[92,93,113,114,165,191],ultra:132,um:50,umap:30,umap_3d:30,umap_df:30,umbrella:[118,140,180],umn:104,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:59,umr_sum:179,umt:177,un:[159,172,194],unabl:[54,57,58,60,61,64,66,150,154,155,158,166,170],unacc:57,unaffect:119,unalign:123,unalt:75,unambigu:119,unansw:104,unbalanc:[66,68,80,151,156,184],unbatch:128,unbias:[141,147],uncertain:130,uncertainti:50,unchang:172,uncheck:78,uncom:14,uncondition:[171,193],unconstrain:39,uncorrel:[66,147,150],uncov:[19,54,106,168,169],undeclar:143,undefin:[7,18,171],under:[0,22,31,39,45,47,48,50,51,63,65,78,83,84,101,109,112,116,118,119,127,135,140,141,142,143,150,151,156,163,167,168,173,179,180,184,186,187,188,189,192,195],under_name_scop:135,undercomplet:30,underfit:[61,62,63,65,141,154],underli:[59,64,75,76,77,99,106,109,116,129,157,165,166,179,188,191,192],underlin:158,undermin:108,underneath:59,underrepres:[68,80],underscor:[100,118,171,172,180,194],underset:[82,151],understand:[7,16,23,30,31,41,43,45,48,50,74,75,76,77,78,99,100,101,102,103,106,107,108,109,111,112,113,114,116,119,121,129,137,138,141,142,143,145,151,152,154,155,156,157,159,161,163,165,166,167,168,170,172,173,174,176,177,180,189,190,191],understood:[7,54,106,113,119,171,177],undertak:[78,104],undesir:28,undestard:152,undo:127,undu:78,unearth:54,unemploy:142,unet:128,unet_model:133,uneven:[145,162],unexpect:[48,91,121,141,146,157,171,193],unexpectedli:171,unf:54,unfair:112,unfamiliar:165,unfold:[50,108,136],unfortun:[18,100,151,158],unhandl:171,unhealthi:101,unhelp:162,unicorn:141,unidata:180,unifi:[106,135,141],uniform:[18,36,43,47,55,116,127,128,130],uniformli:[7,147,158],unimagin:139,unimport:66,unindex:[119,172],uninform:56,unintend:[28,102,112,176],unintention:171,union:[78,112,119,123,172],uniq:51,uniqu:[5,14,22,39,46,47,50,51,56,57,64,74,77,78,93,101,118,121,123,129,137,141,151,158,159,162,165,166,171,172,173,180,189,190,192,194,195],unique_list:93,unique_numb:172,unique_valu:93,uniqueag:173,unit:[0,12,30,32,40,41,42,43,45,47,48,53,58,62,74,82,101,102,111,113,118,119,124,127,129,132,134,140,141,142,147,157,165,166,167,168,174,180,182,192,193],unittest:[3,14,22,24,47,48,53,74,92,93],univari:[7,75,128,170],univers:[14,64,112,116,130,138,143,157,180,192,193],unix:[44,139],unknown:[57,58,116,130,134,145,151,157,171],unknowningli:54,unlabel:[126,141,145,150,158,165,186,191],unlaw:112,unless:[22,45,47,48,56,123,137,171,193],unlik:[33,56,60,66,76,77,82,119,141,147,150,172,173,179,182,189,190,194,195],unlimit:[172,194],unlock:[26,168],unnam:[67,162,163,164,166,167],unnecessari:[119,124,157,158],unord:[74,172,173,194,195],unpack:[3,123,145,167,172],unpickl:193,unpreced:112,unprun:150,unqualifi:171,unreason:143,unrel:3,unreli:165,unrol:136,unsaf:119,unscal:[40,58],unse:40,unseen:[40,41,50,64,78,150,165,170],unsort:93,unsorted_list:93,unspecifi:[43,119],unsplash:[98,105,107,125,144,161,169],unsqueez:[31,33],unstabl:[62,141,151],unstack:41,unstructur:[6,113,114,139,165,176,191],unsuccess:141,unsupervis:[36,50,116,138,141,143,145,150,164,170,183],unsupervised_learn:158,unsupport:[165,172,179,194],unsur:15,unsurprisingli:159,until:[31,33,50,55,61,75,92,103,119,124,141,146,147,150,158,165,171,172,180,186,191],untouch:123,untrain:36,untruncated_norm:135,unununium:[172,194],unus:[119,168],unusu:[119,157],unweight:167,unwrap:112,unzip:[36,37,127],up:[0,3,5,7,14,18,22,33,36,38,40,46,48,49,50,52,53,54,56,58,60,62,64,66,68,80,84,85,86,92,99,100,101,102,103,104,106,108,112,116,117,118,119,122,123,124,127,130,131,132,133,135,137,140,141,142,143,145,147,150,151,152,154,155,156,157,158,159,162,165,166,167,168,169,171,172,173,180,191,194],up_shifted_imag:84,up_stack:133,upbeat:104,upcast:[7,117],upcom:7,updat:[0,31,36,37,41,43,48,49,52,55,63,65,75,81,82,92,93,113,126,127,128,129,130,134,136,137,140,141,151,152,154,155,158,165,175,182,186,187,188,189,192],update_st:36,update_trac:30,update_weight:130,upfront:104,upgrad:[99,140],upload:[9,20,100,101,118,142],upload_d:57,upon:[40,50,64,101,112,114,124,155],upper:[7,30,32,51,92,122,124,126,127,136,140,141,158,172,193],upper_cas:97,uppercas:173,uppered_anim:193,upsampl:[29,30,128,133],upsampling2d:[36,133],upward:128,uranu:195,urban:[110,178],url:[0,3,57,60,101,102,106,114,118,127,128,132,133,135,140,141,142,143,158,166,167,174,176],url_for:159,url_setosa:60,url_versicolor:60,url_virginica:60,urllib:[61,68,74,80,82,127,158],urlretriev:[68,80,82,127,158],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,35,36,38,39,42,43,44,45,46,47,49,50,51,52,53,54,55,57,58,60,61,66,68,69,72,74,75,76,77,78,80,82,84,86,89,91,98,99,100,101,102,103,106,107,110,111,112,113,114,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,142,145,146,147,148,150,151,152,153,154,156,157,161,162,164,169,170,171,172,174,175,176,177,179,180,182,183,184,186,188,191,193,194,195],usa:142,usabl:[108,139],usag:[5,38,49,54,59,60,74,101,102,112,117,145,151,155,162,166,170,171,172,174,175,194],usd:35,usd_tri:35,usda:168,usdt:[38,44],use_bia:[132,135],use_na_proxi:121,useless:119,user:[6,17,23,43,54,57,62,98,99,101,102,104,108,110,111,112,113,114,119,121,122,123,140,141,143,165,170,171,173,174,175,176,179,186,187,191,193],userwarn:[109,123,158,163,167,178],usr:[163,167,179],usual:[7,46,48,49,50,52,54,59,66,68,80,82,99,103,104,109,113,117,119,121,122,123,126,128,129,130,131,132,136,137,139,140,141,143,145,150,151,156,157,165,168,171,172,173,188],ut:147,utf:[15,134,159],util:[31,32,33,37,38,39,40,42,44,54,57,58,66,75,77,78,92,117,122,131,133,135,140,141,142,155,170,171,192],utilitarian:141,v0_8:62,v1:[14,57,119,121,122,123,127,130,131,134,136,140],v2:140,v2rayn:38,v3:[38,119,140],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:59,v7:59,v7lab:141,v7t09o1tbxdw8p7:59,v:[1,3,38,56,121,122,123,131,157,185],v_:130,vaccin:[11,142],vae:31,vae_model:31,vagu:[104,165],val1:92,val2:92,val3:92,val4:92,val:[31,55,82,92,94,134],val_acc:[33,39,47],val_accuraci:[32,39,40],val_d:33,val_dl:33,val_load:33,val_log:82,val_loss:[31,33,34,38,39,44,47,48,62,133],val_siz:33,val_subsplit:133,val_x:31,valdat:33,valentina:143,valid:[7,14,15,31,34,39,40,46,49,56,62,66,68,80,82,93,112,117,119,121,122,123,127,132,133,139,141,147,150,154,157,163,165,166,171,173,192],validation_data:[29,30,32,34,38,62,133],validation_dir:127,validation_epoch_end:33,validation_fract:56,validation_loss:64,validation_split:[38,39,40,44,47,48],validation_step:[33,133],valmont:108,vals1:179,vals2:179,valu:[1,3,6,8,14,15,18,22,29,31,32,34,36,38,39,40,41,42,43,44,45,46,48,49,50,52,53,55,58,60,61,63,64,65,66,75,76,77,78,82,83,84,85,96,97,100,102,103,106,109,110,111,112,113,114,116,117,118,121,122,124,126,127,128,129,132,133,134,135,137,139,141,142,145,146,147,148,150,151,152,153,154,156,158,159,162,163,165,166,167,168,169,170,173,176,177,180,185,186,187,188,189,190,191,193,194,195],valuabl:[7,75,77,142,150],value_count:[7,14,15,22,34,39,51,54,56,57,59,60,61,64,68,74,80,145,146,162,178],value_left:121,value_right:121,valueerror:[92,119,121,122,123,133,171,172,173,194],valueless:7,values_list:92,van:[132,173,193,195],vanderpla:[57,58,60,61],vanilla:[7,134],vanish:[129,131,132,134],vanooteghem:98,vanschoren:141,vapnik:59,var1:38,var2:38,var3:38,var4:38,var5:38,var_idx:55,var_list:131,var_tensor:43,vare:29,varepsilon_i:147,varepsilon_j:147,vari:[36,40,49,52,54,101,113,114,119,139,146,150,158,168,186],variabl:[7,22,31,33,37,39,50,53,54,56,58,64,66,68,74,75,76,77,80,83,88,92,93,96,97,101,106,108,109,111,117,126,127,128,129,130,131,134,136,139,141,142,145,146,148,150,151,156,159,162,165,166,169,170,173,177,178,187,188,191,195],variable_nam:171,variable_scop:127,variables_and_typ:172,variad:171,varianc:[18,50,54,56,63,65,76,77,82,109,126,147,155,178,186],variance_inflation_factor:[54,64],variance_scaling_initi:135,variant:[59,129,158,171],variat:[39,47,127,128,132,135,151,171,192],varieti:[41,43,54,119,132,137,143,151,157,163,166,167,172,194],varinac:[63,65],variou:[16,28,30,36,39,40,50,54,59,62,77,78,85,90,99,101,102,107,108,110,111,112,113,118,119,121,123,129,132,133,139,140,142,144,145,147,151,162,164,165,168,170,173,178,180,191],vassilvitskii:158,vast:[7,22,99,114,117,139],vastli:36,vault:101,vb:133,vc:39,vdf:38,ve:[7,28,31,50,75,78,82,102,104,106,112,117,118,119,121,124,132,137,147,151,157,165,167,171,172,174,180,187,193],vec:[31,82,147],vect_tensor:43,vector:[7,29,31,33,43,45,49,50,55,57,63,64,65,68,78,80,82,119,126,127,128,131,132,133,134,136,141,150,157,159,163,165,166,172,179,186,188,191,192,194],vectorregress:156,vectors_to_imag:131,vegan:170,veget:169,vehicl:[129,137,165,191],veil:[110,178],veloc:[130,180],vend:139,venn:[115,176],venu:[102,146,171,195],verb:171,verbos:[32,35,38,39,41,44,45,47,48,50,52,53,54,56,57,58,59,60,61,62,84,108,150,154,158],verdict:36,verghes:104,veri:[14,18,30,31,39,40,41,45,47,49,50,52,53,54,55,57,58,59,62,63,64,65,68,74,78,80,83,98,101,103,104,106,109,110,114,116,119,121,123,126,127,129,132,134,136,137,139,140,141,142,143,145,146,148,150,151,154,155,156,157,158,159,161,162,164,165,167,168,170,171,172,173,179,182,185,186,189,190,194,195],verif:[0,116],verifi:[33,40,45,47,48,58,74,76,96,97,110,111,122,132,141,145,152,158],verify_integr:[121,179],versa:[49,50,52,56,57,68,80,116],versant:180,versatil:[172,194],versicolor:[60,64,83,148],versicolour:[83,186],version:[1,7,22,29,33,35,45,46,47,48,49,50,57,59,75,101,106,116,119,121,122,124,129,133,135,136,140,141,145,152,154,158,170,173,179,186,195],version_info:[82,158],versu:[151,170],vert:18,vertex:50,vertic:[3,18,108,116,119],veryde:127,verydeep:127,vet:[108,121],vf4l3peswap51eb6clsmx7uuklt158tt0o:59,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:59,vgan:131,vgg16:133,vgg19:133,vgg:[127,132],vgg_data:127,vgg_layer:127,vgg_net:127,vgg_network:127,vgg_path:127,vgood:57,vhigh:57,vhx8dhywgnjy2:59,vi:[121,122,123,146],via:[7,109,118,121,122,123,127,133,151,156,157,158,163,171,186],viabil:101,vibranc:108,vibrant:165,vicdemand:[49,52],vice:[49,50,52,56,57,68,80,116],vicin:[1,8],viciou:108,vicki:[172,194],vicomt:108,vicpric:[49,52],victor:29,victoria:[49,52],video:[43,78,113,114,116,118,119,127,129,135,143,151,154,162,165,168,169,170,173,176,191],view:[7,30,31,33,37,40,47,59,78,83,99,100,101,104,108,114,118,131,132,133,155,159,167,168,179],view_init:[156,184],viewpoint:[130,132,135],viewport:15,vijai:133,vinai:143,vinod:[33,127],viola:151,violat:[112,143,176],violenc:108,violinplot:56,virginica:[60,64,83,148,186],viridi:[38,75,150],virtual:[99,101,140,170],virtuoso:180,visibl:[30,57,104,130,132],vision:[33,41,43,84,99,121,127,129,132,135,141,143,151,159,162,165,181,191],visiontransform:132,visit:[99,102,106,114,118,127,128,132,133,135,137,140,141,147,166,167,174,176],visitor:[148,165],visual:[0,1,5,8,14,15,16,18,19,30,45,46,49,50,51,52,53,54,58,59,68,74,75,76,80,84,99,100,101,102,112,114,116,117,119,121,122,123,126,127,129,132,133,137,138,139,145,146,147,148,150,151,155,156,158,159,162,163,165,166,169,170,171,174,176,177,181,183,186,188,191],visualcapitalist:104,visualis:[31,59,156,166],vital:54,vitobha:139,viz:158,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:59,vladimir:59,vlfeat:127,vm:[99,100,101],vm_size:[9,100],vmail:[50,147],vmax:[31,38,145],vmin:31,vocab2ix:134,vocab:134,vocab_processor:136,vocab_s:[134,136],vocab_to_ix_dict:134,vocabulari:[134,136,145],voic:[50,129,147],voila:[110,148],vol:38,volatil:48,voldemort:180,volt:171,voltag:171,volum:[7,44,99,101,139,140,141,143,166,168,175],volume_btc:38,volume_dollar:38,volumetr:129,volunt:112,voluntari:112,voluntarili:112,voom:171,vooooom:171,voronoi:[146,158],voronoi_plot:158,vot_classifi:49,vote:[116,138,142,147,150,151,163],votingclassifi:49,vs:[33,38,39,41,55,59,68,80,85,101,104,106,109,110,112,130,139,140,141,145,152,154,158,162,163,166,167,168,170,177,183,188],vs_code_with_a_notebook_open:170,vscode:179,vscodecod:38,vstack:[119,156,184],vthyuhdilvw8hkemhmr:59,vu:[109,178],vue:108,vulner:[109,121,178],vutil:37,w0:136,w1:[130,136],w2:[130,136],w3:130,w3school:[171,172],w:[29,31,33,63,65,74,82,83,84,116,126,127,130,133,134,136,137,151,155,157,158,171,180,185,186],w_0:151,w_:[134,148],w_box:135,w_crop:135,w_d:131,w_g:131,w_h:136,w_hh:136,w_hx:136,w_i:[148,151,157,185],w_img:135,w_j:[151,155],w_n:150,w_xaxi:[83,186],w_yaxi:[83,186],w_yh:136,w_zaxi:[83,186],wa:[1,11,16,28,32,33,39,40,43,45,49,50,52,53,54,57,58,59,60,61,74,76,92,102,104,106,108,112,113,114,116,119,122,123,129,132,133,135,137,139,140,142,145,146,147,148,151,158,159,162,163,164,165,170,171,172,173,174,177,186,188,191,194,195],waffl:[27,108],wai:[0,1,3,7,11,18,30,36,40,41,43,46,49,50,52,53,54,56,57,58,59,60,61,62,68,71,74,76,78,80,82,98,99,102,103,104,108,109,110,111,112,113,114,116,117,118,119,123,124,125,127,129,130,132,135,136,138,139,140,141,142,145,146,147,150,151,152,154,155,157,158,159,162,163,164,165,167,168,170,171,172,173,177,178,179,180,187,188,191,193,194],waistlin:88,wait:[1,101,103,127,133,154,165,173],wait_for_complet:[9,100],wait_for_deploy:[9,100],wake:141,wale:[49,52],walk:[1,31,51,56,90,118,121,142,154,162,164],wall:[130,163,186],walter:136,wang:132,want:[1,3,7,8,14,16,17,18,23,30,39,40,41,43,46,47,48,49,50,51,52,53,56,57,58,59,62,63,65,68,74,77,78,80,82,83,99,101,102,104,109,112,113,114,116,117,119,121,124,127,129,130,131,132,133,135,137,141,145,148,151,152,154,155,156,157,159,162,164,165,166,167,170,171,172,173,177,178,180,184,186,187,188,191,193,194],wanted1:92,wanted2:92,wanted_peopl:92,ward:[131,145],warehous:[99,139],wark:139,warm_start:[56,150],warn:[36,39,48,49,50,51,52,53,54,56,57,58,59,68,80,109,119,129,134,137,146,150,152,154,158,163,167,178,186],warn_singular:[109,178],warrant:[32,146],warranti:[22,45,47,48,92,93,171,172],warren:136,warrior:151,wasn:104,wast:[102,110,139,143,172,178],watch:[56,114,129,165,166,167,168],water:[102,182],waterfowl:[109,178],watson:140,wavenet:129,wb:[29,30,31,33,36,37,39,41,66,159],wc:3,wcss:146,wd:66,wdrfosfa13slih0epo:59,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,36,39,40,43,44,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,80,82,83,84,98,99,100,101,102,103,104,106,109,111,112,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,145,146,147,148,150,151,152,153,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,176,177,178,179,180,181,184,186,187,188,191,192,193,194,195],weak:[46,54,55,56,117,131,137,141,145,150,151,153,155,167],weaker:1,weapon:[112,172,194],wear:[165,191],wearer:6,weather:[102,137],web:[5,39,78,91,99,100,101,102,108,113,114,116,140,142,143,145,170,173,174,183,195],webapp:142,webservic:[9,100],websit:[99,114,130,132,142,143,148,165,166,168,170,191],wechat:38,wechat_fil:38,wechat_files_comput:38,weeight:157,week:[38,49,50,52,104,137],weekend:104,weekli:[14,137,142],weigh:[56,151,168],weight:[7,18,30,33,36,38,39,40,43,45,47,49,52,54,56,57,58,59,60,62,63,64,65,66,68,74,78,80,81,82,84,100,104,116,119,126,127,128,130,132,134,135,136,137,141,147,148,150,155,156,157,158,162,163,164,167,168,179,182,188,189],weight_1:137,weight_2:137,weightag:54,weights_init:37,weights_list:130,weijun:132,weinberg:132,weird:165,welcom:[138,170,172,193,194],well:[3,5,15,18,30,31,36,39,40,43,45,46,47,49,50,53,54,56,57,58,59,60,61,64,66,68,69,71,74,76,77,78,80,82,83,88,89,103,104,106,108,109,111,113,114,116,117,118,119,121,122,123,124,129,130,131,132,133,135,137,140,141,145,146,147,150,151,155,157,158,164,165,166,167,168,170,171,173,177,179,182,185,188,191,195],went:[10,40,46,49,52,104,117,165,171],wer:166,were:[7,10,12,16,20,29,31,39,40,43,47,49,50,52,53,57,58,60,61,62,66,68,69,74,76,80,101,103,104,112,116,118,119,121,124,128,134,137,139,140,142,146,147,151,155,158,165,166,167,171,173,176,180,181,191,193],weslei:140,west:74,weyand:132,wget:[127,132],wh:136,wha21:140,wha:141,what:[1,7,10,16,17,18,21,26,31,36,40,47,48,49,50,52,53,54,55,56,57,60,62,63,65,66,68,74,75,78,80,82,90,98,102,103,106,109,111,112,113,116,117,118,119,121,123,124,127,129,130,131,136,140,141,142,144,145,151,155,157,158,159,162,164,166,167,168,170,171,173,174,180,181,187],whatev:[57,58,82,104,129,132,154,157,165,171],wheat:[165,191],wheel:143,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,80,83,85,98,101,103,104,106,108,109,110,112,113,114,116,117,118,119,121,122,123,124,127,128,129,131,132,133,134,137,139,140,141,142,143,145,147,148,150,151,154,155,156,157,158,159,162,163,164,166,167,169,170,171,172,173,175,176,177,179,181,182,186,187,188,191,193,194],whenev:[43,119,140,141,157],where:[2,7,12,14,17,25,28,29,31,33,34,39,40,41,45,46,49,50,51,54,55,58,59,61,64,68,74,77,78,80,82,92,101,102,103,104,106,108,109,110,112,113,116,117,118,119,121,122,123,124,127,128,133,137,139,140,141,144,146,147,148,150,151,154,155,156,157,158,159,162,165,166,167,168,170,171,172,173,174,176,177,179,180,186,187,188,191,194],wherea:[31,50,54,57,59,68,80,119,156,165,167,170,171,172,184,191],wherefor:134,wherev:171,whether:[7,22,23,29,32,36,46,47,48,50,51,58,77,83,92,93,100,109,112,116,117,119,122,123,132,133,139,141,143,150,151,162,165,167,170,171,172,191,193,194],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,36,39,40,41,43,46,47,48,49,50,52,53,54,55,56,58,59,60,62,63,64,65,68,72,74,75,77,78,80,82,83,92,93,99,100,101,102,103,104,108,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,177,178,179,180,182,184,187,188,191,193,194],whichev:137,whiskei:[162,163],whistl:[109,178],white:[3,38,47,48,50,109,110,127,130,132,142,143,167,170,173,178,186,195],white_bread:[162,163],white_win:[162,163],whitegrid:[51,62,83,137],whiten:127,whitesmok:[110,178],whitespac:[46,117,171,172,194],who:[31,43,46,50,56,74,99,103,104,106,112,113,116,117,139,147,151,165,171,172,173,176,177,194],whole:[14,40,43,50,52,53,54,56,57,58,59,62,68,74,80,116,126,127,129,131,139,140,142,143,147,150,155,162,165,172,178,182,194],whole_grain_wheat_flour:[162,163],wholesale_customers_data:155,whom:[92,93,113,138,171,172],whose:[56,62,109,119,123,130,136,171,172,194],why:[7,16,18,40,43,45,46,47,48,49,50,53,60,66,69,75,82,85,90,98,101,102,103,104,106,112,116,117,119,124,127,131,145,146,147,151,152,156,158,163,165,167,168,171,174,176,177,180],wide:[43,54,61,75,76,77,99,101,112,119,123,129,131,132,135,137,139,143,151,153,172,175,180,194],wider:[116,142,157],widespread:151,widget:[9,100],width:[1,3,14,15,31,33,46,60,61,68,80,83,108,110,116,117,121,122,123,127,128,132,146,148,158,159,162,166,168,178,186],width_multipli:132,width_shift_rang:32,wifi:[68,80],wifi_count:[68,80],wik:127,wiki:[3,127],wikimedia:[60,129],wikipedia:[3,43,114,116,127,155,165,180,181,191],wild:[31,121,145,159],wildli:[154,163],william:116,willing:36,willingli:7,willpow:82,win32:193,win:[57,130,132,151,155],wind:130,window:[14,39,44,118,127,171,173,180,193],window_s:44,wine:[48,62,162,163],wine_feature_col:48,wine_feature_row:48,wine_schema:48,winedf:48,winefeatur:48,winefeaturessimpl:48,winefeaturessmal:48,winelabel:48,winelabelssmal:48,winequ:48,wingspan:109,winner:151,winston:56,winter:[17,106],wirefram:104,wisdom:[49,147],wise:[7,54,119,123,127,128,132,133,134,155],wish:[119,122,124,172,173,193,194],with_column:24,with_info:133,with_titl:31,withdraw:112,withheld:112,within:[6,33,46,47,48,50,54,56,74,83,100,103,104,106,109,110,112,113,116,117,118,135,140,146,155,159,166,170,171,172,179,186,193,194],without:[0,1,4,16,18,21,22,29,34,39,43,45,47,48,50,52,57,60,64,78,92,93,101,104,108,112,116,119,121,123,126,132,139,141,154,155,156,159,165,171,172,173,184,186,191,194],woke:152,woman:[50,101],women:[112,176],won:[7,49,52,56,60,104,119,124,129,130,131,132,141,154,155,157,165,168,188,191],wonder:[45,48,102,108,124],wood:[110,162,163,178],wooddecksf:54,word1:172,word2:172,word:[1,3,31,40,41,43,49,54,59,68,80,88,90,93,103,107,109,112,114,116,117,119,129,131,132,134,135,136,137,141,147,150,151,155,157,165,166,170,171,172,173,176,177,178,188,191,193,194],word_count:[93,134,136],word_index:[171,193],word_list:134,wordcloud:3,wordnet:132,words_length:171,work:[1,3,4,7,11,18,19,24,30,31,33,36,40,41,43,45,46,49,52,53,54,57,58,59,60,61,63,65,66,68,71,72,74,75,76,80,82,83,85,90,99,100,101,102,103,104,106,108,112,113,114,116,117,118,122,123,124,126,127,128,129,131,133,134,135,137,138,139,140,141,142,145,146,147,148,150,152,154,155,157,158,159,161,162,163,164,165,166,167,168,169,171,172,173,176,177,179,186,187,188,191,193],workbench:[102,174],workbook:118,workclass:51,workflow:[0,54,83,100,101,102,104,112,121,139,140,143,154,174],workload:[101,139,165],workplac:[6,104],worksheet:118,workshop:[121,143],workspac:140,workstat:101,world:[0,7,18,28,29,33,35,37,39,40,41,45,46,50,53,57,58,60,62,77,93,108,112,114,117,118,121,123,127,129,132,135,137,139,140,142,143,147,151,152,157,159,165,166,171,172,173,176,179,180,183,191,193,194,195],worldwid:[101,112],worri:[99,116,165,171],wors:[41,47,141,150,158,164,182],worst:[59,166,167],worth:[6,32,48,66,107,109,132,150,151,152,165,173,178,191],would:[1,7,11,14,16,18,23,24,30,31,36,40,43,47,49,50,52,54,56,58,59,60,61,62,66,68,71,74,78,80,82,88,90,104,106,113,114,116,117,119,122,123,124,127,128,129,137,141,142,145,146,147,150,151,152,154,156,157,158,159,162,164,165,166,167,168,170,171,172,180,186,187,191,194],wouldn:[7,113,151,171],wow:[47,49,52,57,61,158],wrangl:119,wrap:[33,66,111,126,127,137,140,171],wrapper:[33,119,127,137,171,193],wrestl:[7,117],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:59,write:[0,1,3,7,21,22,23,26,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,82,93,100,104,112,114,116,119,123,124,127,129,130,134,136,141,147,150,151,158,165,170,171,172,173,191,193,194],writefil:193,written:[7,88,108,119,121,128,134,138,150,155,171,172,173,193,194,195],wrong:[1,14,41,47,56,112,114,116,132,141,151,158,171,172,173,194],wrong_nam:14,wrong_sampl:18,wrote:[47,173],wrt:51,ws:[9,100,179],wspace:[156,158,184],wsr4u5caj:59,wt:136,wts2:44,wu:[108,143],www:[22,25,32,45,47,48,56,58,78,106,108,112,116,118,127,128,132,134,137,140,141,143,146,156,158,162,171,172,175,180,181,182,193],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:59,x0:135,x0_box:135,x1:[32,50,109,119,133,135,158,178,179,189,190],x1_max:50,x1_min:50,x1y1x2y2:135,x27:[57,58,60,61,154,155,158,166],x2:[32,50,109,119,158,178,179,189,190],x2_max:50,x2_min:50,x3:[32,109,178,179],x4:[109,178],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:59,x5:[109,178],x6:[109,178],x80:38,x86:38,x99ve:38,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,76,78,80,81,82,83,84,92,93,102,108,109,111,112,116,119,121,122,123,126,127,128,130,131,132,133,134,135,136,137,142,145,146,147,148,150,151,152,154,155,156,158,159,162,163,164,165,166,167,170,171,172,173,176,178,179,182,184,186,187,188,189,190,191,193,194],x_0:[128,136],x_1:[50,78,116,128,136,147,148,150,158,165,191],x_1p_1:116,x_2:[50,78,116,128,136,148,150,158,165,191],x_2p_2:116,x_3:148,x_4:148,x_:[18,128,130,148],x_batch:[82,128,131,158],x_center:186,x_cluster_dist:158,x_data:[134,136],x_digit:158,x_digits_dist:158,x_dist:158,x_histori:75,x_i:[18,78,116,126,128,150,151],x_init:[75,158],x_input:127,x_input_shap:127,x_int:75,x_j:[18,148,150],x_k:[130,150],x_m:147,x_max:50,x_min:[50,75],x_mm:158,x_n:[78,116,128,165,191],x_new:158,x_noisi:128,x_np_n:116,x_organ:34,x_pca:186,x_po:130,x_poli:188,x_rang:[150,171],x_reduc:186,x_representative_digit:158,x_set:[189,190],x_shape:128,x_shuffl:136,x_start:128,x_t:136,x_test:[29,30,32,34,40,42,49,50,51,52,53,56,58,59,60,66,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],x_test_circl:150,x_test_noisi:[29,30],x_test_scal:40,x_train2:32,x_train:[29,30,31,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,66,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],x_train_add:84,x_train_batch:136,x_train_circl:150,x_train_combin:84,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:158,x_train_scal:[40,53,58,60],x_tsne:186,x_umap:30,x_val2:32,x_val:[31,54,82],x_valid:62,x_vif:64,xa:55,xarrai:119,xavier_init:131,xaxi:186,xb:33,xception:133,xe2:38,xentropi:82,xfb:59,xfhxfw:135,xfit:[156,184],xfyplk79sjp:59,xgb:[54,56,66,155],xgb_clf:155,xgb_cv:155,xgb_pred:66,xgb_reg:54,xgb_search:54,xgbclassifi:[56,155],xgbclassifierxgbclassifi:155,xgboost:[49,56,137,151,152,153],xgboostclassifi:56,xgbregressor:[54,66,137,154],xgbregressorxgbregressor:[66,154],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:59,xi:[55,59,133],xiangyu:132,xiao:143,xingjian:143,xiong:143,xit:59,xj:59,xk:130,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:59,xks2cxejztkqivxffffcr4:59,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:59,xl:167,xla:29,xlabel:[18,22,29,31,32,33,34,35,37,38,39,40,41,42,50,55,56,57,59,60,61,66,68,75,76,77,80,83,109,123,127,130,133,134,136,146,147,158,166,167,170,178,186,188,189,190],xlim:[50,56,148,150,156,184,186,189,190],xor:119,xplzqjohaao63bfq05ntwlheg6anqrhcuin:59,xrp:44,xs:[55,122,133],xtick:[3,18,22,31,37,39,41,47,54,56,145,146,148,158,178],xticklabel:[40,68,80],xu:131,xuanyu:143,xuhong:143,xw:59,xx1:150,xx2:150,xx:[50,158],xxl:167,xxxx:101,xy:[156,158,166,184],xytext:158,y0:135,y1:[55,135,158],y1x1y2x2:135,y212szmlszq:179,y2:[55,158],y3:55,y4:55,y5:55,y:[14,30,34,35,38,39,40,44,45,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,76,77,78,80,81,82,83,93,108,109,111,116,119,123,127,128,130,134,136,137,142,145,146,147,148,150,151,152,154,155,156,158,159,163,164,165,166,167,168,170,172,173,178,182,184,186,188,189,190,191,193,194],y_1:78,y_2:[78,136],y_:130,y_batch:82,y_clr:186,y_cluster_kmean:146,y_di:182,y_digit:158,y_dist:158,y_distribut:24,y_fit:137,y_gen:182,y_hat:150,y_histori:75,y_i:[50,55,75,77,78,148,150,151,155],y_init:75,y_j:50,y_k:130,y_lag_2:137,y_lag_3:137,y_lag_4:137,y_lag_5:137,y_lag_6:137,y_lag_:137,y_max:50,y_min:[50,75],y_n:78,y_output:[134,136],y_po:130,y_pred:[51,55,59,63,65,76,78,83,137,152,155,158,163,164,170,188,189,190],y_pred_100:51,y_pred_idx:158,y_pred_sklearn:[63,65],y_pred_test:59,y_pred_train:59,y_predict:[34,81,188,189],y_predict_class:34,y_predicted_cl:[81,189],y_prob:152,y_representative_digit:158,y_score:167,y_set:[189,190],y_shuffl:136,y_step_1:137,y_step_2:137,y_step_3:137,y_step_:137,y_target:127,y_test:[30,32,34,39,40,49,50,51,52,53,56,58,59,60,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],y_test_circl:150,y_test_class:39,y_test_prepar:[49,52],y_train2:32,y_train:[30,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],y_train_add:84,y_train_batch:136,y_train_circl:150,y_train_combin:84,y_train_partially_propag:158,y_train_prepar:[49,52],y_train_propag:158,y_true:[34,76,78],y_val2:32,y_val:[54,82],y_valid:62,ya:[59,82],yahoo:151,yam:[162,163],yandex:[54,151],yandexdataschool:82,yang:133,yaxi:[158,186],yb:33,ye:[7,45,50,100,101,111,112,143,147,165,171,173],year:[1,13,14,24,25,49,50,51,52,56,104,111,112,114,121,124,127,137,140,151,155,166,170,172,173,176,178,180,188,193],yearbuilt:54,yearn:141,yeast:[162,163],yellow:[17,23,50,104,108,109,110,166,172,178,194],yet:[0,14,36,43,50,53,58,60,93,100,101,108,141,151,152,165,171,186],yetayeh:195,yf:151,yfit:[156,184],yfozmvgstfo5xi:59,yhat:38,yi:55,yield:[31,33,50,59,82,111,123,151,154,155,171,178],yieldpercol:[111,178],yiyiwang0826:25,yizh:166,yk_temp:38,ylabel:[18,22,29,31,32,33,34,35,37,38,40,42,50,55,56,57,59,60,61,64,66,68,75,76,77,80,83,109,111,123,127,130,133,134,136,146,147,158,166,167,168,170,178,186,188,189,190],ylgnbu:[51,59],ylim:[41,48,133,156,184,189,190],ylorbr:[111,178],ymean:47,ymeanactu:47,yml:0,ymp6irqbiss3usmcdyxx:59,yogurt:[162,163],yolo:135,york:[14,17,23,50,116,141,143,172,179],yoshua:[29,50,78,131],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,38,40,41,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,60,62,66,68,69,71,74,76,77,78,80,82,83,85,89,90,91,92,93,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,132,133,135,137,138,139,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,161,162,163,164,165,168,169,170,171,172,173,174,175,177,178,180,186,187,188,189,190,193,194,195],young:143,younger:118,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,40,45,46,47,49,50,52,53,58,60,62,66,68,69,71,74,75,76,77,80,82,83,85,88,90,91,92,93,96,97,107,122,123,129,157,158,161,169,186,187,191],yourself:[7,47,50,102,104,109,111,117,150,165],yourthoughtpartn:104,yousfi:56,youtub:[43,56,78,116,127,129,139,142,162,165],youyang:142,ypred:47,yrsold:[54,66],ys:55,ystd:47,ystdactual:47,yt:[116,162],ytick:[31,37,39,41,158,186],yticklabel:[40,68,80],yu:128,yup:74,yuri:[50,147,148,150,151,186],yy:[50,158],yyyi:168,z1:[31,92],z2:[31,92],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:59,z5zy85g4yjw:116,z:[30,31,37,45,48,75,93,119,123,128,130,131,133,136,141,142,150,158,171,172,173,194],z_h:136,z_j:148,z_y:136,zalando:41,zaxi:186,zd_zt:38,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:59,zealand:[124,180],zero:[1,33,36,37,43,50,54,55,63,65,66,75,78,81,82,92,93,102,116,119,123,127,130,131,132,134,135,141,147,150,152,157,171,172,173,179,182,186,188,189,193,194,195],zero_grad:[31,33,37],zero_var:127,zerodivisionerror:[92,93,171,173,193],zeropadding2d:[36,132,133],zeros_lik:[82,127,131,158],zeroth:[172,194],zettabyt:112,zh:84,zhang:[132,143],zhangqi:179,zhi:135,zhu:132,zhuang:132,zia:176,zinkevich:141,zip:[18,22,29,30,31,33,36,37,39,41,66,119,126,127,128,130,133,134,136,156,171,172,184,186,192,193,194],zip_file_path:[29,30,31,39],zip_filenam:[36,37],zip_ref:[29,30,31,33,36,37,39],zip_store_path:[29,30,31,33,41,66],zip_url:[36,37,136],zipfil:[29,30,31,33,36,37,39,66,136],zisserman:132,zlad:38,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:59,zodb:180,zone:139,zoom:84,zoom_rang:[32,34,84],zoomed_imag:84,zopedb:180,zorder:158,zorro:92,zsy:59,zth:135,zucchini:[162,163],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:59,zw:84},titles:["37. Self-paced assignments","37.22. Analyzing COVID-19 papers","37.27. Analyzing data","37.9. Analyzing text about Data Science","37.13. Apply your skills","37.16. Build your own custom vis","37.17. Classifying datasets","37.26. Data preparation","37.24. Data processing in Python","37.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","37.40. Data Science project using Azure ML SDK","37.10. Data Science scenarios","37.20. Displaying airport data","37.15. Dive into the beehive","37.23. Estimation of COVID-19 pandemic","37.25. Evaluating data from a form","37.36. Explore a planetary computer dataset","37.37. Exploring for answers","37.19. Introduction to probability and statistics","37.12. Lines, scatters and bars","37.39. Low code/no code Data Science project on Azure ML","37.38. Market research","37.29. Matplotlib applied","37.28. NYC taxi data in winter and summer","37.18. Small diabetes study","37.21. Soda profits","37.35. Tell a story","37.14. Try it in Excel","37.11. Write a data ethics case study","37.101. Intro to Autoencoders","37.102. Base/Denoising Autoencoder & Dimension Reduction","37.103. Fun with Variational Autoencoders","37.90. How to choose cnn architecture mnist","37.94. Object Recognition in Images using CNN","37.92. Sign Language Digits Classification with CNN","37.112. DQN On Foreign Exchange Market","37.113. Art by gan","37.115. Generative Adversarial Networks (GANs)","37.97. Bitcoin LSTM Model with Tweet Volume and Sentiment","37.107. NN Classify 15 Fruits Assignment","37.106. Neural Networks for Classification with TensorFlow","37.116. Basic classification: Classify images of clothing","37.99. Google Stock Price Prediction RNN","37.95. Intro to TensorFlow for Deep Learning","37.104. Time Series Forecasting Assignment","37.83. Counterintuitive Challenges in ML Debugging","37.82. Data engineering","37.84. Case Study: Debugging in Classification","37.85. Case Study: Debugging in Regression","37.75. Beyond random forests: more ensemble models","37.76. Decision trees","37.80. Random Forest Classifier with Feature Importance","37.74. Random forests for classification","37.73. Random forests intro and regression","37.79. Boosting with tuning","37.78. Gradient boosting","37.77. Hyperparameter tuning gradient boosting","37.67. Decision Trees - Classification","37.66. Decision Trees - Intro and Regression","37.63. Kernel method assignment 1","37.65. Support Vector Machines (SVM) - Classification","37.64. Support Vector Machines (SVM) - Intro and SVM for Regression","37.70. Dropout and Batch Normalization","37.71. Lasso and Ridge Regression","37.69. Learning Curve To Identify Overfit & Underfit","37.68. Model selection assignment 1","37.72. Regularized Linear Models","37.88. Build Classification Model","37.87. Build classification models","37.57. Create a regression model","37.61. Delicious asian and indian cuisines","37.62. Explore classification methods","37.55. Exploring visualizations","37.58. Linear and polynomial regression","37.45. Linear regression - California Housing","37.48. Gradient descent","37.49. Linear Regression Implementation from Scratch","37.46. Linear Regression Metrics","37.47. Loss Function","37.54. Managing data","37.50. ML logistic regression - assignment 1","37.51. ML logistic regression - assignment 2","37.52. ML neural network - Assignment 1","37.42. Machine Learning overview - assignment 1","37.43. Machine Learning overview - assignment 2","37.89. Parameter play","37.60. Pumpkin varieties and color","37.53. Regression tools","37.44. Regression with Scikit-learn","37.59. Retrying some regression","37.86. Study the solvers","37.56. Try a different model","37.8. Python programming advanced","37.7. Python programming basics","37.6. Python programming introduction","37.5. Project Plan\u200b Template","37.3. First assignment","37.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4. Pandas","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.1. Relational databases","5. Working with data","24. Autoencoder","21. Convolutional Neural Networks","30. Diffusion Model","20. Intro to Deep Learning","27. Deep Q-learning","22. Generative adversarial networks","28. Image classification","29. Image segmentation","25. Long-short term memory","31. Object detection","23. Recurrent Neural Networks","26. Time series","Learn AI together, for free","34. Data engineering","36. Model deployment","35. Model training & evaluation","32. Overview","33. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","19. Model selection","17. Unsupervised learning","12. Build a web app to use a Machine Learning model","13.4. Applied Machine Learning : build a web app","13. Getting started with classification","13.1. Introduction to classification","13.2. More classifiers","13.3. Yet other classifiers","10. Machine Learning overview","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","38.10. Data Science in real world","38.9. Data Science in the cloud","38.4. Data Science introduction","38.8. Data Science lifecycle","38.7. Data visualization","38.6. NumPy and Pandas","38.5. Relational vs. non-relational database","38.20. Convolutional Neural Network","38.21. Generative Adversarial Network","38. Slides","38.18. Kernel method","38.19. Model Selection","38.17. Unsupervised learning","38.16. Build an machine learning web application","38.12. Linear Regression","38.13. Logistic Regression","38.14. Logistic Regression","38.11. Machine Learning overview","38.15. Neural Network","38.3. Python programming advanced","38.2. Python programming basics","38.1. Python programming introduction"],titleterms:{"0":59,"1":[3,24,30,32,43,49,50,52,53,54,56,57,58,59,60,61,65,68,74,75,80,82,83,104,113,119,132,174,175,176,177,178,179,180,181,182,184,188,190,194,195],"10":[40,56,127,132],"100":[51,59,132],"1000":[59,132],"11":56,"12":56,"13":56,"15":39,"19":[1,8,14],"1d":119,"2":[3,24,30,32,43,44,49,50,51,52,53,54,56,57,58,60,61,68,75,80,81,84,104,113,119,174,175,176,177,178,179,180,181,182,184,188,190,194,195],"2d":[30,119,184],"3":[3,24,32,39,43,49,50,52,53,54,56,57,58,60,61,68,74,80,104,119,174,175,176,177,178,179,181,182,188,194,195],"3d":[30,83,108,184],"4":[3,24,32,43,49,50,51,52,53,54,56,57,58,60,61,68,80,104,174,175,176,177,178,179,180,194,195],"5":[24,32,43,49,50,53,54,56,57,58,60,61,68,80,83,104,132,174,175,176,177,178,180,194,195],"50":56,"500":56,"6":[43,50,52,53,54,56,57,58,60,61,68,80,174,175,176,177,178],"7":[43,50,52,53,56,57,58,60,61,174,177,178],"8":[52,56,177],"9":56,"boolean":[119,172,173,194,195],"break":[92,171,193],"case":[28,45,47,48,50,104,112,168,184],"class":[35,39,47,50,51,63,65,92,171,193],"default":[51,59,171],"do":[47,114,167,168,172,176,184],"final":[49,74,75],"float":[7,172,194],"function":[43,51,59,75,78,82,92,93,119,129,130,151,171,173,179,189,190,192,193],"import":[9,29,33,37,41,44,49,51,52,53,54,56,57,58,59,60,61,64,66,83,117,128,141,148,155,170,171,188,189,190,192],"long":134,"new":[56,94,119,123,189,190],"null":[7,59,179],"public":37,"return":[94,130,171],"short":134,"true":59,"try":[0,27,48,68,75,80,91,171,193],"while":[92,171,193],A:[31,78,129,157,163,164,166],And:165,At:46,But:168,By:151,For:92,Is:143,It:[124,167,180],NOT:167,Not:165,On:35,One:[74,75,192],That:189,The:[9,36,43,51,53,75,77,82,100,101,117,124,157,158,164,168,170,171,172,175,179,180,181,184,193,194],There:168,To:[64,157],With:[34,137],about:[3,33,111,162,167,178],absolut:77,acceler:158,access:[93,119,123],accuraci:[32,41,47,59,132,155,192],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,141,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,181,184,186,187,188,189,192],ackowledg:182,action:130,activ:129,actual:104,ad:[30,31,47,62,66,119,157],adaboost:49,adam:192,add:[48,119,141],addit:123,advanc:[32,92,119,121,171,193],adversari:[37,131,182],after:[30,157,185],ag:24,against:48,agent:[35,130],agglom:158,aggreg:[119,121,176,179],ahead:82,ai:[36,41,138,186],airport:12,aka:64,algorithm:[50,54,130,142,145,150,151,155,158],align:123,all:[24,47,74,111,124,166,178,180],alpha:128,an:[9,31,64,66,100,101,104,118,119,159,181,187],anagram:172,analysi:[8,38,49,51,52,53,54,56,57,58,59,60,61,74,77,99,103,165,186,191],analyz:[1,2,3,18,103,119,168,177],anchor:[39,51],anim:108,ann:44,annot:[171,193],anomal:47,anomali:29,anoth:37,answer:17,api:[34,43],app:[159,160],append:[93,179],appli:[4,22,47,112,160,163,164,176],applic:[50,126,165,187,191],approach:[51,104,124,163,180],ar:172,arbitrari:171,architectur:[32,127,129,181,192],argument:[171,193],arithmet:[123,172,194],arrai:[119,123,179],art:36,artifici:[165,191],artwork:36,ascend:[93,94],ascent:131,asian:70,ask:168,assert:51,assign:[0,12,25,39,44,59,65,80,81,82,83,84,96,97,119,121,123,190],assist:133,attribut:[59,119,123,179],auc:[56,59],audienc:104,augment:[32,34,128],author:170,autoencod:[29,30,31,126],automl:[9,100,101,141],avail:119,averag:[92,168],avoid:[108,157],axi:119,azur:[9,10,20,100,101,118],b:75,babylonian:93,background:128,backprop:82,bag:[49,147,150,155],balanc:162,bar:[19,22,178],base:[30,92,122,155],basebal:18,baselin:[47,48,165,191],basi:59,basic:[29,32,41,43,93,112,119,123,130,172,173,176,179,194,195],batch:[33,62,158],beehiv:13,begin:104,behind:55,best:[9,32,37,100,143],beta:128,better:[163,167],between:[24,54,56,68,74,78,80,119,150,176,179],beyond:[40,49,156,184],bi:54,bia:[64,150,157,185],bibliographi:25,big:192,binai:54,binari:[40,167],binder:0,bird:[109,178],bit:[31,119],bitcoin:38,blend:54,bmi:24,boost:[49,54,55,56,151,152,153,155],bootstrap:147,bound:128,boundari:[156,158,184],boxplot:[24,83],bp:24,brain:181,broadcast:[119,179],bug:48,build:[5,29,31,32,36,41,50,51,67,68,80,108,146,159,160,166,167,168,178,187],c:59,cach:187,calcul:[47,92,93,172],california:74,call:193,callabl:122,callback:40,can:[50,56,114,176],candid:56,capac:157,captur:[106,177],cardin:51,cast:[172,194],catalog:139,catboost:54,categor:[7,51,54,57,68,74,80,166,188],categori:93,categorical_crossentropi:192,caus:45,central:[18,116],centroid:158,chain:123,challeng:[1,14,22,45,112,119,129,132,135,176],chang:[34,54],changin:34,channel:104,chart:[108,111,178,187],check:[30,47,48,51,53,57,59,68,74,80,141,155,168,172,195],checkbox:187,checklist:112,choic:[123,143],choos:[32,50,74,99,101,108,163,175],churn:50,cifar:[127,132],citi:[56,124,180],classic:[132,133,135,151],classif:[34,40,41,47,49,50,51,52,57,59,60,67,68,71,78,80,83,132,151,161,162,164,165,167,184],classifi:[6,39,40,41,49,51,52,57,60,155,162,163,164],clean:[117,159,162,167],cloth:41,cloud:[9,98,99,100,175],cluster:[9,100,101,144,145,146,158,186],cnn:[32,33,34,44,127,135,181],code:[20,75,101,112,126,127,128,130,131,132,133,134,135,136,140,173,175,182,193],collect:[39,165,191],color:[86,108],column:[7,51,54,123,187],combin:[119,121,122,179],come:189,comment:[59,172,173,194,195],common:[63,65,78,117,129,172],commun:[104,177],compani:56,compar:[59,178],comparison:[119,150,172,194],compil:[36,40,41,192],complex:[48,50,92,172,194],compon:186,comprehens:[167,172,194],comput:[1,9,14,16,24,100,101,119,179,181,192],con:[50,150],concat:[121,179],concaten:[54,179],concept:[78,112,124,176,180],conclus:[1,18,31,32,34,45,47,48,59,63,65,76,77,78,104,116,124,151,154,155,157,168,185],conculs:36,condit:92,confid:[18,116],configur:[9,100,128,170],confus:[51,59,167,189,190],connect:[126,129,138,181],consider:159,constant:43,consum:9,consumpt:[100,101,139],contain:119,content:[33,57,58,60,61,191,193],context:56,continu:[92,130,171,193],control:[40,171,173,193],converg:[45,131],convert:[54,119],convolut:[29,32,33,126,127,129,181],corp:18,correl:[18,24,48,53,54,68,74,80,116,166,167],correspond:1,cosin:128,cosmo:118,cost:78,count:[92,93,172],counterintuit:45,covari:116,covid:[1,8,14,119],creat:[9,32,39,40,43,45,68,69,74,80,92,93,100,101,119,123,182],creation:[56,63,65,119],criteria:50,cross:[50,59,74,83,155,189],crucial:50,csv:44,cuisin:[70,162,163],cultur:112,current:127,curv:[36,59,64,141,157,167],custom:[5,40,50],cv:[59,155],d3:108,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,74,76,79,80,83,98,99,100,102,103,104,105,106,107,109,112,113,114,116,117,118,119,121,122,123,124,125,128,137,139,141,142,143,145,155,159,162,163,164,165,167,168,172,173,174,175,176,177,178,179,180,184,187,188,191,192,194,195],databas:[12,124,180],databasetyp:180,dataclass:123,datafram:[7,117,123,179],dataset:[6,16,29,30,31,33,35,39,41,45,46,47,48,51,59,83,100,101,109,121,132,133,150,155,162,170,178,179,186,188,189,190,192],datatyp:119,date:168,db:118,dbscan:158,deal:[7,46,54,92,117,119],debug:[45,47,48,141],decept:108,decis:[50,51,57,58,150,158],decisiontre:55,decisiontreeclassifi:50,declar:[51,59,155],decor:[171,193],decorrel:150,decreas:45,deep:[41,43,129,130,137,165,191],deepdream:127,deeplab:133,def:[171,173],defin:[29,33,35,113,114,128,133,137,165,167,176,191,193],definit:[78,112,128,130,171,176],degre:24,del:[93,172,194],delet:123,delici:70,demens:30,denois:[29,30],dens:[32,82,129],densenet:132,densiti:[22,109,178],depend:[24,130],deploi:[9,165,191],deploy:[100,101,140,142],depth:141,deriv:75,descent:[75,131,151],describ:[7,113],descript:[59,83,103],design:[188,192],detaphor:78,detect:[7,29,135],determin:168,detr:135,develop:[0,76],deviat:116,diabet:[24,170],diagnosi:1,dict:[92,93,123],dictionari:[92,93,172,173,194,195],differ:[24,78,91,123],difficult:75,diffus:128,digit:[34,50,84,114,127],dimens:[30,51,83,186],dimension:[59,75,119,150,179],direct:137,dirrec:137,disciplin:56,discov:162,discrimin:[36,37,131],diseas:24,dispers:59,displai:[12,51,108,119,146,187],distant:184,distribut:[18,24,51,54,59,109,116,145,178],dive:[13,156],diverg:128,divid:83,docstr:[172,193,194],document:[118,171,193],doe:[0,182],dog:37,donut:[110,178],download:29,dqn:35,draw:[184,187],drop:7,drop_dupl:7,dropout:[32,47,62,157,185],dual:[111,178],duplic:[7,46,93,117,172],earli:[157,168,185],early_stopping_round:154,easi:143,ecg:29,eda:[51,68,80,155,165,191],educ:56,effect:[104,177],elbo:128,elbow:146,element:[93,119,172],elif:92,els:92,emot:104,empir:78,emul:118,encod:[7,51,56,74,83,188,192],end:104,endpoint:[9,100,101],engin:[46,48,51,54,139,142],enrol:56,enrollee_id:56,ensembl:[49,54,147,149,164],entropi:[50,189],envireon:35,environ:[0,130,170,173],episod:130,equat:188,equival:48,error:[59,77,147,165,171,191,193],establish:[47,48,165,191],estim:[14,22],ethic:[28,112,176],eval:121,evalu:[15,40,41,49,52,53,54,57,58,60,61,68,74,76,80,83,130,141,142,192],everyth:[119,176,179],evid:128,evil:18,evolut:[140,155],exampl:[29,37,50,62,99,119,130,137,148,151,152,154,157,165,180,188,191],excel:27,except:[92,171,193],exchang:35,exercis:[7,145,146,159,162,163,164,167,168,170],exist:[43,119],expect:128,experi:[9,32,56,100,168],explan:78,explod:45,exploit:130,explor:[7,16,17,31,33,41,46,49,51,52,59,68,71,72,74,75,80,103,109,117,118,130,178,179],exploratori:[38,49,51,52,53,56,57,58,59,60,61,74,103,165,191],express:171,extend:93,extract:[1,181],extrem:[150,155],f1:59,facet:[111,178],failur:[100,101],fals:59,fashion:[40,41],faster:135,fcn:133,fco:135,featur:[32,47,48,50,51,52,53,54,56,57,59,68,74,80,83,137,138,141,148,155,165,166,181,189,190,191],feed:41,feel:75,fibonacci:93,field:[114,119,176],file:[34,44,173,195],fill:[7,54,92],filter:172,find:[51,56,68,75,80,158,172],fine:127,first:[29,83,96,168,170],fit:[45,56,64,156,157,185,188,192],fix:47,flask:159,flat:119,flatten:181,flow:[171,173,193],flu:137,fold:[59,155],forecast:[44,137],foreign:35,forest:[49,51,52,53,148,150],fork:31,form:15,format:[47,93,172,194],formul:[68,80,191],formula:[77,93],forward:128,four:166,frame:[142,143],free:[75,138],frequenc:51,friedman:151,from:[15,34,39,43,63,65,76,81,93,119,123,172,181,186,189,192],fruit:39,full:[82,181],fulli:126,fun:31,gain:75,gan:[36,37,182],gate:134,gbm:151,gcd:92,gender:[24,56],gener:[36,37,39,93,119,131,182],geograph:74,ger:182,get:[1,3,24,40,45,83,93,110,114,119,128,145,149,161,170,178],giant:186,gif:128,github:0,give:31,glass:31,global:[32,83,171],go:[40,163],goal:[3,117],good:[64,157,188],googl:42,govern:139,gradient:[45,49,55,56,75,131,151,152,153,155],grid:[111,167,178],gridsearch:59,gridsearchcv:56,group:[83,93,121],guid:41,hand:172,handl:[46,57,59,64,74,171,179],handwritten:[50,127],have:[47,54,167],head:7,heart:[100,101],hello:162,here:168,hidden:129,hide:187,hierarch:[121,158],high:[45,121,150],higher:59,hing:156,hint:48,histogram:[22,53,109,178],histori:[132,133,135,151],honei:[111,178],hood:59,hot:[74,192],hous:74,how:[0,32,50,113,127,133,143,151,157,173,181,182,184,192],human:[102,174],hyperparamet:[56,59,141],hyperplan:59,hypothesi:[18,24,116,188],id:[39,51],identifi:[7,54,64,103],iiit:133,illustr:148,imag:[29,30,32,33,37,41,121,132,133,158,181],imagenet:132,imbalanc:47,impact:157,implement:[34,40,48,76,77,93,152,155,188],improv:[52,53,56,57,58,60,61,141],includ:[172,194],inconsist:[46,103],indent:[172,173,194,195],index:[119,121,122,123,179],indian:70,indic:119,individu:[33,74,119],industri:[102,174],inequ:128,inertia:158,info:7,inform:[7,59,117],infrastructur:140,ingest:[139,142],ingredi:162,inherit:[171,193],initi:[9,37,56,158],input:[48,59,74],insensit:184,insert:[93,172],insid:[171,193],insight:[3,68,80],instal:[170,173],instanc:[100,171],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,69,71,85,88,89,90,91],integ:[119,172,194],intellig:[165,191],interpret:[64,77,141,157],interv:[18,116],intro:[29,43,53,58,61,129],introduc:[123,179],introduct:[9,18,24,30,50,54,59,62,64,74,76,94,99,100,104,106,115,116,119,123,145,146,151,153,155,162,166,167,168,170,173,176,185,187,189,190,192,195],intuit:[59,75,148,155],inventori:118,investig:14,involv:119,iri:[64,186],isol:54,item:[93,172],iter:119,jensen:128,job:56,join:[93,121,124,179,180],js:108,json:118,just:54,k:[59,146,150,155,158,164,186],kaggl:22,kei:[165,172,191],kera:[34,39,192],kernel:[22,59,156,181,184],keyword:171,kl:128,knn:83,know:[110,178],l1:[157,185],l2:[157,185],label:[51,83,122,123,165,191,192],lag:137,lambda:[92,157,171],languag:34,larg:[32,116],lasso:[63,65],lasson:[63,65],last:[46,56],latent:30,law:116,layer:[32,41,47,82,129,139,192],layout:187,lda:158,learn:[9,36,41,43,45,50,56,59,63,64,65,74,83,84,88,101,126,129,130,137,138,141,143,144,149,157,158,159,160,162,163,165,166,168,169,170,175,186,187,191],learning_r:154,length:92,let:[75,156,172,182,184,193],level:[34,56],libari:33,librari:[29,32,34,37,38,42,51,59,83,128,155,170,188,189,190,192],lifecycl:[105,106,177],lightgbm:54,like:[104,123],limit:[18,116,158],line:[19,111,166,178,184,187],linear:[47,48,59,66,73,74,76,77,128,137,156,157,164,166,167,184,188,189,190],linearli:184,list:[92,93,94,123,171,172,173,193,194,195],liter:[172,194],load:[12,14,25,29,30,31,32,34,35,36,37,38,39,41,42,44,47,49,52,53,54,56,57,58,60,61,83,100,101,128,155],local:0,logic:55,logist:[64,68,80,81,156,163,167,184,189,190],look:[1,40,53,56,166],loop:[37,55,82,92],loss:[45,47,64,78,82,131,141,151,156,189,192],lot:[54,167],low:[20,101,175],lower:[97,128],lstm:[38,44],m:75,machin:[9,41,59,60,61,74,83,84,101,143,144,156,159,160,165,169,170,175,184,187,191],mae:77,magic:187,main:[130,155],maintain:[106,177],mainten:142,major:56,make:[14,36,41,108,133,155,168,189,190],manag:[79,106,118,168,177],mani:32,manipul:[43,119],map:[32,54,74,164,187],mape:77,margin:[59,156,184],market:[21,35,168],mask:135,math:[55,75,119,156],mathemat:78,matplotlib:[22,168],matrix:[48,51,54,59,167,188,189,190],max:[119,176,179],max_depth:56,max_featur:56,maxim:[156,184],maximum:[59,179],mean:[24,77,116,128,146,158,186],meaning:[104,108],media:99,median:116,medicin:1,memori:134,men:24,merg:[93,94,121,179],method:[49,59,71,93,104,123,146,156,158,171,172,184,192,194],metric:[59,68,77,80,141,192],min:[119,176,179],min_samples_leaf:56,min_samples_split:56,mind:104,mini:158,minimum:179,miscellan:56,miss:[7,46,51,54,57,59,68,74,80,92,117,155,168,179],ml:[9,10,20,45,80,81,82,100,101,151],mnist:[32,41,47,50,127,186],mobilenet:132,mode:116,model:[8,9,29,30,33,34,36,37,38,39,40,41,43,44,45,47,48,49,50,51,52,53,54,56,57,59,64,65,66,67,68,69,74,76,80,83,91,100,101,128,130,132,133,135,137,140,141,142,143,144,146,154,157,159,165,166,167,168,169,170,182,185,188,189,190,191,192],modul:[171,193],more:[32,49,52,68,80,163,168],most:56,mostli:54,motiv:156,mse:77,much:32,multiclass:40,multicollinear:[54,64],multioutput:137,multipl:[119,158,171,172,188],multistep:137,mushroom:[110,178],mutabl:93,n_estim:154,n_job:154,name:[51,123],namedtupl:123,nan:[7,179],nation:163,nativ:119,ndarrai:[119,123],nearest:150,need:167,neighbor:[150,164],nest:[172,194],network:[32,33,37,39,40,82,108,127,129,131,136,181,182,189,192],neural:[32,33,39,40,82,127,129,136,181,189,192],next:29,nn:39,nois:[30,128],noisi:30,non:[7,118,180,184],none:[7,179],nonlinear:[47,48,82],nonloc:171,normal:[18,22,44,48,62,116,188],nosql:[118,180],note:49,notebook:[100,170],now:184,number:[51,56,92,93,116,119,158,172,173,192,194,195],numer:[7,50,51,54,59,74,179],numpi:[34,119,179],nyc:23,o:39,object:[33,75,78,119,123,135,171,179],obtain:143,occurr:93,odd:168,one:168,oper:[43,93,119,123,172,179,194],optim:[37,48,56,59,141,158,188,192],option:[0,47,101,156,187],order:93,ordin:54,ordinari:[165,191],orign:30,other:[29,50,68,80,114,119,164,167],our:[188,192,193],out:[0,147],outlier:[54,59],outlin:[184,185,186],output:[74,128,193],over:[157,185],overfit:[59,64,157],overiew:137,overview:[29,41,83,84,121,122,123,126,130,131,134,142,157,165,191],own:[5,188,193],oxford:133,pace:0,packag:171,pad:181,pair:32,pairplot:[53,83],panda:[7,44,103,120,121,123,179],pandem:14,paper:[1,8,99,119],paramet:[37,50,51,56,83,85,150,192],parameter:128,part:[24,53],partial:75,pass:47,path:44,pca:[158,186],pd:179,peopl:92,percentag:[51,77],perform:[43,68,80,121,165,191,192],permut:148,pet:133,phrase:104,pickl:159,pictur:39,pie:[110,178],piec:92,pipelin:[74,132],pivot:121,plai:[85,181,182,189],plan:[56,95,164],planetari:16,plot:[22,24,30,32,55,74,109,111,167,178,187],plote:36,point:184,polici:130,polynomi:[59,73,166,188],pool:181,popul:93,posit:[59,122],potenti:126,practic:[148,150],pre:[14,38,56],precis:59,predict:[39,41,42,50,54,56,80,83,100,101,133,155,157,163,185,188,189,190],predictor:54,prepar:[7,31,32,34,40,44,76,117,133,137,146,164,166,168],prepreprocess:36,preprocess:[36,37,41,49,52,53,56,57,58,60,61,66,68,74,80,128,158,165,191,192],prerequisit:[146,166,167],preserv:179,preview:[51,155],price:[42,80,168],princip:186,principl:112,pro:[50,150],probabl:[18,24,116,176],problem:[50,51,59,68,80,142,143,150,151,165,188,191],process:[8,14,38,47,54,74,106,121,128,139,142,177,181],product:143,profession:112,profil:103,profit:25,program:[92,93,94,119,165,171,172,173,191,193,194,195],progress:[24,187],project:[10,20,95,100,101,108],promot:119,properti:[51,128],proport:[110,178],pumpkin:[86,168],put:[74,143,166],python:[8,77,92,93,94,119,155,170,171,172,173,179,193,194,195],q:130,qualiti:[50,139,141],quantiti:178,quartil:116,queri:[103,118,121],question:[167,168],quot:186,r2:77,r:[77,135],r_t:14,radial:59,rainfal:[124,180],rais:171,random:[18,30,49,51,52,53,116,148,150,176],rang:[80,92,123,171],rate:[45,56,59],rbf:[59,156],re:128,reach:45,read:[44,50,155],readabl:108,readi:24,real:[18,99,102,116,141,150,174],reason:[64,163],recal:59,recap:77,recogn:84,recognit:[33,50],record:123,recurr:[129,136],recurs:[137,172],reduc:48,reduct:[30,186],redund:54,refer:[14,174,175,176,177,178,179,180,193,194,195],refresh:64,regress:[48,50,53,58,61,63,64,65,68,69,73,74,76,77,78,80,81,87,88,89,137,151,156,157,163,165,166,167,168,169,170,184,188,189,190],regressor:[53,58,61],regul:112,regular:[47,63,65,66,78,157,185],reinforc:[165,191],relat:[114,118,124,176,180],relationship:[54,74,111,124,178,180],relev:56,remov:[7,46,47,54,56,93,117,119,172],renam:51,replac:93,report:[51,59],represent:150,research:[21,102,127,174],reshap:119,residu:77,resnet:132,resourc:101,respect:75,respons:104,result:[3,30,39,40,48,56,59,155,188,189,190],retri:89,retriev:[124,180],revers:[128,172],reward:130,ridg:[63,65],right:[101,108,168],risk:78,rl:130,rmse:77,rnn:[42,44,129],road:82,roc:[59,167],role:[49,53],root:[77,93],rotaion:34,row:83,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91],rule:119,run:[9,59,170],s:[74,75,128,151,156,167,168,172,176,177,178,179,182,184,189,190,193,195],salepric:54,sampl:[31,103,128],satisf:141,save:[9,37,100],scalar:[119,123],scale:[30,51,54,59,68,74,80,83,189,190],scatter:[19,22,55],scatterplot:[54,111,178],scenario:11,schedul:128,schema:[12,48],scienc:[3,9,10,11,20,98,99,100,102,105,106,112,114,165,174,175,176,177,191],scientif:99,scikit:[50,59,63,65,88,163,166,168,170],scope:[171,193],score:[59,77,146,155],scratch:[39,63,65,76,81,188,189,192],sdk:[9,10,100],search:[92,139],second:[29,47,97,168],section:78,secur:[106,139,177],see:[56,181],segment:[133,158],segnet:133,select:[43,51,65,122,123,141,157,165,179,185,191],selectbox:187,self:[0,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,130,136,139,141,142,143,145,146,159,162,164,166,167,168,170,171,172],sens:14,sentenc:92,sentiment:[38,99],separ:[51,59,155,184,189],sequenc:93,sequenti:43,seri:[44,123,137,179],serv:140,session:75,set:[32,41,49,51,52,53,54,57,59,74,83,155,172,173,188,189,190,192,195],setdefault:93,setup:[37,48,100,173],sex:24,shape:[7,43,83,155],shell:173,shortcom:[124,180],show:[37,83,108,187],showcas:139,shuffl:[47,59],side:167,sidebar:187,sigmoid:[59,189,190],sign:34,silhouett:146,similar:150,simpl:[31,44,45,141,157,166,179,188],simul:[18,55],singl:[33,74,93,119,124,129,180],size:56,skew:47,skicit:[63,65],skill:4,skip:75,sklearn:[74,148,184,186],slice:[47,93,119,122,123,141],slide:183,slider:187,small:[24,56],smile:31,social:99,soda:25,solut:[45,47,48,130],solver:90,some:[37,89,172],someth:168,sort:[93,119],sourc:113,space:[30,59],special:134,specif:[9,56,59],specifi:93,spectral:158,split:[34,47,48,50,51,54,57,59,74,93,155,163,164,188,189,190],splite:83,spread:[8,119],spreadsheet:118,squar:[77,93],st:187,stack:[49,92],standard:[116,132],start:[40,124,141,145,149,161,170,180],state:130,statement:[51,92,151,171,172,193,194],statist:[18,24,48,51,57,68,74,80,103,116,155,176],step:[3,29,56,74,137,151],still:167,stock:42,stop:[157,185],storag:139,store:[106,118,177],stori:[26,104],storytel:104,str:[93,97],strategi:[1,117,137,140,168],stratifi:59,streamlit:187,stride:119,string:[92,93,171,172,173,193,194,195],structur:[1,32,78,119,123,179],student:[102,174],studi:[24,28,45,47,48,90,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,130,136,139,141,142,143,145,146,159,162,164,166,167,168,170,171,172],studio:[101,173],style:[108,127,187],stylenet:127,subarrai:119,subclass:43,subplot2grid:22,subplot:22,subsambl:32,subsampl:56,sum:92,summari:[32,45,51,57,59,68,80,155,156,192],summer:23,sup:180,supervis:[165,191],support:[59,60,61,156,164,184],sustain:[102,174],svc:164,svm:[59,60,61,156,184],svr:156,swarm:167,syntax:[172,173,194],system:[165,191],tabl:[33,121,124,180,191,193],tail:7,take:40,target:[51,54,59,155],task1:44,task2:[44,56],task5:52,task:[24,44,49,50,52,53,54,56,74,113,130,137],taxi:23,taxonomi:130,techniqu:121,tell:26,templat:95,tensor:43,tensorboard:40,tensorflow:[29,40,43,127],term:[93,134],terminolog:[130,165,191],test:[18,24,33,34,47,48,49,51,52,53,54,56,57,59,74,82,83,116,128,142,155,188,189,190],text:[3,109,178],text_input:187,tf:43,thank:191,theme:187,theorem:[18,116],theori:31,thi:[0,41,55,78,167],thing:168,third:29,tidi:167,time:[44,75,99,137,181,182],titan:22,titl:[93,97,119],togeth:[54,138,166],toi:50,tool:[87,119,159,170],top:132,trade:170,tradeoff:[157,185],traffic:137,train:[30,31,32,33,34,35,36,37,39,40,41,47,49,51,52,53,54,57,58,59,60,61,64,68,74,80,82,83,100,101,128,129,131,133,141,142,155,165,188,189,190,191,192],trane:188,transfer:141,transform:[3,59,74,114,129,150],transpos:123,treatment:1,tree:[50,51,56,57,58,150,155],trend:[1,127,137],trick:[59,128,184],trigonometr:119,tune:[54,56,83,127,141,154],tunnel:137,tupl:[119,123,172,173,195],turn:[99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,178,179,180,193,194,195],tweet:38,twiddl:119,two:[75,94,172,179],type:[51,54,56,104,108,114,119,129,165,172,173,191,194,195],typic:[165,191],ufunc:[119,179],under:[59,157,185],underfit:[59,64,157],understand:[47,54,104],univari:[54,188],univers:[56,119,179],unpack:[171,193],unstructur:119,unsupervis:[126,158,165,186,191],up:[41,93,170],updat:131,upper:[93,97],upvot:31,us:[10,30,33,40,41,48,56,59,62,63,64,65,83,92,93,104,108,109,138,141,143,155,158,159,163,165,166,167,168,173,178,187,192],useless:54,v3:133,v:[156,184,189,190],valid:[32,33,47,48,50,54,59,64,74,83,155],valu:[7,24,47,51,54,56,57,59,68,74,80,92,93,119,123,130,155,157,171,172,178,179],variabl:[18,24,32,43,51,59,116,119,155,158,167,171,172,176,193,194],varianc:[24,64,116,128,146,150,157,185],variat:[31,54],varieti:86,vector:[51,59,60,61,123,155,156,164,184],veri:48,verifi:41,versa:172,vggnet:132,vi:5,via:[32,167],vice:172,view:[51,119,192],vif:64,violin:167,visual:[3,22,39,40,56,72,83,103,107,108,109,110,111,167,168,172,173,178,192],visualis:[188,189,190],vit:132,volum:38,vote:49,vowel:172,vs:[155,165,180,191],w:39,waffl:[110,178],wai:[9,100,101,166,175],wait:168,want:92,we:[50,56],web:[159,160,187],weight:[37,151],what:[24,32,43,83,99,100,101,104,114,132,133,135,137,143,152,154,163,165,175,176,177,178,182,186,188,191,195],when:[165,189],where:114,whole:188,why:[99,129,173,175,184,195],widget:187,width:141,wingspan:178,winter:23,within:119,women:24,word:[92,104],work:[0,50,56,109,119,125,151,170,178,182],workflow:[165,191],workspac:[9,100,101],world:[102,116,141,174],write:[28,187],x_t:128,xgboost:[54,66,154,155],y:24,yet:164,you:[47,75,114,167,176,191],your:[4,5,48,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,178,179,180,193,194,195],zero:47,zoom:34}}) \ No newline at end of file +Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/applied-ml-build-a-web-app","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.md","data-science/data-science-lifecycle/analyzing.md","data-science/data-science-lifecycle/communication.md","data-science/data-science-lifecycle/data-science-lifecycle.md","data-science/data-science-lifecycle/introduction.md","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.md","data-science/working-with-data/non-relational-data.md","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/relational-databases.md","data-science/working-with-data/working-with-data.md","deep-learning/autoencoder.md","deep-learning/cnn.md","deep-learning/difussion-model.md","deep-learning/dl-overview.ipynb","deep-learning/dqn.md","deep-learning/gan.md","deep-learning/image-classification.md","deep-learning/image-segmentation.md","deep-learning/lstm.ipynb","deep-learning/object-detection.md","deep-learning/rnn.md","deep-learning/time-series.ipynb","intro.md","machine-learning-productionization/data-engineering.md","machine-learning-productionization/model-deployment.md","machine-learning-productionization/model-training-and-evaluation.md","machine-learning-productionization/overview.md","machine-learning-productionization/problem-framing.md","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.md","ml-advanced/ensemble-learning/feature-importance.md","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.md","ml-advanced/ensemble-learning/random-forest.md","ml-advanced/gradient-boosting/gradient-boosting.md","ml-advanced/gradient-boosting/gradient-boosting-example.md","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.md","ml-advanced/gradient-boosting/xgboost.md","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.md","ml-advanced/kernel-method.md","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.md","ml-fundamentals/classification/applied-ml-build-a-web-app.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.md","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.md","ml-fundamentals/regression/managing-data.md","ml-fundamentals/regression/regression-models-for-machine-learning.md","ml-fundamentals/regression/tools-of-the-trade.md","prerequisites/python-programming-advanced.md","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,74,75,76,77,78,80,81,82,83,84,92,93,94,98,99,100,101,107,108,109,110,111,112,113,114,115,116,117,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,170,171,172,173,176,178,179,182,184,186,187,188,189,190,192,193,194,195],"00":[25,29,38,57,59,60,123,167,172,179],"000":[7,29,33,41,50,56,63,65,117,132,159,179,192],"0000":[29,61,118,180],"000000":[38,58,61,64,74,116,122,123,145,148,155],"00000000":[118,180],"000000000":38,"000000001":38,"000000002":38,"000000003":38,"000000004":38,"000001":92,"000004":145,"000006":123,"000035e":59,"0001":[54,56,61,64,74,128,130,141,182,188],"000169":145,"000187":145,"0002":193,"000234":145,"0003":147,"00030352119521741776":14,"000335":123,"0004":147,"0005":[37,66,136],"000537":145,"00058":74,"000581":61,"0006070423904348355":14,"000665":145,"0009105635856522532":14,"000z":118,"001":[14,31,33,34,35,37,45,54,60,64,66,81,93,130,134,135,141,189],"001214084780869671":14,"001238e":59,"0012919896640826":74,"001413":38,"001667":148,"002":193,"00228":136,"00259226":170,"002962":155,"002973e":123,"003411e":59,"003750":155,"00390625":134,"00398532":74,"005":[56,127,145],"005231":123,"00561v3":133,"006457":155,"007000":145,"007185":[63,65],"007273":38,"007380":155,"0078125":134,"008080":155,"008281":155,"008524":123,"008906e":59,"0092":147,"0098":147,"01":[1,14,29,31,35,38,45,48,50,54,56,59,60,64,74,76,82,114,118,122,123,126,135,137,147,152,158,176],"010000":61,"010309":116,"010a691e01d7":[118,180],"01130490957":74,"011305":61,"01144489":116,"01171875":134,"012114":38,"01246024":[61,74],"012499":123,"013246":148,"01324612":148,"013417":155,"013547":155,"01355":135,"013696e":123,"014371":155,"014940":38,"01497":135,"015":145,"0152":147,"015625":[59,134],"016186":155,"016305":145,"01632993161855452":64,"016667":38,"017":166,"0170":59,"017500":38,"01764613":170,"017692":38,"0183":35,"0189":38,"019231":38,"0195":38,"01953125":134,"0196":[38,147],"0198":38,"01990749":170,"02":[14,35,37,38,56,59,122,123,128,137,150],"0204":38,"0205":38,"0207":38,"020724e":38,"0210":38,"0212":38,"0213":38,"02137124":158,"021448":38,"0215":38,"0218":38,"02187239":170,"021919":29,"0220":38,"022002":122,"022331":[63,65],"022377":29,"0226":38,"022738":38,"0229":38,"0230":38,"0231":38,"0233":38,"0234":38,"0234375":134,"0238":38,"02450770548":154,"0246":38,"024613e":59,"0255":[38,147],"025568e":59,"025820":148,"0260":38,"026109":74,"02653783":74,"026571":123,"0268":38,"02689146":[61,74],"02734375":134,"0276":38,"02763018":74,"027800":145,"028300":145,"0289":14,"0292":38,"029322":123,"0296":38,"02d":36,"03":[14,29,35,37,38,59,118,122,123,137,180],"0302":38,"030803":123,"0311":38,"03125":134,"031506725":29,"031851":123,"03265986323710903":64,"0327":38,"0328":38,"032983":123,"033203":123,"03385":132,"033892e":38,"0339":38,"0342":38,"03482076":170,"035066":123,"035077":148,"03515625":134,"0352":38,"0353":38,"035499e":59,"035711":[63,65],"035785":148,"0358":38,"03676084":74,"0372":38,"0375":38,"037540":38,"0376":38,"037692":38,"0377":38,"03807591":170,"038225":123,"0383":38,"038328e":123,"038340":163,"0386":38,"0390":38,"0390625":134,"039105":148,"039164":38,"0392":38,"039250":145,"0393":38,"0394":38,"03942163":74,"039471":123,"039738":148,"039893":38,"0399":38,"039980":123,"03_intellij":38,"03d":[31,37],"04":[14,29,35,38,48,59,111,116,122,123,137,140],"0400":38,"04000000001":38,"0402":38,"0404":38,"0407":38,"04124236":74,"0416":38,"0418":38,"0418559735628448":122,"041856":122,"0420":38,"042143e":59,"0423":38,"042321":29,"0424":145,"04251990648936265":158,"04296875":134,"0430":38,"04340085":170,"0435":38,"0436":38,"044":145,"0440":38,"0442235":170,"044444":116,"04460606335028361":166,"0447":[38,145],"0448":38,"045000":38,"04555172":74,"045561":38,"045637":38,"0458":38,"04597":133,"0463":38,"0467":38,"046875":134,"04690235":74,"047079":123,"0471":38,"04764906":74,"04861":132,"048622":74,"0496":38,"049672":74,"049934":123,"04d":130,"04t22":57,"05":[14,35,36,38,47,59,66,82,121,123,127,137,141,147,154,158],"0500":152,"0506":38,"05068012":170,"05078125":134,"05093587":119,"051164":59,"05129013":74,"051489":123,"05163977794943221":64,"051695":38,"0517":38,"052646":38,"0528":38,"05283644":74,"053398":122,"053607":38,"053899":148,"053903":38,"054000":64,"0541":38,"054430e":59,"0546875":134,"054761":123,"055120":123,"05558296":74,"05587v3":133,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":59,"057504":[63,65],"05859375":134,"0589":38,"059025":29,"059100":145,"059136e":59,"0595":38,"05_fco":135,"05d":[37,130],"06":[14,35,38,59,123,166],"0612":35,"061476":148,"06156753":[156,184],"06169621":170,"061881":148,"0621118":147,"0625":[134,156,184],"062868":38,"065508":74,"06576":127,"0660":35,"06640625":134,"066773":123,"0668":38,"067482e":59,"067630":123,"067708e":123,"068415":59,"06870":135,"068784":123,"0688":59,"0694":38,"069473e":59,"06993":132,"07":[1,29,35,38,50,59,121,122,123,141,147,166,179],"0703125":134,"070833":38,"071203171893359e":179,"071268":38,"0713":38,"071856":58,"072234e":123,"07233134":116,"072431":123,"07247037":116,"07272727":82,"073598":123,"07383654":74,"07421875":134,"074246":38,"07432988":74,"074776":148,"075":186,"0754":38,"075650":145,"07604103":74,"076923":38,"07737338323":61,"077500":38,"077712":148,"078125":134,"07878788":82,"078843":38,"078910":[63,65],"078934e":59,"079167":38,"07959982":74,"07_detr":135,"08":[29,35,38,48,59,92,111,116,118,123,140,166,171,176,193],"080870":38,"081242":122,"0819":38,"08203125":134,"0822":145,"0829":145,"083333":38,"0839":35,"083991":123,"08484848":82,"085":186,"085537":179,"0859375":134,"086798":29,"087":145,"088730":148,"088992":38,"0893":38,"089525":145,"08984375":134,"09":[25,29,35,38,59,74,123],"090000":38,"090298":38,"090321":145,"090548":38,"090622":122,"090717":38,"09090909":82,"091439":38,"091489":38,"091574":59,"092215":122,"0924":35,"092939":145,"093100":122,"09375":134,"094025":38,"094383":38,"0944":35,"094493":38,"095000":38,"095163":38,"095922":38,"096164":38,"0964":145,"096545":38,"096688":38,"09704554168":74,"097061":38,"097124":38,"097299":122,"09736372":74,"097565":38,"09765625":134,"097692":38,"097950":145,"098004":38,"098200":29,"098327":38,"098485":38,"0985":38,"098512":38,"099139":38,"099198":38,"099369":38,"099380":38,"099428":38,"099534":38,"099587":38,"099596":38,"099674":38,"0a":[121,122,123],"0aarrai":121,"0ad":123,"0adel":123,"0adf":[121,123],"0adf1":[121,122],"0adf2":121,"0adfd":122,"0adfl":122,"0aimport":[121,122,123],"0aindex":121,"0al":121,"0amask":122,"0anp":122,"0aother":121,"0as1":122,"0ax":122,"0cm":46,"0f":41,"0n":32,"0nb81h2lf3u6tgo":59,"0rvhljoesr6bt4cmi":59,"0s":[29,35,38,54,60,61,74,158,165],"0th":[41,122],"0x0000017f450a19d0":121,"0x132a05eb0":178,"0x1f49b239f08":74,"0x1f4a26c7b08":74,"0x1f4a26efc48":74,"0x1f4a2788808":74,"0x1f4a27bb588":74,"0x1f4ad02ae08":74,"0x1f4ad061988":74,"0x227c78bf790":58,"0x28523a37dc0":145,"0x7e1538110d60":158,"0x7efbda001c70":167,"0x7efbe7287880":167,"0x7f258349da00":119,"0x7f82195fd5b0":166,"0x7f82242c05b0":166,"0x7fdbf4857a00":111,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,51,55,62,63,64,66,67,76,77,78,81,84,92,93,94,95,96,98,99,100,101,107,108,109,110,111,112,114,115,116,117,121,122,123,124,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,186,187,189,192,193],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,80,82,83,84,92,93,101,104,106,109,112,114,116,118,119,121,122,123,128,129,134,136,137,140,141,142,143,145,146,147,148,150,151,155,156,158,162,164,166,170,171,172,176,178,179,184,186,187,188,189,190,192,193,194,195],"100":[7,14,18,31,34,35,36,37,40,41,46,47,48,49,50,52,53,54,56,60,62,63,64,65,66,68,74,75,76,77,80,82,83,92,110,119,127,130,131,133,134,141,142,143,145,147,150,154,155,156,158,159,164,166,167,171,172,178,179,182,184,186,187,192,193,194],"1000":[3,14,18,31,33,47,50,54,56,58,60,61,64,76,81,82,84,102,107,116,126,128,133,134,141,147,148,150,152,154,158,167,171,174,178,187,189,190,193],"10000":[14,29,33,37,56,64,82,128,130,132,159],"100000":[54,64,128],"1000000":[171,173,179],"1001":142,"1003":142,"1004":134,"100486":38,"1005":142,"1006":134,"1007":[74,142],"100795":137,"100878":29,"1009":[134,142],"100942":38,"100k":164,"100m":141,"100tl":35,"101":[76,134,148,158],"1010":145,"10119387961131":[63,65],"1012000":111,"1014":134,"101451":38,"1015":134,"1015625":134,"1018":38,"102":[50,59,76,134,145,148],"1020":[109,178],"1021":134,"10220":52,"1023":134,"102352":137,"1024":[32,33,37,62,128,131,132,133,182],"1024n":32,"1026":134,"102657":38,"1027":134,"102724":38,"1028":[34,134],"1029":134,"102b":142,"102k":50,"103":[50,56,59,76,134,147,148],"1030":[34,134],"103095":38,"1032":134,"1033":134,"103500":145,"103536":137,"1036":134,"1038":134,"103997":38,"104":[50,59,76,147,148],"1040":[110,134,178],"1040000":111,"104412":38,"10444444444444445":158,"10452":38,"104600":122,"10471":121,"10472":121,"10473":121,"1048":[38,134],"10486":121,"10487":121,"10488":121,"10490":121,"10491":121,"10492":121,"10493":121,"10494":121,"10495":121,"10496":121,"10497":121,"10498":121,"10499":121,"105":[76,134,142,145,146,158,162,166],"1050":[109,134,178],"10500":121,"10501":121,"10502":121,"10503":121,"10504":121,"1052":134,"105237":74,"1053":74,"10546875":134,"105586":38,"1056":134,"105651e":38,"105748":148,"105937":155,"106":[59,76,134],"1060762990306165":76,"1063":134,"1064":134,"1065":122,"10655":155,"106569":137,"1066":[109,122,178],"106649":38,"1067":122,"1068":[122,134],"10689":143,"1069":[38,122],"107":[50,76,134,147],"1070":122,"1071":134,"1072":[110,122,178],"107282":38,"1073":[122,134],"1075":134,"108":[76,134,182,193],"108032":38,"108342":123,"1084":134,"1085":134,"1086":123,"1087":134,"1088":[123,134],"1089":123,"109":76,"1090":123,"109091":116,"1091":134,"109167":38,"10928802805393":58,"1093":134,"109375":134,"1096":[134,179],"1097":57,"1098":134,"1099":33,"10k":127,"10m":[112,176],"11":[14,22,25,29,35,38,47,48,50,57,59,60,62,64,76,84,92,93,98,99,100,101,102,107,108,109,110,111,112,113,114,115,116,119,121,123,130,134,137,140,144,145,146,147,148,150,157,158,160,161,162,163,164,166,167,171,172,174,193,194],"110":[14,50,58,59,66,76,147,171],"1100":145,"110000":38,"1104":134,"110426":59,"1105":[61,74],"1106":[61,74,134],"1107":134,"1108766":116,"11088":25,"1109":143,"111":[35,59,75,76,130,134,145],"111000":145,"11109":92,"1111":[124,180],"111101":38,"11111":92,"1112":134,"1114":134,"1116058338033":64,"111618":38,"1117":134,"111700":38,"111752":38,"111942":123,"112":[64,76,134,145],"112151":155,"112270":123,"1123":134,"11239":128,"1123949416":180,"1124":134,"112425":38,"11250":66,"112522":29,"1128":134,"1129":134,"113":[38,50,57,76,109,134,147,178],"1130":145,"1132":134,"11328125":134,"1133":134,"113362":38,"113402":116,"1135":38,"1136000":[111,178],"1137":134,"1138":[61,74],"114":[50,61,74,76,134,147],"1142000":111,"1144":[110,178],"1145":134,"114509":122,"114639":[63,65],"1147":38,"114700":74,"115":[57,59,76,134,145],"1151":35,"115237":61,"115238":74,"1153":134,"11530945":[156,184],"115337":148,"1157":134,"116":[35,64,76,109,134,145,178],"1160":[29,134,145],"1160103":38,"11609933":74,"1162":134,"1163":134,"1164":134,"1166":[61,74],"11663747":74,"1167":134,"1168":29,"116819":148,"116951":122,"117":[61,76,127,134],"1170px":121,"1171875":134,"11742":74,"1175":134,"117513":61,"117522":145,"117564":123,"1176":[124,180],"11761":58,"11770":25,"118":[61,74,76,134],"1180":134,"118211":123,"1183":134,"1184":134,"1187":134,"119":[61,74,76,134,158],"119048":38,"1191":[59,134],"1192":134,"1196":155,"119621":29,"1197":147,"1197000":111,"1198":147,"11983416102879":158,"1199":[134,163,164],"11th":44,"12":[14,22,25,29,35,37,38,39,41,43,44,49,50,51,52,53,54,59,61,66,68,74,76,80,92,93,101,109,111,116,119,121,122,123,132,134,137,140,145,146,147,148,150,152,155,158,159,167,171,172,178,186,189,190,193,194],"120":[14,37,38,60,64,76,92,134,156,184,193],"1200":[56,134],"12000":155,"120000":[61,74,172],"1201":134,"1202":132,"1207":134,"121":[47,50,61,64,74,76,134,143,147,158],"121005085892223":76,"12108":58,"12109375":134,"1211":38,"121237":59,"1213":134,"121358":38,"121669":[63,65],"1218":134,"1219000":111,"12195403":74,"122":[47,50,61,74,76,134,147,158,187],"1220":[33,134],"122021":38,"1222":134,"122411":38,"1225673588504812":66,"1227":134,"122763":123,"122784":38,"122785e":59,"1229":134,"123":[14,50,76,92,121,134,147,155,172],"1232":134,"12326000":[111,178],"123332":123,"1234":[134,172,194],"123431":29,"12345":[38,172],"123456789":92,"123492":59,"1235":134,"123588":145,"1236":34,"1237":34,"1238":134,"1239":134,"124":[38,58,61,74,76,134],"1240":134,"124210":38,"1245":134,"124505":38,"124878":123,"125":[31,58,64,76,134,145,172,179,194],"1250":134,"1251":74,"125115":142,"1253":134,"1254":134,"125457e":59,"125479":38,"125644":123,"1259":42,"126":[38,61,74,76],"126299":38,"1264085":38,"12647":155,"126540":122,"12669":155,"1267":134,"12693":25,"12697628":119,"127":[59,66,76,128,134,145,158,182],"127304":74,"12733734668670776":66,"1274":[61,74],"127469":38,"1275":134,"1276":134,"127696":38,"1279":134,"128":[31,32,33,34,36,37,39,41,50,58,76,82,126,127,128,132,133,134,137,147,172,192],"1280":60,"128032":163,"128188":148,"128225":123,"1284":134,"1285":134,"1286":134,"1287":134,"1288":122,"12882135":179,"1289":122,"12890625":134,"128n":32,"128x128":133,"129":[38,46,61,74,76,134,145],"1290":[122,134],"1291":[122,134],"12919":38,"1292":122,"1293":134,"1295":134,"129527":38,"1297":134,"12985994":74,"12e4":[172,194],"12px":159,"13":[14,25,38,49,50,52,55,76,92,93,98,99,100,101,107,108,109,110,111,112,113,114,115,116,119,121,122,123,132,134,137,139,140,144,145,147,148,150,152,157,158,160,161,162,163,164,166,171,172,193],"130":[9,14,76,100,101,109,145,178],"1300":[54,158],"1300131294":[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,137,145,146,158,162,163,164,166,178],"1301":152,"1306":134,"130634":38,"1307":134,"130748":145,"1308":134,"131":[29,64,76],"1310":134,"1311":134,"1312":134,"1313":134,"1315":134,"1316":38,"131667":38,"13168":74,"131688":145,"131692":122,"1317":134,"131741":38,"131905":123,"132":[29,58,76],"1320":29,"1321":[122,134],"1322000":111,"1323":122,"1324":122,"132500":38,"13255":25,"1326":[122,134],"132640":122,"13265":155,"1327":122,"1328":134,"1328125":134,"132931":38,"133":[29,76,145],"13319285":116,"13326":74,"133260":61,"1334":[44,134],"133581":123,"133658":123,"1338":155,"13390011":74,"133927":74,"134":[29,46,76,83,158,186],"1340":134,"134156":38,"134412":123,"1345":134,"1346":134,"135":[29,76,109,134,143,151,158,178],"1350":134,"135000":38,"135033e":123,"135088":38,"135117":38,"1354":134,"1356":134,"1358":134,"135893":122,"1359":134,"136":[29,59,76,134],"1361000":[111,178],"1362":134,"136302":[63,65],"1364":134,"136687":123,"13671875":134,"1368":134,"1369099078838":[63,65],"136m":35,"137":[9,29,50,76,100,101,134,147],"1371":134,"137210":38,"137321189738925e":116,"137593":123,"1376":134,"138":[29,76,123,134],"1382":134,"1385":134,"1386":[124,180],"1387":74,"1388":134,"139":[29,57,59,76,134,137],"1391":134,"139167":38,"1393":134,"1394":134,"1396":38,"1397":134,"1399":134,"14":[14,25,29,38,50,54,58,59,61,64,76,92,93,101,119,122,123,134,135,137,140,143,145,148,150,152,158,172,186,193,194,195],"140":[14,29,56,59,76,132],"140000":66,"1403671649831801":76,"1405":134,"1406":131,"140625":134,"1407":134,"140769":38,"1409":132,"141":[29,76,134],"14100":172,"1411":[133,134],"1412":134,"141297":179,"1413000":38,"1413001":38,"1414":134,"14159":[172,173,194],"141592653589793":193,"1416":146,"1419":134,"142":[76,134,172,194],"1422":[61,74,134],"14236085563166023":123,"14236086":123,"142361":123,"1425":134,"142543":74,"14260":66,"143":[46,76],"1430":134,"14318":59,"1432":33,"1432780985872142341":118,"1438":134,"1439":134,"144":[46,64,76,110,166,171,178],"1440":134,"144000":145,"1441":134,"1442":134,"144218":38,"1443":34,"1444":[34,134],"1445":[61,74,124,180],"14453125":134,"145":[29,63,64,65,76,117,148],"146":[64,76,117,148],"1461":134,"1464":[122,134],"1465":122,"1466":[122,134],"1467":[61,74,122],"1468":[74,122,134],"1469":[122,134],"146901":123,"147":[46,64,76,117,134,148],"1470":[122,134],"147308":145,"1475":134,"147704":148,"148":[50,64,76,117,134,147,148],"1480":134,"148420":123,"1484375":134,"148495":[63,65],"1485000":[111,178],"148533":145,"14857187":148,"148572":148,"1488":134,"148822":[63,65],"148884":29,"14888888888888888":158,"149":[60,64,76,117,134,148],"1490":[38,134],"149000":101,"149088":123,"1492":134,"14927":123,"1498":134,"14999":[61,74],"149995":179,"14m":35,"14x14":32,"15":[3,14,18,25,31,32,33,36,38,40,48,49,50,51,52,53,54,55,57,58,60,61,64,66,74,76,83,92,101,104,106,111,119,121,127,133,145,147,148,150,152,155,158,166,172,178,186,193,194],"150":[7,14,39,46,50,60,64,74,76,82,117,130,134,142,148,150,186],"1500":[31,54,56,58,110,178],"150000":38,"1505":133,"1506":135,"1508":[127,134],"150800":74,"1508000":111,"150px":159,"151":[76,134],"1510":38,"1511":133,"1512":132,"151462":29,"1516198":74,"151882e":59,"152":76,"152049":145,"1521":134,"1522":134,"1523":134,"15234375":134,"1524":155,"1525":134,"1526":155,"15262765526":61,"1527":134,"152993":123,"153":[76,134],"1530":134,"1531":134,"1532":134,"1533":155,"1536936":38,"154":[76,134],"154016":123,"1541":134,"1544":134,"1545":134,"1548000":111,"154961":123,"155":76,"1555":[57,122],"1556":[122,132],"1557":122,"1558":134,"155833":38,"156":76,"1561":122,"15625":134,"1563":122,"1564":122,"1565":122,"1566":134,"1567":[109,178],"157":[76,134,142],"1570":134,"1572":134,"1576":[38,134],"157729":[63,65],"15777777777777777":158,"158":[38,76],"1580":134,"1583":134,"1586":122,"1587":122,"1588":122,"1589":122,"159":[76,134],"1590":[122,134],"159000":[111,178],"1593":134,"1594":134,"1594000":[111,178],"1595":134,"1599":[48,134],"15e":116,"15m":35,"16":[14,25,29,30,31,32,33,36,37,38,43,44,46,48,50,51,54,56,58,59,61,62,74,76,92,93,101,102,110,119,128,131,132,133,134,135,137,145,147,148,150,152,155,156,158,166,167,172,178,179,184,186,193,194],"160":[29,76,116,134,166,167],"1600":54,"16000":[58,111,178],"1600000":111,"1600x1200":155,"16015625":134,"1604":134,"1605":134,"1607":134,"1608":132,"161":[50,76,134,147],"16111":[57,186],"1612":134,"1614":122,"1615":122,"1616":[122,134],"161677":58,"1617":38,"1618":122,"1619":122,"162":[50,76,134,147,167],"1620":122,"16200":57,"162016":148,"1621":134,"162308":38,"16259":59,"1627":[61,74],"162754":123,"162829":155,"1629":134,"163":[38,76],"1630":166,"1630251618197":[63,65],"1630537000":118,"1630544034":[118,180],"1632":134,"163312":123,"1635":134,"1636":74,"163636":116,"1639":[29,59],"163mb":127,"164":76,"164000":145,"1640625":134,"1641":134,"1644":134,"1645":134,"1646353":38,"16465":25,"164702":122,"1648":134,"1649":34,"165":[76,109,123,134,178],"1650":34,"165150":123,"1653":134,"1654":74,"16578108":74,"1658":134,"166":[50,76,134,147,167],"1660":134,"1665":74,"16666667":179,"166667":38,"1669":38,"167":[58,76],"1671":134,"167573":38,"1676":134,"1679":134,"16796875":134,"168":[76,110,121,178],"1682":134,"1683":[124,134,180],"16837":74,"1685":134,"168525738":171,"1686":134,"1687":134,"1688000":[111,178],"169":[76,121,134],"1690":[124,180],"1692":134,"16928":52,"16933":155,"1694":167,"1695":[134,167],"1696":167,"1697":167,"169771":122,"1698":167,"169811":145,"169958":122,"16m":35,"16x16":133,"17":[14,25,38,50,55,57,58,59,61,74,76,92,101,102,119,123,134,142,145,148,150,152,158,166,167,172,174,186,193,194],"170":[76,121],"1703":[134,135],"170312":179,"1704":132,"170446e":59,"1706":133,"17082872753491":35,"1709":134,"171":[76,121],"1710":134,"1712":134,"1713":134,"1715":38,"1718":134,"171875":134,"171909":59,"172":[58,76,137],"1720":134,"1723000":111,"1725":[61,74],"1726":29,"17260357":116,"17296777":119,"173":[57,64,76,186],"1731":134,"173211":[63,65],"1733":134,"173400":74,"1738":166,"1739":166,"174":[38,76,134],"1740":166,"1741":[134,166],"1742":[134,166],"174252":123,"174330":38,"1745":134,"1747":38,"1748":134,"17482":25,"1749":134,"175":[76,179],"1750":134,"175000":38,"175135":145,"1752":134,"1757":168,"17578125":134,"175833":38,"175946":123,"175m":38,"176":[58,76,116],"1760000":111,"1762":155,"176277":38,"1764":134,"1765":134,"176653":123,"176m":38,"177":[61,74,76],"1770":134,"177000":145,"1775000":111,"177517":122,"1776":155,"1777":155,"1779":[124,180],"177m":38,"178":[66,76,134],"1782":108,"1784":147,"178449":59,"178456":38,"1788":[134,155],"17889":25,"178930":59,"17897":59,"17898":59,"178m":38,"179":[76,134],"1790":[63,65],"179056":38,"1795":134,"1796875":134,"1798":134,"179800":[61,74],"179m":38,"17m":35,"18":[14,25,36,38,50,51,54,57,58,59,61,62,74,76,77,92,101,116,118,119,132,134,137,142,145,152,158,166,171,173,180,188,193],"180":[76,112,116,130,156,184],"1800000":111,"180088":38,"1803":134,"1805":134,"1806":134,"180669e":123,"1807":134,"1808":134,"180833":38,"180988":123,"181":[76,121],"1810":134,"181033e":59,"1811":134,"1811000":111,"18110544":116,"1812":134,"181408":29,"181500":66,"1817":134,"181916":38,"181m":38,"182":[29,76,116,121],"1820":155,"182000":123,"18215":25,"1823":134,"1827":134,"1827000":111,"182731":123,"182m":38,"183":[38,76,121,134],"183150":148,"183580":29,"18359375":134,"1836":134,"1836633":38,"1839":134,"18390":[61,74],"183914":29,"183m":38,"184":[76,116,134],"1840":134,"18421":25,"1847":134,"1848000":111,"184m":38,"185":[42,56,76,116,121],"1852":134,"1855":34,"18557502":[61,74],"1856":[110,134,178],"1857":134,"18576":[61,74],"1858":34,"185946e":59,"185m":38,"186":[50,61,74,76,134,147],"1860":74,"1862":134,"18677":74,"1869":134,"186m":38,"187":76,"187063":123,"1871":74,"1872":134,"1872000":111,"1874":[124,180],"187449":29,"1875":134,"1875693":38,"18772155":74,"1879":134,"187m":38,"188":[76,116],"1880":[1,134],"188054e":59,"1882":[38,134],"1885":134,"188575":122,"1889000":111,"188m":38,"189":[76,116,134],"1892":134,"1893":134,"1896":134,"18965517":74,"1897":29,"1899":134,"189m":38,"18m":35,"18th":108,"19":[38,50,59,61,76,77,92,101,112,119,123,127,132,134,139,142,143,145,158,166,173,176,177,179,186],"190":[56,61,74,76],"190222":38,"1904":135,"19053":25,"1906":147,"1908":134,"190m":38,"191":[76,137],"19126407":38,"19140625":134,"1915":134,"19157667":74,"191m":38,"192":[59,76,110,127,178],"1920000":111,"1921":134,"192380":38,"1925":134,"192626":122,"19269777":74,"192m":38,"193":[76,179],"1930":[109,134,145,178],"193100":74,"193137":29,"193203":38,"1933666654":[109,178],"19357":154,"1936":7,"193633":148,"1939":134,"193m":38,"194":[76,116,193],"194096":122,"1941":134,"194167":38,"1943":136,"1944":134,"1944000":[111,178],"194412":122,"1945":134,"194532e":38,"194590":123,"194763":38,"194m":38,"195":[50,63,65,76,147],"1950000":111,"195256":38,"1953125":134,"1954":134,"1954000":111,"19541375872382852":158,"1955":134,"19552860":179,"1959":[63,65,165,191],"195m":38,"196":[50,76,134,147],"1963":59,"1964":134,"1965":[63,65],"19651127":179,"196923":38,"196m":38,"197":[50,76,116,134,147],"1970":38,"1972":[112,134,176],"1973":134,"197317":76,"1974":[112,134],"1978":143,"197m":38,"198":[58,76,134],"1980":[139,140],"1981":134,"198279":38,"1984":134,"198667":64,"199":[76,116,167],"19902":25,"1991":[134,173,195],"1992":[50,59],"19921875":134,"1993":[59,112,176],"199305":145,"1994":147,"1995":59,"1996":[49,52,112,134],"1997":[50,165,191],"1998":[49,52,111,112,135,145,178,181],"199833":59,"1999":[111,151],"199900":123,"1999000":111,"199m":38,"19m":35,"1\u0435":150,"1_bar":128,"1d":[38,43,44,57,123,129],"1e":[14,32,82,92,127,128,132,141],"1e10":[156,184],"1e6":[156,179,184],"1f":[34,45,46,47,48,51,64,110,158,164,178,192],"1h":[61,74],"1min":186,"1pjb":38,"1px":159,"1s":[29,61,74,158,165],"1st":[7,14,18,22,37,54,119,126,127],"1stflrsf":54,"1u":38,"1x":[135,172],"1x1":132,"1x784":127,"1xcxhxw":135,"1xfhxfwx":135,"1xfhxfwxna":135,"1xn":127,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,45,46,47,48,55,59,63,64,65,66,74,76,77,78,82,83,92,93,94,95,96,100,101,106,108,109,110,111,112,114,116,117,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,185,186,187,189,191,192,193],"20":[7,9,14,18,29,30,31,32,34,37,38,39,40,44,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,65,66,68,74,76,77,80,83,92,100,101,104,108,109,114,116,119,121,122,123,130,132,133,134,136,137,139,141,142,143,146,150,158,168,173,178,179,186,187,192,195],"200":[17,31,38,46,48,50,52,53,54,56,60,64,76,82,101,116,121,122,130,131,133,134,146,156,158,184,186,192],"2000":[14,35,54,58,109,111,123,137,158],"20000":[14,111,126,127,173],"2001":[111,143],"200126e":38,"2002":[35,111],"2003":[111,137],"2004":[111,179],"2005":[111,131,134,137],"2006":[66,111,128,140,158],"200611":38,"2007":[66,111,112,176],"2008":[50,66,111,139,179],"2009":[48,111,134,143],"201":[38,58,76,116,121,122,134],"2010":[111,122,137,140],"20107639":116,"2011":[111,137,151],"2012":[111,121,122,137,179],"20123":121,"2013":[31,112,122,137,140,176],"20130101":122,"20130102":122,"20130104":122,"2014":[57,132,137,143,145,179,182],"2015":[22,102,132,137,143,145,174],"2016":[50,56,137,145,151,165],"2016000":111,"2017":[108,121,137,141,143,145],"2018":[35,38,45,47,48,92,93,106,112,118,124,134,137,145,171,172,176,180,193],"2019":[17,112,124,134,137,139,141,145,176,180],"2019\u7248\u5b89\u88c5\u6559\u7a0b":38,"201m":38,"202":[76,121,122,123],"2020":[1,14,38,54,57,92,112,114,121,124,127,134,139,141,142,143,145,165,176,180],"2020060289":14,"2021":[1,38,102,112,118,134,135,139,140,143,174,175,176,180],"2022":[14,102,106,108,112,114,118,127,139,140,141,142,166,167,174,175,176,180,195],"2023":[25,29,38,92,121,122,123,128,132,133,135,175,177,180],"2024":121,"2025":112,"202500":38,"2026":121,"202699":123,"2028":134,"202895":38,"203":[76,116,121,122,123],"2030":[102,121,143,174],"203125":134,"203216":123,"2033":121,"2033000":[111,178],"203450":38,"203488":38,"2035":[63,65],"20350":121,"203578":148,"2037":134,"20370":121,"203848":38,"204":[34,58,76,116,121,122,123,134],"2040":134,"20433":74,"204445":38,"2045":134,"204565":38,"2048":[32,133],"2048n":32,"205":[34,58,76,116,121,122,134],"2050":[109,178],"205000":38,"205084":123,"205244":148,"2053":134,"2054":134,"2055":134,"2056":134,"206":[58,76,121,122,145],"2060":29,"2061":[61,74,134],"2062":34,"2063":134,"20635":74,"20636":74,"20637":74,"20638":74,"20639":74,"2064":61,"20640":[61,74],"206814":123,"206881":[61,74],"2069":134,"206937":[63,65],"207":[35,58,76,121,134],"2070":134,"20703125":134,"207289":163,"207410":123,"207495":38,"207758":145,"207m":38,"208":[58,76,121,122,134],"208342":145,"208500":66,"208516":38,"20876306":158,"2089":134,"208969":38,"209":[58,76,116,134],"209286":122,"209435":38,"20944":14,"2099":38,"209m":38,"20a":[121,122,123],"20c":121,"20column":[121,122],"20df":[121,122,123],"20df1":122,"20dfd":122,"20dropna":121,"20dtype":122,"20fals":122,"20gemi":35,"20how":121,"20index":[121,122,123],"20io":[121,122,123],"20lambda":122,"20left_on":121,"20list":122,"20lsuffix":121,"20name":121,"20none":121,"20np":[121,122,123],"20numpi":[121,122,123],"20on":121,"20panda":[121,122,123],"20pd":[121,122,123],"20period":122,"20px":159,"20random":122,"20rang":121,"20right_on":121,"20rsuffix":121,"20speed":121,"20th":55,"20true":122,"20verileri":35,"21":[14,29,38,59,61,68,74,76,80,92,93,101,102,119,123,134,139,142,143,158,166,167,171,173,186,193],"210":[76,116,121],"210113":38,"2103":[134,143],"210424":38,"2105":134,"2107":134,"2109":134,"2109375":134,"211":[50,76,158],"2112000":[111,178],"2115":134,"211667":38,"2117":134,"211714":38,"211771":38,"2118":134,"212":[76,134],"212177":122,"212514":38,"212563":38,"212626":38,"2127":[61,74,134],"212782":38,"212m":38,"213":[38,76,116],"213043":123,"213350":123,"2135498425":121,"2137":134,"214":[76,134,155],"214141":38,"2144":134,"2145":134,"214693":38,"21475352":158,"214756":38,"2148":[110,178],"214824":38,"21484375":134,"2149":134,"215":[76,116],"215058":38,"2153":155,"2155":134,"2156":134,"215643":38,"21567622":158,"215682":61,"21578029":74,"2158":134,"216":[76,134,172],"216148":38,"216719002155":158,"2169":[61,74],"216924":38,"217":[76,142],"2173424":38,"217478":38,"2175":134,"2176":134,"217637":123,"217642":122,"21764232439885461":122,"217739":38,"2178":134,"218":76,"2180":74,"21806371":158,"218161":[63,65],"218217":38,"218509":145,"218612":38,"21875":134,"218909":123,"218966":38,"219":[61,74,76,116,134,158],"2190":38,"219367":38,"219453":148,"219544":38,"2196":134,"2198447506":193,"21m":35,"22":[14,38,46,50,54,59,61,74,76,77,110,112,119,121,122,123,133,137,142,150,152,158,173,176,178,180,193],"220":[38,58,76,116,134,171],"22000":111,"220173":38,"2202":134,"2203":134,"2204":134,"220500":145,"2207":134,"2208":134,"2209":134,"221":[76,116,134],"22102":74,"2217":134,"2218":134,"221846":38,"2219":[74,134],"22199004":74,"222":[33,76],"2222":134,"222222":116,"222298":145,"222337":[63,65],"2224":134,"22265625":134,"223":[38,59,74,76,134],"223242233890716":35,"2235":134,"223500":66,"223634":122,"223854":38,"223910":38,"224":[76,127,134],"2241":134,"22426":25,"2243":134,"2246467991473532e":193,"225":[76,134],"2250":134,"2251":134,"2254":74,"2255":134,"2259":134,"226":[76,134],"22615":155,"2265":134,"2265625":134,"2268":134,"227":[76,134],"227031":38,"22716065":116,"2272":134,"227546":38,"2278":134,"228":[76,134,164],"228077":29,"228120e":38,"2282":134,"2284":[110,178],"228460":123,"2287":134,"2288":134,"229":76,"2290":134,"2291":134,"2292":134,"2293":134,"229673984":38,"22a":[121,123],"22b":[121,123],"22bar":123,"22boolean":122,"22c":[121,123],"22d":123,"22flag":123,"22foo":123,"22one":123,"22one_trunc":123,"22two":123,"22type":121,"23":[14,38,46,61,74,76,77,92,110,119,134,139,142,145,158,166,171,172,178,180,193],"230":[59,76,134],"23000":111,"230000":38,"23046875":134,"230769":38,"230m":38,"231":[38,76,116,134,158,163],"2310":134,"231287":123,"2313":134,"231342":38,"23157000":[111,178],"231640":38,"23170093":74,"231768":38,"2318":134,"232":[58,76,134,158,163],"2326":134,"2327":134,"2328":134,"2329":134,"233":[76,134,171],"2332":134,"2333":134,"2334":134,"2335":134,"234":[76,134,164],"2340":134,"234330":38,"234368":29,"234375":134,"234571":59,"235":[61,74,76],"2353":134,"235394":123,"2354":134,"235449e":38,"2355":134,"235636":38,"2357":134,"236":[76,134],"2360":134,"236000":38,"2360000":111,"23606797749979":92,"2361":134,"2364":134,"2365":134,"2366":134,"2367":134,"2369":134,"237":[38,76],"237185":38,"2373":134,"2376":134,"237692":38,"2377":134,"2378":134,"2379":134,"238":[76,134,164],"2380":134,"2381":134,"2383":134,"2384":[61,74],"238462":38,"2385":134,"2386":134,"238683":122,"2387":134,"2388":134,"2389":134,"239":[76,134],"239001e":59,"2392":134,"2394000":111,"2395":134,"2396":134,"2397":134,"2398":134,"239929":123,"24":[14,32,38,49,52,58,59,61,74,76,77,102,119,121,123,127,134,141,142,146,150,158,166,167,174],"240":[76,134],"24000":111,"2401":[61,74,134],"2403":134,"2404":134,"2405":155,"2408":134,"2409":134,"240986":123,"241":[76,134],"2411":134,"241108":74,"241287":38,"2413":134,"2416":134,"2418":134,"2419000":111,"242":[76,134,163],"242098":145,"2421875":134,"242225":59,"2426":134,"2427":134,"243":[50,76,147,163],"2430a9896ce5":[118,180],"2433":134,"243338e":38,"243422":38,"2435":134,"243525e":123,"243534":38,"243875":38,"244":[50,76,147],"244215":38,"2443":134,"2444":38,"2446":134,"244655":38,"2447":[134,162],"2448":162,"244898":148,"245":[76,134,142],"2450":134,"2451":134,"245820":38,"24591009185":74,"246":[76,134],"2460":134,"246046":38,"24609375":134,"2465":134,"247":[76,134],"2472":134,"247248":122,"2475":134,"2477":134,"2479":134,"248":[76,132],"2480":134,"2481":134,"2483":134,"248440":123,"2488":134,"2489":134,"249":[63,65,76,134,164],"249357":123,"2495":134,"249668":123,"2498":134,"24c5":32,"25":[7,14,31,32,35,36,37,38,39,40,41,49,50,52,54,55,58,59,61,64,74,76,82,83,92,93,101,116,119,121,123,127,130,134,136,137,142,145,147,151,154,155,158,166,167,172,173,179,187,189,190,192,193,194,195],"250":[34,58,60,76,127,134,136,158,164,195],"2500":152,"25000":111,"250000":[38,64,66,155],"2503":134,"250448":38,"2505":134,"250522":29,"251":[76,134,163],"2513":134,"252":[59,76],"2520000":111,"252066":163,"2522":134,"2524":134,"2525":134,"2526":134,"2528":134,"2529":134,"252973836909085":76,"253":[76,134],"253000":111,"2532":134,"2537000":111,"25390625":134,"254":[50,76,134,147],"2547":38,"255":[29,30,31,32,36,40,41,47,76,126,127,132,133,192],"255000":145,"2552266":116,"2555":134,"25551336":158,"2556":134,"2559":134,"256":[31,32,33,34,36,37,38,39,58,60,62,76,119,126,127,128,131,132,133,154,155,182,192],"256217e":59,"256221e":59,"2568":134,"256952":38,"256n":32,"256x256x3":119,"257":[76,193],"2574":[61,74],"2577":134,"257740":29,"2578125":134,"258":[39,76],"258445":[63,65],"2586":134,"2586000":111,"2587":134,"258713e":123,"259":[38,59,61,74,76],"2593":134,"2599":134,"25th":54,"26":[38,50,58,59,64,74,76,111,119,121,134,142,143,147,152,158,166,167,173,176,179,188],"260":[38,76],"2600":[38,61],"260000":[9,100,101],"260497":122,"260c2de0a050":181,"261":[76,134],"2613":[52,134],"26150":74,"2617":134,"26171875":134,"262":[76,134],"262048":38,"262207":38,"2624":134,"2625":134,"2629":134,"263":[76,134],"2631":[61,74],"263445":122,"263694e":38,"263762":122,"263863":38,"2639":134,"264":[64,76,134],"2640":[38,134],"26448193":179,"264700":[61,74],"265":[50,76,134,147],"265056":[63,65],"2652":121,"2654":121,"265412":145,"26541833":74,"2655":121,"265625":134,"2657":121,"2658":121,"2659":[121,134],"26590556":119,"265909":155,"266":[58,76,134],"2660":121,"2661":131,"2664":134,"2664364997":62,"2666666666666666":14,"267":[76,166],"2670":134,"267059e":59,"2671":[121,134],"2672":[121,134],"2673":134,"2674":[134,155],"2677":134,"267986":122,"268":[76,134],"268016":29,"2681":134,"2687":134,"269":[58,76,134,137,192],"2692":134,"26953125":134,"269534380":123,"269573":59,"26th":139,"27":[38,46,50,58,61,76,119,121,134,141,147,155,158,166,171,172,176,194],"270":[76,134,166,167],"27000":[111,178],"2701":134,"27017952":74,"270551":38,"2706":134,"270833":38,"2709":134,"271":[38,76],"2710":134,"2713":134,"2716":134,"271796":38,"271869":122,"2719":134,"272":[76,134],"2720":145,"2723":74,"2725":134,"2727":134,"27298934":74,"273":[76,134,151],"273000":74,"2732":134,"27342931":[61,74],"2734375":134,"27358504939668":76,"2738":134,"274":[59,76,134,166],"274082":[63,65],"275":[76,134],"2751":38,"2752":134,"2753":134,"275384":122,"2759":134,"276":[76,134],"2761":134,"2763":134,"2768":134,"276923":38,"277":[74,76],"277078":61,"277273":155,"27734375":134,"277392":29,"27745":74,"277600":38,"2778":74,"278":[74,76,134],"2780":134,"2784":74,"2785":74,"2787":134,"279":[61,74,76,134],"2794":134,"28":[29,30,32,38,40,41,47,50,57,59,61,68,74,76,80,82,84,92,116,119,121,122,123,126,127,131,134,143,147,152,158,173,182],"280":[38,61,74,76,122,134,166,167],"2807":134,"2809":134,"2809000":111,"281":[38,76,121,123,166],"2810":[121,122],"28109":25,"28125":134,"281427e":38,"2815":134,"2816":134,"282":76,"2820":155,"2824":134,"283":76,"2831":134,"2832":134,"28327":25,"2833":[134,152],"2836":134,"2838":134,"284":[76,134],"2840":134,"28433":25,"284722":123,"2849":134,"285":[76,122],"28515625":134,"2854":134,"2855":134,"28566":[61,74],"28571428571428414":158,"285843":29,"28585348":158,"286":[76,122,146],"2860":134,"286641":122,"287":[76,122,134],"287003":123,"287748":123,"288":[38,76,134],"2880":134,"2881":155,"2882":134,"289":[76,162],"2890625":134,"28964":25,"28arrai":121,"28by":121,"28d":123,"28df2":121,"28l":121,"28level":121,"28list":122,"28np":122,"28other":121,"28rang":122,"28x":122,"28x28":[29,30,32,41,127],"29":[14,25,38,50,58,59,61,74,76,92,119,121,122,123,134,147,158,166,167],"290":[76,134],"2900":58,"2904":134,"29040966":158,"290833":38,"291":[76,134],"2911":134,"291123":123,"2915":134,"2916":134,"2919":134,"292":[76,110,134,178],"292181e":59,"2922":134,"292669":[63,65],"29296875":134,"293":76,"2933":134,"293515":123,"2938":[63,65],"293846":38,"29399768":158,"294":[38,76,134,158],"2945":134,"295":[61,74,76,134],"29513185":74,"295240":122,"2954":134,"296":[29,76,134],"2962":134,"2963":134,"2966":134,"296875":134,"297":[76,132,134],"2971":134,"2974":134,"2975":134,"2976":134,"2977":134,"297727":155,"2978":134,"298":76,"298750":145,"299":[50,74,76,101,134,147],"2995":134,"2998":38,"2\u5347\u7ea7\u8865\u4e01":38,"2_2":126,"2_intro_to_tensorflow_for_deeplearn":43,"2_k":130,"2_p":128,"2_q":128,"2a":133,"2b":133,"2c":133,"2d":[1,33,43,83,109,110,123,128,156,166,168,186],"2d2d2d":159,"2e":[128,131],"2f":[18,50,116,127,137,146,150,152,158],"2fe":147,"2g4adil3rc2ig":59,"2j":[119,172,194],"2m":38,"2nd":[18,22,37,54,64,119,122,126,127],"2ndflrsf":54,"2p_":50,"2s":[61,135,158,186],"2urviv":152,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":59,"2vtlmaj":82,"2x":[57,75,172],"2x_i":75,"2xbdtm2l70p":59,"2yf":151,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,40,41,44,46,47,48,51,59,62,63,64,65,66,71,75,76,78,82,83,84,92,93,94,96,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,117,118,121,122,123,124,127,128,129,130,131,132,133,134,135,137,139,140,141,142,144,145,146,147,148,150,151,152,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,180,184,186,187,189,190,191,192,193],"30":[7,14,18,29,32,35,38,40,47,49,50,51,52,55,56,59,60,61,62,63,65,66,76,92,93,101,104,109,110,119,121,127,134,137,142,145,147,150,151,156,158,171,172,173,178,179,184,187,189,190,193],"300":[18,49,52,53,54,76,142,150,151,156,158,171,184],"3000":[14,18,54,134],"30000":[14,111,188],"300000":64,"3000000000":173,"300000012":154,"3005":134,"30078125":134,"30082566":158,"300k":143,"300px":159,"301":[38,76,134],"3010":134,"3014":[61,74],"3015":134,"301821":123,"3019":134,"302":[38,76],"3022":134,"3028":134,"303":76,"303347":38,"304":76,"3046875":134,"304888":[63,65],"3049":134,"305":[76,134],"3054":134,"3055":134,"306":76,"3064":134,"3067":134,"307":76,"3071":[134,155],"3075":134,"3078":134,"308":[76,134],"3080":134,"3081":134,"3082":134,"3085":134,"30859375":134,"3086":134,"3087":134,"3089":134,"309":76,"30927452":74,"30957512":74,"30990":25,"30px":159,"31":[1,38,50,57,59,68,74,76,80,92,101,119,134,141,142,145,158,186,188],"310":76,"3100":[58,134],"3105":134,"3106":134,"3107":134,"3109":134,"311":[76,134],"3111":134,"3112":134,"311232":123,"3113":134,"31131265":123,"3113126514940179":123,"311313":123,"311377":29,"311438":123,"3116":134,"31168387":74,"3117":134,"312":[49,52,76],"3120":134,"312037":76,"3125":134,"3127":155,"3128":134,"313":76,"3131":134,"3133":134,"3134":134,"313765e":38,"314":[38,76],"3140":134,"3141":134,"3145":134,"3146":134,"3148":[110,178],"3149":[61,74],"315":[76,116],"315000":38,"31501":122,"3159":134,"316":[76,134],"316004":122,"3161":134,"3163":134,"31640625":134,"316667":38,"3168":134,"317":[76,134],"3170":134,"317314":122,"3177":134,"3179":134,"318":[38,76,122],"3181":134,"318209":123,"3184":134,"31856":25,"318823":29,"319":[76,122,134],"3191":134,"319271":122,"3196":134,"31t19":118,"32":[29,31,32,33,34,35,36,37,38,39,40,42,43,44,50,55,58,61,63,65,74,76,82,92,104,119,123,127,128,132,133,142,147,158,171,172,193],"320":[38,39,76,122,162],"32000":[58,111],"3202":134,"3203125":134,"3208":134,"320833":38,"321":[76,158],"3210":134,"321097":29,"3213005518":121,"32137599":158,"322":[38,61,74,76,122,134,158,192],"322003":122,"32208":38,"3224000":111,"322500":38,"322727":155,"3228":134,"323":[76,158],"323328":59,"3234":134,"3235":134,"3238":134,"324":[76,158],"3242":134,"32421875":134,"3245":134,"3246":134,"3248":134,"3249":134,"325":[76,134,158],"3252":[61,74],"3255522":[172,194],"32561":51,"325985":123,"326":[38,76,134,158],"326012":123,"3261":134,"326460":[63,65],"326667":38,"32674535":[61,74],"3269":134,"327":[76,134],"3270":134,"327500":38,"328":[38,76,134],"328086e":38,"328125":134,"328333":38,"3285":134,"3286":134,"3288":134,"328865":155,"3289":59,"328947":116,"329":[38,76,134],"3291":134,"329167":38,"3293":155,"329816":38,"329891e":123,"32995317":158,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,127,132,133],"33":[38,50,59,61,74,76,119,121,134,137,142,143,147,156,158,167,170,184],"330":[74,76],"3300000":[111,178],"3301":134,"3306":[59,134],"3308":134,"3309":134,"331":[76,134],"3310":[109,178],"331000":145,"331179":123,"33146":122,"3316":134,"3319":134,"332":[76,134],"33203125":134,"3323":134,"332354":58,"3326":134,"3327":134,"333":[32,76,172,194],"3331":134,"3333":134,"333333":38,"333701":145,"3338":134,"333884":29,"3339440331":186,"334":[76,134],"33416821":74,"3342":134,"334288":76,"3346":134,"3349":134,"335":[76,134],"3357":134,"3359375":134,"336":76,"336000":111,"336175":122,"336342":[63,65],"337":[76,134],"337404":122,"3374040853531507":122,"337692":38,"3377000":111,"3378712":74,"3379":134,"338":76,"33812285":[156,184],"338150":123,"338224":29,"3385":134,"339":[74,76,134],"3394":134,"33984375":134,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":59,"34":[38,50,58,59,61,64,74,76,93,111,119,134,146,147,158,171,172,173,194],"340":76,"3404":134,"3406":134,"340769":38,"340830":122,"341":[76,134],"34110223":74,"3412":134,"341300":[61,74],"3414":134,"341649":59,"342":76,"342200":[61,74],"3425":134,"343":[76,134,172],"3436":134,"34375":134,"34376245":119,"344":[38,76,134],"3444":134,"3445000":[111,178],"344698":61,"344828":116,"345":[33,74,76],"3455":134,"346":[76,134],"3468":134,"347":76,"3471":134,"34765625":134,"3477":134,"348":[76,134],"3480":145,"348173":123,"3483":134,"349":[74,76,134],"349388":38,"3497":134,"349751":29,"35":[14,31,35,38,61,68,74,76,80,93,119,123,133,134,150,152,158,167,172,194],"350":[76,121,134],"3500":[61,172],"35000":[111,172,194],"350000":64,"3502":134,"350816":29,"3509":134,"351":76,"3510":134,"35119":25,"3513":134,"3514":134,"3515625":134,"3516":155,"3519":[59,134],"352":76,"352100":[61,74],"3522":134,"353":[76,134],"3537240779558":[63,65],"353760":123,"354":76,"35410":25,"3544":167,"3548":134,"355":[76,134],"3554":155,"35546875":134,"3555":134,"35554":74,"3557":134,"3558":134,"356":[74,76,134],"3561":139,"3562":139,"35656222554887711":[172,194],"357":76,"3571":134,"358":[76,186],"3580":59,"358047":122,"358500":[61,74],"359":[76,134],"359375":134,"3595":134,"359573":123,"3596":134,"359682":123,"35e3":[172,194],"36":[38,50,63,65,74,76,100,119,121,134,158,172,193,194],"360":[34,66,76],"3600":145,"36000":111,"3605":134,"360691":123,"360769":38,"361":[76,186],"3611":134,"3612":134,"36155096":148,"361551":148,"36159148":158,"3618":134,"3619":134,"362":76,"362000":145,"362069":116,"3623":134,"3625":134,"3627":[134,155],"362759e":59,"3628800":92,"363":76,"3630":134,"363270":38,"36328125":134,"363636":166,"36398808":74,"364":76,"365":[76,134],"3650":134,"365349":38,"366":76,"3664":134,"367":76,"3670":134,"367122":123,"3671875":134,"3672":134,"3673":134,"368":[38,76,110,178],"3681":134,"368430":38,"369":[76,134],"369634":123,"3697":134,"37":[38,50,59,61,63,65,74,76,92,119,133,134,147,151,158,179,187],"370":[76,121],"370000":38,"3703":134,"370443":122,"371":[76,134],"37109375":134,"3715":134,"371667":38,"371682":29,"372":76,"372294e":59,"3723":134,"3725":38,"373":76,"3730":134,"373036":123,"373333":38,"373485e":123,"37350000":[111,178],"3737":134,"374":[74,76,158],"374274":163,"374603":116,"374637":123,"374726":122,"3748":134,"375":[76,121,134],"375147":193,"3752":134,"3756":134,"37570172":[61,74],"375833":38,"3759":134,"376":[76,134],"3760":38,"376041":29,"376220":123,"3764":134,"3769":134,"377":[76,134],"377175":155,"3773":134,"377419":123,"3776":134,"378":[76,121],"3781":134,"3782":134,"378264":123,"3782643792341864":123,"3788":134,"37890625":134,"379":[61,74,76,134],"3791":[38,134],"379601e":38,"38":[9,38,50,51,59,64,74,76,100,101,116,119,134,147,152,158],"380":[57,74,76,121,134,162,163],"3800":134,"38000":111,"380000":38,"3801":[123,134],"3802":[123,134],"3803":123,"380350":38,"3804":123,"3805":[123,134],"3806":123,"3807":123,"3808":123,"3809":123,"381":[57,76,121,134,162],"3817":134,"3819":134,"382":[76,121,134,163],"3822":[38,134],"382308":38,"3824":38,"3828125":134,"382842e":123,"383":76,"3830":38,"3830571":38,"38332521":179,"383564":29,"3836":134,"3837":134,"3838":134,"3839":134,"384":[76,127,134,162],"384272":122,"3843":134,"384615":38,"384761":29,"384782":122,"385":[38,57,76,134,162],"3852":134,"385733e":38,"386":[57,76],"3861":134,"3862":38,"38671875":134,"387":[57,76,134],"387129":142,"3877":134,"3878":38,"388":76,"38828582528":61,"3884":122,"3886":[74,122],"3887":122,"3888":[29,122],"3889":[122,134],"389":[57,76,134,137],"3890":122,"3891":122,"389167":38,"3892":122,"3894":134,"3895":122,"3896":122,"389648":123,"3897":122,"39":[35,38,59,60,63,65,74,76,119,134,158,193],"390":[57,76,121],"3900":122,"3901":122,"3902":122,"3903":[122,134],"3904":[38,134],"390566":145,"390625":134,"390855":122,"3909":35,"391":[76,121,134],"3915":155,"3916":[110,134,178],"392":[57,76,134],"3922":155,"3925":134,"3929":134,"393":[57,76,121],"39320":[61,74],"393580":59,"3937":134,"3939":134,"394":[76,134],"3942":134,"394229":29,"39453125":134,"395":76,"3950":134,"3952":134,"3954":134,"395833":38,"396":[38,76],"3966":134,"3967":134,"39696":145,"397":[38,76],"3974":134,"3975":134,"3976":38,"39761905":147,"398":[76,134],"3980":38,"3984375":134,"398765":123,"399":[76,134],"3991":74,"3994":162,"399419":123,"3995":162,"3998":38,"39th":143,"3a":[121,122,123],"3a10":122,"3a3":122,"3a4":122,"3a5":122,"3a6":122,"3d":[38,75,119,121,122,123,156,166,168,179,186],"3d0":121,"3d5":122,"3ddf":123,"3dfals":121,"3dindex":121,"3dlist":122,"3dpd":122,"3e":[122,123],"3f":[38,172,186,194],"3g":[68,80],"3int8":119,"3j":195,"3ltlqmqsncb9d0rthglvb3gjj3":59,"3rd":[22,37,54,119],"3s":[38,59,61,158],"3ssnporch":54,"3x3":[32,33,132],"3x4":[172,194],"3yqlb":59,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,47,48,59,63,64,65,66,74,75,76,82,84,92,93,94,101,102,108,109,110,111,112,113,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,137,140,141,142,145,146,147,148,150,151,152,154,155,156,158,162,163,166,167,170,171,172,173,182,184,186,187,188,189,190,193],"40":[1,7,9,14,32,38,50,59,63,65,76,82,83,84,100,101,109,110,112,118,119,134,145,151,158,171,176,178,186,187,188,193],"400":[7,53,56,76,109,117,132,166],"4000":[14,35,54,58,158],"40000":[14,111],"400000":64,"40000000":173,"4002912":143,"40067661":119,"4007":134,"400833":38,"400mg":[1,8],"401":[76,134],"4012":134,"4013":134,"401532":122,"4015323563287203":122,"4016":38,"4018":134,"402":[57,76],"40234375":134,"4029":134,"403":[76,179],"403000":145,"403011":29,"4038":134,"4038v2":133,"404":76,"4041":134,"4048":134,"40480256345":74,"405":76,"4050":[109,178],"405278":76,"405309e":38,"4056":38,"406":[76,134],"40618608":158,"40625":134,"4066":134,"406667":38,"4067":134,"407":[76,134],"4071":134,"407570":123,"4077":134,"4077193":147,"407910":123,"40791033":123,"4079103331875502":123,"408":[50,76,134,147,155],"4080":134,"4081":38,"408196":123,"40827":155,"408376":61,"4084":134,"4087":134,"408924":123,"409":[34,74,76,134,163],"4093":134,"4096":133,"4098":[172,194],"41":[29,38,50,61,74,76,92,119,134,147,158],"410":[61,74,76],"410014":58,"41015625":134,"411":[34,38,76],"4119":134,"412":76,"4120":134,"41212121":82,"412214e":38,"412259":122,"41242353":[61,74],"412602":123,"4127":[172,194],"413":[76,134],"4139":[172,194],"414":76,"4140625":134,"41420614":74,"4147":134,"4148":134,"4149":134,"415":[50,76,147,166,168],"4153":134,"415385":38,"416":76,"4162":134,"4165":58,"416798":123,"417":[61,74,76,134],"41785287":116,"4179":134,"41796875":134,"418":76,"41863":25,"4189":134,"419":76,"4192":134,"419621e":59,"4197":35,"4198":35,"4199":[35,134],"42":[31,33,34,35,38,40,43,44,49,52,53,56,57,58,59,60,61,64,76,82,104,119,133,134,146,150,158,167,171,172,179,186,193,194],"420":[76,145],"4200":35,"420000":38,"4201":35,"4202":35,"4203":35,"4204":[35,134],"4205":35,"4206":35,"4208":[110,178],"421":[38,76,134],"421456":29,"4215":38,"421634":123,"421797":29,"421875":134,"4218916":74,"4219":134,"422":76,"4221":155,"4222":134,"4223":52,"42237836":74,"422454":123,"4229":134,"4229403":116,"423":[76,134],"4236":134,"4238":134,"423967":179,"424":[76,134],"4243":134,"424866":38,"424965632":38,"425":76,"425684e":38,"42578125":134,"426":76,"4261":134,"4265":134,"427":[76,134],"4270":134,"427000":111,"427500":38,"428":76,"428793":179,"429":76,"429055":38,"4291":134,"4296875":134,"43":[38,50,58,59,64,74,76,92,119,134,158,171],"430":[57,68,76,80],"4300":134,"43000":111,"4303":134,"431":[76,134],"43116792":[156,184],"431800e":59,"432":[29,76,134],"432554":123,"433":[74,76],"4334":134,"43359375":134,"433594":64,"4336":134,"434":[76,134],"4345":134,"434802":123,"435":[61,74,76],"4350":134,"43539442771396":158,"4354":38,"435833":38,"436":76,"4362":134,"436250":29,"436517":148,"436546":123,"437":[76,134],"4375":134,"438":[76,134],"4381":134,"438906e":123,"439":[76,134,155],"44":[29,38,57,59,74,76,92,110,116,118,119,134,158,159,171,178,180,193],"440":[76,155],"4400":134,"440000":38,"4405":134,"44085502":[61,74],"441":[68,76,80],"44140625":134,"4419":134,"442":[76,134,162,170],"4427":134,"44294":25,"443":76,"4432":38,"4434":134,"44359863":[156,184],"444":76,"44406":39,"4448":134,"4449":134,"444925":123,"445":76,"4450":134,"4452":38,"4453125":134,"445368":64,"445375":38,"4455":38,"445716":148,"4459":134,"446":[76,134],"446873":[63,65],"447":76,"4475":38,"448":76,"449":[76,134,179],"44921875":134,"4494":134,"45":[14,31,34,38,41,49,50,52,58,76,101,109,111,116,119,134,137,145,146,147,158,167,175,178,179,192],"450":[50,76],"4500":33,"450000":[38,111,178],"450436e":123,"45053314":119,"451":[76,134],"451667":38,"452":[76,134],"4522":134,"452600":[61,74],"4527":134,"452728":122,"453":76,"453125":134,"453172e":59,"4535":134,"4539":134,"454":76,"454299":123,"454335":38,"4544":134,"454545":166,"455":[40,76],"4554":134,"4555":134,"455649e":59,"4557":134,"455850496":38,"45585107":[61,74],"4559":38,"456":[33,76,92,172],"4562":134,"4567":134,"456715":122,"457":76,"45703125":134,"458":[57,76],"458410":122,"4586":38,"4588":134,"459":76,"4590":134,"4591":134,"459154":123,"45998":25,"46":[38,58,59,76,84,111,119,134,158,164,179,186],"460":[76,134],"4601":134,"4602":134,"460483":148,"4608":134,"4609375":134,"461":76,"4612":134,"461758453195614":179,"46175845319564":179,"461822":[63,65],"462":76,"4620":38,"463":[76,134],"463333":38,"4635":134,"463724e":59,"463988":76,"464":[47,76,134],"464111":123,"464186":145,"464328":122,"4646":38,"4647":134,"464776":[63,65],"46484375":134,"465":[76,134],"4650":38,"465318":59,"4654":134,"46542":25,"4655":134,"466":[76,134],"466732":123,"46679593":158,"467":76,"4670":134,"467450":61,"4676":134,"467674":38,"468":76,"468052":155,"4681":134,"468333":38,"46854":25,"4686":134,"468720":59,"46875":134,"469":76,"4691":[38,134],"4699":134,"47":[38,48,50,59,74,76,92,109,116,119,134,147,158,178,179],"470":[76,134],"4704":134,"4705882352941178":14,"471":[76,134],"471123":123,"472":[76,134],"472388":123,"47265625":134,"472977e":123,"473":[74,76],"4730":134,"473497":61,"474":[76,134],"4741":134,"474986":29,"475":[76,134],"4750":134,"4755":155,"4758":134,"4759332":158,"476":76,"4760":134,"4762":134,"476333":29,"4764":134,"4765625":134,"476572":148,"476631":148,"47663104":148,"4767":[134,155],"477":76,"4771":134,"477328":[63,65],"477492":29,"4775":134,"478":[76,134],"4781":134,"4782":134,"4785":134,"4786":134,"479":[76,134],"4790":134,"47943":155,"4795":134,"47992614761185":[63,65],"48":[32,38,49,52,59,74,76,83,92,104,119,134,145,158,179,186],"480":[58,76,134,179],"48017":25,"4802":134,"4803":134,"48046875":134,"4808":38,"481":[76,134],"4815":134,"4818":134,"482":[76,134],"4824":127,"482578":148,"4829":38,"483":[76,134],"4833":134,"483724":76,"484":76,"484167":38,"4842":134,"484375":134,"485":[74,76,134],"4854":[134,155],"48542":134,"486":76,"486111":61,"48624811":74,"4869":134,"487":76,"487439":58,"4876":134,"487864":145,"488":[68,76,80],"48817":134,"48828125":134,"488590":123,"48868864572551":64,"489":76,"489000":38,"48909":134,"4896":134,"48965":134,"4897":48,"489919":58,"48c5":32,"49":[38,50,56,74,76,119,132,134,148,158,167,172,194],"490":[68,76,80,134],"4900":61,"490000":38,"49017":134,"490473":29,"49050":134,"4906":134,"490638":123,"490659":29,"4907":134,"490948":123,"491":[76,134],"4914":134,"4918":134,"492":76,"4921875":134,"492209":[63,65],"4928":134,"493":76,"493182":155,"4932":38,"493623":123,"493678":122,"4938":134,"49381":134,"494":[76,134],"49416":134,"49439034":158,"4947":134,"49473684":147,"495":[50,76],"49529":134,"496":[38,61,74,76,134],"49609375":134,"496297":122,"49663":134,"4966309980255":[63,65],"496637":123,"497":[76,134],"497028":122,"49719":134,"4974":134,"4975":134,"497500":38,"49752":134,"49763":134,"49791":134,"498":[76,134],"49834":134,"49847":134,"4985":134,"499":[61,74,76],"499111":29,"49914":134,"4996":38,"49960":134,"49960699":[109,178],"49971":134,"49972":134,"49974":134,"49981":134,"49984":134,"4999":[56,61,74],"49c57b793eef1b8e55f297e5e019fdbf":57,"4a16":[118,180],"4ac":172,"4c":93,"4d":119,"4f":[31,33,37,51,59,64,155],"4g":[68,80],"4j":[173,195],"4px":159,"4s":[61,158],"4th":[46,119],"4x3":119,"4x4":[32,133],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,45,46,47,52,55,59,63,64,65,66,71,74,75,76,77,78,81,82,84,92,93,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,117,119,121,122,123,124,127,128,131,133,134,135,136,137,139,141,142,144,145,146,147,148,150,151,152,154,155,156,157,158,160,161,162,163,164,166,167,170,171,172,173,179,182,184,186,188,189,190,192,193],"50":[7,14,29,31,32,35,37,38,42,44,45,46,47,48,49,50,52,53,55,58,59,60,61,62,63,64,65,66,74,76,83,92,102,104,108,111,119,127,130,132,134,136,141,142,145,147,148,150,151,152,155,156,157,158,159,163,164,171,179,182,184,186,187],"500":[1,9,31,47,49,50,52,53,54,66,76,100,101,127,132,134,150,158],"5000":[33,35,47,54,56,82,127,132,158,172],"50000":[18,33,63,65,132],"500000":[38,58,64,145,155],"500001":[61,74],"5000x1000":35,"500135":38,"500216":179,"5007":134,"5008":134,"501":[76,134],"501017e":59,"50114":134,"5012":46,"5013":134,"5014":134,"501467":123,"50159":134,"50177":134,"502":[76,134],"5024":134,"502500":38,"5027":134,"50273":134,"503":76,"50325":134,"5033":134,"50334":134,"503355363845":[63,65],"5033565506537":[63,65],"503371776776":[63,65],"50343":134,"5035673795078":[63,65],"50363":134,"503672":123,"50390625":134,"504":76,"50467":134,"5047":134,"505":[76,134],"5050":92,"50510":134,"50531":134,"5055":134,"50562":134,"50596":134,"506":[76,134],"5060835072245":[63,65],"50635":74,"50636":134,"50641":134,"50654":134,"506579":29,"5067":134,"507":[76,155],"5072":134,"50728":134,"50732":134,"50735":134,"50751":134,"507547":145,"50755":134,"50774":134,"507812":59,"5078125":134,"50783":134,"50784":134,"50797":134,"5079999999999996":77,"508":[76,134],"508128e":38,"5083":134,"50832":134,"5085":134,"50859":134,"509":[76,134],"5091":134,"50910":134,"50949":134,"5095":38,"50966":134,"50982":134,"50_startup":188,"50k":[51,112,127,176],"51":[38,48,59,74,76,119,134,158],"510":[76,134],"5101":134,"51010":134,"51011":134,"51027":134,"51043":134,"51047":134,"5105":134,"510636288":38,"51070":134,"51078":134,"51095":134,"511":76,"51101":134,"51112":134,"51133":134,"51135":134,"51167":134,"51171":134,"51171875":134,"51173":134,"511738":145,"51187":134,"511893":38,"511896":122,"512":[29,32,33,36,37,58,76,127,131,132,133,182],"51206":134,"51211":134,"51212":134,"51241":134,"51249":134,"51259":134,"5126":134,"51262":134,"51267":134,"51288":134,"51289":134,"512n":32,"513":[57,61,76],"51304":134,"51311":134,"51312":134,"5132":134,"51323":134,"513333":38,"51356":134,"51358":134,"513588e":59,"51367":134,"51368":134,"51375":134,"51378":134,"51379":134,"51382":134,"51385":134,"51390":134,"51391":134,"51392":134,"51393":134,"51398":134,"514":[57,76],"514000":145,"51402":134,"51406":134,"51407":134,"51408":134,"51409":134,"5142":134,"51425":134,"51443":134,"51445":134,"51449":134,"51461":134,"51470":134,"51471":134,"51487883":116,"51492":134,"51498":134,"515":76,"515088":59,"51517":134,"51524":134,"51525":134,"51527":134,"51533":134,"51537":134,"5154":134,"51540":134,"51542":134,"51543":134,"5155":134,"51551":134,"51556":134,"51559":134,"5156":134,"515625":134,"51563":134,"51564":134,"51565":134,"51587":134,"51589":134,"515912e":123,"51594":134,"516":[57,76,134],"51600":134,"51606":134,"51610":134,"51612":134,"51615":134,"51622":134,"51633":134,"51634":134,"51635":134,"51636":134,"5164":38,"5165":134,"51654":134,"51655":134,"51665":134,"51673":134,"51676":134,"51687":134,"51688":134,"51691":134,"51694":134,"517":[57,74,76,134],"51714":134,"51716":134,"5172":134,"51721":134,"51729":134,"51734":134,"51742":134,"51743":134,"517460":116,"51747":134,"51750":134,"51770":134,"51772":134,"51775":134,"51777":134,"51784":134,"51786":134,"518":[76,134],"5180":134,"51818":134,"518198":123,"51832":134,"51839":134,"51843":134,"51847":134,"5185":155,"51851":134,"51853":134,"518601":145,"51863":134,"51865":134,"51867":134,"5187":38,"51870":134,"51874":134,"518743":29,"51879":134,"51886":134,"5189":134,"51891":134,"51895":134,"51896":134,"519":[76,134],"51907":134,"5191":134,"51912":134,"51915":134,"51918":134,"519196":29,"5192":134,"519229":29,"519278":38,"51935":134,"51941":134,"51944":134,"51946":134,"51948":134,"51950":134,"51953125":134,"519536":29,"51955":134,"51956":134,"519645":29,"51969":134,"5197":48,"51974":134,"51981":134,"51985":134,"52":[35,38,48,53,58,61,63,65,74,76,111,116,119,134,158,164,166],"520":76,"52000":111,"52004":134,"52005":134,"52018":134,"5202":134,"52037":134,"52049":134,"52056":134,"52063":134,"52065":134,"52066":134,"52080":134,"52081":134,"52084":134,"52096":134,"52097":134,"521":[57,76,134],"52109":134,"52110":134,"52112":134,"52113":134,"52115":134,"52116":134,"52117":134,"52120":134,"52138":134,"52141":134,"52142":134,"52150":134,"52153":134,"52155":134,"52156":134,"52169":134,"52171":134,"52176":134,"5218":134,"52182":134,"52183":134,"522":[57,76,134],"522029":123,"52205":134,"52207":134,"52213":134,"52214":134,"52216":134,"52218":134,"52223":134,"52225":134,"52226":134,"52242":134,"52244":134,"52245":134,"52246":134,"52247":134,"522500":38,"52266":134,"52272":134,"52278":134,"52282":134,"52285":134,"52286":134,"52297":134,"52298":134,"52299":134,"523":76,"52300":134,"52303":134,"52308":134,"52310":134,"52314":134,"52317":134,"52326":134,"52329":134,"52331":134,"52333":134,"52335":134,"52339":134,"5234375":134,"52346":134,"52347":134,"52350":134,"52351":134,"52353":134,"52356":134,"52358":134,"52359":134,"52361":134,"52364":134,"523656":123,"52373":134,"52383":134,"52385":134,"52389":134,"52392":134,"523965":[63,65],"524":[76,134],"52408":134,"52412":134,"52421":134,"52422":134,"52426":134,"52427":134,"52428":134,"52429":134,"52432":134,"52436":134,"52440":134,"52442":134,"52444":134,"52447":134,"52448":134,"52452":134,"52457":134,"52460":134,"524601e":38,"52463":134,"52473":134,"52474":134,"52478":134,"52489":134,"5249":134,"52490":134,"52492":134,"52495":134,"52496":134,"525":76,"5250":134,"52505":134,"52516":134,"52518":134,"52524":134,"52528":134,"52534":134,"52537":134,"525385":38,"52539":134,"52541":134,"52553":134,"52558":134,"52561":134,"52564":134,"52567":134,"52569":134,"52572":134,"52574":134,"52577":134,"52579":134,"52581":134,"52587":134,"52590":134,"52594":134,"52596":134,"526":[76,134,137],"52600":134,"52602":134,"52603":134,"52606":134,"52610":134,"52618":134,"52628":134,"52641":134,"52647":134,"52650":134,"52653":134,"52658":134,"5266":134,"52661":134,"52666":134,"526667":38,"52672":134,"52678":134,"526787":123,"52679":134,"52680":134,"52683":134,"52686":134,"52689":134,"52690":134,"52691":134,"52692":134,"52693":134,"52694":134,"527":76,"52700":134,"52706":134,"52707":134,"52709":134,"52717":134,"52720":134,"52733":134,"52734375":134,"52737":134,"52738":134,"52742":134,"52743":134,"52744":134,"52748":134,"52749":134,"52750":134,"52752":134,"527625":38,"52763":134,"52764":134,"52765":134,"52769":134,"52770":134,"52771":134,"52774":134,"52776":134,"52777":134,"52778":134,"5278":134,"52783":134,"52791":134,"52795":134,"52796":134,"528":[57,76],"52800":134,"52805":134,"5281":134,"52812":134,"52819":134,"52826":134,"52828":134,"528302":122,"52833":134,"52836":134,"52837":134,"52839":134,"52840":134,"52841":134,"52845":134,"52847":134,"52850":134,"52853":134,"52855":134,"52861":134,"52862":134,"52863":134,"52877":134,"52886":134,"52888":134,"52890":134,"52893":134,"529":[76,145],"52904":134,"52906":134,"52907":134,"5291":134,"52912":134,"52914":134,"52916":134,"5292":134,"52920":134,"529216":122,"52922":134,"529231":38,"5293":134,"52934":134,"52935":134,"52938":134,"52939":134,"52941":134,"52945":134,"52946":134,"5295":134,"52951":134,"52952":134,"52954":134,"52957":134,"52959196":116,"5296":134,"52962":134,"52963":134,"52965":134,"52967":134,"52969":134,"52970":134,"52972":134,"52975":134,"52976":134,"52980":134,"52981":134,"52987":134,"52988":134,"5299":134,"52996":134,"52998":134,"52999":134,"53":[38,57,59,76,109,111,116,119,134,146,152,158,178],"530":[74,76,145],"53000":[111,178],"530000":38,"53004":134,"53006":134,"530060":123,"53013":134,"53014":134,"53018":134,"53025":134,"53027":134,"53028":134,"53036":134,"53037":134,"53038":134,"53048":134,"53052":134,"53058695":158,"53060":134,"53061":134,"53062":134,"53066":134,"53068":134,"53071":134,"53076":134,"53077":134,"53079":134,"53081":134,"53087":134,"53090":134,"53094":134,"530m":[112,176],"530wv2bvx2w7ycwfpl":59,"531":76,"53101":134,"53103":134,"53105":134,"53106":134,"53108":134,"53109":134,"53110":134,"53123":134,"53125":134,"531254":29,"53129":134,"53130":134,"53134":134,"531403":122,"531452":29,"53146":134,"53151":134,"53154":134,"53157":134,"53159":134,"53161":134,"53165":134,"53166":134,"53179":134,"53183":134,"53184":134,"53189":134,"53190":134,"53192":134,"53198":134,"532":76,"53200":134,"53202":134,"53210":134,"53214":134,"53217":134,"532188e":123,"532197":29,"53222":134,"53224":134,"53227":134,"53237":134,"53238":134,"53243":134,"53245":134,"53246":134,"53248":134,"53249":134,"5325":134,"53255":134,"53256":134,"53259":134,"53262":134,"53265":134,"53276":134,"53279":134,"5328":134,"53281":134,"53282":134,"53287":134,"53292":134,"53295":134,"53296":134,"53299":134,"533":[76,158],"5330":134,"53301":134,"53306":134,"53315":134,"53321":134,"53324":134,"5333":134,"53333":134,"5333333333333334":14,"53334":134,"53341":134,"53346":134,"53349":134,"53351":134,"53352":134,"53353":134,"53354":134,"53356":134,"53358":134,"5336":134,"53360":134,"53363":134,"53364":134,"53366":134,"53370":134,"53380":134,"53382":134,"533846":38,"53387":134,"53388":134,"53389":134,"53391":134,"53392":134,"53393":134,"53396":134,"534":[76,134],"5340":38,"534000":145,"53401":134,"53403":134,"53409":134,"5341":[61,74],"53411":134,"53413":134,"5342":134,"53421":134,"53426":134,"53427":134,"53428":134,"53430":134,"53437":134,"53438":134,"53441":134,"5345":38,"53450":134,"534510":29,"534563":[63,65],"53458":134,"53462":134,"53465":134,"53468":134,"53470":134,"53474":134,"53475":134,"53478":134,"53482":134,"53488":134,"5349":134,"53491":134,"53494":134,"53495":134,"535":[76,134],"5350":134,"53508":134,"53513":134,"53515625":134,"53517":134,"53518":134,"53520":134,"53521":134,"53525":57,"53529":134,"53531":134,"53536":134,"53538":134,"53551":134,"53553":134,"53556":134,"53557":134,"53560":134,"53563":134,"53566":134,"53570":134,"53571":134,"53574":134,"53580":134,"53584":134,"53587":134,"53588":134,"53589":134,"53593":134,"53594":134,"53595":134,"53597":134,"536":[76,134],"53606":134,"53607":134,"53616":134,"53617":134,"53627":134,"53628":134,"53630":134,"53635":134,"53642":134,"53645":134,"53652":134,"53655":134,"53657":134,"53661":134,"53662":134,"53663":134,"53666312":74,"53668":134,"53672":134,"53673":134,"53674":134,"53675":134,"53686":134,"53687":134,"536879":[63,65],"53691":134,"536923":38,"53693":134,"53696":134,"53697":134,"53699":134,"537":[61,74,76],"5370":134,"53706":134,"53709":134,"53712":134,"53715":134,"53719":134,"53726":134,"53728":134,"53729":134,"53732":134,"53738":134,"53747":134,"53748":134,"53749":134,"53751":134,"53757":134,"53760":134,"53762":134,"53765":134,"53768":134,"53769":134,"53771":134,"53772":134,"53774":134,"53778":134,"5378":134,"53782":134,"53783":134,"53786":134,"53788":134,"53789":134,"537931":123,"53797":134,"53798":134,"538":76,"53807":134,"53811":134,"53812":134,"53814":134,"53818":134,"53819":134,"53826":134,"53829":134,"538356":29,"53837":134,"53842":134,"53849":134,"538491832234":[63,65],"53850":134,"53855":134,"53857":134,"53859":134,"53860":134,"53863":134,"53865":134,"53866":134,"53870":134,"53871":134,"53872":134,"53879":134,"53883":134,"53891":134,"53892":134,"53894":134,"53897":134,"53899":134,"539":76,"5390625":134,"53907":134,"53908":134,"53911":134,"53912":134,"53913":134,"53919":134,"53923":134,"53924":134,"53927":134,"53938":134,"53944":134,"53946":134,"53947":134,"5395":134,"53952":134,"539527":142,"539534":38,"53955":134,"53957":134,"53965":134,"53967":134,"53971":134,"53974":134,"53975":134,"53976":134,"53979":134,"53986":134,"53987":134,"53989":134,"53991":134,"53993":134,"53995":134,"53gib":29,"54":[29,38,57,59,74,76,93,158,179,193],"540":[76,134],"5400":[57,61],"54001":134,"54004":134,"54005":134,"54010":134,"54014":134,"54027":134,"54031":134,"54034":134,"54035":134,"54040":134,"54044":134,"5405":134,"54054":134,"54055":134,"54062":134,"54063":134,"54068":134,"54085":134,"54086":134,"54090":134,"54094":134,"54095":134,"54097":134,"541":76,"5410":155,"541112":38,"54112":134,"54119":134,"54121":134,"54128":134,"54134":134,"54135":134,"54136":134,"541375":123,"541410e":123,"54142":134,"54146":134,"54152":134,"54155":134,"54156":134,"54158":134,"5416":134,"54165":134,"54167":134,"54171":134,"54174":134,"54177":134,"54179":134,"54184":134,"54186":134,"54188":134,"54189":134,"5419":134,"54196":134,"542":[76,101,134],"54202":134,"54205":134,"54210":134,"54211":134,"54213":134,"54216":134,"54219":134,"54221":134,"54222":134,"54226":134,"54228":134,"54229":134,"54230":134,"54232":134,"54236":134,"54243":134,"54244":134,"54253":134,"54261":134,"54266":134,"54273":134,"54276":134,"54279":134,"54282":134,"54283":134,"54284":134,"54288":134,"5429":38,"54293":134,"54294":134,"54296875":134,"543":76,"54300":134,"54302":134,"54303":134,"54306":134,"54311":134,"54317":134,"54318":134,"543182":155,"54321":172,"54330":134,"54331":134,"54332":134,"54334":134,"54335":134,"54336":134,"54337":134,"54338":134,"54346":134,"54349":134,"54351":134,"54359":134,"54364":134,"54366":134,"54370":134,"54376":134,"54381":134,"54383":134,"54388":134,"54389":134,"54390":134,"54394":134,"54395":134,"54396":134,"54397":134,"54398":134,"544":76,"54406":134,"54407":134,"54421":134,"54422":134,"54423":134,"54427":134,"54434":134,"54439":134,"54440":134,"54442":134,"54444":134,"54445":134,"54447":134,"54454":134,"54456":134,"54457":134,"5446":38,"54461":134,"54464":134,"54470":134,"54473":134,"54474":134,"54479":134,"54485":134,"54491":134,"54494":134,"54495":134,"54497":134,"54498":134,"545":[76,134],"54501":134,"54504":134,"54505":134,"54507":134,"54509":134,"5451":134,"54516":134,"54519":134,"54524":134,"54526":134,"54527":134,"54528":134,"54530":134,"54534":134,"54536":134,"54538":134,"54540":134,"54545":134,"54554":134,"54556":134,"54559":134,"5456":134,"54564":134,"54567":134,"54570":134,"54571":134,"54573":134,"54575":134,"54582":134,"54583":134,"545833":38,"54584":134,"545850":38,"54587":134,"54589":134,"54593":134,"54595":134,"54596":134,"54598":134,"546":[76,134],"546021":[63,65],"54603":134,"54605":134,"54614":134,"54621":134,"54627315":119,"5463":134,"54630":134,"54634":134,"54636":134,"54640":134,"54641":134,"54647":134,"5465":134,"54655":134,"54658":134,"54659":134,"54662":134,"54663":134,"54667":134,"5466747351275563":146,"54670":134,"54671":134,"54672":134,"54676":134,"54679":134,"5468":134,"54683":134,"546875":134,"54693":134,"54697":134,"54699":134,"547":[48,76],"54705":134,"54710":134,"54715":134,"54717":134,"54718":134,"54725":134,"54731":134,"54737":134,"54738":134,"54739":134,"54741244":74,"54750":134,"54752":134,"54765":134,"54769":134,"54770":134,"54782":134,"54784":134,"54789":134,"54798":134,"548":[76,134],"54803":134,"54808":134,"54808703":158,"54810":134,"5482":38,"548232":122,"54824":134,"548255":123,"54832":134,"54833":134,"54834":134,"54836":134,"54841":134,"54842":134,"54843":134,"54846":134,"54848":134,"54854":134,"54865":134,"54866":134,"54869":134,"54877":134,"54878":134,"54880":134,"54888":134,"54898":134,"549":76,"54901961":74,"54905":134,"54914":134,"5492":134,"54921":134,"54925":134,"54927":134,"54930":134,"54931":134,"54941":134,"54944":134,"54945":134,"54947":134,"54949":134,"54958":134,"54961":134,"54966":134,"54969":134,"54970":134,"54971":134,"54972":134,"54974":134,"54976":134,"54979":134,"54980":134,"54984":134,"54988":134,"54996":134,"54997":134,"54998":134,"55":[14,38,50,59,64,76,92,111,116,134,155,156,158,171,179,184,188],"550":[76,134],"55000":[111,178],"55010":134,"55012":134,"55017":134,"55024":134,"55029":134,"55030":134,"55031":134,"55034":134,"55035":134,"55040":134,"55053":134,"55054":134,"55056":134,"55057":134,"55060":134,"550610e":59,"55062":134,"55066":134,"55071":134,"55072":134,"55074":134,"55077":134,"55078":134,"55078125":134,"55081":134,"55083":134,"55086":134,"55087":134,"550px":122,"551":76,"55100":134,"55103":134,"5510652":119,"55107":134,"55110":134,"551120":123,"55116":134,"55120":134,"55124":134,"55126":134,"55127":134,"55135":134,"5514":134,"55142":134,"55149":134,"55158":134,"5516":134,"55161":134,"55164":134,"55168":134,"55179":134,"5518":134,"55181":134,"55183":134,"55186":134,"55187":134,"55191":134,"552":[76,134],"55200":134,"55204":134,"55209":134,"55212":134,"55220":134,"55225":134,"55231":134,"55234":134,"55236":134,"55241":134,"55246":134,"55250":134,"55253":134,"55255":134,"55259":134,"5526":134,"55263":74,"55264":134,"55265":134,"55268":134,"55276":134,"55281":134,"55284":134,"55287":134,"55288":134,"55290":134,"553":[48,76],"553074":123,"55309":134,"5531":134,"55310":134,"553206":123,"55329":134,"55330":134,"55348":134,"55350":134,"55355":134,"55359":134,"55364":134,"55366":134,"5537":134,"55373":134,"55381":134,"55386":134,"553999e":123,"554":[76,134],"55408":134,"55415":134,"55426":134,"55428":134,"55433":134,"55454":134,"5546875":134,"554761":123,"55477":134,"55481":134,"55487":134,"554887e":123,"55491":134,"555":[76,134],"55501":134,"5552":134,"55523":134,"555233":123,"55526":134,"55527":134,"55531":134,"555312":38,"55535":134,"5554":134,"55546":134,"55547":134,"55549":134,"55550":134,"55552":134,"55553":134,"55556":134,"55557":134,"55559":134,"55563":134,"55567":134,"5557":134,"55570":134,"555784":29,"5559":134,"55592":134,"55598":134,"556":76,"55606":134,"55609":134,"55613":134,"55620":134,"55621":134,"55623":134,"556336":122,"55635":134,"55636":134,"55637":134,"55645993":119,"55649":134,"5565":38,"55653":134,"55656":134,"55662":134,"55666":134,"55668":134,"55670":134,"5568":74,"55697":134,"557":[76,134],"55701":134,"55703":134,"55706":134,"55713":134,"55716":134,"55718082144":74,"55727":134,"55731":134,"55737":134,"55748":134,"55758":134,"55761":134,"55782":134,"55788":134,"55791711":74,"55799":134,"558":[61,74,76],"55801":134,"55812":134,"55830":134,"55844":134,"55846":134,"558500":145,"55851":134,"55859375":134,"55866":134,"55867":134,"55870":134,"55881":134,"5588235294117647":14,"55884":134,"55888":134,"55892":134,"55895":134,"55896":134,"559":[38,76,134],"55902":134,"55910":134,"55912":134,"55954":134,"55957":134,"55976":134,"55978":134,"55981":134,"55988":134,"55989":134,"55994":134,"55995":134,"56":[48,76,92,109,116,148,158,164,168,178],"560":[76,116],"5600":172,"560000":38,"5600000000000002":77,"56012":134,"56015":134,"5603":74,"56035":134,"56039":134,"56045":134,"56048":134,"56057":134,"56058":134,"56060":134,"56062":134,"56065":134,"56069":134,"56090":134,"56093":134,"56098":134,"561":[76,134],"5610":134,"56102":134,"56113":134,"56115":134,"56116":134,"56119":134,"56120":134,"56125":134,"56127":134,"56135":134,"56137":134,"56139":134,"56148":134,"56152":134,"56159":134,"56163":134,"56171":134,"56190":134,"562":76,"562000":111,"56212":134,"56217":134,"5622":134,"56220":134,"56226":134,"56231":134,"56242":134,"56244":134,"56245":134,"56247":134,"5625":134,"562500":59,"56255":134,"56261":134,"56262":134,"56267":134,"56276":134,"5628":134,"563":76,"56303":134,"56306":134,"56308":134,"5631":134,"56335":134,"56342":134,"56352":134,"5637":134,"56376":134,"5638":134,"56381":134,"56390":134,"56394":134,"56396":134,"564":[38,76,134,145],"5640":134,"56424":134,"56427":134,"5643":[61,74,134],"56431":134,"56435":134,"56439":74,"56447":134,"56454":134,"56466":134,"5647":38,"56471":134,"56474":134,"56499":134,"565":[38,61,74,76],"56504":134,"56508":134,"56509":134,"56510":134,"56521":134,"56526":134,"56538":134,"5654":134,"56544":134,"56546":134,"56550":134,"56558":134,"5657":134,"56574":134,"56576":134,"5658":38,"56596":134,"566":[76,134],"566126":29,"56624":134,"56636":134,"56637":134,"56639":134,"56640625":134,"56646":134,"56647":134,"56649":134,"56660":134,"5666666666666667":14,"5669":134,"56699":134,"567":[76,134],"567088":29,"56721":134,"56729":134,"567306":59,"56735":134,"56740":134,"567453":61,"567530":61,"56755":134,"56770":134,"56771":134,"56777":134,"56790":134,"567906":142,"56791":134,"568":[74,76,134],"56805":134,"56806":134,"56812":134,"56823":134,"568350":123,"56837":134,"56852":134,"56858":134,"5686":38,"56886":134,"5689":134,"56895":134,"569":[76,134],"56917101":119,"56918":134,"56919":134,"56922":134,"56928":134,"56949":134,"5695":134,"56982":134,"5699":134,"56993":134,"56997":134,"57":[38,59,74,76,109,132,158,178],"570":[76,192],"5700":134,"570000":38,"57006":134,"57013":134,"57026":134,"5703":134,"5703125":134,"57033":134,"5704":134,"57046":134,"57060":134,"5706829878497204":77,"57070":134,"570743":122,"57084":134,"57085":134,"57098":134,"571":[76,134],"57110":134,"57115":134,"57123":134,"57143":134,"57147":134,"57153":134,"57157":134,"57161":134,"57163":134,"57166":134,"57172":134,"57178":134,"57196":134,"572":76,"5720":134,"57214":134,"57228":134,"57242":134,"57250":134,"57260":134,"57268":134,"57276":134,"57290":134,"57294":134,"57297":134,"57299":134,"573":[38,76,134],"57307":134,"57323":134,"57328":134,"573333":38,"57336":134,"5736":38,"57389":134,"57391":134,"57395":134,"574":76,"57401":134,"57415":134,"57417":134,"57418":134,"57421875":134,"5745":123,"57467":134,"57489":134,"57498":134,"575":[76,134],"57508":134,"5753":[123,134],"57538":134,"57542":134,"57547":134,"57553":134,"57554":134,"57556":134,"57560":134,"57570":134,"57593":134,"57595":134,"57597":134,"576":[76,134],"5761":134,"57637":134,"576487":59,"57652":134,"57654":134,"5766":134,"57669":134,"5767":134,"57679":134,"57685":134,"57690":134,"57693":134,"577":76,"57704":134,"57744":134,"5777":134,"57789":134,"57799":134,"578":[76,134],"578125":134,"578142e":59,"57819":134,"57840":134,"57841":134,"57852":134,"578621":29,"5789473684210527":14,"579":76,"57909":134,"579137":123,"57916":134,"57929":134,"57942":134,"5796":155,"57961":134,"57987":134,"57993":134,"58":[35,48,59,76,116,134,158,164],"580":76,"580000":38,"58000000000":173,"58001":134,"58019":134,"5802":134,"58023":134,"5803":134,"58042":134,"5805":134,"5807":134,"58078":134,"580px":122,"581":[76,134],"58110":134,"5811388300841898":24,"58113883008418981":24,"58137":134,"58149":134,"58164":134,"58172":134,"58177":134,"58195":134,"58197":134,"582":[76,134,137],"5820":134,"582000":145,"58203125":134,"58260":134,"58294":134,"583":76,"58310":134,"58313172":74,"58330":134,"583333":38,"5834":134,"58379":134,"58380":134,"584":[29,76],"584095":29,"58454":134,"58468":134,"584805":123,"5849056603773586":14,"58494":134,"584943":38,"585":[76,134],"5850":35,"58516":134,"58520":134,"585244e":123,"58525":134,"58526":134,"585386":123,"585387":123,"58565":134,"5857":134,"58581":134,"58585":134,"5859375":134,"586":76,"586035":122,"5861":134,"58611":134,"58615":134,"58651":134,"587":76,"58702":134,"58716":134,"58730":134,"587461e":59,"5875":74,"58761":134,"58768":134,"58799":134,"588":[76,134],"58800":134,"58810":134,"58816838":116,"5882":134,"58823529":74,"58829":134,"58832":134,"588333":38,"58840":134,"588462":38,"58860":134,"5889":74,"589":[76,179],"589167":38,"589271":38,"58930337":158,"58936":134,"58941":134,"58946":134,"58952":134,"58957":134,"5896":[61,74],"58978":134,"58984375":134,"58986":134,"58994":134,"59":[38,48,50,74,76,111,134,158,172,178,179,193,194],"590":[76,134,179],"590000":38,"59026":134,"5908":134,"59080":134,"590909":38,"590px":166,"591":76,"59114":134,"59115":134,"5913425779189757":76,"59139":134,"59146":134,"59171":134,"5919":134,"592":76,"59210":134,"59229":134,"592330e":123,"59248":134,"59250":134,"59257":134,"593":[76,134],"59334":134,"59337":134,"59345":134,"593450":29,"593661":59,"59375":134,"5938":56,"594":76,"59421":134,"59432":134,"594450":29,"5947":134,"594807":123,"59493":134,"595":[76,134],"5950":134,"59512":134,"5952":134,"59524":134,"59529":134,"5954":134,"59564":134,"59566":134,"5957":134,"595855":122,"596":[76,134],"59617":134,"59670":134,"597":[76,134],"59756":134,"59765625":134,"598":[76,158,162],"5981":134,"598109":123,"598150":179,"59823":134,"59831252":74,"598350":123,"59842":134,"598502":123,"59853725816836":158,"5985372581684":158,"59853725816868":158,"59854":134,"59880":134,"59886":134,"599":76,"599167":38,"59970":134,"59981":134,"5b":[112,121,122,123,176],"5b0":122,"5b1":[121,122,123],"5b2":121,"5b3":[121,122],"5b380":121,"5b390":121,"5b4":122,"5b5":121,"5b7":121,"5bdf":121,"5bdfd":122,"5blambda":122,"5bmask":122,"5bnone":121,"5btrue":122,"5cm":46,"5d":[121,122,123],"5e":36,"5f":[32,127,186],"5g":[68,80],"5k":50,"5m":38,"5more":57,"5s":[61,158],"5th":[43,102,119,174],"5vbcssa6":59,"5x5":[32,127],"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,38,39,40,41,44,47,48,51,59,62,63,64,65,66,74,76,77,82,84,92,93,96,101,102,104,111,112,116,117,119,121,122,123,124,127,130,132,133,134,137,139,142,145,146,147,148,150,152,154,155,156,158,162,164,166,167,170,171,172,173,179,180,184,186,188,193,194],"60":[7,9,14,32,33,35,38,40,41,42,50,56,57,63,65,66,76,77,100,101,104,109,111,117,119,156,158,159,178,179,184,192,193],"600":[3,76,111,132,158],"6000":[33,35,58,82,84,132],"60000":[29,132],"600000":64,"60028":134,"600345":29,"60045":134,"600833":38,"600866":59,"600px":[121,122,166],"601":76,"60116":134,"60122":134,"60144":134,"6015625":134,"60192":134,"602":76,"60239":134,"6026":134,"603":[76,134],"60306":134,"60318378":116,"60320":134,"60321":134,"603333":38,"60349":134,"6036":38,"60373":74,"604":[74,76,134],"604039":61,"60409":134,"6041":134,"604382":76,"604384":[63,65],"60465":134,"6047":38,"604946":123,"605":76,"60522":134,"60523":134,"6053":134,"60546875":134,"60550":134,"605962":61,"606":[61,74,76,179],"60623":134,"6065":134,"606722816":38,"607":[76,134],"607008e":38,"6072":38,"60733":134,"60744":134,"6075":134,"6076":134,"60764":134,"6078":134,"608":76,"6080":35,"6081":134,"6082":[61,74],"60850":134,"60851":134,"60863":134,"60869":155,"6088":134,"609":[76,134],"6090":35,"60904":134,"6092":134,"60925":134,"609375":134,"6095":134,"6096":134,"60970":134,"6098":134,"6099":134,"61":[38,50,59,64,76,134,145,147,158,164,179,193],"610":[76,134],"610000":38,"6107":134,"611":[76,145],"611105":38,"61122":134,"6117":134,"61184":134,"612":76,"61204":134,"61205":134,"61216":134,"612245":123,"6123":134,"61238":134,"6124":134,"6125":134,"613":[76,134],"61328125":134,"61351":134,"614":76,"614392":29,"6149":38,"615":[34,76,134],"6150":35,"61501":134,"61516":134,"6153":33,"615352":122,"615385":38,"61547":134,"616":[74,76],"616188e":123,"61622":134,"61630":134,"616314e":38,"616364":29,"61663286":74,"616662":123,"616766":58,"617":[34,76],"6170212765957446":14,"6171875":134,"6173":38,"617423":[63,65],"6175":134,"61760":134,"617802e":59,"618":[76,134],"618338":122,"619":76,"619047619047619":14,"61905":134,"61965":134,"62":[38,50,59,63,65,76,111,116,134,147,158,164,178,188,193],"620":76,"6200":35,"6201":134,"62037":134,"6204":134,"620409":122,"62046":134,"6205":134,"62055":134,"62066":134,"6208":134,"62084":134,"620px":122,"621":[38,76,134],"6210":35,"62107":134,"62109375":134,"62110":134,"621116e":59,"6212":134,"6213":134,"62134":134,"622":[76,134],"6220":134,"6225":35,"622625":123,"62271805":74,"623":76,"6230":134,"6231532":38,"62329":134,"62374":134,"624":[76,134],"62405":134,"62419":134,"624289":38,"6245":[35,134],"624565":123,"6246":134,"624615":38,"625":[76,134],"6250":35,"625000":38,"6254":134,"62571878891146":158,"626":76,"6263":134,"6266":38,"626937":123,"627":[76,134],"62712":134,"627175":38,"6274":134,"62740":134,"627590e":59,"628":76,"628157":123,"6283":38,"6285":38,"62860":134,"62890625":134,"62891":134,"629":76,"6291":38,"6294":134,"62993":134,"63":[38,59,64,76,111,127,134,147,148,151,152,158,167,186],"630":[76,134],"6302":74,"630217":61,"63022":134,"6303904952264":58,"6308":134,"630992":123,"630px":[121,122],"631":76,"63119":134,"6312":134,"6313":134,"6315":38,"63169":134,"63197":134,"632":76,"63204":134,"63256":134,"63262":134,"6327":38,"6328125":134,"633":76,"633158":179,"63339":134,"6334":38,"633845":123,"634":76,"634051":123,"6342":38,"6345":[35,38,134],"6348":134,"63481":134,"635":[38,76,134],"6350":38,"6352":38,"6353":155,"6354":38,"6356":38,"635833":38,"6359":38,"636":[76,134],"63603":134,"63608":134,"6361":38,"6362":38,"636238":59,"636364":166,"636368640":38,"63637":134,"63655":134,"6366":134,"63671875":134,"6368":38,"6369":[38,134],"637":76,"6370":38,"6371":[38,134],"6374":134,"63752":134,"63759":134,"6378":38,"63792":134,"638":[76,134],"6380":38,"63803":134,"6381":38,"63851":134,"6387":134,"6388":134,"639":[59,76,134],"63940":134,"639426e":38,"63960":134,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,48,50,58,59,76,92,109,111,117,119,126,127,128,132,133,134,137,155,158,164,172,178,186,194],"640":[76,145],"6400":35,"64000":58,"6404":155,"640625":134,"64073":134,"641":76,"641035e":59,"642":[76,134],"64206":134,"64243":134,"642977":59,"643":[76,134],"64300":134,"6431":[61,74],"6435":134,"644":[76,134],"644082":142,"6442":134,"64438":134,"6445":[61,74,134],"64453125":134,"64497":134,"645":76,"6450":35,"6451":134,"64568":134,"645833":38,"646":76,"646705152":38,"64671":134,"64681":134,"647":76,"6471":134,"6473":134,"6479":134,"648":[61,74,76],"6482":134,"6484375":134,"64851":134,"64859406":[61,74],"649":76,"649167":38,"6492":134,"6497":48,"649855":38,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,133],"65":[35,59,66,76,111,116,156,158,162,164,171,172,178,184,189,190,192,194],"650":76,"6500":134,"650px":122,"651":76,"6516":122,"6517":122,"6518":122,"652":[76,109,178],"6522":134,"65234375":134,"65239850433215":158,"6527":134,"653":[76,158],"6530":[35,134],"6532":134,"65334":134,"65347":134,"6535":134,"6536995137169997":76,"6538":134,"65380":134,"654":76,"654167":38,"65443":134,"65480":134,"65492":134,"655":76,"6550":35,"65526":134,"6555":122,"655517642572828":158,"65555":134,"6556":122,"6557":122,"6559":122,"656":76,"6561":122,"65611":134,"6562":122,"65625":134,"656881":29,"657":[76,186],"65732685":74,"65746":134,"65793":134,"658":76,"6581":134,"659":76,"6590":35,"6594504178995297":116,"65949":134,"65962":134,"66":[38,50,76,134,145,158,162,164,172,182,194],"660":[76,134],"6600":35,"66015625":134,"66022":134,"66036":134,"6607019357604422":76,"660833":38,"66098":134,"660px":121,"661":76,"661054":38,"661068":61,"6611":74,"6615":35,"662":[76,134],"6621":38,"662185e":38,"662224":[63,65],"6625":38,"662633":122,"6627":38,"663":[76,134],"6631":38,"6632":38,"66327":134,"6635":38,"66369":134,"6638":38,"663877":123,"664":76,"6640":38,"6640625":134,"6641":38,"6646":134,"6647":38,"664918e":59,"66496461":74,"665":[38,76,121],"665000":111,"6651":[38,134],"6652":38,"6655":38,"6657":[38,134],"666":[76,121,145],"6660":35,"666088":122,"6662":38,"66623":134,"6663":38,"6665":134,"6666":38,"6666666666666666":50,"6666666666666667":[172,194],"666666666666667":172,"666667":38,"6669":38,"667":[76,121,134],"6670":134,"6671":134,"6672":122,"6674":[38,122],"6675":[122,134],"6676":122,"6678":[122,134],"6679":122,"66796875":134,"668":[76,121],"6680":35,"6683":38,"66840":134,"66845":134,"669":[76,121,134],"669000":145,"6691":134,"6695":35,"66977":134,"67":[49,52,58,76,122,134,158,162],"670":[76,121,134],"6700":35,"67000":134,"67021":134,"670px":121,"671":[76,121],"671131":29,"67131":134,"671875":134,"672":76,"6720":35,"6722":134,"672225":59,"67225":134,"6725":35,"672864":61,"673":[74,76,134],"673333":155,"67374":134,"673913":123,"674":76,"6740":35,"67434":134,"674452224":38,"675":76,"6750":134,"6754":134,"675459":123,"67550":134,"67578125":134,"6758":134,"675833":38,"676":76,"6765":[122,134],"6766":122,"676667":38,"6767":[122,134],"6768":[122,134],"6769":122,"677":76,"6770":134,"6771":134,"677258":59,"6775":134,"6779":134,"678":76,"6780":35,"6783":134,"6784":134,"67843":134,"67858615":[61,74],"6786":134,"678678":29,"6788":134,"679":76,"67912":134,"67953":134,"679630":29,"6796875":134,"6797":134,"68":[14,59,61,66,76,122,134,158,162,164,179],"680":76,"6800":35,"68076":134,"680851":123,"680px":122,"681":76,"6810":35,"681000":145,"68141":134,"681690":123,"681744":[63,65],"6818":134,"682":76,"68201":134,"6821":134,"68269":134,"683":[76,142,145],"683516":29,"68359375":134,"683782":59,"684":[61,76],"6842":[38,134],"68438":74,"6844":38,"684457140":38,"6845":134,"684500":29,"68478":61,"68491":74,"685":76,"6850":35,"6851":38,"685191":29,"6852":38,"68537":74,"685433":74,"6855":38,"68557":134,"6858":38,"686":76,"68617":134,"6862612":116,"686275":123,"6866":134,"6868":38,"68684":61,"6869":38,"687":76,"6870":[35,38],"6872":38,"6875":134,"6878":38,"68796":134,"688":[76,134],"688138e":123,"68849":134,"6885":38,"6886":38,"6887":38,"6888":38,"6889":38,"689":[76,134],"6890":38,"6891":38,"6893":[38,134],"6894":38,"689655":123,"68969":134,"6897":134,"6899":38,"69":[38,76,116,134,146,158,162,167],"690":[76,192],"6900":[35,38],"6902":38,"6903":38,"69037":134,"6904":38,"6905":38,"6907":38,"6908":38,"6909":38,"690px":122,"691":[76,134],"6911":38,"69136631":158,"6914":38,"69140625":134,"6915":38,"6917":38,"69178":134,"692":[76,134],"6920":38,"6921":38,"69211":134,"6922":38,"692308":38,"6924":38,"6925":38,"692500":38,"69261":134,"6928":38,"6929":38,"693":76,"6930":38,"69318":134,"6933":38,"6934":[38,134],"693418":123,"6935":38,"6936":38,"6937":38,"69378":134,"69399":134,"694":[76,134],"69400":134,"6941":38,"69411":134,"6942":38,"69456":134,"6946":[38,134],"6947":38,"6948":38,"695":[76,121,134],"6950":35,"69500":134,"695000":145,"6952":38,"6953125":134,"695662":179,"6958":38,"695833":38,"696":[76,121],"6960":38,"6961":38,"696114":123,"6962":134,"6963":38,"6965":38,"6968":38,"6969":134,"697":[74,76,121,134],"6970":[35,38],"697299":123,"697303":122,"697426":123,"69764":134,"6976998904709748":167,"697729":122,"69779":134,"698":[76,121],"6982":134,"6983":134,"69831":134,"6984":38,"6985":38,"6986":38,"699":[76,121,145],"6990":38,"69921875":134,"699648":59,"6999":134,"6a":93,"6j":[172,194],"6m":[29,38],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":59,"6qepylt4v68sypax9kxk":59,"6qwd":59,"6s":[61,158],"7":[3,7,14,22,24,29,30,31,32,34,35,37,38,41,44,48,49,54,55,59,62,63,64,65,66,68,74,76,77,78,80,84,92,93,101,110,112,116,117,119,121,122,123,124,127,132,133,134,135,137,142,145,146,147,148,150,151,152,155,158,162,164,166,171,172,173,179,180,186,188,193,194,195],"70":[14,32,38,41,50,59,63,65,66,76,111,116,134,147,158,164,166,171,178,188],"700":[56,76,121],"7000":[1,74,119],"700611":122,"7009":134,"700px":[122,162],"701":[76,121,134],"7010":[35,134],"7011":134,"7012":134,"702":[76,145],"7020":38,"702500":38,"70282":134,"703":76,"7030":134,"703125":134,"7032":134,"7034":134,"703499":123,"7036":134,"703982":[63,65],"704":[76,134],"70429":134,"7048":38,"705":[76,134],"7054":134,"70549":39,"7057":155,"705817":123,"70584":134,"706":76,"70633":134,"70698":134,"707":76,"70703125":134,"7073":134,"70760":134,"708":[76,134],"70884":134,"709":[76,134],"70935":134,"7099":[61,74],"71":[50,56,74,76,92,111,116,134,147,152,158,164,166,178,188],"710":[76,134,145],"7100":35,"710000":61,"7104":134,"710528":123,"7105280060827549":123,"71052801":123,"7107":134,"71086031":158,"7109375":134,"711":76,"7110":[35,134],"711042":123,"7111":134,"71130":134,"7117":134,"712":[76,109,178],"7125":134,"7127411872482181":77,"713":76,"7131":134,"7133":38,"713683":29,"714":76,"714500":145,"71469":134,"71484375":134,"715":[76,134],"7153":134,"71537":134,"715370":122,"716":76,"71625":134,"716440":76,"717":76,"7171":38,"71714":74,"71733307":[61,74],"718":76,"71817":134,"7184":134,"7185":134,"71875":134,"71880794":116,"718896":122,"7189":134,"719":76,"7190":155,"719457":116,"71977":134,"7198":155,"71995":134,"72":[35,38,76,92,111,116,158,164,166,178],"720":76,"720000":[111,123],"7203":134,"72035":134,"7209":[38,134],"72093598500494":[63,65],"721":[76,134],"72101958323096":[63,65],"72108":134,"72115":134,"72164454424515":[63,65],"722":[76,134],"722071":142,"7222":38,"7225":134,"72265625":134,"722717":38,"723":[76,134],"723684":116,"724":76,"724046":29,"7245":38,"724590719956222":58,"7247":134,"724924":[63,65],"725":[76,134],"72568":134,"72581411":158,"726":76,"726487e":123,"726562":59,"7265625":134,"72663483920857":[63,65],"726845ca9638":114,"727":[76,134],"7276":38,"727750":142,"72788":74,"728":76,"7280":38,"7281":38,"729":[76,134],"7293":134,"72991":134,"73":[38,50,76,111,116,145,147,158,163,164,166,193],"730":[76,186],"7302":134,"73041":134,"73046875":134,"7305":134,"730px":[122,123],"731":[76,134],"7311":[38,134],"7312":134,"73167":134,"73183":134,"732":[76,158],"7327":134,"7329":134,"733":76,"733707e":59,"73372":134,"734":76,"7340":134,"734147e":59,"7343":134,"734375":134,"7345":35,"734924":[63,65],"73498":155,"735":[76,134],"735000":38,"7351":134,"7354":38,"735822":59,"736":76,"736220":123,"7363":134,"73645":134,"736769":38,"737":76,"73779":134,"738":[76,134],"7380":155,"73828125":134,"7386":134,"73886":134,"739":[76,134],"7390":134,"73914":134,"7396":38,"74":[29,38,50,59,76,116,123,134,158,164,166,179],"740":76,"740251e":38,"741":[74,76],"741066":[63,65],"7415":35,"741619":145,"741661e":123,"74170":134,"742":[76,134,155],"7421875":134,"7422":[38,134],"7424":38,"742725":61,"74273":74,"7428":134,"742940":29,"743":76,"74306":134,"74310":134,"74340771":74,"74354":134,"74360":134,"74382":134,"744":[76,134],"744051e":59,"744216":122,"744669":59,"744769":38,"745":76,"745034":38,"74569":134,"7457":38,"7457109493044":64,"7458":134,"746":[76,134],"74609375":134,"747":76,"74703":134,"74763":134,"748":[76,134],"7483":134,"7486":134,"7488":134,"749":76,"749080":76,"7493":134,"7495":134,"7499":134,"75":[7,32,33,38,48,50,54,56,57,58,59,61,64,66,74,76,116,127,134,137,145,147,148,150,151,155,158,164,167,172,179,187,188,189,190,194],"750":[50,58,76,134],"7500":61,"750000":[38,59,64,155],"750178363923474":64,"750px":121,"751":76,"75151515":82,"75181":134,"752":76,"75226":134,"753":76,"753199":29,"75390625":134,"754":76,"75453":134,"754680":29,"7549":134,"755":[74,76,134],"75555":134,"755568":123,"75572":134,"7558":134,"756":76,"7561":155,"7563":134,"7567":134,"757":[76,121],"75727":134,"757500":38,"757748":123,"7578125":134,"758":[76,121,134],"75837":134,"75860":134,"758667":64,"759":[76,121,134],"7590":134,"7592":134,"75929":134,"7596":134,"7598":134,"7599":134,"75th":[54,158],"76":[38,57,76,109,116,134,158,178,187],"760":[76,121],"76006":134,"7603":134,"760479":58,"760623":145,"76074":134,"761":[76,134],"761000":145,"761446":123,"76150":134,"76171875":134,"76193":134,"762":[76,121,122],"76219":134,"7622":134,"763":[76,122],"763161":64,"76349":134,"764":[76,121,122,134],"764029e":38,"764420":64,"7645":134,"764553":123,"7647":134,"765":[76,122],"76536":134,"765625":134,"766":76,"7660":35,"76605":134,"7666666666666667":64,"7667":134,"7668":134,"766995e":38,"767":[76,122],"76701":134,"7673":134,"76731980371954":[63,65],"7675":134,"7678":[172,194],"768":[58,76,121,122],"768155":123,"7682":134,"7684":155,"7688":134,"769":[76,121,122,134],"7690":38,"7691":38,"76921":134,"769231":38,"76953125":134,"76968":134,"7699":38,"77":[38,59,76,111,158,163,164,166,193],"770":[76,121,134],"77016":134,"77019":134,"7704":134,"7705":35,"7706":38,"77064":134,"770px":121,"771":76,"77100":74,"7712":38,"7715":38,"7719":38,"772":[76,134],"7721":134,"7722":38,"7723":38,"772308":38,"7724":38,"77259":134,"7727":38,"7728":[35,134],"772823":58,"773":76,"7730":[38,134],"77332":134,"7734375":134,"773820":29,"773897":29,"774":76,"774000":111,"77419":134,"774272":155,"77455":134,"7746":38,"7749":134,"775":76,"7750":38,"77506":134,"7752":134,"77531":134,"7754":38,"77584":134,"7759":38,"776":76,"7762":134,"7763":38,"776962":123,"777":76,"77734375":134,"7777":38,"777777":41,"778":[76,134],"7780":134,"7784":134,"77847":134,"7785":134,"7786":134,"7788":134,"779":[76,134],"779576e":123,"78":[38,50,59,76,134,147,158,163,164],"780":76,"7800":38,"78008":134,"7805":134,"7807":134,"781":76,"78100":74,"7812":134,"78125":134,"782":76,"7829":134,"782925":38,"783":76,"78319":134,"783423":29,"783708":122,"784":[29,30,32,41,47,76,82,84,126,131,134,182,192],"78431373":74,"7844":[134,155],"784500":145,"78466":134,"785":[61,74,76,134],"7851":134,"78515625":134,"7852":134,"78573":134,"7858":134,"785px":121,"786":76,"7860":134,"7866":134,"7866666666666667":64,"7868":134,"787":[74,76],"7870":134,"7871":134,"787490":29,"78775":134,"788":76,"788453":123,"78855":134,"7888":134,"789":76,"7890625":134,"78911":134,"79":[38,52,59,74,76,109,111,134,158,163,164,167,178,179],"790":[76,134],"7900":61,"7906":134,"7908":134,"7909":134,"791":[76,134],"7912":134,"791419":123,"792":[76,192],"792168":29,"7925":74,"79260":134,"79290307":158,"79296875":134,"793":76,"793024":123,"7934":134,"793560":38,"7936":134,"794":76,"794615":38,"7949":134,"7949491493525":[63,65],"795":[76,186],"7951":155,"7952":134,"7954":134,"7958":134,"7959":134,"796":76,"7963":134,"79641063":158,"7968":134,"796875":134,"796958":29,"797":[76,158],"79704":134,"7971":134,"798":[76,134],"7980":[134,145],"7984":134,"799":[76,162],"7990":134,"7991":134,"799154":38,"79948":134,"7995":38,"79m":38,"79uxx":59,"7b":[121,122,123],"7d":[121,122,123,172,194],"7e100":172,"7m":38,"7poa":59,"7s":[61,158],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":59,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,41,43,44,47,48,49,50,51,53,54,58,59,60,61,63,64,65,66,74,75,76,77,84,92,93,101,109,112,116,117,119,121,122,123,124,127,128,133,134,137,145,146,147,148,150,152,155,157,158,159,166,167,171,172,178,179,180,186,188,193,194,195],"80":[14,31,32,33,48,50,52,59,63,65,66,74,76,92,132,134,136,139,141,158,159,163,164,165,167],"800":[3,56,76,147,158],"8000":58,"800000":64,"800232":29,"80037642":158,"8005":134,"80078125":134,"800px":[121,146,158,166],"801":[76,122],"80117999":158,"8012":134,"8013":134,"8014":134,"8015":134,"8016":134,"80180":134,"8019":134,"802":[76,122],"8020":134,"802422":29,"802500":38,"8027":134,"80290755":158,"803":[76,122],"803085":123,"8033":134,"8034810001":179,"80351":134,"80354":134,"80389616":158,"8039":134,"804":[76,122],"804221":38,"8045":134,"8046":134,"8046875":134,"80468775":74,"8049":134,"805":[76,122,186],"80577065":74,"8058":134,"8059":134,"806":[76,122],"8061":134,"8066":134,"807":[76,122],"8072059636181399":76,"80730058":158,"807645":123,"807712":123,"808":[76,122,158],"808326e":38,"808539":123,"80859375":134,"809":[76,122,134],"8091":134,"81":[38,57,59,66,76,92,109,116,119,134,158,163,164,167,172,178,194,195],"810":76,"8100":134,"8101":74,"8106":134,"81093633":158,"81098":134,"810px":121,"811":[76,122,134],"811000":145,"8115":134,"8115095913261051":163,"811667":38,"8117":134,"8118":134,"81180":134,"812":[76,122,134],"8121":134,"8125":134,"812500":38,"813":76,"8132":134,"813207":123,"8133":134,"8133333333333334":64,"8134":134,"813456":123,"8135":134,"8137":134,"814":76,"8140703517587939":167,"8141":134,"814101e":123,"8143":134,"8145":134,"8147":134,"815":[76,134],"8154":134,"8155":134,"815821":123,"816":[76,155],"81640625":134,"8169":134,"817":76,"818":[76,134],"818000":[111,178],"818088":123,"818286":29,"818557e":59,"819":[76,134],"8192":134,"8195":134,"8196":134,"82":[38,76,93,134,158,163,164],"820":76,"8200":134,"8203125":134,"8206":134,"820px":122,"821":[76,134],"8216":134,"8218":134,"822":[34,76],"8220":134,"8222":134,"822259":145,"823":[34,76,134],"8231":[61,74],"8235":134,"824":76,"8242":134,"82421875":134,"8243":134,"8248":134,"82485143":119,"825":76,"8250":134,"825000":38,"8256":134,"8259":134,"826":[76,134],"8260":134,"826347":58,"827":[38,76],"827204":29,"828":76,"828066":64,"828125":134,"8283":134,"8286":134,"829":[76,134],"829500":145,"829756":[63,65],"829818":123,"83":[35,38,59,64,76,111,158,164,167,178],"830":[76,134],"8307692307692308":167,"830px":121,"831":76,"832":[76,110,178],"83203125":134,"833":[76,145],"833333":38,"8333333333333334":158,"834":[76,121],"8340":35,"834496":122,"835":[76,121],"8359375":134,"836":[76,145],"836154":38,"836667":38,"836867":123,"837":[76,121],"837500":38,"837984":148,"838":[76,121],"839":[76,121],"839000":111,"839637":123,"83984375":134,"84":[40,50,57,59,66,76,134,147,158,163,164,166],"840":[76,142],"84001001":142,"84001003":142,"84001005":142,"84001007":142,"84001009":142,"8407":35,"840774":123,"841":[76,121],"84192557":158,"842":[76,121,134],"842069":29,"84236351":158,"843":[76,121,143],"843333":64,"84375":134,"844":[76,121],"844925":148,"845":[74,76,121],"8450":66,"845000":38,"8459":35,"846":[76,121,134],"8462":[61,74],"846646e":59,"847":[76,121],"84700":74,"847097":123,"84739223":158,"84765625":134,"8476788564209704":76,"8476788564209705":76,"8476788564209707":76,"8476788564209713":76,"8476788564209723":76,"8476788564209757":76,"8476788564209847":76,"8476788564210102":76,"8476788564210811":76,"8476788564212772":76,"8476788564218222":76,"8476788564233363":76,"847678856427542":76,"8476788564392248":76,"8476788564716766":76,"847678856561821":76,"8476788568122215":76,"8476788575077785":76,"8476788594398821":76,"8476788648068361":76,"8476788797150412":76,"847678921126722":76,"8476790361591695":76,"8476793556937455":76,"8476802432897899":76,"8476827088343573":76,"8476895575692671":76,"8477085818329055":76,"8477614270096787":76,"8479082191673818":76,"84797838907741":[63,65],"848":76,"8483159751610024":76,"849":[76,134],"8494486306988371":76,"85":[18,38,56,57,61,74,76,109,110,116,134,142,158,164,178,179,188],"850":[76,134],"8504":155,"850980":123,"851":[76,134],"8510":145,"8515625":134,"851852e":38,"852":[76,121,134,143],"852422":122,"852500":38,"852562":123,"8525948960817107":76,"8529":35,"853":[76,121],"854":[76,134],"8544":35,"854448":155,"854724":123,"855":76,"8554":35,"85546875":134,"8554913294797688":57,"856":[76,134],"856196":[63,65],"856667":38,"8568203376968316":50,"857":[76,186],"8572":35,"857461":123,"857898":122,"85796668":[61,74],"858":76,"8584":35,"858975":123,"859":76,"859375":134,"8595784":119,"86":[38,50,57,59,61,63,65,74,76,134,142,147,152,158,163,164],"860":[76,134],"8600":29,"860146":59,"861":76,"8613345221452491":76,"862":76,"862016":123,"863":[76,134],"863049":122,"86328125":134,"8637678":[172,194],"863846":38,"864":[76,134],"8644":35,"8649":35,"865":76,"866":[76,134],"8666666666666667":64,"867":76,"86713461558":61,"8671875":134,"8672":74,"867339":38,"867500":38,"868":76,"868263":142,"868942":[63,65],"869":[76,134],"869196":123,"869231":38,"869547":[63,65],"87":[38,50,57,76,142,148,158,164,172,179],"870":[76,134],"87000":[189,190],"870000":38,"87005":74,"870053":61,"870455":155,"870815e":59,"871":[76,122],"87109375":134,"871915":123,"872":[76,122,134],"873":[76,122,134],"8734":35,"874":[76,122,134],"874230":29,"874252":29,"875":[76,122,134],"87554":[121,123],"875750":145,"876":[76,122],"877":[76,122,134],"8776021588280649":77,"878":[76,122],"87890625":134,"879":[76,134],"88":[40,50,57,59,61,74,76,123,134,147,150,152,155,158,164],"880":[61,74,76],"880783":123,"8808":155,"881":[76,121],"881110":29,"882":76,"8823":35,"88235294":74,"882430":59,"882500":38,"8828125":134,"883":[76,121,134],"8830":35,"884":76,"8845":35,"885":[76,121,134],"8855":59,"8856112612106326":76,"8858":59,"885964":[63,65],"886":[76,121],"886073":29,"8861":35,"88633901":158,"8864":155,"88671875":134,"887":[76,121],"888":[76,121],"8883":35,"888687":29,"888888":150,"888889":116,"88889":186,"889":[76,134],"88k":50,"89":[38,50,57,76,134,147,158,164,171],"890":[76,121,134],"890208":123,"890625":134,"891":76,"892":[76,134],"8924":35,"8926045016077171":57,"892724":123,"893":76,"894":[76,134,145],"89400":74,"894226":123,"8942262958393035":123,"8942263":123,"89453125":134,"89488":145,"895":[76,134],"896":[76,134],"896291e":59,"896499":59,"896727335512334":64,"897":76,"8977517768607695":64,"898":[76,134],"8982142857142857":29,"8984375":134,"899":[76,142],"899327":123,"8aaad":59,"8b":93,"8barxiv":132,"8c74a315":[118,180],"8j":[172,194],"8s":[61,133,158],"8spbdlrp3lbr9j9uejdzgqul6":59,"8x8":[50,133],"9":[7,14,18,22,24,29,30,32,34,35,37,38,41,43,45,47,48,50,54,58,59,60,64,66,68,74,76,77,80,84,92,93,101,110,112,116,117,119,121,123,124,127,134,136,137,139,145,146,147,148,150,156,158,163,166,167,168,171,172,173,178,179,180,184,186,192,193,194,195],"90":[1,7,14,31,34,35,38,39,40,50,51,54,56,57,59,63,65,76,82,116,134,137,147,151,156,158,163,164,166,167,184,186,193],"900":[56,76,134],"900000":64,"90022":74,"900225":61,"901":76,"901429":76,"902":76,"902000":111,"90234375":134,"903":76,"903846":116,"90385283885":74,"904":76,"904227":29,"9042344":158,"905":76,"905000":38,"906":[76,134],"90625":134,"907":[76,134],"908":[76,134],"908113e":59,"908426":59,"9086":35,"909":[76,134],"90909091":82,"909651":123,"91":[38,41,50,57,74,76,84,111,134,147,158,163,179],"910":[76,134],"910000":145,"91015625":134,"9104":35,"910665":122,"911":[76,134],"91111":186,"911815":123,"912":76,"912486e":123,"912641e":38,"913":76,"9136":35,"9137407":74,"914":76,"9140625":134,"9142":35,"914407":29,"915":[76,134],"916":76,"916667":38,"917":[76,134],"9171":59,"917554018630476":64,"91796875":134,"918":76,"918462":38,"9187045":[61,74],"919":[76,134],"92":[38,40,49,57,59,68,76,80,116,134,150,158,186],"920":[76,134],"92051":137,"920px":122,"921":[76,134],"921875":134,"922":[76,134],"922500":38,"922706":38,"923":[74,76],"92300":74,"923077":116,"9235":59,"924":76,"925":[76,134],"9250":152,"925286":29,"92578125":134,"926":76,"926176":123,"927":76,"92780":155,"928":76,"929":[76,134],"9296875":134,"93":[35,38,40,57,59,74,76,82,109,134,158,178],"930":[76,134],"9300":61,"930808":155,"930833":38,"931":76,"9312":59,"931818":155,"932":[76,134],"9324":35,"933":[76,134],"933419":123,"933541":29,"93359375":134,"934":76,"934649":155,"934832":155,"935":76,"935214":29,"935376":29,"935730":123,"93598814":[61,74],"936":76,"937":[76,134],"9375":134,"938":[76,134],"938874":155,"938919":123,"939":[76,134],"93973042":116,"939902":123,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":59,"94":[29,38,47,48,50,57,59,68,74,76,80,109,116,134,158,166,178],"940":76,"940000":38,"940000e":38,"940217":155,"9403":35,"941":[76,134],"94111752":116,"94140625":134,"941642":[63,65],"942":[76,124,180],"942500":38,"94257014456259":50,"943":[76,134],"943324":155,"944":76,"944167":38,"945":[76,134],"9453125":134,"946":[50,76,134],"946246656":38,"947":76,"948":76,"948799":155,"949":76,"94921875":134,"949230e":38,"9494233119813256":50,"94998585":116,"95":[18,32,35,37,38,40,47,50,57,59,68,74,76,80,84,92,111,116,147,156,158,159,184,186],"950":76,"9500":61,"9503":155,"9505769161049876":166,"950791":155,"950964":58,"951":[76,134],"951123":155,"9511372931045574":50,"952":76,"952070":123,"952074":29,"952655":155,"953":[50,76],"953011":145,"9530466475033655":76,"953125":134,"953458db800a":141,"953488":122,"954":[50,76,134],"954000":145,"955":76,"9550":66,"955556":116,"956":[76,134],"9564565636458":[63,65],"9568":155,"957":76,"957500":38,"958":[57,76,134],"958084":58,"958183":123,"958434":29,"959":[74,76],"9591":35,"959280":59,"95k":50,"96":[32,47,50,54,59,76,134,158],"960":[76,134,192],"9600":66,"9600000000000002":64,"960304":29,"9609375":134,"961":[76,134,145],"961250":145,"962":76,"962500":38,"963":[76,134],"96303579":74,"964":76,"96484375":134,"965":[76,155],"965335":122,"9656":155,"965629":29,"966":[76,134],"966000":145,"9666666666666667":64,"9666666666666668":64,"967":[76,134],"968":76,"968333":38,"96875":134,"9688888888888889":158,"96896536339727":64,"969":76,"96918596":[156,184],"96945":38,"96982397":59,"97":[38,39,47,50,57,64,76,82,134,143,158,166,188,193],"970":76,"97011173":59,"9709416":59,"971":76,"971020":29,"972":[76,134,192],"9723201967872726":[63,65],"9725":59,"97265625":134,"973":[76,134],"97318436":59,"973292":29,"9733333333333334":64,"974":[76,122],"97458101":59,"975":[76,122,134],"975000":38,"975282":123,"9753462341111744":50,"975385344":38,"975532":59,"9756":59,"9757":74,"9759036144578314":167,"976":[76,134],"9765625":134,"977":[76,122],"977255e":38,"977377e":123,"9777777777777777":158,"978":[76,123,134],"9780321601919":140,"9783":59,"97848561":59,"97849162":59,"97876502":59,"9789":59,"97899282":[61,74],"979":[76,134,179],"979038":122,"979453":123,"97988827":59,"98":[47,49,58,59,60,76,134,158,167],"980":[76,123,134],"98046875":134,"980550":122,"9807":59,"981":[29,76,123],"9810":155,"9816":59,"98176":137,"982":76,"982109":142,"9824":59,"982500":38,"9827":59,"98296089":59,"983":[76,123,134],"9830":59,"983000":111,"983077":38,"9832":59,"9835":59,"984":[76,123],"984375":134,"985":[76,123],"985000":38,"985634":122,"986":[38,76,123,134],"986504":123,"9866666666666667":64,"986792":145,"9868":59,"987":[76,134],"987500":38,"987654321":92,"988":76,"98828125":134,"989":76,"98e3715f":101,"98gib":29,"99":[31,32,38,47,50,56,59,63,65,76,116,119,123,142,147,158],"990":[76,134],"990000":[189,190],"990133":29,"991":[57,76,167],"992":76,"9921875":134,"992212":145,"992258":29,"9924":35,"993":[76,134,145],"993280":29,"994":76,"9940711462450593":29,"9949":59,"994f5f":36,"995":[35,76],"9950":35,"995000":145,"995873":38,"996":[76,134],"99609181":74,"99609375":134,"996421":142,"996650":38,"996840":29,"997":[76,134],"997128":38,"997217":38,"997228":123,"99757":32,"998":76,"998058":38,"998799":38,"998816":38,"998827":123,"999":[34,37,56,76,127,128],"999530266023044":58,"9996615456176722":[63,65],"9999":56,"9999965334550955":[63,65],"9999997207656334":179,"999999999601675":[63,65],"9be4c7yahuinv1h07ucme1co9p":59,"9ec22d57b796":101,"9ect":59,"9f84":118,"9f95":[118,180],"9k":38,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":59,"9s":[61,158],"\u00b5":31,"\u00b5s":179,"\u00e1":143,"\u015fimdi":35,"\u03b3":59,"\u03b3xit":59,"\u03bb":155,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":38,"\u5168dlc":38,"\u5b89\u88c5\u5373\u73a9":38,"\u6597\u9c7c\u89c6\u9891":38,"\u65b0\u5efa\u6587\u4ef6\u5939":38,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":38,"\u7fa4\u661f":38,"\u8c6a\u534e\u4e2d\u6587":38,"\u8d60\u54c1":38,"\u8fc5\u96f7\u4e91\u76d8":38,"\u923d":101,"\u94f6\u6cb3\u5178\u8303dlc":38,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":38,"a\u00e7\u0131l\u0131\u015f":35,"abstract":[1,8,114,119],"ayl\u00f8":145,"bia\u0142ecki":180,"boolean":[7,46,92,101,117,121,122,123,132],"break":[14,33,35,50,62,75,124,130,134,139,140,165,172,191,194],"byte":[29,68,80,119,172,179,194],"cach\u00e9":180,"caf\u00e9":155,"case":[3,7,8,14,18,29,30,40,43,49,52,54,57,58,59,64,66,74,75,78,82,92,93,101,102,106,108,111,114,116,117,119,121,123,124,127,129,133,137,139,140,141,142,145,146,147,148,150,151,152,155,156,158,162,163,165,166,167,171,172,174,176,179,186,188,193,194],"catch":[130,141],"char":172,"class":[3,7,14,22,24,29,30,31,33,34,36,37,38,40,41,43,49,52,53,54,55,57,58,59,60,61,64,68,74,78,80,81,82,83,93,94,100,110,116,117,119,121,122,123,128,129,130,132,133,134,135,136,141,145,147,148,150,151,152,155,156,158,159,162,163,165,166,167,172,173,178,182,186,188,189,192,194],"clion2020\u7834\u89e3":38,"d\u00fc\u015f\u00fck":35,"default":[7,22,29,33,45,46,49,50,52,53,54,57,58,62,63,65,68,80,82,85,93,101,109,117,119,121,123,127,128,129,132,133,137,141,146,150,156,158,163,164,172,184,186,187,192,193,194],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,36,40,41,43,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,71,74,76,80,82,88,90,92,93,98,100,101,102,103,104,106,108,109,110,111,112,113,116,117,119,122,123,124,127,129,130,132,133,136,137,139,141,142,143,145,147,148,150,151,154,155,156,157,158,159,162,163,165,166,170,171,173,180,186,187,188,191,193,194],"export":[140,159,162],"final":[7,31,32,33,41,47,48,50,51,54,55,56,58,59,68,76,80,82,93,106,117,123,127,132,133,134,136,140,141,142,147,150,151,152,153,156,158,159,162,165,166,167,171,172,182],"float":[22,34,35,38,43,44,46,48,49,51,55,59,76,92,93,117,119,123,127,131,135,146,148,171,173,179,186,195],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,35,36,37,40,41,45,46,47,48,49,50,52,53,54,55,56,57,58,60,61,62,63,64,65,66,68,74,80,81,91,103,111,116,117,118,121,122,123,126,127,128,132,133,134,135,136,137,139,142,147,150,152,153,155,156,157,158,162,163,165,166,167,168,170,172,180,184,186,187,188,194,195],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,38,39,40,42,43,45,46,47,48,50,55,62,63,65,67,68,74,75,76,77,78,80,82,84,86,92,93,94,98,99,100,101,102,103,104,106,107,108,109,110,111,114,116,119,121,122,123,126,127,129,130,131,132,133,134,135,136,137,139,140,142,143,144,145,146,147,149,150,151,152,153,154,156,157,158,159,160,161,162,163,164,165,166,167,168,172,173,174,176,178,179,182,184,186,187,191,193,194,195],"int":[7,14,22,31,39,50,56,84,92,93,119,122,123,127,128,132,133,134,135,136,150,159,171,172,173,179,194,195],"long":[1,8,14,33,35,36,45,47,48,53,55,56,59,64,68,80,82,100,101,104,111,114,119,129,130,133,136,137,141,154,157,159,165,171,172,173,187,193,194],"micha\u0142":180,"new":[7,9,14,17,22,23,31,33,34,35,41,43,45,47,48,49,50,52,53,54,55,59,60,61,62,64,68,80,84,92,93,99,100,101,102,104,106,108,109,112,113,114,116,118,121,124,126,127,129,130,131,132,137,138,140,141,143,146,147,150,151,152,153,154,155,156,157,158,162,165,166,167,168,170,171,172,174,176,177,179,180,181,182,184,186,191,194],"null":[38,44,46,48,60,74,117,121,123,145,155,159,166,167],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":38,"p\u03b8":128,"pikach\u00fa":12,"public":[1,14,50,56,57,99,106,112,114,116,135,140,142,143,165,168,171,175,176,177],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,43,44,46,47,48,49,50,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,76,80,81,82,84,92,93,100,101,117,118,119,121,122,123,124,126,127,128,131,132,133,134,135,136,137,141,142,147,150,151,152,155,157,158,159,162,172,173,179,180,182,186,187,188,189,190,193,194],"short":[26,45,59,100,116,119,129,130,132,143,159,171,172,194],"static":[5,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,137,142,145,146,158,159,162,163,164,166,171,172,178,194],"super":[29,30,31,33,36,37,43,63,65,122,128,132,133,134,135,146,151,171,193],"switch":[0,7,14,47,50,141,147,171,193],"throw":172,"transient":139,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,66,68,74,76,77,78,80,82,92,96,97,100,101,108,109,116,117,119,121,122,123,124,127,128,130,131,132,133,134,135,137,142,145,146,147,148,150,154,155,156,157,158,159,164,166,167,168,170,171,172,173,178,179,182,184,188,192,193,194,195],"try":[1,3,4,5,7,9,11,14,16,18,25,29,31,35,36,44,45,47,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,76,82,83,89,92,100,101,102,104,107,108,109,110,111,114,117,118,121,122,123,124,127,133,134,135,141,142,143,145,146,150,151,152,154,155,156,157,158,159,161,163,164,165,166,167,168,169,170,172,173,186,191,194],"var":[18,38,51,55,68,80,108,128,147,150,166,178],"void":119,"while":[0,1,7,29,31,32,33,36,40,46,47,48,50,53,57,58,59,60,61,64,75,85,93,99,101,102,103,104,106,108,111,112,113,114,116,117,119,121,122,123,124,127,130,132,133,139,141,150,156,157,158,159,163,165,166,167,172,174,175,179,180,181,182,186,187,191,192,194],"y\u00fcksek":35,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,36,40,41,43,45,47,48,49,50,51,52,56,57,58,59,62,63,64,65,66,68,72,74,75,76,77,78,80,82,85,88,89,90,92,93,99,100,101,102,104,106,108,109,110,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,135,136,137,139,140,141,142,144,145,146,147,148,150,151,155,156,158,159,162,165,167,168,170,171,172,173,176,177,179,180,182,184,187,188,191,192,193,194,195],AND:[92,93,108,119,122,171,172],AS:[22,25,45,47,48,92,93,171,172],And:[31,32,40,41,43,48,49,50,52,56,58,62,68,74,76,78,80,92,100,102,104,112,116,119,126,129,130,133,136,139,140,141,142,143,147,156,158,168,172,176,180,184,187,194],As:[1,3,7,8,33,34,36,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,68,74,78,80,82,83,99,100,106,109,112,114,116,117,119,123,124,132,133,134,139,140,141,147,150,151,155,156,157,158,162,165,166,167,168,171,172,173,177,179,182,191,193,194],At:[28,40,48,50,56,59,68,75,80,106,116,119,124,130,140,141,143,147,151,152,157,165,168,170,171,172,179,191,192],BE:[92,93,171,172],BUT:[92,93,171,172],BY:[101,141,146],Be:[85,91,104,108,119,159],Being:[43,62,101,104,123],But:[33,38,40,43,48,49,50,52,53,56,57,58,59,61,64,68,74,80,100,104,109,112,124,127,129,131,137,139,140,141,143,146,150,151,152,154,156,157,158,165,167,170,171,172,173,184,188],By:[7,18,29,40,41,46,49,52,53,54,57,59,68,74,76,77,78,80,99,109,114,117,119,123,124,128,137,139,140,142,145,146,147,148,155,158,162,165,166,167,171,182],FOR:[92,93,171,172],For:[7,19,29,30,31,32,35,36,38,39,40,41,43,45,46,47,48,49,50,51,54,59,60,61,64,66,67,68,69,71,72,74,75,84,85,86,88,89,90,91,100,101,102,111,112,113,114,116,117,119,121,122,123,126,129,130,131,133,135,137,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,184,188,191,192,194],IN:[25,82,92,93,171,172],IS:[22,45,47,48,54,92,93,97,145,171,172],IT:[54,99,140],If:[1,7,14,16,18,29,33,34,35,39,40,41,43,45,48,49,50,51,52,53,54,57,58,59,60,62,64,66,68,69,74,76,77,80,82,92,93,95,100,101,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,128,129,130,131,132,134,136,139,140,141,143,145,147,150,151,152,154,156,157,158,159,162,164,165,166,167,168,170,171,172,173,180,186,188,191,193,194,195],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,36,39,40,41,43,45,46,47,48,49,50,52,53,54,57,58,59,60,61,62,64,66,68,69,71,74,75,76,77,78,80,82,83,88,89,90,92,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,135,137,139,140,141,142,143,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,179,180,181,186,188,189,190,191,192,194,195],Is:[50,93,97,99,103,106,111,112,113,128,140,141,145,159,165,167,168,195],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,77,78,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,175,176,182,186,187,188,189,191,192,194],Its:[129,150,155,167],NEAR:[61,74],NO:[92,93,171,172],NOT:[82,92,93,119,171,172],Near:[109,178],No:[7,20,29,33,50,54,56,64,82,88,93,98,100,101,110,130,143,147,156,158,163,171,172,175,178],Not:[7,40,43,49,52,54,56,68,80,101,111,117,118,134,151,163,166,167,172,187,194],OF:[22,45,47,48,92,93,171,172],ON:[124,180],ONE:7,OR:[22,45,47,48,92,93,119,171,172],Of:[50,101,102,104,114,158,173,174],On:[49,50,52,57,58,59,60,61,66,68,74,80,101,104,106,141,147,151,154,155,158,159,165,166,170,171,177,187],One:[1,7,11,28,40,43,49,50,52,53,54,55,57,58,59,66,83,98,103,104,106,108,110,114,116,119,127,129,135,141,146,148,150,156,165,166,168,171,172,173,177,178,179,184,186,191,194],Or:[32,40,50,58,74,102,104,119,129,130,141,145,148,165,171,172,187,191,194],Such:[1,7,30,40,43,49,50,54,116,141,142,166,171,193],THAT:82,THE:[92,93,171,172],TO:[54,92,93,136,171,172],That:[31,32,40,43,48,49,50,52,57,61,62,68,74,80,104,109,116,119,124,130,146,148,151,152,158,159,165,167,172,173,191],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,37,39,40,41,45,46,47,48,49,50,52,54,55,56,57,58,59,60,61,62,63,64,65,66,68,71,74,76,78,80,83,84,90,91,92,93,99,102,103,104,106,108,109,110,112,113,114,115,116,118,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,153,154,155,156,159,162,163,165,166,167,173,174,176,177,178,182,183,185,186,187,188,189,190,191,192,195],Then:[7,31,45,47,50,56,66,77,82,101,104,116,119,127,128,131,134,136,141,142,143,146,147,148,150,151,155,159,166,170,171,172,173,187],There:[0,1,3,7,18,28,29,30,32,34,36,37,39,40,41,43,46,47,49,50,51,54,57,59,60,62,64,68,72,74,80,85,100,101,104,106,108,109,110,113,114,116,117,118,119,121,124,126,127,129,132,134,136,137,139,140,141,142,143,145,146,148,150,151,154,158,159,161,162,164,165,166,167,169,170,171,172,173,191,192,193,194],These:[7,30,31,39,41,45,49,54,56,59,60,74,75,77,78,99,101,104,106,109,112,113,118,119,122,123,132,140,146,150,151,155,157,158,165,171,173,175,177,179,180,182,193],To:[0,1,7,14,18,22,29,33,34,36,40,41,45,46,48,49,50,52,54,58,61,62,66,68,74,75,76,82,92,99,100,101,102,104,109,110,111,112,114,116,117,119,121,123,124,127,128,129,131,132,133,134,137,138,139,140,141,142,143,147,148,151,152,154,155,156,158,159,162,165,166,167,168,170,171,172,173,177,178,180,183,186,187,191,193,194,195],WITH:[92,93,171,172],Will:[143,167,173],With:[7,40,41,43,47,50,56,60,61,62,84,99,103,104,108,109,111,112,113,114,118,119,122,123,124,129,140,141,148,150,151,156,158,165,171,180,187,192],_0:151,_1:148,_2:148,_:[18,29,31,33,37,41,51,56,81,126,127,128,130,131,132,133,134,136,137,148,151,158,171,172,182,188,189,194],____:[3,12,22,24,25,46,92,93,97],_____:[24,92],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:29,____i:93,__abs__:92,__add__:92,__all__:171,__annotations__:[171,193],__builtins__:171,__cached__:171,__call__:[63,65,128,133],__class__:[37,171],__dict__:[189,190],__doc__:[171,193],__eq__:92,__file__:[127,171],__finalize__:[121,122],__future__:[37,127],__get__:121,__getitem__:[122,123],__init__:[29,30,31,33,35,36,37,43,55,63,65,81,82,94,128,130,132,133,134,135,152,171,188,189,193],__iter__:33,__len__:33,__loader__:171,__main__:[35,127,130,159],__mul__:92,__name__:[35,37,127,130,159,171],__operators__:134,__package__:171,__repr__:55,__spec__:171,__str__:92,__sub__:92,__truediv__:92,__version__:[41,158,193],_aspp:133,_attach:[118,180],_bin:54,_branch:133,_build_model:35,_bunch:[57,58],_caller:121,_check_indexing_error:123,_check_params_vs_input:146,_concaten:121,_consolidate_inplac:122,_constructor:122,_conv_block:133,_conv_bn_relu:133,_conv_relu:133,_data:122,_deeplabv3:133,_deprecate_mismatched_index:122,_deprecated_arg:122,_engin:123,_etag:[118,180],_fcn_16:133,_fcn_32:133,_fcn_8:133,_fuse_bn_tensor:132,_get_axi:122,_get_block_manager_axi:122,_get_comb_axi:121,_get_concat_axi:121,_get_join_info:121,_get_list_axi:122,_get_result_dim:121,_get_slice_axi:122,_get_valu:[122,123],_get_values_for_loc:123,_getbool_axi:122,_getitem_axi:122,_getitem_lowerdim:122,_getitem_tupl:122,_i:[77,78,148,158],_identity_block:133,_ilocindex:122,_index:56,_indicator_pre_merg:121,_info_axi:121,_invalid_index:122,_is_copi:122,_is_scalar_access:122,_items_overlap_with_suffix:121,_j:[148,158],_k:130,_kmean:146,_label:57,_left:121,_lib:[121,123],_locationindex:122,_locindex:122,_m:130,_make_concat_multiindex:121,_make_stag:132,_maybe_cast_for_get_loc:122,_maybe_cast_slice_bound:122,_maybe_check_integr:121,_merge_doc:121,_merge_typ:121,_mergeoper:121,_method:179,_mgr:[121,122],_novalu:179,_other:121,_pad_1x1_to_3x3_tensor:132,_pickl:127,_recognized_scalar:122,_reindex_and_concat:121,_rid:[118,180],_right:121,_sec_1:93,_segnet:133,_self:[118,180],_sigmoid:[81,189],_skip:3,_slice:122,_static:[122,123],_subplot:74,_sum:179,_t:[118,180],_t_sne:186,_take:122,_take_with_is_copi:122,_takeabl:122,_valid_typ:122,_validate_integ:122,_validate_kei:122,_validate_tuple_index:122,_valu:123,a0958ad901d7:118,a0:[121,179],a10:123,a1:[119,121,179],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:59,a21453:172,a23:[171,193],a2:[119,121,179],a3:121,a3z5kdkfn3tbq:59,a4:121,a5:121,a7yia1n5fo6efhugqfis3dhueyjsa:59,a_:82,a_dict:172,a_i:[82,147],a_list:172,a_n:150,aaaaaa:[156,184],aafter:157,aaron:[29,50,78,131],ab:[50,63,65,77,92,93,122,127,128,135,158,171,172,194],abadi:131,abbeel:128,abbrevi:[124,128],abc:[93,122,123,172,179,195],abcd:[7,117,122,179],abcdef:122,abcmous:[112,176],abhinav:[139,143],abil:[43,52,54,68,76,77,80,108,129,139,140,150,156,159,165,171,173,184,191],abl:[3,7,10,11,14,16,20,31,40,49,50,52,53,54,57,61,62,74,76,101,104,110,112,114,118,119,123,129,137,140,142,145,151,154,157,159,162,165,166,167,168,170,176,186,189,190,193],abnorm:29,abnorml:66,abo:38,aboslut:157,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,40,41,43,46,47,48,49,50,52,53,54,57,58,59,60,61,62,66,68,77,78,80,83,84,90,99,100,101,102,103,104,106,108,109,110,112,114,115,116,117,118,119,121,123,124,125,129,130,133,135,137,138,139,140,141,142,143,144,145,146,147,150,151,152,154,155,157,158,159,161,163,164,165,166,168,169,170,171,172,173,174,176,177,180,188,191,193,195],abov:[0,1,7,11,14,19,26,29,32,36,40,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,64,66,68,74,80,92,93,104,108,110,114,116,119,121,122,123,124,127,128,129,130,132,133,135,137,139,140,141,142,145,146,147,148,150,154,155,157,158,162,165,166,167,168,169,170,171,172,173,178,187,188],above_cutoff:158,abracadabra:172,abraham:195,abs_vector:[172,194],absenc:[54,186],absent:122,absolut:[47,76,78,83,92,116,119,141,150,154,157,171,172,173,194],absolute_error:77,absolute_import:127,absolute_percentage_error:77,abspath:127,abund:[110,178],ac:158,academ:[112,115,138,176],academi:193,acc:[33,39,47,49,52,57,127,136,192],acc_and_loss:127,acc_output:127,acceler:[100,110,111,141,143,166,178],acceleromet:116,accept:[16,40,57,68,80,83,100,103,106,112,119,122,123,132,141,143,151,155,165,171,177,191,192],access:[6,14,16,38,41,68,74,80,99,101,102,104,106,108,112,118,122,139,142,143,159,166,171,172,176,177,179,187,193,194],accessor:123,accident:151,acclaim:155,accommod:[7,36,47,117,172],accompani:[116,141,166],accomplish:[88,141,151,165,186,191],accord:[18,45,50,54,63,65,99,108,109,110,111,116,119,122,132,139,142,145,147,150,155,159,163,165,166,167,168,170,186],accordingli:[41,55,127,145,171,193],account:[0,6,8,14,16,50,76,92,101,102,112,116,118,119,147,151,166,167,176,179],accumul:[1,50,92,106,137,148,165,172,191],accur:[15,32,33,41,50,54,59,68,69,77,80,90,101,106,112,113,116,127,129,133,135,139,142,143,147,154,157,162,165,166,167,177],accuraci:[29,33,34,39,40,48,49,50,51,52,54,56,57,60,64,68,69,76,77,78,80,82,83,84,102,112,117,127,133,136,141,142,146,147,148,150,151,153,154,156,158,159,163,164,166,167,174,176,182,186],accuracy_of_batch:127,accuracy_scor:[29,30,39,49,50,51,52,56,57,59,60,68,80,83,150,155,159,163,164,167,186,189,190],achiev:[32,33,40,48,50,54,56,59,103,106,119,130,131,132,133,139,140,141,142,150,151,152,153,155,156,157,158,171],aci_servic:[9,100],aci_service_nam:[9,100],aciconfig:[9,100],acid:48,aciwebservic:[9,100],acm:[112,139,176],acoust:[144,145,146],acquir:[6,103,106,141,177],acquisit:[3,102,106,114,137,174,176],acronym:109,across:[33,43,47,54,68,80,102,112,114,116,119,121,123,124,127,137,139,140,141,143,151,155,158,171,172,174,176],act:[3,14,22,24,35,53,62,93,104,112,119,123,127,130,135,165,166,179,191],act_greedi:35,act_valu:35,action:[0,7,35,40,45,46,92,93,99,103,104,112,114,117,118,119,131,140,142,159,163,165,171,172,176,191],action_s:35,actions_count:35,activ:[0,29,30,32,33,34,35,36,39,40,41,43,44,45,47,48,56,57,62,82,112,126,127,128,132,133,134,135,136,142,151,157,158,162,176,181,182,187,192],activateion:134,activespac:180,actor:171,actual:[7,38,40,43,46,47,48,50,51,52,56,57,59,60,66,68,74,75,76,77,78,80,82,83,84,92,101,111,113,114,116,117,118,119,122,123,127,128,129,137,139,145,151,153,155,157,158,162,165,166,167,171,173,175,177,181,188,191],actual_result:[3,14,22,24,53,93],actual_valu:[38,77],acut:150,ad:[1,7,18,22,29,32,36,38,41,43,45,48,50,52,54,59,64,68,76,80,92,93,111,113,116,118,127,128,132,138,140,141,150,151,152,154,156,165,166,172,188,194],ada:164,adaboost:[151,164],adaboost_clf:49,adaboostclassifi:[49,56,163,164],adagradoptim:141,adam:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,126,128,132,133,134,182],adamax:36,adamharlei:181,adamoptim:[127,131,141],adapt:[47,58,62,99,112,132,137,141,151,176,192],adaptiveaveragepooling2d:132,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,38,39,41,42,43,44,45,46,47,50,52,54,61,62,63,65,66,76,92,93,108,110,113,116,118,121,124,126,127,128,132,133,134,135,140,150,151,152,154,155,156,157,159,164,165,166,167,168,170,171,172,173,180,182,184,187,188,191,192,194],add_1:134,add_:31,add_artist:[110,178],add_legend:145,add_selectbox:187,add_slid:187,add_subplot:[35,37,47,75,130],add_trick:171,add_weight:132,addison:140,addit:[1,7,18,23,32,41,46,54,59,64,66,74,75,76,92,103,104,106,108,112,113,116,117,118,119,124,130,132,133,134,135,137,141,143,147,151,152,154,155,156,158,166,172,173,179,180,194,195],addition:[31,117,119,124,140,145,147,151,156,180,184],additon:32,addon:128,address:[75,76,90,103,104,106,112,137,139,140,143,147,154,165,171,176,177],adel:150,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91,116,141],adher:[48,106],adjac:171,adject:[172,194],adjunct:165,adjust:[29,33,36,45,55,57,58,75,132,141,150,151,156,164],admin2:142,admin:180,administr:[143,173],admonit:[121,122,123],adobe_premier:38,adolesc:171,adopt:[59,85,102,112,140,141,143,147,151,174,176,195],adult:[171,193],advanc:[35,43,66,102,112,116,120,123,125,138,140,141,143,147,165,172,180,183],advantag:[40,50,54,68,80,123,132,140,143,150,153,154,156,172],advent:[49,129,140],advers:28,adversari:[36,143,183],advertis:104,advic:141,advis:[7,46,53,58,61,117,150],advoc:112,ae:[31,128],aebf:[118,180],aeroplan:7,aerospik:180,aesthet:22,affect:[7,17,33,39,49,52,54,56,58,68,76,80,82,102,104,106,112,116,117,130,132,141,148,154,156,157,171,174,176,184],affer:136,affin:[82,145],affinity_matrix_:158,afford:[7,74,117,165],african:[112,143,176],afro:[145,146],afropop:[145,146],after:[0,7,14,29,32,33,34,35,36,39,40,41,47,48,49,50,51,54,55,56,57,60,62,64,74,76,82,104,108,114,116,117,119,124,126,127,132,133,134,136,137,140,141,142,145,146,148,150,151,154,155,159,164,165,166,168,171,172,173,187,189,190,192,193,194],afterward:[32,119],afzal:139,ag:[9,18,22,50,51,74,88,92,93,100,101,114,116,118,119,121,140,145,147,148,152,155,162,165,169,170,171,172,173,179,180,189,190,191,193,194,195],again:[7,14,17,40,41,47,49,50,51,52,53,57,58,59,68,80,82,117,123,128,146,151,155,157,167,168,171,172,173,186,187],against:[0,18,41,47,50,59,77,78,104,112,114,116,121,122,137,141,151,157,159,170,185],agaricu:110,age_distribut:24,age_median_imput:22,age_sal_tre:50,age_tre:50,agefil:22,agenc:[104,165],agenda:[102,174],agent:[112,165,191],ageron:158,agg:[18,38,158],aggfunc:121,agglom:145,agglomerativeclust:158,aggreg:[7,14,49,106,111,127,147,150,155],aghdkaaa:132,aghdkaab:132,agil:[139,140],agnost:140,ago:[127,129,151],agre:[22,45,47,48,112],agricultur:[102,111,165,168,174,191],ahead:[49,52,57,104,137],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:59,ai:[12,18,25,100,102,108,112,114,121,122,123,130,139,140,142,143,146,159,165,170,175,176,181,191,193],aid:[54,62,78,145,166],aim:[54,75,76,104,130,131,132,135,148,165,185],air:113,airbu:29,airflow:140,airlin:7,airplan:127,airport:[102,124,174,180],ajai:128,ajaymach:141,aka:[36,140],akinlua:139,akkio:175,al:[31,68,80,111,112,143,178],alabama:142,alacazam:172,albeit:[45,167],albifron:[109,178],album:145,alcohol:[48,101],alekseynp:158,alert:139,alex:[33,127,128,133],alexa:141,alexand:[125,127],alexandru:66,alexei:59,alexi:152,alexnet:132,alfredo:170,alg:56,algebra:[42,51,54,59,84,119,192],algo:151,algorithm:[3,31,41,49,51,52,53,55,56,57,58,59,60,61,71,75,76,82,83,84,90,92,99,100,101,102,112,119,127,128,129,132,135,137,138,139,140,141,143,146,147,148,152,153,154,156,157,162,163,165,168,171,174,176,184,185,186,188,189,190,191],algoritm:151,algorythm:83,alia:[119,186],alic:[172,179],align:[22,77,112,119,135,137,145,146,148,158,159,162,166,167,186],alik:[0,143,150],all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,36,37,38,39,40,41,43,46,48,49,50,51,52,54,56,57,58,59,60,62,64,66,68,76,80,82,84,89,92,93,98,99,100,101,102,103,104,106,107,108,109,110,112,113,114,115,116,117,118,119,121,123,127,128,129,130,131,132,133,134,136,137,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167,168,170,171,172,173,174,176,177,179,184,185,186,188,191,192,193,194,195],all_attr:31,all_clfs_acc:49,all_data:66,all_nod:1,all_photo:31,allbeit:82,allclos:82,allegrograph:180,allei:[54,66],allevi:[49,52,54],allianc:106,alloc:[29,40,50,112,182,186],allow:[1,3,14,18,48,50,54,59,75,76,77,99,100,101,103,111,112,113,114,116,118,119,121,122,123,124,126,130,132,133,139,140,141,145,151,154,155,156,162,163,166,170,171,172,173,186,187,193,194,195],allowfullscreen:[116,162],allpub:66,allud:50,almeida:48,almond:[110,162,163,178],almost:[7,31,36,40,43,50,57,62,102,104,117,124,150,151,165,166,171,172,187,191],alon:[106,143],along:[1,7,33,36,40,48,51,54,59,68,75,76,80,103,104,109,117,118,119,121,122,123,136,140,142,145,150,163,164,165,166,171,178,191],alongsid:[71,109,141],alot:[54,129],alpha:[36,55,66,75,77,83,109,127,147,150,151,155,156,157,158,172,178,184,186,189,190,194],alpha_:128,alpha_t:[128,151],alpha_t_bar:128,alpha_tb_t:151,alphabet:[113,118,159],alphago:[129,165],alphas_cumprod:128,alphas_cumprod_prev:128,alphas_t:128,alq:54,alreadi:[40,43,49,50,52,54,60,63,65,68,78,80,82,93,100,106,114,122,123,128,133,141,147,151,158,168,170,171,173,177,179],alright:[36,82],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,36,39,40,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61,62,63,64,65,66,68,74,76,77,78,80,82,83,98,99,101,102,103,104,106,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,135,137,138,139,140,141,142,143,147,150,151,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,179,184,186,191,192,194],altair:187,altavista:151,alter:[75,84,106,113,171,177,193],alter_imag:84,altern:[7,16,32,45,54,59,62,111,112,117,119,141,145,156,157,171],altexsoft:140,although:[30,31,49,50,52,54,55,60,66,76,84,129,132,136,139,140,147,151,155,158,165,171,172],altogeh:140,altogeth:[14,157],altunyan:102,alwai:[7,14,30,33,34,36,40,43,45,47,48,49,52,54,55,57,58,59,61,68,80,104,109,116,119,121,123,124,128,129,130,132,137,140,141,142,143,150,151,155,156,157,158,162,165,167,171,172,173,193,194],am:[0,40,59,93,172,193],amalgam:78,amax:35,amaz:[32,101,102,108,133,173,174],amazon:[99,139,140,141,143,180],ambigu:[33,106,122,171],america:[108,169],american:[112,143,176],aml:[9,100],aml_comput:[9,100],aml_config:[9,100],aml_nam:[9,100],amlb:141,amlcomput:[9,100],among:[7,56,59,64,116,119,132,140,141,150,151,155,165,167,185],amongst:145,amount:[7,17,31,56,59,75,99,100,101,110,111,114,121,124,127,129,132,139,141,151,152,156,157,159,165,168,171,172,175,176,178,179,180,184,186,191],amp:145,amplifi:[102,112],amus:145,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,36,40,41,43,45,46,47,48,49,50,52,54,56,57,58,59,62,68,74,75,77,78,80,82,83,84,90,91,92,93,99,102,103,106,108,109,110,111,112,113,114,116,117,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,162,163,164,165,166,167,170,171,172,173,174,176,177,178,179,180,182,183,184,185,186,188,191,192,193,194,195],anaconda3:[38,137],anaconda:[121,122,123,150],anaemia:[9,100,101],analog:[49,75,116,119,123,152],analys:[7,54,76,99,117],analysi:[1,7,16,17,18,21,31,46,68,76,80,100,102,105,106,113,114,117,119,121,123,124,126,129,139,145,148,151,155,158,167,168,174,176,177,179],analyst:101,analyt:[1,35,51,56,99,102,119,139,147,151,155,174,175],analyticsvidhya:56,analyz:[16,17,59,99,102,105,113,114,116,139,143,145,155,158,163,166,169,178],anatida:[109,178],ancestor:151,anchor:135,and21:143,anderson:143,andon:112,andreetto:132,andrew:[108,116,127,132,139,141,142,165],android:159,anemia:101,anf:34,ang:166,angel:172,angelica:[162,163],angelina:50,angl:[84,108,150,157,181],ani:[0,3,7,14,17,18,22,26,30,31,40,43,45,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,68,74,77,80,82,92,93,99,100,104,106,109,110,112,116,117,119,121,122,123,124,129,130,132,136,137,139,140,141,142,143,145,147,148,150,151,154,155,157,158,159,162,165,167,168,170,171,172,173,176,186,187,191,193,194],anim:[121,128,147,165,182,191,193],anis:[110,162,163,178],anise_se:[162,163],ankl:[30,40,41],ann:[39,129],ann_build:44,anneal:32,anni:24,annot:[4,5,13,19,34,38,40,48,49,51,52,53,59,64,68,74,80,108,132,135,158],announc:82,annual:[124,143,180],anomagram:126,anomal:[29,45,141],anomali:[8,14,47,49,50,141,145,158],anomalies_mask:158,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[103,112,171,176,193],anoth:[1,3,7,8,10,14,30,31,33,40,43,46,47,49,50,52,54,56,59,66,68,75,77,80,90,92,99,101,104,108,109,110,111,114,116,117,118,121,123,124,127,132,137,138,140,141,142,143,144,145,146,147,148,150,151,154,155,157,158,164,165,166,171,172,178,179,186,193,194],another_tupl:172,anser:[109,178],anseriform:[109,178],ansibl:140,anspos:29,answer:[16,23,40,49,50,51,56,82,85,102,103,108,111,116,121,129,132,138,141,142,143,147,148,151,152,159,162,165,168,170,171,177],anthropolog:145,anti:[84,143],anticip:114,any_column:24,any_script_cont:3,any_style_cont:3,anymor:157,anyon:[77,112,138],anyth:[7,13,18,43,58,61,66,104,124,145,151,165,168,170,171,177,187,191],anywai:[57,167,172],anywher:[49,50,119,165,171],ap:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,116,123,137,145,146,158,162,163,164,166],apach:[22,45,47,48,63,65,83,84,139,140,180,186,187,188,189,192],apart:[7,36,54,62,117,123,124,151],api:[6,16,29,40,41,45,48,57,62,99,100,101,102,113,118,121,140,159,162,166,167,170,174],api_doc:128,api_kei:101,apostroph:134,app:[5,6,38,43,91,99,104,108,112,116,118,142,176,187],appar:[151,171],apparatu:[18,116],appdata:[57,62,121,123,186,193],appeal:[49,52,53],appear:[30,31,32,47,101,109,112,116,119,131,132,133,134,137,141,143,150,151,155,157,159,166,167,171,172,176,182,187,194],append:[1,3,7,14,31,33,35,36,37,38,39,42,44,46,49,50,54,75,82,83,84,92,119,121,127,128,130,132,133,134,135,136,145,146,150,152,158,171,172,173,186,193,194],append_diff_column:14,appl:[39,112,162,163,172,176,194],apple_brandi:[162,163],applet:156,appli:[1,3,14,16,28,29,31,34,36,37,38,40,45,46,50,54,56,57,59,62,63,65,66,75,76,81,82,83,92,102,103,106,108,109,113,114,116,118,119,121,123,124,127,129,130,132,133,137,139,140,141,142,143,145,147,150,151,154,156,157,158,159,165,166,167,168,172,178,179,184,186,187,189,191,194],appliabl:3,applic:[0,4,16,22,39,41,45,47,48,75,77,99,100,101,102,106,112,113,114,118,119,125,127,131,132,133,135,137,139,140,141,143,147,151,155,159,172,173,174,176,177,183,194],apply_along_axi:84,apply_gradi:[36,126,128,134],apply_if_cal:122,apply_kernel:33,appreci:36,approach:[1,23,29,33,45,48,50,54,58,59,66,75,82,102,106,112,114,117,132,139,140,141,142,143,144,145,148,150,151,156,158,165,166,167,171,172,173,174,177,191],appropri:[29,31,45,50,68,76,78,80,92,104,118,119,130,141,145,151,154,156,162,168,170,172,180,184],approv:[50,116,140],approx:[50,92,147,151],approxim:[7,30,48,50,81,93,131,137,147,151,155,166,188,189,192],apricot:[162,163],april:[142,166],aqi:113,aqx:54,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,72,74,75,76,77,78,80,82,83,85,88,92,93,95,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,173,175,176,177,178,179,180,181,182,183,184,186,187,188,191,192,193,194,195],arang:[29,50,55,82,119,136,137,158,179,186,189,190],arangodb:180,arbitrari:[18,47,119,121,151,155,172,192,193,194],arbitrarili:[158,172,194],arc:109,arcco:119,arcgi:102,architect:139,architectur:[33,36,62,101,106,112,118,132,133,134,135,139,141,142,147,157,159,176],archiv:[33,136],arcsin:119,arctan:119,are_anagram:172,area:[1,50,54,59,66,74,77,100,101,102,109,112,114,116,123,129,139,141,143,147,151,165,167,170,173,174,179,181],aren:[43,47,56,64,127,152,154,167],arff:57,arg:[22,39,47,48,92,93,127,135,151,171,193],argmax:[34,35,39,41,82,127,133,134,136,150,186],argmin:[158,186],argscop:135,argsort:[55,119,148],argtyp:127,argu:[55,114,141],argument2:173,argument3:173,argument:[7,40,50,62,92,103,104,118,119,121,122,123,127,132,133,146,154,157,172,173,192,194],arguments_dictionari:171,arguments_list:171,aris:[28,47,92,93,112,139,171,172],aristocraci:108,arithmet:[7,31,92,116,117,119,171],aritifici:176,arizona:111,armagnac:[162,163],armi:187,around:[1,3,7,10,13,16,18,20,31,33,37,39,43,45,48,54,55,77,99,104,105,108,111,112,114,116,117,124,141,142,145,151,158,159,164,165,166,170,172,176,179,188,194],arous:139,arr1:119,arr2:119,arr:[47,48,93,119,179],arrai:[1,7,18,31,34,35,39,40,41,42,43,44,45,49,50,55,57,59,60,61,63,65,66,74,75,76,77,81,82,83,84,109,110,116,121,122,127,128,130,132,134,136,145,146,147,148,150,151,156,158,159,164,166,167,170,172,173,184,188,189,190,194,195],arrang:[14,54,64,137,170],array_split:134,array_to_img:[36,133],arriv:[106,116,167,177],arrow:[118,170],arrowprop:158,art:[31,127,132,134,138,140,141],artemisia:[162,163],arthur:[158,165,191],artichok:[162,163],articl:[28,35,37,41,49,50,52,102,104,108,110,114,116,140,145,148,151,172,174],articul:104,artifact:[39,101,108,140],artifici:[18,39,41,50,84,102,114,126,129,136,138,142,143,189,190,192],artist:[36,145],artist_top_genr:[145,146],artistanim:128,artwork:31,arument1:173,arxiv:[127,128,131,132,133,135,143],as_cmap:38,as_default:127,as_fram:[60,158],as_list:[43,127,132],as_panda:155,asabeneh:[173,195],asarrai:150,ascend:[1,31,50,51,54,56,119,162,163],ascii:136,ascrib:108,asia:[161,162],asian:162,asid:[33,50,154],ask:[8,11,23,41,50,57,58,71,102,103,104,106,108,112,114,121,122,129,132,138,141,159,162,163,165,166,167,170,172,174,177,191],asp:[171,172],aspect:[11,13,54,56,82,105,106,108,111,114,135,139,141,143,168,178],aspp_siz:133,assembl:[36,140,171],assert:[3,14,22,24,31,46,48,53,82,92,93,94,96,97,132,133,134,135,142,158,171,172,193,194],assert_called_onc:[24,53],assert_called_once_with:[24,53],assert_frame_equ:[14,22],assert_not_cal:[24,53],assert_series_equ:14,assertalmostequ:47,assertequ:93,assertionerror:[96,97],assertrais:[14,93],assess:[23,50,76,77,98,102,103,112,148,157],asset:[12,14,15,18,22,23,24,25,46,49,50,52,53,54,56,59,60,61,62,64,67,74,82,83,84,86,101,108,128,139,142,147,148,150,152,154,155,159,167,168,171,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,192,194,195],assgin:54,assign:[3,6,8,11,14,16,17,19,22,24,28,40,45,46,47,49,50,52,53,54,74,76,78,90,93,100,101,102,106,108,109,110,111,116,122,124,130,132,133,138,139,141,142,145,146,150,151,156,158,159,162,163,164,165,166,167,168,170,171,172,173,186,187,188,189,193,194],assist:[101,165,186],associ:[3,7,41,92,93,100,101,104,112,116,118,119,135,140,143,148,157,165,166,170,171,172,175,176,180,191],assort:119,assum:[7,48,49,50,56,57,58,76,92,116,119,123,128,130,135,141,147,148,158,166,171,172,192,194],assumpt:[31,48,55,74,116,141,147,151,156,157,186],assur:[0,141],asterisk:[93,173],astrophysicist:6,astyp:[22,29,30,31,35,36,38,44,50,56,110,126,158,178,182,186,192],asymmetr:[139,151],asymmetri:112,asymptot:150,atlanta:[124,180],att:132,attach:[41,101,110,118,178,180],attack:[100,101,143],attempt:[8,16,45,47,57,92,119,123,146,155,171,172,187,193,194],attend:128,attent:[83,123,128,129,132,134,148,150,151],attention_ax:128,attn_dim:128,attn_output:132,attr:[3,31],attract:[19,165],attrib:158,attribut:[7,31,50,51,58,83,92,101,113,114,122,139,148,155,171,186,193],attributeerror:[135,173],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,auc:[141,152,155,167],auc_weight:[9,100],auckland:[124,180],audienc:[144,177],audio:[31,41,113,151,165,191],audit:112,audubon:110,aug_test:56,aug_train:56,augment:[76,84,133,142,165,172],augment_input:133,augment_label:133,august:[140,166],aurelion:[43,49],australia:[14,159],australian:[49,52],autauga:142,authent:[101,139],author:[12,25,57,58,92,93,99,102,108,112,114,139,142,171,172,174],authorit:142,auto:[9,59,100,124,126,141,146,150,154,155,158,159,162,166,186],autoconfig:[3,14,22,24,53,74,92,93],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:143,autograd:[31,37],autokera:143,autolayout:[62,137],autom:[0,41,100,101,102,106,112,140,141,143,165,174,175],automat:[0,31,33,36,38,43,52,53,57,100,101,114,119,123,126,127,140,141,142,143,144,150,154,165,166,171,172,191,194],automl:[10,20,121,143,163,175],automl_config:[9,100],automl_error:[9,100],automl_set:[9,100],automlconfig:[9,100],automlrun:100,automobil:[33,127],automobile_fil:33,autonom:[127,135,143,165,191],autopct:[51,110,178],autoplai:116,autoregress:131,autotun:[128,132,133],autumn:[50,156,184],autumnali:[109,178],aux_loss:135,auxiliari:[50,82],av:54,avail:[1,3,7,14,29,33,38,40,50,51,52,53,54,57,62,68,72,74,80,100,101,103,106,109,110,111,112,116,117,123,124,130,137,139,141,142,143,145,150,151,162,168,170,171,176,177],avenu:102,averag:[7,14,18,22,24,25,29,32,33,37,48,49,50,52,53,59,66,77,78,93,104,113,114,116,119,127,128,132,145,146,147,148,150,151,155,158,164,166,167,170,186,193],average_length_of_word:92,average_pooling2d:132,averkiev:31,avg:[38,57,59,60,127,163,164,167,193],avg_pool2d:135,avg_pool:135,avgpool2d:32,avgpool:135,avil:[57,58],avocado:195,avoid:[40,47,49,50,53,54,57,58,104,111,122,123,124,134,140,141,143,150,154,158,164,165,168,170,171,180],avx2:29,aw:[40,139,140,142,143],awai:[49,64,104,110,145,156,158,165,171,172,188,191],awar:[76,102,104,108,112,119,123,165,171,174],awcmr9f:59,awesom:[92,93,101,110,129,151,171,173],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:59,ax1:[55,137],ax2:[47,55,111,137,178],ax:[1,14,22,29,30,32,33,35,36,37,38,39,40,43,47,50,51,54,62,64,66,74,75,83,108,109,111,119,121,122,123,127,128,130,137,145,146,150,152,155,156,158,166,172,178,184,186,188],axacc:47,axes3d:[75,83,186],axessubplot:[57,59,60,61,74,109,145,162,166,167,178],axhlin:[14,77,186],axi:[1,3,7,14,22,30,31,32,33,34,36,37,38,39,42,43,44,49,50,51,52,53,54,56,57,59,61,62,63,64,65,67,68,74,76,80,82,108,109,111,112,116,117,121,122,123,127,128,130,132,133,134,135,137,140,145,148,150,152,154,155,156,158,162,163,164,166,167,168,170,176,178,179,182,184,186,187,192],axisgrid:[58,74,111,145,167,178],axloss:47,axvlin:[158,186],aymer:126,az:[111,178],azeem:139,azim:[83,156,184,186],azip:[156,184],azithromycin:1,azu18:118,azur:[98,99,102,106,121,139,140,142,143,159,161,169,174,175,176,180],azurecontain:101,azureml:[9,99,100],azurewebsit:140,b0:[121,179],b1:[119,121,130,179],b2:[119,121,130,179],b3:[118,130],b4ejbh5mczlor:59,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:59,b:[7,14,22,29,33,34,35,38,50,54,63,65,77,82,92,93,101,116,117,118,119,121,122,123,126,128,130,133,134,135,136,142,145,147,148,150,156,158,166,171,172,173,179,184,186,187,188,193,194,195],b_1:147,b_dtree:150,b_f:134,b_g:134,b_h:136,b_i:[134,147],b_k:150,b_n:[147,150],b_o:134,b_t:151,b_y:136,back:[1,7,29,30,31,40,43,45,46,53,74,89,93,99,100,104,114,116,117,119,123,124,128,137,139,140,141,147,157,159,165,168,170,171,172],backbon:[43,133,135],backend:[43,133,192],backfil:137,background:[39,95,102,132,137,159,165,191],background_color:3,backprop:[33,136],backpropag:[33,37,82,128,136,182],backpropaget:82,backpropog:43,backtick:121,backward:[7,31,33,37,82,117,128,165],bad:[7,40,49,50,61,68,80,104,108,119,141,158,159,167,171],bad_kmeans_plot:158,bad_n_clusters_plot:158,badli:[48,50,109,131,141,150,188],badrinarayanan:133,bag:[30,40,41,54,56,148,149,162],bag_classifi:49,bagging_fract:54,bagging_freq:54,bagging_se:54,baggingclassifi:[49,147,150],baggingregressor:[147,150],bai:[61,74],baidunetdisk:38,baidunetdiskdownload:38,balanc:[34,49,52,57,59,63,64,65,68,78,80,100,102,140,141,143,150,151,156,157,163,174,184],balanced_subsampl:150,baldwin:142,ball:[50,147],ballback:40,baltimor:[166,167],bam_extract_path:29,bam_zip_file_path:29,banana:[39,172,194,195],bandwidth:99,banerje:[59,155,187,192],bank:[50,102,113,118,143,145,165,180,191],banko:143,bankrupt:108,bar:[1,3,15,31,40,41,51,56,64,77,100,108,109,119,121,123,148,155,162,168,173,187],barack:92,barbour:142,barchart:166,bare:[140,150],baregg:137,barh:[66,162,178],barnrais:104,barnraisersllc:104,barometr:113,barplot:[39,54,68,80,145,146],base64:[31,59],base:[7,11,14,15,17,18,29,31,33,35,40,41,46,49,50,52,54,55,56,57,59,60,61,66,68,74,76,77,80,84,93,101,102,106,108,109,112,113,114,118,119,123,124,128,129,130,132,133,134,135,138,139,140,141,142,143,145,147,148,150,151,152,154,156,157,159,163,164,165,167,168,170,171,172,173,174,175,180,181,184,187,191,192,193,194],base_estim:49,base_learn:152,base_model:133,base_model_output:133,base_scor:[66,154,155],base_url:14,basebal:116,baseblockmanag:122,baseclassnam:171,baselin:[141,150,155,158],baselinems:48,basemen:[18,116],basement:54,basenam:[29,30,31,33,39,41,66],basex:180,basi:[1,22,45,47,48,50,60,61,99,119,129,151,156,173,186],basic:[7,14,15,18,24,30,36,40,48,50,55,57,58,102,108,109,111,116,117,118,121,126,129,136,137,138,140,142,146,147,150,151,155,156,157,159,162,165,166,167,168,170,171,174,175,177,178,180,181,182,183,184,185,186,187,188,189,190,191,192,193],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:136,basket:[162,166],batch:[31,32,36,41,44,45,48,82,127,128,131,132,133,134,139,140,141,142,143,145,162,182],batch_:36,batch_acc:33,batch_label:127,batch_loss:[33,134],batch_norm:132,batch_predict:127,batch_siz:[29,31,32,33,34,35,36,37,38,39,42,44,45,47,48,62,82,126,127,128,131,133,134,136,158,182,192],batch_x:126,batchnorm1d:31,batchnorm2d:37,batchnorm:[32,36,37,62,128,132,133],batchsiz:82,bathroom:54,batter_pow:[68,80],batteri:[68,80],battery_pow:[68,80],battl:110,bayesian:[128,133],baz:121,bb01:143,bb38:[118,180],bbox:[83,186],bbox_emb:135,bc:158,bce:31,bceloss:37,bdt:150,bdt_predict:150,beam:[141,159],bear:162,beat:[47,48,165,191],beatl:173,beauti:[107,110,111,186],beautifuli:40,beautifulli:[43,109],becam:[114,129,151],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,36,40,41,43,45,46,47,49,50,52,54,56,57,58,59,60,64,68,74,75,80,83,101,104,111,112,113,114,116,117,118,119,122,123,128,129,131,135,137,139,140,141,142,143,146,147,150,151,152,155,156,157,158,162,165,166,168,171,172,173,179,184,186,188,191,193],becom:[7,32,35,36,45,50,55,75,82,92,101,112,114,116,119,129,130,131,134,136,139,140,141,143,147,151,152,155,162,165,172,182,193],bed_room:74,bedroom:[61,74],bedroomabvgr:54,bee:[13,111,178],beehiv:[111,178],been:[3,6,7,12,14,15,17,18,23,29,30,31,40,49,52,62,101,102,104,106,108,110,112,113,117,119,121,122,123,129,131,134,135,140,142,143,145,147,151,152,155,157,158,159,171,173,177,182,188,193],befor:[7,8,14,16,32,33,34,35,40,41,43,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,68,74,75,76,80,83,84,100,101,104,106,108,111,114,117,118,123,124,127,128,130,131,132,133,137,139,140,141,142,143,145,148,150,154,157,159,162,165,166,170,171,172,173,177,178,179,188,191,193,194],began:142,begin:[1,7,14,32,33,35,47,49,50,52,64,66,78,112,117,119,124,137,141,143,147,148,150,151,157,166,169,171,172,173,177,180,182,186,188,193,194],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,46,54,67,68,69,71,72,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,124,139,145,146,159,162,163,164,166,167,168,170,173,174],behav:[7,109,112,119,124,132,145,171,172,176],behavior:[17,33,62,101,102,111,112,114,116,119,121,123,130,137,141,150,157,163,165,173,176,186,191],behaviour:[49,52,119,121,156,184],behind:[31,52,53,58,60,61,62,68,75,80,112,151,153,155,156,158,163,166,172,176,187],behold:127,being:[0,11,14,36,40,43,50,54,59,74,102,106,111,112,114,119,122,123,124,129,130,133,137,142,145,147,151,152,157,158,165,167,171,172,173,177,180,191],beings:114,believ:151,bell:[110,178],belli:[109,178],belong:[41,59,83,112,132,133,145,155,167,171,193],below:[0,3,7,12,14,15,16,17,22,24,30,39,41,43,45,46,47,48,50,53,54,57,59,60,64,76,92,93,96,97,102,104,110,112,116,118,119,121,127,129,132,139,140,141,142,143,147,148,150,154,155,156,157,158,159,164,166,171,173,178,188],belt:165,ben:166,benchmark:[48,102,141,143,165,174,191],bend:146,benefici:[30,172],benefit:[32,62,99,106,113,145,157,177],bengio:[29,50,78,131,181],benign:40,bensor:43,bereft:171,berkelei:[106,177],bernhard:59,bernoulli:151,bernulli:151,besid:[45,119,130,132,133,140,141,143,157,172,194],bespok:159,best:[1,3,10,20,22,31,33,39,40,45,47,48,49,50,52,53,54,56,57,58,59,61,66,74,76,82,83,84,101,108,110,113,119,121,124,130,137,139,141,147,150,151,156,157,158,162,163,165,166,167,168,172,178,179,184,185,187,188,191,194],best_estimator_:[52,53,56,57,58,59,60,61],best_image_add_mean:127,best_k:83,best_kmean:158,best_model:39,best_model_1:40,best_model_2:40,best_model_ann:44,best_model_ann_2:44,best_model_cnn:[39,44],best_model_cnn_2:44,best_model_lstm:44,best_model_lstm_2:44,best_model_rnn:44,best_model_rnn_2:44,best_param:54,best_params_:[50,52,53,54,56,57,58,59,60,61,84,150,158],best_run:[9,100],best_score_:[50,56,59,84,150],beta16:127,beta1:[37,127],beta2:127,beta:[37,127,132,157],beta_1:[34,182],beta_2:34,beta_end:128,beta_start:128,beta_t:128,betas_t:128,beth:169,better:[1,3,7,14,23,30,31,32,34,36,47,48,49,50,52,54,55,56,57,59,62,66,68,75,76,77,80,82,99,101,103,108,111,112,114,116,117,119,126,127,131,132,137,139,140,141,142,143,145,146,147,150,151,152,154,155,157,158,161,162,164,165,166,170,171,172,176,186,187,188],bettter:61,between:[7,14,18,21,30,31,33,34,36,40,41,47,48,49,50,52,53,57,59,60,61,62,63,64,65,75,76,77,78,83,86,88,92,101,102,104,106,109,111,112,113,114,116,118,122,123,124,126,127,128,129,130,131,132,133,134,136,137,139,140,141,142,143,145,146,148,151,153,156,157,158,159,162,164,165,166,167,168,169,170,171,172,177,178,180,182,184,186,188,191,193,194],bewar:159,bewild:163,beyond:[7,46,50,60,61,116,117,129,137,138,141,143,165,171,188],bfc_alloc:29,bfill:[7,117],bhwdaa:[118,180],bhwdapqz8s0:[118,180],bhwdapqz8s0baaaaaaaaaa:[118,180],bi:[99,172],bia:[37,45,54,56,63,65,74,76,81,102,112,126,127,132,136,137,141,143,147,156,174,176,188,189],bian:143,bias1x1:132,bias3x3:132,bias:[40,46,49,82,102,112,117,126,140,165,174,176],bias_add:127,biasid:132,bib:146,bibb:142,bibliographi:146,bicolor:[109,178],bidirect:134,big:[3,43,56,57,62,68,80,98,99,114,127,129,139,141,151,158,165,167,168,173,176],big_arrai:179,big_integ:[172,194],bigger:[127,141,143,145,151,166,193],biggest:[165,191],bigodot:134,bigoplu:134,bigtabl:180,bigtriangledown_:131,bilinear:[132,133,135,158],bill:[171,172,173,194],bin:[18,22,29,38,47,49,52,53,54,58,59,60,109,116,118,127,135,166,167,168,178],binar:57,binari:[22,29,36,41,50,54,56,59,68,74,78,80,84,92,119,127,134,150,151,152,155,156,158,162,163,165,170,172,179,194],binary_cross_entropi:31,binary_crossentropi:[40,182,192],binary_search:92,binaryclass:57,binarycrossentropi:36,bind:171,bing:[3,131,151],binomi:156,bio:102,biolog:129,biologist:7,birch:145,birchard:173,bird:[4,19,121,127],birth:15,birth_month:15,bit:[1,7,14,39,40,66,68,80,82,109,111,115,117,124,129,146,151,152,156,158,162,166,167,168,170,171,184],bitwis:[119,172,194],bitwise_and:119,bitwise_or:119,bitwise_xor:119,bivari:54,bizarr:108,bj:172,black:[1,47,50,54,109,110,127,130,132,156,158,159,170,178],blackbox:[57,58,165],blank:[118,145,159,162,168,171],blend:[57,127,132,147],blend_models_predict:54,bleu:141,blind:108,blit:128,blob:[119,158,166,167],blob_cent:158,blob_std:158,blobs_plot:158,block:[37,41,57,58,74,82,92,128,129,132,133,156,159,168,170,171,172,173,187,193,194,195],block_13_expand_relu:133,block_16_project:133,block_1_expand_relu:133,block_3_expand_relu:133,block_6_expand_relu:133,block_num:127,block_siz:127,blockmanag:121,blog:[1,14,28,29,31,50,56,99,102,104,110,119,121,140,141,146,151,158,174,180],blood:[24,101,170],bloom:139,blount:142,blq:54,blue:[30,38,41,42,45,50,54,68,76,80,104,108,109,116,132,140,145,146,150,151,166,170,171,178,188],blue_count:[68,80],blueprint:[171,193],bluetooth:[68,80],bluff:188,blur:[33,127],blurri:30,bm_axi:121,bmatrix:188,bmi:170,bmi_distribut:24,bmj:139,bn:[32,37,132,133],bn_axi:133,bn_conv1:133,bn_name_bas:133,bo:[132,133,158,186],board:[22,130,165],boat:182,bob:[172,179],bodi:[15,24,109,113,116,132,159,170,171],boil:50,bold:[62,83,137],boldfac:[165,191],bonu:[16,18,28],book:[0,12,18,25,49,50,93,104,108,112,114,116,119,121,126,127,137,138,143,146,148,150,158,163,167,171,179,193],book_cov:127,book_sal:137,bool:[14,29,117,119,122,123,135,158,171,172,173,179,194],bool_vec:123,boolean_arrai:119,booleanarrai:122,boost:[50,57,58,84,138,141,150,154,158,163],booster:[54,66,152,154,155],boosting_typ:54,boostrap:66,boot:[30,40,41,57],bootstrap:[49,52,53,148,150,151,155],border:[50,133,135,146,151,158,159,162,166],bore:38,born:151,borrow:171,boser:59,boss:50,boston:[112,176],bostrom:165,bot:141,both:[1,7,14,29,30,31,32,33,40,41,43,46,47,49,50,52,54,56,57,58,59,60,61,62,63,64,65,66,68,69,74,75,78,80,82,92,100,102,104,108,111,112,114,116,117,119,121,122,123,124,129,130,133,135,137,139,140,141,143,150,151,153,154,155,156,157,159,164,165,170,171,172,176,178,180,182,191],bother:[82,168],bottleneck:128,bottom:[31,34,50,119,167,168,187],bottommost:171,bottou:181,bouhsin:44,bounc:141,bound:[43,47,50,92,109,119,122,123,130,135,141,158,165,167,171],boundari:[50,59,60,61,78,116,122,127,143,146,147,150,192],box:[18,43,50,100,108,116,127,135,150,159,165,166,168,187],box_ind:135,box_logit:135,boxplot:[18,54,59,64,146],bp:170,br:15,brace:[172,194],bracket:[119,141,172,173,194],brain:[129,165,173,191],branch:[0,112,132,140,151,155,165,171,176,191],brand:[104,151,165,191],brave:171,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:59,breach:[112,176],bread:121,breakdown:[14,76,113,173],breakfast:[171,193],breakthrough:127,breathtak:[102,174],breed:[37,133],breez:141,breiman:[147,150],breinman:148,breviti:171,breweri:116,bridg:[140,143],brief:[134,165],briefli:[17,28,54,112],bright:[34,127,132],brighter:109,brill:143,brilliant:162,brilliantli:151,bring:[49,52,54,78,101,124,134,140,142,151,180],britannica:114,british:[7,173],broad:[62,110,112,114,116,132,137,140,143,165,171,176,178,191],broadcast:123,broaden:102,broader:[112,114,138,141],broadli:112,broken:[51,59,106,113,140,148,177],brook:195,brought:[15,124],brown:[110,178],brows:[62,171],browser:[16,38,100,101,118,159],bruce:116,bruis:[110,178],brush:170,brute:142,bsmtcond:54,bsmtexposur:54,bsmtfinsf1:54,bsmtfinsf2:54,bsmtfintype1:54,bsmtfintype2:54,bsmtfullbath:54,bsmthalfbath:54,bsmtqual:54,bsmtunfsf:54,btc:38,btcdf:38,btcsave2:38,btn:159,bu:[29,116],bubbl:178,bucket:54,buddi:171,budget:[99,175],budgetari:101,buff:[110,178],buffer:[114,119,127],buffer_s:[128,133],bug:[4,47,104,134,140,141,173,193],buggi:[69,85],bui:[35,53,57,58,99,104,112,145,166],build:[1,4,8,13,33,40,43,49,52,57,58,59,64,69,74,75,76,77,82,83,85,89,98,99,100,101,102,104,106,109,110,111,112,114,116,118,121,126,127,128,129,132,133,134,135,136,138,139,140,141,142,143,147,148,150,151,154,155,161,163,164,165,169,170,171,172,174,175,177,180,183,188,190,191,194],build_vocab:134,builder:132,built:[1,3,7,12,29,40,43,50,66,69,82,85,91,108,109,110,111,112,116,119,123,124,138,139,140,142,146,151,152,159,167,170,171,172,173,179,183,193,194],builtin:[186,193],bulk:104,bulki:140,bull:147,bullet:151,bump:[112,176],bunch:[0,1,31,50,57,58,114,165,172,191],bundl:140,buolamwini:[102,174],burgeon:[124,180],burn:159,bushel:[166,168],busi:[7,99,102,104,106,112,114,137,139,140,141,142,143,145,159,174,177],buss:108,butter:121,button:[15,100,101,118,159,170,173,187],bw_adjust:109,bwteen:40,bx8rsirp:59,bx:[29,30,33,166,172],bytearrai:[172,194],bytesio:[127,136],c0:179,c1000:14,c100:14,c1:[14,22,24,53,92,133,179],c2:[14,24,53,92,133,135,179],c3:[14,92,133],c4:[14,50,133,135],c5:[32,133],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:59,c64u:59,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:59,c:[1,14,22,32,33,45,50,54,55,57,60,61,62,64,77,83,92,93,104,116,117,118,119,121,122,123,127,134,135,137,139,142,146,148,150,155,156,158,164,166,167,168,171,172,179,184,186,187,189,190,193,194],c_1:158,c_:[50,76,116,150,158],c_i:158,c_k:186,ca:[43,111,130,178],cab:[102,174],cach:[53,58,119,133,134,143,158,180],cache_data:187,cache_readonli:121,cache_resourc:187,cachedproperti:121,caerulescen:[109,178],cal_data:61,calc_grad_til:127,calcul:[6,7,8,14,18,25,29,30,31,33,36,38,40,45,48,49,50,54,59,64,68,75,76,77,78,80,83,96,116,118,119,121,123,124,127,128,135,136,141,143,146,147,148,150,151,154,155,156,158,166,167,168,171,180,186,194],calculate_discrimin:172,calculate_sum:92,calculu:75,calendar:[171,193],calendar_clock:[171,193],calendarclock:[171,193],california:[14,112,165,179],caliv:143,call:[1,3,18,22,29,30,31,33,36,40,41,43,47,48,49,50,51,54,57,59,60,61,63,65,68,74,76,78,80,82,92,93,99,100,101,104,108,110,112,113,114,116,118,119,121,122,123,124,126,128,129,130,131,132,133,134,135,137,140,141,144,145,146,147,148,150,151,154,155,156,157,158,159,162,163,165,166,167,168,170,171,172,173,179,180,187,191,192,194],call_func:[171,193],callabl:[59,121,123],callback:[32,39,44,66,133,154,155,157],caller:29,callout:166,cam_extract_path:29,cam_zip_file_path:29,came:[50,113,140,151],camera:[39,68,80,114,119,132],can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,36,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,71,74,75,76,77,78,80,82,83,85,91,92,93,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,179,180,182,184,186,187,188,191,192,193,194,195],canada:[14,159],canari:140,cancel:[40,112,147,165,176],cancer:40,candi:167,candid:[50,57,58,59,60,61,158,168,185],canin:171,cannot:[7,14,18,22,24,30,39,45,47,50,53,59,66,109,113,114,117,119,122,145,151,157,158,167,171,172,178,194],canon:119,canvas_orig:126,canvas_recon:126,cap:[110,178],capabl:[29,54,82,101,112,114,123,139,140,165,167,172,175,176,191,194],capac:[47,48,62,68,80,127,141],capcolor:[110,178],capit:[93,171,172],capital_gain:51,capital_loss:51,capitalize_first_lett:93,capitalize_word:93,capitalized_sent:93,capitalized_word:93,caption:[129,165],captiv:121,captur:[15,23,33,39,66,76,77,103,108,112,113,114,137,139,141,157,166,182],car:[57,58,112,113,129,130,133,139,165,176,191],car_data:57,car_label:57,car_labels_prepar:57,car_test:57,car_test_label:57,car_test_labels_prepar:57,car_test_prepar:57,car_train:57,car_train_prepar:57,carambola:39,carbon:102,card:[101,112,143,145,176],cardiovascular:101,care:[20,45,48,56,57,58,68,80,91,102,108,111,112,119,123,154,155,157,159,165,171,176],carefulli:[49,151],caregor:56,carlo:116,carnam:172,carri:[7,57,117],carrol:139,cart:[50,150,151],carton:166,carv:[146,167,169],cascad:133,cassandra:180,cassett:145,cast:[29,119,127,128,130,133,134,135,136],casted_kei:123,cat1:1,cat2:1,cat:[15,33,54,61,74,121,127,132,165,171,182,193],cat_col:54,cat_feat:[61,74],cat_feats_enc:74,cat_feats_encod:74,cat_feats_hot:74,cat_feats_pip:74,cat_feats_preprocess:74,cat_fil:33,cat_list:[61,74],cat_train:54,catalog:[16,23,102,109,174],catastroph:156,catboost_search:54,catboostregressor:54,catcher:116,categor:[49,50,52,56,58,61,66,78,83,111,113,116,117,118,119,121,141,150,152,165,167,170,180,191],categori:[1,7,39,41,50,51,54,56,59,60,68,74,78,80,99,104,106,108,109,110,112,113,114,127,129,130,132,133,139,141,143,146,148,156,158,162,163,164,165,166,167,170,172,177,178,179,184,191,192,194],categorical_crossentropi:[32,34,39,47],categoricalcrossentropi:[40,133],category_count:178,category_encod:51,cathi:179,catplot:[56,167],caught:122,cauliflow:162,caus:[1,14,18,28,46,47,49,54,57,59,62,63,64,65,68,80,101,102,111,112,114,116,117,122,123,139,140,141,148,150,154,156,157,171,172,174,184,193,194],causal:116,causat:145,caution:108,cb:54,cbar:[40,64,68,80],cbar_kw:38,cc:[29,43,49,101,127,141,146,148],ccaliva:143,ccc:148,cccc:148,ccd:111,ccp_alpha:[56,57,58],ccpa:112,cd4:140,cd4ml:140,cd:[0,140,142,145,159],cdata_estim:84,cdata_estimator_predict:84,cdc:142,cdeott:32,cdist:186,cdot:[75,78,82,148,151],ce:51,celebr:[31,50],cell:[0,3,7,17,38,40,42,43,44,45,46,47,48,57,58,60,61,66,82,96,97,101,117,118,119,121,122,123,129,134,136,137,145,146,154,155,158,166,168,170,179,181,195],cell_metadata_filt:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],censor:93,censor_word:93,cent:[38,166],cent_histori:186,center:[14,22,38,66,83,99,106,110,116,119,124,135,140,142,145,146,148,156,158,159,162,166,178,184,186,188],center_circl:[110,178],centercrop:37,centernessnet:135,centimet:[60,178],centr:156,central:[53,58,101,139],centralu:101,centric:139,centroid:[145,146,186],centuri:[108,159],cerdeira:48,certain:[7,14,33,40,41,50,54,59,74,76,78,93,106,114,116,119,127,130,136,139,140,141,142,143,145,150,156,157,163,165,166,170,171,172,177,191,194,195],certainli:[36,129,158],cfees8eopk:118,cfg:135,cg:163,cgcug0a0c6nut:59,chain:[33,41,75,82,122,139,166,171],chainer:35,chair:[132,141],challeng:[3,8,28,39,41,46,75,78,99,102,103,111,114,116,117,121,124,140,141,142,143,145,155,163,165,173,174,180,195],champion:187,chanc:[36,49,56,68,80,116,124,129,143,154],chang:[0,7,8,14,20,30,33,40,43,45,47,48,49,50,52,53,55,56,57,62,63,65,75,83,85,91,101,102,103,106,108,109,110,111,113,116,117,118,119,122,124,127,128,130,131,133,135,136,140,141,142,143,145,146,148,150,151,156,159,161,165,166,168,171,172,173,174,179,180,184,186,193,194],changeabl:[172,194],changer:98,channel:[31,33,36,37,39,53,58,127,132,133,135,155,177],channels_first:135,channels_last:133,chao:50,chapman:139,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,80,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,142,145,146,147,148,150,151,152,154,155,158,159,162,163,164,165,166,167,168,169,170,171,172,173,179],chapter_id:158,charact:[3,47,100,108,112,113,114,118,172,173,194,195],characterist:[30,31,47,54,58,59,77,113,118,130,141,151,165,167],charg:[23,50,68,80,92,93,101,147,171,172],charli:172,charset:[15,159],chart:[13,19,27,76,109,110,112,146,155,166,168,176],chart_data:187,charticul:110,chase:159,chat:139,chatgpt:[92,93],chaudhari:143,chdir:127,cheaper:[106,112],cheat:[131,141,143,163,164],cheatsheet:163,check:[0,3,7,10,14,20,22,24,29,31,35,39,40,43,45,46,49,50,52,56,58,60,61,63,65,83,92,93,99,100,101,102,103,112,117,127,128,129,133,134,138,140,145,146,148,150,151,154,158,159,162,163,170,171,173,174,186,192,194],check_dtyp:14,check_nam:14,check_str_or_non:122,check_valu:142,check_win_condit:130,checklist:[28,176],checkout:[0,140],checkpoint:134,chef:162,chen:[132,133,135,143],cheng:143,cherri:[104,172,194],chervonenki:59,chess:[129,130,165],chicago:172,chieh:133,child:[148,164,171],children:[11,22,112,148,176],children_:158,china:[14,112],chines:[162,163,164],chinese_df:162,chinese_ingredient_df:162,chiphuyen:141,chlorid:48,chloroquin:[1,8],chmax:[53,58],chmin:[53,58],chnage:[63,65],choc:129,chocol:167,choderlo:108,choic:[7,27,32,40,49,68,80,101,106,108,112,114,117,119,127,129,131,134,141,145,150,151,158,162,163,165,167,176,191,192],chollet:29,choos:[7,29,46,48,49,56,59,68,75,77,80,100,104,111,117,119,121,129,130,132,137,139,140,141,143,145,146,147,150,151,156,157,158,164,165,167,173,185,186,191],chop:162,chord:[1,8],chose:[34,69,99,123,158,179],chosen:[33,48,54,59,101,111,119,141,147,156,158,159,187],chr:133,chri:32,christina:143,christoph:139,chrome:101,chronolog:[112,176],chuck:92,chunhua:135,chunk:114,churn:[147,150,151,165,191],churn_cal:147,churn_mean_scor:147,ci:[33,111,133,137,140,142],cifar10:[33,127,131],cifar10_extract_path:33,cifar10_label:127,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,127],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_cnn_model:127,cifar_labels_fil:127,cifar_link:127,cifar_loss:127,cinnamon:[110,178],cipolla:133,circl:[108,110,145,156,178],circle_color:158,circu:173,circuit:[101,132],circuitri:101,circular:136,circumfer:111,circumst:112,cite:[57,58,115,135,142,170],citi:[12,17,23,49,52,74,102,108,112,129,141,159,166,167,168,174,176],citizen:[112,171,176],citric:48,city_:56,city_development_index:56,city_id:[12,124,180],ck:33,cla:186,claim:[92,93,171,172],claremont:102,clarif:23,clarifi:[103,104,155],clariti:[1,75,104,151],clasifi:83,class_busi:7,class_economi:7,class_emb:135,class_first:7,class_label:7,class_nam:[40,41,57,148],class_report:[52,57],class_weight:[49,52,57,150],classes_:163,classic:[40,41,50,60,61,83,126,130,131,152,156,162,165,167,191],classif:[9,32,36,39,43,53,58,61,64,75,85,100,101,102,106,112,116,121,126,127,129,133,134,135,136,141,147,148,150,152,153,155,156,157,158,163,170,174,176,177,182,185,189,190,191,192],classifi:[29,32,36,47,50,56,59,64,68,71,80,82,83,85,113,121,129,131,132,136,141,145,147,148,150,151,152,156,158,161,165,167,182,184,189,190,191,192],classification_accuraci:59,classification_error:59,classification_model_nam:41,classification_model_respons:41,classification_model_save_path:41,classification_model_url:41,classification_report:[39,40,47,51,52,57,59,60,68,80,84,159,163,164,167],classnam:37,claus:[118,171,172,193],clean:[3,18,20,22,36,40,46,54,76,89,102,103,106,108,134,136,137,139,141,142,146,163,164,165,166,168,174,177,179],clean_data:22,clean_fresh_fruit:[172,194],clean_text:136,cleand_df:46,cleaned_cuisin:[67,162,163,164],cleaner:171,cleanli:132,cleanprep:38,cleans:106,cleanup:139,clear:[3,7,8,12,14,25,39,40,50,51,59,77,104,111,119,121,140,148,151,164,165,167,170,172,173,194],clear_output:[82,131,133],clearer:[165,191],clearli:[1,14,16,28,36,47,48,52,57,58,104,136,137,141,143,151,165,166,173,186,191],clees:171,clever:[14,173],clf1:49,clf2:49,clf3:49,clf:[49,51,156,184,186],clf_tree:50,cli:101,click:[0,3,38,45,47,48,51,100,101,108,118,162,165,168,169,170,173,187],client:[15,17,23,50,99,143,147,151,158,165,171,187],climat:[102,111,174],climax:104,climb:38,clinic:170,clint:92,clion:38,clionproject:38,clip:[36,84,127,141,165,191],clip_by_valu:[29,30],clip_value_max:[29,30],clip_value_min:[29,30],clipart:38,clipboard:116,clipped_zoom:84,clobber:119,clock:[101,171,193],clock_spe:[68,80],clockwis:[34,84],clone:[0,37,140],close:[1,7,8,29,30,31,33,37,38,39,44,49,50,52,56,59,64,68,74,75,76,78,80,92,101,108,110,116,117,122,127,129,130,131,146,150,155,158,166,173,178,188],close_pric:38,closer:[14,34,48,52,53,56,59,77,82,127,140,146,148,158,168,182],closest:[40,59,101,113,145,146,156,158,186],closur:[104,171],cloth:139,cloud:[1,3,21,91,101,102,106,114,118,121,139,140,141,143,159,163,174,176,177,180,183],cloud_link:137,cloudform:140,cloudmus:38,cloudwatch:139,club:88,cluster:[30,50,106,109,114,116,126,140,150,164,165,166,177,191],cluster_centers_:158,cluster_classification_plot:158,cluster_dist:158,cluster_std:[156,158,184],clusterer1:158,clusterer2:158,clusterpoint:180,clustr:138,clustroid:145,clutter:[109,132],cm:[31,40,41,46,51,52,57,59,60,68,80,83,117,148,158,178,186,189,190],cm_matrix:[51,59],cmap:[1,31,38,41,49,50,51,52,53,54,59,68,74,75,80,82,83,84,126,127,150,156,158,184,186,189,190,192],cmd:173,cn:38,cncf:140,cnn:[39,129,132],cnn_builder:44,cnt:55,co:[1,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,102,109,110,111,116,118,119,123,128,137,143,145,146,148,151,158,162,163,164,166,174,178,186],coars:[132,133],coat:[30,40,41],coca:25,coca_cola_co:25,cocacola:25,code3:142,code:[0,1,3,5,7,8,9,12,14,18,31,38,41,45,46,47,48,50,56,66,68,76,77,78,80,82,85,92,96,97,98,100,102,108,109,110,114,116,117,119,121,122,123,129,137,138,141,142,146,147,150,152,154,156,158,159,161,165,166,167,168,169,170,171,172,174,176,179,184,187,191,194,195],coef0:60,coef:[66,74],coef_:[66,74,166,188,189,190],coeff:158,coeffici:[54,66,74,76,77,78,137,150,151,157,158,166],coerc:35,cognit:[1,99,119,176],coher:[26,146,180],coin:[165,191],coinbas:38,coincid:[108,128],col1:119,col2:119,col:[38,44,45,51,54,56,59,110,111,123,150,178,179,187],col_nam:[51,54,59],col_vector:119,col_wrap:[111,178],cola:25,colab:[40,43,45,47,48,129],cold:[106,177],colder:139,coll:[118,180],collabor:[102,112,140,142],collaps:[111,131],collect:[3,6,11,31,33,35,41,49,50,52,58,76,88,99,100,102,104,106,108,112,113,114,118,119,123,124,134,136,139,141,142,147,155,166,170,171,172,173,174,176,177,180,192,193,194,195],collector:39,collinear:66,colnam:123,colon:171,coloni:[13,111,178],color:[1,14,18,22,29,30,33,34,38,39,41,42,49,50,51,52,54,56,68,76,77,80,83,104,109,110,111,112,113,116,119,127,132,133,137,145,146,148,150,156,158,159,166,167,170,172,176,178,184,186,188,189,190,194],color_palett:137,colorbar:[41,186],colorblind:111,colorjitt:37,colormap:158,colour:132,colsample_bylevel:[66,154,155],colsample_bynod:[66,154,155],colsample_bytre:[66,154,155],colum:54,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,38,39,40,43,44,45,46,47,48,52,53,55,56,57,58,59,60,64,66,68,74,76,80,83,100,101,103,110,111,113,117,118,119,121,122,124,129,137,142,145,146,150,152,155,159,162,163,166,167,168,172,178,179,180,188,194],column_diff:14,column_filt:14,column_index:123,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:57,column_to_diff:14,column_to_format:46,column_to_format_uniqu:46,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[118,180],columns_to_plot:24,columntransform:[61,74,188],com:[3,12,14,18,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,47,48,51,56,66,68,80,104,106,108,109,110,111,112,114,116,118,121,122,123,126,127,137,140,141,142,143,145,146,148,158,162,163,164,166,167,171,172,175,176,178,180,181,182],comapani:56,combin:[33,36,40,48,49,50,52,53,54,56,59,61,62,68,74,75,80,81,82,84,99,102,106,108,113,127,129,132,133,137,139,140,141,142,143,147,150,151,153,154,155,156,164,165,166,170,171,172,177,188,189,194],combined_imag:36,come:[7,35,43,48,51,57,62,64,66,68,77,80,98,103,104,106,108,109,112,113,114,116,119,121,129,131,132,137,138,142,145,147,150,152,155,156,157,165,166,171,172,173,179,184,186,187],comedi:173,comfort:[7,46,54,117,170],comma:[93,119,164,172,194],command:[47,51,101,112,113,124,130,154,170,172,173,180,194],comment:[45,48,50,104,112,113,127,170,176,193],commerc:145,commerci:104,commiss:[17,23],commit:[0,112],committe:62,commom:[60,68,80],common:[7,31,33,40,45,46,47,48,50,54,56,59,62,66,76,92,99,103,104,106,112,113,119,121,123,124,127,134,135,137,139,140,141,142,145,146,151,154,156,157,158,162,168,169,170,171,173,175,179,194],common_el:172,common_norm:[109,178],common_runtim:29,commonest:47,commonli:[41,54,61,62,68,76,80,99,123,129,139,140,141,142,155,157,165,171,192],commun:[28,43,103,105,106,112,114,129,138,140,142,151,165,173,182],compact:127,compani:[6,104,113,139,143,151,165,172,173],company_s:56,company_typ:56,companyx:172,compar:[14,18,21,31,33,41,47,48,50,51,54,60,61,63,64,65,68,74,77,80,90,92,93,101,108,109,111,114,116,119,122,126,128,132,140,141,142,147,148,150,155,163,165,167,172,191,194],comparis:[63,65],comparison:[8,14,48,50,92,106,111,113,116,118,141,147,151,156,163,171],compat:[15,55,101,119,122,130,131,134,136,138],compatible_format:193,compel:78,compens:[155,158],compet:151,competit:[129,137,143,151,154,155],compexifi:50,compil:[1,7,29,30,32,34,35,38,39,42,44,45,47,48,62,133,140,173,179,182],compilaton:40,complaint:[104,112,176],compleletli:[68,80],complementari:137,complet:[1,8,21,24,34,40,41,49,50,52,53,56,57,58,62,68,69,75,80,101,106,108,112,114,116,119,121,123,127,128,132,135,136,137,139,141,143,155,158,165,166,167,168,171,172,173,175,186,193,194],complex32:119,complex:[0,1,31,32,33,49,57,58,60,61,63,64,65,66,68,76,78,80,111,114,119,124,129,132,135,137,138,139,140,141,143,147,153,156,157,158,162,165,171,173,181,182,184,185,192,195],complex_numb:171,complex_number_1:[172,194],complex_number_2:[172,194],complex_number__1:194,complexnumb:171,complexnumberwithconstructor:171,compli:112,complianc:[22,45,47,48,112,176],compliant:112,complic:[36,50,82,114,119,139,140,141,151,154,157,158,168,182],compon:[75,76,101,102,108,118,126,130,137,139,140,141,142,147,151,154,156,165,173,174],components_:[158,186],compos:[36,37,61,74,82,126,127,131,139,140,151,188],compose_greet_func:171,compose_greet_func_with_closur:171,composit:[119,150],compound:[172,179,194],compound_stmt:171,comprehend:49,comprehens:[93,108,123,141,166],compress:[29,30,31,106,126,129,132],compris:[39,101,140],compromis:[7,117],comput:[3,7,18,22,29,32,33,36,40,41,43,46,47,49,50,53,54,58,59,66,75,76,77,81,82,84,99,102,103,106,114,116,117,118,121,122,123,126,127,128,129,131,132,135,136,138,139,140,141,143,147,148,150,151,155,156,157,162,165,167,170,172,174,175,176,187,188,189,191,194,195],computation:[33,36,50,56,119,122,129,132,137,153],computationn:33,compute_reciproc:179,compute_target:[9,100],con:[7,47,56,101,112,159],concat:[22,30,36,38,42,54,56,66,128,132,133,134,135,137,162,171,172],concat_axi:121,concat_index:121,concaten:[34,38,55,76,119,121,128,133,135,168,172,182,188,189,190,194],concatenated_str:171,concav:128,conceiv:[142,171],concentr:145,concept:[3,18,29,31,47,50,59,75,76,77,101,102,114,116,118,119,123,127,131,132,138,139,140,141,142,148,151,155,156,163,167,170,172,181,194],conceptu:151,concern:[7,47,54,58,59,74,106,109,112,117,139,140,143,151,165,166,178,191],concis:[119,147,165,171,172,194],conclud:[56,59,75,102,108,116,141,148],conclus:[24,50,103,112,114,166],concret:[143,165,186],concurr:[84,100,101],conda:0,condens:130,condit:[3,22,31,39,40,45,47,48,50,54,93,102,112,119,128,132,141,148,150,151,166,167,171,172,173,193,194],condition2:54,condorcet:147,conduct:[56,100,112,176],conf:18,conf_conv:135,conf_matrix:[52,57],confer:[104,108,121,139,143],confid:[40,41,48,68,80,111,132,141,142,145,147,151],config:[9,38,50,66,134,137,147,150,186,187],configur:[10,41,45,47,99,101,136,139,140,141,165,168,169,171],confirm:[14,30,45,47,48,59,103,106,112,158,166,176,177],conflict:[93,104,112,123],conform:[113,123,139,141],confus:[7,34,40,50,52,57,60,68,80,83,104,117,119,148,150,155,157,162,171],confusingli:158,confusion_matrix:[34,39,40,51,52,57,59,60,68,80,83,84,163,164,167,189,190],confusion_mtx:34,congratul:[100,101,166,167,170,173],conjug:92,conjunct:114,connect:[6,30,32,33,41,43,45,48,62,82,92,93,102,104,112,116,127,132,133,136,141,157,171,172,182],connectionist:78,connor:139,conquer:151,consciou:7,consecut:[14,32,40,49,155],consent:[112,176],consequ:[28,102,112,130,176],conserv:[109,178],conservationstatu:[109,178],consid:[1,3,7,8,11,14,18,22,24,29,36,39,40,41,45,46,49,50,53,56,62,64,75,76,93,101,103,104,106,108,113,114,115,116,117,126,127,130,132,134,137,140,141,142,143,145,147,148,150,151,152,155,156,157,158,159,165,167,170,171,172,184,186,193,194],consider:[59,101,106,112,114,115,123,151,154,158,176,177],consist:[0,1,3,8,15,30,33,34,36,41,45,49,50,52,54,59,88,106,112,117,119,126,132,133,139,140,141,142,143,148,157,165,166,168,172,176,177,180,191],consol:123,consolid:75,conspiraci:62,constant:[50,63,65,75,78,119,127,128,130,132,136,141,151,155],constant_initi:127,constantli:114,constrain:[30,130,145],constraint:[30,101,106,119,132,140,141,145,157,163,186],construct:[30,50,119,123,126,128,132,137,139,145,147,150,151,152,155,171,172,194],constructor:[123,132,171,172,193,194],consult:[7,121],consum:[10,20,41,45,98,100,101,103,108,111,112,113,139,141,143,156,159,165,175],consumpt:[108,159,175,179],cont:54,cont_num_var:54,contact:[118,180,187],contagi:167,contain:[1,3,6,7,12,14,15,17,22,29,31,33,36,37,39,40,41,45,46,47,48,49,50,51,52,54,57,59,60,62,68,74,80,83,86,91,92,93,100,101,103,106,113,116,117,118,121,123,124,129,132,133,136,139,140,141,145,147,150,152,155,158,159,162,165,166,167,168,170,171,172,179,193,194],container:140,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,59,62,63,64,65,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,141,143,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,179,186,187,188,189,192,194],contest:147,context:[9,28,31,50,59,75,100,102,104,106,112,122,123,127,133,141,143,145,146,157,158,159,169,171,172,174,176,177,194],contigu:119,contin:[57,58],continu:[0,1,17,18,31,33,34,40,47,48,50,54,55,58,59,62,75,76,77,78,99,100,102,109,111,116,119,121,124,128,133,140,141,142,143,145,146,150,151,152,157,159,165,167,173,191],contour:[156,158,184],contourf:[150,158,189,190],contract:[92,93,101,140,171,172],contradictori:141,contrari:[122,123,143],contrarili:171,contrast:[7,50,90,103,119,127,131,141,150,156,182],contrib:136,contribut:[46,52,53,57,58,66,102,119,121,122,123,138,141,147,148,150,171,172,173,174],contributor:138,control:[7,11,30,43,48,56,59,61,62,63,64,65,99,103,104,106,112,114,117,119,129,130,132,134,139,140,142,150,151,157,172,177,187,194],controlflow:171,conv0:135,conv1:[127,133],conv1_1:127,conv1_2:127,conv1_add_bia:127,conv1_bia:127,conv1_featur:127,conv1_kernel:127,conv1_pad:133,conv1_weight:127,conv1d:[44,129],conv2:127,conv2_1:127,conv2_2:127,conv2_add_bia:127,conv2_bia:127,conv2_featur:127,conv2_kernel:127,conv2_weight:127,conv2d:[29,30,31,32,33,34,36,37,39,127,128,129,132,133,135],conv2d_1:29,conv2d_2:29,conv2d_transpos:29,conv2d_transpose_1:29,conv2dtr:29,conv2dtranspos:[29,30,128,133,135],conv3_1:127,conv3_2:127,conv3_3:127,conv3_4:127,conv3d:129,conv4_1:127,conv4_2:127,conv4_3:127,conv4_4:127,conv5_1:127,conv5_2:127,conv5_3:127,conv5_4:127,conv:[37,127,132,133,135],conv_bias1:127,conv_bias2:127,conv_block:132,conv_bn:132,conv_bn_relu:132,conv_input_data:127,conv_kernel1:127,conv_kernel2:127,conv_kernel:127,conv_lay:127,conv_name_bas:133,convei:[104,108,177],conveni:[7,46,54,111,116,117,123,133,148,151,166,167,171],convent:[43,45,68,80,124,129,154,171,173],converg:[36,75,109,141,145,158,165,186],convers:[1,46,77,101,104,117,141,143,165,168],convert:[1,3,7,14,31,36,38,40,41,43,45,47,49,56,57,59,64,74,84,86,92,93,100,108,110,112,114,121,122,123,126,127,132,134,136,155,159,165,166,168,172,187,191,192,194],convert_indic:122,convert_to_tensor:132,convex:[110,128,178],convinc:[104,173,182],convlay:37,convnet:[128,129],convolut:[128,132,133,135,165,183,191],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convolv:127,convtranspose2d:[31,37],cooki:145,cool:[31,40,68,74,80,93,97,145,167],cooler:104,cooper:171,coord:119,coordin:[43,50,62,111,119,130,135,140,163,165],cope:[39,150,151],copi:[0,1,7,14,22,29,30,31,35,45,46,47,48,54,64,68,80,92,93,117,119,121,122,123,124,137,150,162,164,168,171,172,179,186,194],coppa:112,copyreg:193,copyright:[22,45,47,48,92,93,171,172],cor:38,cord:[1,112,119],core:[7,9,14,16,29,38,57,58,59,60,68,74,80,100,101,112,115,117,121,122,123,124,132,133,145,150,151,154,155,158,162,166,179],core_mask:158,core_sample_indices_:158,corinna:59,corner:119,coronaviru:[1,142],corpor:[18,112,114],corpora:143,corr:[24,38,48,49,52,53,54,64,68,74,80,145,150,166],corr_winedf:48,corrcoef:[18,116],correct:[18,29,40,41,45,48,49,50,51,52,54,56,59,62,66,68,80,82,96,97,108,110,112,116,118,123,131,132,141,146,147,151,155,156,157,164,167,171,176,186,192,193,195],correct_label:146,correcti:[52,57],correctli:[6,34,40,41,47,48,52,54,56,57,59,68,80,83,103,132,140,146,151,155,166,172,186],correl:[8,14,49,52,64,102,108,109,111,112,114,137,141,145,146,150,151,156,159,165,174,176,182,186,188,191],correspond:[0,14,29,33,40,41,46,47,49,50,62,74,75,78,82,83,92,93,100,112,116,117,119,123,128,133,137,140,141,146,147,151,166,171,176,192,193],correspondingli:141,corrmat:145,corrupt:165,corrwith:24,cort:59,cortex:181,cortez:48,cosin:[119,151],cosmo:[99,180],cost:[25,32,37,48,52,56,57,63,65,68,75,76,78,80,101,104,106,108,114,118,133,134,135,139,140,143,157,165,175,177],cost_funct:[63,65],costli:158,costlier:101,couchbas:180,couchdb:180,could:[0,5,7,10,16,17,20,23,26,29,32,33,34,40,45,46,47,48,50,54,55,57,58,59,62,64,66,68,80,82,99,101,104,109,111,112,113,116,117,118,119,124,130,132,137,139,140,141,142,143,145,146,147,151,155,157,158,159,162,163,165,166,167,171,172,179,180,182,191,194],couldn:[112,142,176],coulumn:14,count:[1,18,22,31,34,38,49,52,54,56,57,58,59,60,61,64,74,83,103,110,114,116,117,119,127,134,137,145,155,162,166,178,192,194],count_3g:[68,80],count_4g:[68,80],count_bug:193,count_digit:92,count_occurr:93,count_vowel:172,count_word_occurr:93,countabl:116,counter:[134,171,193],counteract:78,counterintuit:141,counti:108,countplot:[34,49,51,52,54,56,57,61,68,74,80],countri:[8,12,14,46,108,113,117,119,124,142,147,159,180,195],countries_and_region:14,countries_dataset_url:14,country_region:[14,142],coupl:[33,99,104,124,148,157,180],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,39,40,44,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,64,67,68,69,71,72,74,80,82,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,123,124,127,128,130,132,133,136,137,141,145,146,147,151,152,154,155,158,159,162,163,164,165,166,167,168,170,193],courvil:[29,50,78,131],cov22:142,cov:[18,116],covari:[18,109,150,178],cover:[3,30,49,77,106,111,112,114,117,118,119,121,127,129,140,146,165,169,170,173,177,179],covert:[104,177],covid19:142,covid:[99,108,112,142,143,176],coxboost:151,cpickl:127,cpk:101,cpu:[29,31,33,37,53,58,100,101,186],cpu_cor:[9,100],cpu_feature_guard:29,cr:[109,178],craft:[104,151],crash:[141,165],crawler:142,crazi:152,creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,41,42,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,71,72,76,77,82,83,84,85,86,88,89,90,91,99,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,176,178,179,180,184,186,187,188,189,191,192,193,194,195],create_discrimin:182,create_gan:182,create_gener:182,create_ingredi:162,create_ingredient_df:162,create_mask:133,create_model:39,create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:118,createlink:108,creatinin:101,creatinine_phosphokinas:[9,100,101],creation:[82,100,101,112,114,148,151,187],creativ:[7,108,151,165],creator:[121,127,142,151,159],credenti:101,credit:[26,50,102,112,143,145,148,176],crest:[49,52,53,74,109,178],crisi:99,crisp:106,criteria:[69,71,72,85,88,89,90,91,113,143,150,186],criterion:[31,37,50,56,57,58,78,112,148,150,192],critic:[29,36,54,77,101,102,104,109,114,139,141,142,143,165,178],crop:[31,39,127,166,167,168],crop_and_res:135,crop_height:127,crop_shap:135,crop_siz:135,crop_width:127,cross:[22,36,49,56,64,66,68,78,80,106,121,122,127,128,131,132,137,141,147,156,158,163],cross_color:158,cross_entropi:[33,127],cross_entropy_mean:127,cross_val_predict:[68,74,80],cross_val_scor:[50,54,56,59,64,66,68,74,80,83,84,150,163,164],cross_valid:56,cross_validated_roc_auc:59,crossentropi:[47,82],crosstab:22,crowd:[49,110,145,147,178],crucial:[56,77,101,130,150],cruel:145,cruis:173,crypto:38,cs231n:132,cs:[104,127,132,193],csci:193,csr:74,csr_matrix:74,css:[122,123,159,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],csse:[14,119,142],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,35,38,42,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,76,80,82,83,84,86,109,110,111,113,119,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,172,178,186,188,189,190,192],ct:[9,100,102,129,188],ctc:78,cto:139,cu3tc99fx:59,cube:[172,194],cuda:[29,31,33,37],cuda_dnn:29,cuda_gpu_executor:29,cudnn:29,cuisin:[67,161,164,170],cuisines_df:[67,163,164],cuisines_feature_df:[67,163,164],cuisines_label_df:[67,163,164],cultur:[102,104,176],cummul:128,cumprod:128,cumsum:186,cumul:[130,152,166],cun:181,cur_group:132,cur_layer_idx:132,curat:[102,112,143,174],curb:78,cure:52,curl:[12,25],curli:[172,173,194],curr_scor:55,currenc:38,current:[3,14,16,33,35,41,51,54,56,59,75,92,93,102,104,114,119,121,129,130,133,134,151,154,155,156,163,168,171,187,193],current_numb:171,current_posit:35,curriculum:[71,99,162,166,170],curtain:39,curv:[14,45,47,48,50,54,62,66,75,77,109,137,145,150,151,156,158,165,166,191],cusin:162,custom:[3,6,16,23,43,100,102,104,106,108,112,113,118,121,128,129,139,140,143,147,148,150,155,159,165,167,171,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],custom_callback:40,custom_exception_is_caught:171,custom_lay:133,custom_loss:128,cut:[39,50,150,158],cut_df:39,cutler:150,cutoff:134,cutoff_dist:158,cv2:[31,39,128],cv:[50,52,53,54,56,57,58,60,61,64,66,68,74,80,83,84,150,153,158],cv_cb:54,cv_fold:56,cv_gbc0:56,cv_gbc:56,cv_lgbm:54,cv_results_:[56,84],cv_ridg:66,cv_score:[56,64,83],cv_xgb:54,cvd:101,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:59,cycl:[45,53,58,101,106,112,134,137,140,141,154],cycler:137,d1:33,d3:180,d8ca7e:36,d:[1,14,17,25,32,37,38,39,40,48,50,51,54,59,63,65,66,68,80,82,83,93,103,108,109,112,116,117,119,121,122,123,126,130,131,132,133,136,139,140,141,143,145,146,148,150,151,156,158,168,170,172,175,177,179,180,182,184,186,187,193,194],d_:128,d_b1:131,d_b2:131,d_b3:131,d_b4:131,d_error:131,d_fake:131,d_g_z1:37,d_g_z2:37,d_i:119,d_layer_d_input:82,d_loss:[36,37,131],d_loss_fak:131,d_loss_metr:36,d_loss_real:131,d_model:135,d_opt:131,d_optim:36,d_pred_fak:131,d_pred_real:131,d_predict:150,d_real:131,d_var_list:131,d_w1:131,d_w2:131,d_w3:131,d_w4:131,d_x:37,da:32,dai:[8,14,39,44,49,50,52,101,102,104,113,137,141,142,147,155,165,166,173,174,187,195],daili:[1,8,14,38,102,112,137,142,165,173,174,191],daisi:171,damag:[92,93,108,171,172],damien:126,damn:141,danb:154,danceabl:[144,145,146],dancehal:[145,146],danger:[108,157],dangereus:108,daniel:143,daniil:141,dark:[112,143,176,187],darker:[50,102],darkgreen:[68,80],darkgrid:54,darrel:133,dasani:[145,166,167,168],dash:[77,100,158],dashboard:[99,102,139],dat:[49,74,102],data2:[50,123],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,42,50,62,67,71,72,75,77,78,82,84,86,88,89,90,91,92,101,108,110,111,115,120,126,127,129,130,131,132,133,134,136,138,140,144,146,147,148,150,151,152,153,154,156,157,158,161,166,169,170,171,182,183,185,186,189,190,193],data_batch_:127,data_df:40,data_dir:[33,127,134,136],data_dmatrix:155,data_fil:[127,134,136],data_fold:131,data_format:135,data_i:[63,65],data_load:131,data_loc:127,data_nam:131,data_path:[36,44,68,80],data_prepar:44,data_sci:3,data_util:31,dataarrai:119,databas:[6,39,99,113,114,118,121,125,136,139,159,175,176,183],databrick:[99,101],dataconversionwarn:57,datadriveninvestor:126,datafi:112,dataflair:[102,174],dataflow:128,datafram:[1,8,14,17,22,23,24,29,30,31,36,38,39,40,44,46,47,48,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,76,80,84,86,109,110,121,122,124,137,145,146,154,155,158,159,162,163,164,166,167,168,178,187],dataframegroupbi:121,datagen:[32,34],datajameson:33,datalira:39,dataload:[33,37,131],datanul:48,datapoint:[7,88,133,145,146,155,162],datasci:[106,140],dataset991:57,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,36,37,38,40,44,49,50,52,53,54,56,57,58,60,61,62,63,64,65,66,68,69,71,74,76,80,84,86,88,98,102,103,110,111,112,113,114,116,117,118,119,126,127,128,129,131,136,137,139,141,143,144,145,146,147,148,151,152,154,156,157,158,163,164,165,166,167,168,174,176,182,184,187,191],dataset_991:57,dataset_path:[31,39],dataset_test:42,dataset_tot:42,dataset_train:42,datasets_nam:[29,31,39],datasets_respons:[29,31,39],datasets_save_path:[29,31,39],datasets_url:[29,31,39],datast:126,datastor:180,datastructur:172,datatyp:[7,48],date:[1,14,35,38,44,46,49,52,57,101,108,117,122,123,137,139,142,143,166,167,171,193],date_column:[38,44],date_rang:[14,38,44,122,123],date_split:35,date_train:[38,44],dateset:30,datetim:[1,14,38,40,122,166],datetime64:[38,137],datetimeindex:[38,122,137,166,168],datetimeindexopsmixin:122,datetimelik:122,daum:38,daunt:141,david:[93,131,140,143,158],davydov:143,day_of_year:166,dayofyear:166,db265359943e:126,db4o:180,db:[12,63,65,75,81,99,102,174,180,188,189],dbscan2:158,dbscan:145,dbscan_plot:158,dbscandbscan:158,dcab:[172,194],dcgan1:131,dd:168,de:[40,43,80,108,112,159,176],dead:171,deadlin:102,deal:[43,49,50,52,56,57,59,75,93,108,114,123,139,140,142,150,151,159,165,171,172,186,191],dealt:7,death:[1,8,14,22,101,108,142],death_ev:[9,100,101],deaths_dataset_url:14,deaths_df:14,deborah:139,debt:143,debug:[0,35,41,82,100,159,171,173],debug_log:[9,100],dec:[108,143],decad:[114,129,135,139,165],decai:[127,157,165,192],deceiv:[36,108,112,176],decemb:[49,52,162,166,175],decent:[63,65,127,141,152],decept:112,decid:[18,32,35,36,54,66,103,108,110,113,114,121,137,141,145,147,150,151,155,163,164],decim:[92,172,173,194,195],decion:57,decis:[3,11,47,48,49,52,53,54,56,59,60,61,62,68,77,78,80,101,102,104,106,110,112,113,114,129,130,139,141,142,143,146,147,148,151,154,155,156,163,164,165,174,176,184,186,191,192],decision_funct:[156,184],decisiontreeclassifi:[49,57,68,80,150,152,163,186],decisiontreeclassifierdecisiontreeclassifi:57,decisiontreeregressor:[50,58,150,152],decisiontreeregressordecisiontreeregressor:58,declar:[127,134,171,172,194],declin:[1,14,48,108,111],decod:[29,30,31,36,126,133,134,136],decode_raw:127,decoded_data:29,decoded_img:[29,30],decoder_b1:126,decoder_b2:126,decoder_h1:126,decoder_h2:126,decompos:92,decomposit:186,decompress:31,deconstruct:102,deconv:135,deconvolut:[126,133],decor:187,decorate_with_div:[171,193],decorate_with_p:[171,193],decreas:[33,47,48,49,50,52,54,59,64,68,80,101,111,127,132,141,147,148,150,151,157,167,182],decres:152,dedic:[54,101],deduc:14,deem:66,deep:[16,29,30,31,32,33,34,35,36,37,38,39,40,42,44,47,48,50,62,74,78,101,116,119,121,122,126,127,131,132,133,134,135,136,138,141,142,143,157,170,181,189,190,192],deepcopi:31,deepen:[54,132,167,170],deeper:[7,13,17,19,48,50,76,101,106,116,132,141,148,156,157,162,163,166,177,184],deepfunnel:31,deeplabv3:133,deeplearn:165,deeplearningbook:126,deepli:[114,139,181],deeplizard:127,deepmind:165,deer:127,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,76,80,81,82,84,92,93,94,121,122,126,127,128,130,131,132,133,134,135,136,137,142,147,150,152,156,158,159,162,164,172,179,182,184,188,189,190,193,195],default_n_init:146,default_target_attribut:57,defe:36,defect:[165,191],defenestr:[171,193],defin:[0,1,3,14,22,31,32,36,40,45,47,48,50,51,54,57,59,62,63,65,66,75,82,92,102,103,104,106,109,112,115,116,118,119,121,127,130,132,134,136,139,141,142,143,145,146,147,150,151,152,155,156,157,158,159,163,166,171,172,173,177,179,187,188,194],definit:[41,50,60,66,102,114,116,118,119,122,135,140,148,165,173,191,193],deforest:102,deform:132,degrad:[31,85,102,132,139,142,158,174],degre:[3,34,37,50,59,60,61,63,65,114,116,124,130,150,166,176,188],deje:143,del:[84,123,130,171],delai:[130,137],delet:[45,56,100,101,112,172,194],deliber:[170,173],delicassen:155,delicassesn:155,delici:[110,161,162],delimit:[31,38,186],deliv:[7,56,99,104,114,117,139,140,171],deliveri:[99,102,140,175],dell:104,delta:[47,55,59,78,128,171],deltamean:47,deltastd:47,deltatheta:130,delv:[75,77],demand:[7,49,52,99,101,111,137,139],demarc:146,demis:108,demo:[127,128,131,132,133,135,140,142,146,150,151,156,158,162,166,167],democrat:[102,112],demograph:56,demographi:142,demonstr:[3,8,18,41,45,47,48,59,62,69,76,77,109,116,117,119,140,145,148,150,166,168,170,171,172,179],demostr:32,dendrocygna:[109,178],deni:[50,112],denois:[126,128],denoise_model:128,denomin:[7,92],denot:[54,75,116,128,130,148,155,171,172,194],denounc:104,dens:[29,30,34,35,36,38,39,40,41,42,43,44,45,47,48,62,128,132,135,145,146,182,192],dense_1:43,dense_2:43,dense_3:43,dense_block:132,densenet121:133,densenet169:133,densenet201:133,densenet264:133,densiti:[4,48,116,128,145,147,150],deon:[28,112,176],deott:32,depart:[111,112,151,168,176],depend:[0,7,12,14,18,25,29,39,46,48,50,52,57,68,76,77,80,100,101,106,108,109,110,111,113,114,116,117,118,119,121,122,123,124,129,131,132,134,136,137,140,141,143,144,145,146,150,151,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,191],depict:[36,50,127,155],deploi:[5,10,20,41,43,91,98,99,100,101,112,129,132,140,142],deploy:[9,102,106,165,175,187,191],deploy_configur:[9,100],deprec:[62,119,121,158,186],deprecation_mask:122,deprecationwarn:186,depth:[7,49,50,54,56,57,58,68,80,104,108,128,132,148,150,151,152,155,171,186],depth_multipli:132,depth_radiu:127,depthwis:[132,154,155],depthwise_separable_conv:132,depthwiseconv2d:132,dequ:35,der:132,dereferenc:119,deriv:[14,16,33,50,54,57,63,65,76,82,102,111,119,123,132,137,141,145,146,155,156,162,171,173,188,193],derivedclassnam:171,desat:137,desc:31,descend:171,descent:[33,45,49,54,68,78,80,81,82,128,132,141,152,155,156,163,166,184,188,189,192],descr:[57,58],descreas:56,describ:[1,2,9,11,21,28,38,40,45,47,48,49,50,51,52,53,56,57,58,59,61,64,68,74,76,80,82,83,88,100,103,104,109,112,116,118,119,121,124,132,135,137,139,140,141,145,151,154,155,156,171,180,182,186],descript:[0,9,28,50,57,88,100,101,119,121,128,134,141,159,165,171,172,173,177,191,192],description_vers:57,desert:141,deserv:116,design:[7,12,18,31,32,38,40,43,54,75,78,91,101,102,104,108,112,113,114,117,119,129,130,132,137,139,140,141,142,143,147,155,156,163,171,172,173,176,194],designated_hitt:116,desir:[34,92,106,112,114,119,130,140,165,171],desktop:[140,173],despin:[111,178],despit:[50,132,143],dest:137,destin:[119,139],detach:[33,37],detail:[7,11,14,16,26,29,41,50,54,57,68,71,75,80,85,101,104,110,113,116,118,121,127,133,140,141,142,148,151,152,154,157,163,165,166,171,173,179,186,191,195],detect:[43,46,47,49,50,59,60,61,64,102,112,117,121,129,139,141,145,150,157,165,171,174,191,193],detector:[165,191],detergents_pap:155,deterior:154,determ:32,determin:[22,32,50,51,54,59,68,75,77,80,92,100,101,106,114,116,119,123,124,127,130,132,136,140,141,143,145,146,148,151,156,157,162,165,166,167,169,170,171,172,177,179,180,184,191,192],determinist:[112,130,137],detr_structur:135,dev:[47,48,116,122,158,179],devast:111,devdoc:186,develop:[7,8,40,45,47,48,54,56,59,62,98,99,100,101,102,112,114,117,121,123,129,135,138,139,140,141,142,143,150,151,155,157,162,165,170,173,174,176,182,187,195],devi:[63,65],devianc:[56,152],deviat:[7,18,29,31,47,48,59,62,64,74,77,78,103,119,128,139,148,165],devic:[15,29,31,33,37,54,68,80,114,118,132,139,141,142,143,173],devicedataload:33,devid:56,devis:75,devot:138,dexamethason:1,dexter:36,deza:170,df1:[22,121,122,123,179],df2:[22,51,121,123,179],df3:[121,179],df4:121,df5:121,df6:121,df7:121,df:[1,9,14,17,18,22,23,24,31,38,39,44,48,50,51,53,59,74,75,100,110,116,121,122,123,137,142,145,146,150,155,162,166,178,179,187],df____:24,df_attr:31,df_boxplot:24,df_corr:53,df_corr_i:24,df_corr_sex_with_i:24,df_desc:53,df_diff:14,df_filter:14,df_heat:53,df_hist:53,df_mean:24,df_null:53,df_pairplot:53,df_plot:24,df_rolling_mean:14,df_scale:44,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,38,44,62],df_train_scal:44,df_valid:62,df_y:44,dfa:123,dfd:122,dfl:122,dfm:1,dfmt:1,dfmtp:1,dfrac:152,dfx:75,dfy:75,dg77ysplly4qtmh7trbd03p9nl1g:59,dhamaa:118,dhamaiusa4o:118,dhamaiusa4ohaaaaaaaaaa:118,dhariw:128,di:[22,59,101,112,172,176],diabet:[1,9,100,101,116,176],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,43,45,165],diagnosi:[112,176],diagnost:30,diagnoz:191,diagon:[18,116,119],diagram:[1,5,8,18,50,59,106,115,116,127,139,146,153,154,155,156,158,166,176,177],diamond:171,dibia:29,dice:[78,116,122,123],dickinson:[102,174],dict1:93,dict2:93,dict3:93,dict4:93,dict5:93,dict6:93,dict7:93,dict:[1,3,22,39,83,109,127,130,132,135,137,158,172,173,178,186,192,194],dict_1:193,dict_2:193,dictat:[7,117,129],dictionari:[17,23,74,119,123,143,150,171,179,193],dictionary_for_string_kei:[172,194],dictionary_via_constructor:[172,194],dictionary_via_express:[172,194],did:[7,16,18,27,40,45,50,52,53,54,55,60,61,68,69,74,80,104,108,109,112,116,117,141,145,146,151,155,158,159,163,167,168,172,173,186],didn:[43,48,56,58,60,68,80,117,122,123],diego:131,diet:101,dietmar:143,dieu:[40,43,80],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,65,66,68,72,74,75,76,77,78,80,82,84,92,98,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,126,127,128,129,130,132,133,134,135,137,139,140,141,142,143,144,145,146,147,148,150,151,153,155,156,157,158,162,163,164,165,166,167,168,169,170,171,172,173,179,180,182,185,191,193,194,195],differenti:[21,75,99,126,127,132,141,151,155,156],differnt:55,difficult:[30,32,62,116,141,143,150,151,156,171,186],difficulti:[50,114,136,140,151],diffusion_models_tutori:128,difuss:128,dig:[13,19,85,109,162,163,166,168,178],digit:[16,29,31,32,41,47,82,92,102,108,112,126,139,142,158,172,174,176,186,192],digitdata:47,dilat:[132,133],dilation_r:[132,133],dilemma:112,dim:[33,126,128,192],dim_z:31,dimens:[7,29,33,43,48,59,109,117,119,126,127,128,129,132,139,156,165,191,192],dimension:[29,30,33,40,41,43,45,60,61,83,123,126,132,145,151,156,186],dimensions:33,dimenss:83,diment:[63,65],dimi:31,diminish:48,dimx:31,dioxid:48,dip:64,dir:[56,127,158,171],direct:[7,41,76,84,104,122,123,126,127,130,134,143,152,166],directli:[1,7,14,30,31,41,62,66,78,99,100,101,104,117,118,119,121,123,130,132,137,139,141,148,150,171,172,182,194],directori:[33,36,37,38,39,51,68,76,80,101,103,117,118,127,134,136,159,171,173],dirnam:[31,51,56,127],dirpath:31,dirti:[48,117],disabl:[109,111,150,171,172,178,194],disable_v2_behavior:[131,136],disadvantag:[31,49,156],disambigu:143,disappear:[132,167],disast:99,disc_num_var:54,discard:[47,123,155,172,194],discern:145,disciplin:[3,114],disclosur:112,discount:[35,130],discourag:119,discov:[3,4,13,19,21,36,47,103,106,108,109,111,112,113,114,115,117,125,141,144,145,163,167,168,169,170,177],discover:139,discoveri:[104,113,139],discrep:78,discret:[50,54,59,78,116,119,128,130,150,151,165],discrimin:[112,143,156,172,182,184],discriminator_opt:36,discriminator_verdict:36,discuss:[1,3,4,7,11,18,28,48,50,76,101,104,112,114,116,117,119,121,138,139,141,143,145,147,154,155,170,171,179],diseas:[8,14,101,102,142,162,165,167,170,191],dish:162,disk:[12,14,25,101,140,158],dislik:104,disord:111,dispar:[75,78,143],dispers:[128,132,186],displai:[3,7,14,29,30,33,37,39,40,41,43,45,47,48,49,52,55,57,58,59,60,63,64,65,68,76,80,82,109,110,111,114,116,121,122,123,124,126,127,130,131,133,158,159,162,166,167,168,170,180],display_commandlin:130,display_imag:60,display_list:133,display_nam:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],display_stat:39,display_statu:131,display_step:126,display_t:172,displaycallback:133,displi:46,disregard:[75,126],dissatisfact:114,dissemin:112,dissert:143,dissimilar:[50,78],dissoci:151,dist:54,distanc:[59,84,128,145,146,156,158,164,166,186],distance_down:130,distance_left:130,distance_right:130,distance_up:130,distant:[146,156],distinct:[51,54,130,143,148,158,162],distinctli:108,distinguish:[7,36,50,114,119,131,156,182,184],distort:109,distort_imag:127,distplot:[54,56],distract:154,distribut:[3,7,22,30,31,45,47,48,49,50,55,56,61,64,68,77,78,80,83,92,93,102,108,112,114,128,130,131,132,135,136,137,139,140,141,143,147,150,151,155,156,157,158,162,165,167,168,171,172,182,192],div:[3,22,116,121,122,123,159,162,166,171,193],dive:[7,16,50,101,102,111,121,141,143,165,166,178,191],diverg:[47,48,141,146],diverging_palett:38,divers:[102,112,139,140,144,161,165,191],divid:[14,25,31,36,40,41,47,50,59,68,80,82,92,109,112,114,116,118,119,124,127,129,132,139,141,145,146,147,148,150,159,163,164,165,167,172,176,180,191,194],divis:[14,47,92,119,127,141,156,171,172,173,179,193,194,195],divisible_by_2:119,divisor:[39,92],divorc:108,dl:[33,82,150,191],dll:193,dm:[59,75,106],dmatrix:[66,155],dmitri:[14,99,132,166],dna:102,dname:127,dnn:129,do_glob:171,do_loc:171,do_nonloc:171,do_noth:171,doc:[26,40,41,43,62,71,90,100,104,110,111,118,123,163,171,172,180],docker:[35,51,140],docloud:193,docstr:[74,82,122,171],doctyp:[3,15,159],document:[3,5,7,10,16,25,26,38,40,49,57,68,69,71,80,92,93,95,99,100,101,102,109,111,114,119,121,127,128,139,142,143,145,146,147,155,163,170,172,180,194],documentdb:180,docutil:[121,122,123,166],docx:38,doe:[1,3,5,7,14,16,17,30,31,32,33,41,43,47,48,49,50,52,54,57,58,59,60,66,68,74,75,77,80,82,83,91,92,93,102,104,108,111,112,114,116,117,118,119,121,122,123,131,132,133,135,137,141,143,145,150,151,152,154,155,158,159,162,163,165,166,167,168,171,172,173,180,186,195],doesn:[7,26,31,32,33,39,49,52,56,57,58,64,66,68,75,76,80,82,93,104,109,113,119,123,131,137,139,150,152,155,164,171,172,193,194],doesnt:54,dog:[15,121,127,132,165,171,182,193],dogwithsharedtrick:171,dogwithtrick:171,doi:[14,143],dollar:[50,74,135],domain:[7,11,16,49,54,56,77,101,102,114,115,131,141,146,168,176],domin:[68,80,145,154,195],domino:180,don:[0,7,31,32,34,40,41,43,48,49,50,52,53,56,57,58,59,60,68,80,99,100,101,102,103,104,106,122,123,124,126,129,137,139,141,154,157,158,159,165,167,171,172,173,174,193,194],donald:[92,173],done:[1,3,7,14,25,35,36,40,43,49,50,52,54,56,61,82,100,101,108,110,118,119,121,124,126,127,137,140,145,148,151,155,157,158,159,166,171,172,173,180,187,194],donli:145,donn:22,donoghu:139,donut:[27,108],door:[57,58,165],dosag:[1,8],dot:[18,30,50,63,65,76,81,82,111,147,150,151,158,170,171,188,189,193],dou:143,doubl:[32,50,118,145,172,173,194,195],double_quote_str:[172,194],doubled_vector:[172,194],doubt:[100,101,143,151],doug:179,doughnut:110,douyupccli:38,down:[14,26,30,45,49,50,51,52,59,68,75,80,82,84,92,101,104,106,130,132,139,140,150,151,157,164,165,172,177,191,194],down_shifted_imag:84,down_stack:133,download:[1,3,12,25,36,37,38,47,48,57,58,68,80,82,101,114,118,119,127,128,131,132,133,134,136,158,163,168,173],download_fil:[9,100],download_read_data:[68,80],download_root:158,download_url:33,downsampl:[29,30,128,132,133],downsid:[57,58,137],downstream:139,downward:[108,128],dozen:[32,62,101,142],dp0dtheta:130,dp1dtheta:130,dp2dtheta:130,dp3dtheta:130,dp_dtheta:130,dpi:[146,158],dprobability0_dweight:130,dprobability1_dweight:130,dprobability2_dweight:130,dprobability3_dweight:130,dqn:130,dqnagent:35,draft:141,drag:[7,101,110],drain:165,dramat:[104,154],drastic:[54,132,141,186],draw:[1,3,8,14,18,31,49,50,52,59,60,61,68,74,75,80,109,110,111,114,116,126,130,147,151,156,159,165,166,170],drawback:[146,172],drawn:[49,108,116,141,147,182],dream:127,dress:[30,40,41],drewconwai:176,drift:142,drive:[45,47,48,102,104,106,112,127,129,133,135,139,143,159,165],driven:[0,102,112,114,130,139,142,143,174],driver:[17,23,112,165],drop:[14,31,32,38,39,41,46,47,48,49,50,51,52,53,54,56,57,59,61,62,64,67,68,74,80,101,110,114,117,119,123,127,134,137,147,148,152,154,155,157,158,159,162,163,164,166,167,168],drop_column:14,drop_dupl:[46,117],drop_remaind:[44,128],drope:130,dropna:[7,38,46,54,66,117,121,123,137,152,154,159,166,167,179],dropnan:38,dropoff:[102,174],dropout1:132,dropout2:132,dropout:[30,33,34,36,39,42,44,82,126,127,131,132,133,136,141,182,192],dropout_keep_prob:136,dropout_r:132,dropoutlambda:47,drug:102,ds:[35,38,44],ds_train:128,ds_wordcloud:3,dset:37,dsse:59,dt:[38,59,119,166],dtest:66,dtl8folder:38,dtrain:[56,66,155],dtrain_predict:56,dtrain_predprob:56,dtree:150,dtyp:51,dtype:[7,14,22,24,31,33,35,38,43,48,51,56,57,58,59,60,61,64,66,74,110,117,119,121,122,123,127,128,132,134,135,136,137,145,146,148,150,155,158,162,163,166,179],dual:[68,80,108],dual_sim:[68,80],dube:139,duc:132,duca:180,duck:[92,109,178],due:[14,18,50,54,102,111,119,129,130,132,135,141,142,147,148,150,151,152,156,157,174,186],duel:108,dummi:[22,66,82,137,171],dummy_inst:171,dummyclass:171,dump:[9,84,100,145,159,193],dumpstack:38,duplic:[38,121,122,123,124,139,147,165,171,180],duplicate_kei:93,durabl:139,durat:[37,102,159,174],duration_histori:130,dure:[11,14,36,39,40,41,43,49,50,52,54,57,59,60,61,62,82,92,101,104,111,119,124,129,132,133,137,139,141,142,147,148,154,155,156,157,165,168,171,172,191,192,193],dutch:[173,195],dw:[63,65,81,188,189],dx:[31,116,128],dy:31,dy_pr:82,dynam:[114,137,140,171,173,193],dynamic_rnn:136,dynamodb:180,e024722:139,e23479:139,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:59,e2:132,e2ab30:36,e5ni7of:59,e87ckhmr4qc:59,e:[1,3,8,14,16,33,35,36,39,42,49,50,51,52,54,55,59,63,64,65,68,77,80,82,92,93,101,102,112,113,114,116,117,119,121,122,123,126,128,130,131,132,135,136,139,145,147,151,152,157,158,163,165,166,167,171,172,174,176,179,182,186,188,191,192,193,194,195],e_1:147,e_:[128,150],e_n:147,e_x:147,e_z:150,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,35,36,37,39,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,68,74,75,76,77,78,80,82,83,84,90,92,93,101,102,104,106,108,111,112,113,114,116,117,118,119,121,124,127,128,129,130,131,132,133,135,137,139,140,141,142,145,146,147,148,150,151,153,154,155,156,157,158,164,165,166,167,168,171,172,173,174,179,180,184,186,187,188,192,193,194],eagerli:157,earli:[40,50,56,57,59,100,112,150,154,155,165],earlier:[7,29,40,46,50,54,82,91,100,101,102,117,123,137,146,151,158,161,162,167,172],early_stop:[40,154],early_stopping_round:[66,155],earlystop:[39,40,44],earn:113,earth:[59,102,171,174,195],eas:[101,117,170],easi:[0,7,31,36,40,43,46,47,49,50,52,59,101,104,111,112,113,116,117,119,123,129,137,140,141,142,147,150,156,157,167,173,179,180,186,187,195],easier:[1,31,40,41,50,53,58,72,82,101,102,104,112,113,117,132,137,141,157,168,171,172,175,193,194],easiest:[14,40,116,119,141,186],easili:[1,7,26,39,45,46,47,49,50,57,58,59,61,68,80,104,108,111,117,119,121,123,131,139,140,141,142,143,148,150,158,167,187,189,190],eastwood:92,eat:[168,173,195],ebner:143,ebook:112,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[109,140,141,171],echo_funct:171,ecolog:108,econom:[50,77,102,112,137,174,176],econometr:50,economi:7,ecosystem:[102,159],ed:1,eda:[17,100,103,126],ede9d:36,edg:[15,101,118,136,172,180],edgecolor:[50,83,156,158,184,186],edibl:[110,178],edibleclass:[110,178],edit:[3,109,110,111,121,170,187],editor:[23,173,187,195],edu:[58,93,104,106,127,132,136,143,177,193],educ:[11,50,51,102,104,158,174],education_level:56,education_num:51,effect:[7,34,39,45,49,50,52,53,54,56,57,62,74,75,101,108,112,114,119,121,124,132,133,135,139,141,142,143,145,147,151,155,156,157,165,166,171,172,173,175,176,182,191,194],effectiviolog:104,effici:[30,32,54,59,99,101,106,114,119,121,126,129,132,137,141,147,150,155,171,173,175,177],effort:[101,102,104,113,141,174],eg8djywdmyg:162,eg:[3,7,116,166],egg:[163,171,172,193,194],ehealth:139,ei:55,eight:[84,137],either:[3,7,14,22,29,40,43,45,47,48,49,52,57,100,104,116,119,121,122,123,129,133,135,137,139,141,142,143,145,148,150,157,163,165,171,172,173,191],ejection_fract:[9,100,101],ejtdl1tzr2vxnvlm4pwxei:59,ekf6iw6gti6:59,el:[56,143],elabor:8,elaps:128,elast:151,elasticnet:[66,157,166],elasticsearch:180,elbow:158,elec_data:[49,52],elec_df:[49,52],electr:[49,52,54],electrocadriogram:29,electrocardiogram:29,electron:[68,80,101],eleg:173,elem:[172,194],element:[7,13,14,18,19,29,33,39,43,50,68,80,82,92,109,113,116,118,121,122,123,127,128,132,134,143,147,150,170,171,173,179,187,192,193,194],elementwis:[33,82],elev:[83,156,184,186],elif:[35,37,39,84,93,122,123,127,130,133,135,171,172,193],elimin:[28,66,102,112,172,174],elkan:158,ell:[50,147,150],ellips:157,ellipsi:119,ellipsoid:186,els:[1,7,24,31,33,35,37,38,39,41,50,51,54,55,57,58,81,82,84,93,94,99,119,121,122,124,127,128,130,131,132,133,134,135,136,158,171,172,173,189,193],elsevi:48,email:[2,103,104,113,162,165,187,191],email_df:2,emam:143,emb:[59,116,128,136,140,162],embark:[22,77,152],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,126,128,129,132,134,135,136,140,142,165,171],embed_dim:132,embedding_dim:128,embedding_lookup:[134,136],embedding_lookup_1:134,embedding_mat:[134,136],embedding_output:[134,136],embedding_s:[134,136],emblemat:78,embodi:136,embrac:[165,173],emerg:[114,159],emerson:104,emili:[102,174],emiss:59,emit:130,emot:[112,119,121,177],empath:104,emphas:[78,102,145],emphasi:54,empir:[50,114,151],emploi:[32,36,49,54,59,75,78,84,101,150,165],employ:[56,116],employe:[6,50,56,112,171,179,193],empow:[77,138],empti:[3,7,14,24,31,40,49,53,92,93,113,117,119,122,126,158,166,171,172,179,187,194],empty_tupl:172,emrebulbul23:35,emreustundag:182,emul:180,en:[3,15,30,106,109,112,118,127,140,143,172,176,178,180],enabl:[0,7,29,41,59,76,100,101,108,117,123,127,132,135,139,147,150,159,162,165,175,191],enable_categor:[66,154,155],enable_early_stop:[9,100],encircl:173,enclos:[171,172,193,194],enclosedporch:54,encod:[9,22,29,30,31,47,48,49,52,54,57,61,64,68,80,100,126,127,133,136,141,146,152,159,165,166,191],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:126,encoder_b2:126,encoder_h1:126,encoder_h2:126,encoding_dim:30,encompass:[7,78],encount:[7,34,46,104,112,116,117,145,173,193],encourag:[3,112,151],encrypt:[106,116,139,177],encyclopedia:114,end:[3,7,29,31,32,33,35,38,40,43,46,50,52,53,54,57,58,60,61,64,68,78,80,84,101,102,103,106,108,111,112,114,116,117,119,121,122,123,127,129,130,132,133,137,140,142,143,147,148,150,151,155,157,158,164,171,172,177,179,188,193,194],end_slic:122,endang:[109,178],endpoint:[114,175],endswith:[31,158],energet:145,energi:[68,80,144,145,146],enforc:[78,102,112,114,119,174],engag:[102,104,141],engin:[14,18,31,38,47,56,76,77,101,112,119,121,129,133,137,140,141,143,145,151,157,159,165,179,180,191,195],english:[141,172,194],enhanc:[75,77,78,108,109,111,165,179,191],enjoi:[75,108,145,195],enlarg:[133,151],enorm:[7,117,156],enough:[7,31,33,39,45,47,48,58,60,61,68,80,92,99,101,103,106,111,112,116,119,128,132,141,151,156,157,165,167,172,173,191],enrich:139,enrolled_univers:56,ensembl:[50,51,52,53,56,57,58,62,68,80,116,138,141,148,150,151,153,154,155,163,165,186],ensur:[31,33,47,48,76,78,104,106,108,109,112,113,117,119,124,132,136,139,140,141,155,157,158,164,170,176,177],entail:101,entangl:143,enter:[38,48,51,95,101,114,130,171,173,183,189,190,193],entertain:121,entir:[31,32,104,109,112,119,132,133,137,141,142,143,151,156,158,159,168,171,172,176,194],entireti:[106,177],entiti:[1,113,118,143,180],entri:[7,15,38,46,59,60,74,117,119,128,139,145,155,157,162,166,171],entropi:[36,78,127,128,131,148,150,152,156,157,163],entry_script:[9,100],enumer:[1,34,37,39,54,64,116,121,122,126,127,128,130,131,132,134,158,164,166,171,186,189,190,193],env:[0,35,92,93,121,137,163,167],env_test:35,envi:108,environ:[9,35,39,45,47,48,51,57,58,60,61,66,99,100,101,102,104,123,132,140,154,155,158,165,166,169,171,174,191],environment:101,environment_debug:35,envis:167,enzym:101,ep:[31,132,158],epic:38,epidem:[14,119],epidemiolog:142,episod:35,epistolari:108,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,75,82,128,131,133,134,136,139,141,152,157,182,192],epoch_acc:33,epoch_count:35,epoch_end:33,epoch_loss:33,epoch_seq:136,epoch_tim:37,epr:55,epsilon:[35,61,128,132,151],epsilon_decai:35,epsilon_min:35,epsilon_t:151,epub:134,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:59,eq:48,equal:[7,14,18,22,24,33,47,48,50,54,59,68,76,80,83,92,116,118,119,123,127,128,136,137,141,142,143,147,148,150,151,154,157,158,165,168,170,171,172,193,194],equal_var:[18,116],equat:[55,59,75,76,128,137,151,152,166,172],equilibrium:[36,131],equip:[106,114,140],equiprob:147,equit:[112,176],equiv:[15,122],equival:[7,31,47,74,78,119,121,122,123,132,137,139,141,151,171,172,192,194],era:143,eras:1,erasur:112,eratosthen:92,erc20:38,erencan:189,eric:143,eros:143,erp:139,err:[122,123,147],errd:37,errd_fak:37,errd_real:37,errg:37,erro:43,erron:109,error:[0,1,7,29,35,37,39,40,43,45,47,48,49,50,51,54,55,57,61,63,65,66,75,76,78,83,102,116,119,121,122,132,136,137,139,140,141,143,148,150,151,153,154,155,156,157,158,166,167,172,173,184,185,188,194],errord:77,errormsg:47,errr:[53,58],erwo:92,es:180,escap:[172,194],especi:[43,49,62,66,104,108,109,110,114,139,140,141,150,151,155,158,164,165,171,182,191],essai:26,essenc:[50,75],essenti:[1,7,50,75,77,99,101,114,117,131,134,151,163,179],establish:[7,33,68,76,80,99,112,133,137,141,146],estim:[18,49,50,52,53,54,56,57,58,59,60,61,64,82,84,101,104,109,113,114,116,119,130,141,142,143,145,146,147,150,154,156,158,164,166,170,178,185,189,190],estimators_:148,estonia:195,et:[31,35,112,143],eta:66,etc:[7,28,31,33,41,45,49,50,56,68,74,80,102,114,116,119,123,129,133,135,139,140,141,142,143,148,150,151,165,171,173,174,177,178,179,191],ethic:[102,106,115,139,143],ethiko:112,etho:112,ethos3:104,etl:139,euclidean:[92,145,186],euclidian:158,eugen:143,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:59,european:112,ev:[50,147],eva:[118,180],eval:[31,33,40,127,136],eval_epoch:31,eval_epoch_va:31,eval_everi:[127,134],eval_i:127,eval_index:127,eval_indic:127,eval_input:127,eval_input_shap:127,eval_metr:[66,154,155],eval_set:154,eval_target:127,eval_x:127,evalu:[29,33,36,50,59,66,77,84,102,103,106,112,117,119,121,123,127,128,132,134,140,147,148,150,151,154,155,156,157,158,165,170,171,172,173,174,176,184,185,186,191,194],evaluate_on_last_n_it:158,evaluation_s:127,evan:133,evanesc:[110,178],evauat:60,even:[1,3,7,18,33,41,46,48,50,60,62,64,66,68,80,92,99,104,108,110,111,114,116,117,119,122,123,129,130,137,139,140,141,142,143,145,147,150,151,154,158,164,165,166,167,170,171,172,179,186,187,191,193,194],even_numb:[171,193],evenli:[77,119,141],event:[92,93,99,116,121,139,140,142,171,172,176],event_nam:140,eventu:[54,139,147,180],ever:[82,100,118,124,165,172],everi:[3,7,33,37,40,43,47,49,52,56,59,62,64,82,104,112,113,114,117,118,119,122,124,128,130,132,133,134,137,141,142,148,150,151,152,155,157,158,165,171,172,173,181,186,187,191,194,195],everydai:[50,114,151],everyon:[99,104,118,142,151,162,186],everyt:151,everyth:[7,50,61,101,103,104,118,121,124,127,134,137,138,141,145,151,165,171],everytim:43,everywher:[114,166],evid:[17,18,54,104,114,116],evok:104,evolv:[1,99,111,140,155],ex:[38,54,109,112,165,178],exact:[68,80,100,116,139,141,147,148,151,156,157,184],exactli:[1,7,50,74,75,78,102,104,106,116,119,123,129,132,136,141,151,152,165,170,171,193],exagger:50,exam:188,exam_model:188,exam_scor:188,examin:[7,29,41,46,59,61,77,117,145,147,155,165,166,179,188],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,35,38,39,40,41,43,45,46,47,48,49,51,52,56,57,59,64,68,74,75,77,78,80,82,93,101,102,103,104,106,108,109,111,112,113,114,116,117,118,121,122,123,124,126,127,129,131,132,133,134,135,136,139,140,141,142,143,145,147,150,153,155,156,158,159,162,164,166,167,168,170,171,172,173,174,179,181,182,192,193,194,195],example1:[7,117],example2:[7,117],example3:[7,117],example4:[7,117],example5:7,example6:7,example_batch:127,example_tensor:43,exce:157,excel:[23,25,29,102,110,113,118,133,156,174,178,184],except:[3,9,14,22,24,30,31,43,45,47,48,49,50,53,63,65,93,100,111,119,121,122,123,127,129,132,134,135,150,151,152,165,172,173,192,194],exception:139,exception_has_been_caught:171,exception_has_been_handl:171,exception_is_caught:171,exception_messag:171,excerpt:82,excess:[59,78,171],exchang:[104,112,140,159,177],excit:[50,104,114,127,136,165],exclaim:141,exclud:[54,93,119,121,122,154,158,170,172,194],exclude_pattern:116,exclude_word:93,exclus:[99,148,171],execut:[0,3,12,14,18,22,24,25,47,53,54,68,75,80,92,93,98,99,100,101,104,106,109,110,111,116,119,121,122,123,129,130,134,137,138,139,140,143,144,145,146,157,158,160,161,162,163,164,166,171,172,173,193],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91],exercis:[0,3,12,33,47,88,117,139,157,166,173],exhaust:[116,150,171],exhibit:[91,116,132,141,171],exhuast:56,exist:[1,7,9,14,29,30,31,33,37,39,41,45,47,50,54,56,59,64,66,76,82,93,100,101,102,104,112,113,114,116,118,121,123,127,134,136,139,140,141,142,143,145,147,148,151,157,165,171,172,174,179,180,193,194],exist_ok:[36,37,158],exit:[139,173],exogen:130,exot:[151,154],exp1:119,exp2:119,exp:[31,50,54,81,82,119,123,128,142,150,151,152,156,179,184,189,190],expand:[7,117,118,119,150,151],expand_dim:[36,41,44,119,127,134,188],expans:[156,171],expect:[7,33,35,41,47,48,51,57,74,82,91,109,114,116,117,119,122,123,130,140,141,147,151,166,168,171,173,195],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,93],expected_result:[14,22,93],expected_sequ:93,expected_sorted_list:93,expectil:151,expedi:130,expend:101,expens:[33,49,50,56,68,74,80,101,122,129,137,139,140,153,168,187],experi:[1,14,16,28,35,40,41,45,47,48,50,101,102,104,108,109,110,112,114,116,117,132,133,140,141,142,151,154,165,167,178,188,191],experienc:[28,112],experiment:[35,47,132,170],experiment_nam:[9,100],experiment_timeout_minut:[9,100],expert:[49,50,104,112,141,142,143,158],expertis:[101,102,114,141,142,174,176],expir:139,explain:[5,8,24,26,33,41,50,54,69,71,76,85,89,102,104,106,112,119,123,127,140,141,143,146,148,156,157,158,163,165,166,174,176,181,186],explained_variance_ratio:186,explained_variance_ratio_:186,explan:[10,20,24,45,47,101,112,122,123,143,151,157,172,194],explanatori:[24,109,154,166],explic:57,explicit:[119,123,171,186],explicitli:[82,119,122,130,146,165,171,191],explod:[51,134,141],exploit:158,explor:[9,18,23,28,35,45,47,54,60,76,77,83,98,99,100,101,102,104,105,106,107,110,111,112,113,121,124,138,140,142,145,147,151,153,156,157,159,162,164,165,166,167,168,170,174,177,180,187],exploratori:[17,68,76,80,100,126,177],expm1:66,expn:119,exponenti:[54,119,127,151,172,173,194,195],exponential_decai:127,expos:[54,102,112,123,142,176],expose_map:54,exposit:104,exposur:[104,112],express:[1,8,22,30,36,44,45,47,48,75,82,92,93,104,116,119,121,122,123,134,139,147,151,165,166,167,172,173,176,188,191,193,194],extend:[33,102,112,119,140,141,150,151,165,171,172,191,193,194],extens:[0,18,40,78,98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,141,144,145,151,157,158,160,161,162,163,164,170,173,180,192,193,195],extensionarrai:123,extent:[116,132,156,158],extercond:54,exterior1st:54,exterior2nd:54,extern:[99,112,113,116,143,176],exterqu:54,extinct:[109,178],extra:[18,49,50,119,127,140,148,151,155,165,172],extract:[3,8,31,32,33,38,41,44,54,99,113,114,119,121,127,128,129,132,133,138,139,141,165,168,176,191],extract_fold:127,extract_net_info:127,extract_path:[29,30,31,39],extractal:[29,30,31,33,36,37,39,127],extracted_text:3,extractor:3,extrapol:[50,150],extratreesclassifi:150,extratreesregressor:150,extrem:[48,54,56,116,132,140,151,161,180],extremli:83,ey:[30,82,108,111,141,157,181,182,188],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:119,f10:148,f1:[40,47,52,57,60,68,80,119,148,152,163,164,167],f1_score:152,f2:[119,148],f2ac792482e3:180,f35:59,f3:[119,148],f4:[119,123,148],f4bafb1ea019:158,f50duri2g6yv8pzu8ii:59,f5:148,f6:148,f7:148,f821:[171,172],f8:[119,148,179],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:59,f9:148,f:[0,1,3,9,14,18,24,29,30,31,33,35,37,38,39,45,47,48,50,51,55,64,75,78,82,84,92,93,100,108,116,119,121,122,123,126,127,128,130,134,137,145,147,148,150,151,152,155,162,163,166,172,173,179,187,194],f_0:151,f_:150,f_i:151,f_t:[134,151],fa:[54,130],face:[31,36,39,99,102,104,121,127,129,133,140,169,173,174,176,179,182],facebook:[112,143,176],facecolor:[36,83,156,158,184,186],facemask:[165,191],facet:108,facetgrid:[111,145,167,178],facial:[102,121,174],facil:[119,171],facilit:[53,119,171],fact:[1,4,14,18,19,39,40,43,49,50,52,57,58,62,68,80,103,108,109,110,112,113,114,116,119,124,131,144,146,147,150,151,156,157,158,163,165,167,168,171,172,189,190,191,192],factor:[50,53,54,63,65,68,75,80,92,99,101,111,128,132,140,147,148,150,156,157,165,171,184,189],factori:[92,99,106],fad:38,fadahunsi:139,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:59,fail:[1,16,47,48,50,59,61,68,80,93,112,129,139,141,165,171,176,191],failur:[9,29,98,127,140],fair:[52,57,58,68,80,102,112,114,127,141,144,147,155,174,176],fairlearn:102,fairli:[33,49,112,127,158,176],fairseq:128,fairytal:166,fake:[36,37,131,165,182],fake_label:37,fake_samples_epoch_:37,falcon:121,fall:[41,45,47,48,62,64,99,104,109,116,119,123,150,162,165,166,171,191],fallaci:104,fallback:141,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,46,49,51,52,53,54,56,57,64,66,68,74,76,80,82,84,92,100,101,109,111,116,117,119,121,122,123,127,130,132,133,134,135,137,141,143,147,150,154,155,156,158,162,163,164,167,171,172,173,178,179,182,184,193,194,195],false_boolean:[172,194],false_positive_r:59,falsehood:173,famili:[5,22,104,109,110,118,138,151,155,159,164,178,180],familiar:[28,59,62,102,109,118,123,124,147,152,157,166,167,173,174],family_s:22,family_size_max:22,familys:22,famou:[140,154],fan:[102,173],fan_out:135,fanci:[66,114,179],faoconnor:139,far:[4,7,17,31,36,40,56,64,68,74,77,80,109,116,117,127,128,145,155,156,158,165,166,172,184,188,192],fare:[22,152],fare_add_averag:22,fark:35,farlei:[131,140],farmer:147,farsight:130,farther:[74,145],fascin:[110,112,169],fashion:[20,29,30,98,100,101,102,109,119,129,132,155,166,171,186],fashion_classifi:40,fashion_classifier_21:40,fashion_classifier_22:40,fashion_classifier_23:40,fashion_classifier_24:40,fashion_classifier_2:40,fashion_classifier_3:40,fashion_classifier_4:40,fashion_classifier_vi:40,fashion_mnist:[29,30,40,41],fashion_test:40,fashion_test_label:40,fashion_train:40,fashion_train_label:40,fashon:30,fast:[7,36,40,41,45,48,50,74,101,106,119,123,140,155,165,172,177,179,187],fastai:55,fasten:54,faster:[36,45,47,49,53,54,59,68,75,80,82,114,119,140,154,155,158,165],fastest:[119,155,158],fastforwardlab:126,fastgfil:127,fatal:[8,14,171,193],fater:49,father:64,fault:140,favipiravir:1,favor:[150,151,157,165,173],favorit:[100,113,116,121],favorite_hobbi:93,fayyad:50,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[68,80,110,178],fcn:135,fcos_structur:135,fe:141,feasibl:[101,141,143,147,155],feat:127,feat_df:52,feat_dict:53,feat_imp:56,feat_import:[52,53],feat_map:74,featuir:54,featur:[7,9,16,20,22,30,31,33,34,38,39,40,41,44,45,49,58,60,61,62,63,64,65,66,76,77,82,84,100,101,103,112,113,114,118,119,121,123,126,127,128,129,132,133,135,140,142,147,149,150,151,153,156,157,159,162,163,167,170,171,172,175,179,186,188,192,194],feature_1:137,feature_2:137,feature_column:83,feature_df:162,feature_fract:54,feature_fraction_se:54,feature_importances_:[51,52,53,56,148],feature_indic:148,feature_nam:[7,40,57,58,117,148,186],feature_num:127,feature_rang:[38,42],feature_scor:51,feature_typ:66,featurecolumn:45,featureidx:47,featuremap:135,featurespr:45,februari:[141,173,177,180,195],fed:[31,41,49,51,59,123,132,136,147],feder:112,feed:[3,31,32,39,40,43,54,57,82,114,119,127,129,137,143,158,165,191],feed_dict:[127,130,131,136],feedback:[104,138,140,143],feedforward:[129,132],feel:[3,7,104,128,145,168,173,177],feet:66,fell:171,femal:[22,56,102,165],feminin:108,fenc:[54,66],fence_map:54,fenugreek:162,fernandez:116,fetch:[57,186],fetch_california_h:74,fetch_dataset:31,fetch_openml:[57,58,158],few:[1,7,9,14,36,39,40,41,43,45,46,47,48,50,52,57,58,59,61,66,68,75,76,80,82,88,100,101,102,103,104,106,109,111,112,116,117,118,119,121,123,127,132,133,134,137,138,140,141,142,145,146,151,154,155,157,158,159,165,167,171,172,179,182,191],fewer:[3,50,57,59,62,71,113,116,119,147,157,164,171],fewest:132,ff_dim:132,fff:159,ffill:[7,117],ffn:132,ffn_output:132,ffoutput:38,fg86ufl9igmpwtk6aurw9v5:59,fgsymyf:59,fh:134,fhxfwxna:135,fhxfwxnax4:135,fi:148,fib_sequ:93,fibonacci:171,fibonacci_at_posit:171,fibonacci_at_position_renam:171,fibonacci_function_clon:171,fibonacci_function_exampl:171,fibonacci_list:171,fibonacci_modul:171,fibonacci_module_renam:171,fibonacci_smaller_than:171,fiction:31,fido:[119,171],field:[7,43,49,50,52,82,109,118,123,132,133,137,138,139,145,147,156,159,165,166,172,180,181,191,194],fieldnam:119,fifth:[119,172,194],fifti:36,fig:[1,22,30,33,35,37,39,44,54,59,64,75,83,109,110,111,128,130,137,150,152,156,178,184,186],fig_dim:22,fig_extens:158,fig_id:158,fight:54,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,64,66,68,74,77,80,82,83,109,110,111,126,128,133,137,145,146,148,150,152,155,156,158,178,184,186,192],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,52,53,54,55,56,57,59,61,62,64,66,68,74,75,77,80,82,83,102,110,111,113,124,126,128,130,132,133,135,137,141,143,145,146,147,148,150,155,156,158,168,178,180,186,187,192],figure_format:[50,66,137,147,150,186],figureclass:[110,178],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,36,37,38,39,41,42,45,47,48,51,54,59,66,71,76,90,92,93,100,101,108,113,114,118,119,121,122,123,127,130,134,136,140,145,146,159,162,163,164,166,168,170,171,172,179,192,193],file_conn:[127,134,136],file_id:57,file_loc:127,file_output:130,file_path:[29,30,31,33,41,66],file_path_to_metadata:1,filenam:[31,39,51,56,127,158,159],filename_queu:127,filepath:[39,44,127],fill:[1,11,14,15,18,22,24,46,48,49,51,52,56,66,68,74,80,97,101,109,117,119,121,123,128,137,148,154,156,159,165,166,178,184],fill_:37,fill_between:[29,150,156,184],fill_betweenx:158,fill_valu:121,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,46,51,54,56,66,117,137,179],film:108,filter:[7,14,16,24,31,33,34,39,46,54,109,119,123,124,127,128,132,133,145,168,180,193,194],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[109,178],filters1:133,filters2:133,filters3:133,filterwarn:[36,39,49,50,51,52,53,54,56,57,58,59,68,80,150,152,154,158],fin:[63,65],fin_col:54,final_conv_shap:127,final_df:38,final_estim:49,final_featur:159,final_imag:127,final_list:193,final_model_output:127,final_output:127,final_pip:[61,74],final_shap:127,final_st:134,final_state_c:134,final_state_h:134,financ:[6,77,102,114,174],financi:[6,121,130,151,165],find:[7,8,14,15,18,31,32,37,40,46,47,48,49,50,52,53,54,57,58,59,60,61,63,65,69,71,76,77,83,84,92,100,101,102,106,108,109,110,111,112,113,114,116,117,118,119,121,123,124,126,127,129,130,131,138,141,142,144,145,147,148,150,151,152,154,155,156,157,162,163,165,166,167,168,170,171,173,176,184,188,191,194],find_better_split:55,find_common_el:172,find_prime_factor:92,find_varsplit:55,find_wanted_peopl:92,fine:[75,77,84,126,132,133,139,141,150,154,166],finer:[7,117,140],finish:[0,3,32,54,101,137,140,152,157,159,171,173],finit:[116,130,162,167],finland:195,fintech:38,fintype_map:54,fip:142,fire:30,firecolumn1:38,firecolumn2:38,firecolumn:38,firefox:101,firegod:38,firehos:139,fireplac:54,fireplacequ:54,first:[0,1,3,7,11,14,18,31,32,34,39,40,41,43,44,45,46,47,48,49,50,52,53,54,56,57,58,59,60,62,64,66,68,76,77,80,82,93,100,101,103,104,106,110,111,112,114,116,117,118,119,121,123,124,127,129,130,131,132,133,134,136,137,139,140,141,142,143,145,147,148,150,151,152,154,155,156,158,159,162,163,165,166,167,169,171,172,173,176,177,179,186,187,188,191,192,193,194,195],first_baseman:[18,116],first_char_set:172,first_nam:[93,193,195],first_numb:[172,194],first_param:171,first_term:127,first_tuple_numb:172,first_word:[171,193],firstli:[46,83,141],firstnam:[118,173,180],fiscal:25,fisher:7,fit:[29,30,31,32,33,34,35,36,38,39,40,41,42,44,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,65,66,68,74,75,76,77,80,81,83,84,88,92,93,100,113,114,118,130,133,137,139,141,142,143,146,148,150,151,152,153,154,155,158,159,162,163,164,166,167,170,171,172,184,186,189,190],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:136,fit_predict:158,fit_resampl:162,fit_transform:[30,38,40,42,44,49,51,52,53,56,57,58,59,60,61,64,68,74,76,80,83,146,154,158,159,167,186,188,189,190],fitted_model:[9,100],fiumlogtswc31vrwbvd:59,five:[7,16,46,49,52,83,92,104,107,132,137,162,168,172,194],five_up:119,fix:[29,45,48,49,52,62,82,112,113,119,123,128,132,134,140,141,150,152,155,156,162,173,176,181,184,186],fixat:104,fixed_nois:37,fixedformatt:158,fixedlengthrecordread:127,fixedloc:158,fk:[12,124],flag:[3,29,33,35,123,132,141,145],flair:[102,174],flat:[39,64,145],flat_map:44,flat_output:127,flatten:[29,30,32,33,34,36,37,39,40,41,43,44,64,82,93,126,128,132,159,163,172,186,194],flatten_nested_list:93,flatten_vector:[172,194],flattened_list:93,flavor:[7,130,157],flaw:[66,69,85,91,102,174],fledg:151,flexibl:[7,66,99,113,119,123,124,138,139,140,151,156,175,179,180,187],flip:[68,74,80,108,127,130,131,133,165,191],flipsid:7,fll:46,float32:[29,30,31,33,35,43,119,126,127,128,130,131,132,133,134,135,136,158,182,192],float64:[14,24,38,44,59,60,64,74,117,119,122,123,145,150,166,179,186],float_format:[45,47,48],float_neg:[172,194],float_numb:[172,194],float_number_via_funct:[172,194],float_with_big_:[172,194],float_with_small_:[172,194],floatbox:135,floattensor:31,floor:[38,54,130,147,172,179,194,195],floppi:140,florian:133,florida:[108,179],flow:[32,34,50,109,129,172,194],flower:[60,83,108],flowform:156,flu:[102,174],flu_trend:137,fluctuat:[14,49,52,157,166],fluoresc:39,flush:193,fluvisit:137,fly:173,fma:29,fmt:[34,38,40,51,59,64,68,80,127],fn:[52,59,68,80,167],fname:31,fnlwgt:51,foconnora:139,focu:[1,14,18,49,54,59,78,82,99,102,103,106,111,113,114,119,122,123,124,139,141,148,162,163,165,166,174,180,187],focus:[46,75,101,102,103,104,106,110,112,113,117,118,138,140,141,142,151,164,169,170,174,176,177],foggi:130,fold:[49,50,56,57,58,60,61,64,68,80,83,153,158],folder:[14,31,33,39,100,108,127,145,159,162,168,173,178],folder_path:127,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,36,40,41,43,45,47,48,50,51,53,54,58,59,66,74,75,76,77,83,92,93,99,100,101,102,103,104,106,108,110,112,113,114,116,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,145,147,148,150,151,154,155,156,157,158,159,163,164,165,166,167,168,170,171,172,173,180,193,194],font:[59,110,159],fontsiz:[30,39,83,127,158],fontweight:83,foo:[119,121,123,173],food:[108,139,161,172,194],fool:[108,131,182],footbal:50,forc:[1,102,126,131,142,143,145,157,171],forcast:137,forcibl:193,ford:143,forecast:[38,50,77,100,106,142,177],forecasting_d:[38,44],forehead:182,foreign:124,forest:[50,57,58,62,66,68,80,116,126,147,149,151,154,164,165],forest_best:[52,53],forest_clf:52,forest_grid:50,forest_param:50,forest_reg:53,forget:[82,100,101,102,129,134,143,174],forgotten:[112,134,176],fork:0,form:[3,7,47,50,51,59,82,112,114,117,119,123,124,129,130,137,140,142,145,146,151,155,156,159,162,165,166,171,172,180,188,191,192,193],form_df:15,form_linearly_separable_data:50,formal:[18,50,112,116,132,143,148,150,171,193],format:[6,14,26,29,31,32,33,35,36,40,41,45,46,48,49,51,52,53,56,57,58,59,60,61,63,65,68,74,80,92,98,99,100,101,102,107,108,109,110,111,112,113,114,115,116,117,118,119,127,129,130,131,133,134,135,136,137,139,140,144,145,146,147,150,155,156,157,158,159,160,161,162,163,164,165,168,171,173,174,179,184,186,191,192,193,195],format_nam:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],format_person_info:93,format_vers:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164,193],formatfactori:38,formatted_column:46,formatted_info:93,formatted_str:[172,194],former:[43,49,61,114,119,128,132,141,143,147,148,165,167,191],formul:[165,188],formula:[18,75,76,92,118,148,151,167,172],forth:[49,104],forthcom:170,fortran:119,fortun:[7,46,68,80,117,146,151,168],forum:138,forward:[7,31,32,33,37,46,82,117,127,140,165],found:[1,9,26,32,50,54,56,63,65,68,80,84,92,100,101,103,109,113,116,119,123,127,134,135,139,141,142,151,154,155,156,171,172,173,187,193,194],foundat:[112,114,138,139,140,142,151,165],foundationdb:180,founder:165,four:[7,32,41,50,51,59,68,80,92,101,117,118,119,137,148,157,162,170,171,172,193],four_g:[68,80],fourier:119,fourteen:186,fourth:[14,32,83,119],fowler:142,fp:[59,68,80,135,167],fpath:31,fpcoor:135,fpn:135,fpr:[59,167],fr:14,frac:[14,47,48,50,62,75,77,78,93,128,131,135,147,148,150,151,152,155,167,188],fractal:119,fraction:[41,50,62,150,157,158,167,172,192,194],fragil:[62,171],frame:[1,7,14,35,36,38,50,57,58,59,60,74,117,121,123,127,129,141,145,155,162,166],framebord:[116,121,122,123],framework:[0,29,40,41,54,101,112,127,129,133,134,136,138,139,140,141,143,155,159],francesco:143,franci:147,frank:141,fraud:[102,145,165,174,191],free:[3,30,48,54,92,93,102,110,112,114,128,129,135,143,145,165,168,171,172,173,174,176,178],freecodecamp:181,freed_by_count:29,freedom:[102,116,123,130,174],french:108,freq:[38,44,57,64,74,123,137],frequenc:[1,3,61,64,137,139,141,150],frequent:[49,50,51,52,53,54,59,106,116,124,134,140,141,151,162,165,186],fresh:[69,112,155,159,168],fresh_fruit:[172,194],friedman:[50,150,155],friedman_ms:56,friend:[104,113,114,121,141],friendli:[102,108,140,141],frog:127,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,74,75,77,80,82,83,84,88,91,92,94,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,121,122,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,173,174,175,176,177,178,179,180,182,184,187,188,190,191,193,194],from_arrai:121,from_categor:39,from_config:[9,100],from_lat:31,from_logit:[41,133],from_logitstru:133,from_se:43,from_tensor_slic:44,fromarrai:[31,127],front:[68,80,109,172,178,194],frozen:155,frozenset:[123,172,194],fruit:[172,194,195],fruit_nam:39,fruits_copi:[172,194],fruits_dictionari:[172,194],fruits_set:172,fruits_set_via_constructor:172,fruits_tupl:172,fruits_tuple_via_constructor:172,frustrat:139,ftc:[112,176],fu:121,fulfil:[119,151],full1:127,full1_bia:127,full1_input_s:127,full1_weight:127,full2:127,full2_bia:127,full2_weight:127,full3:127,full:[1,7,29,31,37,41,43,48,49,61,68,80,93,99,100,101,109,112,117,119,121,122,123,124,135,140,141,150,151,154,158,162,163,166,171,172,194],full_bias1:127,full_bias2:127,full_bias3:127,full_layer1:127,full_layer2:127,full_model_dir:134,full_mult1:127,full_mult2:127,full_mult3:127,full_weight1:127,full_weight2:127,full_weight3:127,fullbath:54,fulli:[0,32,33,41,45,48,64,82,85,127,129,130,132,133,135,139,140,141,142,151,158,165],fully_connected1:127,fully_connected_size1:127,fulvou:[109,178],fun:[57,82,119,166,167,193],func:[92,132,171,193],func_nam:171,func_wrapp:171,function_nam:173,function_that_receives_names_argu:171,function_wrapp:[171,193],functool:127,fund:56,fundament:[52,53,58,60,75,77,99,116,119,123,125,162,165],fungi:110,furnish:[92,93,171,172],further:[1,14,36,50,54,59,60,61,75,76,92,100,101,113,114,116,119,126,127,130,140,141,147,151,153,154,155,158,159,164,165,171,179,191],furthermor:[47,50,84,103,141,151],fuse:132,futher:54,futur:[29,38,44,47,54,58,76,102,112,114,121,142,143,151,159,162,165,167,171,191],future_step:[38,44],futurewarn:[121,146,158,186],futurolog:127,fx:134,fxbyxm:59,fy:25,fykun93:59,g:[3,37,38,39,42,50,51,54,56,59,75,77,82,93,102,112,114,119,121,122,123,126,127,130,131,132,135,136,139,145,150,151,157,163,167,171,172,174,176,179,182,192,194,195],g_b1:131,g_b2:131,g_b3:131,g_b4:131,g_error:131,g_k:130,g_loss:[36,37,131],g_loss_metr:36,g_opt:131,g_optim:36,g_origin:127,g_resolut:36,g_sampl:131,g_style:127,g_t:134,g_var_list:131,g_w1:131,g_w2:131,g_w3:131,g_w4:131,gain:[29,48,50,54,59,76,99,109,121,130,139,141,148,150,151,152,155],galaxi:6,gallagh:139,gallahad:171,galleri:142,galton:147,gam:151,gambl:102,gamboost:151,game:[35,38,50,98,102,130,131,143,165,191],gamedownload:38,gamma:[35,59,60,61,66,130,132,151,154,155,158],gan:[131,142,143],gan_input:182,gan_output:182,gan_structur:182,ganlab:[131,182],gao:132,gap:[14,22,41,50,59,104,112,132,141,157,168,176],garagearea:54,garagearea_mean:54,garagecar:54,garagecond:54,garagefinish:54,garagequ:54,garagetyp:54,garageyrblt:54,garbag:[39,119],garbl:139,gari:[38,143],garlic:162,gartner:[112,139,143],gartner_inc:143,gartnerinc:143,gate:[129,173],gatewai:139,gather:[15,39,102,103,114,128,136,141,143,145,159,164,166,174],gaug:[77,78,167],gaussian:[30,59,128,145,151,163,165],gaussiannb:163,gaussianprocessclassifi:163,gave:[49,50,147],gazett:143,gb:1,gbc:56,gbdt:[54,151],gbm:[56,155],gbm_tuned_1:56,gbm_tuned_2:56,gbm_tuned_3:56,gbrt:151,gbtree:[54,154,155],gc:39,gca:[1,32,109,110,127,156,158,178,184],gcf:[110,178],gcp:140,gcv:150,gd:54,gdpr:112,gdprv:54,gdwo:54,gebru:[102,174],geeksforgeek:[141,156,193],gees:[19,109,178],geforc:29,gelu:128,gemston:180,gen_imag:37,gen_z:37,gender:[7,22,50,102,112,114,121,155,165,174,176],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,41,43,45,46,47,48,49,50,52,53,57,59,60,62,74,76,78,84,100,101,102,103,108,109,111,112,113,114,116,117,118,121,122,123,124,126,127,128,129,130,133,134,136,137,138,139,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,162,163,164,165,170,171,172,173,176,179,180,183,184,188,192,195],generalis:[54,156],generalist:104,generalizaton:34,generar:36,generate_from_frequ:3,generated_imag:[36,182],generated_paint:36,generated_path:36,generated_portrait:36,generated_text:134,generation_num:127,generator_opt:36,generd:131,genfromtxt:186,genom:102,genr:[145,146],genu:[109,178],geoffrei:[33,127,186],geograph:[61,101],geographi:142,geoloc:14,geometr:[145,156],geometri:[132,145],georg:[121,133,172,173,194],georgia:[112,135,176],geospati:[102,174],geq:151,geqq:128,gerg:130,germani:159,geron:[43,49],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,36,37,39,41,43,46,47,48,49,52,53,54,56,57,58,59,60,61,62,64,66,68,76,77,80,82,99,100,101,102,103,104,108,109,112,116,117,118,122,123,124,127,129,130,132,134,136,137,139,140,141,142,146,147,148,151,152,154,155,157,158,159,162,163,164,165,166,167,168,169,171,172,173,179,182,186,191,193],get_accuraci:127,get_age_by_surviv:22,get_age_group:171,get_base_model:133,get_batch:31,get_bootstrap_sampl:147,get_cmap:186,get_count:171,get_dat:[171,193],get_default_devic:33,get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,66,166],get_environ:[9,100],get_equivalent_kernel_bia:132,get_fil:[38,39,40,42,44],get_full_id:[171,193],get_grid:50,get_imaginari:171,get_index:122,get_initial_st:134,get_item:123,get_lay:[132,133],get_loc:[122,123],get_messag:[171,193],get_model:128,get_nam:[171,193],get_oper:127,get_output:[9,100],get_param:[52,53,57,58],get_pinfect:14,get_properti:[9,100],get_real:171,get_result:121,get_rolling_window:14,get_rt:14,get_shap:[127,130,132,136],get_slice_bound:122,get_smoothed_ax:14,get_std:24,get_survival_rate_by_gend:22,get_tensor_by_nam:127,get_text:171,get_the_unique_values_of_pclass:22,get_tim:[171,193],get_timestep_embed:128,get_transition_sigmoid:142,get_valu:123,get_vari:127,get_vers:133,get_xaxi:[29,30,127],get_xlim:[156,184],get_yaxi:[29,30,127],get_ylim:[156,184],getcwd:[29,30,31,33,39,41,66,127],gettint:43,gfile:127,ggplot:150,gh:[122,134],ghdoc:140,ghost:167,ghwa:132,ghwb:132,gift:168,gigabyt:[68,80],gigaspac:180,gill:[110,178],ginger:162,gini:[50,57,148,150,152],giraph:180,girshick:135,gist_rainbow:[68,80],git:[0,38,92,140],github:[5,14,35,38,51,57,58,60,61,66,75,102,119,122,123,126,127,138,140,141,142,146,154,155,158,162,166,167,170,181,182],githubusercont:[12,14,18,25,68,80,146,158],give:[1,7,18,24,36,41,49,50,51,54,56,59,63,65,74,77,100,101,104,108,109,112,114,116,117,119,121,123,129,132,135,141,146,148,151,152,155,156,158,165,166,167,171,172,173,176,191],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,40,44,47,49,50,52,53,54,56,57,58,59,60,68,74,80,82,92,93,99,101,108,109,110,111,116,119,121,126,129,130,132,133,135,141,142,143,145,146,148,150,151,155,156,157,158,162,163,165,166,167,168,170,171,172,178,179,185,186,188,191,193,194],gkioxari:135,glacier:139,glanc:[36,54,61,139,151,152,165],glean:104,glenc:56,glinternet:151,glmboost:151,glob:[2,31],global:[14,22,50,59,101,132,133,139,142,156,158,184,193],global_variables_initi:[127,131,136],globalaveragepooling2d:[132,133],gloss:104,glq:54,glu:[172,194],glue:139,gluon:141,gmail:165,gn:135,go:[0,1,7,31,36,41,43,48,49,50,52,53,55,57,58,60,61,63,65,66,68,74,80,82,89,98,99,100,101,104,108,109,111,116,117,119,121,122,124,128,129,133,134,139,140,141,146,148,151,154,157,158,162,165,167,170,171,172,173,175,182,186,191,193,195],goal:[1,7,8,16,29,46,71,74,95,102,103,104,106,114,126,130,141,142,143,151,155,156,157,165,166,174,176,177,182,191],goali:130,goalx:130,goe:[49,50,60,62,74,82,104,114,138,147,150,151,163,165,168,182,193],gog:38,gold:142,golden:[139,171],golovin:143,gomez:131,gone:[3,112,151,165,191],gonna:82,good:[1,3,7,18,19,25,31,39,40,41,43,45,47,48,49,50,52,53,54,57,59,60,61,62,63,65,66,68,80,82,84,100,102,104,108,109,111,112,114,116,117,127,128,131,132,139,141,142,143,145,146,147,150,151,152,156,158,159,163,164,165,166,167,168,171,173,178,184,185,186,187,192],good_init:158,goodby:171,goodfellow:[29,50,78,131,182],googl:[40,43,45,47,48,99,102,112,121,127,129,139,140,141,142,165,173,174,180,182,191],googleapi:127,googlenet:132,goos:[109,178],gosset:116,got:[7,43,50,51,56,82,146,151,152,158,173,187],gov:143,govern:[22,45,47,48,75,112,114,137,143,165,191],govt:112,gp:182,gpu:[29,33,36,40,43,49,54,100,101],gpu_0_bfc:29,gpu_devic:29,gpu_hist:54,gpu_id:[66,154,155],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:59,grab:[41,119],gracefulli:[122,172],grad:[33,36,127],grad_bias:82,grad_boost_clf:49,grad_input:82,grad_output:82,grad_softmax_crossentropy_with_logit:82,grad_w:82,grad_weight:82,grade:[166,167,187],gradient:[33,36,47,48,54,57,58,63,65,68,78,80,81,82,126,127,128,129,130,132,134,138,141,150,154,156,163,166,184,188,189,192],gradient_boost:152,gradient_desc:[75,76],gradient_i:75,gradient_loss:152,gradient_react_3d:166,gradient_x:75,gradientboostingclassifi:[49,56],gradientdescentoptim:127,gradienttap:[36,126,128,130,134],gradual:[64,75,76,111,141,151,158,165,191],graduat:56,grai:[18,29,30,31,47,82,109,114,126,127,158,178,186,192],grain:[7,117,139,150,166],gram:127,grand:132,granda:116,grant:[36,50,92,93,123,165,171,172],granular:[109,140,145,164],grape:[172,194],graph:[1,3,8,14,19,24,30,33,40,41,47,54,114,116,118,127,128,131,136,137,142,145,147,150,151,154,155,156,166,168,170,180],graph_def:127,graph_obj:35,graph_object:1,graphdef:127,graphic:[8,24,43,101,116,118,119,130,147,157,165,175,180,185],graphwin:130,grasp:[75,147,164],grass:[110,178],grassi:159,gratifi:110,grayscal:[41,158],great:[16,30,40,49,50,52,53,63,65,74,76,101,102,104,108,114,116,119,141,143,146,148,150,151,158,172,173,174,194],greater:[29,46,48,50,54,92,104,109,119,123,129,148,150,151,158,171,172,178,193,194],greater_equ:119,greatest:[50,92,119,127],greatli:[48,50,114,132,141,145,150,151],greedi:[50,151,155,186],greek:112,green:[49,50,51,52,104,108,109,110,116,130,132,140,151,166,168,172,173,178,189,190,194],greenawai:25,greengrass:142,greensock:108,greet:[171,193],greet_again:[171,193],greet_funct:171,greet_one_mor:[171,193],greet_someon:[171,193],greet_with_closur:171,greeter:171,greeting_with_div_p:171,greeting_with_p:171,greeting_with_tag:171,greetingclass:171,grei:50,gremlin:[118,180],greys_r:127,greyscal:127,grid:[18,22,29,41,50,53,56,57,59,60,66,74,82,84,130,135,142,145,147,156,159,184],grid_clf:158,grid_estim:84,grid_param:84,grid_pr:60,grid_search:[52,53,57,58,59,60],gridsearch:[52,53,57,58,60,150],gridsearchcv:[50,52,53,57,58,59,60,84,150,158],gridsearchcvgridsearchcv:[57,58,60,158],grlivarea:[54,66],groceri:[155,162],gross:25,ground:[66,132,172,192],groundbreak:129,groundwork:104,group:[14,18,22,31,38,49,50,54,74,101,102,104,106,107,108,110,111,112,113,114,116,118,128,132,134,139,141,142,144,145,146,147,150,155,159,162,163,165,167,168,169,170,172,174,176,177,178,179,180,186,191,193,194],group_by_categori:93,group_kei:[22,121],groupbi:[1,14,18,22,31,38,54,83,110,121,168,178],groupby_sum:14,grouper:38,groupnorm:[128,135],grover:55,grow:[82,101,110,116,119,124,135,140,151,180],grow_polici:[66,154,155],grown:150,growth:[78,132,137,150],growth_rat:132,grunin:14,gryffindor:187,gsearch3:56,gsearch4:56,gsearch5:56,gt:[46,134],gu:142,guarante:[50,119,123,140,173],guardian:108,guardrail:112,guarrant:[68,80],guava:39,guess:[7,18,47,50,53,56,58,92,93,117,141,147,151,163,167,171],guesser:50,gui:[54,101,175],guid:[0,17,23,50,54,56,75,99,112,114,119,121,122,123,138,140,141,142,165,171,175,181,191],guidanc:[45,48,59,75,112,141,165,186,191],guidelin:[48,112],guido:[172,173,193,194,195],guin:116,gun:108,gupta:[139,143],gust:130,gutedbanoeu:162,gutenberg:[102,134,174],guttula:139,guyon:59,gym:93,gyroscop:116,gz:[33,127,132],h0:178,h1:[1,15,18,130],h2:[1,18,130],h2o:[140,151],h5:[38,39,40,41,42,44],h:[18,31,33,38,84,93,112,127,128,133,134,136,151,155,172,189,194],h_:188,h_t:[136,151],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,36,39,40,41,43,45,46,47,48,49,50,52,54,56,57,62,63,64,65,68,74,75,76,80,82,88,99,101,102,103,104,106,108,109,110,111,113,114,116,117,118,119,121,122,123,124,127,129,132,133,134,135,136,137,140,141,142,143,144,145,146,147,150,151,152,154,155,156,157,158,159,164,165,166,167,170,171,172,173,177,178,179,180,182,186,187,188,191,192,193,194,195],habit:[23,171],habitat:[110,178],hack:[93,112],hacker:92,had:[16,29,39,45,47,48,49,50,52,56,57,59,68,80,102,104,112,119,121,123,124,151,155,166,171,174,176],haemoglobin:101,haffner:181,haha:173,half:[1,31,33,49,50,52,92,116,119,137,158,166,168],half_dim:128,halfbath:54,hall:[139,165],halloween:[166,169],halt:171,halv:[33,141],ham:[136,171,193],hamster:165,han:143,hand:[31,34,39,41,49,54,56,103,104,108,117,123,137,139,140,145,147,152,156,157,162,165,168,170,191],handbook:[57,58,60,61,108],handi:[40,74,119,145,171],handl:[0,7,23,39,49,50,54,56,58,60,61,68,76,78,80,92,93,101,104,108,109,112,114,117,119,122,123,129,139,140,141,142,143,145,150,153,156,163,165,170,172,175,184],handle_data:3,handle_endtag:3,handle_missing_valu:74,handle_starttag:3,handler:171,handout:146,handson:158,handwritten:[29,32,41,47,82,192],hang:163,hao:135,haoyi:143,happen:[1,7,18,41,48,54,60,63,65,104,113,116,119,123,130,141,144,151,157,159,171,181,187],happi:[104,108,116,121,165,187,191],happier:[48,111],har:[77,99,140],hard:[45,49,52,59,66,104,106,129,132,151,154,158,165,168,191],hardcod:171,hardcov:137,harder:[45,47,50,62,141,142,151,171],hardest:159,hardwar:[99,101,106,140,158],harm:[28,101,102,112,174,176],harmon:[40,52,57,59,68,80],harmoni:147,harness22:140,hartwig:[132,133],harvard:[104,139,143],harvest:167,hasattr:132,hash:[46,118,173,180],hashabl:172,hashtabl:123,hashtable_class_help:123,hashtag:99,hasn:[64,157],hasti:[150,151],hat:[75,77,78,132,147,148,151,155,187],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,36,39,40,41,43,45,46,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,68,74,76,77,78,80,82,91,92,93,97,98,99,100,101,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,177,178,180,181,186,187,188,191,192,193,194],haven:[53,58,165],hawkin:139,hay:173,hazelcast:180,hbase:180,hbr:104,hd:39,hdbscan:145,hdf5:182,he:[18,116,121,132,135,137,140,147,150,159,165,191],he_norm:133,head:[1,14,15,24,29,31,35,38,39,40,44,47,48,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,68,74,76,80,83,86,109,110,111,117,123,132,135,137,142,145,147,148,152,155,159,162,163,166,167,168,178],head_dim:135,header:[18,29,38,47,116,118,127,145,172],headlin:28,headwai:105,health:[1,13,99,112,119,139,142,176],healthcar:[77,102,174],healthi:101,hear:165,heard:[28,38,74,104,145,151,152],heart:[6,9,33,50,98,113,143],heat:114,heatingqc:54,heatmap:[1,8,34,38,40,48,49,51,52,53,54,59,64,68,74,80,145],heav:141,heavi:[106,151,163],heavili:[127,130,140,146,165,168],heavyweight:163,height:[3,18,31,33,60,68,80,108,111,113,116,121,122,123,127,128,132,146,158,159,162,166,170,178],height_shift_rang:32,heirloom:166,held:[112,147],helicopt:130,hello:[41,93,123,127,170,171,172,173,179,193,194],hello_world_str:[172,194],helloworld:[173,195],help:[0,1,7,8,23,28,32,33,35,36,41,45,48,50,51,54,56,59,62,64,66,68,74,75,76,77,80,82,85,98,99,101,102,103,104,106,107,108,112,113,114,116,117,119,121,126,128,137,138,139,140,141,142,143,145,146,150,151,154,155,156,157,158,161,162,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,186,188,193],helper:[33,41,110,127,137],helvetica:159,henc:[7,40,48,54,59,60,61,63,65,74,126,139,147],heparin:1,her:[7,50,141],here:[1,7,11,14,18,24,28,32,35,40,41,43,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,74,75,76,77,80,82,84,92,93,96,97,100,101,102,104,106,108,110,112,114,116,117,118,119,121,123,124,126,127,128,129,130,131,132,133,134,135,137,138,139,140,141,145,146,148,151,152,154,155,157,158,163,164,165,166,167,170,171,172,173,179,180,182,186,187,188,191,193,194],hereaft:172,herebi:[92,93,171,172],hessian:151,heterogen:148,heurist:[50,141,143,151,165],hf10:140,hf:[9,100],hi:[7,49,64,116,121,127,148,157],hidden:[30,41,47,48,62,114,126,134,135,136,137,141,143,157,192],hidden_dim:135,hidden_layer_s:35,hidden_unit:192,hide:[18,47,49,52,53,57,58,68,80,171],hide_result:47,hierarch:[114,145,181],hierarchi:[113,132,133,171,181],high:[14,18,31,38,41,43,44,47,48,49,50,53,56,57,59,60,61,63,64,65,68,74,80,83,92,101,114,119,124,129,131,132,137,139,140,141,143,151,153,154,155,156,157,165,166,167,168,173,179,182,186,188,195],high_blood_pressur:[9,100,101],high_valu:142,higher:[18,29,33,39,45,49,50,52,54,56,57,64,66,74,77,101,102,104,109,116,119,133,137,141,148,150,154,156,157,158,166],highest:[33,41,47,132,133,155,168,192],highli:[48,52,54,74,116,130,139,141,142,143,150,173,186],highlight:[1,28,78,102,110,112,114,118,124,165,191],highlight_max:187,hilari:108,hill:143,him:151,hima:139,hing:78,hint:[3,7,14,22,24,47,53,82,92,93,100,118,146,168,170],hinton:[33,127,157,186],hipaa:112,hire:[56,102,104,112,174],hire_d:179,hist2d:[109,178],hist:[1,18,22,29,39,47,49,52,53,56,58,59,60,61,66,109,147,178],hist_df:39,histogram:[1,4,18,40,47,49,52,54,58,59,60,74,108,116],histor:[102,108,142,165,166],histori:[29,31,32,33,34,35,36,38,39,40,44,45,47,48,62,101,102,137],history_df:[36,62],history_t:35,history_va:31,histplot:[68,80],hit:[7,130],hitchhik:140,hither:171,hjd:139,hline:148,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:59,ho:[59,128,150],hoang:132,hobbi:93,hoc:140,holbrook:62,hold:[31,34,35,50,64,78,118,123,129,147,155,165,172],holder:[92,93,171,172],hole:110,holidai:166,hollow:168,holt:143,home:[50,74,159,187],homegrown:140,homeless:108,homepag:138,hometown:172,homogen:[7,119,148,179],honei:[13,163],honestli:112,hong:193,honor:122,hood:[92,150,151,188],hope:[26,54,56,76,121,132,152,157,162,173,195],hopefulli:[41,54,61,74],hopkin:[14,119,142],hoptroff:143,horeca:155,horizon:[130,137],horizont:[14,51,108,119,121,127,133],horizontalalign:[83,186],horribl:[172,194],hors:127,horseradish:162,hospit:142,host:[48,99,102,106,113,139,140,174,175],hostel:148,hostel_data:148,hostel_factor:148,hot18:106,hot:[1,7,40,47,51,54,106,127,136,141,165,166,177],hotel:155,hotz:106,hour:[33,38,49,52,56,100,101,102,104,113,141,174,187,188],hour_df:38,hourli:[38,113],hours_per_week:51,hous:[50,54,61,129,141,142,143,165,187],house_price_test:54,house_price_train:[54,154],household:[61,74],housekeep:130,housing_median_ag:[61,74],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,38,39,40,41,43,45,46,47,48,49,52,53,54,57,58,60,61,62,63,65,66,68,69,71,74,75,76,77,78,80,82,83,88,90,99,100,101,102,103,104,106,108,109,110,111,112,114,115,116,117,118,119,121,122,123,124,125,128,129,130,134,135,137,138,139,140,141,142,145,146,147,150,152,154,155,156,158,159,162,163,164,165,166,167,168,170,171,172,174,176,177,178,180,185,186,187,188,191,193,194],howard:132,howden:[166,167],howev:[1,3,7,28,30,32,33,36,45,46,47,48,50,54,56,62,66,75,82,101,103,112,113,114,116,117,119,122,123,124,126,127,133,134,135,140,141,148,151,153,156,157,158,163,165,166,168,170,171,172,173,176,186,195],hpo:141,hr:[38,56,179],href:[122,123,146,158,159,162,166,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:59,hs:[128,135],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:59,hspace:[31,158],hsplit:119,hstack:119,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:59,html:[3,15,31,57,58,60,61,66,93,113,116,121,122,123,140,146,154,155,158,159,162,166,170,171,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],htmlparser:3,http:[3,12,14,15,18,22,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,51,56,57,58,66,68,80,82,93,100,101,102,106,108,109,110,111,112,114,116,118,121,122,123,126,127,128,132,133,134,135,136,137,140,141,142,143,145,146,156,158,162,163,164,166,167,171,172,174,175,176,177,178,180,181,182,186,193],http_get:3,httpmessag:158,huang:[92,93,132],hub:[16,99,102,114,142,174],huber:[44,78,128,151],hubspot:104,hue:[49,51,52,57,60,61,64,68,74,80,83,109,111,145,178],hufflepuff:187,huge:[1,64,99,129,139,165,191],human:[16,31,41,47,50,106,112,113,114,129,132,140,143,165,173,176,191],humanist:102,humbl:140,hundr:[7,128,141],hungri:[36,162],hunt:[71,82],husl:137,hutter:141,huyacli:38,huyenchip:140,hw8:59,hw:127,hxfbpxg4aih7u:59,hybrid:[78,99,137,175],hydroxychloroquin:1,hype:[38,112],hypeparamet:33,hyper:[32,60,132,134,151,185,186],hyperparam:54,hyperparamat:[49,60],hyperparamet:[33,45,48,49,50,52,53,54,57,58,60,61,63,65,68,80,84,100,129,132,137,142,151,155,156,158,165],hyperplan:[50,156,184],hypert:180,hypertens:101,hyphen:134,hypothes:[18,114,116],hypothesi:[29,63,65,155,166],hyungjin:135,i1:119,i4:[119,123,179],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:59,i8:119,i:[1,3,8,14,16,18,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,49,50,51,52,54,55,56,57,58,59,60,64,66,68,74,75,76,77,78,80,81,82,92,93,100,101,102,103,104,106,108,114,116,119,121,122,123,126,127,128,129,130,131,132,133,134,136,137,139,142,146,147,148,150,151,152,155,156,157,158,166,172,179,185,186,187,188,189,190,192,193,194,195],i_1:119,i_:[14,148],i_batch:37,i_i:148,i_imag:37,i_j:155,i_m:119,i_t:[14,134],i_x:134,iaa:[99,140,175],iac:140,iam:139,ian:[29,50,78,131,182],iat:122,ibm:[102,112,139,140,174,180],ic:[58,136],iccv:143,iclr:141,icml:151,icon:[7,46,101,110,117,170,173],id3:50,id:[7,12,15,29,31,54,56,57,63,64,65,66,82,100,118,121,124,159,171,180],id_out:132,id_tensor:132,id_var:64,idea:[7,31,36,38,46,49,50,52,53,58,60,61,62,66,68,80,83,102,104,116,117,119,132,138,141,142,145,147,151,152,153,155,156,158,162,163,165,166,167,171,177,187,188,192],ideal:[54,74,77,104,114,116,127,141,147,151,154,156,157,166,167,171,173,193],ident:[41,50,112,118,119,121,123,130,132,133,136,139,140,150,172,180,194],identif:[78,130,139,156],identifi:[6,11,16,23,28,29,33,36,46,49,50,52,56,57,59,62,76,78,101,102,104,106,107,112,113,114,116,117,118,123,124,129,132,135,139,141,142,151,165,170,173,174,176,177,178,179,180,181,186,191],idl:[36,101,119],idx1:39,idx2:39,idx:[31,55,158],ie:15,ieee:[7,117,143],ifram:[116,121,122,123,146,158,162,166],ig:50,igam:38,iglob:31,ignit:180,ignor:[36,39,49,50,51,52,53,54,56,57,58,59,64,68,80,82,92,104,118,121,136,137,150,151,152,154,158],ignore_index:[121,179],ih:134,ihm:142,ii:[18,37,59],iii:31,ij:[18,116],iljxqfj1omejrnpbca8g:59,ill:154,illinoi:179,illumin:[39,132,135],illus:[112,176],illustr:[3,8,24,29,36,50,59,102,112,118,123,126,127,128,131,132,135,137,147,150,151,156,157,171,176,185],iloc:[1,14,31,35,39,42,46,47,48,50,54,64,82,84,122,123,148,150,163,179,188,189,190],ilsvrc:132,im:[128,135],im_batch_s:37,im_shap:128,imag:[3,28,31,34,35,36,39,40,43,47,51,59,60,64,68,75,78,80,82,84,92,102,104,107,108,113,114,119,126,127,128,129,130,131,135,136,141,143,145,147,151,154,155,162,165,166,167,173,174,176,178,182,191,192],image_:37,image_arrai:[37,127],image_batch:182,image_data_format:133,image_dataset_from_directori:[36,128],image_dict:127,image_dictionari:127,image_ev:127,image_extract:127,image_h:31,image_height:127,image_label:[40,127],image_pixel:131,image_s:[36,37,128,132,192],image_segmentation_diagram:158,image_shap:135,image_uint8imag:127,image_vec_length:127,image_w:31,image_width:127,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,37],imageio:[31,127],imagenet:[127,143],imagenet_mean:127,imagenum:31,imageri:[39,104],images_path:158,images_to_vector:131,imagin:[50,113,124,141,145,151,157,159,162,170,180,187],imaginari:[18,92,171,172,194],imaginary_part:171,imbal:[52,68,80,139,141,162,165,167],imbalanc:[57,58,59,146,151],imbalnc:59,imblearn:162,imdb:[112,176],img0:127,img:[31,33,36,37,39,41,126,127,128,135],img_align_celeba:128,img_label:39,img_nois:127,img_path:39,img_pool:133,img_shift:127,imgplot:37,immedi:[7,43,46,50,74,104,117,130,151,159,168,171],immens:[50,123],immut:[43,172,173,194,195],imp_coef:66,impact:[28,41,49,52,54,102,104,112,130,141,143,166,174,185],impair:[50,108],implaus:182,implement:[0,16,31,33,36,46,47,49,50,51,52,53,54,57,58,59,61,68,74,80,82,92,96,97,104,112,119,123,128,131,132,133,134,136,140,141,143,150,154,156,158,165,171,172,179,194],impli:[22,45,47,48,59,64,92,93,100,136,140,141,145,165,167,171,172],implic:[16,112,136],implicit:[112,140,150,176],implicitli:[59,130,171],imporov:66,import_graph_def:127,importance_typ:[66,154,155],importantli:[101,123,175],importerror:[171,173],impos:[150,157],imposs:[114,165,191],impress:[3,40,52,60,104],improb:116,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,36,40,41,43,47,48,49,50,54,59,64,66,68,69,71,72,75,76,77,80,85,88,89,90,91,93,100,102,104,112,114,117,128,130,132,134,138,139,140,142,143,147,150,151,154,155,156,158,164,165,166,167,176,186,191],impur:[50,148,150],imput:[7,22,51,54,56,61,66,68,74,80,154,165,191],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,37,39,127,158],imsav:127,imshap:135,imshow:[1,3,29,30,31,33,34,36,37,39,40,41,50,82,84,126,127,128,133,158,182,186,192],imura:170,imwrit:127,in_channel:[31,132],in_clust:158,in_dim:131,in_plan:132,inabl:129,inaccur:[7,46,102,112,117,130,137,151,154,174],inaccuraci:[46,117],inact:101,inadequ:59,inappropri:114,inargu:40,incent:112,incentiv:112,incept:127,inception5h:127,inch:[166,167,168],incid:28,incident:157,includ:[1,3,4,8,14,31,32,36,40,41,49,51,54,56,64,74,75,76,78,83,92,93,99,100,101,102,105,108,109,111,112,114,116,119,121,122,123,129,132,133,135,137,138,139,140,141,142,143,144,146,148,151,154,157,158,159,162,163,165,166,167,168,169,170,171,173,174,175,179,187,188,191,192,193],include_top:133,inclus:[102,112,122,130,140,141,176],incom:[50,51,74,112,141,148,165,172,176],income_evalu:51,incompar:108,incompat:119,incomplet:[4,46,69,90,112,113,117,130],incomprehens:114,inconsist:[36,117,177],incorpor:[50,121,133,140,142],incorrect:[15,41,45,47,48,51,59,68,74,80,147,151,195],incorrectli:[40,52,57,59,68,80,139,141,151,164],increa:40,increas:[14,32,33,35,36,39,40,45,47,48,49,52,53,56,57,59,62,64,68,76,80,82,101,104,106,111,114,116,119,126,132,135,139,140,141,143,147,150,151,155,156,157,158,165,173,175,184,186,195],increasingli:[137,141,165],incred:[40,49,165],increment:[48,49,64,75,92,93,119,130,139,140,141,151,152,158,171],increment_count:171,increment_funct:171,incur:[101,143,175],ind1:119,ind2:119,ind:[119,148,179],ind_1:119,ind_2:119,ind_n:119,inde:[7,18,48,111,119,151,152,158,186],indefinit:136,indent:[84,121,171],indentationerror:195,independ:[0,54,76,77,116,119,128,130,136,140,147,150,155,167],index:[1,7,14,24,31,33,37,38,39,40,43,50,51,52,54,56,57,59,62,66,74,76,83,92,110,113,117,134,137,145,146,150,158,159,163,164,166,170,171,172,180,192,194],index_col:[46,54,137],index_nam:14,indexengin:123,indexerror:[63,65,119,122,123,173],indexin:[22,24],indexingerror:122,indi:145,india:[161,162],indian:[162,163,164],indian_df:162,indian_ingredient_df:162,indic:[1,7,14,16,22,29,41,46,47,48,54,56,64,76,77,78,82,92,99,100,102,112,113,116,117,121,122,123,124,130,132,133,134,146,147,148,157,165,166,168,171,172,173,179,191,192,194],indirect:119,indirectli:[49,171,172,192],indistinguish:156,individu:[7,14,41,49,50,54,56,62,75,102,104,112,117,118,128,141,143,147,150,165,171,172,174,179,191,194],induc:134,induct:[141,145],industri:[106,112,137,140,143,151,165,173,191],indx:37,ineffici:[101,119,151,155,172],inequ:158,inertia:[146,186],inertia_:[146,158,186],inertia_vs_k_plot:158,inexhaust:132,inf:[14,45,55],infect:[1,8,14,119,142],infected_dataset_url:14,infected_df:14,infecti:[14,142],infer:[9,100,101,132,133,134,139,140,141,142,143,145,159,165,179,191],infer_sampl:134,inference_config:[9,100],inferenceconfig:[9,100],inferior:50,infinispan:180,infinit:[14,56,104,130,151,171,172],infinitegraph:180,infinitydb:180,infix:119,inflection_idx:142,inflection_r:142,inflict:108,influenc:[17,52,54,75,78,106,112,130,146,159,164,165,172,177],influenti:112,info:[14,38,40,49,51,52,54,59,60,68,74,80,84,117,118,133,145,155,159,162,166,167,180],infocli:38,infograph:[104,108,114,145,146,162,166,167,168],inform:[1,4,12,14,15,17,22,23,24,25,31,38,40,41,43,46,48,49,50,52,53,54,56,57,58,68,74,77,80,93,99,100,101,102,103,104,106,109,110,112,113,114,116,118,119,121,123,124,129,130,132,133,134,135,137,139,141,142,143,145,148,150,151,155,156,157,158,165,166,170,171,172,174,176,177,180,182,193],infrastructur:[99,106,142,175],infti:[116,128,130,147],infus:164,ingest:140,ingredi:[161,163],ingredient_df:162,inher:[64,133],inherit:179,init:[30,56,81,92,127,131,136,146,158,171,188,189],init_imag:127,init_lr:128,init_notebook_mod:35,init_s:158,init_tim:128,initi:[0,3,15,33,35,43,48,49,50,54,55,63,64,65,75,76,82,92,93,99,102,112,113,119,126,127,130,131,132,133,134,135,139,141,143,146,150,151,154,165,166,168,171,172,174,179,186,193,194],initial_eda:51,initial_prob:152,initial_st:134,initiali:33,initialis:36,initialise_graph:130,inject:121,inland:[61,74],inlin:[49,51,52,53,55,57,58,59,60,61,62,66,74,75,82,83,84,127,150,156,158,159,184,186,188,189,190,192],inlinebackend:[50,66,137,147,150,186],inner:[38,75,92,121,122,123,124,137,171,180],innermost:[171,193],innov:[54,99,102,112,175],inordin:151,inplac:[1,7,14,22,30,37,38,46,48,50,51,54,121,137,154,159,162,167],input:[9,14,15,18,22,29,30,31,32,33,36,37,38,40,41,42,43,45,47,49,50,51,52,53,55,56,57,58,61,62,64,68,75,76,77,80,82,91,92,93,99,100,101,116,119,121,122,123,126,127,128,129,130,131,132,133,134,135,136,137,140,141,142,143,145,146,147,148,150,151,155,156,157,158,159,162,165,166,170,171,172,173,182,186,187,191,192],input_1:128,input_2:128,input_data:[9,48,52,53,57,58,74,100,127,131],input_dim:[35,36,45,47,48,132,182,192],input_funct:48,input_imag:[127,133],input_mask:133,input_pipelin:127,input_proj:135,input_s:[133,192],input_shap:[32,34,36,38,39,40,41,42,44,62,132,133,135],input_tensor:133,input_text:93,input_unit:82,input_valu:130,inquiri:[102,109],insensit:[124,150,156],insert:[63,65,75,118,119,123,151,171,193,194],insertion_sort:93,insid:[0,1,3,33,50,60,61,62,68,75,80,116,119,123,124,126,130,132,134,140,152,158,159,172,173,187,194],insight:[11,16,49,52,54,59,60,74,75,77,99,101,102,104,109,112,114,121,138,139,174,176],inspect:[41,57,58,59,68,74,80,165],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,124,126,127,128,129,130,131,132,133,134,135,136,137,141,142,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,181,186,187,188,189,191,192],instabl:50,instagram:121,instal:[0,3,12,18,25,35,43,51,98,99,100,101,108,109,110,111,116,118,121,122,123,129,134,137,144,145,146,157,158,159,160,161,162,163,164,166,171,187],instanc:[7,31,46,49,50,51,52,54,59,78,83,101,102,104,117,118,119,122,129,132,135,137,140,141,148,150,155,157,158,165,167,172,182,191,193,194],instant:[56,110],instanti:[43,51,59,83,123,155,167,171],instantli:138,instead:[7,22,31,32,33,43,47,48,49,50,53,54,57,58,61,62,82,99,104,108,110,112,113,114,119,121,129,132,133,137,139,140,141,150,151,152,154,157,158,159,165,166,168,171,172,173,186,187,191,194],institut:[50,142],instruct:[0,29,50,68,80,100,101,104,108,129,170,173],instrument:[102,112,145,146,147,151,159],insuffici:[16,108],insur:112,int16:119,int19:141,int32:[43,119,127,128,134,135,136,146,158],int64:[22,38,57,58,59,60,61,64,74,119,121,122,123,136,145,148,150,155,158,162,166,179],int64index:166,int8:[56,150],int8dtyp:137,int_:116,int_featur:159,int_memori:[68,80],int_seri:7,int_shap:133,intact:22,intang:112,integ:[7,12,40,41,47,53,54,56,58,78,92,117,122,123,127,130,132,133,171,173,179,193,195],integer_vari:[172,194],integr:[0,59,78,99,101,102,104,112,113,114,123,128,139,140,142,174,175],intellectu:[112,176],intellig:[39,41,99,102,114,129,139,142,143,175,176],intellisens:85,intend:[41,78,104,108,123,139,171],intenion:152,intens:[50,101,132,141,182,186],intent:[104,108,112,176],intention:151,inter:[59,116,132,140],interact:[5,7,16,29,76,99,100,101,104,108,114,117,123,130,131,138,139,140,151,156,166,170,171,173,175,184,187,193,195],interaction_constraint:[66,154,155],interactivesess:[127,131],intercept:[74,75,137,166,188],intercept_:[74,166,188],interchang:[7,124,165],interdisciplinari:[138,165,191],interest:[1,5,13,14,16,19,29,33,40,49,50,52,57,58,59,68,74,80,99,102,107,108,109,110,111,113,116,118,121,124,130,132,133,141,143,144,145,150,151,156,159,162,165,167,168,170,178,179,180,182],interestingli:[1,110,145],interfac:[16,98,101,110,113,119,173,175],interg:173,interleaf:170,intermedi:[18,30,133,158],intermediari:33,intern:[30,50,68,80,101,119,122,127,130,138,139,140,142,143,146,147,150],internet:[14,32,99,108,109,112,113,114,124,139,140,175],interpol:[1,31,50,127,132,133,158,162,182],interpret:[3,7,40,41,47,48,50,57,58,66,109,112,116,118,119,121,122,123,130,143,145,147,150,151,165,166,171,172,173,176,180,181,191,193,194],interquartil:54,interrelationship:104,interrupt:[101,157],intersect:[78,106,118,121,166,172],interspers:119,intersystem:180,interv:[49,52,56,111,119,128,130,139,142,147,156,184],interview:151,intimid:155,intl:[50,147],intp:119,intra:[132,135,158],intract:131,intric:78,intricaci:[77,104],intrins:159,intro:[116,140],introduc:[18,29,31,47,50,54,66,75,76,95,104,109,114,121,128,129,130,132,133,135,140,141,143,145,151,157,171,181,182,193],introducin:140,introduct:[7,37,43,61,105,118,120,125,130,139,141,143,165,169,172,180,181,182,183,184,186,188,191,193],intuit:[50,55,68,77,80,123,129,132,151,156,165,181,186],inv_i:38,inv_sigmoid:142,inv_yhat:38,invalid:[14,137,139,171,173],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:123,invari:[132,141],invent:[151,165],inventori:[102,139],inventoryexampl:118,invers:[39,64,66,119,142,150],inverse_transform:[38,42,189,190],invert:[38,119],invest:[99,140],investig:[23,47,54,102,112,113,141,150,155,166,176],invis:[112,176],invit:119,invoc:[140,171],invok:75,involv:[7,36,43,46,50,54,75,76,77,78,101,103,104,106,112,114,117,121,123,132,155,165,167,171,175,177,191],io:[30,31,101,122,123,127,136,137,140,159,166,181,182],ioc:140,ion:130,iot:[114,139,159,176],iou:[78,141],ip:59,iplot:35,iplot_mpl:35,ipykernel_15370:178,ipykernel_24432:186,ipykernel_26368:121,ipykernel_30912:193,ipykernel_44:171,ipykernel_46616:123,ipykernel_6031:109,ipykernel_6984:62,ipynb:[0,145,146,159,162,164,166,168,170,179],ipytest:[3,14,22,24,53,74,92,93],ipython:[12,22,25,39,55,60,64,82,98,99,100,101,109,110,111,116,119,121,122,123,129,131,133,134,137,144,145,146,156,157,158,160,161,162,163,164,166,193],ipywidget:[156,184],iqr:[54,116],ir1:66,irani:50,ireland:12,iri:[7,46,60,83,117,123,148],iris_data:148,iris_df:[7,46,117],iris_df____:46,iris_isduplicated_df:46,iris_isnull_df:46,iris_support:60,iris_versicolor_3:60,iris_virginica:60,iris_with_drop_duplicates_on_column_df:46,iris_with_drop_duplicates_on_df:46,iris_with_dropna_1_values_on_rows_df:46,iris_with_dropna_2_values_on_rows_df:46,iris_with_dropna_on_column_df:46,iris_with_dropna_on_row_df:46,iris_with_fillna_back_df:46,iris_with_fillna_back_df____:46,iris_with_fillna_df:46,iris_with_fillna_df____:46,iris_with_fillna_forward_df:46,iris_with_fillna_forward_df____:46,iris_with_missing_value_after_fillna_back_df:46,iris_with_missing_value_after_fillna_df:46,iris_with_missing_value_after_fillna_forward_df:46,iris_with_missing_value_df:46,irrelev:[129,156],irrespect:101,is_avail:[31,33,37],is_bool_index:122,is_cnn:31,is_empti:92,is_good_enough:93,is_hash:123,is_integ:122,is_leaf:55,is_list_like_index:122,is_marri:195,is_monotonic_increas:122,is_prim:92,is_range_index:121,is_scalar:122,is_uniqu:121,isabel:59,isalignedstruct:119,isalpha:172,isbn:140,ischoolonlin:[106,177],isclos:92,isdecim:172,isdir:[39,127],isfil:[127,134,136],ish:[36,66],isinst:[14,33,51,92,93,122,132,133,135,171,172,194],island:[61,74],isn:[39,45,48,123,148,157,159,171],isna:[14,51,56,103],isnan:[46,119],isnt:54,isnul:[7,22,46,47,48,49,51,52,53,54,57,58,59,61,64,68,74,80,103,117,145,155,168,179],iso2:142,iso3:142,iso:139,isol:[7,75,117,140,143],iss:29,issu:[0,7,28,40,45,46,49,50,54,57,58,66,68,80,104,112,117,122,131,134,138,140,146,151,156,158,176],issubclass:171,issubset:14,isupp:172,item:[31,33,37,43,59,92,111,112,118,119,123,127,134,141,145,164,167,170,171,173,179,193,194,195],item_from_zerodim:122,items:[119,179],iter:[31,33,35,37,48,55,61,63,65,68,75,76,80,92,93,100,101,127,128,130,131,140,141,142,146,151,153,154,155,158,165,167,171,172,173,187,193,194],iter_n:127,iterate_minibatch:82,iterated_numb:[171,193],iteration_count:134,iterrow:137,ith:[55,155],its:[4,6,7,12,18,22,26,28,29,31,33,39,40,41,43,48,49,50,54,59,61,62,68,74,75,76,77,80,85,93,99,101,102,103,106,108,109,111,112,113,114,117,118,119,121,122,124,126,128,129,130,132,133,134,137,139,140,141,143,145,146,147,148,150,151,152,155,156,157,158,159,162,164,165,167,168,170,171,172,173,174,177,178,179,182,184,186,191,194],itself:[7,14,50,54,82,108,114,118,124,139,140,141,142,150,151,159,165,167,171,172,186,191],itslek:54,iucn:109,ium:[172,194],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:59,ix2vocab:134,ix:[127,134],ix_:119,ix_cutoff:136,ix_to_vocab_dict:134,j7z80yoo:59,j:[1,32,33,34,37,38,48,50,56,92,93,108,119,126,130,131,132,141,147,148,150,151,155,158,172,173,186,189,190,194,195],jack:[172,194],jade:180,jag:[109,150],jain:[128,139],jake:[57,58,60,61,179],jakevdp:[156,184],jam:[36,114],jame:[116,139,193],jane:93,januari:[1,17],japan:[124,180],japanes:[162,163,164],japanese_df:162,japanese_ingredient_df:162,jar:140,jargon:[150,164],jasmin:25,jason:143,java:140,javascript:[113,118,142,159,173,195],jbase:180,jcodella:176,jean:[40,43,80,131],jehx7a7:59,jellek:98,jello:[172,194],jen:[102,146,162,166,167,174],jenna:107,jerom:[150,151],jerri:[92,93],jesucristo:37,jetbrain:38,jez:140,jgzcjvracubdwr59:59,jha:128,ji:143,jian:[132,135],jiang:143,jim:[104,114],jitter:151,jl:133,jlwfklkcd5a5zdyvlszj0s5qme6nbl:59,joaquin:141,job:[3,29,31,38,59,66,84,99,101,104,113,114,140,141,143,145,150,163,165,172,191,194],joe:173,john:[14,92,93,119,139,142,171,172,173,193,194],johnson:93,joi:[102,174],join:[12,29,30,31,33,36,37,39,41,45,46,47,48,51,56,66,117,127,129,134,136,137,138,148,158,162,166,171,172,186,194],join_ax:179,join_index:121,joint:128,jointli:133,jointplot:145,joli:50,jonathan:[128,133],jone:151,joseph:139,josip:139,journal:[50,139],journei:[77,102,114,138],jovian:33,jp:14,jpeg:[31,38,127],jpg:[31,36,38,60,127],jpn:139,js:[29,138,142,159,195],json:[6,9,84,100,108,113,114,159],judgment:147,jul:[102,174],juli:[17,114,140,141],jump:[84,100,104,111,119,158,171],jun:[101,195],jungl:145,junho:132,jupit:195,jupyt:[0,12,18,25,57,58,60,61,66,68,80,83,84,100,101,116,117,137,138,146,154,155,158,163,166,167,168,170,171,173,179,186,187,188,189,192,193],jupyterlab:0,jupyterlab_myst:[98,99,100,101,109,110,111,116,121,122,123,129,134,137,144,145,146,157,158,160,161,162,163,164,166],jupytext:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],jupytext_vers:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],juri:147,juror:147,just:[0,1,3,7,9,14,18,28,29,31,40,43,44,45,46,49,50,55,56,57,59,60,62,66,75,82,93,99,100,101,104,109,110,112,114,116,117,119,121,122,123,124,127,129,132,133,135,137,140,142,143,145,148,150,151,154,155,156,157,158,162,165,166,168,171,172,173,186,187,188,191,194],justifi:[48,104,141,159],jython:[172,194],k0:121,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:59,k1:121,k2:121,k3:121,k4:121,k5:121,k5izpn8apjgrfovv82wjhtletgw:59,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:59,k8:140,k:[3,50,83,84,116,119,122,123,127,129,130,132,134,135,136,145,147,151,153,156,165,167,184,192],k_d:130,k_i:130,k_list:83,k_p:130,k_size:37,kaggl:[1,4,10,20,25,30,31,32,33,35,38,39,51,56,68,74,80,83,84,101,103,113,117,119,128,129,132,137,151,165,167,182,186,187,188,189,191,192],kaim:[132,135],kaiyang:143,kalenichenko:132,kam:150,kapoor:36,karen:132,karnika:36,karr:166,kashnitski:[50,147,148,150,151,186],kayod:139,kb:[29,38,50,60,117,145,155,166],kdd:139,kde:[22,54,56,109,145,178],kdeplot:[109,178],kdr:38,keep:[7,22,33,36,45,47,61,63,65,68,74,80,91,99,101,106,117,118,119,121,122,131,132,137,141,146,150,156,157,158,165,166,167,168,171],keep_dim:133,keepdim:[82,179],kei:[3,7,9,38,48,76,77,93,99,100,101,102,104,112,118,119,121,122,123,124,127,128,130,134,135,136,139,140,141,142,163,171,173,174,179,180,187,193,194,195],kendal:133,kept:[7,117,133],kera:[29,30,31,32,35,36,38,40,41,42,43,44,45,47,48,49,62,78,126,128,132,133,134,135,136,141,157,182],kernel1x1:132,kernel3x3:132,kernel:[29,31,32,33,56,60,61,127,132,133,137,145,155,164,166,183],kernel_initi:[133,135],kernel_s:[29,30,31,32,33,34,36,37,39,132,133],kernel_valu:132,kernelid:132,kernelspec:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],keskar:141,key_cal:121,key_dim:[128,132],key_is_scalar:123,key_oth:121,keyerror:[92,122,123,134,173],keys_list:92,keyword:[3,93,100,113,114,118,119,121,124,146,157,172,173,180,193,194],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:59,kfold:[56,59,64],kfold_scor:56,kfoldcv:64,khale:143,khg:135,khsa:132,khsb:132,kilian:132,kill:173,killer:46,kilobyt:[53,58,165],kim:[30,132,135],kind:[1,7,15,22,30,31,39,43,45,47,48,49,50,51,52,54,56,59,60,61,62,64,66,68,80,90,92,93,101,107,108,109,111,117,119,122,123,126,129,131,134,137,138,145,151,155,156,157,162,163,165,167,168,170,171,172,173,178,182,191],kinesi:139,kingdom:12,kingma:31,kingpin:108,kit:[62,98],kitchen:148,kitchenabvgr:54,kitchenqu:54,kiwi:[39,172,194],kld:31,km:[139,146],kmean:[146,158,186],kmeans_:158,kmeans__n_clust:158,kmeans_algorithm_plot:158,kmeans_bad:158,kmeans_good:158,kmeans_iter1:158,kmeans_iter2:158,kmeans_iter3:158,kmeans_k3:158,kmeans_k8:158,kmeans_per_k:158,kmeans_rnd_10_init:158,kmeans_rnd_init1:158,kmeans_rnd_init2:158,kmeans_variability_plot:158,kmeanskmean:158,kneighbor:[158,163,164],kneighborsclassifi:[56,83,84,158,164],kneighborsclassifierkneighborsclassifi:158,knife:187,knight:[171,172,194],knights_nam:171,knights_properti:171,knn:[50,56,126,150,158,164,165],know:[7,17,18,23,27,33,40,43,45,46,49,50,52,53,56,58,59,68,74,80,82,84,99,101,103,104,112,114,116,117,118,123,124,128,129,133,137,141,146,151,155,157,165,171,172,173,188,191,194],knowledg:[7,31,41,50,54,59,69,76,99,101,106,114,116,128,130,139,141,142,143,151,154,165,166,175,176],known:[32,50,57,58,59,68,75,77,80,106,112,113,114,116,119,123,129,133,135,137,138,139,140,141,142,147,151,156,165,171,172,191],kogwl43x3ogqzqjpuoe8b:59,kool_kheart:38,korbut:141,korean:[162,163,164],korean_df:162,korean_ingredient_df:162,kosaciec_szczecinkowaty_iris_setosa:60,kotthoff:141,kpash:59,kqxjp1r14yggzhpqx_gpx6580000gn:178,kriz:[127,132],krizhevski:[33,127],ks:[132,147],ksize:127,ksv:64,kubeflow:140,kubernet:140,kullback:128,kuqvjmwrkag9whlqdvrh:59,kurtosi:59,kw:127,kwangnam:128,kwarg:[43,109,123,133,135,171,178,193],l1:[63,65,78,94,126,131,141],l1regular:[63,65],l2:[63,65,78,94,131,141,156],l2_leaf_reg:54,l2_loss:127,l2regular:[63,65],l3:131,l4lsxqfk:59,l9dkgf1pchhmpqsobc9eb:59,l:[35,50,55,78,82,116,121,126,127,130,135,136,150,151,152,155,167,172,179,180],l_1:[66,151],l_2:[66,151],l_:[78,151],l_left:50,l_p:116,l_q:151,l_right:50,lab:[0,39,40,43,58,60,61,68,80,102,174],label:[1,7,15,22,29,30,31,32,33,34,36,37,38,39,40,41,42,45,46,47,48,49,50,52,53,56,57,58,59,61,64,66,68,74,75,76,78,80,82,84,100,101,108,109,110,111,118,121,127,130,131,132,133,136,141,142,145,146,147,150,155,156,158,159,162,163,164,166,167,173,178,179,181,182,186,188,189,190],label_batch:127,label_column_nam:[9,100],label_enc:[49,52,57],label_encod:[22,52,56],label_logit:135,label_mod:[36,128],labelbottom:158,labelencod:[38,49,52,56,57,64,83,146,159,167],labelleft:158,labels:[62,137,158],labels_:[146,158],labels_df:162,labels_fil:127,labelweight:[62,137],labl:3,labor:141,labori:[7,46,117],lachin:101,lack:[13,26,28,130,141,142,151,171],laclo:108,ladi:[108,145],ladybug:158,lag:38,lag_1:137,lai:[104,133],laid:104,lake:[99,114,139,176],laken:48,lamb:171,lambda:[1,14,22,31,32,36,38,44,47,54,56,66,121,122,123,134,142,155,166,172,185,193,194],lambda_l1:54,lambda_l2:54,lambdamart:151,lamda:[63,65],land:[54,139,165],landcontour:66,landmark:112,landscap:143,lang:[15,38,121,122,123],languag:[1,22,41,43,45,47,48,59,98,99,100,101,107,108,109,110,111,112,113,114,115,116,118,119,123,124,129,134,136,137,138,140,141,143,144,145,157,158,160,161,162,163,164,165,171,172,173,179,180,193,194,195],lap78:143,laped:143,laplacian:151,lar:141,larg:[1,7,11,30,31,39,45,46,49,50,51,54,59,60,61,62,63,65,66,71,78,99,101,102,103,104,106,112,114,117,118,119,121,123,124,126,129,132,134,137,139,140,141,143,145,147,148,150,151,154,155,156,157,158,164,165,166,172,175,176,179,182,184,186,187,194],larger:[14,29,48,59,75,78,92,101,112,119,126,127,128,141,151,154,167,172,179,181],largest:[48,59,99,119,132],larxel:101,laser:104,laskoski:144,lasso:[66,78,151,157,166],lasso_pr:66,lasso_sklearn:[63,65],lassocv:66,lassolarscv:66,lassoregress:[63,65],last:[7,8,14,29,32,38,39,40,41,43,44,45,47,49,52,55,60,62,68,80,82,83,93,104,112,114,117,119,121,122,123,127,129,133,136,137,139,140,141,146,151,157,162,163,165,168,171,172,176,179,191,192,193,194],last_index:172,last_nam:[93,193,195],last_new_job:56,last_stat:134,last_tl:35,lastli:[32,36,45,54,104],lastnam:173,lastnewjob:56,lat:[14,142,187],late:108,latenc:[132,137,140,143],latent:[29,31,36,126,128,141],latent_dim:[29,30,36],latent_vec:31,later:[7,18,37,40,41,43,47,50,53,54,59,82,83,104,106,112,114,116,117,123,124,127,129,130,137,141,154,155,158,165,170,171,172,173,188,191,195],latest:[101,127,129,140,142],latest_iter:187,latin1:127,latin:48,latitud:[61,74,159],latter:[40,112,114,119,128,129,132,141,142,147,148,159,163,166,167],launch:[16,101,118,140,143,183],lauren:132,lavend:137,lavenderblush:137,law:[22,45,47,48,102,106,112,174],layer:[29,30,31,33,34,35,36,38,39,40,42,43,44,45,48,62,108,121,126,127,128,131,132,133,134,135,136,141,155,157,182],layer_1:126,layer_2:126,layer_activ:82,layer_i:82,layer_input:82,layer_nam:133,layernorm1:132,layernorm2:132,layernorm:132,layout:[119,130],lbfg:[158,163],lc:[64,109,178],lcca:133,ldot:[151,152],le:[40,64,83,108,116,146,181],lea:130,lead:[48,50,59,64,75,104,112,114,116,119,121,122,130,137,139,140,146,147,148,154,157,171,176,179],lead_tim:137,leader:143,leaderboard:66,leaf:[50,54,150,155],leagu:116,leak:[57,112],leakag:[54,66,165],leaky_relu:131,leakyrelu:[31,36,37,129],lean:141,lear:154,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,38,39,40,42,44,46,47,48,49,51,52,53,54,55,57,58,60,61,62,66,68,69,71,75,76,77,78,80,82,90,92,93,98,99,100,102,103,104,106,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,127,128,131,132,133,134,136,139,140,142,145,146,147,150,151,152,153,154,155,156,161,164,167,171,172,173,176,179,180,181,182,183,185,188,189,190,192,193,195],learn_curv:64,learnabl:[32,82,132,141],learned_paramet:158,learner:[54,56,78,152,153,155],learning_curv:64,learning_r:[35,48,49,54,56,63,65,66,75,76,81,82,126,127,128,130,134,136,155,188,189],learningrateschedul:[32,128],learnpython:172,learnt:[18,54,57,64,76,133],least:[4,8,11,13,16,28,39,50,51,59,109,112,114,116,119,122,137,141,148,151,156,157,158,166,167,171,172,178],leav:[49,50,52,62,66,68,75,80,101,104,110,114,123,147,148,150,155,168,173,178,195],lectur:[83,116,139,151],led:58,lee:[7,107,165],leed:50,leff:139,left:[1,7,31,32,33,40,43,50,54,55,56,75,77,84,92,101,103,106,109,118,119,121,122,123,127,130,133,136,147,148,150,151,152,156,158,165,167,171,172,177,184,187],left_column:187,left_df:121,left_i:148,left_idx:55,left_index:[38,121],left_on:121,left_output:130,left_shifted_imag:84,leftarrow:151,legaci:101,legal:[112,171],legend:[22,29,31,32,33,34,35,37,38,42,45,47,48,50,51,75,76,82,108,109,111,127,133,136,137,147,148,150,158,178,186,189,190],legibl:147,legisl:108,legitim:59,leibler:128,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:59,len:[1,14,18,22,31,33,35,37,38,39,40,41,42,44,45,47,48,49,51,52,53,54,55,56,57,58,59,60,61,64,68,74,80,82,92,93,121,122,123,127,128,130,131,132,133,134,135,136,137,147,158,164,171,172,179,188,189,190,192,193,194],len_axi:122,lend:[143,167],lenet:132,length:[3,8,14,31,41,43,46,50,60,64,83,93,108,109,114,116,117,119,122,123,129,134,136,137,145,146,147,148,169,171,172,178,186,194],lenovo:62,leo:[147,148,150],lepiota:110,leq:[50,78,119,151],leqq:128,less:[1,6,7,8,18,26,29,31,33,36,39,40,41,49,50,52,54,56,59,66,77,92,99,101,104,109,111,112,118,119,129,134,139,140,141,143,145,147,150,151,154,155,157,158,165,168,171,172,176,179,193,194],less_equ:119,lesson:[54,62,72,134,137,166,167,168],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,66,68,74,76,77,80,82,83,86,96,97,99,100,102,103,104,106,108,109,110,111,112,114,116,117,118,119,121,122,123,124,126,128,129,132,133,134,136,137,138,141,142,143,144,145,146,147,148,150,151,152,155,157,158,159,161,162,163,164,165,166,167,168,169,170,171,173,174,176,177,179,180,186,187,188,191,192,194],lett:92,letter:[7,93,100,108,112,114,117,121,124,159,171,172,194],level:[7,41,43,45,47,54,57,58,59,101,112,116,119,121,128,129,132,140,141,143,145,150,151,155,156,165,171,173,179,184,188,191,192,195],leverag:[0,41,49,54,55,99,138,139,140,141,143,159,162,163,164,168],lexsort:119,lfw:31,lfw_attribut:31,lg:167,lgbm:54,lgbmregressor:54,lh:55,lhs_cnt:55,lhs_std:55,lhs_sum2:55,lhs_sum:55,li:[33,45,50,108,143,193],liabil:[92,93,171,172],liabl:[92,93,171,172],liaison:108,liang:133,lib:[57,121,122,123,137,146,163,167,179,186,193],liblinear:163,librari:[0,1,3,7,8,18,33,35,36,39,41,45,46,47,48,56,72,74,76,77,86,101,103,108,109,110,111,117,118,119,138,141,143,145,147,148,150,151,159,163,164,166,167,168,169,173,178,179,182,187],licenc:[57,156,184],licens:[22,41,45,47,48,83,84,92,93,101,141,146,171,172,186,187,188,189,192],lidiya:195,lie:[50,108,116],lieu:151,life:[11,18,34,50,59,60,101,102,106,112,114,116,119,145,158,165,171,174,191],lifecycl:[17,23,100,102,103,140,142,143,183],lifetim:151,lift:106,light:[39,49,114,132,159,165,187,195],lightbgm:54,lightcor:29,lighter:[102,174],lightgbm:[49,152],lightgbm_search:54,lightgrai:1,lightn:155,lightweight:140,like:[7,11,14,17,18,23,28,30,31,33,34,36,40,41,43,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,66,68,74,75,76,80,82,99,100,102,103,106,108,109,112,113,114,116,117,118,119,121,122,124,127,129,132,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,157,158,159,162,163,165,166,167,168,170,171,172,173,174,177,179,180,182,187,188,191,192,193,194,195],likehood:151,likelihood:[104,128,131,156,162,165,167],likewis:[34,41,119],lili:24,limit:[7,14,16,22,28,31,45,47,48,50,56,59,68,74,76,77,80,92,93,101,106,112,118,119,123,130,134,135,139,141,142,147,148,151,155,165,171,172,194],limits_:[50,131,158],limits_k:50,limousin:[17,23],lin_pr:60,lin_reg:[166,188],lin_reg_2:188,lin_svc:60,lin_svr:61,linalg:[134,158],line2d:166,line:[1,14,18,31,41,45,49,50,52,59,60,61,76,77,82,101,108,109,112,119,121,122,123,127,130,137,145,146,151,156,158,159,162,164,167,168,170,171,172,173,179,181,188,192,194,195],line_chart:187,line_kw:54,lineag:[112,142,176],linear:[18,31,33,35,41,42,45,49,50,51,52,54,55,56,60,61,63,65,68,69,75,78,80,81,82,84,119,126,127,129,130,132,141,146,150,151,155,158,162,163,165,168,169,170,171,172,183,186,191,192],linear_beta_schedul:128,linear_model:[49,56,63,64,65,66,68,74,80,81,137,158,159,163,164,166,167,170,188,189,190],linear_reg:[63,65],linear_reward_:130,linear_scor:59,linear_svc1000:59,linear_svc100:59,linear_svc:59,linearli:[59,83,119,128,141,156],linearregress:[74,137,166,170,188],linearregressionlinearregress:[166,170],linearsvc:[59,60],linearsvclinearsvc:60,linearsvr:61,linearsvrlinearsvr:61,lineplot2:[111,178],lineplot:[49,52,56,64,111,146,167,178],liner:166,linestyl:[14,18,32,77,156,158,184],linewidth:[38,50,54,59,77,109,137,156,158,170,178,184],linguist:[143,167],link:[1,28,29,31,35,61,101,104,106,108,114,122,123,130,133,141,142,145,151,152,155,159,170,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],linkag:[102,158],linnerud:88,linspac:[50,75,82,119,128,150,156,158,184,188],linux:[118,132],lisa:179,lisens:[63,65],lisheng:161,list1:92,list2:92,list3:92,list4:92,list5:92,list:[1,3,7,12,14,18,28,31,33,35,38,39,40,41,43,44,45,49,50,51,52,53,54,57,58,59,61,63,64,65,71,74,82,83,90,100,109,110,111,114,116,117,118,119,121,122,124,127,130,131,132,133,135,136,140,141,143,148,150,152,159,164,165,168,178,179,180],list_i:34,list_of_char:[172,194],list_of_coordin:119,list_of_numb:[172,194],listcomp:[121,172,194],listdir:[33,37,38,39],listedcolormap:[189,190],listen:[0,141,172],listlik:123,listnod:94,lite:159,liter:[171,193],literari:102,litt:145,littl:[1,7,14,30,40,41,47,63,65,68,71,74,80,106,108,111,117,123,127,132,146,148,151,152,158,162,164,166,168,170,171,188],liu:[132,143],live:[48,50,99,101,102,112,113,137,138,145,146,159,165,183],ljust:172,lkei:121,ll:[16,22,28,29,33,41,45,47,48,50,62,64,66,71,77,82,99,102,103,105,106,108,112,113,118,119,121,122,123,124,125,128,133,137,139,141,146,147,148,151,152,154,157,159,162,163,168,169,170,171,172,179,180,194],llabel:121,llc:[45,47,48,104],lmdb:180,lmgr:121,ln:151,lo:[40,127,172],load:[2,7,9,15,17,18,23,33,40,45,48,51,66,76,82,84,86,109,117,121,122,123,127,129,131,133,134,137,139,140,145,150,154,158,159,164,166,167,170,171,186,187,192,193],load_batch_from_fil:127,load_breast_canc:40,load_data:[29,30,40,41,126,182,192],load_dataset:82,load_diabet:170,load_digit:[50,158],load_ext:[12,25,40],load_imag:133,load_images_from_fold:39,load_img:39,load_iri:[7,46,117,186],load_model:[29,30,38,39,40,41,42,44,182],load_next_batch:158,loader:[33,131],loadmat:127,loadtestsfromtestcas:47,loan:[50,165,191],lobe:159,loc:[1,14,18,22,31,32,38,47,48,50,51,54,56,62,66,82,109,116,122,123,127,136,137,146,147,150,166,168,178,179,182,186],local:[14,28,43,57,62,100,101,106,118,121,123,127,132,133,135,156,159,163,165,170,171,179,184,186,193],localhost:29,localto:133,locat:[1,9,66,74,102,106,112,113,118,119,122,123,127,130,133,135,141,148,156,171,174,180],log1p:66,log2:[50,119,150],log:[0,9,16,37,38,40,54,66,78,82,84,100,101,114,119,128,131,133,139,140,151,152,176,189],log_2:50,log_classifi:49,log_dir:40,log_imag:131,log_model:[68,80],log_reg:[49,64,158],log_reg_scor:158,log_scor:[68,80],log_templ:31,log_transform:66,logaddexp:[119,152],loganberri:[172,194],logarithm:[119,141,143,192],logdir:40,logger:131,logging_level:54,logic:[3,34,50,82,119,121,139,165,167,170,172,194],logical_and:119,logical_not:119,logical_or:119,logical_xor:119,logist:[49,56,59,75,89,102,134,151,155,158,159,162,165,166,169,170,183,192],logisticregress:[49,56,64,68,80,158,159,163,164,167,189,190],logisticregressionlogisticregress:158,logisticregressor:64,logit:[37,41,82,127,131,132,134,135,136,141],logit_output:134,logitech:39,logits_concat:135,logits_for_answ:82,logits_out:136,logvar:31,lokesh:139,lon:187,london:[12,139],long_:142,longer:[7,32,36,40,45,48,49,50,52,54,62,74,75,101,106,113,123,141,154,158,171,186,193],longest:[68,80,104],longitud:[61,74,159],loo:167,looa:166,loob:166,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,36,41,43,46,47,48,49,50,52,54,55,58,59,60,62,64,66,68,71,74,76,77,80,82,83,86,88,99,100,101,102,104,106,108,109,110,111,112,114,116,117,118,119,122,124,127,132,134,136,141,144,145,146,147,150,151,155,157,158,159,161,162,163,165,167,168,170,171,172,174,178,179,180,182,186,188,194],lookback:[38,44],lookout:121,lookup:[116,118,119],loop:[33,35,56,93,108,119,123,127,130,143,146,158,165,171,172,173,179,193,194],looper:[102,146,162,166,167,174],loos:[68,80,145],lopinavir:1,lose:66,loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,48,54,55,56,62,116,123,126,127,128,129,133,134,136,150,152,153,155,157,163,182,184,185,188],loss_acc_metrics_df:40,loss_d:37,loss_fn:36,loss_fun:134,loss_funct:[54,76],loss_g:37,loss_grad:82,loss_histori:152,loss_vae_fn:31,loss_valu:127,lossi:31,lossless:31,lost:31,lot:[3,7,14,46,48,49,50,52,56,59,66,85,99,100,101,113,114,117,132,134,137,145,148,150,151,152,154,155,157,159,162,164,165,171,191],lotarea:[54,66],lotfrontag:[54,66],lotfrontage_mean:54,lotshap:66,loud:[144,145,146],loudli:186,loukid:112,love:[36,50,93,162,171,195],low:[18,30,38,41,43,44,45,48,49,56,57,59,61,63,64,65,68,74,80,92,98,100,102,104,116,119,132,141,154,156,157,161,166,167,168,169,172,174,182],low_valu:142,lower:[1,3,7,29,47,48,49,54,56,59,64,74,77,93,101,112,116,119,122,123,126,127,134,136,141,147,151,158,166,167,172,176],lower_cas:97,lowercas:[93,172],lowest:[7,158],lowqualfinsf:54,loyal:147,loyal_cal:147,loyal_mean_scor:147,loyalti:108,lr:[31,33,34,37,48,63,64,65,75,81,156,163,182,184,188,189],lr_d:37,lr_decai:127,lr_g:37,lrn:127,lrschedul:128,ls:140,lst2:39,lst:[39,92,93,172,173],lstm:[42,129,134],lstm_builder:44,lstm_model:[38,42,134],lstm_output:134,lsuffix:121,lt:74,ltd:56,ltorgo:58,ltsm:129,ltv:151,lu:[132,133],luci:[24,143],lucidchart:104,luck:[47,108],lucki:[68,80],luckili:[82,134],lug_boot:57,luggag:57,lui:58,lunch:165,lund:193,lvert:[157,185],lvl:66,lw:[50,150,156,184,186],lwq:54,lxl:143,ly:82,m1:[18,170],m2:18,m:[1,3,12,18,24,25,37,59,63,65,66,98,99,100,101,104,109,110,111,112,116,119,121,122,123,129,130,134,137,141,142,144,145,146,147,150,151,152,156,157,158,160,161,162,163,164,165,166,172,179,184,191],m_:18,m_dep:[68,80],maaten:132,mac:[101,132,140,170],machin:[0,3,7,12,18,25,31,33,36,39,40,43,46,48,49,50,52,53,54,56,57,58,68,75,76,77,78,80,90,98,99,100,102,106,108,112,114,116,118,121,122,123,126,129,130,136,137,138,139,140,141,142,145,146,147,150,151,152,153,154,155,157,162,163,164,166,167,168,173,176,179,181,182,183,185,188,193,195],machine_cpu:58,machine_cup:53,machine_data:[53,58],machine_label:58,machine_learning_complet:80,maco:[118,173],macro:[35,57,59,60,163,164,167],made:[16,24,29,39,43,49,50,62,68,75,80,82,100,101,106,118,119,129,132,137,139,140,145,147,151,153,165,170,171,173,180,193],madip:[145,166,167,168],mae:[29,38,54,62,76,78,150],mae_cb:54,mae_lgbm:54,mae_xgb:54,magic:[151,165,172],magic_dict:92,magnitud:[66,77,83,116,166],mah:[68,80],mai:[1,8,12,14,22,25,28,29,30,31,32,34,40,45,46,47,48,49,50,52,56,57,58,59,60,62,63,64,65,68,74,75,76,78,80,82,101,102,103,104,106,109,112,113,114,116,117,118,119,121,122,123,124,127,130,132,133,137,139,140,141,142,143,145,147,148,150,151,154,155,156,157,158,159,165,166,167,171,172,173,174,177,184,193,194],mail:[50,114,147],main:[3,12,18,25,31,37,43,49,50,53,54,58,59,66,68,75,80,82,99,101,106,108,114,116,119,126,127,129,133,139,143,146,150,151,153,156,157,165,166,167,171,176,177,191],mainli:[54,126,132,136,156],maint:57,maintain:[31,57,75,99,113,129,132,138,140,142,150,165],mainten:[57,99,106,143,165,171,177,193],maje:139,major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,78,80,82,83,84,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,158,159,162,163,164,165,166,167,168,170,171,172,173,181,186,187,188,189,192],major_axi:123,major_disciplin:56,majumdar:143,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,35,38,39,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,68,74,76,77,80,82,84,92,99,101,102,103,104,106,109,111,112,113,114,116,117,119,121,123,124,127,128,129,130,131,132,134,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,156,157,158,159,162,165,166,170,171,172,173,174,176,179,180,187,188,191,194,195],make_blob:[156,158,184],make_circl:[150,156,184,189],make_classif:[189,190],make_dataclass:123,make_df:179,make_grid:33,make_increment_funct:171,make_lag:137,make_me_smil:31,make_moon:[158,189],make_multistep_target:137,make_pipelin:166,make_regress:[63,65],makedir:[29,30,31,33,36,37,39,41,66,76,127,134,136,158],maketran:93,makeup:108,male:[22,56,165],malici:112,malign:40,man:[101,159],manag:[0,38,99,100,101,102,103,104,113,116,122,125,139,140,142,150,169,173,174,180],manageri:104,mandat:112,mandi:145,maneuv:108,manfr:[172,194],mango:[39,195],mani:[1,3,7,18,29,35,36,39,40,43,44,46,47,49,50,51,52,53,54,56,57,58,59,60,61,66,68,74,75,80,83,88,99,100,101,102,103,104,106,108,110,111,112,114,116,117,119,121,122,123,125,127,129,130,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,159,162,163,165,168,170,171,172,173,175,176,179,182,191,193,194,195],manifold:[30,186],manipul:[84,108,112,114,123,124,125,130,165,172,179,187,191,194],manishmsft:[118,180],manner:[7,30,50,59,102,112,114,117,123,142,166,172,176,194],manual:[1,141,142,143,157,158,186],manual_se:33,manufactur:[140,165,191],map:[1,5,7,22,30,31,33,36,39,41,43,44,48,51,56,59,68,80,92,102,109,114,119,126,127,128,129,130,132,133,134,142,145,148,156,162,165,167,171,172,175,191,192,193,194],map_data:187,map_funct:92,mapper:[30,121],mapper_fruit_nam:39,mapper_noisi:30,mapper_org:30,mappingproxi:119,mar:[141,171,195],marcela:144,march:[118,175,180],marco:132,margarin:108,margin:[60,61,82,121,122,123,127,143,159],mari:[171,193],marital_statu:51,mark:[1,64,83,92,123,156,165,191],markdown:[39,170],marker:[83,123,158,167,186],marker_s:30,markeredgecolor:137,markeredgewidth:[156,184],markerfacecolor:137,markers:[156,158,184],market:[49,52,99,112,114,130,145,165,175],marketplac:112,marklog:180,marktab:106,maroon:[110,178],marquis:108,mart:151,martin:[22,141,142],martinfowl:140,mask:[7,46,54,64,117,119,122,133,179],mask_logit:135,maskrcnn_upxconv_head:135,mason:112,mass:[24,104,109,151,170],massiv:[41,102,143,174],master:[7,14,56,68,77,80,127,145,158],masteri:128,masvnrarea:54,masvnrtyp:54,mat:127,mat_mean:127,mat_tensor:43,match:[0,7,34,41,45,48,63,65,71,119,121,123,124,128,132,137,145,156,165,171,186],matconvnet:127,materi:[50,102,116,117],math:[18,29,31,36,38,43,46,60,61,78,92,116,128,133,166,167,168,173,193],mathbb:[116,130,131,151],mathbf:[148,158,188],mathcal:[130,151],mathemat:[54,56,59,75,76,77,92,93,113,114,116,119,127,128,129,131,142,145,151,157,165,166,172,173,179,188,194,195],mathematician:116,mathfrak:148,matlab_2016:38,matlotlib:127,matmul:[119,126,127,130,131,134,136],matmul_1:134,mato:48,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,72,74,75,76,77,80,82,83,84,98,99,100,101,102,108,109,110,111,116,126,127,128,129,130,133,134,136,137,144,145,146,147,148,150,152,155,156,157,158,159,160,161,162,163,164,166,167,170,174,178,182,184,186,187,188,189,190,192],matplotlibdeprecationwarn:[62,186],matric:[45,50,66,119,136,141,156,167],matrix:[1,8,18,24,33,34,39,40,43,49,50,52,57,60,64,68,74,80,82,83,116,119,127,145,156,165,170,172,186,194],matter:[59,82,104,112,139,143,157,165,167,168,171,173,185],maverick:143,max:[3,7,18,22,32,33,38,39,41,47,48,50,57,58,59,60,61,64,74,78,103,109,121,127,131,135,136,145,150,152,155,158,159,172,178,189,190],max_ag:22,max_bin:[54,66,154,155],max_cat_threshold:66,max_cat_to_onehot:[66,154,155],max_concurrent_iter:[9,100],max_delta:127,max_delta_step:[66,154,155],max_depth:[49,50,52,54,57,58,66,148,150,152,154,155,186],max_depth_grid:150,max_document_length:136,max_featur:[49,50,52,57,58,148,150],max_features_grid:150,max_it:[56,64,75,158,159],max_ix:136,max_leaf_nod:[52,53,56,57,58,150],max_leav:[66,154,155],max_len:[136,172],max_nod:[9,100],max_pool1:127,max_pool2:127,max_pool:127,max_pool_size1:127,max_pool_size2:127,max_pooling2d:132,max_row:[45,47,48],max_sampl:49,max_sequence_length:136,max_val:29,maxbodymass:[109,178],maxim:[37,50,59,78,130,131,164,171,186],maximis:156,maximum:[3,7,22,47,48,49,50,53,56,57,58,75,82,100,101,109,126,127,132,150,156,167],maxiter:130,maxlen:[35,136],maxlength:[109,178],maxpool2d:[31,32,33,34,128],maxpool:127,maxpooling2d:[39,128,133],maxstep:130,maxval:[128,131],maxwingspan:[109,178],mayb:[7,62,104,111,122,137,146,152,164,166,168],maybe_cal:122,maybe_convert_indic:122,maze:130,maze_collect:130,maze_typ:130,mb:[29,38,59,74,162],mbox:[151,152],mcculloch:136,mcgraw:143,mckinnei:[119,121],md5_checksum:57,md:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,135,137,144,145,157,158,160,161,162,163,164,170],mdp:130,me:[1,36,40,106,127,132,152,166,167,173,177,187],meadow:[110,178],mean:[3,7,14,18,22,29,31,32,33,34,36,37,38,40,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,74,75,76,78,80,82,83,84,92,99,100,101,102,103,104,108,111,112,113,114,117,119,121,124,126,127,130,131,134,136,137,141,143,145,147,148,150,151,152,154,155,156,157,164,165,166,167,168,171,172,173,174,179,184,188,189,191,192,194],mean_absolute_error:[54,76,154,192],mean_actu:77,mean_confidence_interv:18,mean_cross_v:54,mean_imput:74,mean_squar:126,mean_squared_error:[38,42,53,54,58,61,74,76,137,166,192],meanarr:48,meaning:[3,16,30,41,109,112,132,139,165,177],meansquarederror:[29,30],meant:[119,140],meantim:165,measur:[7,14,24,41,49,50,52,59,60,66,68,74,76,77,78,80,101,102,106,111,112,113,114,116,128,130,137,141,142,143,145,146,148,150,153,158,165,166,168,171,176,177,186,188,191],mechan:[45,75,119,129,132,139,140,171,193],med:[1,57,167],media:[5,49,50,52,102,104,116,140,142,143,165,174],median:[7,18,22,54,57,74,123,151,165],median_house_valu:[61,74],median_incom:[61,74],medic:[1,8,40,99,101,102,112,133,139,143,145,165,170,176],medicin:[8,114,165],medium:[1,59,68,74,80,104,126,180],meet:[104,108,112,119,140,143,168,176],mega:[68,80],megapixel:[39,68,80],megatrend:112,mehdi:131,mehta:139,mel:141,melt:64,member:[5,41,50,102,104,106,112,145,147,172,174,177,194],membership:[172,173,194],memcach:180,memcachedb:180,meme:151,memmap:158,memo:104,memor:[41,68,80],memori:[29,33,35,38,49,53,54,58,59,60,68,74,80,117,119,127,129,130,133,139,140,141,145,155,156,158,162,166,172,179],memory_gb:[9,100],memory_unit:130,memoryview:[172,194],men:[56,88,112,176],menglong:132,mention:[0,1,2,8,19,39,40,43,56,59,106,114,116,118,119,123,129,133,137,139,143,148,151,157,165,171,179],menu:[40,100,101,187],merchant:[92,93,171,172],mercuri:195,mere:119,merg:[14,31,38,92,117,151,171,172],merge_dict:93,merged_dict:93,merged_list:94,mergetwolist:94,mergevalid:121,merteuil:108,meshgrid:[50,75,150,156,158,184,189,190],mess:[68,80,168],messag:[50,59,92,101,104,113,122,136,147,165,171,172,177],messi:[139,165],met:[31,40,119],meta:[15,54,141,147,159],metadata:[1,7,46,113,117,119,123,124,139,171,193],metaflow:140,metal:140,meteorologist:137,meter:[102,174],metho:[63,64,65],method:[1,3,7,14,18,24,30,31,33,36,41,46,47,50,54,56,57,58,68,75,76,80,91,92,100,101,102,106,108,109,110,111,114,117,119,121,122,126,128,132,133,135,137,138,139,140,141,142,143,145,147,148,150,151,153,155,159,162,163,164,165,166,167,170,176,177,179,183,186,193],method_nam:171,methodnam:171,methodolog:[128,141,151],methylprednisolon:1,metric:[29,30,32,34,36,38,39,40,41,44,47,49,50,51,52,53,54,55,56,57,58,60,61,63,65,74,75,76,83,84,100,101,104,133,137,139,142,146,150,152,154,155,158,159,163,164,166,167,186,189,190],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:59,mi:45,michael:143,michalbialecki:[118,180],michel:143,michigan:112,mickei:92,micro:[139,154,159],microcomput:140,microphon:141,microprocessor:[68,80],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,38,41,46,49,54,67,68,69,71,72,85,86,88,89,90,91,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,124,139,140,143,145,146,159,162,163,164,166,167,168,170,174,176,180],mid:[92,142],middl:[88,92,110,133,146,156],middlenam:173,midnight:122,midpoint:[142,167],might:[1,7,11,14,18,26,33,34,39,43,47,49,54,55,59,62,64,66,68,75,77,80,99,101,108,111,113,114,116,117,119,124,130,135,137,139,141,145,147,150,157,158,163,165,166,167,170,171,172,173,180,182,188,191],migrat:139,mike:24,milk:[155,163],miller:116,millimet:[124,180],million:[32,33,102,132,165,174,191],millionair:173,mimic:[32,41,114,119,165,171,191],min:[1,3,7,18,31,38,47,48,50,58,59,61,64,66,74,83,103,109,121,123,131,132,135,136,145,150,151,155,158,159,178,189,190],min_:[57,152,188],min_after_dequeu:127,min_child_sampl:54,min_child_weight:[54,66,154,155],min_freq:134,min_impurity_decreas:[56,57,58],min_impurity_split:[56,150],min_ix:136,min_leaf:55,min_nod:[9,100],min_sampl:158,min_samples_leaf:[50,52,57,58,150],min_samples_leaf_grid:150,min_samples_split:[52,53,57,58,150],min_val:29,min_weight_fraction_leaf:[56,57,58,150],min_word_freq:134,min_word_frequ:136,minbodymass:[109,178],mind:[7,36,45,102,106,117,121,132,141,143,146,167,177],mine:[3,48,50,106,125,139,156,173],minecraft:151,ming:193,mini:[141,167],miniatur:166,minibatch:[35,37,82],minibatch_kmean:158,minibatch_kmeans_vs_kmean:158,minibatchkmean:158,minibatchkmeansminibatchkmean:158,miniconda3:146,miniconda:[163,167],minim:[29,32,41,49,50,52,53,54,55,75,76,78,89,112,114,126,127,131,136,137,141,145,146,147,151,152,155,157,158,163,165,166,176,188,192],minima:[55,141],minimis:[156,184],minimum:[3,7,48,50,53,56,58,64,75,101,109,119,150,152,155,156,157,166,172,194],minio_url:57,minist:127,minlength:[109,178],minmax:131,minmaxscal:[38,40,42,47,60,62,68,74,80],minnesota:[4,109,178],minor:[48,59,66,78,162],minor_axi:123,minu:[151,152],minut:[9,47,49,50,52,100,101,104,113,114,119,127,140,142,145,146,147,158,162,164,165,170],minval:[128,131],minwingspan:[109,178],mirza:131,misc:[127,193],miscfeatur:[54,66],misclassfi:54,misclassif:[50,64,83],misclassifi:[54,64,139,155],miscval:[54,66],misgend:102,mislead:[57,112,139,165,176,191],misleading_label:36,mismatch:[58,119],misrepresent:[112,176],miss:[14,16,18,19,22,24,25,31,49,50,52,53,56,58,61,66,77,103,114,119,121,122,123,137,139,141,145,150,152,154,165,166,171,191],miss_rinola:38,missclass:50,missing_count:54,mission:112,mistak:[50,54,62,66,104,130,139,151,155,173],mistaken:171,misung:143,misus:140,mit:[41,56,92,93,102,112,146,156,171,172,174,176,184],mitchel:[50,165,191],mitig:[28,102,112,157,174],mitpress:93,mittal:139,mix:[122,123,151,166,168,172,194],mixed4d_3x3_bottleneck_pre_relu:127,mixed_list:[172,194],mixtur:[145,151],mkdir:[37,130],mkframe:14,ml2:158,ml:[48,49,52,60,66,67,68,69,71,72,74,85,86,88,89,90,91,98,99,116,129,136,137,138,140,141,143,159,161,162,163,164,165,166,167,168,169,170,175,191],mlaa:140,mlb:18,mlcc:[47,48],mleap:140,mlearn:58,mledu:[47,48],mlflow:[101,140],mlop:[138,139,142],mlp:[30,43,135,192],mlpclassifi:163,mlsummari:58,mltest:47,mm:168,mmax:[53,58],mmin:[53,58],mn:54,mncb:59,mnist:[29,30,40,82,126,131,158,182,192],mnist_784:158,mnist_8x8:186,mnist_data:131,mnist_test:[32,82,84],mnist_train:[32,82,84],mnist_train_smal:47,mnistdata:47,mnistdf:47,mnistdf_backup:47,mnistlabel:47,mnistpr:47,mnprv:54,mnww:54,mo:186,mobil:[68,80,104,132,140,159,187],mobile_price_test:[68,80],mobile_price_train:[68,80],mobile_test:[68,80],mobile_train:[68,80],mobile_wt:[68,80],mobilenetv1:133,mobilenetv2:[132,133],mock:[5,24,53],mock_df_boxplot:24,mock_df_hist:53,mock_df_pairplot:53,mock_df_plot:24,mock_pairplot:53,mod_resourc:193,mode:[0,7,33,51,54,101,131,132,133,135,140,141,158,159,166,167,171,183],modefin:46,modefined_sklearn_iris_dataset:46,model2:135,model:[7,10,14,20,31,32,35,42,55,58,60,61,62,63,75,77,78,84,85,88,89,90,98,102,103,106,112,113,114,116,117,119,121,126,127,129,131,134,138,139,145,147,148,150,151,152,153,155,156,158,161,162,163,164,175,176,177,180,183,184,186,187],model_1:40,model_auto:31,model_definit:127,model_ev:40,model_filenam:159,model_fn:127,model_histori:133,model_lasso:66,model_learning_r:127,model_mean:128,model_nam:[9,30,31,100,131],model_output:[127,134],model_path:[38,39,40,42,44,100,134],model_perform:54,model_respons:[30,31],model_ridg:66,model_save_path:[30,31],model_select:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,74,75,76,80,83,84,137,150,152,154,155,158,159,163,164,166,167,170,186,188,189,190],model_url:[30,31,38,39,40,42,44],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:66,modelcheckpoint:[39,40,44],modelfit:56,moder:[64,143],modern:[62,106,129,140,142],modif:[29,132,150],modifi:[1,8,45,47,48,50,92,93,114,119,121,123,124,127,133,141,142,152,154,171,172,173,179,180,186,193,195],modifii:93,modnam:171,modul:[31,33,37,59,66,82,100,101,114,118,133,135,140,141,142,158,159,167,170],modulenotfounderror:[82,173],modulo:[172,194],modulu:[172,173,194,195],moment:[101,108,137,141,142,146,151,162,165,166,172,173,192],momentarili:179,momentum:[36,192],momentumoptim:127,mondai:[49,52],monei:[18,101,102,114,148,151,173,174],moneybal:102,mongodb:[114,180],monitor:[39,40,41,44,100,101,102,138,139,140,141,142,175],monkei:121,monoton:[122,143,150,171],monotone_constraint:[66,154,155],monster:82,month:[1,14,15,39,113,137,166,168,173],monthli:[1,113,137,166],mood:[102,174],moodle2:193,moon:31,moraga:152,moral:[6,108,112,176],mordvintsev:127,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,36,39,40,41,43,46,48,50,53,54,56,57,58,59,62,63,64,65,66,74,75,76,77,78,82,99,100,101,102,103,104,106,107,108,109,110,111,112,113,114,116,117,118,119,121,123,124,127,129,130,132,133,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,154,155,156,157,158,159,162,164,165,166,167,169,170,171,172,173,174,177,179,180,184,186,187,188,191,192,193,194,195],moreov:[50,59,62,132,151,152],mosold:[54,66],mosquera:143,most:[1,3,7,14,17,18,24,29,30,31,32,36,40,41,43,47,48,49,50,51,52,53,54,55,57,58,59,60,62,63,65,66,74,78,82,99,101,104,107,109,110,111,112,114,116,117,118,119,121,122,123,124,126,129,130,131,132,137,138,139,140,141,142,143,145,146,147,148,150,151,152,155,156,157,158,162,163,165,168,170,171,172,173,175,178,179,186,191,192,193,194],mostli:[7,59,114,129,141,150,151,166,167,191],motiv:[58,61,102,112,129],motor:130,motorcycl:50,mount:143,mous:92,move:[7,14,33,39,47,49,52,75,82,104,106,108,119,127,128,129,139,141,142,147,151,154,158,172,173],move_down:130,move_left:130,move_right:130,move_up:130,movement:[130,151],movi:[102,108,112,165,174,176],moving_mean:132,moving_vari:132,mp3:31,mpeg:31,mpimg:37,mpl:[158,162],mpl_toolkit:[75,83,108,156,184,186],mplot3d:[75,83,108,156,184,186],mrcnn:135,mri:[102,143],mrr:141,ms:[158,179],mse:[35,38,44,45,47,48,50,53,55,58,61,74,75,76,78,83,126,141,148,150,155,166,188],mse_cross_v:74,mseloss:31,msg:[47,167],msi:38,msocach:38,msr:102,msrafil:135,mssubclass:[54,66],mszone:[54,66],mtwuhpol:59,mu:[31,116,128,147,150],mu_p:128,mu_q:128,much:[1,3,7,18,30,47,48,49,50,52,54,55,57,58,59,61,62,66,68,74,80,101,103,104,114,116,119,121,124,129,133,139,141,146,147,148,150,151,152,157,158,162,165,166,167,171,179,191],mudiger:141,mug:132,mujumdar:139,mul:[31,127],multi:[30,43,47,57,78,119,121,123,132,133,137,139,140,142,145,156,162,171,179,180],multi_class:[158,163],multi_grid:133,multi_line_str:[172,194],multiclass:[133,141,156,162,163],multicollinear:[76,186],multidimension:[43,119,127],multifield:119,multiheadattent:[128,132],multiindex:[121,123],multilabel:163,multilay:132,multilin:[111,172,173,194,195],multiline_str:172,multimod:116,multinomi:[163,167],multioutput:163,multioutputregressor:137,multipl:[0,7,12,16,18,33,41,43,45,49,52,53,56,66,83,88,92,93,106,109,111,114,117,121,122,123,124,127,129,132,134,137,139,140,141,143,145,151,153,155,156,157,170,173,179,180,184,193,194,195],multipli:[43,75,76,82,92,118,119,132,151,154,157,166,193],multipurpos:195,multitud:154,multivalu:180,multivari:188,munich:[112,176],munigala:139,muralidhar:64,muscl:173,music:[144,145,146,147],muskmelon:39,must:[0,30,32,36,40,41,45,48,59,64,74,75,82,92,100,104,106,113,115,118,119,122,123,127,132,140,141,143,145,156,158,159,165,166,171,172,184,191,193,194],mustach:159,mutabl:[43,119,171,172,194],mutlipl:127,muufdbikxdmks9nw6kt1ryvntpqvf9:59,mv:180,mvbase:180,mventerpris:180,mx:75,mx_i:75,mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:59,my:[34,54,119,121,134,135,141,142,171,172,187,193,194],my_conv_net:127,my_dict:[92,93],my_funct:193,my_get_text:[171,193],my_imput:154,my_list:[92,193],my_mnist:158,my_model:154,my_modul:193,my_optim:127,my_own_classifi:189,my_sum:[96,193],my_tupl:[172,194],mybind:183,mybnk3dsmcymz0gwylxxqfulhrvy5axto:59,mycount:171,myct:[53,58],mycustomerror:171,myfunct:193,myhtmlpars:3,mylst:173,mymodel0:56,mymodel:56,myownlinearregress:188,myownlogisticregress:[81,189],myqcloud:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,110,111,116,123,137,145,146,158,162,163,164,166,178],mysql:[124,180],myst:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],mysteri:162,mythbusting_1:57,n24wr7ee6evwkotuekcka3picccvrgxpyku:59,n:[7,9,18,25,29,30,31,33,35,38,39,40,45,50,51,52,55,56,57,59,63,64,65,75,77,78,84,92,93,101,108,112,116,119,122,123,126,127,128,130,131,132,133,134,135,136,137,140,141,143,147,148,150,151,156,158,166,167,171,172,173,175,177,180,184,188,193,194],n_1:50,n_2:50,n_:150,n_anchor:135,n_arrai:43,n_batch:131,n_channel:31,n_class:[82,132],n_classifi:164,n_cluster:[146,158,186],n_clusters_:158,n_clusters_per_class:[189,190],n_col:[31,131],n_color:[137,158],n_column:48,n_compon:[30,186],n_connected_components_:158,n_core:[68,80],n_dense_block:132,n_estim:[49,50,51,52,53,54,55,56,66,148,150,155,164],n_featur:[38,63,65,81,188,189,190],n_features_in_:158,n_filter:132,n_group:128,n_head:128,n_hour:38,n_i:[50,119],n_imag:37,n_in:38,n_inform:[189,190],n_init:[146,158],n_input:37,n_iter:[54,61,81,158,188,189],n_iter_no_chang:56,n_job:[50,52,53,56,66,84,150,155],n_label:158,n_layer:132,n_layers_per_block:132,n_leaves_:158,n_neighbor:[83,84,158],n_ob:38,n_out:38,n_output:37,n_redund:[189,190],n_resnet:128,n_row:[31,48,131],n_sampl:[50,57,63,65,81,147,150,156,158,184,188,189],n_split:[56,59,64,150],n_test:[50,150],n_train:[50,150],n_train_hour:38,n_var:38,na:[7,14,46,51,54,66,117,121,122,123,135,141],na_val:51,nabla:151,naftaliharri:[146,158],nagalapatti:139,nair:[33,127],naiv:[82,119,151,154],name1:119,name2:119,name:[0,1,7,8,9,12,14,15,18,22,24,29,32,36,38,40,41,54,55,57,58,59,60,61,64,74,82,83,92,93,96,98,99,100,101,106,107,108,109,110,111,112,113,114,115,116,118,119,121,122,124,127,128,129,132,133,134,135,136,137,140,141,144,145,148,151,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,178,179,180,186,187,193,194,195],name_1:[172,194],name_2:[172,194],nameerror:[127,171,173],namespac:[121,122,123,171,193],nan:[1,14,18,38,45,46,47,51,54,56,64,66,74,116,117,119,121,123,137,141,154,155,166,167],nanosecond:[53,58],narr:[108,112],narrow:[45,49,50,92,110,147,164,165,178,191],nash:131,nasknxwdtb4aaaaasuvork5cyii:59,nasty_list:92,nat:35,nation:[102,159,162,174],nativ:[140,179,180],native_countri:51,native_country_41:51,natur:[1,39,43,45,47,54,59,104,107,110,111,112,114,119,122,123,129,130,136,137,141,143,145,166,168,173,188],naught:82,navig:[99,101,102,159,165,174],nax4:135,nbmake:0,nbsp:[41,137],nbviewer:[57,58,60,61,66,154,155,158,166,170],nbyte:179,ncc:58,nchw:135,ncluster:146,ncol:[37,39,127],nconfus:39,ncss:135,ndarrai:74,ndf:38,ndframe:122,ndim:[43,119,121,179],ndimag:84,nearbi:[145,150],nearer:166,nearest:[1,31,83,84,145,146,156,158,163,165,171,182,184],nearest_neighbor:133,nearli:[49,52,68,80,135,179,188],neat:[66,166,167,171],neatli:163,necess:129,necessar:140,necessari:[0,7,12,18,20,25,39,45,50,76,77,99,100,108,109,110,111,112,116,117,119,121,122,123,127,129,134,137,139,140,141,144,145,146,156,157,158,160,161,162,163,164,165,166,168,171,172,191],necessarili:[49,66,104,116,126,141,166],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,38,40,41,42,43,44,46,47,48,49,50,52,53,54,55,56,57,58,59,62,63,65,69,71,72,76,82,83,85,88,89,90,91,92,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,127,128,131,133,137,139,140,141,142,143,145,146,147,150,151,154,155,156,157,158,159,162,163,164,165,166,168,170,171,172,173,176,177,180,184,186,187,188,191,193,194],needless:[7,119],neg:[40,41,50,51,52,56,57,59,66,68,80,92,102,116,119,127,128,129,130,131,141,143,151,156,158,167,171,172,173,182,192,194,195],neg_mean_squared_error:66,neg_root_mean_squared_error:[54,74],negative_integ:[172,194],negative_slop:37,negativs:52,neglig:48,neigh_garag:54,neigh_lot:54,neighbor:[49,52,56,83,84,130,146,158,163,165],neighborhood:54,neightborhood:54,neither:[71,152],neo4j:180,nepoch:31,neptun:195,neq:[119,130,147],nervou:136,ness:135,nest:[56,75,93,108,119,123,171],nested_list:93,nested_tupl:172,nestim:59,net50:132,net:[6,25,32,35,47,132,133,136,140,151,155],netd:37,neteas:38,netflix:[112,129,165,176],netg:37,network:[5,29,30,31,36,38,41,43,45,47,48,49,62,64,68,80,99,102,114,119,121,126,130,132,133,134,135,137,138,139,140,141,143,151,157,159,162,163,165,170,175,176,183,190,191],network_weight:127,networth:173,neural:[29,30,31,35,36,37,41,43,45,47,49,62,64,68,80,119,121,126,130,132,133,134,135,137,138,141,143,151,157,159,162,163,165,170,182,183,190,191],neural_network:127,neuralearn:128,neuron:[30,40,41,45,47,62,129,136,141,157,181],neurral:157,neutral:140,neutron:59,never:[31,40,49,50,52,54,56,57,82,101,113,119,131,132,141,157,165,171,191],nevertheless:[7,83,117,119],new_ax:121,new_column:[14,166,167,168],new_data:122,new_df:30,new_dict:172,new_imag:34,new_label:[121,122],new_pumpkin:[166,167,168],new_row:121,newaxi:[29,30,45,63,65,119,133,170],newbi:141,newer:[74,141,179],newli:[14,123,124,172],newlin:[134,172,193],newshap:119,newton:[92,163],next:[3,7,9,34,35,36,37,38,39,40,41,44,46,47,48,49,50,52,53,54,56,58,61,62,76,92,93,94,98,100,101,102,104,106,112,117,119,121,124,127,128,129,130,132,134,136,137,140,141,142,145,147,150,151,152,154,155,156,158,159,162,164,165,167,168,170,171,172,173,179,187,191,193,194],next_num:93,next_stat:35,nfals:59,nfold:155,ng17:141,ng:[108,127,139,141,142,165],ngo:56,nh:135,nhwc:[131,135],ni:[172,194],nice:[47,50,66,109,152,162,172,186,194],nicer:[1,14,171],nichol:128,nick:[106,127,134,136,165],nigeria:144,nigerian:[145,146],night:[50,127,147,159,188],ninfav:14,ninfect:14,nip:[127,143],nipy_spectr:186,nitin:139,niven:188,nj:[140,147],nl:57,nlargest:38,nlookup:119,nlp:[1,59,132,141],nlp_rake:3,nltk:1,nmodel:56,nmultilin:173,nn:[31,33,37,40,126,127,128,130,131,132,134,135,136],nn_vi:181,no_enrol:56,no_exceptions_has_been_fir:171,no_grad:[31,33],no_missing_data_df:46,no_missing_dup_data_df:46,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:141,node:[1,29,30,41,50,100,101,108,118,127,134,140,148,150,155,180,195],node_id:148,nois:[3,29,31,36,37,41,45,50,59,64,68,80,126,127,130,131,143,145,150,151,156,157,158,182,184,188,189],noise_factor:[29,30],noise_s:131,noise_shap:47,noisi:[29,142,145,146,150,151],nol20:114,nolli:114,nomin:[54,57,155],non:[1,14,18,29,38,44,54,56,59,60,61,74,92,93,101,112,117,119,121,122,123,125,126,127,128,131,134,141,143,145,148,150,151,155,156,157,165,166,171,176,183,193],non_block:33,non_cor:158,non_core_mask:158,none:[3,9,14,18,22,24,29,35,36,38,39,45,47,48,49,52,53,55,56,57,58,63,65,66,68,80,81,89,93,94,100,101,110,111,116,117,119,121,122,123,128,130,131,132,133,135,136,137,146,147,150,154,155,156,157,158,162,166,171,172,178,184,186,188,189,194],nonetheless:158,nonetyp:[172,179,194],nonexistent_column:14,nonflat:145,noninfring:[92,93,171,172],nonlin:45,nonlinear:[32,45,61,76,127,129,132,141,157,166],nonoptim:141,nonparametr:[150,163],nonzero:[55,119],nooooooo:173,noqa:[171,172],nor:71,norm1:127,norm2:127,norm:[112,127,135,157,158],norm_hist:54,normal:[7,29,30,31,32,36,37,40,43,45,49,50,52,59,66,68,74,80,82,117,119,126,127,128,129,131,132,133,134,135,139,141,146,148,150,151,157,165,168,171,182,186,192],normal_:37,normal_goal_i:130,normal_goal_x:130,normal_i:130,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:130,normalizaiton:32,normalization_matrix:127,normalization_mean:127,normalized_data:[68,80],normalizedata:48,norri:92,north:[74,169],northgat:180,norwai:195,norwegian:171,nosql:[114,176],nostruct:119,not_equ:119,not_existing_charact:[172,194],not_existing_vari:171,not_ther:119,notabl:[61,129,165,180],notat:[54,113,118,119,123,171,172,194],notclean:38,note:[0,1,7,8,14,18,29,36,40,41,47,48,50,52,53,54,57,58,61,66,68,80,83,84,100,101,103,111,112,113,116,117,119,121,122,123,127,128,129,133,141,143,145,147,148,150,151,152,156,158,166,168,170,171,172,186,188,194],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,36,40,41,49,53,54,57,58,60,61,63,64,65,66,68,69,72,80,82,83,84,85,89,101,102,103,116,117,129,138,145,146,154,155,158,159,163,166,167,168,169,173,174,179,183,186,187,188,189,192],notebook_path:[29,30,31,33,39,41,66],noteworthi:[78,128],notexist:3,notfittederror:152,noth:[7,41,57,60,62,82,111,119,147,151,152,154,155,158,171],notic:[7,29,40,48,92,93,102,104,106,109,110,111,116,117,118,124,137,157,159,165,168,171,172,177,179,180,188,191,193],notifi:[112,176],notion:[49,58,165],notnul:[7,46,51,117,179],notori:[36,108],notwithstand:[7,117],noun:132,novel:[108,133,135],novemb:[108,137,140,141,142],novic:104,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,36,40,41,43,45,46,47,48,49,50,51,52,54,56,57,58,59,60,61,62,66,68,74,75,80,82,83,89,91,99,100,101,102,104,110,111,112,113,114,116,117,119,121,123,124,127,133,134,135,136,137,140,141,146,147,148,150,151,152,155,156,157,158,159,162,163,165,166,167,168,170,171,172,173,174,180,186,187,188,194],nowadai:[114,156],nowdai:165,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,81,82,84,86,116,117,119,121,122,123,126,127,128,130,131,132,134,135,136,137,142,147,148,150,152,155,156,158,159,162,163,164,166,167,170,179,182,184,186,187,188,189,190,192],np_util:32,npm:108,npredict:39,npy:34,npython:173,nrow:[33,37,39,127],ns:38,nsampl:[38,44,133],nsecond:172,nshape:[63,65],nstandard:18,nswdeman:[49,52],nswdemand:[49,52],nswprice:[49,52],nt:[109,178,180],ntest:[40,41,192],nthe:[40,49,52,53,57,58,60,61,68,80],ntrain:64,ntree:150,ntrue:59,nu:152,nudg:[112,176],nuforc:159,null_accuraci:59,nullifi:78,num1:193,num2:193,num3:193,num:[61,74,92,119,126,128,131,133,134,172,193,194],num_anchor:135,num_batch:[131,134,136],num_block:132,num_boost_round:[66,155],num_categori:135,num_channel:127,num_class:[32,132,133,135],num_col:[41,54],num_conv:135,num_correct:127,num_epoch:[33,131],num_exampl:133,num_feat:[61,74],num_feats_imput:74,num_feats_pip:74,num_feats_preprocess:74,num_featur:[82,126],num_filt:132,num_gens_to_wait:127,num_head:[128,132],num_hidden_1:126,num_hidden_2:126,num_hours_studi:188,num_imag:41,num_img:36,num_input_data:[68,80],num_iter:76,num_label:192,num_lay:132,num_list:[61,74],num_memory_unit:130,num_output:82,num_parallel_cal:133,num_parallel_tre:[66,154,155],num_patch:132,num_pip:61,num_preprocess:61,num_queri:135,num_row:41,num_scal:74,num_target:127,num_test_sampl:131,num_thread:127,num_to_plot:148,num_unit:[82,136],num_vowel:172,num_work:33,numa:29,numa_nod:29,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,38,39,40,41,43,45,46,47,48,49,50,52,54,55,57,58,59,62,63,64,65,68,74,75,76,77,80,82,83,84,100,101,104,106,108,109,110,111,113,114,117,121,123,124,126,127,128,129,130,132,133,134,135,137,140,141,142,145,146,147,148,150,151,154,155,156,157,159,162,163,164,165,166,167,168,170,171,176,178,179,182,184,186,187,188,191,193],number_imgs_each_part:39,number_limit:171,number_of_iter:[171,193],number_of_part:39,number_to_be_found:[171,193],numbug:193,numclass:47,numcol:[111,178],numer:[1,8,31,33,40,43,46,49,52,57,58,61,66,68,80,82,92,101,103,108,109,110,111,113,116,117,118,119,124,127,129,130,141,146,148,150,164,165,166,168,170,172,178,180,191,194],numeric_:54,numeric_feat:66,numeric_train:54,numeric_v:92,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,78,82,83,84,86,98,99,100,101,102,109,110,111,116,117,121,122,123,125,126,127,128,129,130,131,132,134,135,136,137,144,145,146,147,148,150,152,155,156,157,158,159,160,161,162,163,164,166,167,170,171,174,182,183,184,186,187,188,189,190,192],numvehicl:137,nuniqu:51,nusvc:59,nvalid:64,nvarianc:18,nvidia:29,nw:135,nx0:135,nx1:55,nx4:135,nx:[38,44,119],nxcx:135,nxn:127,ny0:135,ny:[38,44,119,143],nyandwi:[40,43,49,52,53,68,74,80,165],nyc:[102,106,108,174],nyu:193,nz:37,o4yuzatazi:59,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:59,o:[12,25,42,51,54,55,59,83,112,119,130,135,136,139,143,147,158,172,192,194],o_lay:127,o_t:134,ob:35,obama:[92,143],obei:[40,119,156],obes:101,obj:[119,121,122,171,179],object:[3,7,9,14,16,24,31,36,38,43,44,47,48,50,53,54,56,57,59,64,66,74,77,82,83,100,102,108,110,113,117,118,121,122,126,127,129,131,132,133,134,137,140,141,142,144,145,151,154,155,156,157,159,162,163,165,166,172,173,174,178,180,181,192,193,194,195],object_:119,objectdatabas:180,objectdb:180,objectstor:180,observ:[1,3,7,18,30,38,47,53,59,77,78,113,114,117,123,128,130,137,139,141,145,146,147,148,151,154,162,166,167,186],observablehq:166,observepoint:104,obtain:[3,22,24,45,47,48,50,58,59,82,92,93,114,116,119,128,141,148,150,153,155,166,171,172,176,194],obviou:[18,56,110,116,132,150],obvious:[50,56,111,156,182],ocademi:[0,12,18,25,97,122,123,138,146,173,181,193,195],occam:157,occasion:171,occlud:[132,135],occlus:[39,132],occup:[51,155],occur:[1,7,8,28,49,52,59,75,112,119,127,134,137,141,157,159,168,171,172,187,193],occurr:[1,2,8,28,46,47,54,59,117,167],ocean:[61,74],ocean_proxim:[61,74],oceanproxim:74,octav:127,octave_n:127,octave_scal:127,octob:[112,168,180],od:171,odaba:180,odd:[92,193],odor:[110,178],odot:128,odunsi:145,ofcours:129,off:[30,34,36,37,39,40,46,49,50,52,56,59,61,62,68,77,78,80,82,106,127,128,130,132,133,134,137,147,150,155,157,158,165,171,177,182,192],offer:[21,40,75,78,99,108,109,110,112,119,132,139,145,154,162,163,164,167,168,176,179],offic:[114,132,137],office16:38,offici:[43,119,155],offlin:[35,159],offset:[119,151],often:[1,3,7,8,40,41,46,49,50,52,54,59,62,68,76,80,101,102,108,112,113,114,116,117,119,128,130,132,134,137,140,141,147,148,150,151,157,158,163,165,167,168,169,171,172,176,179,193,194],oftentim:114,oh:[47,134,147],ohadlight:132,ohh:[49,52,57,68,80],oil:36,ok:[118,123,124,147],okai:[41,57,58,158],old:[50,121,140,146,162,173,193],older:[116,119],oldid:180,oleksii:[92,93,171,172],ols:156,omar:56,omega_t:136,omit:[1,29,116,121,147,151,171,172],on3sx3y9kwmxfjcw:59,on_bad_lin:38,on_epoch_end:[40,133],onboard:[104,139],onc:[0,7,41,43,45,48,53,55,58,74,76,82,100,101,112,114,116,117,119,121,131,134,137,139,140,141,151,152,155,157,159,164,165,167,171,173,193,195],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,65,66,68,69,72,74,75,76,77,80,82,84,85,90,91,92,93,99,101,102,104,106,107,108,109,110,111,112,114,116,117,118,119,121,122,123,124,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,150,151,154,155,156,157,158,159,162,163,164,165,166,167,169,170,171,172,173,174,178,179,180,184,187,188,191,192,193,194,195],one_hot:[7,74,127,131],one_hot_data:7,one_hot_encod:[22,74],one_trunc:123,onefield:119,onehotencod:[51,61,74,188],ones:[7,11,36,37,43,46,49,50,56,63,65,66,76,78,101,102,104,108,117,119,126,128,132,139,145,146,150,155,157,167,168,173,174,179,182,188],ones_for_answ:82,ones_lik:131,ones_tensor:43,ones_tensor_1:43,ongo:[106,143,177],onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,36,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,63,65,66,68,74,80,82,90,92,93,98,99,100,101,104,106,109,112,113,116,117,118,119,121,122,123,124,127,129,130,131,132,135,137,139,140,141,143,145,148,150,151,155,156,157,158,159,163,166,167,168,171,172,173,175,177,180,184,186,193,194,195],onlin:[1,28,112,114,116,119,121,140,141,143,159,165,171],only_path:39,onnx:[140,159],ontario:14,onto:[47,51,104,126,142,186,188],ontotext:180,onward:14,oob:147,oob_scor:150,oocademi:173,op:[121,127,134,136],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,36,37,38,39,40,41,42,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,179,186,187,188,189,191,192,193,195],open_access:146,opencv:[38,128],openinsight:180,openlink:180,openml1:57,openml:[53,57,58],openporchsf:54,openqm:180,oper:[7,18,25,29,33,40,49,56,59,75,92,99,101,112,114,116,118,121,122,127,130,132,134,138,139,140,141,142,167,171,173,175,176,195],operand:[119,172,179,194],operation:[112,176],opinion:141,oppon:131,opportun:[54,101,102,103,141,143,159],oppos:[123,154,171,172],opposit:[7,108,126,144,152,157,167,182],oppurtun:151,opt:[99,146,165],opt_func:33,optic:[140,145],optim:[29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,47,50,52,54,57,62,75,76,77,78,83,101,102,104,109,116,119,123,126,127,128,129,130,131,132,133,134,136,139,142,143,146,148,150,151,152,154,155,156,163,166,167,182,184,186],optimis:[76,156],optimist:[49,147],optimizerd:37,optimizerg:37,optimum:[56,146],option:[1,7,15,16,43,45,48,50,68,74,80,93,94,100,102,106,111,112,117,118,119,121,123,137,139,140,143,151,158,159,163,164,171,172,173,174,179,192,193,194],oracl:[124,180],orang:[39,50,108,109,116,130,162,167,172,178,194,195],orchestr:[139,140],ord:133,ord_col:54,ord_enc:57,order:[1,3,6,7,14,18,31,40,43,46,47,50,53,54,55,57,58,64,68,74,75,80,82,83,92,109,110,112,113,114,116,117,118,119,121,122,123,128,130,132,135,137,141,142,143,147,150,151,152,155,156,159,165,166,167,171,172,173,176,178,180,186,188,191,193,194,195],ordin:167,ordinal_map:54,ordinalencod:[57,74],ordinari:[57,74,137,167],ordinary_encod:74,oreilli:104,org:[3,22,45,47,48,57,58,60,61,66,104,123,127,128,132,133,134,135,141,143,154,155,156,158,166,170,171,172,180,181,186,193],organ:[34,40,99,100,102,106,109,112,113,114,117,118,119,132,139,140,165,170,174,176,177,178,180,186,187,191],organiz:112,orgin:[53,58,74],orient:[36,129,132,139,170,171,172,173,194],orientdb:180,origin:[3,7,14,29,30,31,34,36,39,45,49,50,55,57,58,59,63,65,80,89,92,93,111,114,119,121,123,126,127,131,137,139,140,145,147,148,150,151,152,155,156,158,162,166,167,168,172,180],original_featur:127,original_imag:127,original_image_fil:127,original_image_weight:127,original_label:122,original_lay:127,original_layers_w:127,original_loss:127,original_minus_mean:127,original_norm:127,original_str:[97,172],originl:55,ornella:102,orthogon:[126,186],os:[29,30,31,33,35,36,37,38,39,41,45,47,48,51,56,59,66,76,82,84,98,99,100,101,109,110,111,121,122,123,127,129,130,134,136,137,140,144,145,146,157,158,160,161,162,163,164,166,171],oscil:131,ossif:112,ot:127,other:[3,7,14,17,18,20,31,33,35,40,41,43,44,46,48,49,51,52,53,54,56,57,58,59,62,64,66,74,76,77,78,82,83,85,88,92,93,98,100,101,102,104,109,110,111,112,113,116,117,118,121,123,124,126,128,129,132,133,135,137,138,139,140,141,142,143,144,145,146,147,148,150,151,154,155,156,157,158,161,162,165,166,168,169,170,171,172,173,179,180,186,188,189,190,191,192,193,194],other_nam:[171,193],otherwis:[33,61,78,82,92,93,119,121,122,123,124,127,132,141,143,145,150,154,165,166,168,171,172],ouch:158,our:[1,3,7,14,18,29,30,31,32,33,34,36,39,40,41,43,46,47,48,50,52,54,55,56,57,58,59,60,63,65,66,68,74,75,76,77,78,80,82,83,102,103,104,110,111,112,114,116,117,121,124,126,127,128,129,132,135,137,138,141,142,143,145,146,147,148,150,151,152,155,157,158,159,162,163,164,165,166,167,170,171,173,176,179,180,186,187,191,195],ourselv:[48,54,137,151],oustand:49,out1:132,out:[3,7,8,14,15,18,29,33,34,35,37,41,43,48,50,53,54,56,59,62,64,66,68,80,92,93,99,100,102,104,108,109,111,112,113,114,116,117,119,122,123,124,127,128,129,130,131,132,133,135,137,138,140,141,143,145,146,148,150,151,154,155,157,159,162,163,164,165,167,168,170,171,172,173,179,180,186,187,191,193],out_channel:[31,132],out_col:54,out_conn:134,out_dir:131,out_filt:133,out_sampl:128,out_sent:134,out_siz:133,outbreak:14,outcom:[7,16,56,59,78,102,106,112,114,116,117,128,139,147,162,166,167],outer:[75,162,171,179],outermost:[121,171],outfield:116,outli:141,outlier:[7,45,46,47,60,61,74,76,77,78,107,109,116,139,141,145,146,147,150,151,156,158,178],outliers_influ:[54,64],outlin:[54,104,112,137,140],outlook:165,outperform:[49,141],output:[7,9,29,30,31,33,36,37,38,40,41,43,46,47,48,50,51,56,75,78,82,99,100,101,117,119,122,123,124,126,127,129,130,131,132,133,134,135,136,137,141,142,143,145,147,148,150,151,152,155,157,158,159,162,165,166,167,171,172,173,179,180,181,182,187,191,192,194],output_channel:133,output_class:133,output_everi:127,output_fil:127,output_file_nam:130,output_final_layer_before_activation_funct:130,output_gener:127,output_imag:37,output_indic:127,output_loc:127,output_memori:130,output_prepar:[38,44],output_s:132,output_stag:133,output_unit:82,outsid:[54,104,116,119,121,154,163,171,193],outwork:165,over:[1,7,8,13,14,24,31,32,33,36,40,46,48,49,51,52,54,59,68,76,78,80,82,90,93,99,102,104,108,111,112,117,119,124,126,127,129,130,131,132,134,135,136,137,139,140,141,142,143,145,147,148,150,151,152,155,158,159,162,163,164,167,169,171,172,173,174,175,178,180,193,194],over_sampl:162,overal:[7,13,14,30,31,48,49,50,54,56,102,103,111,113,114,117,141,148,151,165,166,191],overallcond:54,overallqu:54,overcom:[49,52,57,58,156],overdu:50,overexcit:157,overfit:[32,33,40,41,47,48,49,50,52,53,54,57,58,60,61,62,63,65,66,68,76,80,82,137,141,147,150,151,153,154,155,156,164,184,192],overfit_cat:54,overfit_num:54,overflow:121,overhead:[135,179],overlap:[18,116,119,121,145,146,171],overli:[49,50],overlin:[128,148],overload:156,overlook:[112,165],overrid:[123,171,193],override_groups_map:132,oversampl:162,overshadow:143,overshoot:[75,152],oversimplif:104,overtim:165,overtrain:64,overview:[50,71,101,104,106,109,129,139,141,183],overwhelm:114,overwrit:[130,172,193,194],ovr:[158,163],owlim:180,own:[0,11,17,28,39,41,50,62,88,90,99,100,101,102,106,108,112,116,119,121,126,130,132,139,142,143,147,150,151,156,157,158,165,171,177,191],owner:[139,148],ownership:[50,112,176],ox:134,oxford:[112,176],oxford_iiit_pet:133,ozair:131,p1:193,p2:[32,128,193],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:59,p:[3,18,32,37,48,50,55,56,57,116,119,121,122,123,128,130,131,137,141,146,147,148,150,152,155,156,157,158,159,162,165,166,171,172,184,188,191,193,194],p_1:[50,116,128],p_2:[50,116],p_:[50,128,131],p_i:[50,128],p_k:50,p_n:[116,128],p_sampl:128,p_valu:116,p_z:131,paa:[99,175],pace:[41,75],pack:[119,170,172,193],packag:[18,35,51,57,102,116,119,121,122,123,137,140,145,146,151,159,162,163,165,166,167,168,170,174,179,182,186,193],packed_tupl:172,pacsuta:130,pad:[1,14,18,29,30,32,33,34,36,37,39,54,119,126,127,128,132,133,135,136,158,159],pad_bord:135,pad_sequ:136,padding_11:132,paderborn:130,page:[3,21,26,40,43,57,58,60,61,66,101,102,104,113,114,121,142,154,155,158,159,166,167,170,174],pagefil:38,pai:[18,59,83,99,112,129,134,148,150,166,175,176],paid:[112,129,176],pain:158,paint:[36,118],pair:[7,50,90,93,116,118,119,150,151,158,163,171,172,173,180,193,194,195],pair_list:3,pairgrid:[58,74,167],pairplot:[58,68,74,80],pairwis:[83,150],pal:36,palett:[39,51,56,68,80,108,109,111,137,178],palette_kwarg:137,palette_kwargs_:137,palinami:[63,65],palyground:166,pamphlet:50,pan:133,pancak:130,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,80,82,83,84,86,98,99,100,101,102,109,110,111,116,117,119,122,125,129,134,137,138,142,144,145,146,147,148,150,152,154,155,157,158,159,160,161,162,163,164,166,167,168,174,177,178,182,183,186,187,188,189,190,192],pandasarrai:123,pandastutor:[121,122,123],pandem:[1,11,119,142],panel:187,papandr:133,paper:[7,14,21,26,28,49,50,102,114,116,127,129,131,133,134,135,155,158,167,174,181],paperback:137,papercodereview:135,papiu:66,par:66,parabol:166,paradigm:[114,165,191],paragraph:[88,90,134,171],parallel:[37,54,99,101,133,150,154,155],param:[29,47,48,61,63,64,65,66,127,133,155,171],param_distribut:[54,61],param_grid:[50,56,57,58,59,60,158],param_lst:54,param_test1:56,param_test2:56,param_test3:56,param_test4:56,param_test5:56,paramet:[3,7,10,22,31,32,33,34,41,45,48,49,52,57,58,59,60,61,62,63,64,65,66,68,75,76,78,80,81,82,84,100,101,109,111,116,117,119,121,122,126,127,128,129,132,133,134,136,137,141,142,151,152,154,155,156,157,158,163,164,166,167,171,172,173,185,188,189,193,194],parameteriz:142,parameterless:171,parameters_input:173,parameters_output:173,parametr:156,params_grid:[52,53,57,58,60],paramt:[33,152],parch:22,paremet:[60,74],parent:[6,22,112,122,171,176],parenthes:[7,171,172,193,194],park:159,parma:[63,65],parmet:157,parquet:114,parquet_url:57,parrot:[121,171,193],parrot_typ:171,pars:[3,117,137],parse_d:137,parsed_data:3,parsefromstr:127,parser:[3,171],part:[1,7,8,11,30,33,34,39,43,47,50,54,68,80,82,92,99,100,103,104,106,107,108,112,114,115,117,118,119,123,126,130,131,132,133,134,135,137,138,139,140,141,142,143,145,146,147,150,151,156,157,159,164,165,166,168,169,170,171,172,173,178,182,184,191,193,194,195],parti:[99,104,114],partial:[39,85,110,119,139,141,145,151,152,155,178],partial_deriv:128,partial_fit:158,partially_propag:158,particip:[50,112,136,147,151,176],particular:[7,31,43,49,50,51,57,59,74,92,93,103,106,110,111,113,117,118,119,121,123,129,131,141,147,148,151,158,165,166,171,172,177,191,194],particularli:[7,46,109,111,112,117,145,146,168,172,194],partit:[50,118,119,139,146,156],partner:[112,176],pascal:171,pass:[0,3,7,31,36,40,46,48,50,54,56,57,58,59,76,82,92,103,104,109,112,119,121,123,127,128,129,132,152,157,163,166,171,172,173,178,187,193,194],passag:108,passeng:[7,17,22,23],passenger_class:22,passengerid:152,passion:[104,172,194],passthrough:188,past:[49,50,54,112,124,127,132,135,136,137,140,142,143,159,181],pastel2:158,patch:[24,49,53,99,132,166],patch_dim:132,patch_project:132,patch_siz:132,patchifi:132,patel:139,path:[0,2,15,17,23,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,68,76,80,100,110,112,119,127,128,133,134,136,137,143,151,152,158,164,171,178,193],path_to_param:127,pathcollect:166,pathlib:137,pathnam:[45,47,48],patienc:[39,40,44],patient:[24,40,100,101,102,141,170],patrick:56,pattern:[36,54,55,56,62,64,76,77,78,102,103,106,111,112,114,129,137,140,143,144,145,153,157,165,167,170,171,176,177,191],paul:[38,173],paus:130,pave:66,pavithra:[63,65],pawel:195,payment:50,paz20:143,pazzanes:143,pb:127,pbar_out:31,pc:[68,80],pca:[126,165],pci:29,pclass:[22,152],pclass_xt:22,pclass_xt_pct:22,pcolormesh:50,pctdistanc:[110,178],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,80,82,84,86,109,110,111,116,117,121,122,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,178,182,186,187,188,189,190,192],pdf:[132,133,193],peac:104,peach:39,peak:154,pear:[39,172,194],pearsonr:66,pedestrian:165,pedoia:143,peek:[84,92,167],peep:40,peer:102,peke:193,penal:[129,151,165,182,191],penalti:[59,78,112,126,132,151,156,157],pendant:[110,178],peopl:[3,14,31,40,46,49,56,74,93,99,101,102,104,106,108,112,114,116,117,118,119,121,140,141,143,165,172,175,176,180,191,193],people_info:93,people_to_check1:92,people_to_check2:92,pep557:123,per:[33,39,45,47,48,49,50,60,109,111,119,123,127,128,132,133,135,141,158,162,166,168,178,179],per_image_standard:127,perceiv:[145,165,191],percent:[1,186,192],percentag:[14,34,41,50,52,59,62,68,74,80,101,141,150,167],percentil:[116,147,158],percentile_closest:158,percept:[145,165],perceptron:30,perceptu:132,perceptualedg:104,perfect:[47,49,59,64,93,109,157,158,178],perfectli:[7,50,64,68,80,117,141,147,156,166,184],perform:[1,7,18,29,31,32,33,39,40,41,48,49,50,51,53,54,56,58,59,61,62,64,66,74,75,76,77,82,83,84,89,93,99,101,106,114,116,118,119,124,128,129,130,132,133,135,138,139,140,141,142,143,145,147,148,150,151,152,154,155,156,157,158,162,163,166,167,170,171,172,173,175,177,179,185,187,188,193,194],performcv:56,perhap:[4,47,48,62,109,128,133,137,145,158,159,165,182,191],period:[13,14,38,39,44,49,52,101,102,122,123,137,143,171],period_rang:137,periodindex:137,perm:93,permiss:[22,45,47,48,92,93,101,112,171,172],permit:[92,93,119,171,172],permut:[31,33,82,93,131,136],perpendicular:[50,59],perplex:141,persimmon:39,persist:[9,130],person:[6,7,14,28,31,36,50,51,57,92,93,100,102,104,112,113,114,116,118,129,137,140,165,170,171,172,173,176,191,193],person_id:31,personsdata:118,perspect:[102,112,132,151],perst:180,persuad:104,persuas:104,pervas:[112,114],pet:15,petabyt:[102,174],petal:[46,60,83,117,148,186],petallength:[83,123,148],petallengthcm:64,petalratio:123,petalwidth:[83,123,148],petalwidthcm:64,peter:[116,172,194],petra:139,petrova:14,pfa:140,pg100:134,pg4mtoh4b05qn5dt:59,ph:48,ph_delta_weights_list:130,phase:[33,56,103,104,142,145,165,191],phd:56,phenomenon:143,phi:128,philip:139,phillip:143,phone:[6,68,80,104,112,113,114,172,176,187,194],phonem:134,photo:[31,34,43,98,105,107,121,125,161,169,182],photo_id:31,photo_numb:31,photo_path:31,photograph:[114,121,144],photoshopcs6:38,php:[180,193],phrase:[29,132,165,177],physic:[50,101,130,140],physicochem:48,physiolog:88,pi:[128,130,148,172,173,193,194],pi_j:148,pi_valu:[172,194],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,36,64,66,68,80,90,104,111,118,127,130,146,150,152,155,158,168,170,180],pickl:[134,140,193],pickler:193,pickletool:193,pickup:[102,174],pictur:[1,3,14,30,31,37,50,51,59,60,114,116,119,121,129,141,147,148,151,165,182,186,191],pid:130,pie:[27,51,68,80,108,166,168],pie_pumpkin:166,piec:[46,51,59,97,103,114,117,139,142,154,170,182],piecewis:50,pieter:128,pii:112,pil:[31,36,127],pillow:171,pin:[121,187],pin_memori:33,pineappl:[172,194],pinfect:14,pink:[1,108,110,178],pinpoint:54,piotr:[135,141],pip:[3,12,18,25,98,99,100,101,109,110,111,116,121,122,123,129,134,137,144,145,146,157,158,159,160,161,162,163,164,166,187],pipe:57,pipelin:[53,56,57,58,60,61,64,100,101,127,133,139,140,141,142,158,166],pipeline_scor:158,pipelinepipelin:[158,166],pipeln:64,piplin:[127,130],pitaya:39,pitch:142,pitt:136,pivot:[38,78,114],pivot_t:121,pix2pix:133,pixel:[29,30,33,36,39,40,41,43,47,50,68,80,84,119,132,133,135,141,165,186],pk:[12,124],pkl:159,pktfrwjz:59,pl:148,place:[7,33,46,50,54,92,93,101,103,104,108,114,117,119,123,129,139,147,162,165,167,170,171,172,173,194],placehold:[127,130,131,132,136,159,173,187],plai:[3,14,18,43,48,50,56,74,75,77,100,114,116,139,151,156,164,170,171,184,187],plain:[3,132],plainli:110,plan:[1,50,99,104,139,142,147],plane:[50,132,145,156,166,186],planet:[6,102,174,195],planetari:[102,174],plastic:145,platelet:[9,100,101],platform:[10,20,29,43,99,101,104,139,140,143,151,159,165,173,175,191],plausibl:182,play:75,player:[18,102,116,131,140,165],playground:[142,151,162],playgroundn:166,pleas:[15,29,45,46,47,48,49,52,57,58,60,61,66,82,100,123,127,132,154,155,157,158,159,166,170,171,183],plenti:[108,139,141,143,151,158],plot:[1,3,8,14,15,18,19,29,31,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,54,56,57,59,60,61,62,64,66,68,75,76,77,80,82,83,88,108,114,116,123,127,128,130,133,134,136,137,141,145,148,150,152,156,157,158,162,163,165,166,168,170,184,186,188,189,190,191,192],plot_3d:[156,184],plot_accuraci:33,plot_align:22,plot_centroid:158,plot_clust:158,plot_clusterer_comparison:158,plot_color:22,plot_dat:35,plot_data:158,plot_dbscan:158,plot_decision_boundari:158,plot_galleri:31,plot_imag:41,plot_import:155,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,37],plot_model:192,plot_multistep:137,plot_param:137,plot_profit:35,plot_spectral_clust:158,plot_support:[156,184],plot_surfac:75,plot_svc_decision_funct:[156,184],plot_svm:[156,184],plot_titl:22,plot_train:39,plot_tre:[57,148],plot_value_arrai:41,plotli:[1,30,35,44],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,74,75,76,77,80,82,83,84,109,110,111,116,126,127,128,130,133,134,136,137,145,146,147,148,150,152,155,156,158,162,166,168,170,178,182,184,186,188,189,190,192],plu:[32,50,76,81,108,119,123,188,189],plugin:0,pluginfil:193,plum:39,plumag:171,plymouth:147,pm:[106,116,171,193],pmlr:143,pmml:140,pneumonia:1,png:[3,36,37,39,59,66,130,158,166,167],po:[54,130,135,158],poc:101,poem:102,poetic:102,poetri:[102,174],poignant:111,poin:64,point3d:123,point:[7,8,11,15,16,28,29,30,31,33,36,40,41,47,48,49,50,52,59,60,61,62,68,74,75,77,80,84,104,106,108,109,111,113,116,117,119,122,123,130,131,135,136,137,140,141,145,146,147,150,151,155,156,157,158,159,162,164,165,166,167,168,169,170,171,172,179,185,186,187,188,191,192,194],pointer:[92,119,124],pointwis:132,pois:121,poison:[110,178],pojo:140,polar:38,poli:[59,60,61,166],polic:102,polici:[99,106,165,191],polli:121,poloclub:[181,182],poly_best:60,poly_pr:60,poly_svc100:59,poly_svc:[59,60],poly_svr:61,poly_transform:188,polynomi:[60,61,69,76,156,157,169],polynomialfeatur:[166,188],polynomialfeaturespolynomialfeatur:166,pomegran:39,ponder:75,pool1:127,pool1_pad:133,pool2:127,pool3:127,pool4:127,pool:[32,127,129,132,133],pool_layer1:127,pool_layer2:127,pool_siz:[34,39,132],poolarea:[54,66],poolqc:[54,66],poor:[31,40,53,58,59,64,68,74,80,119,134,141,145,151,157,165],poorer:77,poorli:[33,59,85,141,156,157,165,185],pop:[7,14,35,92,104,123,128,145,146,172,179,194],popul:[4,13,14,61,74,110,113,116,124,137,147,150,151,166,168,170,178,180],popular:[1,43,45,50,59,103,104,106,113,118,129,138,140,141,142,143,144,145,146,151,152,153,155,162,167,172,173,186],porch:54,port:22,portabl:[112,128,193],portal:[9,50,101],portion:[33,50,92,93,119,132,139,141,170,171,172],portrait:36,pose:[36,39,49],posit:[3,28,35,40,50,51,52,54,56,57,66,68,75,78,80,92,102,116,119,123,129,130,132,135,141,148,151,156,167,171,172,173,181,186,188,193,194,195],position_embed:132,position_salari:188,positionalembed:128,positive_integ:[172,194],positive_vector:[172,194],positv:59,possess:[54,68,74,80,165,191],possibl:[1,11,34,40,43,45,47,48,50,52,54,59,61,68,74,78,80,92,102,108,114,116,119,121,123,127,128,129,132,134,137,139,140,141,142,147,150,151,155,156,158,165,166,171,172,174,191,194],post:[0,1,14,28,29,32,43,50,119,121,135,136,159,175],postdoc:173,posterior:150,posterior_vari:128,posterior_variance_t:128,postur:36,potenti:[23,28,40,47,54,57,77,101,102,104,106,109,112,114,116,119,122,123,127,129,130,140,141,143,155,162,168,174,176,185],pothol:[112,176],potrait:36,potrait_gener:36,potraits_gener:36,pouget:131,pound:[111,147,168],pow:[31,126,130],power:[1,7,33,43,49,52,53,57,58,59,60,61,76,77,98,99,102,104,108,119,121,123,127,129,130,141,143,151,155,156,165,166,171,172,173,174,179,193,194],power_of:[171,193],ppf:18,pprint:31,pq:57,practic:[4,7,16,30,40,45,47,48,50,53,58,59,61,102,106,112,114,116,117,119,124,129,131,132,133,134,136,137,140,141,143,147,151,154,156,157,159,165,167,170,171,172,173,176,186,193],practical_dl:82,practis:156,practition:[77,112,137,176],prafulla:128,prashant111:51,prashant:[59,155,187,192],pre:[3,9,41,47,99,101,121,133,140,141,142,143,154,157,166,170],preced:[47,75,119,132,171],precis:[29,40,46,47,52,54,57,60,66,68,75,77,80,82,92,103,119,136,141,142,157,163,164,167,171,188],precision_recall_curv:[163,164],precision_scor:[29,30,163,164],precison:[52,57],precomput:123,pred:[29,33,39,40,49,52,53,54,56,57,58,66,127,137,152,166,186],pred_class:39,pred_mask:133,predefin:[33,116,118,130,145,164,180],predf:55,predi:55,predicit:152,predict:[9,22,29,33,34,35,36,38,40,43,44,45,47,48,49,51,52,53,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,81,82,84,102,106,112,114,116,127,128,129,130,131,132,134,135,136,137,139,140,141,142,143,146,147,148,150,151,152,153,154,156,158,159,162,164,165,166,167,168,169,170,171,174,175,176,177,182,191,192],predict_class:47,predict_imag:33,predict_proba:[56,152,158,163,167,186],predict_row:55,predicted_column:[38,44],predicted_correctli:127,predicted_df:[38,44],predicted_label:41,predicted_nois:128,predicted_pric:42,predicted_valu:[38,77],prediction_text:159,predictions_arrai:41,predictions_on_train:[68,80],predictions_singl:41,predictor:[49,56,66,141,148,154,155,158,166],predominantli:[36,102,174],preds_test_cb:54,preds_test_lgbm:54,preds_test_xgb:54,prefer:[48,56,64,74,102,112,116,119,141,150,155,157,158,165,167,169,172,173,174,194],prefetch:[44,127,128,133],preffer:64,prefix:[22,56,171,172,194],preiousli:36,preliminari:146,preload:166,premis:[99,106,140,162,177],prep:[38,162],prepackag:170,prepar:[18,22,43,49,52,53,57,58,68,74,80,100,101,103,104,106,108,125,126,139,158,165,175,177,186],prepend:171,prepocess:36,preprint:[14,50,143],preprints202006:14,preprocess:[32,34,38,40,42,43,44,50,51,54,59,62,64,76,83,132,136,141,146,159,166,167,170,188,189,190],preprocessor:62,prerequisit:[0,127,138,171],presenc:[54,141],present:[1,3,4,5,7,9,13,14,19,21,26,27,35,46,49,51,52,54,57,69,71,85,89,90,92,93,102,104,108,110,116,117,119,121,122,123,132,134,135,138,139,142,143,162,163,165,171,173,174],preserv:[46,84,112,117,119,121,123,129,158,167,171],preset:16,press:[38,51,130,137,139,170,173,187],pressur:[24,101,113,114,170],presum:[36,145],pretend:[18,151,171],pretrain:[129,133,182],pretti:[7,31,54,57,58,60,64,66,145,146,148,154,158,163,164,165,167,168,188],prevent:[28,30,32,41,43,47,50,54,101,102,119,121,128,130,141,142,147,150,156,157,171,172,184,194],preview:[59,101,102],previou:[7,14,17,32,35,40,47,48,49,50,55,56,57,75,76,82,100,103,108,109,113,116,117,118,119,121,128,132,133,134,137,141,143,146,147,150,151,152,153,154,155,158,159,163,164,165,166,168,171,172,191,194],previouli:49,previous:[18,41,54,57,75,76,117,119,140,146,147,164,167,179],previous_numb:171,prgn:[68,80],price:[22,38,49,52,54,57,66,68,74,77,102,111,129,141,148,162,165,166,167,174,190,191],price_add_averag:22,price_rang:[68,80],priceperlb:[111,178],pricier:168,prim:171,primari:[6,7,46,56,68,75,80,100,101,113,114,117,122,123,124,155,180,181],primarili:[7,75,78,104,123,148,165,170,191],primary_metr:[9,100],prime:[92,171],prime_factor:92,prime_text:134,primit:[172,194],princ:55,princip:[126,165],principl:[31,45,47,48,50,56,99,102,114,124,130,147,155,156,157,171,176],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,63,64,65,66,68,74,75,76,77,78,80,82,83,84,92,100,110,116,117,119,126,127,128,130,132,133,134,136,137,146,147,148,150,152,154,155,158,159,162,163,164,166,167,168,170,171,172,173,178,179,182,186,188,189,190,192,193,194,195],print_four_numb:193,print_funct:[37,127],print_stat:29,printfeatureimport:56,printmd:39,prior:[59,101,108,111,127,136,155,175],priorit:141,prioriti:101,privaci:[106,112,143,176],privat:[56,99,106,140,175,177],privileg:171,prix:132,priya:42,prize:[112,176],pro:[7,38,47,56,101,112,159],prob:[38,152],proba:163,probabilist:[59,128,129],probability_model:41,probabl:[7,31,33,40,41,48,49,50,52,55,56,58,78,82,98,101,102,103,104,106,109,113,114,115,124,128,129,130,131,132,141,145,146,147,150,151,152,158,164,165,166,168,170,172,182],probalist:129,probe:[6,59],problem:[7,11,23,29,36,41,45,46,47,48,49,52,54,56,57,58,60,62,64,75,76,78,84,90,100,103,104,106,108,112,114,116,117,119,121,129,130,131,132,133,134,135,137,138,140,141,146,147,148,152,155,156,157,158,162,163,168,172,176,177,184,185],problemat:[18,26,141],proce:[36,54,68,76,80,82,155],procedur:[47,50,54,137,143,147,150,151,155,166],proceed:[50,139,143],process:[1,3,7,11,18,28,30,31,32,34,36,41,42,43,45,46,48,50,51,53,56,57,58,59,62,68,75,76,80,82,90,92,99,100,101,102,103,104,112,113,114,119,126,129,130,132,133,136,137,138,140,141,143,146,147,150,151,152,153,154,155,156,158,159,162,163,164,165,166,170,171,172,173,174,175,176,179,185,186,187,191,192],processed_data:31,processing_d:57,processor:[68,80,84],prod:[119,140],produc:[7,29,31,32,36,46,51,57,59,62,101,108,109,111,114,117,119,131,135,137,139,140,145,147,155,157,165,168,171,172,176,182],product:[11,13,49,76,92,99,101,102,104,111,112,113,114,116,119,123,128,132,137,138,139,140,141,142,159,165,167,174,175,176,178,187,191,192,193],production:[46,142,143],prodvalu:[111,178],profession:[99,140,145,155,165,173,176],professor:[151,165],profil:[59,112,177],profit:[35,118,139,151,180],profium:180,prognosi:165,program:[38,41,50,57,99,101,112,113,123,124,128,129,138,139,140,141,156,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,192],programm:[113,165,171,173,191,195],programmat:[7,101,117],progress:[14,36,40,45,47,111,127,139,141,164,165,170,171,182],progress_info:127,project:[5,7,9,16,22,30,31,36,38,58,59,66,75,92,93,99,102,104,106,110,112,117,119,126,127,128,130,131,132,133,134,135,136,138,139,140,141,142,143,156,162,165,170,171,173,174,175,177,184,186,187,191],project_fold:100,project_root_dir:158,promin:50,promis:[45,82,112,176],promot:165,promote_typ:119,prompt:[6,101,159,173],prone:[66,150],pronounc:[124,170],proof:[28,101,145],propag:[7,31,82,117,122,123,137,145,158,192],propens:154,proper:[18,49,52,53,57,58,68,80,104,119,127,131,145,165],properli:[5,46,64,82,91,117,139,141,147,153,165,167,168,191],properti:[9,14,31,33,36,47,48,50,55,83,100,112,116,118,119,121,141,148,150,151,156,166,171,172,176,180],proport:[50,59,62,77,108,116,150,151,157],propos:[59,103,104,128,131,132,134,135,143,147,150,156,158,177,184,192],proposals2:135,proprocess:40,prose:31,prospect:104,protagonist:108,protect:[14,99,102,112,139,165,174,176],protocol:[122,139],prototyp:[47,48,101,102],prove:[18,26,28,50,108,114,116,141,145,147,150],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,40,41,45,46,48,49,50,52,53,54,57,58,59,74,75,77,78,82,92,93,99,101,102,103,104,106,108,112,114,117,118,119,121,122,123,124,126,127,129,132,135,137,138,139,140,141,142,145,147,148,150,151,155,157,158,159,163,165,168,170,171,172,173,174,176,177,180,182,191,192,194],provinc:14,province_st:[14,142],provis:[100,140],provisioning_configur:[9,100],proxim:[74,145,150],prp:[53,58],prune:[50,132],pseudo:[18,151],pseudocod:151,pseudonym:116,psgk:59,psycholog:145,pt:58,pth:[31,33,37],public_dataset:[68,80],publicli:[101,142],publish:[50,53,58,59,92,93,101,116,139,140,171,172,175],publish_tim:1,pubu:[68,80],pull:[50,108,112,123],pullov:[30,40,41],puls:59,pulsar:59,pulsar_star:59,pumpkin:[72,89,91,162,166,167,169],pun:171,punctuat:[92,93,134],pungent:[110,178],purchas:[99,104,111,114,166],pure:[40,48,59,82,116,122,150,171],puriti:148,purpl:[30,108,110,178],purpos:[16,30,35,47,48,58,59,60,61,75,92,93,106,112,119,123,127,129,131,141,145,155,158,159,165,167,170,171,172,173,176,177,179,191,193,194,195],pursu:[102,141,159,165,191],pursuit:75,push:[0,47,92,104,108,130,140,171,179],pussin:[92,93],put:[38,40,43,50,55,62,78,101,104,112,124,129,136,147,151,157,165,170,171,172,173,191,193,194],pval:[18,116],pvt:56,pw:148,px:[30,33,44],px_height:[68,80],px_width:[68,80],pxi:123,py39:121,py3:193,py:[9,57,62,100,109,121,122,123,127,130,146,159,163,167,171,172,173,178,179,186,193,194,195],pycharm:38,pycharmproject:193,pycon:121,pydata:[119,121,123],pygment:116,pylab:22,pylint:[171,172,194],pyobjecthasht:123,pypi:[172,194],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,74,75,76,77,80,82,83,84,109,110,111,116,126,127,128,130,133,134,136,137,145,146,147,148,150,152,155,156,158,162,166,168,170,178,182,184,186,188,189,190,192],pyramid:[133,142],pytest:[0,3,14,22,24,53,74,92,93,138,171,172,194],python37:193,python38:[57,186],python3:[92,93,98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,146,157,158,159,160,161,162,163,164,167,179],python3_7_4:193,python:[0,1,3,7,18,22,23,33,35,38,43,46,49,51,56,57,58,59,60,61,76,82,98,99,100,101,102,103,107,108,109,110,111,112,113,114,115,116,117,121,122,123,125,127,128,132,134,136,137,138,140,144,145,157,158,159,160,161,162,163,164,168,174,175,176,177,178,180,181,182,183,184,185,186,187,188,189,190,191,192],python_3_2021:193,python_cast:172,python_datatyp:172,python_dictionari:172,python_funct:193,python_numb:172,python_oper:172,python_ref_str:172,python_set:172,python_str:172,python_try_except:171,python_tupl:172,python_vari:172,pythonista:172,pythonpath:171,pythontutor:[171,173],pythonwin:193,pytorch:[31,33,101,129,159],pytutor:0,pyvideo:121,pywaffl:[110,178],pyx:[121,123],q1:116,q3:116,q:[22,35,50,119,128,132,167,193],q_:[128,130],q_sampl:128,qbcdxtzitda:59,qgl:59,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:59,qizx:180,qmcrlph5c7vc:59,qmqvejnztng9kv28rwerdmjfiwjrgfn:59,qq:[3,14,22,24,53,92,93],qqpcmgr_docpro:38,qty:118,quad:[75,147,151],quadrat:[54,59,78,150,151,156,172],quadraticdiscrinationanalysi:163,qualit:[6,24,104,113,139,165,176],qualiti:[0,39,46,47,48,53,54,56,62,66,82,85,101,103,106,109,112,113,116,132,140,142,143,145,147,148,150,164,165,166,167,168,176,177,186],quan:57,quantifi:[59,75,77,78,106,177],quantil:[54,103,151],quantit:[6,50,54,104,113,139,165,176],quantiti:[4,106,110,114,118,130,137,165],quantiz:[132,141],quarter:132,quarterli:113,quartil:[7,18,54],quebec:14,queliti:31,queri:[2,12,16,25,46,99,113,114,117,123,124,128,139,159,177,180],query_emb:135,question:[0,16,17,23,28,32,47,49,50,51,57,58,59,71,75,102,103,104,106,108,111,112,114,116,121,129,131,138,141,142,143,151,152,156,159,162,165,166,170,176,177,179,191],queue:[104,127],qui:140,quick:[40,48,49,52,53,54,61,77,83,101,123,141,143,145,156,162,165,168,169],quickli:[7,14,40,45,47,48,58,68,74,80,101,109,111,117,119,128,139,140,151,155,166,167,179,182],quicksight:139,quickstart:140,quiet:[3,12,18,25,98,99,100,101,109,110,111,116,121,122,123,129,134,137,144,145,146,157,158,160,161,162,163,164,166],quirk:172,quit:[1,3,7,18,33,34,36,39,40,50,59,60,61,68,80,110,111,121,124,135,141,147,148,150,158,163,164,165,166,170,172,191],quora:143,quot:[121,171,172,173,194,195],quotient:[92,119],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:59,r2:[63,65,76],r2_score:[63,65,76,77],r2_socr:[63,65],r:[22,29,30,31,33,36,37,39,55,59,64,74,76,82,111,116,119,127,130,133,134,136,139,140,145,150,151,156,158,159,172,178,184,186,188],r_0:14,r_:[50,84,130,151,158],r_k:130,r_p:116,r_t:[8,151],rabbit:193,race:51,racial:102,radial:[60,61,156],radic:132,radio:[59,187],radiolog:127,raffael:114,rai:102,rainbow:111,rainfall_id:[124,180],rainforest:113,rais:[3,14,22,24,53,92,93,96,97,102,112,119,121,122,123,133,141,172,174,193,194],raise_for_statu:137,rake:3,ram:[39,53,68,80,101,150],ramif:164,ran:[10,20,29,173],rand:[18,35,49,50,76,150,179],rand_i:127,rand_index:127,rand_tensor:43,rand_x:127,randint:[31,37,50,127,147,179,182,192],randn:[31,37,76,82,122,123,187],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,43,44,45,47,50,55,56,57,58,59,60,61,62,64,66,68,76,80,82,103,119,122,123,126,127,128,130,131,132,133,134,136,141,146,147,149,151,154,155,157,158,162,164,165,179,182,186,187,192],random_bright:127,random_contrast:127,random_flip_left_right:[127,128],random_index:[40,128],random_norm:[126,127],random_normal_initi:135,random_se:33,random_split:33,random_st:[29,30,31,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,74,76,83,146,148,150,152,154,155,156,158,159,164,166,167,184,186,188,189,190],random_strength:54,random_transform:37,random_uniform:[131,136],randomappli:37,randomflip:133,randomforest:56,randomforestclassifi:[49,50,51,52,56,148,150,163,164],randomforestregressor:[53,148,150],randomhorizontalflip:37,randomizedsearchcv:[54,61],randomizedsearchcvrandomizedsearchcv:61,randomli:[30,34,50,54,55,62,66,77,127,128,132,133,147,148,150,157,158,186],randomnorm:[126,132],randomrot:37,randomst:[150,179],randomtreesembed:150,randrang:35,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,50,51,52,53,54,55,56,57,58,63,64,65,68,74,75,76,81,82,83,84,93,99,101,102,109,112,114,116,119,121,122,126,127,128,130,131,132,133,134,135,136,137,139,140,141,146,148,152,153,154,158,167,172,175,176,179,182,186,187,188,189,190,192,193,194],rangeindex:[38,59,60,74,117,145,155,162,179],rank:[43,112,119,122,141,145,148,151,163,176],rankboost:151,rapid:[102,173],rapidli:[119,139],rare:[54,59,106,131,141,145,150,151,179],raschka:[50,126,131,134,136],rate:[6,8,14,22,33,35,47,48,49,55,62,64,75,76,101,102,104,108,113,127,129,130,132,133,134,141,142,148,152,154,155,157,158,165,167,186,191,192],rater:47,rather:[7,31,36,46,54,68,75,78,80,99,111,114,117,119,123,124,140,145,150,156,158,165,166,170,171,172,179,187,191,194],ratio:[14,40,46,49,52,57,59,123,141,148,158],ration:[40,104],rational:148,ravel:[50,56,57,150,152,156,158,163,164,184,189,190],ravenclaw:187,ravendb:180,raw:[6,12,14,16,18,25,43,45,57,58,62,68,78,80,113,114,116,117,123,132,139,141,142,146,158,159,165,168,179,191],raw_data:29,razor:157,rb:[127,159],rbf:[60,61,158,184],rbf_score:59,rbf_svc:59,rbk:59,rbkzduqmatb85:59,rbr_1x1:132,rbr_dens:132,rbr_ident:132,rbr_reparam:132,rc:[22,36,62,137,158],rcl:[147,150],rcnn:135,rcparam:[14,59,66,150,178],rdbm:180,rdss:92,re:[3,7,15,31,34,38,40,41,45,47,48,52,57,62,64,66,68,80,82,102,104,106,117,118,119,121,122,123,124,127,132,133,134,135,136,141,142,151,152,157,159,162,165,166,170,171,172,174,180,187,191],re_fit:60,reach:[33,36,41,48,50,55,75,106,131,148,150,154,156,171,172],react:[166,195],reaction:138,read:[16,29,31,40,45,47,53,54,58,68,80,82,101,108,109,110,111,112,114,116,118,119,127,134,136,138,141,162,163,166,167,170,171,172,193],read_cifar_fil:127,read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,35,38,42,44,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,76,80,82,83,84,86,109,110,111,116,123,137,142,145,146,147,148,150,152,154,155,159,162,163,164,166,167,168,178,188,189,190,192],read_data_set:[127,131],readabl:[0,110,140,159,172,173,194,195],reader:[99,127],readi:[34,40,41,49,51,52,59,68,80,101,139,140,141,142,143,145,152,159,163,164,165,166,168,170],readm:[5,108],readthedoc:30,real:[0,7,11,28,29,33,34,35,36,37,38,39,40,42,45,46,50,53,57,58,59,60,78,92,112,114,117,118,119,121,130,131,132,135,137,139,140,142,143,147,151,157,158,165,166,171,172,173,176,179,180,182,183,188,191,194],real_imag:[36,37],real_label:37,real_part:171,real_sampl:37,real_stock_pric:42,realist:[39,131,182],realiti:[7,56,112,129,141,167,180],realiz:[106,130,136,151,167],realli:[40,49,54,56,60,61,66,68,80,100,104,111,155,157,163,165,167,171,172,191,194],realm:[50,77,180],realpython:171,rearrang:[75,108],reason:[7,11,14,40,46,49,50,60,62,66,68,74,80,82,99,114,116,117,119,127,140,141,147,148,152,154,155,165,170,172,175,191],reassign:172,reboot:102,rebuild:[29,40],rec:54,recal:[29,40,47,50,52,57,60,68,80,103,119,141,147,152,163,164,167,179],recalcul:148,recall_scor:[29,30],receiv:[6,41,59,82,100,103,104,113,123,130,142,151,167,171,177],recent:[14,43,82,104,119,121,122,123,137,143,146,151,163,179,193],recept:181,recgon:192,recip:[151,188],recipi:113,recogn:[40,43,62,68,80,102,119,129,132,135,139,165,171,174,191],recognit:[30,39,41,127,129,132,134,142,165,191],recommend:[15,45,49,101,102,104,111,112,114,118,119,121,123,127,141,148,150,151,158,170,171,173,176],recon_x:31,reconstr_img:126,reconstruct:[29,30,31,126,143],reconstructed_imag:126,record:[9,15,100,112,113,119,127,128,129,137,139,142,145,151,165,171,179,191,193],record_byt:127,record_length:127,record_str:127,recov:[14,142,151],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,38,99,139,142],recreat:[48,109,110,126],recruit:112,rect:[37,186],rectangl:[50,118,130],rectifi:[82,112,127,129,132],rectifier_:127,recur:47,recurr:[28,162],recurs:[50,92,93,136,171],recycl:38,red08:139,red:[14,38,41,42,45,48,49,50,52,56,62,76,77,101,104,108,109,110,116,132,148,150,156,157,158,166,172,173,178,184,188,189,190,194],red_win:62,reddit:108,redefin:[47,103,106,171],redhat:140,redi:180,redman:139,redo:[91,139],redshift:139,reduc:[7,30,32,36,40,45,47,49,50,52,54,56,57,58,61,64,75,92,101,106,119,127,129,132,133,140,141,145,147,150,151,154,155,157,158,159,165,167,172,186,191,192,193],reduce_max:29,reduce_mean:[126,127,131,132,134,136],reduce_min:29,reduce_sum:[127,134],reduct:[31,50,54,126,137,147,148,150,165,191],reduction_model:30,redund:[126,155,171],ref:[30,140,164],refer:[3,17,22,23,24,33,34,43,46,49,50,52,54,56,57,58,60,74,75,77,99,100,103,104,106,108,112,116,118,119,122,123,124,126,127,128,129,130,132,136,139,141,142,143,145,146,147,157,159,164,165,166,171,172,191],referenc:[50,171,172],reference_answ:82,referenti:114,refin:143,refit:[52,53,57,58],reflect:[7,28,39,40,78,91,112,139,145,159],reformat:41,refram:38,refresh:[101,140,142,168],refus:[45,112,176],reg:[54,66],reg_alpha:[54,154,155],reg_lambda:[54,154],reg_model:74,reg_tre:50,reg_tree_pr:50,regard:[7,33,50,111,117,119,130,150,151,155,167,172],regardless:[46,116,119,140,143,145,171,172],regener:[48,136],regex:[166,168],regim:157,region:[14,74,101,112,135,142,146,155,161,171],regist:[9,100,101,193],register_model:[9,100],registr:[1,119],registri:[101,140],regplot:[54,137],regress:[40,43,45,47,49,52,54,55,56,57,59,60,66,75,91,100,106,116,129,141,146,147,148,150,152,153,155,158,159,161,162,164,177,183,185,191,192],regressor:[42,49,50,141,150,152,188],regressorchain:137,regul:[106,143,164],regular:[1,8,36,41,52,53,57,59,61,64,68,76,80,126,127,137,141,150,151,155,156,158,164,184,192],regularioz:[63,65],regularis:[156,184],regularization_weight:127,regularli:[142,143],rei:48,reilli:[112,143],reimport:[29,171],reindex:[121,137],reindex_index:121,reinforc:[31,112,130,143,151],reinforcement_learning_course_materi:130,reinvent:143,reiter:[104,139],reject:116,rekognit:143,rel:[1,36,39,41,49,51,52,53,58,75,76,92,109,114,116,122,123,124,128,132,141,145,151,159,172,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],rel_tol:92,relat:[1,3,16,18,28,47,56,95,101,104,111,112,113,116,123,125,128,136,141,142,150,157,165,167,171,173,178,183,191,192],relationship:[1,33,40,49,51,52,56,64,66,68,76,77,80,83,86,88,103,106,108,109,114,116,118,129,137,142,145,156,157,162,165,166,167,168,169,170,171,177,188,191],relax:[119,130,156],releas:[112,119,140,173,176,186,195],release_d:[145,146],relev:[3,16,28,99,102,112,114,116,119,129,130,141,151,165,167,174,191],relevent_experi:56,reli:[57,62,68,80,106,113,114,117,118,165,167,172,194],reliabl:[77,99,102,112,140,150,165,175,176],relief_pitch:116,reload:[46,47,117],reloop:55,relplot:[111,178],relu1:127,relu1_1:127,relu1_2:127,relu2:127,relu2_1:127,relu2_2:127,relu3_1:127,relu3_2:127,relu3_3:127,relu3_4:127,relu4_1:127,relu4_2:127,relu4_3:127,relu4_4:127,relu5_1:127,relu5_2:127,relu5_3:127,relu5_4:127,relu:[29,30,31,32,33,34,35,36,37,39,40,41,43,44,47,48,62,82,127,129,132,133,135,182,192],relu_conv1:127,relu_conv2:127,relu_grad:82,remain:[7,50,54,59,62,68,78,80,92,93,112,117,119,123,128,132,139,147,155,171],remaind:[92,118,119,171,172,173,188,194],remark:[49,57,60,61,68,80,143,147,173,195],remdesivir:1,rememb:[7,35,48,52,57,68,80,104,114,119,131,134,137,141,147,151,152,157,167,170,172,181,188],remind:166,remix:102,remot:[0,140],remote_run:[9,100],remov:[1,3,14,29,31,36,37,49,50,51,52,55,59,62,64,68,80,82,92,106,109,111,112,134,141,145,146,157,162,165,167,171,173,177,186,194],remove_dupl:[93,172],ren:[132,135],renam:[1,18,59,121,123,171],render:[16,54,57,58,60,61,66,154,155,158,159,166,170,172,187,194],render_deepdream:127,render_templ:159,rent:99,rep:104,repack:[166,167],repai:165,reparameter:31,repay:[165,191],repeat:[36,38,44,50,55,75,84,93,114,119,123,133,139,146,147,150,151,155,158,166,172,186,194],repeat_delai:128,repeatedli:[92,154,193],repetit:[49,52,53,58,141],replac:[7,14,22,30,31,32,35,41,46,49,51,54,55,56,66,77,82,101,117,119,131,132,134,137,141,147,158,166,171,172,194],replai:35,replec:49,replic:119,replica:29,repo:[0,5,133],report:[14,33,39,40,52,56,57,60,104,112,142,159,163,164,167,168,171,176],repositori:[0,1,14,58,75,119,136,138,140,165],repres:[1,7,18,30,31,35,36,39,40,41,43,46,47,48,50,51,52,54,56,57,59,64,74,75,76,77,92,100,102,103,104,110,112,113,114,116,117,118,119,128,129,132,137,141,145,146,147,148,151,152,158,172,173,179,180,186,194],represent:[7,22,29,30,36,41,50,57,58,60,61,64,66,68,74,80,92,103,106,109,117,118,119,126,130,132,136,138,154,155,156,157,158,165,166,170,179,180,193],representative_digit_idx:158,representative_images_diagram:158,reproduc:[39,45,48,141,147,148,155,179],reproduct:14,repvgg:132,repvgg_convert:132,repvggblock:132,request:[3,16,29,30,31,33,36,37,39,41,61,66,68,74,80,82,100,102,112,114,123,127,134,136,137,143,158,159,165,172,191,194],requir:[0,1,15,22,24,31,33,41,43,45,47,48,56,59,61,74,76,78,86,93,99,101,102,104,106,112,113,117,118,119,133,135,137,139,140,141,142,143,145,150,151,154,158,159,165,170,171,172,175,176,177,194],requires_grad:33,requisit:9,rerun:[40,43,57,58,60,61,66,154,155,158,166,168,170,187],res_block:128,resblock:128,rescal:[40,62,74,165],research:[1,16,28,99,104,109,110,111,112,123,129,139,141,142,143,151,162,164,165,170,175,176],researchg:50,resembl:[74,75,144],reserv:[50,82],reset:[35,45,47,48,121,130,134,157],reset_default_graph:[127,134,136],reset_index:[1,14,38,39,47,48,54,64],reshap:[29,30,31,32,34,35,36,38,42,43,44,47,50,76,82,84,121,126,127,128,131,132,134,135,150,156,158,163,166,179,182,184,186,188,189,190,192],reshaped_dim:127,reshaped_imag:[84,127],reshaped_output:127,reshuffle_each_iter:128,resid:[74,159],residu:[48,55,66,127,128,132,151,153,155],residual_block:132,residual_sum_squar:77,resili:78,resist:48,resiz:[31,37,39,127,128,132,133,134,192],resize_bilinear:127,resize_image_with_crop_or_pad:127,resize_with_pad:128,resizemethod:133,resnet101:133,resnet152:133,resnet50:133,resnet:[128,133],resolut:[31,39,41,68,80,122,128,135,158,171],resolv:[15,46,50,103,117,123,133,141,171],reson:[43,74],resourc:[28,40,43,75,99,100,102,106,112,114,119,121,124,139,140,141,143,145,165,171,172,175],resource_group:9,respect:[1,14,30,33,35,47,49,50,52,54,66,74,82,112,119,123,124,126,128,132,134,148,155,158,165,170,172,191],respond:[137,170],respons:[3,9,17,36,37,50,75,76,100,101,102,112,127,134,137,139,148,150,166,170,176,177,188],rest:[50,57,100,101,117,118,119,140,151,157,158,163,166,167,171,172,180,194],rest_of_the_numb:171,restart:159,restat:104,restor:[30,128,151],restore_best_weight:40,restrict:[7,48,92,93,113,117,150,171,172],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,36,37,38,44,45,46,47,49,50,51,52,53,54,57,58,60,66,68,74,75,76,80,84,91,92,93,100,101,102,103,106,112,114,116,117,119,121,122,123,124,126,127,129,130,132,133,139,140,141,142,143,145,146,147,148,150,151,154,156,157,158,159,162,163,164,165,166,167,171,172,173,176,177,182,184,186,187,191,192,193,194],result_typ:119,resultdf:163,resulting_height:127,resulting_width:127,results_df:84,resum:113,ret:135,retail:[137,139,155],retain:[31,132,165,186],rethinkdb:180,retina:[50,66,137,147,150,186],retrain:[40,45,47,52,53,85,112,127,141,165],retri:167,retriev:[3,25,53,68,80,93,103,106,108,112,118,126,140,141,167,171,175,177,193],retrospect:151,retun:[63,65],return_count:192,return_sequ:[42,44,134],return_st:134,return_valu:[24,53],return_x_i:[158,170],reus:[117,127,129,132,133,150,171,193],reusabl:[140,173],reuse_vari:127,reveal:[26,138],revel:[26,180],reveng:108,revenu:[25,104],revers:[35,108,112,116,133,194],reversed_list:172,reveurmichael:126,review:[45,99,101,102,104,108,112,128,139,140,145,151,164,165],revis:112,revisit:[102,104,109,133,143,167,174],revolutionari:[68,80,159],revolv:43,reward:[35,112,165,191],rewritten:[82,134,151],rex:119,rezend:31,rf:[12,25,40,150],rf_predict:150,rfc:[51,148,150],rfc_100:51,rfi:59,rfst:164,rgb:[33,36,39,119,132],rh:55,rho:[150,151],rho_t:151,rhs_cnt:55,rhs_std:55,rhs_sum2:55,rhs_sum:55,rhythm:29,ri:[33,148],ri_j:148,riak:180,rice:162,rich:[43,114],richard:143,richer:158,rid:[1,14,127,129,145,166,172],ridg:[66,68,76,78,80,157,166],ridge_sklearn:[63,65],ridge_sol:66,ridgecv:66,ridgeregress:[63,65],right:[1,22,27,30,31,36,38,41,45,47,50,51,54,55,56,57,58,62,64,66,68,74,77,80,82,84,92,93,104,110,111,112,114,118,119,121,122,123,127,129,130,132,140,141,143,145,146,147,148,150,151,152,154,156,157,159,165,167,170,171,172,173,176,178,184,187,191],right_column:187,right_df:121,right_i:148,right_idx:55,right_index:[38,121],right_on:121,right_output:130,right_shifted_imag:84,rightarrow:147,rightmost:[119,148],rigid:132,rigor:48,ring:[110,178],ringo:173,riot:38,rise:[1,104,109,111,116,138,157,167,183],risk:[100,101,102,112,119,140,143,156,184],riski:151,riskiest:140,ritonavir:1,river:[140,180],rk:33,rkei:121,rkswahlyepd0yioe0t4oe3i3:59,rl:66,rlabel:121,rm:[12,25,40,193],rmse:[38,53,54,58,61,66,74,137],rmse_cb:54,rmse_cross_v:74,rmse_cv:66,rmse_lgbm:54,rmse_xgb:54,rmsle:66,rmsprop:192,rmspropoptim:136,rnd_indx:37,rnd_search:61,rng:179,rnn1:136,rnn2:136,rnn3:136,rnn4:136,rnn:[131,134,136],rnn_builder:44,rnn_cell:136,rnn_model:42,rnn_size:[134,136],rnplwnsp1zaqp:59,ro:[33,75,186],road:[68,80,114,129,165],roadwai:[112,176],roam:193,robert:150,roberto:133,robin:[92,171],roblem:146,robot:[112,135,165,191],robust:[7,36,39,49,54,60,62,78,133,143,150,151,155,156],robustscal:[51,54],roc3qtujlwlgnjug8xyjhmyab7mslm:59,roc:141,roc_auc:[56,59],roc_auc_scor:[56,59,152,167,186],roc_curv:[59,167],rocket:[39,180],roi:[104,135],roi_align:135,roialign:135,role:[14,18,56,74,75,76,78,95,106,114,116,119,129,139,143,151,156,168,181,184],roll:[14,116,127,134,140,171],rollback:[139,140],rollout:140,rom:131,ronald:7,room:[39,49,74,114,121,142,148,165],root:[50,53,58,61,63,65,76,92,108,110,112,128,131,145,148,159,168,172,192],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:59,ropsasrsaeuchxukvv2ymdhz:59,ross:[109,135,178],rossii:[109,178],rossum:[173,193,195],rotat:[1,3,18,22,34,39,41,51,54,84,130,135,145,146,158,178],rotate_in_all_direct:84,rotated_imag:84,rotation_rang:[32,34],roug:141,roughli:[14,45,47,50,116,131,158],round:[39,40,46,48,59,64,83,84,92,127,140,145,154,155,172,186,194],rout:[7,102,117,139,159,174],routin:119,row:[2,6,7,14,29,38,39,40,41,43,45,46,47,48,49,51,52,54,55,56,57,58,59,64,66,68,76,80,101,103,110,111,113,117,118,119,121,123,124,136,137,142,146,152,162,163,166,167,168,172,178,179,180,188,194],row_index:123,row_vector:119,rowsum:119,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:59,rpn:135,rpn_head:135,rrgtp8yqcvnf:59,rror:147,rsuffix:121,rt:[14,152],rt_with_na_fil:14,rtol:14,rtx:29,ruhi:139,rule:[40,43,50,74,75,82,92,103,113,114,123,129,139,141,143,145,150,151,158,163,165,172,179,191,194],run:[0,5,7,14,32,33,38,39,40,43,45,47,48,49,51,52,53,56,57,66,68,75,76,80,82,83,84,91,96,97,99,100,101,108,114,116,117,118,119,121,126,127,130,131,133,134,135,136,139,140,141,150,151,154,155,157,158,159,163,165,166,171,173,179,186,187,191,193,195],run_functions_eagerli:134,run_optim:126,rundetail:[9,100],runner:140,running_loss:31,running_mean:132,running_var:132,runtim:[0,40,140,143,154,159],rush:[113,143,145],russian:31,rutherford:173,rutwik:143,rvert:[157,185],rx:[33,186],ryan:62,ryanholbrook:137,s1:[24,55,119,121,122,170,172,194],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:59,s2:[55,121,123,173],s3:[119,139],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,36,37,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,69,76,77,78,80,82,83,84,86,91,92,93,96,97,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,150,152,154,155,157,158,159,161,162,163,164,165,166,169,170,171,173,174,180,185,186,187,188,191,192,194],s_0:50,s_1:[50,116],s_2:50,s_i:[50,116],s_j:116,s_n:116,s_o:50,s_text:134,s_text_ix:134,s_text_word:134,sa:123,saa:[99,139,159,175],sack:168,sacrific:50,sad:104,saddl:140,sadli:48,safari:101,safe:[60,127,140,165,186],safefi:57,safeti:[57,58,102,112,127,165,174,176],sag:[159,163],saga:163,sagemak:[139,140,142],sahara:141,sai:[7,31,33,36,48,49,50,52,57,58,59,66,68,74,80,99,112,116,117,119,129,137,141,144,147,151,157,165,167,171,172,182,186,194],said:[7,40,43,49,50,58,64,104,132,165,191],sake:[54,133,148,150],salari:[18,50,188,189,190],salary_data:188,sale:[77,137,165,166,167,168,172,191],salecondit:66,salepric:[66,154],saletyp:[54,66],same:[0,1,7,9,18,29,30,31,32,33,34,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,57,58,59,61,62,63,65,68,74,75,76,80,83,88,93,100,104,106,110,111,113,116,117,118,119,121,123,124,126,127,128,131,132,133,134,135,136,137,139,140,141,145,147,148,150,151,152,155,157,158,162,164,165,166,167,171,172,173,177,179,187,193,194,195],sameep:139,samll:[63,65],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,40,41,47,48,49,50,53,56,57,59,60,62,63,64,65,66,68,72,77,80,82,83,93,100,101,111,112,116,117,118,127,130,134,135,140,142,143,146,147,148,150,151,155,156,157,159,162,164,165,166,167,170,173,177,184,191,192,195],sample_imag:[33,133],sample_kernel:33,sample_mask:133,sample_s:18,sample_time_series_covid19_deaths_u:142,sample_weight:150,sampledb:118,sampler:33,samuel:[92,93,165,191],sandal:[30,40,41],sanit:[102,174],saniti:[48,134,141],sankei:1,santino:145,sape:[172,194],sar:1,satellit:133,satisfi:[48,54,119,141,142,151,172,194],saturn:195,saurabh:143,save:[1,29,30,31,33,36,40,41,45,47,48,51,56,66,76,82,101,119,127,128,133,134,136,141,147,150,151,156,158,162,163,171,182,187],save_best_onli:[39,40,44],save_everi:134,save_fig:158,save_format:[29,30],save_imag:37,save_images_from_dict:127,savefig:[130,158],saw:[10,13,20,40,47,49,50,52,57,68,80,100,108,137,147,151,157,158,165,167,168,172,191,194],say_goodby:171,say_hello:[171,193],sc1:158,sc2:158,sc:[42,64,158,189,190],sc_h:[68,80],sc_w:[68,80],scalabl:[50,99,101,102,112,139,140,150,156,175,176,184],scalar:[43,130,133,151,186],scalar_tensor:43,scale:[0,7,15,38,40,41,45,47,49,53,56,57,58,60,61,62,64,76,99,101,102,108,112,117,119,127,132,133,135,140,141,143,146,150,157,165,170,175,180,182,186,191],scale_feat:[68,80],scale_pip:[53,58,60],scaler:[38,40,44,51,53,54,58,59,60,61,64,68,74,76,80],scaler_i:44,scali:[110,178],scam:165,scan:[102,129,145],scari:169,scatter3d:[156,184],scatter:[18,24,45,50,60,66,76,77,83,108,109,110,111,116,123,145,146,150,156,158,166,168,170,178,184,186,188,189,190],scatter_3d:30,scatter_kw:137,scatterplot:[19,24,49,52,60,61,68,74,80,109,145,146,166,167,168,170],scaveng:71,sceipt:140,scenario:[26,39,49,52,53,75,99,104,112,114,140,143,165,191],scene:163,schedul:[49,52,139,142],schema:[101,114,139],schema_max:48,schema_min:48,scheme:[50,111,163],scholar:139,school:[11,50,56,102,193],schroff:133,sci:[62,170],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,46,48,54,56,57,58,60,61,101,103,104,108,109,110,111,113,115,116,117,118,119,121,123,124,137,138,139,151,159,170,173,179,183],scientif:[1,50,59,114,119,138,143,162,172,176,194],scientificnam:[109,178],scientist:[3,6,7,21,56,77,99,100,101,102,103,106,107,108,111,112,113,114,115,116,139,140,141,151,162,165,168,169,170,174,175,177,178],scikit:[7,40,46,47,49,51,57,58,61,62,66,69,71,76,98,99,100,101,109,110,111,117,129,134,137,140,143,144,145,146,147,150,154,155,157,158,159,160,161,162,164,167,169],scipi:[18,66,74,84,116,121,127,156,184,186],scoop:171,scope:[60,61,127,129,163,165,172,188,191,194],score:[9,35,40,41,45,47,48,50,51,52,54,55,56,57,60,63,64,65,66,68,74,80,83,84,100,101,102,114,133,135,141,144,148,150,152,154,158,163,164,166,167,188],score_cb:54,score_lgbm:54,score_xgb:54,scoreboard:167,scoring_file_v_1_0_0:[9,100],scout:102,scrape:[102,113,174],scrapi:[102,174],scratch:[43,99,100,127,141,190],screen:[68,80,108],screenporch:54,screenshot:[16,104,135],script:[3,100,101,127,138,171,173,187,193,195],script_file_nam:[9,100],scroll:[108,121,122,123,146,158,162,166],scrollytel:108,scrutin:112,scullei:143,scylladb:180,sd:59,sdjfhhes1figky8fmsto5n:59,sdk:[98,101,121,140,175],sdpzzf8euy6hn86ydqexmfsez:59,se4ml:143,se:18,sea:74,seaborn:[22,30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,72,74,80,83,108,109,111,137,145,146,147,148,150,156,167,178,184,186],seali:116,seam:124,seamless:101,search:[1,46,50,52,53,56,57,59,60,61,62,66,84,100,101,102,104,109,112,113,114,117,119,121,122,141,142,143,145,150,151,155,171,172,174,194],searchitoper:140,searchsort:119,season:[17,23,49,52,102,113,137],sebastian:[50,126,131,134,136],second:[0,7,18,31,32,39,40,41,43,48,49,50,57,101,109,112,116,118,119,123,127,131,132,137,141,147,148,151,152,155,158,159,164,165,166,171,172,173,187,192,194,195],second_baseman:[18,116],second_char_set:172,second_numb:[172,194],second_term:127,second_term_numer:127,second_tuple_numb:172,second_word:[171,193],secondari:[6,113],secondli:151,secret:[26,92,143],section:[2,3,7,13,15,16,17,19,21,28,29,36,45,47,48,54,59,64,69,76,85,89,90,91,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,125,127,128,130,139,140,141,142,143,145,146,147,152,153,154,155,156,157,159,161,162,163,164,165,166,167,168,169,170,172,173,177,179,180,187,194,195],sector:[50,56],secur:[99,102,112,159,174,175,176],sedol:165,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,36,40,41,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,64,66,68,74,75,80,82,83,92,98,99,100,101,104,109,110,111,112,114,116,117,119,122,123,124,127,129,130,134,135,136,137,139,141,145,146,147,150,151,152,155,156,158,159,162,163,165,166,167,168,170,171,172,173,180,186,188,191,193,194],seed:[33,36,38,39,43,44,50,64,76,82,122,133,146,147,150,151,152,155,158,179,186],seed_numb:43,seek:[74,104,156,165,166,170,184,191],seem:[7,17,22,30,32,33,40,48,49,50,52,62,66,68,80,109,111,112,116,117,124,137,141,145,151,157,166,168,176],seen:[1,7,28,30,40,41,46,49,52,54,58,59,109,111,112,116,117,119,124,126,129,131,132,141,147,150,151,156,159,165,166,171,172,191],segment:[43,78,102,110,129,135,145,151,162,165],segmentation_mask:133,segmented_img:158,segreg:59,seir:142,select:[3,12,14,15,16,22,24,25,29,31,47,48,50,59,62,64,66,78,101,103,108,109,110,112,118,119,120,124,125,127,132,136,142,143,146,147,148,150,151,155,156,158,159,167,168,170,171,180,183,186,187],select_dtyp:[54,110,154,178],selected_featur:[159,167],selector:187,self:[3,14,18,22,24,29,30,31,33,35,36,37,40,43,47,53,55,63,65,81,82,92,93,94,122,123,128,132,133,134,135,138,152,156,165,184,188,189,193],self_dense_2:43,self_dense_3:43,sell:[35,92,93,112,166,171,172],selu:[44,129],sem:18,semant:[114,122,123,133,171],semi:[6,113,114,145,158,165,176],semicolon:[172,194],send:[100,104,139,177],sender:[104,165,177],senet:132,sens:[1,3,7,18,32,46,49,50,53,66,68,74,80,92,101,113,114,116,117,119,123,129,147,152,165,166,168,171,180,188],sensibl:141,sensit:[38,50,59,77,124,132,139,141,143,153,172,181,186,194],sensor:[113,114],sent:[100,113,129,139,142,159,165],sentenc:[88,93,129,134,172,173,195],sentiment:[102,114,129,174],sentinel:179,seok:30,sep:[9,18,24,31,47,102,116,171,172,193],sepal:[60,83,117,123,148,186],sepal_ratio:123,sepallength:[83,123,148],sepallengthcm:64,sepalratio:123,sepalwidth:[83,123,148],sepalwidthcm:64,separ:[1,7,29,50,61,75,83,106,114,116,118,119,123,124,127,132,135,137,141,142,146,151,156,166,168,171,172,186,194],septemb:[106,162,168],sequel:124,sequenc:[14,18,38,41,43,49,74,78,102,116,119,129,132,134,136,137,148,171,172,173,193,194],sequenti:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,54,56,62,82,129,130,132,136,152,153,155,172,182,186,192],sequential_2:29,sequential_3:29,sequential_window_dataset:44,ser1:179,ser2:179,ser:[123,179],sercostams:83,sergei:[31,158],seri:[7,8,14,18,22,24,31,34,38,46,49,50,51,52,56,57,58,60,66,74,76,108,117,118,121,122,129,132,133,136,142,146,151,163,169,171,173,180],serial:[137,140,159,193],series_to_supervis:38,seriou:59,serum:101,serum_creatinin:[9,100,101],serum_sodium:[9,100,101],serv:[43,75,77,100,106,108,119,123,141,142,143,171],server:[99,106,114,124,140,159,170,173,180],serverless:139,servic:[1,9,50,99,100,101,102,104,106,112,119,121,129,139,140,141,142,147,148,159,165,174,175,176,191],sess1:127,sess2:127,sess:[127,130,134,136],session:[83,127,131,136,142,192,193],session_st:187,set1:[51,83],set2:56,set:[0,3,7,14,17,22,29,31,33,34,35,36,38,39,40,43,44,45,46,47,48,50,56,58,60,61,62,63,64,65,66,68,69,75,76,78,80,82,84,85,92,93,99,100,101,102,104,106,109,111,112,113,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,140,141,142,145,146,147,148,150,151,154,156,157,158,159,162,163,164,165,166,167,168,169,170,171,174,178,179,184,186,187,191,194],set_aspect:137,set_axis_off:37,set_color:41,set_grad_en:31,set_index:[1,14,38,121,137],set_major_formatt:158,set_major_loc:158,set_printopt:188,set_prop_cycl:137,set_properti:137,set_se:[43,44],set_styl:[54,83],set_them:145,set_ticklabel:[83,186],set_titl:[1,22,37,39,51,55,59,64,75,83,137,156,184],set_vis:[29,30,127],set_xlabel:[22,47,55,59,75,83,137,150,156,184],set_xlim:[156,184],set_xtick:[1,33,158],set_xticklabel:[1,51],set_ylabel:[22,47,55,59,64,75,83,137,150,156,184],set_ylim:[14,32,150,156,184],set_ytick:[1,33],set_yticklabel:1,set_zlabel:[75,83,156,184],setfil:130,setosa:[60,64,83,123,148,186],settl:[112,176],settlement:[112,176],setup:[0,45,47,56,127,130,140,166,170],sever:[7,8,14,21,35,41,45,51,54,56,63,65,72,76,77,99,101,109,110,111,114,117,119,121,124,132,134,135,140,141,145,147,152,155,159,162,163,164,166,167,168,170,171,172,173,186,192,193,194],sew:151,sex:[9,22,51,100,101,152,170],sex_distribut:24,sex_val:22,sgd:[33,40,45,49,62,68,80,141,192],sgd_classifi:49,sgd_clf:[68,80],sgd_score:[68,80],sgdclassifi:[49,68,80],shade:[39,47,102,108,112,174,176],shadi:108,shadow:[39,51],shah:143,shakespear:134,shakespeare_fil:134,shakespeare_model:134,shakespeare_url:134,shall:[92,93,171,172],shallow:[119,133,141,165,172,191,194],shanghai:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,109,116,123,137,138,145,146,158,162,163,164,166,193],shanmukha:139,shannon:50,shaoq:[132,135],shape:[29,30,31,32,33,34,36,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,63,64,65,66,76,81,82,84,110,116,117,119,126,127,128,131,132,133,134,135,136,140,146,150,156,158,159,162,166,167,168,170,178,179,181,182,184,186,188,189,190,192],shape_i:[63,65],shape_img:39,shape_y_0:[63,65],share:[28,33,50,51,57,59,102,103,104,106,111,112,113,114,117,119,121,135,138,140,142,147,148,151,163,165,167,171,174,179,191],sharei:[50,55],sharma:139,sharmila:143,sharp:[141,147],shashank:139,shazia:139,she:[18,141,165,191],sheet:[141,143,163,164],shelham:133,shell:[171,195],shen:135,sherjil:131,shg:143,shift:[8,14,38,44,51,54,62,68,80,84,93,127,136,137,140,142,145,156],shift_in_all_direct:84,shift_in_one_direct:84,shifted_imag:84,shine:[151,159],ship:[49,62,127],shipment:139,shirlei:108,shirt:[30,40,41],shop:[39,145],shortcom:132,shortcut:[132,133,171,173],shorten:59,shorter:[21,26,101,123],shorthand:[119,171],shortli:[145,170],shortsight:130,shortstop:116,shot:36,should:[7,18,29,32,33,36,39,41,45,46,47,48,50,51,58,59,63,64,65,82,83,92,93,100,101,103,104,106,108,112,114,116,117,119,122,123,124,127,129,130,132,133,134,136,139,140,141,142,143,145,146,150,154,155,157,158,159,162,163,164,165,166,167,169,170,171,172,173,176,177,182,187,188,192,193,194],shouldn:[56,104],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,38,39,40,41,42,44,45,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,66,68,75,76,77,80,82,84,100,102,103,104,109,110,111,116,117,118,119,121,123,126,127,128,129,130,133,134,135,136,137,140,141,142,145,146,148,150,151,152,154,155,156,158,162,163,165,166,167,168,170,173,178,180,182,186,188,189,190,191,192],show_centroid:158,show_generated_img:37,show_imag:33,show_images_batch:33,show_img:36,show_nam:193,show_new_sampl:34,show_output:[9,100],show_point:30,show_predict:133,show_xlabel:158,show_ylabel:158,showarrai:127,showcas:[28,66,102,174],showclassificationresult:47,showdown:110,showexampl:47,showmean:18,shown:[0,7,14,16,30,32,49,50,52,59,69,101,116,119,132,142,143,150,156,158,165,167,171,191],showregressionresult:48,shp:135,shrimp:163,shrink:[38,158],shrinkag:152,shrivastava:143,shuffl:[29,30,33,37,38,39,40,43,48,56,64,82,108,127,128,131,133,134,136,137,141,150,164],shuffle_batch:127,shuffle_tensor:43,shuffled_ix:136,shufflenet:132,shuga:145,shut:62,sibl:22,sibsp:[22,152],sicp:93,sid:108,side:[7,8,14,54,55,59,68,74,80,111,122,130,143,151,156,163,171,172,173,194],siev:92,sieve_of_eratosthen:92,sigh:141,sight:[159,163],sigkdd:139,sigma:[116,128,134,136,147,148,150,155],sigma_ix_i:116,sigma_p:128,sigma_q:128,sigma_t:128,sigmoid:[29,30,31,36,37,40,43,60,61,81,126,129,130,134,135,142,152,167,182,192],sigmoid_cross_entropy_with_logit:131,sigmoid_svc100:59,sigmoid_svc:59,sign:[50,53,56,63,65,101,104,118,119,150,151,165,172],signal:[48,59,66,68,80,104,141,146,148,157,165,170,177,182],signatur:[102,123,172,174,194],signifi:[7,75,77],signific:[18,40,48,54,75,101,104,114,116,147,148,150,156,172,181],significantli:[47,50,75,139,141,145,150,151,158,166,172,186],signup:56,silenc:186,silent:[46,54,154,172],silhouett:158,silhouette_analysis_plot:158,silhouette_coeffici:158,silhouette_sampl:158,silhouette_scor:[146,158],silhouette_score_vs_k_plot:158,silu:128,silver:151,sim:[68,80,151],sim_count:[68,80],simcard:[68,80],similar:[3,6,7,14,29,31,39,43,47,50,52,59,63,65,68,76,80,104,106,112,114,116,117,118,119,123,126,127,133,135,136,137,140,141,142,143,145,146,147,151,156,159,162,164,165,166,171,172,173,177,179,191,194,195],similarli:[18,49,50,57,59,64,75,119,123,139,141,154,172],simonyan:132,simpl:[1,3,15,30,33,34,40,41,43,47,48,49,50,54,55,59,64,68,74,75,76,77,80,83,84,103,111,114,119,123,126,127,129,132,133,135,137,140,150,151,155,156,158,165,170,171,172,173,178,181,182,186,191,194],simplefilt:137,simpleimput:[54,61,74,154],simpler:[31,45,47,48,119,140,141,158,165,179],simplernn:44,simplest:[3,18,32,43,47,48,50,82,114,119,140,141,151,157,158,165,171,186,192],simpli:[0,7,30,33,43,46,47,48,49,50,51,75,78,82,100,104,108,117,121,123,129,133,141,147,151,154,156,157,158,165,166,171,172,179,187,191,194],simplic:[100,132,137,148,150,151],simplifi:[1,29,30,48,55,75,102,114,119,128,139,140,141,145,151,174],simpson:38,simul:[0,119,142,143,171],simultan:[36,116,132,135,140],sin:[18,119,128,151,193],sinc:[18,22,30,32,33,35,36,40,41,45,47,48,49,50,52,53,54,56,58,59,60,61,62,64,66,68,74,80,82,101,112,114,116,119,121,122,123,127,129,132,133,134,135,137,140,141,147,148,151,154,155,156,157,158,159,163,164,166,167,170,171,172,176,186,192,193,194],sine:119,singh:143,singl:[7,32,34,41,43,47,49,50,54,56,59,68,80,92,99,111,113,117,121,122,123,127,132,135,136,137,141,142,150,153,154,155,158,165,171,172,173,191,194,195],single_quote_str:[172,194],singleton_tupl:172,sink:99,sinn:125,sinusoid:128,siobhan:139,sir:[14,142],sirkap:102,sit:[57,58,106,165,177],site:[16,57,99,108,112,114,121,122,123,137,143,145,146,163,167,170,179,186,193],situat:[28,54,59,104,114,116,130,139,141,143,148,151,166,171,172],situp:88,six:[39,127],sixth:[172,194],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,62,68,74,75,76,80,82,83,84,92,100,101,110,111,116,117,119,123,126,127,129,131,132,133,134,135,136,141,143,146,147,150,151,155,156,157,158,159,165,166,167,172,178,179,182,185,186,191,192,194],sjoerd:[172,194],ska20:141,skalski:141,skalskip:[83,84],skeeter:156,skeptic:151,sketch:173,sketchnot:170,skew:[7,22,54,57,59,66,68,80,109,146,162],skewed_feat:66,skf:150,skill:[38,47,101,102,108,109,114,124,174,178,195],skim:[100,168],skimag:127,skin:[102,174],skip:[0,3,31,38,41,43,47,48,109,133,171,172,178],skip_head:186,skiprow:31,skiti:[63,65],sklearn:[7,29,30,31,32,34,38,39,40,42,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,75,76,80,83,84,117,137,146,147,150,152,154,155,156,157,158,159,163,164,166,167,170,188,189,190],sklz5kcmqsshyyfixsjcin0srf5:59,sl:148,slate:118,slaughter:147,sleep:187,slept:188,slice:[51,59,82,127,171,172,179,194],slice_index:122,slice_loc:122,slice_obj:122,slicer:122,slide:[14,33,104,116,138,142,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],slideshow:183,slight:[56,150],slightli:[18,30,32,41,49,50,56,64,66,104,127,128,150,151,157,166,171],slope:[75,166],slow:[14,40,49,62,74,119,135,140,179],slower:[7,75,101,127],slowest:158,slowli:[45,48],slytherin:187,sm:[136,167],small:[0,15,29,32,33,41,48,49,50,57,58,60,61,63,64,65,66,68,74,76,78,80,82,101,116,118,119,121,127,128,132,133,134,135,139,141,143,147,150,151,154,156,157,158,159,165,166,167,170,171,173,176,182,186],smaller:[7,18,30,33,36,48,62,75,82,92,109,117,119,126,132,141,147,150,154,167,179],smallest:[92,141],smart:[119,141,154],smartphon:[68,80,114,129],smartwatch:[6,113],smelyanskii:141,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:93,smo:[156,184],smoke:[9,100,101],smoker:162,smooth:[14,50,78,109,110,127,142,150,178],smoother:109,smoothli:[59,109,167],smote:162,smsspamcollect:136,smv:[60,61],sn:[30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,74,80,83,109,111,137,145,146,147,148,150,156,167,178,184,186],sna:186,snake:50,snapshot:[39,101,110],sne:[158,165,186],sneaker:[30,40,41],snippet:[7,50,76,142,172],snow:[19,109,178],snr:59,so:[1,4,7,15,17,18,29,30,31,32,33,34,36,39,40,41,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,80,82,92,93,97,101,102,104,108,109,110,111,112,116,117,119,121,122,124,126,127,128,129,131,132,133,134,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,179,186,191,194],social:[5,102,104,108,112,114,174,176],social_network_ad:[189,190],societi:[112,143],socio:[102,112,176],socr:18,socr_mlb:[18,116],soda:[118,180],sodium:101,soft:[59,158],softmax:[32,34,39,40,41,47,82,127,129,130,132,134,136,192],softmax_crossentropy_with_logit:82,softwar:[0,22,23,45,47,48,92,93,98,99,106,116,118,139,140,141,142,143,159,170,171,172,173,175,180,195],sold:[25,54,168],sole:[54,75,141,150,171],solid:[19,48,159],solidifi:151,soluion:[63,65],solut:[11,28,50,66,69,75,92,99,101,102,104,108,112,139,140,141,142,143,150,151,156,158,159,165,168,172,175,176,180,184,188],solv:[50,52,54,57,100,103,104,106,116,119,121,129,130,132,135,140,141,143,151,155,156,158,162,163,165,172,177,191],solvabl:[142,151],solver:[130,158,159,163],somber:104,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,36,39,40,41,43,45,46,47,49,50,52,54,55,56,57,58,59,60,62,64,66,68,72,74,76,77,80,82,83,85,92,99,101,102,103,104,105,106,108,109,110,111,112,113,114,116,117,118,119,121,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,144,145,147,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,173,175,176,177,179,180,182,184,188,191,194],some_digit:84,some_digit_imag:84,somehow:[7,116,119,168],someon:[7,49,98,99,104,106,139,141,151,165,166,171,177],someth:[7,43,54,62,68,80,82,104,109,113,114,118,119,123,124,129,143,152,157,165,166,171,172,180,181,182,191,194],sometim:[7,30,46,49,59,62,75,110,113,114,116,117,119,122,123,124,126,130,132,137,139,141,142,143,151,154,165,166,167,171,172,179,191,194],somewhat:[7,47,110,158,166,167,187],somewher:[116,151,165,166,167],sonali:104,song:[144,145,146],soo:68,soon:[29,40,151],sophist:[49,108,109,140,147,150,165,178,191],sore:129,sort:[22,39,45,50,54,62,92,114,121,122,127,132,145,150,158,162,165,168,171,172,178,187,191,193,194],sort_i:55,sort_idx:55,sort_index:122,sort_valu:[1,31,50,51,54,56,66,162,163],sort_x:55,sosa:166,sosb:166,soshnikov:[14,99,166],sound:[7,18,31,45,116,117,129,147,154,165,191],sound_packag:171,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,39,40,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,107,108,109,110,111,112,114,116,117,118,119,121,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,158,159,162,163,164,165,166,167,168,170,171,172,173,179,181,186,187,188,189,191,192,193,195],source_indic:1,sours:136,south:[49,52],space:[1,6,29,31,36,39,50,82,92,93,102,108,110,116,119,121,126,130,132,135,141,142,148,150,151,155,156,159,164,167,168,171,172,173,174,178,186,193,194,195],spacing_h:135,spacing_w:135,spam:[136,162,165,171,172,191,194],span:[111,172,194],spanish:50,spark:[139,140],sparki:145,spars:[74,126,150,151,155],sparse_categorical_crossentropi:[40,47,134],sparse_softmax_cross_entropy_with_logit:[127,136],sparsecategoricalcrossentropi:[40,41,133],sparsiti:[78,155],spatial:[102,129,132,133,135,186],speak:[104,108,111,139,141,159,171],speaker:141,speci:[60,64,83,109,110],special:[7,29,31,54,62,78,101,114,117,119,129,145,155,156,165,167,170,171,172,179,193],specialti:168,specif:[3,7,14,22,28,31,39,40,43,45,46,47,48,49,50,52,62,68,75,77,78,80,99,102,103,112,113,117,119,121,123,124,132,133,136,139,140,141,143,145,147,150,151,152,156,164,165,166,171,172,173,181,186,193,194],specifi:[1,7,14,22,31,33,34,40,43,46,48,75,76,84,99,117,119,121,123,127,132,142,150,154,155,163,165,171,172,191,194],spectral:145,spectralclust:158,spectralclusteringspectralclust:158,spectrum:116,specular:39,speech:[41,78,99,129,165],speechi:[144,145,146],speed:[14,40,54,62,68,80,82,101,106,112,119,121,132,135,141,142,143,154,155,165],spend:[23,49,68,80,99,104,140,151,154,165],spent:[104,141,151],spepal:46,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:59,spike:[1,107,108,111,178],spinach:168,spine:111,spline:151,split:[31,33,35,38,40,49,52,55,56,60,61,62,64,76,82,83,119,121,124,130,131,132,133,134,135,136,137,139,141,147,148,150,151,152,156,158,165,166,167,170,171,172,173,179,180,184,186,193,194],split_col:55,split_data:152,split_nam:55,splitidx:48,splitted_str:172,splitted_sub_str:172,splitter:[57,58],sponsor:[106,140,177],spore:[110,178],sport:102,sports_hobbi:93,spot:[7,46,117,119,157,165,191],spotifi:145,spous:22,spread:[14,114,116,124,128,130,145,151,168],spreadsheet:[6,23,25,27,71,113,121,123,124,159,165,168,191],spring:[142,171],springer:141,spruce:168,spuriou:[59,62,108],sql:[12,25,99,114,118,121,123,124,139,180],sqlite:[12,25],sqrt:[38,52,53,54,55,56,58,61,66,74,77,93,116,128,131,132,135,148,150,166,186],sqrt_alphas_cumprod:128,sqrt_alphas_cumprod_t:128,sqrt_iter:93,sqrt_one_minus_alphas_cumprod:128,sqrt_one_minus_alphas_cumprod_t:128,sqrt_recip_alpha:128,sqrt_recip_alphas_t:128,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:59,squar:[38,40,45,48,50,53,58,61,63,65,66,68,75,76,78,80,92,110,119,126,127,128,130,137,141,145,146,147,150,151,155,156,157,158,166,167,172,187,188,192,193,194],square_root:92,square_tupl:[172,194],squared_error:[58,77],squarederror:54,squeez:[29,30,31,36,37,127,135,156],sr:135,src:[108,116,121,122,123,135,146,158,162,166],ss20:[126,131,134,136],ssh:101,sssg17:143,stabal:62,stabil:[82,111,141,146],stabl:[1,66,119,123,141,158,186],stack:[1,22,31,33,40,54,108,119,121,129,132,135,139,151,178],stack_clf:49,stackingclassifi:49,stackoverflow:18,staff:148,staff_id:[171,193],stage0:132,stage1:132,stage2:132,stage3:132,stage4:132,stage:[17,23,55,56,59,103,104,106,132,133,135,140,155,157,165,177],stai:[48,74,141,159,187],staircas:127,stakehold:[104,106,177],stalk:[110,178],stamp:[49,52],stand:[49,59,62,68,80,104,111,152,155,168],standard:[7,18,29,31,46,47,48,59,62,64,74,89,103,106,112,117,119,123,124,129,137,139,140,142,148,151,154,156,165,166,168,171,193],standard_d2_v2:[9,100],standardscal:[44,53,58,59,61,62,64,74,76,189,190],stanford:[37,102,132,151,165,166,167],stapl:78,star:[59,162,172],starri:127,starry_night:127,start:[0,1,3,8,11,13,18,29,33,34,37,41,43,45,46,47,48,54,56,59,61,68,75,76,80,82,84,92,93,99,100,101,102,103,104,108,109,111,112,114,116,117,118,119,122,123,127,128,130,131,134,136,137,138,142,146,148,150,151,152,154,155,156,157,158,159,162,164,165,166,167,168,171,172,173,175,179,181,182,186,187,189,190,191,194],start_idx:82,start_queue_runn:127,start_slic:122,start_tim:39,starter:[31,108,167],starti:130,starting_pitch:116,startswith:[3,158],startup:[43,56],startx:130,stat453:[126,131,134,136],stat:[18,40,49,53,54,58,64,66,116,141,142,147,156,184],stat_interv:147,state:[9,13,14,15,31,35,49,50,52,59,100,102,108,111,113,119,123,124,127,129,132,134,136,139,140,141,142,147,152,159,162,164,165,168,171,178,180,187],state_c:134,state_dict:37,state_h:134,state_s:35,statement:[31,33,96,97,112,113,116,118,124,130,170,173,180],stationeri:38,statist:[7,39,47,50,52,54,59,61,77,106,111,112,114,115,119,128,136,138,141,142,143,145,147,150,151,156,162,165,166,177,179,182],statsmodel:[54,64],statu:[22,57,100,101,109,130,131,140,142,178],std:[18,24,29,31,38,47,48,58,59,61,64,74,82,116,119,132,145,150,155,158,179],std_agg:55,stdarr:48,stddev:[127,128,131,135,136],stderr:47,stdout:193,steam:38,steep:[142,167],steer:41,stellar:59,stem:[7,56],step:[0,7,9,16,28,31,33,35,36,37,38,39,40,41,43,44,47,48,49,50,52,54,59,60,61,62,64,75,76,77,82,92,99,100,101,102,103,104,106,109,112,114,117,118,119,122,124,126,127,128,129,130,132,134,136,139,140,141,142,143,146,147,148,155,158,159,162,165,166,168,171,172,176,179,186,189,190,191],steps_mean:130,steps_per_epoch:[32,133],steps_taken:130,stepwis:166,stereotyp:112,stick:[48,104],sticki:110,stiff:171,stikeleath:104,still:[7,18,36,48,49,52,53,57,75,116,117,119,121,122,123,129,133,134,136,137,139,140,141,143,151,158,165,171,172,187,194],stochast:[82,128,130,151,163,165,192],stock:[111,130,165,178],stockast:[49,68,80],stop:[33,39,40,50,55,75,100,119,122,123,128,150,154,155,171,179,189,190],stop_gradi:135,stop_train:40,storag:[11,33,99,101,106,114,124,127,166,167,175,176,177,180],store:[6,7,11,12,29,30,31,33,39,41,46,50,53,64,66,68,76,80,92,93,96,99,104,113,114,117,119,121,124,125,126,127,128,129,131,134,137,139,140,141,142,143,148,154,156,171,172,173,175,180,187,194,195],stori:[4,13,19,50,107,108,143,172,177,178,194],storymap:102,storytel:[19,26,177],stott:7,str1:[48,172],str2:172,str:[1,9,14,33,35,37,47,48,54,56,59,66,68,80,83,100,121,122,127,128,133,135,148,154,166,168,171,172,173,179,193,194,195],straight:[43,45,50,104,154,156,166,170,184,188,192],straightforward:[31,75,114,119,141,154,159,167,170,171],straightfoward:137,strang:[18,108,168],strateg:[130,165],strategi:[7,29,41,47,49,52,61,68,74,80,104,112,130,133,141,142,162,165,191],strategist:104,stratifi:[150,186],stratifiedkfold:[64,150],stratifiedkfoldcv:64,stream:[47,50,99,129,130,135,139,140,143,165,191,193],stream_executor:29,streamlin:[132,138],streamlit:142,street:[60,61,66,112,176],strenghten:55,strength:[1,54,137,141,156,184],strengthen:[99,151],stretch:[1,8,119],strftime:38,strict:[106,122,141],strictli:171,stride:[29,30,31,32,33,34,36,37,126,127,128,132,133,135],string:[7,14,22,39,54,56,59,83,117,119,121,122,123,134,168],string_input_produc:127,string_vari:[172,194],string_with_whitespac:[172,194],stringio:137,strip:[3,14,59,134,171,172,194],stripe:167,stripplot:167,strive:[36,78],strong:[18,43,49,52,54,64,66,109,111,116,131,132,134,145,147,151,153,155,165],stronger:35,strongest:[54,112],strongli:[116,151,158,165,191],struct:119,structur:[6,7,12,22,30,31,38,40,41,50,57,58,90,92,112,113,114,118,120,124,125,126,127,129,130,131,132,133,135,139,152,155,156,159,163,165,166,168,171,173,176,178,180,181,184,186,191,193],struggl:[141,147],strutur:154,stubbornli:45,stuck:[62,141],student:[16,18,64,114,116,118,142,157,166,170,180],student_admiss:193,studi:[14,16,33,39,50,129,151,156,161,163,165,174,176,179,188,191],studio:[7,9,100,102,166,168,169,170,174],study_15:57,study_1:57,study_20:57,study_41:57,study_7:57,stuff:[82,171],stump:151,stun:57,style:[0,3,32,36,38,51,62,91,119,121,122,123,132,137,138,142,145,146,150,158,159,162,166,174,175,176,177,178,179,180,181,182,184,185,186,188,189,190,191,192,193,194,195],style_expect:127,style_featur:127,style_gram_matrix:127,style_imag:127,style_image_fil:127,style_image_weight:127,style_lay:127,style_loss:127,style_minus_mean:127,style_norm:127,style_shap:127,style_weight:127,stylesheet:[122,123,159,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],sub:[1,89,119,127,134,136,141,166,167],sub_str:172,subarrai:179,subclass:[3,29,134,171],subdimension:119,subgroup:[50,102,112],subitem:171,subject:[1,7,31,36,45,50,92,93,102,104,112,113,119,171,172,174,176,182],sublicens:[92,93,171,172],sublist:93,subm:54,submiss:54,submit:[9,15,66,72,88,100,104,141,159],submodul:171,subnet:139,suboptim:158,subpackag:171,subplot:[1,29,30,31,33,34,36,37,38,39,40,41,50,51,54,55,59,64,82,109,111,127,128,133,137,145,146,150,152,156,158,178,184,186,192],subplot_kw:39,subplots_adjust:[31,34,156,158,184],subregion:127,subsampl:32,subscrib:[112,140,176],subscript:[99,101,112,165,176],subscription_id:9,subsect:[7,46,117],subsequ:[31,32,49,54,75,119,130,150,154,155,164,172,187,194],subset:[7,18,33,41,46,49,50,68,74,80,83,86,89,112,116,117,119,122,123,126,129,140,141,150,151,154,155],subspac:[49,119,150,186],substanti:[92,93,147,148,171,172],substitut:[7,11,121,171,193],substr:[1,172,194],subsubitem:171,subtl:[7,117,154],subtract:[76,77,92,119,127,133,172,173,179,194,195],subtre:50,subtyp:172,subwai:102,succe:165,succeed:155,success:[102,104,112,119,132,141,142,143,151,165,171,172,188],successfulli:[36,37,50,56,130,141,142,151],succinct:104,sudden:64,suddenli:64,sue:179,suffer:[56,57,58,129,137],suffici:[30,32,116,147,151,155,156,172],suffix:[121,159,170,171],sugar:[48,119,171],suggest:[11,14,18,33,59,77,116,148,150,151,165,166],suit:[43,47,59,60,61,122,146,165,167,178],suitabl:[3,54,60,119,129,139,143,151,163,165,171,192],sulfur:48,sulphat:48,sum:[1,7,14,18,22,25,31,33,38,47,48,49,50,51,52,53,54,55,56,57,58,59,61,63,65,66,68,74,77,80,81,82,116,118,119,121,127,128,130,131,136,137,145,146,147,148,150,151,153,155,156,158,162,166,168,171,179,184,188,189,192,193],sum_:[50,75,77,78,128,130,131,136,147,148,150,151,155,157,185,188],sum_i:[126,147],sum_inertia_:158,sum_of_list:92,sum_of_valu:92,sum_t:151,summar:[51,59,74,103,104,116,132,134,148,165],summari:[7,29,30,36,46,47,49,52,53,58,75,76,101,104,117,119,128,129,171,176,179,182],summaris:[59,76],summat:[75,132],summer16:193,summer:[17,102,106],sun:[57,132,135,143],sundai:[49,52],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:39,sup:48,supercalifragilisticexpialidoci:[172,194],supercharg:108,superclass:132,superimpos:[45,111],superman:92,supermarket:39,superpow:58,supervis:[29,36,38,50,52,53,57,58,59,60,61,68,80,132,133,138,141,143,144,145,150,151,155,156,158,162,163,164,170,186],supervisor:130,suppli:[7,49,52,88,102,111,119,139,171],support:[0,1,7,18,29,43,47,48,49,50,52,54,57,58,68,78,80,82,101,102,103,104,106,108,110,112,113,116,119,122,123,133,138,139,140,141,145,147,150,151,155,158,159,163,165,167,170,171,172,179,187,194],support_vectors_:[156,184],suppos:[18,49,50,114,116,119,133,147,148,156,168,172],suppress:[121,122,146],supris:40,suptitl:18,sure:[0,4,9,11,46,49,50,52,82,104,108,110,112,113,116,117,119,127,137,140,141,143,146,152,158,162,163,165,166,170,171,172,176],surfac:[50,54,75,76,110,178],surmis:146,surpass:29,surpris:[7,117,119,145,165,168,171],surprisingli:[53,167],surround:[114,133,165,166,172],survei:[6,7,114,139,148,176],surveil:[114,135,143],surviv:[22,142,151,165,191],survivor:22,suscept:142,suspect:[59,188],suspicion:139,sustain:[16,101,140],sustract:152,sv_classifi:49,svc:[49,56,59,60,156,163,184],svcsvc:60,svm:[49,56,78,126,163,164,165],svr:61,svr_rnd:61,svrsvr:61,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:59,sw:148,swap:[93,119,123,172],swarmplot:167,sweden:195,sweet:157,swiss:187,switzerland:137,sx:127,sy:[3,12,18,25,29,38,47,82,98,99,100,101,109,110,111,116,121,122,123,127,129,134,137,144,145,146,157,158,160,161,162,163,164,166,171,193],syllabl:172,symbol:[44,56,171,173],symmetr:[135,139,151,172],synaps:99,sync:116,synchron:143,synonym:[59,78,132,179],synset:132,syntact:[119,171,193],syntax:[119,123,124,159,171,179],syntaxerror:[171,173],synthes:84,synthesi:[84,139],synthet:[50,141,142,143,162],syphili:[112,176],system:[14,38,39,41,48,50,74,99,101,102,104,106,112,113,118,119,129,130,136,138,139,140,141,142,143,151,159,170,173,174,176,180,182,195],systemat:[112,139,143,165],sz:127,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,36,38,39,40,41,43,45,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,65,66,68,74,75,76,80,81,82,93,99,100,101,102,103,104,106,108,109,112,113,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,134,135,136,137,139,141,142,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,176,178,179,184,186,188,189,190,191,193,194],t_1:[116,150],t_2:116,t_:130,t_dim:128,t_fix:130,t_grad:127,t_index:128,t_input:127,t_k:130,t_loss:31,t_maze:130,t_n:150,t_obj:127,t_preprocess:127,t_score:127,t_valu:116,ta:54,tab:[22,31,100,101,118,123,171],tabl:[11,12,14,46,71,108,110,114,116,118,119,123,139,141,142,145,148,163,166,167,171,172,187,194],table_data:[172,194],table_str:[172,194],tableau:[104,110],tabular:[40,51,59,101,119,129,154,165,172,180,191],tac:171,tack:119,tackl:[50,54,60,61,102,121,138,141,155,158,168],tag:[3,9,57,100,113,122,171],tag_nam:171,tags_decor:171,tags_to_skip:3,taha:44,tail:[38,46,49,52,54,66,68,74,80,117],tailor:78,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:59,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,36,39,41,43,45,47,48,49,50,52,53,54,56,57,58,59,61,64,66,68,74,75,76,77,80,82,83,88,92,99,100,101,102,103,104,106,108,110,111,112,113,114,116,117,119,121,122,123,124,126,127,128,129,130,132,133,134,138,139,140,141,143,145,146,147,150,151,154,155,157,158,159,162,163,164,165,166,167,168,170,171,172,173,176,182,186,191,193,195],takeabl:[122,123],takeawai:[7,24,46,104,117],taken:[1,24,28,34,35,46,56,106,114,116,117,119,130,137,155,168,177,188],talent:102,talk:[16,18,50,62,68,80,102,104,108,112,114,116,138,152,155,165,167,174,176,188],talk_tim:[68,80],tall:[111,130,132],taller:[18,116],tan:[110,119,178],tandem:193,tang:141,tangent:119,tangerin:[172,194],tangibl:99,tanh:[36,37,45,131,134,182,192],tape:[0,36,130,134],tar:[33,127,132],tarantool:180,tarfil:[33,127],target:[1,9,29,30,35,37,40,49,50,52,53,55,56,57,58,60,62,63,64,65,66,68,74,75,76,78,80,82,88,92,100,101,126,127,134,135,137,139,140,141,146,147,148,150,151,152,156,158,165,170,171,186,188,191,192],target_class:59,target_f:35,target_fil:127,target_indic:1,target_nam:40,target_s:127,target_shap:127,tarih:35,task:[7,8,9,16,29,36,41,43,46,47,51,57,58,59,60,68,76,77,78,80,95,99,100,101,103,106,107,108,109,112,114,117,118,119,121,129,132,133,135,138,139,140,141,143,144,151,152,153,155,156,158,159,161,162,163,164,165,167,168,169,170,173,175,178,188,191,193],task_typ:54,tast:[144,145],tasti:[110,178],taught:[54,145],tax:36,taxi:[17,106],taxicab:[102,174],taxonom:7,tbd:[126,127,128,130,131,132,133,134,135,136,137,145,146,147,148,150,151,152,154,155,165],tc:170,tcl:152,tdd:138,tdsp:106,teach:[40,108,195],team:[17,18,23,102,104,106,112,116,138,140,143],teammat:[95,104],tecent_fil:38,tech:[43,165,191],technic:[38,43,50,112,124,139,140,143,151,152,154,165,176,180,191],techniqu:[1,4,7,15,17,32,34,41,46,49,50,54,56,57,58,59,60,69,71,74,75,76,77,78,84,85,102,103,106,107,111,112,114,116,117,119,120,125,129,141,145,146,147,150,154,155,157,162,163,164,165,166,167,168,170,172,177,188],technolog:[56,99,102,113,139,143,151,159,165],tediou:[106,118,156,166],telecom_churn:[50,147,150],telecom_data:147,telemetri:29,televis:104,tell:[4,7,13,19,36,50,54,55,56,60,68,80,102,104,107,108,112,116,129,137,150,157,165,178,182,191,193],temb:128,temp:[38,62,76,121,123,127,172,186,193],temp_accuraci:127,temp_original_loss:127,temp_output_:127,temp_test_acc:[127,136,150],temp_test_loss:136,temp_train_acc:[127,136,150],temp_train_loss:[127,136],temp_train_pr:127,temperatur:[113,114,169],templat:[38,118,142,159],tempo:[145,146],tempor:78,temporari:[119,127],temporarili:[33,75],temporary_attribut:171,tempt:[48,116],temptat:48,ten:[47,56,74,127,132,162],tencent:38,tend:[40,49,52,53,56,57,58,59,62,108,109,119,121,129,146,147,165,180],tendenc:[107,178],tens_reshap:43,tension:133,tensor2tensor:128,tensor:[33,127,132,133,134,179,192],tensor_0:43,tensor_1:43,tensor_1d:43,tensor_2:43,tensor_2d:43,tensor_3d:43,tensor_nam:43,tensor_shuffl:43,tensorflow:[30,36,38,39,41,42,44,45,47,48,49,57,58,62,78,101,126,128,129,130,131,132,133,134,135,136,138,140,141,142,143,159,162,170,182,192],tensorflow_addon:[128,132],tensorflow_cookbook:[127,134,136],tensorflow_dataset:[132,133],tensorflow_exampl:133,tensorflow_inception_graph:127,tensorpack:135,term:[1,3,31,47,49,50,52,57,59,75,76,77,100,102,111,114,118,119,124,127,128,129,130,132,136,139,143,145,146,151,156,157,158,164,165,166,167,171,174,180,184,188,191],termin:[0,40,100,101,108,130,159,168,171,173],terminolog:[1,59,112,118,124,145,164],terribl:47,territori:14,test:[0,14,15,22,29,31,32,35,38,39,40,41,50,55,58,60,61,64,66,68,76,80,84,93,99,101,102,109,112,114,119,126,127,131,132,133,134,136,137,140,141,145,146,147,150,151,152,157,158,159,163,164,165,166,167,170,171,173,182,185,186,191,192],test_absolute_valu:92,test_acc:[41,127,150],test_accuraci:[127,136],test_addit:92,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[127,133],test_calculate_happy_cas:93,test_calculate_with_invalid_c_input:93,test_calculate_with_none_input:93,test_calculate_with_str_input:93,test_capitalize_words_default:93,test_capitalize_words_exclude_word:93,test_censor_word:93,test_censor_words_no_censor:93,test_censor_words_partial_match:93,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:92,test_cont:3,test_count_occurr:93,test_count_occurrences_empty_list:93,test_count_occurrences_str:93,test_count_word_occurr:93,test_count_word_occurrences_empty_text:93,test_count_word_occurrences_same_word_rep:93,test_data:[29,49,52,53,57,61,74,126],test_data_path:[68,80],test_data_schema:48,test_dataset:33,test_df:[14,22,24,53,82,84],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:53,test_df_hist_with_empty_df:53,test_df_hist_with_none_df:53,test_df_pairplot_happy_cas:53,test_df_pairplot_with_empty_df:53,test_df_pairplot_with_none_df:53,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:[127,136],test_divis:92,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:48,test_empty_list:92,test_equ:92,test_existing_el:92,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:93,test_fibonacci_sequence_single_term:93,test_fibonacci_sequence_zero_term:93,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:93,test_flatten_nested_lists_empty_list:93,test_flatten_nested_lists_no_nested_list:93,test_float_numb:92,test_fold:127,test_format_person_info:93,test_format_person_info_empty_list:93,test_format_person_info_single_person:93,test_funct:171,test_function_scop:171,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:171,test_group_by_categori:93,test_group_by_category_empty_input:93,test_group_by_category_no_categori:93,test_group_by_category_single_categori:93,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[38,154],test_imag:[41,127,131,133],test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:150,test_init:3,test_input_data:[61,74],test_input_dim:48,test_insertion_sort:93,test_insertion_sort_empty_list:93,test_insertion_sort_single_element_list:93,test_insertion_sort_sorted_list:93,test_is_empti:92,test_label:[29,41,61,74,127],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:92,test_load:33,test_loss:[29,41,136],test_lstm_model:134,test_merge_dicts_with_list:93,test_merge_nested_dict:93,test_merge_three_dict:93,test_merge_two_dict:93,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model_output:127,test_ms:[61,74],test_multipl:92,test_nam:[66,127],test_negative_numb:92,test_nois:131,test_non_existing_el:92,test_nul:48,test_one_as_input:92,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_output:127,test_permut:93,test_permutations_empty_list:93,test_permutations_single_el:93,test_pop:92,test_positive_numb:92,test_pr:[60,61,74,127],test_pred_poli:60,test_predict:127,test_preprocess:[61,74],test_push:92,test_rang:48,test_remove_dupl:93,test_remove_duplicates_empty_dict:93,test_remove_duplicates_empty_list:93,test_remove_duplicates_no_dupl:93,test_remove_duplicates_str:93,test_respons:66,test_result:33,test_rms:[61,74,137],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:92,test_sampl:[9,100],test_save_path:66,test_scal:[53,60],test_scor:[56,64],test_single_element_list:92,test_siz:[29,31,32,34,40,49,50,51,52,53,54,56,57,58,59,60,61,74,76,83,137,150,152,154,155,159,163,164,166,167,170,186,188,189,190],test_sqrt:93,test_sqrt_non_perfect_squar:93,test_sqrt_perfect_squar:93,test_square_funct:92,test_str:93,test_string_input:92,test_string_numb:92,test_string_upper_empty_str:93,test_string_upper_happy_cas:93,test_string_upper_none_str:93,test_subtract:92,test_target:127,test_url:[3,66],test_vari:171,test_wrong_target_typ:92,test_x:[38,63,65,154],test_xdata:127,test_zero:92,testabl:138,testappenddiffcolumn:14,testbinarysearch:92,testcalcul:93,testcalculatesum:92,testcapitalizefirstletterp:93,testcapitalizeword:93,testcas:[3,14,22,24,47,53,93],testcensorword:93,testcleanfar:22,testcolumnfilt:14,testcomplex:92,testcountdigit:92,testcountoccurr:93,testcountwordoccurr:93,testdfboxplot:24,testdfhist:53,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:92,testfibonacci:93,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:92,testflattennestedlist:93,testformatpersoninfo:93,testgcd:92,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:93,testgroupbysum:14,testimoni:104,testinsertionsort:93,testlabelencod:22,testload:47,testmapfunct:92,testmean:47,testmergedict:93,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:93,testremovedupl:93,testrtwithnafil:14,testset:[42,54],testsieveoferatosthen:92,testsqrt:93,testsquareroot:92,teststack:92,teststd:47,teutschmann:169,texa:[112,159,179],text3d:[83,186],text:[1,12,15,23,38,40,41,43,48,57,58,59,66,68,74,78,80,93,99,102,104,108,113,114,118,119,129,134,136,137,139,141,145,146,148,150,151,158,159,162,165,166,170,171,172,173,174,175,176,177,179,180,181,182,184,185,186,187,188,189,190,191,192,193,194,195],text_data:136,text_data_target:136,text_data_train:136,text_process:136,text_represent:[98,99,100,101,107,108,109,110,111,112,113,114,115,116,134,137,144,145,157,158,160,161,162,163,164],text_str:136,textbar:140,textbf:148,textbook:[50,151,165],textbox:85,textcolor:157,textcoord:158,textrm:75,texts_to_sequ:136,texttestrunn:47,textual:[1,8,108,110,171],tf0btgg9:59,tf:[29,30,36,38,39,40,41,42,44,45,47,48,78,126,127,128,130,131,132,133,134,135,136,141,157,162,182],tf_data:131,tfa:[128,132],tfboard_callback:40,tfd:[132,133],tfdetect:135,tffunc:127,tfv1:135,tgz:33,th:[50,77,116,119,128,147,150],thai:[162,163,164],thai_df:162,thai_ingredient_df:162,than:[1,2,7,8,14,18,29,30,31,32,33,35,39,40,41,43,45,46,47,49,50,52,54,56,57,59,60,61,62,64,68,71,78,80,82,92,99,101,104,109,111,112,114,116,117,118,119,121,123,124,127,128,129,132,134,137,140,141,143,145,146,147,148,150,151,154,155,156,157,158,163,164,165,166,167,168,170,171,172,173,176,179,180,184,186,187,188,191,193,194,195],thang:132,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,141,145,146,147,148,150,151,152,154,155,159,162,163,164,165,166,167,168,170,171,172,173,186,187,188,189,192],thecodeship:171,thedatasciencevenndiagram:115,thee:172,theguardian:108,thei:[1,6,7,12,15,18,23,25,31,40,41,43,46,47,48,49,50,52,56,57,58,59,62,66,68,74,75,80,82,90,99,100,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,137,139,140,141,143,145,147,148,150,151,155,156,157,158,159,165,166,167,168,170,171,172,173,174,176,177,179,181,186,191,193,194,195],them:[0,1,3,7,15,21,26,31,33,34,36,39,40,41,43,45,46,49,50,52,54,56,57,58,59,60,61,64,68,74,75,78,80,82,83,85,90,93,99,100,101,103,104,106,108,110,111,112,114,116,117,119,122,124,125,126,127,128,129,132,133,134,135,137,138,139,140,141,142,143,147,150,151,152,154,155,156,157,158,162,165,166,167,168,170,171,172,173,175,176,180,186,191,192,193,194],theme:[30,38,104],themselv:[7,62,104,106,119,129,151,165,167,191],theorem:147,theoret:[114,141,147,150,156,170],theori:[50,103,108,116,128,131,136,151,156],thereaft:130,therebi:[145,156],therefor:[7,30,32,45,50,54,101,119,128,130,132,139,141,150,151,152,155,156,158,171,172,186,194],thereof:179,theta:[128,150,151,152,188],theta_0:151,theta_1:[150,152],theta_2:150,theta_i:[150,151],theta_n:152,theta_t:151,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,75,76,77,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,161,162,163,164,165,166,168,169,170,171,172,173,174,176,177,178,179,180,181,186,187,188,189,190,191,192,193,194,195],thick:1,thicksim:[128,131],thing:[1,7,40,43,49,50,52,53,57,60,63,65,66,68,74,80,82,100,101,103,104,106,108,112,114,116,117,119,122,123,124,129,137,142,144,145,151,158,159,162,165,171,172,180,182,186,187,191,194],think:[7,11,18,26,28,31,34,41,43,47,48,49,50,55,62,68,80,102,104,108,112,114,119,123,124,141,142,145,146,156,157,162,164,165,167,168,170,171,172,184,186,194],thinkhdi:104,third:[14,32,40,49,50,64,99,104,116,119,131,148,151,171],third_baseman:116,third_term:127,third_tuple_str:172,thisag:173,thisplot:41,tho:[172,194],thoma:139,thon:[172,194],thorough:140,thoroughli:103,those:[1,7,14,16,18,32,39,44,47,49,50,52,56,57,62,68,74,80,101,103,104,106,109,110,111,112,113,114,116,117,119,121,123,127,130,134,136,137,139,140,142,145,147,148,151,154,156,162,165,166,171,172,177,191,193,194],thou:134,though:[7,41,47,62,102,104,111,119,121,123,131,137,141,142,154,164,167,171],thought:[7,16,30,34,53,58,68,80,104,114,119,140,165,177,179],thoughtfulli:90,thousand:[29,49,50,74,108,142,155],threadpoolctl:146,threaten:[109,178],three:[7,13,14,19,21,27,29,32,36,39,48,49,50,52,56,60,71,74,83,88,92,93,98,99,102,110,113,118,119,123,127,132,133,135,137,139,141,142,143,145,146,156,158,159,171,172,174,179,184,193,194],three_g:[68,80],thresh:[7,117],threshold:[1,18,29,46,47,50,54,59,116,139,141,150,151,167],through:[1,3,9,10,20,24,30,31,41,45,47,48,54,61,62,63,65,76,82,90,92,99,100,101,103,104,106,108,109,112,113,114,118,119,121,123,127,128,130,131,132,133,134,136,137,138,139,140,141,142,143,145,146,151,152,154,157,162,163,165,166,170,171,172,173,176,179,182,183,188,191,193],throughout:[82,104,106,116,151,165,166,177,191],thrown:119,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:59,thu:[3,14,32,43,47,49,50,53,54,57,59,101,111,114,116,119,121,123,129,145,147,148,150,154,155,156,157,165,166,167,168,169,171],thunder9:38,thunder:38,ti:[104,136],tial:[63,65],tian:135,tibco:180,tibshirani:150,tic:171,tick:[3,100,145,148,158],tick_param:[54,158],ticker:158,ticket:104,tid:108,tidi:168,tier:139,tight_layout:[18,31,37,39,41,54,109,158,178],tiktok:143,tile:[101,127,158],tile_s:127,till:[56,157],tim:188,time:[0,1,7,8,9,13,14,29,31,32,33,35,37,38,39,40,42,43,45,49,50,52,53,54,56,58,59,60,61,62,63,65,66,68,74,77,80,82,100,101,102,103,104,106,108,110,111,114,116,117,119,121,123,124,127,128,129,130,131,132,133,134,136,139,140,141,142,143,146,147,148,151,154,155,156,157,158,159,163,165,166,167,168,170,171,172,173,174,175,178,180,186,187,188,191,193,194],time_model:39,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[145,146],time_step:128,time_t:35,timeit:[158,179],timelin:[95,142],timeseri:44,timeseriesclassif:29,timestamp:[38,113,122,137,139],timestap:44,timestep:[38,44,128,136],timnit:[102,174],tin:150,ting:166,tini:[33,158],tiniest:165,tip:[17,23,82,104,167],titan:152,titanic_train:22,titanic_train_and_test:152,titl:[15,22,29,30,31,32,33,34,37,38,39,40,42,45,47,48,50,54,55,56,59,64,66,68,75,76,77,80,82,83,109,110,111,113,116,121,122,123,127,133,134,136,145,146,148,150,158,159,170,172,178,180,186,188,189,190],title1:158,title2:158,title_cas:97,titlepad:[62,137],titles:[62,137],titleweight:[62,137],tj:38,tl:35,tl_start:35,tld:59,tmp:[12,25,29,30,31,33,36,37,38,39,41,66,76,109,134,136,171],tmp_folder_path:[29,30,31,33,39,41,66],tmp_zip_path:39,tn:[52,59,68,80,167],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:59,to_categor:[32,39,192],to_csv:[66,76,162],to_datetim:[1,14,35,38,44,166],to_devic:33,to_fil:3,to_fram:[121,162],to_lat:31,to_numer:[35,56],to_numpi:[44,123,166],to_pandas_datafram:[9,100],to_period:137,to_print:130,to_pydatetim:122,to_renam:121,to_seri:38,toarrai:74,tobacco:101,tobia:132,toc:140,tocilizumab:1,todai:[108,112,134,138,139,141,143,151,152,165],todd:143,toe:171,togeth:[0,1,3,7,8,14,38,40,41,46,49,50,93,104,110,116,117,118,119,124,128,140,145,148,151,155,157,171,172,173,180,193,194],toggl:101,toh:30,toi:[18,148,151],token:[43,132,136,173],tokyo:[14,124,180],tol:56,told:104,toler:[123,143],tolist:[38,39,44,49,148],tom:[24,165,173,191],tomato:[39,168],tomomi:170,tomorrow:192,tone:102,tong:135,tongchuan:38,too:[18,32,47,48,49,50,52,53,54,57,58,61,64,66,74,108,109,111,122,128,129,131,137,140,141,145,146,147,151,154,157,163,165,166,167,168,171,172,194],took:[17,20,39,50,104,151,158],tool:[7,35,40,51,54,59,99,101,102,103,106,112,113,114,117,121,123,128,138,139,140,141,143,146,151,161,166,168,169,171,172,174,175,179],toolbox:[114,151],toolchain:140,toolkit:[102,140],tooltip:108,top:[3,7,16,30,31,34,40,41,45,50,52,54,57,64,74,82,84,92,101,104,111,118,119,123,135,138,139,142,145,146,147,162,167,168,171,179,187,188,195],top_pol:38,top_sen:38,top_tweet:38,top_vol:38,topic:[1,99,102,103,104,110,112,116,117,118,119,138,143,189,190],topilimag:33,topolog:30,toppredict:163,torch:[31,33,37,131],torchvis:[33,37,131],torgo:58,toronto:[127,132,157],tort:[92,93,171,172],tosin:139,total:[7,29,31,35,37,38,40,43,48,50,51,54,56,57,58,59,60,61,68,74,75,77,80,92,108,111,116,117,118,119,127,132,142,145,147,148,150,155,158,166,172,186,192,193],total_bedroom:[61,74],total_incom:172,total_len:31,total_na:51,total_profit:35,total_room:[61,74],total_s:127,total_sum_squar:77,total_var_i:127,total_var_x:127,total_variation_loss:127,total_volum:172,totalbath:54,totalbsmtfin:54,totalbsmtsf:54,totallot:54,totalporch:54,totalprod:[111,178],totalprofit:35,totalsf:54,totensor:[33,37,131],totrmsabvgrd:54,toucantoco:104,touch:[60,61,68,80,114,165],touch_scr:[68,80],touch_screen:[68,80],touchscreen:[68,80],tour:108,toward:[59,75,104,112,119,150,159,172,176],towardsdatasci:[114,141,180],tp:[52,59,68,80,167],tpr:[59,167],tpsnva:104,tqdm:[31,36,37,82],tqdm_notebook:37,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:59,traceback:[82,119,121,122,123,146,179,193],track:[3,36,40,45,47,93,101,102,104,112,118,122,134,141,142,151,158],tractabl:128,trade:[49,56,68,80,130,132,150,157,165,169],tradeoff:[7,52,57,68,80,117,141],trader:38,tradit:[3,45,54,101,104,116,132,140,141,142,143,161,165,170,180,191],tradition:[104,139,141],traffic:[102,113,114,140,165],trail:[59,119,164,172],train:[9,10,20,29,38,42,43,44,45,48,50,56,62,63,65,66,75,84,91,98,102,104,106,112,114,116,121,126,127,130,132,134,135,136,137,139,140,143,145,147,148,150,151,152,153,154,156,157,158,159,163,164,166,167,170,174,175,176,182,184,185,186],train_acc:[127,150],train_accuraci:[40,136],train_batch:133,train_d:33,train_data:[29,37,49,50,52,53,57,61,68,74,80,126],train_data_path:[68,80],train_dataset:128,train_df:[82,84],train_dict:[127,136],train_dir:127,train_dl:33,train_fold:127,train_i:[38,154],train_imag:[41,133],train_index:150,train_label:[29,37,41,50,127],train_length:133,train_load:[33,37],train_log:[82,127],train_loss:[29,31,33,40,127,134,136],train_nam:[66,127],train_on_batch:182,train_op:[127,134],train_respons:66,train_rms:137,train_save_path:66,train_scor:64,train_siz:[33,64],train_step:[36,127,134,136],train_test_split:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,74,75,76,83,137,150,152,154,155,158,159,163,164,166,167,170,186,188,189,190],train_url:66,train_va:31,train_x:[31,38,154],train_xdata:127,trainabl:[29,62,126,127,128,132,133,163,182],trainable_vari:[126,134],trainable_weight:[36,128],trainhistori:[45,47,48],training_block:128,training_data:[9,100],training_data_preprocess:[61,74],training_fin:[68,80],training_hour:56,training_input_data:[61,68,74,80],training_label:[61,68,74,80],training_loss:64,training_s:64,training_sc:42,training_seq_len:134,training_step:[33,126],trainset:42,traj1:130,tran:[166,167],trane:[63,65],trang:82,transact:[6,17,124,145],transcrib:143,transcript:143,transduct:[141,145],transfer:[31,33,49,52,118,126,129,133],transform:[7,22,30,33,37,40,41,42,44,45,46,47,49,50,51,52,53,54,56,57,60,61,62,66,76,82,83,99,109,117,119,123,126,127,128,131,132,135,137,138,139,141,146,148,154,156,158,165,186,188,189,190,191,193],transform_fpcoor_for_tf:135,transformed_df:162,transformed_feature_df:162,transformed_label_df:162,transformer_block:132,transformerblock:132,transfrom:60,transit:[99,132,142,151],transition_block:132,translat:[41,93,104,114,129,139,142,165],transmit:114,transpar:[112,143,176],transpos:[29,37,40,45,61,74,76,82,119,126,127,135,136,172,194],transposed_matrix:[172,194],transposed_row:[172,194],trap:[112,141,176],trash:170,travel:137,travers:[31,172],treat:[1,7,56,59,68,75,80,112,117,119,121,122,123,124,132,140,141,171,176],treatment:[112,119,143,170,176],tree:[31,49,52,53,54,55,62,68,80,127,130,141,147,148,151,152,154,163,164,165,186,191],tree_best:[57,58],tree_clf:[57,68,80],tree_grid:50,tree_list:148,tree_method:54,tree_param:50,tree_pr:50,tree_reg:58,tree_reg_sc:58,tree_scor:[68,80],treebeardtech:0,trees_grid:150,trekhleb:[92,93,171,172],tremend:7,trend:[14,49,52,76,77,102,104,108,112,113,157,174,176,178],treshold:1,trevor:[133,150],tri:[36,50,56,58,63,65,147,157,165],triag:140,trial:[48,141,163,170],triangl:158,triangular:145,trick:[32,36,108,112,126,141,154,155,156,157,165,171,176],tricki:156,trickier:[124,180],trigger:[0,112,119,139,140,142],trim:134,trip:[23,102,174],tripadvisor:148,tripl:[119,172,173,194,195],triplestor:180,triu:64,triumphantli:141,trivial:[82,129,132],troubl:[62,108,145,150],trouser:[30,40,41,50],truck:[127,129],true_boolean:[172,194],true_label:41,true_positive_r:59,truli:[49,54,57,64],trump:173,truncat:136,truncated_norm:[127,130,136],truncated_normal_initi:127,truncated_normal_var:127,trust:[57,58,60,61,66,104,108,143,154,155,158,166,170,183],trustworthi:143,truth:[108,119,132,143,172,173,188,192,194],ts:137,tsl:29,tsne:186,tstep:130,tsv:[18,24,116],ttest_ind:[18,116],tthoe3gp290gz:59,tue:57,tumor:145,tunabl:[50,192],tune:[47,49,50,59,60,66,68,75,77,80,84,126,137,150,151,153,155,165,185],tup:122,tupl:[33,34,49,122,132,133,135,170,171,180,186,194],turn:[3,7,30,33,40,41,48,50,75,138,157,187,191],turntabl:144,turori:140,turtl:119,tuskege:[112,176],tutor:138,tutori:[1,29,31,59,77,110,119,121,127,131,133,138,157,168,170,171,172,173,182,188],tv:104,tval:[18,116],tweak:[85,110,146,164],tweet:[99,118],tweet_vol:38,twenti:88,twice:[119,136,171],twinx:[111,178],twitter:[99,118,180],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,36,38,39,40,41,43,45,46,48,49,50,52,53,54,56,57,59,60,61,62,63,65,68,72,74,80,82,83,84,90,92,93,98,101,102,104,106,108,109,110,111,112,116,117,118,119,121,122,123,124,126,127,128,129,131,132,134,135,137,140,141,142,143,145,148,150,151,155,156,157,158,159,162,163,164,165,166,167,170,171,177,180,182,184,187,191,193,194],twofield:119,twon:130,txt:[31,127,130,134,136,159,165],type:[1,6,7,9,15,19,20,29,31,33,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,64,68,74,76,80,93,94,100,101,102,106,109,110,111,112,113,116,117,118,121,122,123,124,126,127,128,130,132,133,136,137,139,140,141,143,145,146,151,153,154,155,156,159,166,167,168,169,170,171,174,175,176,177,178,179,180,181,182,184,185,186,187,188,189,190,192,193],typeerror:[92,93,119,122,123,146,173,179,193],typic:[3,8,14,22,32,43,45,46,47,49,50,56,62,64,68,74,75,80,99,106,113,114,116,117,119,123,126,129,137,139,140,141,142,143,150,151,154,155,162,166,167,171,188],u10:[119,179],u2:180,u:[66,111,130,133,148,172],u_:130,u_k:130,ua:[15,193],uber:[102,174],ubuntu:140,ucb:[106,177],uci:[48,58,136],ucl:[165,191],ucla:142,uclaacm:166,ufo:159,ufunc:7,ugli:[108,172],ugqbzwiq8iiufasvi9dz:59,ugqprfa:59,uhbmv7qcey4:56,ui:[101,140,187],uid:142,uid_iso_fips_lookup_t:14,uint8:[31,36,119,127],uk:[14,130,159],ultim:[76,92,93,113,114,165,191],ultra:132,um:50,umap:30,umap_3d:30,umap_df:30,umbrella:[118,140,180],umn:104,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:59,umr_sum:179,umt:177,un:[159,172,194],unabl:[54,57,58,60,61,64,66,150,154,155,158,166,170],unacc:57,unaffect:119,unalign:123,unalt:75,unambigu:119,unansw:104,unbalanc:[66,68,80,151,156,184],unbatch:128,unbias:[141,147],uncertain:130,uncertainti:50,unchang:172,uncheck:78,uncom:14,uncondition:[171,193],unconstrain:39,uncorrel:[66,147,150],uncov:[19,54,106,168,169],undeclar:143,undefin:[7,18,171],under:[0,22,31,39,45,47,48,50,51,63,65,83,84,101,109,112,116,118,119,127,135,140,141,142,143,150,151,156,163,167,168,173,179,180,184,186,187,188,189,192,195],under_name_scop:135,undercomplet:30,underfit:[61,62,63,65,141,154],underli:[59,64,75,76,77,99,106,109,116,129,157,165,166,179,188,191,192],underlin:158,undermin:108,underneath:59,underrepres:[68,80],underscor:[100,118,171,172,180,194],underset:[82,151],understand:[7,16,23,30,31,41,43,45,48,50,74,75,76,77,78,99,100,101,102,103,106,107,108,109,111,112,113,114,116,119,121,129,137,138,141,142,143,145,151,152,154,155,156,157,159,161,163,165,166,167,168,170,172,173,174,176,177,180,189,190,191],understood:[7,54,106,113,119,171,177],undertak:[78,104],undesir:28,undestard:152,undo:127,undu:78,unearth:54,unemploy:142,unet:128,unet_model:133,uneven:[145,162],unexpect:[48,91,121,141,146,157,171,193],unexpectedli:171,unf:54,unfair:112,unfamiliar:165,unfold:[50,108,136],unfortun:[18,100,151,158],unhandl:171,unhealthi:101,unhelp:162,unicorn:141,unidata:180,unifi:[106,135,141],uniform:[18,36,43,47,55,116,127,128,130],uniformli:[7,147,158],unimagin:139,unimport:66,unindex:[119,172],uninform:56,unintend:[28,102,112,176],unintention:171,union:[78,112,119,123,172],uniq:51,uniqu:[5,14,22,39,46,47,50,51,56,57,64,74,77,78,93,101,118,121,123,129,137,141,151,158,159,162,165,166,171,172,173,180,189,190,192,194,195],unique_list:93,unique_numb:172,unique_valu:93,uniqueag:173,unit:[0,12,30,32,40,41,42,43,45,47,48,53,58,62,74,82,101,102,111,113,118,119,124,127,129,132,134,140,141,142,147,157,165,166,167,168,174,180,182,192,193],unittest:[3,14,22,24,47,48,53,74,92,93],univari:[7,75,128,170],univers:[14,64,112,116,130,138,143,157,180,192,193],unix:[44,139],unknown:[57,58,116,130,134,145,151,157,171],unknowningli:54,unlabel:[126,141,145,150,158,165,186,191],unlaw:112,unless:[22,45,47,48,56,123,137,171,193],unlik:[33,56,60,66,77,82,119,141,147,150,172,173,179,182,189,190,194,195],unlimit:[172,194],unlock:[26,168],unnam:[67,162,163,164,166,167],unnecessari:[119,124,157,158],unord:[74,172,173,194,195],unpack:[3,123,145,167,172],unpickl:193,unpreced:112,unprun:150,unqualifi:171,unreason:143,unrel:3,unreli:165,unrol:136,unsaf:119,unscal:[40,58],unse:40,unseen:[40,41,50,64,150,165,170],unsort:93,unsorted_list:93,unspecifi:[43,119],unsplash:[98,105,107,125,144,161,169],unsqueez:[31,33],unstabl:[62,141,151],unstack:41,unstructur:[6,113,114,139,165,176,191],unsuccess:141,unsupervis:[36,50,116,138,141,143,145,150,164,170,183],unsupervised_learn:158,unsupport:[165,172,179,194],unsur:15,unsurprisingli:159,until:[31,33,50,55,61,75,92,103,119,124,141,146,147,150,158,165,171,172,180,186,191],untouch:123,untrain:36,untruncated_norm:135,unununium:[172,194],unus:[119,168],unusu:[119,157],unweight:167,unwrap:112,unzip:[36,37,127],up:[0,3,5,7,14,18,22,33,36,38,40,46,48,49,50,52,53,54,56,58,60,62,64,66,68,80,84,85,86,92,99,100,101,102,103,104,106,108,112,116,117,118,119,122,123,124,127,130,131,132,133,135,137,140,141,142,143,145,147,150,151,152,154,155,156,157,158,159,162,165,166,167,168,169,171,172,173,180,191,194],up_shifted_imag:84,up_stack:133,upbeat:104,upcast:[7,117],upcom:7,updat:[0,31,36,37,41,43,48,49,52,55,63,65,75,76,81,82,92,93,113,126,127,128,129,130,134,136,137,140,141,151,152,154,155,158,165,175,182,186,187,188,189,192],update_st:36,update_trac:30,update_weight:130,upfront:104,upgrad:[99,140],upload:[9,20,100,101,118,142],upload_d:57,upon:[40,50,64,101,112,114,124,155],upper:[7,30,32,51,92,122,124,126,127,136,140,141,158,172,193],upper_cas:97,uppercas:173,uppered_anim:193,upsampl:[29,30,128,133],upsampling2d:[36,133],upward:128,uranu:195,urban:[110,178],url:[0,3,57,60,101,102,106,114,118,127,128,132,133,135,140,141,142,143,158,166,167,174,176],url_for:159,url_setosa:60,url_versicolor:60,url_virginica:60,urllib:[61,68,74,80,82,127,158],urlretriev:[68,80,82,127,158],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,35,36,38,39,42,43,44,45,46,47,49,50,51,52,53,54,55,57,58,60,61,66,68,69,72,74,75,77,78,80,82,84,86,89,91,98,99,100,101,102,103,106,107,110,111,112,113,114,116,117,118,119,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,142,145,146,147,148,150,151,152,153,154,156,157,161,162,164,169,170,171,172,174,175,176,177,179,180,182,183,184,186,188,191,193,194,195],usa:142,usabl:[108,139],usag:[5,38,49,54,59,60,74,101,102,112,117,145,151,155,162,166,170,171,172,174,175,194],usd:35,usd_tri:35,usda:168,usdt:[38,44],use_bia:[132,135],use_na_proxi:121,useless:119,user:[6,17,23,43,54,57,62,98,99,101,102,104,108,110,111,112,113,114,119,121,122,123,137,140,141,143,165,170,171,173,174,175,176,179,186,187,191,193],userwarn:[109,123,158,163,167,178],usr:[163,167,179],usual:[7,46,48,49,50,52,54,59,66,68,80,82,99,103,104,109,113,117,119,121,122,123,126,128,129,130,131,132,136,137,139,140,141,143,145,150,151,156,157,165,168,171,172,173,188],ut:147,utf:[15,134,159],util:[31,32,33,37,38,39,40,42,44,54,57,58,66,75,76,77,78,92,117,122,131,133,135,140,141,142,155,170,171,192],utilitarian:141,v0_8:62,v1:[14,57,119,121,122,123,127,130,131,134,136,140],v2:140,v2rayn:38,v3:[38,119,140],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:59,v7:59,v7lab:141,v7t09o1tbxdw8p7:59,v:[1,3,38,56,121,122,123,131,157,185],v_:130,vaccin:[11,142],vae:31,vae_model:31,vagu:[104,165],val1:92,val2:92,val3:92,val4:92,val:[31,55,82,92,94,134],val_acc:[33,39,47],val_accuraci:[32,39,40],val_d:33,val_dl:33,val_load:33,val_log:82,val_loss:[31,33,34,38,39,44,47,48,62,133],val_siz:33,val_subsplit:133,val_x:31,valdat:33,valentina:143,valid:[7,14,15,31,34,39,40,46,49,56,62,66,68,80,82,93,112,117,119,121,122,123,127,132,133,139,141,147,150,154,157,163,165,166,171,173,192],validation_data:[29,30,32,34,38,62,133],validation_dir:127,validation_epoch_end:33,validation_fract:56,validation_loss:64,validation_split:[38,39,40,44,47,48],validation_step:[33,133],valmont:108,vals1:179,vals2:179,valu:[1,3,6,8,14,15,18,22,29,31,32,34,36,38,39,40,41,42,43,44,45,46,48,49,50,52,53,55,58,60,61,63,64,65,66,75,76,77,78,82,83,84,85,96,97,100,102,103,106,109,110,111,112,113,114,116,117,118,121,122,124,126,127,128,129,132,133,134,135,137,139,141,142,145,146,147,148,150,151,152,153,154,156,158,159,162,163,165,166,167,168,169,170,173,176,177,180,185,186,187,188,189,190,191,193,194,195],valuabl:[7,75,77,142,150],value_count:[7,14,15,22,34,39,51,54,56,57,59,60,61,64,68,74,80,145,146,162,178],value_left:121,value_right:121,valueerror:[92,119,121,122,123,133,171,172,173,194],valueless:7,values_list:92,van:[132,173,193,195],vanderpla:[57,58,60,61],vanilla:[7,134],vanish:[129,131,132,134],vanooteghem:98,vanschoren:141,vapnik:59,var1:38,var2:38,var3:38,var4:38,var5:38,var_idx:55,var_list:131,var_tensor:43,vare:29,varepsilon_i:147,varepsilon_j:147,vari:[36,40,49,52,54,101,113,114,119,139,146,150,158,168,186],variabl:[7,22,31,33,37,39,50,53,54,56,58,64,66,68,74,75,76,77,80,83,88,92,93,96,97,101,106,108,109,111,117,126,127,128,129,130,131,134,136,139,141,142,145,146,148,150,151,156,159,162,165,166,169,170,173,177,178,187,188,191,195],variable_nam:171,variable_scop:127,variables_and_typ:172,variad:171,varianc:[18,50,54,56,63,65,77,82,109,126,147,155,178,186],variance_inflation_factor:[54,64],variance_scaling_initi:135,variant:[59,129,158,171],variat:[39,47,127,128,132,135,151,171,192],varieti:[41,43,54,119,132,137,143,151,157,163,166,167,172,194],varinac:[63,65],variou:[16,28,30,36,39,40,50,54,59,62,77,78,85,90,99,101,102,107,108,110,111,112,113,118,119,121,123,129,132,133,139,140,142,144,145,147,151,162,164,165,168,170,173,178,180,191],vassilvitskii:158,vast:[7,22,99,114,117,139],vastli:36,vault:101,vb:133,vc:39,vdf:38,ve:[7,28,31,50,75,82,102,104,106,112,117,118,119,121,124,132,137,147,151,157,165,167,171,172,174,180,187,193],vec:[31,82,147],vect_tensor:43,vector:[7,29,31,33,43,45,49,50,55,57,63,64,65,68,78,80,82,119,126,127,128,131,132,133,134,136,141,150,157,159,163,165,166,172,179,186,188,191,192,194],vectorregress:156,vectors_to_imag:131,vegan:170,veget:169,vegetable_oil:163,vehicl:[129,137,165,191],veil:[110,178],veloc:[130,180],vend:139,venn:[115,176],venu:[102,146,171,195],verb:171,verbos:[32,35,38,39,41,44,45,47,48,50,52,53,54,56,57,58,59,60,61,62,84,108,150,154,158],verdict:36,verghes:104,veri:[14,18,30,31,39,40,41,45,47,49,50,52,53,54,55,57,58,59,62,63,64,65,68,74,80,83,98,101,103,104,106,109,110,114,116,119,121,123,126,127,129,132,134,136,137,139,140,141,142,143,145,146,148,150,151,154,155,156,157,158,159,161,162,164,165,167,168,170,171,172,173,179,182,185,186,189,190,194,195],verif:[0,116],verifi:[33,40,45,47,48,58,74,96,97,110,111,122,132,141,145,152,158],verify_integr:[121,179],versa:[49,50,52,56,57,68,80,116],versant:180,versatil:[172,194],versicolor:[60,64,83,148],versicolour:[83,186],version:[1,7,22,29,33,35,45,46,47,48,49,50,57,59,75,101,106,116,119,121,122,124,129,133,135,136,140,141,145,152,154,158,170,173,179,186,195],version_info:[82,158],versu:[151,170],vert:18,vertex:50,vertic:[3,18,108,116,119],veryde:127,verydeep:127,vet:[108,121],vf4l3peswap51eb6clsmx7uuklt158tt0o:59,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:59,vgan:131,vgg16:133,vgg19:133,vgg:[127,132],vgg_data:127,vgg_layer:127,vgg_net:127,vgg_network:127,vgg_path:127,vgood:57,vhigh:57,vhx8dhywgnjy2:59,vi:[121,122,123,146],via:[7,109,118,121,122,123,127,133,151,156,157,158,163,171,186],viabil:101,vibranc:108,vibrant:165,vicdemand:[49,52],vice:[49,50,52,56,57,68,80,116],vicin:[1,8],viciou:108,vicki:[172,194],vicomt:108,vicpric:[49,52],victor:[29,137],victoria:[49,52],video:[43,113,114,116,118,119,127,129,135,143,151,154,162,165,168,169,170,173,176,191],view:[7,30,31,33,37,40,47,59,83,99,100,101,104,108,114,118,131,132,133,155,159,167,168,179],view_init:[156,184],viewpoint:[130,132,135],viewport:15,vijai:133,vinai:143,vinod:[33,127],viola:151,violat:[112,143,176],violenc:108,violinplot:56,virginica:[60,64,83,148,186],viridi:[38,75,150],virtual:[99,101,140,170],virtuoso:180,visibl:[30,57,104,130,132],vision:[33,41,43,84,99,121,127,129,132,135,141,143,151,159,162,165,181,191],visiontransform:132,visit:[99,102,106,114,118,127,128,132,133,135,137,140,141,147,166,167,174,176],visitor:[148,165],visual:[0,1,5,8,14,15,16,18,19,30,45,46,49,50,51,52,53,54,58,59,68,74,75,76,80,84,99,100,101,102,112,114,116,117,119,121,122,123,126,127,129,132,133,137,138,139,145,146,147,148,150,151,155,156,158,159,162,163,165,166,169,170,171,174,176,177,181,183,186,188,191],visualcapitalist:104,visualis:[31,59,156,166],vital:54,vitobha:139,viz:158,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:59,vladimir:59,vlfeat:127,vm:[99,100,101],vm_size:[9,100],vmail:[50,147],vmax:[31,38,145],vmin:31,vocab2ix:134,vocab:134,vocab_processor:136,vocab_s:[134,136],vocab_to_ix_dict:134,vocabulari:[134,136,145],voic:[50,129,147],voila:[110,148],vol:38,volatil:48,voldemort:180,volt:171,voltag:171,volum:[7,44,99,101,139,140,141,143,166,168,175],volume_btc:38,volume_dollar:38,volumetr:129,volunt:112,voluntari:112,voluntarili:112,voom:171,vooooom:171,voronoi:[146,158],voronoi_plot:158,vot_classifi:49,vote:[116,138,142,147,150,151,163],votingclassifi:49,vs:[33,38,39,41,55,59,68,80,85,101,104,106,109,110,112,130,139,140,141,145,152,154,158,162,163,166,167,168,170,177,183,188],vs_code_with_a_notebook_open:170,vscode:179,vscodecod:38,vstack:[119,156,184],vthyuhdilvw8hkemhmr:59,vu:[109,178],vue:108,vulner:[109,121,178],vutil:37,w0:136,w1:[130,136],w2:[130,136],w3:130,w3school:[171,172],w:[29,31,33,63,65,74,82,83,84,116,126,127,130,133,134,136,137,151,155,157,158,171,180,185,186],w_0:151,w_:[134,148],w_box:135,w_crop:135,w_d:131,w_g:131,w_h:136,w_hh:136,w_hx:136,w_i:[148,151,157,185],w_img:135,w_j:[151,155],w_n:150,w_xaxi:[83,186],w_yaxi:[83,186],w_yh:136,w_zaxi:[83,186],wa:[1,11,16,28,32,33,39,40,43,45,49,50,52,53,54,57,58,59,60,61,74,76,92,102,104,106,108,112,113,114,116,119,122,123,129,132,133,135,137,139,140,142,145,146,147,148,151,158,159,162,163,164,165,170,171,172,173,174,177,186,188,191,194,195],waffl:[27,108],wai:[0,1,3,7,11,18,30,36,40,41,43,46,49,50,52,53,54,56,57,58,59,60,61,62,68,71,74,76,80,82,98,99,102,103,104,108,109,110,111,112,113,114,116,117,118,119,123,124,125,127,129,130,132,135,136,138,139,140,141,142,145,146,147,150,151,152,154,155,157,158,159,162,163,164,165,167,168,170,171,172,173,177,178,179,180,187,188,191,193,194],waistlin:88,wait:[1,101,103,127,133,154,165,173],wait_for_complet:[9,100],wait_for_deploy:[9,100],wake:141,wale:[49,52],walk:[1,31,51,56,90,118,121,142,154,162,164],wall:[130,163,186],walnut:163,walter:136,wang:132,want:[1,3,7,8,14,16,17,18,23,30,39,40,41,43,46,47,48,49,50,51,52,53,56,57,58,59,62,63,65,68,74,77,78,80,82,83,99,101,102,104,109,112,113,114,116,117,119,121,124,127,129,130,131,132,133,135,137,141,145,148,151,152,154,155,156,157,159,162,164,165,166,167,170,171,172,173,177,178,180,184,186,187,188,191,193,194],wanted1:92,wanted2:92,wanted_peopl:92,ward:[131,145],warehous:[99,139],wark:139,warm_start:[56,150],warn:[36,39,48,49,50,51,52,53,54,56,57,58,59,68,80,109,119,129,134,137,146,150,152,154,158,163,167,178,186],warn_singular:[109,178],warrant:[32,146],warranti:[22,45,47,48,92,93,171,172],warren:136,warrior:151,wasn:104,wast:[102,110,139,143,172,178],watch:[56,114,129,165,166,167,168],water:[102,182],waterfowl:[109,178],watson:140,wavenet:129,wb:[29,30,31,33,36,37,39,41,66,159],wc:3,wcss:146,wd:66,wdrfosfa13slih0epo:59,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,36,39,40,43,44,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,80,82,83,84,98,99,100,101,102,103,104,106,109,111,112,114,116,117,118,119,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,145,146,147,148,150,151,152,153,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,174,176,177,178,179,180,181,184,186,187,188,191,192,193,194,195],weak:[46,54,55,56,117,131,137,141,145,150,151,153,155,167],weaker:1,weapon:[112,172,194],wear:[165,191],wearer:6,weather:[102,137],web:[5,39,91,99,100,101,102,108,113,114,116,140,142,143,145,170,173,174,183,195],webapp:142,webservic:[9,100],websit:[99,114,130,132,142,143,148,165,166,168,170,191],wechat:38,wechat_fil:38,wechat_files_comput:38,weeight:157,week:[38,49,50,52,104,137],weekend:104,weekli:[14,137,142],weigh:[56,151,168],weight:[7,18,30,33,36,38,39,40,43,45,47,49,52,54,56,57,58,59,60,62,63,64,65,66,68,74,80,81,82,84,100,104,116,119,126,127,128,130,132,134,135,136,137,141,147,148,150,155,156,157,158,162,163,164,167,168,179,182,188,189],weight_1:137,weight_2:137,weightag:54,weights_init:37,weights_list:130,weijun:132,weinberg:132,weird:165,welcom:[138,170,172,193,194],well:[3,5,15,18,30,31,36,39,40,43,45,46,47,49,50,53,54,56,57,58,59,60,61,64,66,68,69,71,74,76,77,78,80,82,83,88,89,103,104,106,108,109,111,113,114,116,117,118,119,121,122,123,124,129,130,131,132,133,135,137,140,141,145,146,147,150,151,155,157,158,164,165,166,167,168,170,171,173,177,179,182,185,188,191,195],went:[10,40,46,49,52,104,117,165,171],wer:166,were:[7,10,12,16,20,29,31,39,40,43,47,49,50,52,53,57,58,60,61,62,66,68,69,74,76,80,101,103,104,112,116,118,119,121,124,128,134,137,139,140,142,146,147,151,155,158,165,166,167,171,173,176,180,181,191,193],weslei:140,west:74,weyand:132,wget:[127,132],wh:136,wha21:140,wha:141,what:[1,7,10,16,17,18,21,26,31,36,40,47,48,49,50,52,53,54,55,56,57,60,62,63,65,66,68,74,75,80,82,90,98,102,103,106,109,111,112,113,116,117,118,119,121,123,124,127,129,130,131,136,140,141,142,144,145,151,155,157,158,159,162,164,166,167,168,170,171,173,174,180,181,187],whatev:[57,58,82,104,129,132,154,157,165,171],wheat:[165,191],wheel:143,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,78,80,83,85,98,101,103,104,106,108,109,110,112,113,114,116,117,118,119,121,122,123,124,127,128,129,131,132,133,134,137,139,140,141,142,143,145,147,148,150,151,154,155,156,157,158,159,162,163,164,166,167,169,170,171,172,173,175,176,177,179,181,182,186,187,188,191,193,194],whenev:[43,119,140,141,157],where:[2,7,12,14,17,25,28,29,31,33,34,39,40,41,45,46,49,50,51,54,55,58,59,61,64,68,74,77,78,80,82,92,101,102,103,104,106,108,109,110,112,113,116,117,118,119,121,122,123,124,127,128,133,137,139,140,141,144,146,147,148,150,151,154,155,156,157,158,159,162,165,166,167,168,170,171,172,173,174,176,177,179,180,186,187,188,191,194],wherea:[31,50,54,57,59,68,80,119,156,165,167,170,171,172,184,191],wherefor:134,wherev:171,whether:[7,22,23,29,32,36,46,47,48,50,51,58,77,83,92,93,100,109,112,116,117,119,122,123,132,133,139,141,143,150,151,162,165,167,170,171,172,191,193,194],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,36,39,40,41,43,46,47,48,49,50,52,53,54,55,56,58,59,60,62,63,64,65,68,72,74,75,76,77,80,82,83,92,93,99,100,101,102,103,104,108,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,131,132,133,134,135,136,137,138,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,162,163,164,165,166,167,168,170,171,172,173,177,178,179,180,182,184,187,188,191,193,194],whichev:137,whiskei:[162,163],whistl:[109,178],white:[3,38,47,48,50,109,110,127,130,132,142,143,167,170,173,178,186,195],white_bread:[162,163],white_win:[162,163],whitegrid:[51,62,83,137],whiten:127,whitesmok:[110,178],whitespac:[46,117,171,172,194],who:[31,43,46,50,56,74,99,103,104,106,112,113,116,117,139,147,151,165,171,172,173,176,177,194],whole:[14,40,43,50,52,53,54,56,57,58,59,62,68,74,80,116,126,127,129,131,139,140,142,143,147,150,155,162,165,172,178,182,194],whole_grain_wheat_flour:[162,163],wholesale_customers_data:155,whom:[92,93,113,138,171,172],whose:[56,62,109,119,123,130,136,171,172,194],why:[7,16,18,40,43,45,46,47,48,49,50,53,60,66,69,75,82,85,90,98,101,102,103,104,106,112,116,117,119,124,127,131,145,146,147,151,152,156,158,163,165,167,168,171,174,176,177,180],wide:[43,54,61,75,76,77,99,101,112,119,123,129,131,132,135,137,139,143,151,153,172,175,180,194],wider:[116,142,157],widespread:151,widget:[9,100],width:[1,3,14,15,31,33,46,60,61,68,80,83,108,110,116,117,121,122,123,127,128,132,146,148,158,159,162,166,168,178,186],width_multipli:132,width_shift_rang:32,wifi:[68,80],wifi_count:[68,80],wik:127,wiki:[3,127],wikimedia:[60,129],wikipedia:[3,43,114,116,127,155,165,180,181,191],wild:[31,121,145,159],wildli:[154,163],william:116,willing:36,willingli:7,willpow:82,win32:193,win:[57,130,132,151,155],wind:130,window:[14,39,44,118,127,171,173,180,193],window_s:44,wine:[48,62,162,163],wine_feature_col:48,wine_feature_row:48,wine_schema:48,winedf:48,winefeatur:48,winefeaturessimpl:48,winefeaturessmal:48,winelabel:48,winelabelssmal:48,winequ:48,wingspan:109,winner:151,winston:56,winter:[17,106],wirefram:104,wisdom:[49,147],wise:[7,54,119,123,127,128,132,133,134,155],wish:[119,122,124,172,173,193,194],with_column:24,with_info:133,with_titl:31,withdraw:112,withheld:112,within:[6,33,46,47,48,50,54,56,74,83,100,103,104,106,109,110,112,113,116,117,118,135,140,146,155,159,166,170,171,172,179,186,193,194],without:[0,1,4,16,18,21,22,29,34,39,43,45,47,48,50,52,57,60,64,78,92,93,101,104,108,112,116,119,121,123,126,132,139,141,154,155,156,159,165,171,172,173,184,186,191,194],woke:152,woman:[50,101],women:[112,176],won:[7,49,52,56,60,104,119,124,129,130,131,132,141,154,155,157,165,168,188,191],wonder:[45,48,102,108,124],wood:[110,162,163,178],wooddecksf:54,word1:172,word2:172,word:[1,3,31,40,41,43,49,54,59,68,80,88,90,93,103,107,109,112,114,116,117,119,129,131,132,134,135,136,137,141,147,150,151,155,157,165,166,170,171,172,173,176,177,178,188,191,193,194],word_count:[93,134,136],word_index:[171,193],word_list:134,wordcloud:3,wordnet:132,words_length:171,work:[1,3,4,7,11,18,19,24,30,31,33,36,40,41,43,45,46,49,52,53,54,57,58,59,60,61,63,65,66,68,71,72,74,75,76,80,82,83,85,90,99,100,101,102,103,104,106,108,112,113,114,116,117,118,122,123,124,126,127,128,129,131,133,134,135,137,138,139,140,141,142,145,146,147,148,150,152,154,155,157,158,159,161,162,163,164,165,166,167,168,169,171,172,173,176,177,179,186,187,188,191,193],workbench:[102,174],workbook:118,workclass:51,workflow:[0,54,83,100,101,102,104,112,121,139,140,143,154,174],workload:[101,139,165],workplac:[6,104],worksheet:118,workshop:[121,143],workspac:140,workstat:101,world:[0,7,18,28,29,33,35,37,39,40,41,45,46,50,53,57,58,60,62,77,93,108,112,114,117,118,121,123,127,129,132,135,137,139,140,142,143,147,151,152,157,159,165,166,171,172,173,176,179,180,183,191,193,194,195],worldwid:[101,112],worri:[99,116,165,171],wors:[41,47,141,150,158,164,182],worst:[59,166,167],worth:[6,32,48,66,107,109,132,150,151,152,165,173,178,191],would:[1,7,11,14,16,18,23,24,30,31,36,40,43,47,49,50,52,54,56,58,59,60,61,62,66,68,71,74,80,82,88,90,104,106,113,114,116,117,119,122,123,124,127,128,129,137,141,142,145,146,147,150,151,152,154,156,157,158,159,162,164,165,166,167,168,170,171,172,180,186,187,191,194],wouldn:[7,113,151,171],wow:[47,49,52,57,61,158],wrangl:119,wrap:[33,66,111,126,127,137,140,171],wrapper:[33,119,127,137,171,193],wrestl:[7,117],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:59,write:[0,1,3,7,21,22,23,26,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,82,93,100,104,112,114,116,119,123,124,127,129,130,134,136,141,147,150,151,158,165,170,171,172,173,191,193,194],writefil:193,written:[7,88,108,119,121,128,134,138,150,155,171,172,173,193,194,195],wrong:[1,14,41,47,56,112,114,116,132,141,151,158,171,172,173,194],wrong_nam:14,wrong_sampl:18,wrote:[47,173],wrt:51,ws:[9,100,179],wspace:[156,158,184],wsr4u5caj:59,wt:136,wts2:44,wu:[108,143],www:[22,25,32,45,47,48,56,58,106,108,112,116,118,127,128,132,134,137,140,141,143,146,156,158,162,171,172,175,180,181,182,193],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:59,x0:135,x0_box:135,x1:[32,50,109,119,133,135,158,178,179,189,190],x1_max:50,x1_min:50,x1y1x2y2:135,x27:[57,58,60,61,154,155,158,166],x2:[32,50,109,119,158,178,179,189,190],x2_max:50,x2_min:50,x3:[32,109,178,179],x4:[109,178],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:59,x5:[109,178],x6:[109,178],x80:38,x86:38,x99ve:38,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,76,78,80,81,82,83,84,92,93,102,108,109,111,112,116,119,121,122,123,126,127,128,130,131,132,133,134,135,136,137,142,145,146,147,148,150,151,152,154,155,156,158,159,162,163,164,165,166,167,170,171,172,173,176,178,179,182,184,186,187,188,189,190,191,193,194],x_0:[128,136],x_1:[50,116,128,136,147,148,150,158,165,191],x_1p_1:116,x_2:[50,116,128,136,148,150,158,165,191],x_2p_2:116,x_3:148,x_4:148,x_:[18,128,130,148],x_batch:[82,128,131,158],x_center:186,x_cluster_dist:158,x_data:[134,136],x_digit:158,x_digits_dist:158,x_dist:158,x_histori:75,x_i:[18,116,126,128,150,151],x_init:[75,158],x_input:127,x_input_shap:127,x_int:75,x_j:[18,148,150],x_k:[130,150],x_m:147,x_max:50,x_min:[50,75],x_mm:158,x_n:[116,128,165,191],x_new:158,x_noisi:128,x_np_n:116,x_organ:34,x_pca:186,x_po:130,x_poli:188,x_rang:[150,171],x_reduc:186,x_representative_digit:158,x_set:[189,190],x_shape:128,x_shuffl:136,x_start:128,x_t:136,x_test:[29,30,32,34,40,42,49,50,51,52,53,56,58,59,60,66,76,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],x_test_circl:150,x_test_noisi:[29,30],x_test_scal:[40,76],x_test_with_bia:76,x_train2:32,x_train:[29,30,31,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,66,76,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],x_train_add:84,x_train_batch:136,x_train_circl:150,x_train_combin:84,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:158,x_train_scal:[40,53,58,60,76],x_train_with_bia:76,x_tsne:186,x_umap:30,x_val2:32,x_val:[31,54,82],x_valid:62,x_vif:64,xa:55,xarrai:119,xavier_init:131,xaxi:186,xb:33,xception:133,xe2:38,xentropi:82,xfb:59,xfhxfw:135,xfit:[156,184],xfyplk79sjp:59,xgb:[54,56,66,155],xgb_clf:155,xgb_cv:155,xgb_pred:66,xgb_reg:54,xgb_search:54,xgbclassifi:[56,155],xgbclassifierxgbclassifi:155,xgboost:[49,56,137,151,152,153],xgboostclassifi:56,xgbregressor:[54,66,137,154],xgbregressorxgbregressor:[66,154],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:59,xi:[55,59,133],xiangyu:132,xiao:143,xingjian:143,xiong:143,xit:59,xj:59,xk:130,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:59,xks2cxejztkqivxffffcr4:59,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:59,xl:167,xla:29,xlabel:[18,22,29,31,32,33,34,35,37,38,39,40,41,42,50,55,56,57,59,60,61,66,68,75,76,77,80,83,109,123,127,130,133,134,136,146,147,158,166,167,170,178,186,188,189,190],xlim:[50,56,148,150,156,184,186,189,190],xor:119,xplzqjohaao63bfq05ntwlheg6anqrhcuin:59,xrp:44,xs:[55,122,133],xtick:[3,18,22,31,37,39,41,47,54,56,145,146,148,158,178],xticklabel:[40,68,80],xu:131,xuanyu:143,xuhong:143,xw:59,xx1:150,xx2:150,xx:[50,158],xxl:167,xxxx:101,xy:[156,158,166,184],xytext:158,y0:135,y1:[55,135,158],y1x1y2x2:135,y212szmlszq:179,y2:[55,158],y3:55,y4:55,y5:55,y:[14,30,34,35,38,39,40,44,45,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,76,77,78,80,81,82,83,93,108,109,111,116,119,123,127,128,130,134,136,137,142,145,146,147,148,150,151,152,154,155,156,158,159,163,164,165,166,167,168,170,172,173,178,182,184,186,188,189,190,191,193,194],y_2:136,y_:130,y_batch:82,y_clr:186,y_cluster_kmean:146,y_di:182,y_digit:158,y_dist:158,y_distribut:24,y_fit:137,y_gen:182,y_hat:150,y_histori:75,y_i:[50,55,75,77,78,148,150,151,155],y_init:75,y_j:50,y_k:130,y_lag_2:137,y_lag_3:137,y_lag_4:137,y_lag_5:137,y_lag_6:137,y_lag_:137,y_max:50,y_min:[50,75],y_output:[134,136],y_po:130,y_pred:[51,55,59,63,65,76,78,83,137,152,155,158,163,164,170,188,189,190],y_pred_100:51,y_pred_idx:158,y_pred_sklearn:[63,65],y_pred_test:[59,76],y_pred_train:59,y_predict:[34,81,188,189],y_predict_class:34,y_predicted_cl:[81,189],y_prob:152,y_representative_digit:158,y_score:167,y_set:[189,190],y_shuffl:136,y_step_1:137,y_step_2:137,y_step_3:137,y_step_:137,y_target:127,y_test:[30,32,34,39,40,49,50,51,52,53,56,58,59,60,76,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],y_test_circl:150,y_test_class:39,y_test_prepar:[49,52],y_train2:32,y_train:[30,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,76,82,83,84,126,136,137,150,152,155,158,159,163,164,166,167,170,182,186,188,189,190,192],y_train_add:84,y_train_batch:136,y_train_circl:150,y_train_combin:84,y_train_partially_propag:158,y_train_prepar:[49,52],y_train_propag:158,y_true:[34,76,78],y_val2:32,y_val:[54,82],y_valid:62,ya:[59,82],yahoo:151,yam:[162,163],yandex:[54,151],yandexdataschool:82,yang:133,yaxi:[158,186],yb:33,ye:[7,45,50,100,101,111,112,143,147,165,171,173],year:[1,13,14,24,25,49,50,51,52,56,104,111,112,114,121,124,127,137,140,151,155,166,170,172,173,176,178,180,188,193],yearbuilt:54,yearn:141,yeast:[162,163],yellow:[17,23,50,104,108,109,110,166,172,178,194],yet:[0,14,36,43,50,53,58,60,93,100,101,108,141,151,152,165,171,186],yetayeh:195,yf:151,yfit:[156,184],yfozmvgstfo5xi:59,yhat:38,yi:55,yield:[31,33,50,59,82,111,123,151,154,155,171,178],yieldpercol:[111,178],yiyiwang0826:25,yizh:166,yk_temp:38,ylabel:[18,22,29,31,32,33,34,35,37,38,40,42,50,55,56,57,59,60,61,64,66,68,75,76,77,80,83,109,111,123,127,130,133,134,136,146,147,158,166,167,168,170,178,186,188,189,190],ylgnbu:[51,59],ylim:[41,48,133,156,184,189,190],ylorbr:[111,178],ymean:47,ymeanactu:47,yml:0,ymp6irqbiss3usmcdyxx:59,yogurt:[162,163],yolo:135,york:[14,17,23,50,116,141,143,172,179],yoshua:[29,50,78,131],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,38,40,41,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,60,62,66,68,69,71,74,76,77,78,80,82,83,85,89,90,91,92,93,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,121,122,123,124,125,126,127,128,129,130,132,133,135,137,138,139,141,142,143,145,146,147,148,150,151,152,154,155,156,157,158,159,161,162,163,164,165,168,169,170,171,172,173,174,175,177,178,180,186,187,188,189,190,193,194,195],young:143,younger:118,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,40,45,46,47,49,50,52,53,58,60,62,66,68,69,71,74,75,77,80,82,83,85,88,90,91,92,93,96,97,107,122,123,129,157,158,161,169,186,187,191],yourself:[7,47,50,102,104,109,111,117,150,165],yourthoughtpartn:104,yousfi:56,youtub:[43,56,116,127,129,139,142,162,165],youyang:142,ypred:[47,76],yrsold:[54,66],ys:55,ystd:47,ystdactual:47,yt:[116,162],ytest:137,ytick:[31,37,39,41,158,186],yticklabel:[40,68,80],yu:128,yup:74,yuri:[50,147,148,150,151,186],yy:[50,158],yyyi:168,z1:[31,92],z2:[31,92],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:59,z5zy85g4yjw:116,z:[30,31,37,45,48,75,93,119,123,128,130,131,133,136,141,142,150,158,171,172,173,194],z_h:136,z_j:148,z_y:136,zalando:41,zaxi:186,zd_zt:38,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:59,zealand:[124,180],zero:[1,33,36,37,43,50,54,55,63,65,66,75,76,78,81,82,92,93,102,116,119,123,127,130,131,132,134,135,141,147,150,152,157,171,172,173,179,182,186,188,189,193,194,195],zero_grad:[31,33,37],zero_var:127,zerodivisionerror:[92,93,171,173,193],zeropadding2d:[36,132,133],zeros_lik:[82,127,131,158],zeroth:[172,194],zettabyt:112,zh:84,zhang:[132,143],zhangqi:179,zhi:135,zhu:132,zhuang:132,zia:176,zinkevich:141,zip:[18,22,29,30,31,33,36,37,39,41,66,119,126,127,128,130,133,134,136,156,171,172,184,186,192,193,194],zip_file_path:[29,30,31,39],zip_filenam:[36,37],zip_ref:[29,30,31,33,36,37,39],zip_store_path:[29,30,31,33,41,66],zip_url:[36,37,136],zipfil:[29,30,31,33,36,37,39,66,136],zisserman:132,zlad:38,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:59,zodb:180,zone:139,zoom:84,zoom_rang:[32,34,84],zoomed_imag:84,zopedb:180,zorder:158,zorro:92,zsy:59,zth:135,zucchini:[162,163],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:59,zw:84},titles:["37. Self-paced assignments","37.22. Analyzing COVID-19 papers","37.27. Analyzing data","37.9. Analyzing text about Data Science","37.13. Apply your skills","37.16. Build your own custom vis","37.17. Classifying datasets","37.26. Data preparation","37.24. Data processing in Python","37.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","37.40. Data Science project using Azure ML SDK","37.10. Data Science scenarios","37.20. Displaying airport data","37.15. Dive into the beehive","37.23. Estimation of COVID-19 pandemic","37.25. Evaluating data from a form","37.36. Explore a planetary computer dataset","37.37. Exploring for answers","37.19. Introduction to probability and statistics","37.12. Lines, scatters and bars","37.39. Low code/no code Data Science project on Azure ML","37.38. Market research","37.29. Matplotlib applied","37.28. NYC taxi data in winter and summer","37.18. Small diabetes study","37.21. Soda profits","37.35. Tell a story","37.14. Try it in Excel","37.11. Write a data ethics case study","37.101. Intro to Autoencoders","37.102. Base/Denoising Autoencoder & Dimension Reduction","37.103. Fun with Variational Autoencoders","37.90. How to choose cnn architecture mnist","37.94. Object Recognition in Images using CNN","37.92. Sign Language Digits Classification with CNN","37.112. DQN On Foreign Exchange Market","37.113. Art by gan","37.115. Generative Adversarial Networks (GANs)","37.97. Bitcoin LSTM Model with Tweet Volume and Sentiment","37.107. NN Classify 15 Fruits Assignment","37.106. Neural Networks for Classification with TensorFlow","37.116. Basic classification: Classify images of clothing","37.99. Google Stock Price Prediction RNN","37.95. Intro to TensorFlow for Deep Learning","37.104. Time Series Forecasting Assignment","37.83. Counterintuitive Challenges in ML Debugging","37.82. Data engineering","37.84. Case Study: Debugging in Classification","37.85. Case Study: Debugging in Regression","37.75. Beyond random forests: more ensemble models","37.76. Decision trees","37.80. Random Forest Classifier with Feature Importance","37.74. Random forests for classification","37.73. Random forests intro and regression","37.79. Boosting with tuning","37.78. Gradient boosting","37.77. Hyperparameter tuning gradient boosting","37.67. Decision Trees - Classification","37.66. Decision Trees - Intro and Regression","37.63. Kernel method assignment 1","37.65. Support Vector Machines (SVM) - Classification","37.64. Support Vector Machines (SVM) - Intro and SVM for Regression","37.70. Dropout and Batch Normalization","37.71. Lasso and Ridge Regression","37.69. Learning Curve To Identify Overfit & Underfit","37.68. Model selection assignment 1","37.72. Regularized Linear Models","37.88. Build Classification Model","37.87. Build classification models","37.57. Create a regression model","37.61. Delicious asian and indian cuisines","37.62. Explore classification methods","37.55. Exploring visualizations","37.58. Linear and polynomial regression","37.45. Linear regression - California Housing","37.48. Gradient descent","37.49. Linear Regression Implementation from Scratch","37.46. Linear Regression Metrics","37.47. Loss Function","37.54. Managing data","37.50. ML logistic regression - assignment 1","37.51. ML logistic regression - assignment 2","37.52. ML neural network - Assignment 1","37.42. Machine Learning overview - assignment 1","37.43. Machine Learning overview - assignment 2","37.89. Parameter play","37.60. Pumpkin varieties and color","37.53. Regression tools","37.44. Regression with Scikit-learn","37.59. Retrying some regression","37.86. Study the solvers","37.56. Try a different model","37.8. Python programming advanced","37.7. Python programming basics","37.6. Python programming introduction","37.5. Project Plan\u200b Template","37.3. First assignment","37.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4. Pandas","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.1. Relational databases","5. Working with data","24. Autoencoder","21. Convolutional Neural Networks","30. Diffusion Model","20. Intro to Deep Learning","27. Deep Q-learning","22. Generative adversarial networks","28. Image classification","29. Image segmentation","25. Long-short term memory","31. Object detection","23. Recurrent Neural Networks","26. Time series","Learn AI together, for free","34. Data engineering","36. Model deployment","35. Model training & evaluation","32. Overview","33. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","19. Model selection","17. Unsupervised learning","12. Build a web app to use a Machine Learning model","13.4. Applied Machine Learning : build a web app","13. Getting started with classification","13.1. Introduction to classification","13.2. More classifiers","13.3. Yet other classifiers","10. Machine Learning overview","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","38.10. Data Science in real world","38.9. Data Science in the cloud","38.4. Data Science introduction","38.8. Data Science lifecycle","38.7. Data visualization","38.6. NumPy and Pandas","38.5. Relational vs. non-relational database","38.20. Convolutional Neural Network","38.21. Generative Adversarial Network","38. Slides","38.18. Kernel method","38.19. Model Selection","38.17. Unsupervised learning","38.16. Build an machine learning web application","38.12. Linear Regression","38.13. Logistic Regression","38.14. Logistic Regression","38.11. Machine Learning overview","38.15. Neural Network","38.3. Python programming advanced","38.2. Python programming basics","38.1. Python programming introduction"],titleterms:{"0":59,"1":[3,24,30,32,43,49,50,52,53,54,56,57,58,59,60,61,65,68,74,75,80,82,83,104,113,119,132,174,175,176,177,178,179,180,181,182,184,188,190,194,195],"10":[40,56,127,132],"100":[51,59,132],"1000":[59,132],"11":56,"12":56,"13":56,"15":39,"19":[1,8,14],"1d":119,"2":[3,24,30,32,43,44,49,50,51,52,53,54,56,57,58,60,61,68,75,80,81,84,104,113,119,174,175,176,177,178,179,180,181,182,184,188,190,194,195],"2d":[30,119,184],"3":[3,24,32,39,43,49,50,52,53,54,56,57,58,60,61,68,74,80,104,119,174,175,176,177,178,179,181,182,188,194,195],"3d":[30,83,108,184],"4":[3,24,32,43,49,50,51,52,53,54,56,57,58,60,61,68,80,104,174,175,176,177,178,179,180,194,195],"5":[24,32,43,49,50,53,54,56,57,58,60,61,68,80,83,104,132,174,175,176,177,178,180,194,195],"50":56,"500":56,"6":[43,50,52,53,54,56,57,58,60,61,68,80,174,175,176,177,178],"7":[43,50,52,53,56,57,58,60,61,174,177,178],"8":[52,56,177],"9":56,"boolean":[119,172,173,194,195],"break":[92,171,193],"case":[28,45,47,48,50,104,112,168,184],"class":[35,39,47,50,51,63,65,92,171,193],"default":[51,59,171],"do":[47,114,167,168,172,176,184],"final":[49,74,75],"float":[7,172,194],"function":[43,51,59,75,76,78,82,92,93,119,129,130,151,171,173,179,189,190,192,193],"import":[9,29,33,37,41,44,49,51,52,53,54,56,57,58,59,60,61,64,66,83,117,128,141,148,155,170,171,188,189,190,192],"long":134,"new":[56,94,119,123,189,190],"null":[7,59,179],"public":37,"return":[94,130,171],"short":134,"true":59,"try":[0,27,48,68,75,80,91,171,193],"while":[92,171,193],A:[31,129,157,163,164,166],And:165,At:46,But:168,By:151,For:92,Is:143,It:[124,167,180],NOT:167,Not:165,On:35,One:[74,75,192],That:189,The:[9,36,43,51,53,75,77,82,100,101,117,124,157,158,164,168,170,171,172,175,179,180,181,184,193,194],There:168,To:[64,157],With:[34,137],about:[3,33,111,162,167,178],absolut:77,acceler:158,access:[93,119,123],accuraci:[32,41,47,59,132,155,192],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,80,82,83,84,85,86,88,89,90,91,92,93,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,130,131,132,133,134,135,136,137,138,141,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,181,184,186,187,188,189,192],ackowledg:182,action:130,activ:129,actual:104,ad:[30,31,47,62,66,119,157],adaboost:49,adam:192,add:[48,119,141],addit:123,advanc:[32,92,119,121,171,193],adversari:[37,131,182],after:[30,157,185],ag:24,against:48,agent:[35,130],agglom:158,aggreg:[119,121,176,179],ahead:82,ai:[36,41,138,186],airport:12,aka:64,algorithm:[50,54,130,142,145,150,151,155,158],align:123,all:[24,47,74,111,124,166,178,180],alpha:128,an:[9,31,64,66,100,101,104,118,119,159,181,187],anagram:172,analysi:[8,38,49,51,52,53,54,56,57,58,59,60,61,74,77,99,103,165,186,191],analyz:[1,2,3,18,103,119,168,177],anchor:[39,51],anim:108,ann:44,annot:[171,193],anomal:47,anomali:29,anoth:37,answer:17,api:[34,43],app:[159,160],append:[93,179],appli:[4,22,47,112,160,163,164,176],applic:[50,126,165,187,191],approach:[51,104,124,163,180],ar:172,arbitrari:171,architectur:[32,127,129,181,192],argument:[171,193],arithmet:[123,172,194],arrai:[119,123,179],art:36,artifici:[165,191],artwork:36,ascend:[93,94],ascent:131,asian:70,ask:168,assert:51,assign:[0,12,25,39,44,59,65,80,81,82,83,84,96,97,119,121,123,190],assist:133,attribut:[59,119,123,179],auc:[56,59],audienc:104,augment:[32,34,128],author:170,autoencod:[29,30,31,126],automl:[9,100,101,141],avail:119,averag:[92,168],avoid:[108,157],axi:119,azur:[9,10,20,100,101,118],b:75,babylonian:93,background:128,backprop:82,bag:[49,147,150,155],balanc:162,bar:[19,22,178],base:[30,92,122,155],basebal:18,baselin:[47,48,165,191],basi:59,basic:[29,32,41,43,93,112,119,123,130,172,173,176,179,194,195],batch:[33,62,158],beehiv:13,begin:104,behind:55,best:[9,32,37,100,143],beta:128,better:[163,167],between:[24,54,56,68,74,80,119,150,176,179],beyond:[40,49,156,184],bi:54,bia:[64,150,157,185],bibliographi:25,big:192,binai:54,binari:[40,167],binder:0,bird:[109,178],bit:[31,119],bitcoin:38,blend:54,bmi:24,boost:[49,54,55,56,151,152,153,155],bootstrap:147,bound:128,boundari:[156,158,184],boxplot:[24,83],bp:24,brain:181,broadcast:[119,179],bug:48,build:[5,29,31,32,36,41,50,51,67,68,80,108,146,159,160,166,167,168,178,187],c:59,cach:187,calcul:[47,92,93,172],california:74,call:193,callabl:122,callback:40,can:[50,56,114,176],candid:56,capac:157,captur:[106,177],cardin:51,cast:[172,194],catalog:139,catboost:54,categor:[7,51,54,57,68,74,80,166,188],categori:93,categorical_crossentropi:192,caus:45,central:[18,116],centroid:158,chain:123,challeng:[1,14,22,45,112,119,129,132,135,176],chang:[34,54],changin:34,channel:104,chart:[108,111,178,187],check:[30,47,48,51,53,57,59,68,74,80,141,155,168,172,195],checkbox:187,checklist:112,choic:[123,143],choos:[32,50,74,99,101,108,163,175],churn:50,cifar:[127,132],citi:[56,124,180],classic:[132,133,135,151],classif:[34,40,41,47,49,50,51,52,57,59,60,67,68,71,78,80,83,132,151,161,162,164,165,167,184],classifi:[6,39,40,41,49,51,52,57,60,155,162,163,164],clean:[117,159,162,167],cloth:41,cloud:[9,98,99,100,175],cluster:[9,100,101,144,145,146,158,186],cnn:[32,33,34,44,127,135,181],code:[20,75,101,112,126,127,128,130,131,132,133,134,135,136,140,173,175,182,193],collect:[39,165,191],color:[86,108],column:[7,51,54,123,187],combin:[119,121,122,179],come:189,comment:[59,172,173,194,195],common:[63,65,78,117,129,172],commun:[104,177],compani:56,compar:[59,178],comparison:[119,150,172,194],compil:[36,40,41,192],complex:[48,50,92,172,194],compon:186,comprehens:[167,172,194],comput:[1,9,14,16,24,100,101,119,179,181,192],con:[50,150],concat:[121,179],concaten:[54,179],concept:[78,112,124,176,180],conclus:[1,18,31,32,34,45,47,48,59,63,65,76,77,78,104,116,124,151,154,155,157,168,185],conculs:36,condit:92,confid:[18,116],configur:[9,100,128,170],confus:[51,59,167,189,190],connect:[126,129,138,181],consider:159,constant:43,consum:9,consumpt:[100,101,139],contain:119,content:[33,57,58,60,61,191,193],context:56,continu:[92,130,171,193],control:[40,171,173,193],converg:[45,131],convert:[54,119],convolut:[29,32,33,126,127,129,181],corp:18,correl:[18,24,48,53,54,68,74,80,116,166,167],correspond:1,cosin:128,cosmo:118,count:[92,93,172],counterintuit:45,covari:116,covid:[1,8,14,119],creat:[9,32,39,40,43,45,68,69,74,80,92,93,100,101,119,123,182],creation:[56,63,65,119],criteria:50,cross:[50,59,74,83,155,189],crucial:50,csv:44,cuisin:[70,162,163],cultur:112,current:127,curv:[36,59,64,141,157,167],custom:[5,40,50],cv:[59,155],d3:108,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,74,76,79,80,83,98,99,100,102,103,104,105,106,107,109,112,113,114,116,117,118,119,121,122,123,124,125,128,137,139,141,142,143,145,155,159,162,163,164,165,167,168,172,173,174,175,176,177,178,179,180,184,187,188,191,192,194,195],databas:[12,124,180],databasetyp:180,dataclass:123,datafram:[7,117,123,179],dataset:[6,16,29,30,31,33,35,39,41,45,46,47,48,51,59,83,100,101,109,121,132,133,150,155,162,170,178,179,186,188,189,190,192],datatyp:119,date:168,db:118,dbscan:158,deal:[7,46,54,92,117,119],debug:[45,47,48,141],decept:108,decis:[50,51,57,58,150,158],decisiontre:55,decisiontreeclassifi:50,declar:[51,59,155],decor:[171,193],decorrel:150,decreas:45,deep:[41,43,129,130,137,165,191],deepdream:127,deeplab:133,def:[171,173],defin:[29,33,35,76,113,114,128,133,137,165,167,176,191,193],definit:[112,128,130,171,176],degre:24,del:[93,172,194],delet:123,delici:70,demens:30,denois:[29,30],dens:[32,82,129],densenet:132,densiti:[22,109,178],depend:[24,130],deploi:[9,165,191],deploy:[100,101,140,142],depth:141,deriv:75,descent:[75,76,131,151],describ:[7,113],descript:[59,83,103],design:[188,192],detect:[7,29,135],determin:168,detr:135,develop:[0,76],deviat:116,diabet:[24,170],diagnosi:1,dict:[92,93,123],dictionari:[92,93,172,173,194,195],differ:[24,91,123],difficult:75,diffus:128,digit:[34,50,84,114,127],dimens:[30,51,83,186],dimension:[59,75,119,150,179],direct:137,dirrec:137,disciplin:56,discov:162,discrimin:[36,37,131],diseas:24,dispers:59,displai:[12,51,108,119,146,187],distant:184,distribut:[18,24,51,54,59,109,116,145,178],dive:[13,156],diverg:128,divid:83,docstr:[172,193,194],document:[118,171,193],doe:[0,182],dog:37,donut:[110,178],download:29,dqn:35,draw:[184,187],drop:7,drop_dupl:7,dropout:[32,47,62,157,185],dual:[111,178],duplic:[7,46,93,117,172],earli:[157,168,185],early_stopping_round:154,easi:143,ecg:29,eda:[51,68,80,155,165,191],educ:56,effect:[104,177],elbo:128,elbow:146,element:[93,119,172],elif:92,els:92,emot:104,emul:118,encod:[7,51,56,74,83,188,192],end:104,endpoint:[9,100,101],engin:[46,48,51,54,139,142],enrol:56,enrollee_id:56,ensembl:[49,54,147,149,164],entropi:[50,189],envireon:35,environ:[0,130,170,173],episod:130,equat:188,equival:48,error:[59,77,147,165,171,191,193],establish:[47,48,165,191],estim:[14,22],ethic:[28,112,176],eval:121,evalu:[15,40,41,49,52,53,54,57,58,60,61,68,74,76,80,83,130,141,142,192],everyth:[119,176,179],evid:128,evil:18,evolut:[140,155],exampl:[29,37,50,62,99,119,130,137,148,151,152,154,157,165,180,188,191],excel:27,except:[92,171,193],exchang:35,exercis:[7,145,146,159,162,163,164,167,168,170],exist:[43,119],expect:128,experi:[9,32,56,100,168],explod:45,exploit:130,explor:[7,16,17,31,33,41,46,49,51,52,59,68,71,72,74,75,80,103,109,117,118,130,178,179],exploratori:[38,49,51,52,53,56,57,58,59,60,61,74,103,165,191],express:171,extend:93,extract:[1,181],extrem:[150,155],f1:59,facet:[111,178],failur:[100,101],fals:59,fashion:[40,41],faster:135,fcn:133,fco:135,featur:[32,47,48,50,51,52,53,54,56,57,59,68,74,80,83,137,138,141,148,155,165,166,181,189,190,191],feed:41,feel:75,fibonacci:93,field:[114,119,176],file:[34,44,173,195],fill:[7,54,92],filter:172,find:[51,56,68,75,80,158,172],fine:127,first:[29,83,96,168,170],fit:[45,56,64,156,157,185,188,192],fix:47,flask:159,flat:119,flatten:181,flow:[171,173,193],flu:137,fold:[59,155],forecast:[44,137],foreign:35,forest:[49,51,52,53,148,150],fork:31,form:15,format:[47,93,172,194],formul:[68,80,191],formula:[77,93],forward:128,four:166,frame:[142,143],free:[75,138],frequenc:51,friedman:151,from:[15,34,39,43,63,65,76,81,93,119,123,172,181,186,189,192],fruit:39,full:[82,181],fulli:126,fun:31,gain:75,gan:[36,37,182],gate:134,gbm:151,gcd:92,gender:[24,56],gener:[36,37,39,93,119,131,182],geograph:74,ger:182,get:[1,3,24,40,45,83,93,110,114,119,128,145,149,161,170,178],giant:186,gif:128,github:0,give:31,glass:31,global:[32,83,171],go:[40,163],goal:[3,117],good:[64,157,188],googl:42,govern:139,gradient:[45,49,55,56,75,76,131,151,152,153,155],grid:[111,167,178],gridsearch:59,gridsearchcv:56,group:[83,93,121],guid:41,hand:172,handl:[46,57,59,64,74,171,179],handwritten:[50,127],have:[47,54,167],head:7,heart:[100,101],hello:162,here:168,hidden:129,hide:187,hierarch:[121,158],high:[45,121,150],higher:59,hing:156,hint:48,histogram:[22,53,109,178],histori:[132,133,135,151],honei:[111,178],hood:59,hot:[74,192],hous:74,how:[0,32,50,113,127,133,143,151,157,173,181,182,184,192],human:[102,174],hyperparamet:[56,59,141],hyperplan:59,hypothesi:[18,24,116,188],id:[39,51],identifi:[7,54,64,103],iiit:133,illustr:148,imag:[29,30,32,33,37,41,121,132,133,158,181],imagenet:132,imbalanc:47,impact:157,implement:[34,40,48,76,77,93,152,155,188],improv:[52,53,56,57,58,60,61,141],includ:[172,194],inconsist:[46,103],indent:[172,173,194,195],index:[119,121,122,123,179],indian:70,indic:119,individu:[33,74,119],industri:[102,174],inequ:128,inertia:158,info:7,inform:[7,59,117],infrastructur:140,ingest:[139,142],ingredi:162,inherit:[171,193],initi:[9,37,56,158],input:[48,59,74],insensit:184,insert:[93,172],insid:[171,193],insight:[3,68,80],instal:[170,173],instanc:[100,171],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,69,71,85,88,89,90,91],integ:[119,172,194],intellig:[165,191],interpret:[64,77,141,157],interv:[18,116],intro:[29,43,53,58,61,129],introduc:[123,179],introduct:[9,18,24,30,50,54,59,62,64,74,76,94,99,100,104,106,115,116,119,123,145,146,151,153,155,162,166,167,168,170,173,176,185,187,189,190,192,195],intuit:[59,75,148,155],inventori:118,investig:14,involv:119,iri:[64,186],isol:54,item:[93,172],iter:119,jensen:128,job:56,join:[93,121,124,179,180],js:108,json:118,just:54,k:[59,146,150,155,158,164,186],kaggl:22,kei:[165,172,191],kera:[34,39,192],kernel:[22,59,156,181,184],keyword:171,kl:128,knn:83,know:[110,178],l1:[157,185],l2:[157,185],label:[51,83,122,123,165,191,192],lag:137,lambda:[92,157,171],languag:34,larg:[32,116],lasso:[63,65],lasson:[63,65],last:[46,56],latent:30,law:116,layer:[32,41,47,82,129,139,192],layout:187,lda:158,learn:[9,36,41,43,45,50,56,59,63,64,65,74,83,84,88,101,126,129,130,137,138,141,143,144,149,157,158,159,160,162,163,165,166,168,169,170,175,186,187,191],learning_r:154,length:92,let:[75,156,172,182,184,193],level:[34,56],libari:33,librari:[29,32,34,37,38,42,51,59,83,128,155,170,188,189,190,192],lifecycl:[105,106,177],lightgbm:54,like:[104,123],limit:[18,116,158],line:[19,111,166,178,184,187],linear:[47,48,59,66,73,74,76,77,128,137,156,157,164,166,167,184,188,189,190],linearli:184,list:[92,93,94,123,171,172,173,193,194,195],liter:[172,194],load:[12,14,25,29,30,31,32,34,35,36,37,38,39,41,42,44,47,49,52,53,54,56,57,58,60,61,83,100,101,128,155],local:0,logic:55,logist:[64,68,80,81,156,163,167,184,189,190],look:[1,40,53,56,166],loop:[37,55,82,92],loss:[45,47,64,76,78,82,131,141,151,156,189,192],lot:[54,167],low:[20,101,175],lower:[97,128],lstm:[38,44],m:75,machin:[9,41,59,60,61,74,83,84,101,143,144,156,159,160,165,169,170,175,184,187,191],mae:77,magic:187,main:[130,155],maintain:[106,177],mainten:142,major:56,make:[14,36,41,108,133,155,168,189,190],manag:[79,106,118,168,177],mani:32,manipul:[43,119],map:[32,54,74,164,187],mape:77,margin:[59,156,184],market:[21,35,168],mask:135,math:[55,75,119,156],matplotlib:[22,168],matrix:[48,51,54,59,167,188,189,190],max:[119,176,179],max_depth:56,max_featur:56,maxim:[156,184],maximum:[59,179],mean:[24,77,116,128,146,158,186],meaning:[104,108],media:99,median:116,medicin:1,memori:134,men:24,merg:[93,94,121,179],method:[49,59,71,93,104,123,146,156,158,171,172,184,192,194],metric:[59,68,77,80,141,192],min:[119,176,179],min_samples_leaf:56,min_samples_split:56,mind:104,mini:158,minimum:179,miscellan:56,miss:[7,46,51,54,57,59,68,74,80,92,117,155,168,179],ml:[9,10,20,45,80,81,82,100,101,151],mnist:[32,41,47,50,127,186],mobilenet:132,mode:116,model:[8,9,29,30,33,34,36,37,38,39,40,41,43,44,45,47,48,49,50,51,52,53,54,56,57,59,64,65,66,67,68,69,74,76,80,83,91,100,101,128,130,132,133,135,137,140,141,142,143,144,146,154,157,159,165,166,167,168,169,170,182,185,188,189,190,191,192],modul:[171,193],more:[32,49,52,68,80,163,168],most:56,mostli:54,motiv:156,mse:77,much:32,multiclass:40,multicollinear:[54,64],multioutput:137,multipl:[119,158,171,172,188],multistep:137,mushroom:[110,178],mutabl:93,n_estim:154,n_job:154,name:[51,123],namedtupl:123,nan:[7,179],nation:163,nativ:119,ndarrai:[119,123],nearest:150,need:167,neighbor:[150,164],nest:[172,194],network:[32,33,37,39,40,82,108,127,129,131,136,181,182,189,192],neural:[32,33,39,40,82,127,129,136,181,189,192],next:29,nn:39,nois:[30,128],noisi:30,non:[7,118,180,184],none:[7,179],nonlinear:[47,48,82],nonloc:171,normal:[18,22,44,48,62,116,188],nosql:[118,180],note:49,notebook:[100,170],now:184,number:[51,56,92,93,116,119,158,172,173,192,194,195],numer:[7,50,51,54,59,74,179],numpi:[34,119,179],nyc:23,o:39,object:[33,75,78,119,123,135,171,179],obtain:143,occurr:93,odd:168,one:168,oper:[43,93,119,123,172,179,194],optim:[37,48,56,59,141,158,188,192],option:[0,47,101,156,187],order:93,ordin:54,ordinari:[165,191],orign:30,other:[29,50,68,80,114,119,164,167],our:[188,192,193],out:[0,147],outlier:[54,59],outlin:[184,185,186],output:[74,128,193],over:[157,185],overfit:[59,64,157],overiew:137,overview:[29,41,83,84,121,122,123,126,130,131,134,142,157,165,191],own:[5,188,193],oxford:133,pace:0,packag:171,pad:181,pair:32,pairplot:[53,83],panda:[7,44,103,120,121,123,179],pandem:14,paper:[1,8,99,119],paramet:[37,50,51,56,83,85,150,192],parameter:128,part:[24,53],partial:75,pass:47,path:44,pca:[158,186],pd:179,peopl:92,percentag:[51,77],perform:[43,68,80,121,165,191,192],permut:148,pet:133,phrase:104,pickl:159,pictur:39,pie:[110,178],piec:92,pipelin:[74,132],pivot:121,plai:[85,181,182,189],plan:[56,95,164],planetari:16,plot:[22,24,30,32,55,74,109,111,167,178,187],plote:36,point:184,polici:130,polynomi:[59,73,166,188],pool:181,popul:93,posit:[59,122],potenti:126,practic:[148,150],pre:[14,38,56],precis:59,predict:[39,41,42,50,54,56,80,83,100,101,133,155,157,163,185,188,189,190],predictor:54,prepar:[7,31,32,34,40,44,76,117,133,137,146,164,166,168],prepreprocess:36,preprocess:[36,37,41,49,52,53,56,57,58,60,61,66,68,74,80,128,158,165,191,192],prerequisit:[146,166,167],preserv:179,preview:[51,155],price:[42,80,168],princip:186,principl:112,pro:[50,150],probabl:[18,24,116,176],problem:[50,51,59,68,80,142,143,150,151,165,188,191],process:[8,14,38,47,54,74,106,121,128,139,142,177,181],product:143,profession:112,profil:103,profit:25,program:[92,93,94,119,165,171,172,173,191,193,194,195],progress:[24,187],project:[10,20,95,100,101,108],promot:119,properti:[51,128],proport:[110,178],pumpkin:[86,168],put:[74,143,166],python:[8,77,92,93,94,119,155,170,171,172,173,179,193,194,195],q:130,qualiti:[50,139,141],quantiti:178,quartil:116,queri:[103,118,121],question:[167,168],quot:186,r2:77,r:[77,135],r_t:14,radial:59,rainfal:[124,180],rais:171,random:[18,30,49,51,52,53,116,148,150,176],rang:[80,92,123,171],rate:[45,56,59],rbf:[59,156],re:128,reach:45,read:[44,50,155],readabl:108,readi:24,real:[18,99,102,116,141,150,174],reason:[64,163],recal:59,recap:77,recogn:84,recognit:[33,50],record:123,recurr:[129,136],recurs:[137,172],reduc:48,reduct:[30,186],redund:54,refer:[14,174,175,176,177,178,179,180,193,194,195],refresh:64,regress:[48,50,53,58,61,63,64,65,68,69,73,74,76,77,78,80,81,87,88,89,137,151,156,157,163,165,166,167,168,169,170,184,188,189,190],regressor:[53,58,61],regul:112,regular:[47,63,65,66,78,157,185],reinforc:[165,191],relat:[114,118,124,176,180],relationship:[54,74,111,124,178,180],relev:56,remov:[7,46,47,54,56,93,117,119,172],renam:51,replac:93,report:[51,59],represent:150,research:[21,102,127,174],reshap:119,residu:77,resnet:132,resourc:101,respect:75,respons:104,result:[3,30,39,40,48,56,59,155,188,189,190],retri:89,retriev:[124,180],revers:[128,172],reward:130,ridg:[63,65],right:[101,108,168],rl:130,rmse:77,rnn:[42,44,129],road:82,roc:[59,167],role:[49,53],root:[77,93],rotaion:34,row:83,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,85,88,89,90,91],rule:119,run:[9,59,170],s:[74,75,128,151,156,167,168,172,176,177,178,179,182,184,189,190,193,195],salepric:54,sampl:[31,103,128],satisf:141,save:[9,37,100],scalar:[119,123],scale:[30,51,54,59,68,74,80,83,189,190],scatter:[19,22,55],scatterplot:[54,111,178],scenario:11,schedul:128,schema:[12,48],scienc:[3,9,10,11,20,98,99,100,102,105,106,112,114,165,174,175,176,177,191],scientif:99,scikit:[50,59,63,65,88,163,166,168,170],scope:[171,193],score:[59,77,146,155],scratch:[39,63,65,76,81,188,189,192],sdk:[9,10,100],search:[92,139],second:[29,47,97,168],section:78,secur:[106,139,177],see:[56,181],segment:[133,158],segnet:133,select:[43,51,65,122,123,141,157,165,179,185,191],selectbox:187,self:[0,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,130,136,139,141,142,143,145,146,159,162,164,166,167,168,170,171,172],sens:14,sentenc:92,sentiment:[38,99],separ:[51,59,155,184,189],sequenc:93,sequenti:43,seri:[44,123,137,179],serv:140,session:75,set:[32,41,49,51,52,53,54,57,59,74,83,155,172,173,188,189,190,192,195],setdefault:93,setup:[37,48,100,173],sex:24,shape:[7,43,83,155],shell:173,shortcom:[124,180],show:[37,83,108,187],showcas:139,shuffl:[47,59],side:167,sidebar:187,sigmoid:[59,189,190],sign:34,silhouett:146,similar:150,simpl:[31,44,45,141,157,166,179,188],simul:[18,55],singl:[33,74,93,119,124,129,180],size:56,skew:47,skicit:[63,65],skill:4,skip:75,sklearn:[74,148,184,186],slice:[47,93,119,122,123,141],slide:183,slider:187,small:[24,56],smile:31,social:99,soda:25,solut:[45,47,48,130],solver:90,some:[37,89,172],someth:168,sort:[93,119],sourc:113,space:[30,59],special:134,specif:[9,56,59],specifi:93,spectral:158,split:[34,47,48,50,51,54,57,59,74,93,155,163,164,188,189,190],splite:83,spread:[8,119],spreadsheet:118,squar:[77,93],st:187,stack:[49,92],standard:[116,132],start:[40,124,141,145,149,161,170,180],state:130,statement:[51,92,151,171,172,193,194],statist:[18,24,48,51,57,68,74,80,103,116,155,176],step:[3,29,56,74,137,151],still:167,stock:42,stop:[157,185],storag:139,store:[106,118,177],stori:[26,104],storytel:104,str:[93,97],strategi:[1,117,137,140,168],stratifi:59,streamlit:187,stride:119,string:[92,93,171,172,173,193,194,195],structur:[1,32,78,119,123,179],student:[102,174],studi:[24,28,45,47,48,90,99,100,101,102,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,130,136,139,141,142,143,145,146,159,162,164,166,167,168,170,171,172],studio:[101,173],style:[108,127,187],stylenet:127,subarrai:119,subclass:43,subplot2grid:22,subplot:22,subsambl:32,subsampl:56,sum:92,summari:[32,45,51,57,59,68,80,155,156,192],summer:23,sup:180,supervis:[165,191],support:[59,60,61,156,164,184],sustain:[102,174],svc:164,svm:[59,60,61,156,184],svr:156,swarm:167,syntax:[172,173,194],system:[165,191],tabl:[33,121,124,180,191,193],tail:7,take:40,target:[51,54,59,155],task1:44,task2:[44,56],task5:52,task:[24,44,49,50,52,53,54,56,74,113,130,137],taxi:23,taxonomi:130,techniqu:121,tell:26,templat:95,tensor:43,tensorboard:40,tensorflow:[29,40,43,127],term:[93,134],terminolog:[130,165,191],test:[18,24,33,34,47,48,49,51,52,53,54,56,57,59,74,82,83,116,128,142,155,188,189,190],text:[3,109,178],text_input:187,tf:43,thank:191,theme:187,theorem:[18,116],theori:31,thi:[0,41,55,78,167],thing:168,third:29,tidi:167,time:[44,75,99,137,181,182],titan:22,titl:[93,97,119],togeth:[54,138,166],toi:50,tool:[87,119,159,170],top:132,trade:170,tradeoff:[157,185],traffic:137,train:[30,31,32,33,34,35,36,37,39,40,41,47,49,51,52,53,54,57,58,59,60,61,64,68,74,76,80,82,83,100,101,128,129,131,133,141,142,155,165,188,189,190,191,192],trane:188,transfer:141,transform:[3,59,74,114,129,150],transpos:123,treatment:1,tree:[50,51,56,57,58,150,155],trend:[1,127,137],trick:[59,128,184],trigonometr:119,tune:[54,56,83,127,141,154],tunnel:137,tupl:[119,123,172,173,195],turn:[99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,178,179,180,193,194,195],tweet:38,twiddl:119,two:[75,94,172,179],type:[51,54,56,104,108,114,119,129,165,172,173,191,194,195],typic:[165,191],ufunc:[119,179],under:[59,157,185],underfit:[59,64,157],understand:[47,54,104],univari:[54,188],univers:[56,119,179],unpack:[171,193],unstructur:119,unsupervis:[126,158,165,186,191],up:[41,93,170],updat:131,upper:[93,97],upvot:31,us:[10,30,33,40,41,48,56,59,62,63,64,65,76,83,92,93,104,108,109,138,141,143,155,158,159,163,165,166,167,168,173,178,187,192],useless:54,v3:133,v:[156,184,189,190],valid:[32,33,47,48,50,54,59,64,74,83,155],valu:[7,24,47,51,54,56,57,59,68,74,80,92,93,119,123,130,155,157,171,172,178,179],variabl:[18,24,32,43,51,59,116,119,155,158,167,171,172,176,193,194],varianc:[24,64,116,128,146,150,157,185],variat:[31,54],varieti:86,vector:[51,59,60,61,123,155,156,164,184],veri:48,verifi:41,versa:172,vggnet:132,vi:5,via:[32,167],vice:172,view:[51,119,192],vif:64,violin:167,visual:[3,22,39,40,56,72,83,103,107,108,109,110,111,167,168,172,173,178,192],visualis:[188,189,190],vit:132,volum:38,vote:49,vowel:172,vs:[155,165,180,191],w:39,waffl:[110,178],wai:[9,100,101,166,175],wait:168,want:92,we:[50,56],web:[159,160,187],weight:[37,151],what:[24,32,43,83,99,100,101,104,114,132,133,135,137,143,152,154,163,165,175,176,177,178,182,186,188,191,195],when:[165,189],where:114,whole:188,why:[99,129,173,175,184,195],widget:187,width:141,wingspan:178,winter:23,within:119,women:24,word:[92,104],work:[0,50,56,109,119,125,151,170,178,182],workflow:[165,191],workspac:[9,100,101],world:[102,116,141,174],write:[28,187],x_t:128,xgboost:[54,66,154,155],y:24,yet:164,you:[47,75,114,167,176,191],your:[4,5,48,99,100,101,102,103,104,106,108,109,110,111,112,113,114,116,117,118,119,121,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,143,145,146,147,148,150,151,152,154,155,156,159,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,178,179,180,193,194,195],zero:47,zoom:34}}) \ No newline at end of file diff --git a/slides/data-science/data-science-in-real-world.html b/slides/data-science/data-science-in-real-world.html index 262f015a34..12c54ea778 100644 --- a/slides/data-science/data-science-in-real-world.html +++ b/slides/data-science/data-science-in-real-world.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/data-science-in-the-cloud.html b/slides/data-science/data-science-in-the-cloud.html index 6e749cec6d..78015bb054 100644 --- a/slides/data-science/data-science-in-the-cloud.html +++ b/slides/data-science/data-science-in-the-cloud.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/data-science-introduction.html b/slides/data-science/data-science-introduction.html index db54d77f85..496c495879 100644 --- a/slides/data-science/data-science-introduction.html +++ b/slides/data-science/data-science-introduction.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/data-science-lifecycle.html b/slides/data-science/data-science-lifecycle.html index 9e8589c01b..a5a4074261 100644 --- a/slides/data-science/data-science-lifecycle.html +++ b/slides/data-science/data-science-lifecycle.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/data-visualization.html b/slides/data-science/data-visualization.html index 0fb7352481..2d428258b9 100644 --- a/slides/data-science/data-visualization.html +++ b/slides/data-science/data-visualization.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/numpy-and-pandas.html b/slides/data-science/numpy-and-pandas.html index ed1f04395e..26a5dc7358 100644 --- a/slides/data-science/numpy-and-pandas.html +++ b/slides/data-science/numpy-and-pandas.html @@ -27,8 +27,8 @@ - + diff --git a/slides/data-science/relational-vs-non-relational-database.html b/slides/data-science/relational-vs-non-relational-database.html index 1a751549e3..96166bf04a 100644 --- a/slides/data-science/relational-vs-non-relational-database.html +++ b/slides/data-science/relational-vs-non-relational-database.html @@ -27,8 +27,8 @@ - + diff --git a/slides/deep-learning/cnn.html b/slides/deep-learning/cnn.html index 771bbe4584..ad9a6aaf92 100644 --- a/slides/deep-learning/cnn.html +++ b/slides/deep-learning/cnn.html @@ -27,8 +27,8 @@ - + diff --git a/slides/deep-learning/gan.html b/slides/deep-learning/gan.html index d2ef1dd80c..ebe1aedddf 100644 --- a/slides/deep-learning/gan.html +++ b/slides/deep-learning/gan.html @@ -27,8 +27,8 @@ - + diff --git a/slides/introduction.html b/slides/introduction.html index 2b25a64993..a46a7e3251 100644 --- a/slides/introduction.html +++ b/slides/introduction.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-advanced/kernel-method.html b/slides/ml-advanced/kernel-method.html index 8c1727c5ca..bbd80544cd 100644 --- a/slides/ml-advanced/kernel-method.html +++ b/slides/ml-advanced/kernel-method.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-advanced/model-selection.html b/slides/ml-advanced/model-selection.html index 254d719923..8ed547bf8d 100644 --- a/slides/ml-advanced/model-selection.html +++ b/slides/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-advanced/unsupervised-learning.html b/slides/ml-advanced/unsupervised-learning.html index 170993609e..3ebe304a09 100644 --- a/slides/ml-advanced/unsupervised-learning.html +++ b/slides/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/build-an-ml-web-app.html b/slides/ml-fundamentals/build-an-ml-web-app.html index 419de2ed64..46887f4cf4 100644 --- a/slides/ml-fundamentals/build-an-ml-web-app.html +++ b/slides/ml-fundamentals/build-an-ml-web-app.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/linear-regression.html b/slides/ml-fundamentals/linear-regression.html index 44de31e673..a11e76d00b 100644 --- a/slides/ml-fundamentals/linear-regression.html +++ b/slides/ml-fundamentals/linear-regression.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/logistic-regression-condensed.html b/slides/ml-fundamentals/logistic-regression-condensed.html index aaff5b9529..dadf94b0ab 100644 --- a/slides/ml-fundamentals/logistic-regression-condensed.html +++ b/slides/ml-fundamentals/logistic-regression-condensed.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/logistic-regression.html b/slides/ml-fundamentals/logistic-regression.html index f6040ce907..e5261e3f5f 100644 --- a/slides/ml-fundamentals/logistic-regression.html +++ b/slides/ml-fundamentals/logistic-regression.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/ml-overview.html b/slides/ml-fundamentals/ml-overview.html index 4541e4a288..447d31f374 100644 --- a/slides/ml-fundamentals/ml-overview.html +++ b/slides/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + diff --git a/slides/ml-fundamentals/neural-network.html b/slides/ml-fundamentals/neural-network.html index 5d22266673..190f313365 100644 --- a/slides/ml-fundamentals/neural-network.html +++ b/slides/ml-fundamentals/neural-network.html @@ -27,8 +27,8 @@ - + diff --git a/slides/python-programming/python-programming-advanced.html b/slides/python-programming/python-programming-advanced.html index 3261b60826..6dfc361285 100644 --- a/slides/python-programming/python-programming-advanced.html +++ b/slides/python-programming/python-programming-advanced.html @@ -27,8 +27,8 @@ - + diff --git a/slides/python-programming/python-programming-basics.html b/slides/python-programming/python-programming-basics.html index 88e44524f2..cbc6292295 100644 --- a/slides/python-programming/python-programming-basics.html +++ b/slides/python-programming/python-programming-basics.html @@ -27,8 +27,8 @@ - + diff --git a/slides/python-programming/python-programming-introduction.html b/slides/python-programming/python-programming-introduction.html index 5f0a47ee68..4f3f7b4f72 100644 --- a/slides/python-programming/python-programming-introduction.html +++ b/slides/python-programming/python-programming-introduction.html @@ -27,8 +27,8 @@ - +