-
Notifications
You must be signed in to change notification settings - Fork 0
/
mat.py
621 lines (567 loc) · 24 KB
/
mat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
from sys import *
from fractions import *
from itertools import *
from random import *
from functools import *
from collections import *
def isqrt(n):
if n==0: return 0
x,y=n,(n+1)//2
while y<x: x,y=y,(y+n//y)//2
return x
def introot(n,r=2):
if n<0: return None if r%2==0 else -introot(-n,r)
if n<2: return n
if r==2: return isqrt(n)
lo,hi=0,n
while lo!=hi-1:
mid=(lo+hi)//2
m=pow(mid,r)
if m==n: return mid
if m<n: lo=mid
else: hi=mid
return lo
def primegen():
yield 2;yield 3;yield 5;yield 7;yield 11;yield 13;
ps=primegen()
p=ps.next() and ps.next()
q,sieve,n=pow(p,2),{},13
while True:
if n not in sieve:
if n<q: yield n
else:
next,step=q+2*p,2*p
while next in sieve: next+=step
sieve[next]=step
p=ps.next()
q=pow(p,2)
else:
step=sieve.pop(n)
next=n+step
while next in sieve: next+=step
sieve[next]=step
n+=2
def primes(n): return list(takewhile(lambda p: p<n,primegen()))
def listprod(a): return reduce(lambda x,y: x*y,a,1)
def jacobi(a, p):
if (p%2 == 0) or (p < 0): return None # p must be a positive odd number
if (a == 0) or (a == 1): return a
a, t = a%p, 1
while a != 0:
while not a & 1:
a /= 2
if p & 7 in (3, 5): t *= -1
a, p = p, a
if (a & 3 == 3) and (p & 3) == 3: t *= -1
a %= p
return t if p == 1 else 0
def chain(n, u1, v1, u2, v2, d, q, m): # Used in SLPRP. TODO: figure out what this does.
k = q
while m > 0:
u2, v2, q = (u2*v2)%n, (v2*v2-2*q)%n, (q*q)%n
if m%2 == 1:
u1, v1 = u2*v1+u1*v2, v2*v1+u2*u1*d
if u1%2 == 1: u1 = u1 + n
if v1%2 == 1: v1 = v1 + n
u1, v1, k = (u1//2)%n, (v1//2)%n, (q*k)%n
m //= 2
return u1, v1, k
def pfactor(n):
s, d, q = 0, n-1, 2
while not d & q - 1: s, q = s+1, q*2
return s, d // (q // 2)
def sprp(n, a, s=None, d=None):
if n%2 == 0: return False
if (s is None) or (d is None): s, d = pfactor(n)
x = pow(a, d, n)
if x == 1: return True
for i in range(s):
if x == n - 1: return True
x = pow(x, 2, n)
return False
def nextprime(n):
if n<2: return 2
if n==2: return 3
n=(n+1)|1
m=n%6
if m==3:
if isprime(n+2): return n+2
n+=4
if m==5:
if isprime(n): return n
n+=2
for m in count(n,6):
if isprime(m): return m
if isprime(m+4): return m+4
def isprime(n, tb=(3,5,7,11), eb=(2,), mrb=()): # TODO: more streamlining
# tb: trial division basis
# eb: Euler's test basis
# mrb: Miller-Rabin basis
# This test suite's first false positve is unknown but has been shown to be greater than 2**64.
# Infinitely many are thought to exist.
if n%2 == 0 or n < 13 or n == pow(isqrt(n),2): return n in (2, 3, 5, 7, 11) # Remove evens, squares, and numbers less than 13
if any(n%p == 0 for p in tb): return n in tb # Trial division
for b in eb: # Euler's test
if b >= n: continue
if not pow(b, n-1, n) == 1: return False
r = n - 1
while r%2 == 0: r //= 2
c = pow(b, r, n)
if c == 1: continue
while c != 1 and c != n-1: c = pow(c, 2, n)
if c == 1: return False
s, d = pfactor(n)
if not sprp(n, 2, s, d): return False
if n < 2047: return True
if n >= 3825123056546413051: # BPSW has two phases: SPRP with base 2 and SLPRP. We just did the SPRP; now we do the SLPRP:
d = 5
while True:
if gcd(d, n) > 1:
p, q = 0, 0
break
if jacobi(d, n) == -1:
p, q = 1, (1 - d) // 4
break
d = -d - 2*d//abs(d)
if p == 0: return n == d
s, t = pfactor(n + 2)
u, v, u2, v2, m = 1, p, 1, p, t//2
k = q
while m > 0:
u2, v2, q = (u2*v2)%n, (v2*v2-2*q)%n, (q*q)%n
if m%2 == 1:
u, v = u2*v+u*v2, v2*v+u2*u*d
if u%2 == 1: u += n
if v%2 == 1: v += n
u, v, k = (u//2)%n, (v//2)%n, (q*k)%n
m //= 2
if (u == 0) or (v == 0): return True
for i in range(1, s):
v, k = (v*v-2*k)%n, (k*k)%n
if v == 0: return True
return False
if not mrb:
if n < 1373653: mrb = [3]
elif n < 25326001: mrb = [3,5]
elif n < 3215031751: mrb = [3,5,7]
elif n < 2152302898747: mrb = [3,5,7,11]
elif n < 3474749660383: mrb = [3,5,6,11,13]
elif n < 341550071728321: mrb = [3,5,7,11,13,17] # This number is also a false positive for primes(19+1).
elif n < 3825123056546413051: mrb = [3,5,7,11,13,17,19,23] # Also a false positive for primes(31+1).
return all(sprp(n, b, s, d) for b in mrb) # Miller-Rabin
def ilog(x, b): # greatest integer l such that b**l <= x.
l = 0
while x >= b:
x //= b
l += 1
return l
def ispower(n):
for p in primegen():
r = introot(n, p)
if r is None: continue
if r ** p == n: return r
if r == 1: return 0
def pollardRho_brent(n):
if isprime(n): return n
g = n
while g == n:
y, c, m, g, r, q = randrange(1, n), randrange(1, n), randrange(1, n), 1, 1, 1
while g==1:
x, k = y, 0
for i in range(r): y = (y**2 + c) % n
while k < r and g == 1:
ys = y
for i in range(min(m, r-k)):
y = (y**2 + c) % n
q = q * abs(x-y) % n
g, k = gcd(q, n), k+m
r *= 2
if g==n:
while True:
ys = (ys**2+c)%n
g = gcd(abs(x-ys), n)
if g > 1: break
return g
def pollard_pm1(n, B1=100, B2=1000): # TODO: What are the best default bounds and way to increment them?
if isprime(n): return n
m = ispower(n)
if m: return m
while True:
pg = primegen()
q = 2 # TODO: what about other initial values of q?
p = pg.next()
while p <= B1: q, p = pow(q, p**ilog(B1, p), n), pg.next()
g = gcd(q-1, n)
if 1 < g < n: return g
while p <= B2: q, p = pow(q, p, n), pg.next()
g = gcd(q-1, n)
if 1 < g < n: return g
# These bounds failed. Increase and try again.
B1 *= 10
B2 *= 10
def mlucas(v, a, n):
""" Helper function for williams_pp1(). Multiplies along a Lucas sequence modulo n. """
v1, v2 = v, (v**2 - 2) % n
for bit in bin(a)[3:]: v1, v2 = ((v1**2 - 2) % n, (v1*v2 - v) % n) if bit == "0" else ((v1*v2 - v) % n, (v2**2 - 2) % n)
return v1
def williams_pp1(n):
if isprime(n): return n
m = ispower(n)
if m: return m
for v in count(1):
for p in primegen():
e = ilog(isqrt(n), p)
if e == 0: break
for _ in range(e): v = mlucas(v, p, n)
g = gcd(v - 2, n)
if 1 < g < n: return g
if g == n: break
def ecadd(p1, p2, p0, n): # Add two points p1 and p2 given point P0 = P1-P2 modulo n
x1,z1 = p1; x2,z2 = p2; x0,z0 = p0
t1, t2 = (x1-z1)*(x2+z2), (x1+z1)*(x2-z2)
return (z0*pow(t1+t2,2,n) % n, x0*pow(t1-t2,2,n) % n)
def ecdub(p, A, n): # double point p on A modulo n
x, z = p; An, Ad = A
t1, t2 = pow(x+z,2,n), pow(x-z,2,n)
t = t1 - t2
return (t1*t2*4*Ad % n, (4*Ad*t2 + t*An)*t % n)
def ecmul(m, p, A, n): # multiply point p by m on curve A modulo n
if m == 0: return (0, 0)
elif m == 1: return p
else:
q = ecdub(p, A, n)
if m == 2: return q
b = 1
while b < m: b *= 2
b //= 4
r = p
while b:
if m&b: q, r = ecdub(q, A, n), ecadd(q, r, p, n)
else: q, r = ecadd(r, q, p, n), ecdub(r, A, n)
b //= 2
return r
def ecm(n, B1=10, B2=20): # TODO: Determine the best defaults for B1 and B2 and the best way to increment them and iters
# "Modern" ECM using Montgomery curves and an algorithm analogous to the two-phase variant of Pollard's p-1 method
# TODO: We currently compute the prime lists from the sieve as we need them, but this means that we recompute them at every
# iteration. While it would not be particularly efficient memory-wise, we might be able to increase time-efficiency
# by computing the primes we need ahead of time (say once at the beginning and then once each time we increase the
# bounds) and saving them in lists, and then iterate the inner while loops over those lists.
if isprime(n): return n
m = ispower(n)
if m: return m
iters = 1
while True:
for _ in range(iters): # TODO: multiprocessing?
# TODO: Do we really want to call the randomizer? Why not have seed be a function of B1, B2, and iters?
# TODO: Are some seeds better than others?
seed = randrange(6, n)
u, v = (seed**2 - 5) % n, 4*seed % n
p = pow(u, 3, n)
Q, C = (pow(v-u,3,n)*(3*u+v) % n, 4*p*v % n), (p, pow(v,3,n))
pg = primegen()
p = pg.next()
while p <= B1: Q, p = ecmul(p**ilog(B1, p), Q, C, n), pg.next()
g = gcd(Q[1], n)
if 1 < g < n: return g
while p <= B2:
# "There is a simple coding trick that can speed up the second stage. Instead of multiplying each prime times Q,
# we iterate over i from B1 + 1 to B2, adding 2Q at each step; when i is prime, the current Q can be accumulated
# into the running solution. Again, we defer the calculation of the greatest common divisor until the end of the
# iteration." TODO: Implement this trick and compare performance.
Q = ecmul(p, Q, C, n)
g *= Q[1]
g %= n
p = pg.next()
g = gcd(g, n)
if 1 < g < n: return g
# This seed failed. Try again with a new one.
# These bounds failed. Increase and try again.
B1 *= 3
B2 *= 3
iters *= 2
def legendre1(a, p): return ((pow(a, (p-1) >> 1, p) + 1) % p) - 1
def legendre2(a, p): # TODO: pretty sure this computes the Jacobi symbol
if a == 0: return 0
x, y, L = a, p, 1
while 1:
if x > (y >> 1):
x = y - x
if y & 3 == 3: L = -L
while x & 3 == 0: x >>= 2
if x & 1 == 0:
x >>= 1
if y & 7 == 3 or y & 7 == 5: L = -L
if x == 1: return ((L+1) % p) - 1
if x & 3 == 3 and y & 3 == 3: L = -L
x, y = y % x, x
legendre=legendre1
def mod_sqrt(n, p):
a = n%p
if p%4 == 3: return pow(a, (p+1) >> 2, p)
elif p%8 == 5:
v = pow(a << 1, (p-5) >> 3, p)
i = ((a*v*v << 1) % p) - 1
return (a*v*i)%p
elif p%8 == 1: # Shank's method
q, e = p-1, 0
while q&1 == 0:
e += 1
q >>= 1
n = 2
while legendre(n, p) != -1: n += 1
w, x, y, r = pow(a, q, p), pow(a, (q+1) >> 1, p), pow(n, q, p), e
while True:
if w == 1: return x
v, k = w, 0
while v != 1 and k+1 < r:
v = (v*v)%p
k += 1
if k == 0: return x
d = pow(y, 1 << (r-k-1), p)
x, y = (x*d)%p, (d*d)%p
w, r = (w*y)%p, k
else: return a # p == 2
# modular inverse of a mod m
def modinv(a, m):
a, x, u = a%m, 0, 1
while a: x, u, m, a = u, x - (m/a)*u, a, m%a
return x
def mpqs(n):
# When the bound proves insufficiently large, we throw out all our work and start over.
# TODO: When this happens, get more data, but don't trash what we already have.
# TODO: Rewrite to get a few more relations before proceeding to the linear algebra.
# TODO: When we need to increase the bound, what is the optimal increment?
# Special cases: this function poorly handles primes and perfect powers:
m = ispower(n)
if m: return m
if isprime(n): return n
root_n, root_2n = isqrt(n), isqrt(2*n)
bound = ilog(n**6, 10)**2 # formula chosen by experiment
while True:
try:
prime, mod_root, log_p, num_prime = [], [], [], 0
# find a number of small primes for which n is a quadratic residue
p = 2
while p < bound or num_prime < 3:
leg = legendre(n%p, p)
if leg == 1:
prime += [p]
mod_root += [mod_sqrt(n, p)] # the rhs was [int(mod_sqrt(n, p))]. If we get errors, put it back.
log_p += [log(p, 10)]
num_prime += 1
elif leg == 0: return p
p = nextprime(p)
x_max = len(prime)*60 # size of the sieve
m_val = (x_max * root_2n) >> 1 # maximum value on the sieved range
# fudging the threshold down a bit makes it easier to find powers of primes as factors
# as well as partial-partial relationships, but it also makes the smoothness check slower.
# there's a happy medium somewhere, depending on how efficient the smoothness check is
thresh = log(m_val, 10) * 0.735
# skip small primes. they contribute very little to the log sum
# and add a lot of unnecessary entries to the table
# instead, fudge the threshold down a bit, assuming ~1/4 of them pass
min_prime = mpz(thresh*3)
fudge = sum(log_p[i] for i,p in enumerate(prime) if p < min_prime)/4
thresh -= fudge
smooth, used_prime, partial = [], set(), {}
num_smooth, num_used_prime, num_partial, num_poly, root_A = 0, 0, 0, 0, isqrt(root_2n // x_max)
while num_smooth <= num_used_prime:
# find an integer value A such that:
# A is =~ sqrt(2*n) / x_max
# A is a perfect square
# sqrt(A) is prime, and n is a quadratic residue mod sqrt(A)
while True:
root_A = nextprime(root_A)
leg = legendre(n, root_A)
if leg == 1: break
elif leg == 0: return root_A
A = root_A**2
# solve for an adequate B
# B*B is a quadratic residue mod n, such that B*B-A*C = n
# this is unsolvable if n is not a quadratic residue mod sqrt(A)
b = mod_sqrt(n, root_A)
B = (b + (n - b*b) * modinv(b + b, root_A))%A
C = (B*B - n) // A # B*B-A*C = n <=> C = (B*B-n)/A
num_poly += 1
# sieve for prime factors
sums, i = [0.0]*(2*x_max), 0
for p in prime:
if p < min_prime:
i += 1
continue
logp = log_p[i]
inv_A = modinv(A, p)
# modular root of the quadratic
a, b, k = mpz(((mod_root[i] - B) * inv_A)%p), mpz(((p - mod_root[i] - B) * inv_A)%p), 0
while k < x_max:
if k+a < x_max: sums[k+a] += logp
if k+b < x_max: sums[k+b] += logp
if k:
sums[k-a+x_max] += logp
sums[k-b+x_max] += logp
k += p
i += 1
# check for smooths
i = 0
for v in sums:
if v > thresh:
x, vec, sqr = x_max-i if i > x_max else i, set(), []
# because B*B-n = A*C
# (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n
# = A*(A*x*x+2*B*x+C)
# gives the congruency
# (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n)
# because A is chosen to be square, it doesn't need to be sieved
val = sieve_val = (A*x + 2*B)*x + C
if sieve_val < 0: vec, sieve_val = {-1}, -sieve_val
for p in prime:
while sieve_val%p == 0:
if p in vec: sqr += [p] # track perfect sqr facs to avoid sqrting something huge at the end
vec ^= {p}
sieve_val = mpz(sieve_val // p)
if sieve_val == 1: # smooth
smooth += [(vec, (sqr, (A*x+B), root_A))]
used_prime |= vec
elif sieve_val in partial:
# combine two partials to make a (xor) smooth
# that is, every prime factor with an odd power is in our factor base
pair_vec, pair_vals = partial[sieve_val]
sqr += list(vec & pair_vec) + [sieve_val]
vec ^= pair_vec
smooth += [(vec, (sqr + pair_vals[0], (A*x+B)*pair_vals[1], root_A*pair_vals[2]))]
used_prime |= vec
num_partial += 1
else: partial[sieve_val] = (vec, (sqr, A*x+B, root_A)) # save partial for later pairing
i += 1
num_smooth, num_used_prime = len(smooth), len(used_prime)
used_prime = sorted(list(used_prime))
# set up bit fields for gaussian elimination
masks, mask, bitfields = [], 1, [0]*num_used_prime
for vec, vals in smooth:
masks += [mask]
i = 0
for p in used_prime:
if p in vec: bitfields[i] |= mask
i += 1
mask <<= 1
# row echelon form
offset = 0
null_cols = []
for col in range(num_smooth):
pivot = bitfields[col-offset] & masks[col] == 0 # This occasionally throws IndexErrors.
# TODO: figure out why it throws errors and fix it.
for row in range(col+1-offset, num_used_prime):
if bitfields[row] & masks[col]:
if pivot: bitfields[col-offset], bitfields[row], pivot = bitfields[row], bitfields[col-offset], False
else: bitfields[row] ^= bitfields[col-offset]
if pivot:
null_cols += [col]
offset += 1
# reduced row echelon form
for row in range(num_used_prime):
mask = bitfields[row] & -bitfields[row] # lowest set bit
for up_row in range(row):
if bitfields[up_row] & mask: bitfields[up_row] ^= bitfields[row]
# check for non-trivial congruencies
# TODO: if none exist, check combinations of null space columns...
# if _still_ none exist, sieve more values
for col in null_cols:
all_vec, (lh, rh, rA) = smooth[col]
lhs = lh # sieved values (left hand side)
rhs = [rh] # sieved values - n (right hand side)
rAs = [rA] # root_As (cofactor of lhs)
i = 0
for field in bitfields:
if field & masks[col]:
vec, (lh, rh, rA) = smooth[i]
lhs += list(all_vec & vec) + lh
all_vec ^= vec
rhs += [rh]
rAs += [rA]
i += 1
factor = gcd(listprod(rAs)*listprod(lhs) - listprod(rhs), n)
if 1 < factor < n: return factor
except IndexError: pass
bound *= 1.2
def primefac(n, trial_limit=1000, rho_rounds=42000, verbose=False,
methods=(pollardRho_brent, pollard_pm1, williams_pp1, ecm, mpqs)):
# Obtains a complete factorization of n, yielding the prime factors as they are obtained.
# If the user explicitly specifies a splitting method, use that method. Otherwise,
# 1. Pull out small factors with trial division.
# TODO: a few rounds of Fermat's method?
# 2. Do a few rounds of Pollard's Rho algorithm.
# TODO: a few rounds of ECM by itself?
# TODO: a certain amount of P-1?
# 3. Launch multifactor on the remainder. Multifactor has enough overhead that we want to be fairly sure that rho isn't
# likely to yield new factors soon. The default value of rho_rounds=42000 seems good for that but is probably overkill.
if n < 2: return
if isprime(n): yield n; return
factors, nroot = [], isqrt(n)
for p in primegen(): # Note that we remove factors of 2 whether the user wants to or not.
if n%p == 0:
while n%p == 0:
yield p
n //= p
nroot = isqrt(n)
if isprime(n):
yield n
return
if p > nroot:
if n != 1: yield n
return
if p >= trial_limit: break
if isprime(n): yield n; return
if rho_rounds == "inf":
factors = [n]
while len(factors) != 0:
n = min(factors)
factors.remove(n)
f = pollardRho_brent(n)
if isprime(f): yield f
else: factors.append(f)
n //= f
if isprime(n): yield n
else: factors.append(n)
return
factors, difficult = [n], []
while len(factors) != 0:
rhocount = 0
n = factors.pop()
try:
g = n
while g == n:
x, c, g = randrange(1, n), randrange(1, n), 1
y = x
while g==1:
if rhocount >= rho_rounds: raise Exception
rhocount += 1
x = (x**2 + c) % n
y = (y**2 + c) % n
y = (y**2 + c) % n
g = gcd(x-y, n)
# We now have a nontrivial factor g of n. If we took too long to get here, we're actually at the except statement.
if isprime(g): yield g
else: factors.append(g)
n //= g
if isprime(n): yield n
else: factors.append(n)
except Exception: difficult.append(n) # Factoring n took too long. We'll have multifactor chug on it.
factors = difficult
while len(factors) != 0:
n = min(factors)
factors.remove(n)
f = multifactor(n, methods=methods, verbose=verbose)
if isprime(f): yield f
else: factors.append(f)
n //= f
if isprime(n): yield n
else: factors.append(n)
def divisors(factors):
div = [1]
for (p, r) in Counter(factors).items():
div = [d * pow(p,e) for d in div for e in range(r + 1)]
return sorted(div)
def phi(n):
for k,v in Counter(primefac(n,methods=mpqs)).iteritems():
n=n//k*(k-1)
return n