Singapore Hansard NLP
singapore-hansard-sentiment-ner-final.zip
Note that 28 JSON files in the 12th session from 2011-10-10 to 2012-08-13 are excluded as they use an old format that is difficult to parse.
Models were evaluated on Singapore Hansard Sentiment Dataset validation set.
Model | Accuracy | F1 Score | Precision | Recall |
---|---|---|---|---|
xlm-roberta-base-sst-2 | 0.780 | 0.834 | 0.820 | 0.849 |
xlm-roberta-base-handeset | 0.447 | 0.547 | 0.587 | 0.512 |
xlm-roberta-base-sst-2-handeset | 0.561 | 0.691 | 0.637 | 0.756 |
xlm-roberta-base-sh-sentiment | 0.856 | 0.889 | 0.894 | 0.884 |
xlm-roberta-base-sst-2-sh-sentiment | 0.879 | 0.904 | 0.938 | 0.872 |
xlm-roberta-base-handeset-sh-sentiment | 0.773 | 0.828 | 0.818 | 0.837 |
xlm-roberta-base-sst-2-handeset-sh-sentiment | 0.841 | 0.873 | 0.911 | 0.837 |
python test_sentiment.py input.json models/xlm-roberta-base-sst-2-sh-sentiment
xlm-roberta-base-sst-2-sh-sentiment.tar.xz
xlm-roberta-base-sst-2
precision recall f1-score support
0 0.697674 0.652174 0.674157 46
1 0.820225 0.848837 0.834286 86
accuracy 0.780303 132
macro avg 0.758950 0.750506 0.754222 132
weighted avg 0.777518 0.780303 0.778483 132
xlm-roberta-base-handeset
precision recall f1-score support
0 0.263158 0.326087 0.291262 46
1 0.586667 0.511628 0.546584 86
accuracy 0.446970 132
macro avg 0.424912 0.418857 0.418923 132
weighted avg 0.473929 0.446970 0.457608 132
xlm-roberta-base-sst-2-handeset
precision recall f1-score support
0 0.300000 0.195652 0.236842 46
1 0.637255 0.755814 0.691489 86
accuracy 0.560606 132
macro avg 0.468627 0.475733 0.464166 132
weighted avg 0.519727 0.560606 0.533052 132
xlm-roberta-base-sh-sentiment
precision recall f1-score support
0 0.787234 0.804348 0.795699 46
1 0.894118 0.883721 0.888889 86
accuracy 0.856061 132
macro avg 0.840676 0.844034 0.842294 132
weighted avg 0.856870 0.856061 0.856414 132
xlm-roberta-base-sst-2-sh-sentiment
precision recall f1-score support
0 0.788462 0.891304 0.836735 46
1 0.937500 0.872093 0.903614 86
accuracy 0.878788 132
macro avg 0.862981 0.881699 0.870175 132
weighted avg 0.885562 0.878788 0.880308 132
xlm-roberta-base-handeset-sh-sentiment
precision recall f1-score support
0 0.681818 0.652174 0.666667 46
1 0.818182 0.837209 0.827586 86
accuracy 0.772727 132
macro avg 0.750000 0.744692 0.747126 132
weighted avg 0.770661 0.772727 0.771508 132
xlm-roberta-base-sst-2-handeset-sh-sentiment
precision recall f1-score support
0 0.735849 0.847826 0.787879 46
1 0.911392 0.837209 0.872727 86
accuracy 0.840909 132
macro avg 0.823621 0.842518 0.830303 132
weighted avg 0.850218 0.840909 0.843159 132
Models were evaluated on Singapore Hansard NER Dataset validation set.
Model | F1 Score | Precision | Recall |
---|---|---|---|
asahi417/tner-xlm-roberta-base-ontonotes5 | 0.343 | 0.274 | 0.458 |
xlm-roberta-base-sh-ner | 0.786 | 0.742 | 0.837 |
xlm-roberta-base-ontonotes5-sh-ner | 0.819 | 0.778 | 0.864 |
xlm-roberta-base-ontonotes5-sh-ner.tar.xz
python test_ner.py sh_ner_val.json models/xlm-roberta-base-ontonotes5-sh-ner
asahi417/tner-xlm-roberta-base-ontonotes5
Accuracy: 0.9153978551568913
F1: 0.3427762039660056
Precision: 0.2737556561085973
Recall: 0.4583333333333333
precision recall f1-score support
CARDINAL NUMBER 0.000000 0.000000 0.000000 0
DATE 0.414634 0.680000 0.515152 25
EVENT 0.000000 0.000000 0.000000 0
FAC 0.000000 0.000000 0.000000 1
GPE 0.812500 0.672414 0.735849 58
LAW 0.464286 0.406250 0.433333 32
LOC 0.000000 0.000000 0.000000 0
MONEY 0.000000 0.000000 0.000000 0
NORP 0.000000 0.000000 0.000000 16
ORDINAL NUMBER 0.000000 0.000000 0.000000 0
ORG 0.337931 0.620253 0.437500 79
PERCENT 0.000000 0.000000 0.000000 0
PERSON 0.036585 0.056604 0.044444 53
QUANTITY 0.000000 0.000000 0.000000 0
TIME 0.000000 0.000000 0.000000 0
WORK_OF_ART 0.000000 0.000000 0.000000 0
micro avg 0.273756 0.458333 0.342776 264
macro avg 0.129121 0.152220 0.135392 264
weighted avg 0.382514 0.458333 0.402813 264
xlm-roberta-base-sh-ner
Accuracy: 0.974050046339203
F1: 0.7864768683274023
Precision: 0.7416107382550335
Recall: 0.8371212121212122
precision recall f1-score support
DATE 0.681818 0.600000 0.638298 25
FAC 0.000000 0.000000 0.000000 1
GPE 0.838710 0.896552 0.866667 58
LAW 0.676471 0.718750 0.696970 32
NORP 0.736842 0.875000 0.800000 16
ORG 0.620370 0.848101 0.716578 79
PERSON 0.943396 0.943396 0.943396 53
micro avg 0.741611 0.837121 0.786477 264
macro avg 0.642515 0.697400 0.665987 264
weighted avg 0.750517 0.837121 0.787639 264
xlm-roberta-base-ontonotes5-sh-ner
Accuracy: 0.9770951939626639
F1: 0.8186714542190305
Precision: 0.7781569965870307
Recall: 0.8636363636363636
precision recall f1-score support
DATE 0.739130 0.680000 0.708333 25
FAC 0.000000 0.000000 0.000000 1
GPE 0.910714 0.879310 0.894737 58
LAW 0.774194 0.750000 0.761905 32
NORP 0.882353 0.937500 0.909091 16
ORG 0.633929 0.898734 0.743455 79
PERSON 0.925926 0.943396 0.934579 53
micro avg 0.778157 0.863636 0.818671 264
macro avg 0.695178 0.726992 0.707443 264
weighted avg 0.792977 0.863636 0.821194 264