diff --git a/src/nomad_simulations/atoms_state.py b/src/nomad_simulations/atoms_state.py index e1d6e073..b57182d4 100644 --- a/src/nomad_simulations/atoms_state.py +++ b/src/nomad_simulations/atoms_state.py @@ -219,7 +219,7 @@ def resolve_number_and_symbol( self, f'{quantum_name}_quantum_{_countertype_map[quantum_type]}' ) if other_quantity is None: - logger.warning( + logger.debug( f'Could not find the {quantum_name}_quantum_{quantum_type} countertype {_countertype_map[quantum_type]}.' ) return None diff --git a/src/nomad_simulations/model_method.py b/src/nomad_simulations/model_method.py index 64825c61..9737bae9 100644 --- a/src/nomad_simulations/model_method.py +++ b/src/nomad_simulations/model_method.py @@ -17,13 +17,10 @@ # import numpy as np -import pint import re from structlog.stdlib import BoundLogger -from typing import Optional, List, Tuple -from ase.dft.kpoints import monkhorst_pack, get_monkhorst_pack_size_and_offset +from typing import Optional, List -from nomad.units import ureg from nomad.datamodel.data import ArchiveSection from nomad.datamodel.metainfo.annotations import ELNAnnotation from nomad.metainfo import ( @@ -32,493 +29,14 @@ MEnum, Section, Context, - JSON, ) +from .numerical_settings import NumericalSettings, KMesh from .model_system import ModelSystem from .atoms_state import OrbitalsState, CoreHole from .utils import is_not_representative -class NumericalSettings(ArchiveSection): - """ - A base section used to define the numerical settings used in a simulation. These are meshes, - self-consistency parameters, and basis sets. - """ - - name = Quantity( - type=str, - description=""" - Name of the numerical settings section. This is typically used to easy identification of the - `NumericalSettings` section. Possible values: "KMesh", "FrequencyMesh", "TimeMesh", - "SelfConsistency", "BasisSet". - """, - ) - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - -class Mesh(NumericalSettings): - """ - A base section used to specify the settings of a sampling mesh. It supports uniformly-spaced - meshes and symmetry-reduced representations. - """ - - spacing = Quantity( - type=MEnum('Equidistant', 'Logarithmic', 'Tan'), - default='Equidistant', - description=""" - Identifier for the spacing of the Mesh. Defaults to 'Equidistant' if not defined. It can take the values: - - | Name | Description | - | --------- | -------------------------------- | - | `'Equidistant'` | Equidistant grid (also known as 'Newton-Cotes') | - | `'Logarithmic'` | log distance grid | - | `'Tan'` | Non-uniform tan mesh for grids. More dense at low abs values of the points, while less dense for higher values | - """, - ) - - center = Quantity( - type=MEnum('Gamma-centered', 'Monkhorst-Pack', 'Gamma-offcenter'), - description=""" - Identifier for the center of the Mesh: - - | Name | Description | - | --------- | -------------------------------- | - | `'Gamma-centered'` | Regular mesh is centered around Gamma. No offset. | - | `'Monkhorst-Pack'` | Regular mesh with an offset of half the reciprocal lattice vector. | - | `'Gamma-offcenter'` | Regular mesh with an offset that is neither `'Gamma-centered'`, nor `'Monkhorst-Pack'`. | - """, - ) - - quadrature = Quantity( - type=MEnum( - 'Gauss-Legendre', - 'Gauss-Laguerre', - 'Clenshaw-Curtis', - 'Newton-Cotes', - 'Gauss-Hermite', - ), - description=""" - Quadrature rule used for integration of the Mesh. This quantity is relevant for 1D meshes: - - | Name | Description | - | --------- | -------------------------------- | - | `'Gauss-Legendre'` | Quadrature rule for integration using Legendre polynomials | - | `'Gauss-Laguerre'` | Quadrature rule for integration using Laguerre polynomials | - | `'Clenshaw-Curtis'` | Quadrature rule for integration using Chebyshev polynomials using discrete cosine transformations | - | `'Gauss-Hermite'` | Quadrature rule for integration using Hermite polynomials | - """, - ) - - n_points = Quantity( - type=np.int32, - description=""" - Number of points in the mesh. - """, - ) - - dimensionality = Quantity( - type=np.int32, - default=3, - description=""" - Dimensionality of the mesh: 1, 2, or 3. If not defined, it is assumed to be 3. - """, - ) - - grid = Quantity( - type=np.int32, - shape=['dimensionality'], - description=""" - Amount of mesh point sampling along each axis, i.e. [nx, ny, nz]. - """, - ) - - points = Quantity( - type=np.complex128, - shape=['n_points', 'dimensionality'], - description=""" - List of all the points in the mesh. - """, - ) - - multiplicities = Quantity( - type=np.float64, - shape=['n_points'], - description=""" - The amount of times the same point reappears. A value larger than 1, typically indicates - a symmtery operation that was applied to the `Mesh`. This quantity is equivalent to `weights`: - - multiplicities = 1 / weights - """, - ) - - weights = Quantity( - type=np.float64, - shape=['n_points'], - description=""" - Weight of each point. A value smaller than 1, typically indicates a symmtery operation that was - applied to the mesh. This quantity is equivalent to `multiplicities`: - - weights = 1 / multiplicities - """, - ) - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - -class LinePathSegment(ArchiveSection): - """ - A base section used to define the settings of a single line path segment within a multidimensional mesh. - """ - - high_symmetry_path = Quantity( - type=str, - shape=[2], - description=""" - List of the two high-symmetry points followed in the line path segment, e.g., ['Gamma', 'X']. The - point's coordinates can be extracted from the values in the `self.m_parent.high_symmetry_points` JSON quantity. - """, - ) - - n_line_points = Quantity( - type=np.int32, - description=""" - Number of points in the line path segment. - """, - ) - - points = Quantity( - type=np.float64, - shape=['n_line_points', 3], - description=""" - List of all the points in the line path segment in units of the `reciprocal_lattice_vectors`. - """, - ) - - def resolve_points( - self, - high_symmetry_path: List[str], - n_line_points: int, - logger: BoundLogger, - ) -> Optional[np.ndarray]: - """ - Resolves the `points` of the `LinePathSegment` from the `high_symmetry_path` and the `n_line_points`. - - Args: - high_symmetry_path (List[str]): The high-symmetry path of the `LinePathSegment`. - n_line_points (int): The number of points in the line path segment. - logger (BoundLogger): The logger to log messages. - - Returns: - (Optional[List[np.ndarray]]): The resolved `points` of the `LinePathSegment`. - """ - if high_symmetry_path is None or n_line_points is None: - logger.warning( - 'Could not resolve `LinePathSegment.points` from `LinePathSegment.high_symmetry_path` and `LinePathSegment.n_line_points`.' - ) - return None - if self.m_parent.high_symmetry_points is None: - logger.warning( - 'Could not resolve the parent of `LinePathSegment` to extract `LinePathSegment.m_parent.high_symmetry_points`.' - ) - return None - start_point = self.m_parent.high_symmetry_points.get(self.high_symmetry_path[0]) - end_point = self.m_parent.high_symmetry_points.get(self.high_symmetry_path[1]) - return np.linspace(start_point, end_point, self.n_line_points) - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - if self.points is None: - self.points = self.resolve_points( - self.high_symmetry_path, self.n_line_points, logger - ) - - -class KMesh(Mesh): - """ - A base section used to specify the settings of a sampling mesh in reciprocal space. - """ - - reciprocal_lattice_vectors = Quantity( - type=np.float64, - shape=[3, 3], - unit='1/meter', - description=""" - Reciprocal lattice vectors of the simulated cell, in Cartesian coordinates and - including the $2 pi$ pre-factor. The first index runs over each lattice vector. The - second index runs over the $x, y, z$ Cartesian coordinates. - """, - ) - - offset = Quantity( - type=np.float64, - shape=[3], - description=""" - Offset vector shifting the mesh with respect to a Gamma-centered case (where it is defined as [0, 0, 0]). - """, - ) - - all_points = Quantity( - type=np.float64, - shape=['*', 3], - description=""" - Full list of the mesh points without any symmetry operations. In the presence of symmetry - operations, this quantity is a larger list than `points` (as it will contain all the points in the Brillouin zone). - """, - ) - - high_symmetry_points = Quantity( - type=JSON, - description=""" - Dictionary containing the high-symmetry points and their points in terms of `reciprocal_lattice_vectors`. - E.g., in a cubic lattice: - - high_symmetry_points = { - 'Gamma': [0, 0, 0], - 'X': [0.5, 0, 0], - } - """, - ) - - k_line_density = Quantity( - type=np.float64, - unit='m', - description=""" - Amount of sampled k-points per unit reciprocal length along each axis. - Contains the least precise density out of all axes. - Should only be compared between calulations of similar dimensionality. - """, - ) - - line_path_segments = SubSection(sub_section=LinePathSegment.m_def, repeats=True) - - # TODO add extraction of `high_symmetry_points` using BandStructureNormalizer idea (left for later when defining outputs.py) - - def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): - super().__init__(m_def, m_context, **kwargs) - # Set the name of the section - self.name = self.m_def.name - - def resolve_points_and_offset( - self, logger: BoundLogger - ) -> Tuple[Optional[List[np.ndarray]], Optional[np.ndarray]]: - """ - Resolves the `points` and `offset` of the `KMesh` from the `grid` and the `center`. - - Args: - logger (BoundLogger): The logger to log messages. - - Returns: - (Optional[List[pint.Quantity, pint.Quantity]]): The resolved `points` and `offset` of the `KMesh`. - """ - points = None - offset = None - if self.center == 'Gamma-centered': - grid_space = [np.linspace(0, 1, n) for n in self.grid] - points = np.meshgrid(grid_space) - offset = np.array([0, 0, 0]) - elif self.center == 'Monkhorst-Pack': - try: - points = monkhorst_pack(self.grid) - offset = get_monkhorst_pack_size_and_offset(points)[-1] - except ValueError: - logger.warning( - 'Could not resolve `KMesh.points` and `KMesh.offset` from `KMesh.grid`. ASE `monkhorst_pack` failed.' - ) - return None # this is a quick workaround: k_mesh.grid should be symmetry reduced - return points, offset - - def get_k_line_density( - self, reciprocal_lattice_vectors: pint.Quantity, logger: BoundLogger - ) -> Optional[np.float64]: - """ - Gets the k-line density of the `KMesh`. This quantity is used as a precision measure - of the `KMesh` sampling. - - Args: - reciprocal_lattice_vectors (pint.Quantity, [3, 3]): Reciprocal lattice vectors of the atomic cell. - - Returns: - (np.float64): The k-line density of the `KMesh`. - """ - if reciprocal_lattice_vectors is None: - logger.error('No `reciprocal_lattice_vectors` input found.') - return None - if len(reciprocal_lattice_vectors) != 3 or len(self.grid) != 3: - logger.error( - 'The `reciprocal_lattice_vectors` and the `grid` should have the same dimensionality.' - ) - return None - - reciprocal_lattice_vectors = reciprocal_lattice_vectors.magnitude - return min( - [ - k_point / (np.linalg.norm(k_vector)) - for k_vector, k_point in zip(reciprocal_lattice_vectors, self.grid) - ] - ) - - def resolve_k_line_density( - self, model_systems: List[ModelSystem], logger: BoundLogger - ) -> Optional[pint.Quantity]: - """ - Resolves the `k_line_density` of the `KMesh` from the the list of `ModelSystem`. - - Args: - model_systems (List[ModelSystem]): The list of `ModelSystem` sections. - logger (BoundLogger): The logger to log messages. - - Returns: - (Optional[pint.Quantity]): The resolved `k_line_density` of the `KMesh`. - """ - for model_system in model_systems: - # General checks to proceed with normalization - if is_not_representative(model_system, logger): - return None - # TODO extend this for other dimensions (@ndaelman-hu) - if model_system.type != 'bulk': - logger.warning('`ModelSystem.type` is not describing a bulk system.') - return None - - atomic_cell = model_system.atomic_cell - if atomic_cell is None: - logger.warning('`ModelSystem.atomic_cell` was not found.') - return None - - # Set the `reciprocal_lattice_vectors` using ASE - ase_atoms = atomic_cell[0].to_ase_atoms(logger) - if self.reciprocal_lattice_vectors is None: - self.reciprocal_lattice_vectors = ( - 2 * np.pi * ase_atoms.get_reciprocal_cell() / ureg.angstrom - ) - - # Resolve `k_line_density` - if k_line_density := self.get_k_line_density( - self.reciprocal_lattice_vectors, logger - ): - return k_line_density * ureg('m') - return None - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - # If `grid` is not defined, we do not normalize the KMesh - if self.grid is None: - logger.warning('Could not find `KMesh.grid`.') - return - - # Normalize k mesh from grid sampling - if self.points is None and self.offset is None: - self.points, self.offset = self.resolve_points_and_offset(logger) - - # Calculate k_line_density for data quality measures - model_systems = self.m_xpath('m_parent.m_parent.model_system', dict=False) - if self.k_line_density is None: - self.k_line_density = self.resolve_k_line_density(model_systems, logger) - - -class QuasiparticlesFrequencyMesh(Mesh): - """ - A base section used to specify the settings of a sampling mesh in the frequency real or imaginary space for quasiparticle calculations. - """ - - points = Quantity( - type=np.complex128, - shape=['n_points', 'dimensionality'], - unit='joule', - description=""" - List of all the points in the mesh in joules. - """, - ) - - def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): - super().__init__(m_def, m_context, **kwargs) - # Set the name of the section - self.name = self.m_def.name - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - -class SelfConsistency(NumericalSettings): - """ - A base section used to define the convergence settings of self-consistent field (SCF) calculation. - It determines the condictions for `is_converged` in properties `Outputs` (see outputs.py). The convergence - criteria covered are: - - 1. The number of iterations is smaller than or equal to `n_max_iterations`. - - and one of the following: - - 2a. The total energy change between two subsequent self-consistent iterations is below - `threshold_energy_change`. - 2b. The charge density change between two subsequent self-consistent iterations is below - `threshold_charge_density_change`. - """ - - # TODO add examples or MEnum? - scf_minimization_algorithm = Quantity( - type=str, - description=""" - Specifies the algorithm used for self consistency minimization. - """, - ) - - n_max_iterations = Quantity( - type=np.int32, - description=""" - Specifies the maximum number of allowed self-consistent iterations. The simulation `is_converged` - if the number of iterations is not larger or equal than this quantity. - """, - ) - - # ? define class `Tolerance` for the different Scf tolerances types? - threshold_energy_change = Quantity( - type=np.float64, - unit='joule', - description=""" - Specifies the threshold for the total energy change between two subsequent self-consistent iterations. - The simulation `is_converged` if the total energy change between two SCF cycles is below - this threshold. - """, - ) - - threshold_charge_density_change = Quantity( - type=np.float64, - description=""" - Specifies the threshold for the average charge density change between two subsequent - self-consistent iterations. The simulation `is_converged` if the charge density change - between two SCF cycles is below this threshold. - """, - ) - - def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): - super().__init__(m_def, m_context, **kwargs) - # Set the name of the section - self.name = self.m_def.name - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - -class BasisSet(NumericalSettings): - """""" - - # TODO work on this base section (@ndaelman-hu) - - def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): - super().__init__(m_def, m_context, **kwargs) - # Set the name of the section - self.name = self.m_def.name - - def normalize(self, archive, logger) -> None: - super().normalize(archive, logger) - - class ModelMethod(ArchiveSection): """ Model method input parameters and numerical settings used to simulate materials properties. @@ -971,7 +489,7 @@ def resolve_orbital_references( return None # If `AtomicCell` is not found, the normalization will not run - atomic_cell = model_system.atomic_cell[0] + atomic_cell = model_system.cell[0] if atomic_cell is None: logger.warning('`AtomicCell` section was not found.') return None diff --git a/src/nomad_simulations/numerical_settings.py b/src/nomad_simulations/numerical_settings.py new file mode 100644 index 00000000..b3999bb4 --- /dev/null +++ b/src/nomad_simulations/numerical_settings.py @@ -0,0 +1,516 @@ +# +# Copyright The NOMAD Authors. +# +# This file is part of NOMAD. See https://nomad-lab.eu for further info. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import numpy as np +import pint +from structlog.stdlib import BoundLogger +from typing import Optional, List, Tuple +from ase.dft.kpoints import monkhorst_pack, get_monkhorst_pack_size_and_offset + +from nomad.units import ureg +from nomad.datamodel.data import ArchiveSection +from nomad.metainfo import ( + Quantity, + SubSection, + MEnum, + Section, + Context, + JSON, +) + +from .model_system import ModelSystem +from .utils import is_not_representative + + +class NumericalSettings(ArchiveSection): + """ + A base section used to define the numerical settings used in a simulation. These are meshes, + self-consistency parameters, and basis sets. + """ + + name = Quantity( + type=str, + description=""" + Name of the numerical settings section. This is typically used to easy identification of the + `NumericalSettings` section. Possible values: "KMesh", "FrequencyMesh", "TimeMesh", + "SelfConsistency", "BasisSet". + """, + ) + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + +class Mesh(NumericalSettings): + """ + A base section used to specify the settings of a sampling mesh. It supports uniformly-spaced + meshes and symmetry-reduced representations. + """ + + spacing = Quantity( + type=MEnum('Equidistant', 'Logarithmic', 'Tan'), + default='Equidistant', + description=""" + Identifier for the spacing of the Mesh. Defaults to 'Equidistant' if not defined. It can take the values: + + | Name | Description | + | --------- | -------------------------------- | + | `'Equidistant'` | Equidistant grid (also known as 'Newton-Cotes') | + | `'Logarithmic'` | log distance grid | + | `'Tan'` | Non-uniform tan mesh for grids. More dense at low abs values of the points, while less dense for higher values | + """, + ) + + center = Quantity( + type=MEnum('Gamma-centered', 'Monkhorst-Pack', 'Gamma-offcenter'), + description=""" + Identifier for the center of the Mesh: + + | Name | Description | + | --------- | -------------------------------- | + | `'Gamma-centered'` | Regular mesh is centered around Gamma. No offset. | + | `'Monkhorst-Pack'` | Regular mesh with an offset of half the reciprocal lattice vector. | + | `'Gamma-offcenter'` | Regular mesh with an offset that is neither `'Gamma-centered'`, nor `'Monkhorst-Pack'`. | + """, + ) + + quadrature = Quantity( + type=MEnum( + 'Gauss-Legendre', + 'Gauss-Laguerre', + 'Clenshaw-Curtis', + 'Newton-Cotes', + 'Gauss-Hermite', + ), + description=""" + Quadrature rule used for integration of the Mesh. This quantity is relevant for 1D meshes: + + | Name | Description | + | --------- | -------------------------------- | + | `'Gauss-Legendre'` | Quadrature rule for integration using Legendre polynomials | + | `'Gauss-Laguerre'` | Quadrature rule for integration using Laguerre polynomials | + | `'Clenshaw-Curtis'` | Quadrature rule for integration using Chebyshev polynomials using discrete cosine transformations | + | `'Gauss-Hermite'` | Quadrature rule for integration using Hermite polynomials | + """, + ) + + n_points = Quantity( + type=np.int32, + description=""" + Number of points in the mesh. + """, + ) + + dimensionality = Quantity( + type=np.int32, + default=3, + description=""" + Dimensionality of the mesh: 1, 2, or 3. If not defined, it is assumed to be 3. + """, + ) + + grid = Quantity( + type=np.int32, + shape=['dimensionality'], + description=""" + Amount of mesh point sampling along each axis, i.e. [nx, ny, nz]. + """, + ) + + points = Quantity( + type=np.complex128, + shape=['n_points', 'dimensionality'], + description=""" + List of all the points in the mesh. + """, + ) + + multiplicities = Quantity( + type=np.float64, + shape=['n_points'], + description=""" + The amount of times the same point reappears. A value larger than 1, typically indicates + a symmtery operation that was applied to the `Mesh`. This quantity is equivalent to `weights`: + + multiplicities = 1 / weights + """, + ) + + weights = Quantity( + type=np.float64, + shape=['n_points'], + description=""" + Weight of each point. A value smaller than 1, typically indicates a symmtery operation that was + applied to the mesh. This quantity is equivalent to `multiplicities`: + + weights = 1 / multiplicities + """, + ) + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + +class LinePathSegment(ArchiveSection): + """ + A base section used to define the settings of a single line path segment within a multidimensional mesh. + """ + + high_symmetry_path = Quantity( + type=str, + shape=[2], + description=""" + List of the two high-symmetry points followed in the line path segment, e.g., ['Gamma', 'X']. The + point's coordinates can be extracted from the values in the `self.m_parent.high_symmetry_points` JSON quantity. + """, + ) + + n_line_points = Quantity( + type=np.int32, + description=""" + Number of points in the line path segment. + """, + ) + + points = Quantity( + type=np.float64, + shape=['n_line_points', 3], + description=""" + List of all the points in the line path segment in units of the `reciprocal_lattice_vectors`. + """, + ) + + def resolve_points( + self, + high_symmetry_path: List[str], + n_line_points: int, + logger: BoundLogger, + ) -> Optional[np.ndarray]: + """ + Resolves the `points` of the `LinePathSegment` from the `high_symmetry_path` and the `n_line_points`. + + Args: + high_symmetry_path (List[str]): The high-symmetry path of the `LinePathSegment`. + n_line_points (int): The number of points in the line path segment. + logger (BoundLogger): The logger to log messages. + + Returns: + (Optional[List[np.ndarray]]): The resolved `points` of the `LinePathSegment`. + """ + if high_symmetry_path is None or n_line_points is None: + logger.warning( + 'Could not resolve `LinePathSegment.points` from `LinePathSegment.high_symmetry_path` and `LinePathSegment.n_line_points`.' + ) + return None + if self.m_parent.high_symmetry_points is None: + logger.warning( + 'Could not resolve the parent of `LinePathSegment` to extract `LinePathSegment.m_parent.high_symmetry_points`.' + ) + return None + start_point = self.m_parent.high_symmetry_points.get(self.high_symmetry_path[0]) + end_point = self.m_parent.high_symmetry_points.get(self.high_symmetry_path[1]) + return np.linspace(start_point, end_point, self.n_line_points) + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + if self.points is None: + self.points = self.resolve_points( + self.high_symmetry_path, self.n_line_points, logger + ) + + +class KMesh(Mesh): + """ + A base section used to specify the settings of a sampling mesh in reciprocal space. + """ + + reciprocal_lattice_vectors = Quantity( + type=np.float64, + shape=[3, 3], + unit='1/meter', + description=""" + Reciprocal lattice vectors of the simulated cell, in Cartesian coordinates and + including the $2 pi$ pre-factor. The first index runs over each lattice vector. The + second index runs over the $x, y, z$ Cartesian coordinates. + """, + ) + + offset = Quantity( + type=np.float64, + shape=[3], + description=""" + Offset vector shifting the mesh with respect to a Gamma-centered case (where it is defined as [0, 0, 0]). + """, + ) + + all_points = Quantity( + type=np.float64, + shape=['*', 3], + description=""" + Full list of the mesh points without any symmetry operations. In the presence of symmetry + operations, this quantity is a larger list than `points` (as it will contain all the points in the Brillouin zone). + """, + ) + + high_symmetry_points = Quantity( + type=JSON, + description=""" + Dictionary containing the high-symmetry points and their points in terms of `reciprocal_lattice_vectors`. + E.g., in a cubic lattice: + + high_symmetry_points = { + 'Gamma': [0, 0, 0], + 'X': [0.5, 0, 0], + } + """, + ) + + k_line_density = Quantity( + type=np.float64, + unit='m', + description=""" + Amount of sampled k-points per unit reciprocal length along each axis. + Contains the least precise density out of all axes. + Should only be compared between calulations of similar dimensionality. + """, + ) + + line_path_segments = SubSection(sub_section=LinePathSegment.m_def, repeats=True) + + # TODO add extraction of `high_symmetry_points` using BandStructureNormalizer idea (left for later when defining outputs.py) + + def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): + super().__init__(m_def, m_context, **kwargs) + # Set the name of the section + self.name = self.m_def.name + + def resolve_points_and_offset( + self, logger: BoundLogger + ) -> Tuple[Optional[List[np.ndarray]], Optional[np.ndarray]]: + """ + Resolves the `points` and `offset` of the `KMesh` from the `grid` and the `center`. + + Args: + logger (BoundLogger): The logger to log messages. + + Returns: + (Optional[List[pint.Quantity, pint.Quantity]]): The resolved `points` and `offset` of the `KMesh`. + """ + points = None + offset = None + if self.center == 'Gamma-centered': + grid_space = [np.linspace(0, 1, n) for n in self.grid] + points = np.meshgrid(grid_space) + offset = np.array([0, 0, 0]) + elif self.center == 'Monkhorst-Pack': + try: + points = monkhorst_pack(self.grid) + offset = get_monkhorst_pack_size_and_offset(points)[-1] + except ValueError: + logger.warning( + 'Could not resolve `KMesh.points` and `KMesh.offset` from `KMesh.grid`. ASE `monkhorst_pack` failed.' + ) + return None # this is a quick workaround: k_mesh.grid should be symmetry reduced + return points, offset + + def get_k_line_density( + self, reciprocal_lattice_vectors: pint.Quantity, logger: BoundLogger + ) -> Optional[np.float64]: + """ + Gets the k-line density of the `KMesh`. This quantity is used as a precision measure + of the `KMesh` sampling. + + Args: + reciprocal_lattice_vectors (pint.Quantity, [3, 3]): Reciprocal lattice vectors of the atomic cell. + + Returns: + (np.float64): The k-line density of the `KMesh`. + """ + if reciprocal_lattice_vectors is None: + logger.error('No `reciprocal_lattice_vectors` input found.') + return None + if len(reciprocal_lattice_vectors) != 3 or len(self.grid) != 3: + logger.error( + 'The `reciprocal_lattice_vectors` and the `grid` should have the same dimensionality.' + ) + return None + + reciprocal_lattice_vectors = reciprocal_lattice_vectors.magnitude + return min( + [ + k_point / (np.linalg.norm(k_vector)) + for k_vector, k_point in zip(reciprocal_lattice_vectors, self.grid) + ] + ) + + def resolve_k_line_density( + self, model_systems: List[ModelSystem], logger: BoundLogger + ) -> Optional[pint.Quantity]: + """ + Resolves the `k_line_density` of the `KMesh` from the the list of `ModelSystem`. + + Args: + model_systems (List[ModelSystem]): The list of `ModelSystem` sections. + logger (BoundLogger): The logger to log messages. + + Returns: + (Optional[pint.Quantity]): The resolved `k_line_density` of the `KMesh`. + """ + for model_system in model_systems: + # General checks to proceed with normalization + if is_not_representative(model_system, logger): + return None + # TODO extend this for other dimensions (@ndaelman-hu) + if model_system.type != 'bulk': + logger.warning('`ModelSystem.type` is not describing a bulk system.') + return None + + atomic_cell = model_system.cell + if atomic_cell is None: + logger.warning('`ModelSystem.cell` was not found.') + return None + + # Set the `reciprocal_lattice_vectors` using ASE + ase_atoms = atomic_cell[0].to_ase_atoms(logger) + if self.reciprocal_lattice_vectors is None: + self.reciprocal_lattice_vectors = ( + 2 * np.pi * ase_atoms.get_reciprocal_cell() / ureg.angstrom + ) + + # Resolve `k_line_density` + if k_line_density := self.get_k_line_density( + self.reciprocal_lattice_vectors, logger + ): + return k_line_density * ureg('m') + return None + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + # If `grid` is not defined, we do not normalize the KMesh + if self.grid is None: + logger.warning('Could not find `KMesh.grid`.') + return + + # Normalize k mesh from grid sampling + if self.points is None and self.offset is None: + self.points, self.offset = self.resolve_points_and_offset(logger) + + # Calculate k_line_density for data quality measures + model_systems = self.m_xpath('m_parent.m_parent.model_system', dict=False) + if self.k_line_density is None: + self.k_line_density = self.resolve_k_line_density(model_systems, logger) + + +class QuasiparticlesFrequencyMesh(Mesh): + """ + A base section used to specify the settings of a sampling mesh in the frequency real or imaginary space for quasiparticle calculations. + """ + + points = Quantity( + type=np.complex128, + shape=['n_points', 'dimensionality'], + unit='joule', + description=""" + List of all the points in the mesh in joules. + """, + ) + + def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): + super().__init__(m_def, m_context, **kwargs) + # Set the name of the section + self.name = self.m_def.name + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + +class SelfConsistency(NumericalSettings): + """ + A base section used to define the convergence settings of self-consistent field (SCF) calculation. + It determines the condictions for `is_converged` in properties `Outputs` (see outputs.py). The convergence + criteria covered are: + + 1. The number of iterations is smaller than or equal to `n_max_iterations`. + + and one of the following: + + 2a. The total energy change between two subsequent self-consistent iterations is below + `threshold_energy_change`. + 2b. The charge density change between two subsequent self-consistent iterations is below + `threshold_charge_density_change`. + """ + + # TODO add examples or MEnum? + scf_minimization_algorithm = Quantity( + type=str, + description=""" + Specifies the algorithm used for self consistency minimization. + """, + ) + + n_max_iterations = Quantity( + type=np.int32, + description=""" + Specifies the maximum number of allowed self-consistent iterations. The simulation `is_converged` + if the number of iterations is not larger or equal than this quantity. + """, + ) + + # ? define class `Tolerance` for the different Scf tolerances types? + threshold_energy_change = Quantity( + type=np.float64, + unit='joule', + description=""" + Specifies the threshold for the total energy change between two subsequent self-consistent iterations. + The simulation `is_converged` if the total energy change between two SCF cycles is below + this threshold. + """, + ) + + threshold_charge_density_change = Quantity( + type=np.float64, + description=""" + Specifies the threshold for the average charge density change between two subsequent + self-consistent iterations. The simulation `is_converged` if the charge density change + between two SCF cycles is below this threshold. + """, + ) + + def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): + super().__init__(m_def, m_context, **kwargs) + # Set the name of the section + self.name = self.m_def.name + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger) + + +class BasisSet(NumericalSettings): + """""" + + # TODO work on this base section (@ndaelman-hu) + + def __init__(self, m_def: Section = None, m_context: Context = None, **kwargs): + super().__init__(m_def, m_context, **kwargs) + # Set the name of the section + self.name = self.m_def.name + + def normalize(self, archive, logger) -> None: + super().normalize(archive, logger)