Skip to content

Latest commit

 

History

History
136 lines (118 loc) · 6.89 KB

README.md

File metadata and controls

136 lines (118 loc) · 6.89 KB

ALBUS

A Method for efficiently processing SpMV using SIMD and load balancing

our paper:

H. Bian, J. Huang, L. Liu, D. Huang, X. Wang, ALBUS: A method for efficiently processing SpMV using SIMD and Load balancing, Future Generation Computer Systems, Volume 116, 2021, pp. 371-392.

Performance

Unit:GFlops

Equipment:Intel(R) Xeon(R) Gold 6242 CPU (double socket)(16cores * 2)

NOTE:

CSR5(ICS'15)

Merge(SC'16)

CVR(CGO'18)

MKL(Intel oneAPI 2021)

Sparse Matrix ALBUS CSR5 CVR Merge MKL
rma10 94.52 42.05 65.84
cant 65.38 52.66 68.66
mac_econ_fwd500 68.56 25.33 40.79
mc2depi 75.26 45.10 31.78
shipsec1 33.03 31.14 31.85
scircuit 43.32 20.25 34.35
dc2 65.32 24.59 39.28
amazon-2008 17.82 15.55 13.17
consph 53.14 43.74 51.07
cop20k_A 41.26 36.06 32.16
crankseg_2 24.93 23.22 24.07
ins2 23.06 18.92 34.16
circuit5M 13.02 12.61 11.10
FullChip 13.32 12.63 11.18
mip1 26.21 25.80 26.10
pdb1HYS 65.44 57.03 68.23
pwtk 25.53 24.54 24.18
LP 19.89 19.23 19.54
in-2004 18.36 17.55 15.50
eu-2005 19.98 18.76 16.37
road_usa 6.71 6.56 6.27
roadNet-CA 14.60 12.23 10.86
soc-LiveJournal1 9.31 7.95 8.39
webbase-1M 34.14 21.92 22.13
web-Google 11.23 10.40 8.09
web-Stanford 26.62 18.28 13.42
Stanford 19.65 15.93 11.24
wiki-topcats 15.24 13.62 12.56

Manual:

(1) Enter the make command to compile the Makefile.
$ ls
ALBUS(OpenMP) ALBUS(OpenMP+AVX2) LICENSE README.md
$ cd ALBUS'('OpenMP')'
$ ls
Albus_spmv.h main.cpp Makefile Storage_format.h
$ make
icpc -xCORE-AVX2 -qopt-prefetch=3 -fopenmp -O3 -o spmv_albus main.cpp
$ ls
Albus_spmv.h main.cpp Makefile spmv_albus Storage_format.h

(2) Run "spmv_albus" , Input:
./spmv_albus <matrix name> <iterations times>
$ ls
Albus_spmv.h main.cpp Makefile spmv_albus Storage_format.h dense.mtx
$ ./spmv_albus dense.mtx 4096
------------------------------------------------------------------
FileName : dense.mtx
Iterations : 4096
--------------Matrix Information and Performance Data-------------
(row_num : 2048) , (col_num : 2048) , (nzz_num : 4194304)
( Matrix Kind : real ) , ( Data type : general )
NZZ_NUM : 4194304 (Note: If the matrix is a symmetric, NZZ_NUM <= 2 * nzz_num)
ALBUS parallel time >>>>>> 0.110031 ms
ALBUS parallel SPMV Gflops >>>>>> 76.238752 GFlops
-------------------------ALBUS TEST ANSWER------------------------
i = 0 , mtx_ans = 125136.773347
i = 1 , mtx_ans = 157020.769696
i = 2 , mtx_ans = 190806.910217
i = 3 , mtx_ans = 190497.024711
i = 4 , mtx_ans = 124703.888516
i = 5 , mtx_ans = 659168.485721
i = 6 , mtx_ans = 163069.766193
i = 7 , mtx_ans = 332258.152177
i = 8 , mtx_ans = 161110.817741
i = 9 , mtx_ans = 187378.056863
- - -
- - -
i = 2047 , mtx_ans = 125099.232999
-----------------------Serial CSR TEST ANSWER---------------------
i = 0 , mtx_ans = 125136.773347
i = 1 , mtx_ans = 157020.769696
i = 2 , mtx_ans = 190806.910217
i = 3 , mtx_ans = 190497.024711
i = 4 , mtx_ans = 124703.888516
i = 5 , mtx_ans = 659168.485721
i = 6 , mtx_ans = 163069.766193
i = 7 , mtx_ans = 332258.152177
i = 8 , mtx_ans = 161110.817741
i = 9 , mtx_ans = 187378.056863
- - -
- - -
i = 2047 , mtx_ans = 125099.232999
--------------------------Check Answer----------------------------
right.....PASS!
------------------------------------------------------------------

Note:

(1) The experimental data comes from formerly the University of Florida Sparse Matrix Collection.

(2) This program supports g++ and icc compilation. The Makefile file in this program is initially set to be compiled by the icc compiler. You can also comment the icc compiled code and use the g++ compiler in the file to compile. For comparison experiments, please choose The same compilation environment.

(3) This experiment was tested on two CPU platforms: Dual Socket Intel(R) Xeon(R) CPU E5-2670 v3 and Dual Socket Intel(R) Xeon(R) Silver 4110 CPU .

Cite This:

@article{BIAN2021371,
  title = {ALBUS: A method for efficiently processing SpMV using SIMD and Load balancing},
  journal = {Future Generation Computer Systems},
  volume = {116},
  pages = {371-392},
  year = {2021},
  issn = {0167-739X},
  doi = {https://doi.org/10.1016/j.future.2020.10.036},
  url = {https://www.sciencedirect.com/science/article/pii/S0167739X2033020X},
  author = {Haodong Bian and Jianqiang Huang and Lingbin Liu and Dongqiang Huang and Xiaoying Wang},
  keywords = {SpMV, ALBUS, CSR5, MKL, SIMD, Load balancing},
  abstract = {SpMV (Sparse matrix–vector multiplication) is widely used in many fields. Improving the performance of SpMV has been the pursuit of many researchers. Parallel SpMV using multi-core processors has been a standard parallel method used by researchers. In reality, the number of non-zero elements in many sparse matrices is not evenly distributed, so parallelism without preprocessing will cause a large amount of performance loss due to uneven load. In this paper, we propose ALBUS (Absolute Load Balancing Using SIMD (Single Instruction Multiple Data)), a method for efficiently processing SpMV using load balancing and SIMD vectorization. On the one hand, ALBUS can achieve multi-core balanced load processing; on the other hand, it gives full play to the ability of SIMD vectorization parallelism under the CPU. We selected 20 sets of regular matrices and 20 sets of irregular matrices to form the Benchmark suite. We performed SpMV performance comparison tests on ALBUS, CSR5 (Compressed Sparse Row 5), Merge(Merge-based SpMV), and MKL (Math Kernel Library) under the same conditions. On the E5-2670 v3 CPU platform, For 20 sets of regular matrices, ALBUS can achieve an average speedup of 1.59x, 1.32x, 1.48x (up to 2.53x, 2.22x, 2.31x) compared to CSR5, Merge, MKL, respectively. For 20 sets of irregular matrices, ALBUS can achieve an average speedup of 1.38x, 1.42x, 2.44x (up to 2.33x, 2.24x, 5.37x) compared to CSR5, Merge, MKL, respectively.}
}