-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_amnesia.py
101 lines (71 loc) · 3.51 KB
/
train_amnesia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import random, sys, os, json, glob
import tqdm, itertools, shutil
import matplotlib as mpl
mpl.use("Agg")
import matplotlib.pyplot as plt
import torch
torch.backends.cudnn.benchmark = True
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from utils import *
import transforms
from encoding import encode_binary
from models import DecodingModel, DataParallelModel
from logger import Logger, VisdomLogger
from skimage.morphology import binary_dilation
import IPython
from testing import test_transforms
def loss_func(model, x, targets):
scores = model.forward(x)
predictions = scores.mean(dim=1)
score_targets = binary.target(targets).unsqueeze(1).expand_as(scores)
return (F.binary_cross_entropy(scores, score_targets), predictions.cpu().data.numpy().round(2))
def init_data(output_path, n=None):
shutil.rmtree(output_path)
os.makedirs(output_path)
image_files = TRAIN_FILES
if n is not None:
image_files = image_files[0:n]
for k, files in tqdm.tqdm(list(enumerate(batch(image_files, batch_size=BATCH_SIZE))), ncols=50):
images = im.stack([im.load(img_file) for img_file in files]).detach()
perturbation = nn.Parameter(0.03 * torch.randn(images.size()).to(DEVICE) + 0.0)
targets = [binary.random(n=TARGET_SIZE) for i in range(len(images))]
torch.save((perturbation.data, images.data, targets), f"{output_path}/{k}.pth")
if __name__ == "__main__":
model = DataParallelModel(DecodingModel(n=DIST_SIZE, distribution=transforms.training))
params = itertools.chain(model.module.classifier.parameters(), model.module.features[-1].parameters())
optimizer = torch.optim.Adam(params, lr=2.5e-3)
init_data("data/amnesia")
logger = VisdomLogger("train", server="35.230.67.129", port=8000, env=JOB)
logger.add_hook(lambda x: logger.step(), feature="epoch", freq=20)
logger.add_hook(lambda data: logger.plot(data, "train_loss"), feature="loss", freq=50)
logger.add_hook(lambda data: logger.plot(data, "train_bits"), feature="bits", freq=50)
logger.add_hook(lambda x: model.save("output/train_test.pth", verbose=True), feature="epoch", freq=100)
model.save("output/train_test.pth", verbose=True)
files = glob.glob(f"data/amnesia/*.pth")
for i, save_file in enumerate(random.choice(files) for i in range(0, 2701)):
perturbation, images, targets = torch.load(save_file)
perturbation = perturbation.requires_grad_()
perturbation.requires_grad = True
encoded_ims, perturbation = encode_binary(
images, targets, model, max_iter=1, perturbation=perturbation, use_weighting=True
)
loss, predictions = loss_func(model, encoded_ims, targets)
error = np.mean([binary.distance(x, y) for x, y in zip(predictions, targets)])
logger.update("epoch", i)
logger.update("loss", loss)
logger.update("bits", error)
loss.backward()
optimizer.step()
optimizer.zero_grad()
torch.save((perturbation.data, images.data, targets), save_file)
if i != 0 and i % 300 == 0:
model.save("output/train_test.pth")
model2 = DataParallelModel(
DecodingModel.load(distribution=transforms.training, n=DIST_SIZE, weights_file="output/train_test.pth")
)
# test_transforms(model, random.sample(TRAIN_FILES, 16), name=f'iter{i}_train')
test_transforms(model2, VAL_FILES, name=f"iter{i}_test", max_iter=300)