forked from xuannianz/keras-fcos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·479 lines (405 loc) · 18.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#!/usr/bin/env python
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import os
import sys
import warnings
import keras
import keras.preprocessing.image
import tensorflow as tf
from datetime import date
import losses
import models
from callbacks import RedirectModel, Evaluate
from models.retinanet import retinanet_bbox
from generators.csv_generator import CSVGenerator
from generators.voc_generator import PascalVocGenerator
from utils.anchors import make_shapes_callback
from utils.config import read_config_file, parse_anchor_parameters
from utils.keras_version import check_keras_version
from utils.model import freeze as freeze_model
from utils.transform import random_transform_generator
from utils.image import random_visual_effect_generator
def makedirs(path):
# Intended behavior: try to create the directory,
# pass if the directory exists already, fails otherwise.
# Meant for Python 2.7/3.n compatibility.
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def get_session():
"""
Construct a modified tf session.
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
def model_with_weights(model, weights, skip_mismatch):
"""
Load weights for model.
Args
model: The model to load weights for.
weights: The weights to load.
skip_mismatch: If True, skips layers whose shape of weights doesn't match with the model.
"""
if weights is not None:
model.load_weights(weights, by_name=True, skip_mismatch=skip_mismatch)
return model
def create_models(backbone_retinanet, num_classes, weights, num_gpus=0, freeze_backbone=False, lr=1e-5, config=None):
"""
Creates three models (model, training_model, prediction_model).
Args
backbone_retinanet: A function to call to create a retinanet model with a given backbone.
num_classes: The number of classes to train.
weights: The weights to load into the model.
num_gpus: The number of GPUs to use for training.
freeze_backbone: If True, disables learning for the backbone.
config: Config parameters, None indicates the default configuration.
Returns
model: The base model. This is also the model that is saved in snapshots.
training_model: The training model. If num_gpus=0, this is identical to model.
prediction_model: The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
"""
modifier = freeze_model if freeze_backbone else None
# Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
# optionally wrap in a parallel model
if num_gpus > 1:
from keras.utils import multi_gpu_model
with tf.device('/cpu:0'):
model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier),
weights=weights, skip_mismatch=True)
training_model = multi_gpu_model(model, gpus=num_gpus)
else:
model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier),
weights=weights, skip_mismatch=True)
training_model = model
# make prediction model
prediction_model = retinanet_bbox(model=model)
# compile model
training_model.compile(
loss={
'regression': losses.iou(),
'classification': losses.focal(),
'centerness': losses.bce(),
},
optimizer=keras.optimizers.adam(lr=lr)
)
return model, training_model, prediction_model
def create_callbacks(model, training_model, prediction_model, validation_generator, args):
""" Creates the callbacks to use during training.
Args
model: The base model.
training_model: The model that is used for training.
prediction_model: The model that should be used for validation.
validation_generator: The generator for creating validation data.
args: parseargs args object.
Returns:
A list of callbacks used for training.
"""
callbacks = []
tensorboard_callback = None
if args.tensorboard_dir:
makedirs(args.tensorboard_dir)
tensorboard_callback = keras.callbacks.TensorBoard(
log_dir=args.tensorboard_dir,
histogram_freq=0,
batch_size=args.batch_size,
write_graph=True,
write_grads=False,
write_images=False,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None
)
callbacks.append(tensorboard_callback)
if args.evaluation and validation_generator:
if args.dataset_type == 'coco':
from callbacks import CocoEval
# use prediction model for evaluation
evaluation = CocoEval(validation_generator, tensorboard=tensorboard_callback)
else:
evaluation = Evaluate(validation_generator, tensorboard=tensorboard_callback,
weighted_average=args.weighted_average)
evaluation = RedirectModel(evaluation, prediction_model)
callbacks.append(evaluation)
# save the model
if args.snapshots:
# ensure directory created first; otherwise h5py will error after epoch.
makedirs(args.snapshot_path)
checkpoint = keras.callbacks.ModelCheckpoint(
os.path.join(
args.snapshot_path,
'{backbone}_{dataset_type}_{{epoch:02d}}.h5'.format(backbone=args.backbone,
dataset_type=args.dataset_type)
),
verbose=1,
# save_best_only=True,
# monitor="mAP",
# mode='max'
)
checkpoint = RedirectModel(checkpoint, model)
callbacks.append(checkpoint)
callbacks.append(keras.callbacks.ReduceLROnPlateau(
monitor='loss',
factor=0.1,
patience=2,
verbose=1,
mode='auto',
min_delta=0.0001,
cooldown=0,
min_lr=0
))
return callbacks
def create_generators(args, preprocess_image):
"""
Create generators for training and validation.
Args
args: parseargs object containing configuration for generators.
preprocess_image: Function that preprocesses an image for the network.
"""
common_args = {
'batch_size': args.batch_size,
'config': args.config,
'image_min_side': args.image_min_side,
'image_max_side': args.image_max_side,
'preprocess_image': preprocess_image,
}
# create random transform generator for augmenting training data
if args.random_transform:
transform_generator = random_transform_generator(
min_rotation=-0.1,
max_rotation=0.1,
min_translation=(-0.1, -0.1),
max_translation=(0.1, 0.1),
min_shear=-0.1,
max_shear=0.1,
min_scaling=(0.9, 0.9),
max_scaling=(1.1, 1.1),
flip_x_chance=0.5,
flip_y_chance=0.5,
)
visual_effect_generator = random_visual_effect_generator(
contrast_range=(0.9, 1.1),
brightness_range=(-.1, .1),
hue_range=(-0.05, 0.05),
saturation_range=(0.95, 1.05)
)
else:
transform_generator = random_transform_generator(flip_x_chance=0.5)
visual_effect_generator = None
if args.dataset_type == 'csv':
train_generator = CSVGenerator(
args.annotations_path,
args.classes_path,
transform_generator=transform_generator,
visual_effect_generator=visual_effect_generator,
**common_args
)
if args.val_annotations_path:
validation_generator = CSVGenerator(
args.val_annotations_path,
args.classes_path,
shuffle_groups=False,
**common_args
)
else:
validation_generator = None
elif args.dataset_type == 'pascal':
train_generator = PascalVocGenerator(
args.pascal_path,
'trainval',
transform_generator=transform_generator,
visual_effect_generator=visual_effect_generator,
skip_difficult=True,
**common_args
)
validation_generator = PascalVocGenerator(
args.pascal_path,
'val',
shuffle_groups=False,
skip_difficult=True,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return train_generator, validation_generator
def check_args(parsed_args):
""" Function to check for inherent contradictions within parsed arguments.
For example, batch_size < num_gpus
Intended to raise errors prior to backend initialisation.
Args
parsed_args: parser.parse_args()
Returns
parsed_args
"""
if parsed_args.num_gpus > 1 and parsed_args.batch_size < parsed_args.num_gpus:
raise ValueError(
"Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size,
parsed_args.multi_gpu))
if parsed_args.num_gpus > 1 and parsed_args.snapshot:
raise ValueError(
"Multi GPU training ({}) and resuming from snapshots ({}) is not supported.".format(parsed_args.multi_gpu,
parsed_args.snapshot))
if parsed_args.num_gpus > 1 and not parsed_args.multi_gpu_force:
raise ValueError(
"Multi-GPU support is experimental, use at own risk! Run with --multi-gpu-force if you wish to continue.")
if 'resnet' not in parsed_args.backbone:
warnings.warn(
'Using experimental backbone {}. Only resnet50 has been properly tested.'.format(parsed_args.backbone))
return parsed_args
def parse_args(args):
"""
Parse the arguments.
"""
today = str(date.today())
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type')
subparsers.required = True
coco_parser = subparsers.add_parser('coco')
coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).')
pascal_parser = subparsers.add_parser('pascal')
pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).')
csv_parser = subparsers.add_parser('csv')
csv_parser.add_argument('annotations_path', help='Path to CSV file containing annotations for training.')
csv_parser.add_argument('classes_path', help='Path to a CSV file containing class label mapping.')
csv_parser.add_argument('--val-annotations-path',
help='Path to CSV file containing annotations for validation (optional).')
group = parser.add_mutually_exclusive_group()
group.add_argument('--snapshot', help='Resume training from a snapshot.')
group.add_argument('--imagenet-weights',
help='Initialize the model with pretrained imagenet weights. This is the default behaviour.',
action='store_true', default=True)
group.add_argument('--weights', help='Initialize the model with weights from a file.')
group.add_argument('--no-weights', help='Don\'t initialize the model with any weights.', dest='imagenet_weights',
action='store_false')
parser.add_argument('--backbone', help='Backbone model used by retinanet.', default='resnet50', type=str)
parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int)
parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).')
parser.add_argument('--num_gpus', help='Number of GPUs to use for parallel processing.', type=int, default=0)
parser.add_argument('--multi-gpu-force', help='Extra flag needed to enable (experimental) multi-gpu support.',
action='store_true')
parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50)
parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=10000)
parser.add_argument('--lr', help='Learning rate.', type=float, default=1e-4)
parser.add_argument('--snapshot-path',
help='Path to store snapshots of models during training (defaults to \'snapshots\')',
default='snapshots/{}'.format(today))
parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output', default='logs/{}'.format(today))
parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false')
parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation', action='store_false')
parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true')
parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true')
parser.add_argument('--image-min-side', help='Rescale the image so the smallest side is min_side.', type=int,
default=800)
parser.add_argument('--image-max-side', help='Rescale the image if the largest side is larger than max_side.',
type=int, default=1333)
parser.add_argument('--config', help='Path to a configuration parameters .ini file.')
parser.add_argument('--weighted-average',
help='Compute the mAP using the weighted average of precisions among classes.',
action='store_true')
parser.add_argument('--compute-val-loss', help='Compute validation loss during training', dest='compute_val_loss',
action='store_true')
# Fit generator arguments
parser.add_argument('--multiprocessing', help='Use multiprocessing in fit_generator.', action='store_true')
parser.add_argument('--workers', help='Number of generator workers.', type=int, default=1)
parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit_generator.', type=int,
default=10)
print(vars(parser.parse_args(args)))
return check_args(parser.parse_args(args))
def main(args=None):
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
# create object that stores backbone information
backbone = models.backbone(args.backbone)
# make sure keras is the minimum required version
check_keras_version()
# optionally choose specific GPU
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
keras.backend.tensorflow_backend.set_session(get_session())
# optionally load config parameters
if args.config:
args.config = read_config_file(args.config)
# create the generators
train_generator, validation_generator = create_generators(args, backbone.preprocess_image)
# create the model
if args.snapshot is not None:
print('Loading model, this may take a second...')
model = models.load_model(args.snapshot, backbone_name=args.backbone)
training_model = model
anchor_params = None
if args.config and 'anchor_parameters' in args.config:
anchor_params = parse_anchor_parameters(args.config)
prediction_model = retinanet_bbox(model=model, anchor_params=anchor_params)
# compile model
training_model.compile(
loss={
'regression': losses.iou(),
'classification': losses.focal(),
'centerness': losses.bce(),
},
optimizer=keras.optimizers.adam(lr=1e-5)
# optimizer=keras.optimizers.sgd(lr=1e-5, momentum=0.9, decay=1e-5, nesterov=True)
)
else:
weights = args.weights
# default to imagenet if nothing else is specified
if weights is None and args.imagenet_weights:
weights = backbone.download_imagenet()
print('Creating model, this may take a second...')
model, training_model, prediction_model = create_models(
backbone_retinanet=backbone.retinanet,
num_classes=train_generator.num_classes(),
weights=weights,
num_gpus=args.num_gpus,
freeze_backbone=args.freeze_backbone,
lr=args.lr,
config=args.config
)
# print model summary
# print(model.summary())
# this lets the generator compute backbone layer shapes using the actual backbone model
if 'vgg' in args.backbone or 'densenet' in args.backbone:
train_generator.compute_shapes = make_shapes_callback(model)
if validation_generator:
validation_generator.compute_shapes = train_generator.compute_shapes
# create the callbacks
callbacks = create_callbacks(
model,
training_model,
prediction_model,
validation_generator,
args,
)
if not args.compute_val_loss:
validation_generator = None
# start training
return training_model.fit_generator(
generator=train_generator,
initial_epoch=0,
steps_per_epoch=args.steps,
epochs=args.epochs,
verbose=1,
callbacks=callbacks,
workers=args.workers,
use_multiprocessing=args.multiprocessing,
max_queue_size=args.max_queue_size,
validation_data=validation_generator
)
if __name__ == '__main__':
main()