Before running the scripts, make sure to install the training dependencies:
pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
And initialize an 🤗Accelerate environment with:
accelerate config
Download and unzip the DTD dataset dtd-r1.0.1.tar.gz or use any other texture dataset. Our dataloader recursively searches for images in the "image_folder" with "png", "jpg", or "jpeg" file extensions.
If you need access to our pexels dataset for evaluation, please open an issue.
Note: To monitor the training progress, we regularly generate sample images which are visualized on tensorboard (by default) or wandb (requires pip install wandb
)
Important
"runwayml/stable-diffusion-inpainting" is no longer available.
The model can be found on huggingface https://huggingface.co/benjamin-paine/stable-diffusion-v1-5-inpainting or downloaded from https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-inpainting/files.
Please update the --pretrained_model_name_or_path
in the script below to reproduce our training. If necessary, set the HF_TOKEN environment variable to authenticate.
export HF_TOKEN='hf_...'
accelerate launch train_texture_inpaint_lora.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-inpainting" \
--image_folder="dtd/images" \
--resolution=256 \
--train_batch_size=32 \
--validation_epochs=1 \
--cond_drop_prob=0.2 \
--num_train_epochs=100 --checkpointing_steps=5000 \
--learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
--seed=42 \
--output_dir="multi-scale-clip-patch-encoder-lora" \
--report_to="tensorboard"
Resume from checkpoint by adding
--resume_from_checkpoint="checkpoint-1000"