diff --git a/nih2mne/GUI/qa_bids_gui.py b/nih2mne/GUI/qa_bids_gui.py index f93fc85..a907b08 100644 --- a/nih2mne/GUI/qa_bids_gui.py +++ b/nih2mne/GUI/qa_bids_gui.py @@ -33,6 +33,7 @@ import pandas as pd import pyctf import mne_bids +from nih2mne.megcore_prep_mri_bids import mripreproc CFG_VERSION = 1.0 @@ -495,9 +496,7 @@ def load(self, load_val=False): chan_picks = [i for i in self.raw.ch_names if i[0]=='M'] self._chan_picks = [i for i in chan_picks if len(i)==5] #Some datasets have extra odd chans self._megall_picks = self._ref_picks+self._chan_picks - - def _calc_bad_segments(self): 'Template for calculation' @@ -588,15 +587,22 @@ def __init__(self, subject=None, bids_root=None): self.meg_list = tmp self.meg_emptyroom = [i for i in self.meg_list if i.is_emptyroom] - def _print_meg_list_idxs(self): + def _pick_meg_from_list(self, choice_quote='Choice:\n', add_allchoice=False): for idx, dset in enumerate(self.meg_list): print(f'{idx}: {dset.fname}') + if add_allchoice==True: + print(f'{idx+1}: Choose all datasets') + if choice_quote.replace(' ','').endswith('\n'): + choice_quote+='\n' + dset_idx = int(input(choice_quote)) + if str(dset_idx) == str(idx+1): + return 'all' + else: + return self.meg_list[dset_idx] def plot_meg(self): - self._print_meg_list_idxs() - dset_idx = input('Enter the number associated with the MEG dataset to plot: \n') - dset_idx = int(dset_idx) - self.meg_list[dset_idx].raw.plot() + dset = self._pick_meg_from_list('Enter the number associated with the MEG dataset to plot: ') + dset.raw.plot() @property def meg_count(self): @@ -650,7 +656,8 @@ def _valid_fids(self): class subject_bids_info(qa_mri_class, meglist_class): '''Subject Status Mixin of MRI and MEG classes''' - def __init__(self, subject, bids_root=None, subjects_dir=None): + def __init__(self, subject, bids_root=None, subjects_dir=None, + deriv_project=None): if subject[0:4]=='sub-': self.subject = subject self.bids_id = subject[4:] @@ -661,6 +668,11 @@ def __init__(self, subject, bids_root=None, subjects_dir=None): self.bids_root=os.getcwd() else: self.bids_root = bids_root + if deriv_project == None: + self.deriv_project = 'nihmeg' + else: + self.deriv_project = deriv_project + self.deriv_root = op.join(self.bids_root, 'derivatives', self.deriv_project) if not op.exists(op.join(bids_root, self.subject)): raise ValueError(f'Subject {self.subject} does not exist in {bids_root}') @@ -678,6 +690,7 @@ def __init__(self, subject, bids_root=None, subjects_dir=None): # Freesurfer Component self.fs_recon = check_fs_recon(self.subject, self.subjects_dir) + def plot_mri_fids(self): ''' Open a triaxial image of the fiducial locations''' @@ -688,17 +701,15 @@ def plot_mri_fids(self): # tmp_ = input('Hit any button to close') def plot_3D_coreg(self): - self._print_meg_list_idxs() - dset_idx = input('Enter the number associated with the MEG dataset to plot coreg: \n') - dset_idx = int(dset_idx) - bids_path = mne_bids.get_bids_path_from_fname(self.meg_list[dset_idx].fname) + dset = self._pick_meg_from_list(choice_quote='Enter the number associated with the MEG dataset to plot coreg: \n') + bids_path = mne_bids.get_bids_path_from_fname(dset.fname) t1_bids_path = mne_bids.get_bids_path_from_fname(self.mri) trans = mne_bids.get_head_mri_trans(bids_path, t1_bids_path=t1_bids_path, extra_params=dict(system_clock='ignore'), fs_subject=self.subject, fs_subjects_dir=self.subjects_dir) - mne.viz.plot_alignment(self.meg_list[dset_idx].raw.info, + mne.viz.plot_alignment(dset.raw.info, trans=trans,subject=self.subject, - subjects_dir = self.subjects_dir) + subjects_dir = self.subjects_dir, dig=True) @property def info(self): @@ -721,7 +732,60 @@ def info(self): logfile = op.join(self.subjects_dir, self.subject, 'scripts', 'recon-all.log') tmp += f'Freesurfer: ERROR : Check log {logfile}' return tmp + + def mri_preproc(self, surf=True, fname=None): + ''' + Perform mri preprocessing (bem / src / trans / fwd models) + If an fname is provided, this dataset will be run, otherwise a menu + with the different runs will be provided to choose. + + fname can be "all" to loop over all meg datasets, ignoring emptyroom + + Parameters + ---------- + surf : BOOL, optional + Surface (True) or Volumetric (False). The default is True. + fname : str, optional + Path to meg dataset. The default is None. + + Raises + ------ + ValueError + If no freesurfer, this will raise an error. + + Returns + ------- + qa_megraw_object or "all" + + ''' + if self.fs_recon['fs_started'] != True: + raise ValueError('Freesurfer processing of the data has not been performed') + if (self.fs_recon['fs_success'] != True) and (surf==True): + raise ValueError('Freesurfer did not complete successfully') + if fname == None: + dset = self._pick_meg_from_list(choice_quote='Pick an index to process the MEG src/fwd/trans/bem: \n', + add_allchoice=True) + else: + dset = fname + + if dset == 'all': + dsets = self.meg_list + else: + dsets = [dset] + del dset + + for dset in dsets: + if dset.is_emptyroom: + continue + bids_path_meg = mne_bids.get_bids_path_from_fname(dset.fname) + deriv_path = bids_path_meg.copy().update(root=self.deriv_root, check=False) + deriv_path.directory.mkdir(parents=True, exist_ok=True) + mripreproc(bids_path=bids_path_meg, + t1_bids_path= mne_bids.get_bids_path_from_fname(self.mri), + deriv_path = deriv_path, + surf=surf, subjects_dir=self.subjects_dir) + def __repr__(self): return self.info @@ -778,6 +842,13 @@ def test_subject_bids_info(): val_counts = airpuff.event_counts assert val_counts['stim']==103 assert val_counts['missingstim']==17 + +def test_jumps(): + tmp = np.zeros([2, 1000]) + tmp[1,500:]=1.2* jump_thresh**0.5 + info = mne.create_info(['M1','M2'], 1000, ch_types='grad') + raw_test = mne.io.RawArray(tmp, info) + assert meg test = subject_bids_info('sub-ON02811', bids_root=os.getcwd()) @@ -799,8 +870,7 @@ def test_subject_bids_info(): except: fail.append(i) -# power_stack = {} -# psd_stack = {} +###### Assess Power Spectral Density and BroadBand Power ####### psd_dframe_list = [] pow_dframe_list = [] fail = [] @@ -832,6 +902,21 @@ def test_subject_bids_info(): power_dframe = pd.concat(pow_dframe_list) power_dframe.to_csv('/home/jstout/src/nih_to_mne/nih2mne/dataQA/power_hv_092424.csv', index=False) +# +power_dframe_fname = op.join(nih2mne.__path__[0], 'dataQA', 'power_hv_092424.csv') +power_dframe = pd.read_csv(power_dframe_fname) +keep_cols = [i for i in power_dframe.columns if (i[0]=='M') and (len(i)==5)] +keep_cols.extend(['subject']) #,'task']) + +power_dframe = power_dframe[keep_cols] +subj_vals = np.nanmedian(power_dframe.groupby('subject').mean().values, axis=-1) #.mean(axis=-1) +subj_vals_z = zscore(subj_vals) + + +subj_vals_z[subj_vals_z > 2] + + + def make_bids_subject_layout(row_num=6, col_num=4, subject_list=None, opts=None): '''Generate a Grid of datasets''' idx = 0