forked from Farama-Foundation/ViZDoom
-
Notifications
You must be signed in to change notification settings - Fork 1
/
learning_theano.py
executable file
·292 lines (229 loc) · 9.87 KB
/
learning_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from vizdoom import *
import itertools as it
import pickle
from random import sample, randint, random
from time import time, sleep
import numpy as np
import skimage.color, skimage.transform
from lasagne.init import HeUniform, Constant
from lasagne.layers import Conv2DLayer, InputLayer, DenseLayer, get_output, \
get_all_params, get_all_param_values, set_all_param_values
from lasagne.nonlinearities import rectify
from lasagne.objectives import squared_error
from lasagne.updates import rmsprop
import theano
from theano import tensor
from tqdm import trange
# Q-learning settings
learning_rate = 0.00025
# learning_rate = 0.0001
discount_factor = 0.99
epochs = 20
learning_steps_per_epoch = 2000
replay_memory_size = 10000
# NN learning settings
batch_size = 64
# Training regime
test_episodes_per_epoch = 100
# Other parameters
frame_repeat = 12
resolution = (30, 45)
episodes_to_watch = 10
model_savefile = "/tmp/weights.dump"
# Configuration file path
config_file_path = "../../examples/config/simpler_basic.cfg"
# config_file_path = "../../examples/config/rocket_basic.cfg"
# config_file_path = "../../examples/config/basic.cfg"
# Converts and downsamples the input image
def preprocess(img):
img = skimage.transform.resize(img, resolution)
img = img.astype(np.float32)
return img
class ReplayMemory:
def __init__(self, capacity):
state_shape = (capacity, 1, resolution[0], resolution[1])
self.s1 = np.zeros(state_shape, dtype=np.float32)
self.s2 = np.zeros(state_shape, dtype=np.float32)
self.a = np.zeros(capacity, dtype=np.int32)
self.r = np.zeros(capacity, dtype=np.float32)
self.isterminal = np.zeros(capacity, dtype=np.bool_)
self.capacity = capacity
self.size = 0
self.pos = 0
def add_transition(self, s1, action, s2, isterminal, reward):
self.s1[self.pos, 0] = s1
self.a[self.pos] = action
if not isterminal:
self.s2[self.pos, 0] = s2
self.isterminal[self.pos] = isterminal
self.r[self.pos] = reward
self.pos = (self.pos + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)
def get_sample(self, sample_size):
i = sample(range(0, self.size), sample_size)
return self.s1[i], self.a[i], self.s2[i], self.isterminal[i], self.r[i]
def create_network(available_actions_count):
# Create the input variables
s1 = tensor.tensor4("State")
a = tensor.vector("Action", dtype="int32")
q2 = tensor.vector("Q2")
r = tensor.vector("Reward")
isterminal = tensor.vector("IsTerminal", dtype="int8")
# Create the input layer of the network.
dqn = InputLayer(shape=[None, 1, resolution[0], resolution[1]], input_var=s1)
# Add 2 convolutional layers with ReLu activation
dqn = Conv2DLayer(dqn, num_filters=8, filter_size=[6, 6],
nonlinearity=rectify, W=HeUniform("relu"),
b=Constant(.1), stride=3)
dqn = Conv2DLayer(dqn, num_filters=8, filter_size=[3, 3],
nonlinearity=rectify, W=HeUniform("relu"),
b=Constant(.1), stride=2)
# Add a single fully-connected layer.
dqn = DenseLayer(dqn, num_units=128, nonlinearity=rectify, W=HeUniform("relu"),
b=Constant(.1))
# Add the output layer (also fully-connected).
# (no nonlinearity as it is for approximating an arbitrary real function)
dqn = DenseLayer(dqn, num_units=available_actions_count, nonlinearity=None)
# Define the loss function
q = get_output(dqn)
# target differs from q only for the selected action. The following means:
# target_Q(s,a) = r + gamma * max Q(s2,_) if isterminal else r
target_q = tensor.set_subtensor(q[tensor.arange(q.shape[0]), a], r + discount_factor * (1 - isterminal) * q2)
loss = squared_error(q, target_q).mean()
# Update the parameters according to the computed gradient using RMSProp.
params = get_all_params(dqn, trainable=True)
updates = rmsprop(loss, params, learning_rate)
# Compile the theano functions
print("Compiling the network ...")
function_learn = theano.function([s1, q2, a, r, isterminal], loss, updates=updates, name="learn_fn")
function_get_q_values = theano.function([s1], q, name="eval_fn")
function_get_best_action = theano.function([s1], tensor.argmax(q), name="test_fn")
print("Network compiled.")
def simple_get_best_action(state):
return function_get_best_action(state.reshape([1, 1, resolution[0], resolution[1]]))
# Returns Theano objects for the net and functions.
return dqn, function_learn, function_get_q_values, simple_get_best_action
def learn_from_memory():
""" Learns from a single transition (making use of replay memory).
s2 is ignored if s2_isterminal """
# Get a random minibatch from the replay memory and learns from it.
if memory.size > batch_size:
s1, a, s2, isterminal, r = memory.get_sample(batch_size)
q2 = np.max(get_q_values(s2), axis=1)
# the value of q2 is ignored in learn if s2 is terminal
learn(s1, q2, a, r, isterminal)
def perform_learning_step(epoch):
""" Makes an action according to eps-greedy policy, observes the result
(next state, reward) and learns from the transition"""
def exploration_rate(epoch):
"""# Define exploration rate change over time"""
start_eps = 1.0
end_eps = 0.1
const_eps_epochs = 0.1 * epochs # 10% of learning time
eps_decay_epochs = 0.6 * epochs # 60% of learning time
if epoch < const_eps_epochs:
return start_eps
elif epoch < eps_decay_epochs:
# Linear decay
return start_eps - (epoch - const_eps_epochs) / \
(eps_decay_epochs - const_eps_epochs) * (start_eps - end_eps)
else:
return end_eps
s1 = preprocess(game.get_state().screen_buffer)
# With probability eps make a random action.
eps = exploration_rate(epoch)
if random() <= eps:
a = randint(0, len(actions) - 1)
else:
# Choose the best action according to the network.
a = get_best_action(s1)
reward = game.make_action(actions[a], frame_repeat)
isterminal = game.is_episode_finished()
s2 = preprocess(game.get_state().screen_buffer) if not isterminal else None
# Remember the transition that was just experienced.
memory.add_transition(s1, a, s2, isterminal, reward)
learn_from_memory()
# Creates and initializes ViZDoom environment.
def initialize_vizdoom(config_file_path):
print("Initializing doom...")
game = DoomGame()
game.load_config(config_file_path)
game.set_window_visible(False)
game.set_mode(Mode.PLAYER)
game.set_screen_format(ScreenFormat.GRAY8)
game.set_screen_resolution(ScreenResolution.RES_640X480)
game.init()
print("Doom initialized.")
return game
# Create Doom instance
game = initialize_vizdoom(config_file_path)
# Action = which buttons are pressed
n = game.get_available_buttons_size()
actions = [list(a) for a in it.product([0, 1], repeat=n)]
# Create replay memory which will store the transitions
memory = ReplayMemory(capacity=replay_memory_size)
net, learn, get_q_values, get_best_action = create_network(len(actions))
print("Starting the training!")
time_start = time()
for epoch in range(epochs):
print("\nEpoch %d\n-------" % (epoch + 1))
train_episodes_finished = 0
train_scores = []
print("Training...")
game.new_episode()
for learning_step in trange(learning_steps_per_epoch):
perform_learning_step(epoch)
if game.is_episode_finished():
score = game.get_total_reward()
train_scores.append(score)
game.new_episode()
train_episodes_finished += 1
print("%d training episodes played." % train_episodes_finished)
train_scores = np.array(train_scores)
print("Results: mean: %.1f±%.1f," % (train_scores.mean(), train_scores.std()), \
"min: %.1f," % train_scores.min(), "max: %.1f," % train_scores.max())
print("\nTesting...")
test_episode = []
test_scores = []
for test_episode in trange(test_episodes_per_epoch):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
best_action_index = get_best_action(state)
game.make_action(actions[best_action_index], frame_repeat)
r = game.get_total_reward()
test_scores.append(r)
test_scores = np.array(test_scores)
print("Results: mean: %.1f±%.1f," % (
test_scores.mean(), test_scores.std()), "min: %.1f" % test_scores.min(), "max: %.1f" % test_scores.max())
print("Saving the network weigths to:", model_savefile)
pickle.dump(get_all_param_values(net), open(model_savefile, "wb"))
print("Total elapsed time: %.2f minutes" % ((time() - time_start) / 60.0))
game.close()
print("======================================")
print("Loading the network weigths from:", model_savefile)
print("Training finished. It's time to watch!")
# Load the network's parameters from a file
params = pickle.load(open(model_savefile, "rb"))
set_all_param_values(net, params)
# Reinitialize the game with window visible
game.set_window_visible(True)
game.set_mode(Mode.ASYNC_PLAYER)
game.init()
for _ in range(episodes_to_watch):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
best_action_index = get_best_action(state)
# Instead of make_action(a, frame_repeat) in order to make the animation smooth
game.set_action(actions[best_action_index])
for _ in range(frame_repeat):
game.advance_action()
# Sleep between episodes
sleep(1.0)
score = game.get_total_reward()
print("Total score: ", score)