-
Notifications
You must be signed in to change notification settings - Fork 597
/
faceDetectorYT.py
60 lines (33 loc) · 1.57 KB
/
faceDetectorYT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import mediapipe as mp
import time
mp_facedetector = mp.solutions.face_detection
mp_draw = mp.solutions.drawing_utils
cap = cv2.VideoCapture(0)
with mp_facedetector.FaceDetection(min_detection_confidence=0.7) as face_detection:
while cap.isOpened():
success, image = cap.read()
start = time.time()
# Convert the BGR image to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Process the image and find faces
results = face_detection.process(image)
# Convert the image color back so it can be displayed
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for id, detection in enumerate(results.detections):
mp_draw.draw_detection(image, detection)
print(id, detection)
bBox = detection.location_data.relative_bounding_box
h, w, c = image.shape
boundBox = int(bBox.xmin * w), int(bBox.ymin * h), int(bBox.width * w), int(bBox.height * h)
cv2.putText(image, f'{int(detection.score[0]*100)}%', (boundBox[0], boundBox[1] - 20), cv2.FONT_HERSHEY_SIMPLEX, 2, (0,255,0), 2)
end = time.time()
totalTime = end - start
fps = 1 / totalTime
print("FPS: ", fps)
cv2.putText(image, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2)
cv2.imshow('Face Detection', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()