diff --git a/morpheus/stages/postprocess/timeseries_stage.py b/morpheus/stages/postprocess/timeseries_stage.py index 2a7b16f945..274032d871 100644 --- a/morpheus/stages/postprocess/timeseries_stage.py +++ b/morpheus/stages/postprocess/timeseries_stage.py @@ -367,7 +367,7 @@ def _calc_timeseries(self, x: MultiResponseMessage | ControlMessage, is_complete if isinstance(x, MultiResponseMessage): new_timedata = x.get_meta([self._timestamp_col]) elif isinstance(x, ControlMessage): - new_timedata = x.payload().get_data([self._timestamp_col]) + new_timedata = x.payload().get_data([self._timestamp_col]).to_pandas() # Save this message event times in the event list. Ensure the values are always sorted self._timeseries_data = pd.concat([self._timeseries_data, new_timedata]).sort_index() diff --git a/tests/stages/test_timeseries_stage.py b/tests/stages/test_timeseries_stage.py index 893489dba3..d399bfeca6 100644 --- a/tests/stages/test_timeseries_stage.py +++ b/tests/stages/test_timeseries_stage.py @@ -72,8 +72,5 @@ def test_call_timeseries_user(config): df = pd.DataFrame({"ts": pd.date_range(start='01-01-2022', periods=5)}) probs = cp.array([[0.1, 0.5, 0.3], [0.2, 0.3, 0.4]]) mock_multi_response_ae_message = _make_multi_response_ae_message(df, probs) - mock_control_message = _make_control_message(df, probs) - print("test") - print(stage._call_timeseries_user(mock_multi_response_ae_message)) - print(stage._call_timeseries_user(mock_control_message)) + assert stage._call_timeseries_user(mock_multi_response_ae_message)[0].user_id == "test_user_id" diff --git a/tests/test_filter_detections_stage_pipe.py b/tests/test_filter_detections_stage_pipe.py index a5ee68d7d5..e90ea13b3f 100755 --- a/tests/test_filter_detections_stage_pipe.py +++ b/tests/test_filter_detections_stage_pipe.py @@ -56,8 +56,6 @@ def _test_filter_detections_stage_pipe(config: Config, input_df = dataset_pandas.repeat(input_df, repeat_count=repeat) threshold = 0.75 - print("expected1") - print(build_expected(dataset_pandas["filter_probs.csv"], threshold)) pipe = LinearPipeline(config) pipe.set_source(InMemorySourceStage(config, [cudf.DataFrame(input_df)]))