From 82db2c30f8fe68f44b0b07dc44e0cda7cccd9c03 Mon Sep 17 00:00:00 2001 From: Nick Eubank Date: Fri, 22 Mar 2024 14:08:59 -0400 Subject: [PATCH] limit reading --- docs/html/.doctrees/class_schedule.doctree | Bin 73881 -> 74144 bytes docs/html/.doctrees/environment.pickle | Bin 5720658 -> 5720975 bytes docs/html/class_schedule.html | 2 +- docs/html/searchindex.js | 2 +- source/class_schedule.csv | 6 ++++-- source/class_schedule_xlsx.xlsx | Bin 14434 -> 14494 bytes 6 files changed, 6 insertions(+), 4 deletions(-) diff --git a/docs/html/.doctrees/class_schedule.doctree b/docs/html/.doctrees/class_schedule.doctree index db548d527104b9c1976827a0d54d24a89daad262..177ceba99f0b8673c8f6be65a52e476206871916 100644 GIT binary patch delta 2932 zcmb7GeNa?Y6yI~%)c47H^Y=$fNah=GDO0%>SBc;+n6E!piRvR&u?!C`lR`4HpcFue6p0D5U+;i@G zZ+9!(zEvt4R4t!&DBHK;Tzfd~+;%I@{4Ng7-^Y^uYV5wf2;cmEG3ird^hbKsZT}eh z(6lWT2a;p(!5_MaPJ@l+0urM^Ypjt(Yw%#Z0pI)4NM_55%*zz_?wCW0WJRH00bK>m zu{qy{IeHbY*_lq3$Tm*d<|!7nio7f@Hu@LWja^@Fy06As8|?Wn8} z?icNqOP327^!9dZ#k1CGW0qhx=gc;nZwz;fA&i_@ep7;2<&4xrXhC0lzkc5L$n> zNA%L1FXF0Q>10qwe@NbnetFk#-kk~;@zLGMpg_~US$ONRP&khpcIT3@DRwDX+LH`| z-!2KO_8RaBO*H7~T_&L+SxS0o-fY7U_ZZ=BYHNY{ObhdHwQ+d#8hk8*k*wj!S96@vFU6 z@H5x!2+*`?qj2@INc?GEi*_hRpKhm-J@fe73)un5+2<9Ap_kf=;$tqtzW zoVyCZM!~%ad${o~zjCLXwCt}&_?xSa1gh4JW$>aufA~eB(&G5x*B}I8)B-`+eQE|# zXgh}o(;!^X%B2%^SamcpVxq?lSa`GpQqX(!C$)(h1r{p>dyeHo0t-ZYxaXJ*`$DJV z?@R&@&@6c>CEcyk&Yt7ffL6SeB5=z^^q!alOK1)gmi;pb&d%FT7Jz!iq(n{{JPR8- zm9*9@nT<-8Os@)I@u}7z4XYrEr@KI_bS)o5S{XVOu#+w<;%DXTk#yL?*?*4BBbl^& z51wIz5sv*MY0%3xJpmdv7_FmAVHl&lsW6J!-Zx;3gFWSah&~seZoMH)cX?4p8TN8f z*AyYtJ|omr3c0y?rht=->2W|c8#kCE;UuSX{1TmH+R;8(77C8i!nyx0q4QgM)7ul8aZ>@twXB5ckR%m`gQ=w- z+@P0g0QRY8Qrp1h)Jy6}NT*c}Rk8C~D-}k<4A4j(0xjC&D+Dfz74O-W4Aa<(+>-p|Fhon0Z;-lFFfEu7Z|BdvN9hi+ zlbc?e^Rqpz!9V~uFbGB|ClVs1-VoRY-%9I4;UU=0*KxH*iF22Qz*fl=20F4e4s*PE zsXPq+gx{IPX4vXE7Y@Oo9-0JvD+8Vl-7?@WJ&s5iC6Mnai-IFTAyM%Pg)=hVQxXGD zL;aYVKK;u?C_N*cDkk!nFf&m=yV#k>#H&oa#6%2j5N9+Ky-f5lVWtS2xlGuZC}-j{ z6C+gAHicEtcXZA2XYAGN>%z$ptQ1$c#7!>gdM!K*E2JhZn4wPkMhnG743dk(ad9Xv z4#UMExOjROPwnDqT|A|Wr*qYcX)FO{cb5(%c!CofX6!hzar%OhiDh%1j83kfSRK3L z#KQf=cCb56Y?hx`nU9$BxKtDmXP{WRNe`cqb@BA0FDod~xmGGn1VOSSKwfk!xZ z_LF8yg+^28S3G6EW=|z4kj)`1hSTZOW6Hhy!1`{iz@J3`P^XPD7LM*$Y!xc@b_}l4n7N_8fq*T^h z!3=#oSkdx(3>wbHv*FU8*4}^iY%-fJ{Zn80&A9Jr3}sfFi@`bN<5B;Ml`WT1OJr1m zs2W!>iG42p*v_AB8IzTny(oKuGkRjiylm%((eF6tW-TO}nYA!KBior@;I?;p-)%Rp z`yY|3+$-Em-EsDC$M+KI+gDJMXhAE{kvQv20IF3Mc8N!(fefr7uA|rk1=IhCU=0ew zvBB(~LS3`sWPM2cAPB~pe?&4}D35_4)LpRR93=z-=q>?x9SK+^0IM#I#Ba}2UqgAn zA&mzyTPW7pW5b!+Cli{#ROQ0i!Kge`SNY904ZGN2RU>Xh1+^Zg2S6p zp2`ar9kQeGaxYdQQ+A5i+a*xt0c4%A3#YQ<);0 z9rxG8vY%x1aaraFj<~ghU6a1cGUo_kR+w>9ZaA*Iy^=NQQCq);J(V$y5~V?3`lQ|h zphNSW{y^;O<8hP59}Dgj(hxP@`BkwR{@sLNgJ?paK{TO(pr{G=OLOlgFnFEvQ?wdt z{wM>E*dK*Y|GZ~Nrve?9FddukCBrN)T;~1T@LuV-2dSXsbijL$u~Q0!m}M4Pq%u3}PwjA6ej} z@ShNVD8bync0w&08>3jAL7f}`W}MuZ4|lyRn;K_89lrheOI>pZl6BbfI7(ATUcBMg z5BDW?V>Oa&H5N9dv8!Ha&W;$gvD@$@mf4JAQid7@y}?GIpwp$umVrZ`Sy;Y|&J)q# z#N*GFv9;3Yk`-!ZCiS`jcaa{KIZe@Q{XKw!LCV*Zn$i#P}S`Xlc0QD0Fmz4;LZqG5m#79HxOL$rn z=Lx>*QC}!Fr2I$O6xFT)3wuqLE!V(O7^d3%;E3{8hqA*=n30*thKiERm!7Q20_3F; z^L7kWtF)kD9_o)6zwTPDcdLBlBS`J%i%gdy+W;)K^;9dmz%BL_0VfT>Dt|xK;}7TH z2X%K>n8AKD@iRKCjC1&aJ|t{dwENYUqD-9>08iP^l5{~Jdv@7u*E%*V&^!gO%59_GRFmpXcS&doDAJRMEk#M7bY zh~=g)jk6=3n~%B4=SD+g;s9<=a&v;4SYqOc;buBFQ@Od#%}p|k*L8Jf*jU5yG0dIw9;KS0{u;b9F*kj8~YG-w9zY{7wiv%+(2DkzQdF+k`o) z)d^;J3@Pf!9ZzJ7p!6vr4eK=Xvz=M)3Ho)~MGF=$%*=Az`_eXawAR>4UE=yg4c5a< bW8PmA?l76XRY+W43xxZ(CV13I7MSu6n>clC diff --git a/docs/html/.doctrees/environment.pickle b/docs/html/.doctrees/environment.pickle index 02a28edb02f37298b4a03adc5ae9d099e1ed3b56..3cf7ee9dacddb546b3a8f2250a108683b46119ad 100644 GIT binary patch delta 723922 zcmcFM2YeJo_w3%b%N(Q^NJ0{7fK*7KlK_E)5C|>w5=ej?1QHSilomiB7-<)HRs=gL z3bwVNfE^p4h$2YQPyO%{0UIKg|IF-Oc6RRqnE2<%Z?gAhUYYmaym>P_yZce?7yJhJ zg5Mq2mg@k8&lGfU{hbpYSmQUfaN4W|h4YFkCKnY~l+2h@>x$0k6kgMGddb4#qRGY6 zrx#DFtf;NASInI~zp`ZRoC=q3Zb!Z*29kUAi{WbF$k?n{zNVGyNT)!TU#!0?aB!sS ze5d|=O)0L*U8urn6s|H$5vaDM7wfv5XMV}!ka^aTpKg+bxQ)?8el`Nw2mQ= zachAO?%Lsuwl2TiVAq-6K}52%5q>SXa45W|Al!9ka0Fk|4!EbjTQF?D zP~eYQw16r53R>WcaM$hu;V!@SEnERTgIx!5u_mM8!0iRmxGofi&M63W`40|({Wlf( zxGr@J3=EiEQd&}3NbN9r?)1r-BePsdafw`vYf4;esjaO^lbR6NIEV|AWO5w~+lvZf zm0D*T@+$z!Ugm?iUas%sT5;(v-}q>*t1BtKz0``-MiO?BwpwQo*OK@al3l|edfe99 zwLe~#63FjXq=yl(?2Q5`zSfyUK>mzf6H3Y!&6!&33?dbFs^Elq6_vHl_O6J84pJBa z$3XP0wur6o7l@cunrm)C6xZ9eA)$G6IH?V&GdQ-Wn_LvBX%9)C7PQA*X-9rVxi;lA zcljkMQ7y?&f5x5MSiz(s#?_~9cr!OBf`FP6gNH}Pl55{Or*=2-A>dHB^hH5)$)8+@ z1NUk{IOf}e{ECF6?+POEFNyqW=epD>*tM}Ig0h2>B83oGGKO`64bK)xxPN}G!lVvD zB!=Tb6^w_6FCy(m6>RUq0{RJ&?>(1m?CrEyvpc8H#h+B7r(@zx0_y@v2x=5k4fooV!F!+tn3geo( zVp6ayU0QOY>q3`gE(QNilbVxO2`(->7WThFJFK|Yr?i(+2|S&SD%iNcpf%>$iGbRZ zXhN*(Aiv`1sDX=r6og4#2%r-QC7p0}0QuD!c2xFHSr(12=hyg6E}A=SPGM;=2`*)Y zl{0IX)W$kvaGf)g6l6>|`;vl;2xmW1kkR1mPl{fo$Rb5LDF%?DD=7w&f{Y7iHYs|L zB8L=YTsQ~eVwsZ+31==T$VhMwCIxYQXC5iqlVS)dh~GPhk|K>1`K0JgieaQ6e(xMk z3gYL^5u_kK?i@)9;@-|tq#*w6EFcAOW9R5)q$FPK9777?xX!VpAa3g%M+)My&hexm z?&_RC3gV>BiKOr&#UxS?2X#&+MKe-NAqDYDXCWzwLprCDg7~9z8Yw#3nk;MLEFzb! zNl{D+Us6mbMLa2Hkb-!lb0#T>A394&kxU9FDTwbmXOV*VopUxR0!dLy3Pg%Iq##b` zoJ)$Pq$nfBc#)Llq(~vfJW>$9b5@W-Aw?xAh|f9alY+RK^CnUdH*+o^1@SNELQ)Xl zaxNl8^fTdI2RaaOj&<^b$BsSU&sEz00q`vrqg=jO>8|Nn&$^ZkkX)Gqdc$%@SIHGU zAjWm;fNidffs*TufuUQgG9=f4f$d#y4(vj&I}8lvQe86!c86E{j+UPJYv3Zubvl1A zT&JB(B34&&ch z&Gmxvowgu#@MruGANP-^zU1$e+&?Cs<1hHTe-vKjXG56PG%Vj|3+40UAZDO#K9mKI_J^qbwltk6KR6Ede96Z`M7AxI)P{n3j&BYp_S;sF zy29i9P<8NYHr#=Aaj?^ImD?AMeBH&JZqMQ))mw9C!mO)i)l_D#CEseUz7Z zM?4%EF9a{^6gzTeNkugNUxA}+bYVqwPX7_n=}D>4gK=g!e_nBP*XZFmsl!=X2eWwp z2-754Qal!KJCSh<+#F}a68YI=&H>4XY+d2vQQn8g1|nAEPQdneZLjfT^_~=9p|N{# zBcSX9+emI6On%?ij<3YfQMQqM8SQ5}Y(K$=@ulXbo3*C3dee<;)7!PC{D^ps=?Ego ze*QI`={~)BZ@lJ{?;N%j@W=JaW2VZMu=`uS12p@{)`j~8`hH~V%3szS{-hh>B5Q>6 z1~%>PUcz}j>^zFSzEc9V9v2Inj@kNhZQ;NvTa-5bp8mvkGv8OQ?_;XR{KMd|Yzu(M zPi@=yNeQs0*cQ%Bg5#gsM)1=TV8o9wv7b& z3)?LIew{Y1KKs3GC|6^qy(bGBx`64$IKFKH_$T1O`_yS$JpYB>(a*IepE8Pg=8SDP z|Fd3y$y84b@yl7;8qN=vd}*uY0}?fTHiP8zSf7aeNrvbvdXl>9jUQ!Igq zCCK_3hmQd|YCoeLpOL6}L+&@Wb^JuV!8nfwG>oX+A|gX8IR33I9iI5Ftp|ULj_(~$q!YWU5Gnw>8F&-M}jP$IPxw;9fSZ_DS_Q*^#E z5vUf+)kEiPeR%#LMv1eHhcmy}Wd6-W$dtKA8p>eDMcZZmByLW;;v_tO35U?LI=6m5 z+Ai^@G;V6{Pqqw>zo@YzQ0x}juyG zSu`l)zceT}zidn7l7ZudXGH{oD69tcGl@CX17*_U zhQ7-CgZ#T~30F!0{bBhqn*v9Ew@u@xCu#c1y=vRRFG9_-cRd{Jxmyw(HKjH~CGe?E!0 z)lmDERE}#x{=udfY=JO$kgda(V?synvPSV|jp8MZBAs*3a6%E^ELn@_C|Qexv_VT_ zrh*ikFpKY)teLkXykZm5`NU++nKA{Tn2$@=l=F%p?Bsi66OciVfn?D0vB`9zz_I3x zB8<@HiB`#Q_`EGxT`LJoIc^5Xijd5gU@CEVx-QlcrV@m4{3N~YFuQPu<8RZ&xDAFP zA)eo;i*XPM+xgpdF_t@oll*ova0)*3E?V{L4DYm*G$|p(DRv zCpo}ZsODaQ!@k02{2`s#E6L#B!#0$E(V&Beh&I*mD{$pTTQ;3{h}3Sk^@mr#!gC|; zGldY}<#Z!Z>tCYg8>sdS6sB@~o6bZF!{Es`cptbLB>cpucZOkG#c)6&!XUn9XKh;Q z))@-d`iArPFV2R-Apcd~4}J_0zU7DDr49+l%R+@bs0b4VkTxVHtB1n`#PO3lYxW@& zj`O`KBPG;HXZKXt)Lux2`~$o{*IBJ;A;j@ESLY@W<1?a@`b~t;jgwY(#xv}4wQWmm zxjChA_=l4eixY6Mh!jtdVkaq{N+dr?@jEFllVVL0E>@8uI~f;Qq}WM{he>gq6vs$0 zldvhq#eC->xk(eUK3fU?(ZVclJ1mJ7Qn?-QOtdg?0FhuV<-V43UQ4;Ir5x8%Zfhy0 zwUo~zIMLzh)#LAnh_)H;tFX`ib!{8Pb%tq@&N4^k^kYko?IeVv?ohRcW6)g z)b(V0T~7{^E7B9^WNfP(pHc8YYvD2e8EWSt@K>xLal47$JHxRy!bScNTk*bDF|?f! z${mEE9fVG>xt;JR{~g=tThb`UT`$Grda(=fB8@uFcOfZSGNgBKQ@OxLvkfACkpd8wA`o#jFTNv zOaS-eye}7NPR!s#=EFjWIxSh4WJBv2#HyEsC|A#IacC<8q!L6=;(YJ~I44yo^uU10 z=R37Sk9tQ@Z%PwfoP*)g1vZt70~z_6)+68guEHA}+RxA>^1I zjC>dX?o$RlK0s*7H%U=n8X$yl4yL__h(Yym8kH@4!K2m;VXDH6!~J4WCk9GYxcw1d z1SfKZR~!t22P-`!TD&P3BJzZ<9Q_QMUGP4W*b+Jn5qhFr15BJV6Y^8BJN1LTLxkyO z9E)o-_w3iEp~8G_Cdm21AmlXD%?>o2K3v0`p5iJj%M6@mG{okjD-2_K*; zqmm9ChDwA+WeKGc;7J9l?iRYj7t^Fp0gOU)77#N+nB@(=ZG^BAJ!0mn5Ap{Ms9R7t zv$$!5`tV30*@m7os)1UP8-qRj6$WYyhUcJWj8NoYP&{neQR^PVlthMLwQ{U*ov)kC;>sVr&u4h0x#iBX;pbyfj@X3S>H6 zr|IerC>&PK5WbEGNv#{4v~~y$r9r=Q+%;2ZgIXHRsAHorB8avl0Kp|f z>J1QDT!INDU5n7=5@CRYmB<=Fdwceg*bxpmg n4ltM8%*%%>@D?Xf^ddc5+Q20 z*~0xcRBT{cXP3U7h=a<6WdV5@rGvIZax2+=7?uj#*NCZTEFm?H6yqVhT!>7WfUlR- zIwuj(3S3mociu}7h7$mldp^FRV-^GGjMm?E0B=iUB2XTj83GSuGE7(cdrDNV#rKbp zBh-2Ggzp7ME#aq4(t7M#yFhpc-D7~6*j1}OvQU`Ln~^NRYp8cQg1mTM6WFk?UpV+K z7N!Py29hpKU`qdh0f>{12rPX zF^H-XsvQi97BM1?usTWW6Uz?D!ySomvD7~fU9pm-iOa7Bv~HyJ<{jbc~ zJ(&@=31Yar#cu+Cy_gve-)s>2deJ;|--xrM!HgVK#Y7hoIR>MG)cd>`!wUO}gJ;G`p{a8QZ(s~e2-6uTGBO%>1_O!%|Z;}pY?-ypE zCQL2OHs(Db#G()eN*#OST|E$&4nIDCN1q1@&DLY?~=hr=Kw*S^Sm&GM=vmBseE)Pv7dn&^1YxIzbN=~ zR-7vIk@w~>_GRHG2gAWb!0LJg+?|vmsGsZ=Vr=L;hBns5FX%@Wa6mZAf0w>hu(z}} zj8fxX6M{J;cQr-?^@R1W3uiD6lqWT7;b5qH2v_4>IMw$}L9wA$3|*`u)?qi)gLuz7 z!b~0|)sMKz6OqhV0Zeq!Ln54ePnhU!sv7gYu*usJ| z;Fwh-Pn$cZvUnjr)-o8*92P~d@r;y*%1Es#ul(fU^QhFEr3}jvq zZiYK936&;%YLnK6O+q}oOo>#&iXVj%kF{HVH*M`UnlK+jim}k^C!v#R?Y17nJ=bnk z80yxDrXRX?!$ip1Ews%#Jk-tgo}xkFWc#!LR!IE+=5^eXD8+42^M4Tra6BHD zG)PgwtDxwz5X+5$+b;_(xCi0U%RB1B&sPSt4u{5$4p)VP0{Ypg zhCLNxcEoW4U}FbE;JHF^0q4JkYoguc(oZ$Ss^>T{h(mmLL)<+%VidHuiLH;S2|g#i9TPp!Wr?2;vTuVCJFqJgAcab@#jpB)ro-T#b^% zG#>Rd>S2l^=Aixz;L=txm+SewU3`W!HMB^o@7gh}wiJrNYB~}xb7%rX&!XFwn(LYI zLeyuPiYqweWbiV4v0(EU02R!sp79k&m|I#Ti}uDLSXKSSZ5&$15F9p2jDe~^F%E5J zpu|+%IuL@y-loq?)2TOy+WD|--uvQ*|QR47EKVhl=yi$BZzB?;kdxbtJ3)ha%MSF!3${oi(bhzOU~A zG6b+)L)49t;?Fj8fyE<^{$vc+-em?#wRZuMTZuQBT3b}1Zx~v+#I+Xt^2oObGn~vL zGfh*W74N6E;y3|CvUoYzwu?H79Z_2bN~Md0-#dz9O|7XXEbD~(lJ3!3<>N$u-qf7B zLazkzc9g?3r>+p1D3;)(2~~;WP*0TK6U8UdBrD1($+bkaO&LsoI&gc*Wr8;<9m9oX{oV9r_ zI_ueT#2|61xh1vz>0I$3`iW^yZU4()@m}t2aOH`+OvEXQbBOpZQhFMmO;M_biaYtY zb=$M@TWsIYTfc+Vck{(H9BR!_wdi@EH@pz_*l@9oN68Ex9szl%8v~%KN>+avC3fLV zEopCtj~4%fa+&71H~+;4U^qQLr%od-(P@*~*TP$|6VO*Ldw$_tGL!uEL5^1>z6MXf#1=6RB z4|&T`ewZ%qL7x!m^kfceQOi*RJ~E&>6;+-oe#@h;j0)@ARH#YBppu*e@7p6$T`)@= z&Y?^7BkTLzX5aVS0_o4P<8U_!BoSmKRUF#Nqh zOm&aJ+=XJSdm*-Sq1YnrXX`*D0QW#FHx0ymMyx9f#fWeQKrL--57T8|JD9UZ48YGy zXg8$D>Mso*UL>|i|H;af0NhOH)yK3Ol%KNqX0rKN9{p8^-7G%Dp_>^=@tipjtzZCj zyx$D>Ef&|98YVBnGkdMMVWunNj1PA+e7Z!8F*T;fYPD2cjvi((sIe|A6{iVA0*HJ+ zGt7i#u~(^w{4^u`X_=V9p#uzEoXSVxGo0cR=pX~7Y4ZUXxk8LKwWhLdTOn4W6HIF= z+vJtvH2y#@D2woq^u$4{#8v2`73btCaW26jTX-fM(ia!oJ>l?LDkZWqs?VhdWNF_Y+b3mCL+ zFsvV+2&eALlhou5;z5pE2>DyZ2ngMToofk0in{O3>W`bmd+>;5Du`bN8a(tJ|C@T# z8&(xYL%nm|;7C3nu1>2JzvsAn3A3%}exnsoKKH4;KrG|XeM|+;k6Xi`{exPeXBj9B z5BI^yJH=viYqM0hY6`piI#R8_OH2^Z=L~%+&M`IcK5-L=jxiOMZm-r|g)#{6>^3Ax z(oiNC>S|(4K`f|#u|o{x&|eH6%lx#~tL4?o2gDs5a`Z7A%!0Sh8(xTd*F$22fLbtk zI2?U|S}_0`iB3F*_gz}3BOVv+ys3HBD`G3C-X*q0=?o6FN(&I5#K|m6+!9gsy9kUD z)B{h74+>}~Lkruz6>NS+Y>h@UP|9H_IGz>XH?^kQKKygydQ@U*%@4&7H1tF*OwDQV zjeA}^gl=J)(=KPLIHw<~9#+LX-h^Z6gnmbZ=>(k??te)<%A>6eRjjIkXd45deb}l- zy(%{6OfBgoxZ9&8oZTlrWNL_YlZ9UMY#4t)++c2KUM{-4dqd`H;?ErVoS{b- zgW~(xO&Nl8DSp@ccq!hBfl@XtAoK(A6VKLRAL7<29<9|aABw#=Q*(<@cXS{G5DjB$j+p%)cVUHy@WpERFiw6V?{J2l}LD%4ve zkBO@Uw77n}$GzjVJ0ad`L+e;PlC^(w3TN$`87S5CIc>mx6Z5nBOX9+Fr=_-x^52`&^p~F7dMN5x4#xYLLV8mRIALy zx=&-z;%g^`x_*n-0ADePb<85p7*IDeJOJpv_iIoU**6{z_r`a6WBw~9aNMtue@+~O zelu`@?iU?Bhxd#AW}sBjzroP&@PdzRO#@xW|A}SDKhqdzG|+wfKe2%SEknx~SsY>; zW@djw>*UWFbY{O~Fm;PhPnjm17ccWEndCu{7LfS^PPw~T88*8hj^Wd=&ix(XD2=J5 zLhibNw=RY-P%32juc8CyUld1iY4F}fvB-pH5%f(>(9W6H5>yp_6xZ-*ftAr`KZ_&z z3SGDgrj`m<@ryVf)i6-EaCuw>l>92rK`e@qvg}|`sEI0I>1BLC(A3(j?zgmF%%!~u z@KiU=C>S5q&BMAClz(jxhV#FP69QP*)VCeRU%^YN!)C#>fe`e80d*U<2_%O1ZvoSP z$6L0ijB4vhcu$j>C7>OensgQK3tWOdSH*Dr=Yy+a68e=PL-jc54{%rg?jlrsGGEg6JNPltYDJ#t%n@OAb$NOqw>2apk zVvl1QlSedrc=p0-553o{Dz$O)xt}y9!gHKpWoS|PBUja?c(}!18jQ{|;!x{MDOZrc z0dyNDF+keJ{jBNkXZS8a%0yR;R=Vy2r9%E!58a*6y7i-`y9)-E$vAfhNzZYiFf3Sl z14Z;R+?<+yYKTDOBnkSRW_+YM8ZrpMG%0M{2?K zfrrDSVW>YtlydCfTw1|p5<*>FQ%Yop$rl=vUe{)_wuST+ew1={xRilrT8Uo?mrC%% znqG*X(uhx?!~;BgU|oFax;C2IoFOA) zbP(^H48vMW%|)^kGG9B9v>Vp6meRQoU|(ygBXruF+ zjTDKWr@OO_)Fbj;99nCFO7JPAd1dp8D+{O2E{-pqTU0!|qSiSGF13-O!%twH)db*^ zOcj;$3QOh`7u7Ym1LE3B?U(JwW~+97fNw=sI}c&$s-69?(ACayIA5rCK1yr1(~@wj zb`HV>tDS^wwet=FHx53%g?~D!F5f0s^!DsK0)GY54 z-~p1Pd_bfLJLP{lzpd%$M|J@~Q!?!=c9>LOMtv*^r~Z!2=^@M_eN9*<%k30q8SP zN`f`&B z3?xfZI(;4}oDtQ{#N8Q)*%=cA8J(qj&~OVgrpx+cXAB*!%eQoqdPNo!JpKI@cKpl< z`=muNe9}egj+|!FnaoM=88D@{)Q9Pq{-oM8tz%OROtqZWRt=|9r7`F> z1BYmh<+jGkEl`V1E9>QEs4;-)zAg(qnlAl>9y9aHjx>xNtdVCiwUtNrZqhjPvKdkH z%zzgRsLn?Hqnk98LkEot>J5y6T4;P2R6GFiQL)24@N}TxKNz1YG4~HPJtL(-VNWSM zncXA))n?o}=tKt+wk^GJ_$kBO9pf1R^m8sA0<`QUIdMW+-AihVequ;qyL5*#Bq?yU zmsG@Epmt&C>E~ap^wcB0rQIB|XJN7Q2w)kV`mq)ZVz4S^;&_Zg>qpd&omdb<;E62h zE!4JtytW>ySF!5xYfZWsIQ{6MxmS+)#i1SslsYHS$633;mTYM&Vo+chn4(U54>r`o z>h2tg=gl;#h3m@c4(Wditb1*y4 zJEnyg>h>8LDLc{gb(o0he4Qa$Cr{Dn`MMy+2>KA{*9882u6sBH~M0&d*8)P z@zOI7=Ths;y3j|}8UyMcRU3v#Z*%Alqry6>x@qz;sG81CI{gPr}z_4jj-+*>T zL)}$i_ax~yt}pbQEG0SmGu2eD@wZB8DA#~8rsxl?r%1yQgF^Mnu1`8^eafcW`2#(_ z(bS>{zgZF8X_kPU3-v=bEUGpazB@z8Mvs{h^(^fX1FG}s2lP2fm?6c5CrGSa`J4C3+%DF>Zo03_MaocyR7U5S%=Q*+|w zOlqK?WMTO9(-yji=1Y?TSS@KG4*J|AZSaWL3`tinl#S2y!ER|Au)Q3T&p(U=z zfOcpg12weX2S!y%`6d)gXqo7hR|s@mfhUg1W}>V&P4>j2Ie*)gQYwBO+4z+>$*r`Y zGdZn(BByL1&G}1>hHj^(gWS1Fn$K0knN?D2$8Ag-BgkwvpiGdt4PLrcDn<+n9oh{4 zshap}uE}5hc{N^nqG!!K*focKHfVRfWQ+(A$oP-DlYpPJjezoMtm+RfOqk5C*i+SX z;0{|SwG`3G`VsZBK@4Nfaevw%eaWNm7)0zx1JRERfVxo9kQ4+6EQeI{kvi-o;usqhjVEw-u`59EKy~) zhkSZec@L!35nd7}EHTa1M$zrFyY7&Bqk&fDG?w%?pt?aJ<4(L4I?8}sLy3N3gu&D- z((5ki0FS2Ck65Ag!h#qAEAN$7qw@Ok^aqkHc){xJ+oT;lT2?=z{xGox5udl;fwynb z?G{8Pit7*2GKl@O_hxLSR0GX zW-#wLX)OPHws!2*Nd8uOC#&{)Uh2uApq#oft&PuzR6IT-7$^-MhjRtwz(DuYPxy_H zHBuzxz99KJ7!ovjj|QJ&z70z7MgzDPrG+M@WPmfvxm!J?#iNlf=PtbHWjS{)n=a@4 zE)um|BE^rmz;DYgdqxU3oy8h~#qnIz4Zu)hBRKVv)X9bk)U%XZ<0+Q*s1)PE?y#}< zWvSd-BGYHDHdmz7A-O0fYY%Uc=>7kSop0B)W{B&z+124-60mm z65O|FonV-eQ5W*a1N$T%-D@VwrgGqc*H7y_L&+`n+Sj~iaUEWlmU-RCq6Os*)LQ&dQHhcCgfx9|<915k?F zaI2u^Evc=<;R&!N3QFe`#K>207F!d%0FKO;f_Y~q{Q8!Z6jp+JT;sc7W?^Ogw7I3l z74dWENbwZv-#^T!sDkPq=hYx*PcnG8$ewBIO3k20(9^1Apgo&H&E}wfsG4I_HRC zFvyBLT6;L8g8_!Bi&8EZ14}=UJ~20^4}Jbggr!rj{_rKsioT;4KKoEQ=EyWC=0N!u zs6WavAR3QM{A{zd-`vu|Lx0NB!~?%9r5hy8cf_J1h9c2NK%oI}D{ja~(yxwr3>;z} zlv~1_kMZnsvjGN-p9yE$IS@C9Jlt+ZIWW;a64iKX4QG!^Ip)Un9X5uV!nIMxhz7~u zNJZXc^*tsPN3ea>j9;hm<}}%PD=&Gn@A*UdOy;)Y6`k z`)HAdjQVC9OGA5{de~>uy}aY7ft{m0U>tTrT7pg*U_w-%v%WkbP3DfOeNReDI5Q?y z{JAgiYic;t5$z<%p>L(9@PUG5|COFaYrW72 zG$hkE>Q?2_Wo?zw*gbIQtt{m`>2-Wo*r=@=I1DNMiM6}yB}JB&Ln1tQGxAfdL@)ri z6j%>5&JJ)@tq6n_=cNH&!a96@9&e+3V3smB=v@O)M-G~<$p}{;KjVXsK%X}1soU`< za$&jBbPzJ&IoewY4AJ!+CYH1o?}yr(7Wx>7S}YhkrJoPv{wOU*m(5kwqKroJH9uj< zYJS21j4sf3d_DPP)79QoQTVe2fu3_`4$xfW&m27$`7=j*n7t#BYZMe-mZC*+t-o<2 z0k&P1I<|cpho~B#;)TWY@ayx76-^Oif?3IPHiVGJMF2dfK!JUh#SO-*3_r0R;p`M*+E-8C-+! z!+-D76=s(gAh?+97ec@30?S_VEeW)?bxt3wJw5-@@6t?EVNilXA6eg^EHj{#KEa{4 zksrA#J<2<(m}(lU7X5|yimMGMA(hKjf%G?K!L$ZWma`+LlZMoHk!D<$oi?%j^tbdR z4;dG`hrpA(Jl(OwppB(}P>z8qL*qK3od%dnPannE0q@)7t0ojG>vp+^sWlV^iqUW}IwKC9 z_iVn)N8XPZ;#RTr+t((s$a@?jSO^WqhQdQ&Q+|&iD09e5ygCLQ3eyMcLjhYIr{!mP zXCRdN$|+%idDw63-r~>>|8f#u`db``qs^a+KP*K)c?IMAaB~7TG;w!js6n>p= z{!6}rQ06c9i0XqY@y8)DwLkr|KUvzJfw+13_^hNr69qD{49U~H_l>(p#XwPj+yhO* zC^{3kG)fMOye45d9UwOk9B<&@D@vBW>bHHM{3C}-jao|ax}xq_Iv^}!2*G0AnqdNG ztL0$z!C?6reBjwaeegBq#f>M{>a*-E_y?8M%}Do54@M_i$XPsE$1vK_N{)g-k@9-9 znStJby24t@Yw+t0wzrh`dJuHAc;64E4Dl1-t|&PN?X*yCdF_rtd00xIbU#L_NrLrJ zauSqA%L;msP@&n>I#?bpN0_))4VA<4u1)q@`qGCCqpv*eW=)S6xhHztB7fEmGn!o| z^BV>Yd_{}}r($($ulYm? zBh8;$=)7If-rs)1X7m_e%{^qqD+2uNni?D{M{`_jHLZi(fkSOAQqE~OM}0XM^G~_} z7dy(40WA$7+@4o>yBw}|?<7asP%opFhO}i37g0YH)9s&#h$X6vVqJ+SVRVFh%A7|s z;-KpW+&ydh#xem{*P4efZA+9hxbbj0QO-mY8?1p)f=T5a+t5CHcvefNKc&csoTsf+ z_+)t>Hy>V0mft}O8Z5I1L;VC%MMHZ)trkjUE;FQJJS{?<+(oYDxEl3bioBjf>y1{8 z^|%;)KKOr=JzULAm+$4#LyXLH#ti5#k4L*0=naJGUESpt+O*aRqPxqj;6is<34M@6 zPO3h_#J!>34*a^x?V8t`J}AXXL85sh#;Sh&Ye%Crr;Sxlt7~Jm;QEooIhts2u2i>O zFb4lNB{I5qGNXacIya9biu(d3bdQ$53IqC_MF>;R%(Pqk{46Q~c6K%Xq4&>u9 za5Pf}a9r)7sGBq76i)r5kNmX_{mgJCUepMyw$nIY#1tDc&()x*v*%8OS1Ym*6GL^P zCKJ3Yx1WA}Wjn_Z-yVw#UG3xQe4U|&VJ4Hu&7WFqOwr(%C5I{QwE!fMU+%R4aOe1RxH)y!Ugh}n~;p!i^4JhYOoKa1ZwmV0O zVW2k<7A|JXZTb82;Nn=n{H8`Uz_j6q^#j(Mm_$E_ndJZ7GzsNcm|S;e9JW2Hxs4Eg ze9fQ|6VXN{hAEoUF{;vr=%cyv186EECKZ1EV0k!lGEkzS8y~o%2_}t}Q-|W$@%VKz zacE>u^!JE)^kn}ezXNCmBeP+KbqtjBB;|&k%;?Dq$Q&xCniw>)Bl=6hn2xAl50wk~ zZVzH{EB;XitdC(>He4PYX{= zWWJBb!<{qyR-hvc^q(2RmR(~7YqXqVV$euS>*xL$Wod)& zZl~X~=&D8JMl8zoO-(v)6^{jGLrj8x|4Dw-0E^kc;ta7S;XQ5RW0-X{Ta z$KySww)y5srXil*%Any^!w=)-g#1S7){|%+EI*CEb9H8XXlK;NU`aElhRlsU4H|U{ zk1DiBz}SiMag=A&YE$EcN%DL&ihi7J!UkcgQF4F)<06gFs9*IJu^d|gI~}8?=f1e`LBr)HunvzC9V;l z8ERI2tuULL47(biEcacn&b5Ww_PtQ+?3V{sqwRqMuN`i^7~kz#3r(!>mzCt^BkE=b z%GkH0v~2FY%IM0O#nDBDm4%r5wYhlMm9QHin7jEJ}cZH%)`UOLNUXBm= zRm=X6f6}jY-OngA$in)@L#?r0MD%73Ck z)AOO$HS$8ZeM5=@+wyont{ehupJ4xuI3OD6Np9;l4ZMSoEa< zrjx;q@8KKD{v2A~DYrxnhsI70FMAAEni(~2?Z~Laom0fzC5Pw}H?x9Iaj)R%0)E){ zA=lfz@yvws;B+&;G`RSpUuV>8gn2G&NIrxN8t$QAa<{ykb3`x|%(E$N3~+XH_`T!l{V1tA-NAKvM^}KTt8?8{eC1XJe}%WJuJ^bH(40m_B6d=dRb-aPuUJ?w@k!7~_fNvq-Eyhpq(LeVxQCm?K;B_F8U1L0|6x34IH;@k zkVE+li^c}zbM>fY`7?63gnUMtC$2{5|9@T?g{aXl$@m*JVgDYZAG|PXbm(E+#u|El zwuYYWj{5gh(yqIw;yK*l!@YPl4E*2l2%4jRF3LgUs;IQ(${n?v5A^)I%G-U6R*?tEVfkzl(QA{$gaN zduA)%llvlRlzFyjh*AC;seKrP<$$x?Whl%-ydeoLA!?4+4cxNI<2ipX`f2nu!vqA& zG?S-rCdq;OP!3{F7-U}Yy`X8Ih1~{*nywSr^^qK^Z?-eL4PDul#MzJJ zpz9pY@-!r-PuD?t&0y2`*sgF|jf+J~83mCj-;j*q7K4V~2levDGJX`g#;710j{33O zS_Vp3He}ZvQ`UCPJy^^-CXYl9TUazC$kdF|f(*-n2ALNu#2XT12vO5e#fodtsjR$~ z?jXZhf%@glMlI+VYPwD9+^3B>$mGG1&8Btqkt!6p?ApuRYdB|wg*rXG5?D|;y96Iw zDVZ}Pe&o#J`2N}n7V}NXz?G_6wAEKm$RF}ZE-+8DjR<{-dgx<#(Nq-tPs>*v!3HCJ z%lOk%Vl0X@!2d9c8|#8#c96$uJ|z`}p>uQ1SVqqEY}y>)yW-4E7( zhZoL=@A7K~Q%>Rn|BS}p$SrbAb0*MXYy#o zzsG5WH%{2RH?Z!!#%&5lZe2&P>53dmo~Fs~;1`rb_OlfP0I9! zIuGD^O;oG?l7HvX0~W~};j7cUv1_ykF~Yk&sE}8v2W3ub#csA7iSrBWzU4OhaXTD9 z|FQR+;Fa0vO^ZGn;yte!G~C|vf=x-pFJEFRw3|>tqLPeG7~lqH5+9F-=wwF_3=)*q zFk_qC6fw*i>qzCgWton_FiCk9{lrL)Z>vv3R~bM<_ppD0cV(roiFPBWt_m;mlM}sT z8?{1Uw4s|B|Is#l7LnbxK-Jf-1mgFtkExr^_2t?Sq{N~&2Drg7BSQTEDfr$5!=kaa zUg}L(S>X>5%FTVH%^U?7oJuD|3D=)N;7p0s(T(N*>ardXhYU)w*}&u zG0CEnhQy5V1`T(Zn;fK^M6(TeV{?fOy1p4!|H6JML(MICOo$ercXVtYw5;A4KD7Ze zeBA)M-I^PcXT4fyRaBOgYMWO0v8(v3>C=nhgAgUqcvZuHLzMXJYtIbz?^5M;G;@WC zp-KmX_Imv5I*${2dqEt2i(PQS^#f6jRDqAVOe?M>FO@qGF7$+a`-l&1kB?~rF+L-f z*zjZUu)}A>x7;1Dy@k>)G!#FCT+?iRQQ@?b%0=-N@s-6Dm9@?&_@adpDTU%ks%rdU z&z}W>Jx`Kr{b{v$qBi=pnsX}w*FAO+pIqxaYKC;Kb#8~D;Y#!LC-A{_rfHX2r-F}F zFp!j5=N)E9YOV82xG!93k(Yw+{xD6`YMtHj1{(uOuXQdoL-6}6KQ}|V)jBugfl>p5 z#}|YzTUb^+ucWki4({(Lyi}{HODp4(lWLvGc#2{{xMy=MAl$Wm77*^#7{Y;}g?qKu z0!qa%zdHomBNTbr9k{C6Nvu%qjKZ43*R&++uBO_prW&nwZpW&rb`m94Q^n!0JW|M) zxR2FNqMvH2lWMAmYTEZ|+TUv0ziQg0YTAoxDtNVX%reTJ$X9K={QE`x(@FjNC2~dI zck(j1qR*-CC0F$E_gBajefsfLa@7-y?A%AL?j%?H$rU}Ab%0#a2U}hvSM(s~>*NZJ zScc0t$R*u*ev@3$(;9D)D|$oiZE{8L#=JwW=>GRXazzvScgYpqgL{u$(PiTMP#Br9b-9AO!w7N+xVq!%%<$#8(uLzMgS(jM9rk zzGLfn6O>#Yjn!^*Ahx2lax;oy0Xd5P3hK{VEBy&h`6+wv$cuy(`_{(a8Q$8<0UvFn zbgaLqjX@rxeN%vi=&~1fS2hKD_Gt|4{tl%vp}kBkm#t(oM(e2coFPw*20vsd?YPe&I8$kl zPBQ4!oe6RNv$5LeISdDg^GXYE_swo5s!Cr4fBx{2>f2wzNA`a5O7emSN&N-m9^!p7 zKv{`=##zRUG!707R8o<|R9O0(2DZV zGep_Xp_>^*O7JFlAYa*rZerjTg8KV;JP2N#t=KuPRy{miX~v6;6{d_= zB0NzZ96e6ZT!wer4+YFo1}F1WU_gZ;zWO0 z@#x1^b0#aJFy4KWl}HmFF$WWTdV45B4?c`u^?(68rYO}xUV={(n9{#zD&*gf@K?18 zl@2I=ylG(RFVOC2KE zvy{o`X)Bc{tyD&Pr=rq<%D+8cJu+NrieE`(CG;jG#JHILwLnHmx{I+8eSS+SQ)YOb z-{ySni{IZYW`=swao&KsXYR%2N(#?6nV>#hp+xeCpI~uHI>r5E?Y91HIfkC* zSD_eP^Q-1&Lb+Tpl&?1Vrv9QEmIm=FK4AjbXX2f>BrAnDD+T=(HY^3|4RwyiXH9^v zB}y6^Xr+a}0%w+Hj%G*?T6LbqPnZCuPVA+VthB~iX_eJOi?|kFF#+D4rA$Ketz^or zWafD%qx;sn3A%69SP8AAgc#qd^dO}B7SmgI`0`z@%0Y(lfV#bE ze3deQ<6c+qU!mY5ZEqS4m|%6l+TRtLm<&11sXoW(np2%L6Uya2v(i}QNrO7oCEclh zvQoHUrLfwQg2kzniJDXSOf-#^Twa=JoqpHWL(K51sEL|a#aM|&dJtPz4>9UiX%jWK z>T0Ev;z6gzJ00Dx@+RtjHPlKeSEIx@)_M<0x??dmbUT*cdhd=^y@`U4lQb||D_fLdnt9=H-{+kK{pr#f_ zdA5#5|EDKv>)@VSlsRahfe8m5!b@PXJ`3DyK=Bn`13x{HtbrkMtMU^1z^K$v4sY^N z!U>RF$}%Ki&z*RAIR})Z96E7rWc{N846=%mTX5*ywefs4H)8N$&vwi-|8C_+0bRZ} zvVO{#K~^#HHX9Nr)v486PxY^iF?h76aC<@MmnhVXo67}4(}xv6febu(H(ujCU8lJa zFP$Ko>+p#3C5I9jL~1Fs+V!O|D@^$Tr6_;_U`E80aB-(nf^w|n=)!z}0o7Zp2Od*6 z-Z7e~(7v49bq-zlL7(d`WR@^g5lv2Bl%gtjnH zO{Mc&AZ`+@D-0dviSk!rXbO6yK9s4Uy*yENKZRf6^UKuG-sr`8@NSzHnqb1S^eR?U z9@{Ho)*uF;8){+`n0QaWaLAZ#_koRH+k1O6{hsHr>A$wha&d78>z4+>^Y`{^p>BI# z*@brktVm|})7P(GGOg$UJp7{aHix*$#y~o<53B!&^`WuI&OoX9qbK403T`rF?p3Ny zIMif6@5Lqyx8RVk?hus4uPFaBp;+{&FNaO?;jsnZzp8wWx-dksc;itI24G0mWisq> zg)TKUx3JL{%Pbo@3K@WV6n=X^DfVWfNv~lO&9DkUM`w`%b&t-(*Ogix%{MB5>gxQP zN_Vt`fzn=V?B>8L$G4QBCIm|tvNexmcme4`AOmna2+VrTCqi?$DPMFOMxce!$zx#+Q$oicvrcDdl%Nchu8S;8?^?F zfI1puG#c+rhD$$jeFKcf?w--ltX+9u*~_7?j9PD`^i|jCdP!-YSu>)%&YO{6o2o7x zQbyR&pWe6`lk0eo&Z~PqR?;|xrWhkk3uSmxHk77+rJZ4_EA7L$uu;A(3G!&h|0ccw*z zvb|ZMu<<0Gin2e)YvNLd3DGhmhjR+F>>Sn|IhiIFISMs7re9l*gf3yVJT`)xbuZ*% zNLsjVm;z-fVO`M%riq2C{-yfc>g8&6P~B{duRzr)<>3g`;6V*&dRf=Tw6H;FpV5Mv z2^sF9!hcTVQxXgf>-=5h>DsrPQE={YdR4OQGsNH4MM;ilJgvxW4*l1kkd`JEw)6M0Z}`n#chAPJGTuEJ#iIAD%;>W29RsSJ-x< zzgfGjJsiEgYWjo4at2&{x85_Anm$ZSD|&vWzxb(&ks{ zNI-cEv~CDz!QVD}lot%OeMdCe3x*97hh{O&<2-Se?`zr_mDh)JA*Okx6{i(keY*R6OP4Xk7_1kbfS%^)vcTVh3>XcwOH&iPh4WL2!@zj!PxS217bH^I-o>C z($Z#LGtztP_8nd~Md)tP(-YOR-}vC2$BEiz(LQ+9VNYCk8n0`ZT_C(KREQHb27>p6 z9xy}j5tA9%jhQz1gvpy`2tGHHjQh{D!3SnkGb9}!LV?{Unk&op;fiV}5v7{4ucj=k zDVu6a8lN4ZZ3qcw-{~X#(@8f1J|S9E;H z$H`^NRPAf9_ropC>`w%IM__d4iCp2Y!Hy+ggUxjPmDB>R>_syItqq*NPt~@civ8?C zFvicGfaGa)G+>jTJvUG=0F)@kq1#W$-@YCN83zP|g^ZW>KkTN@4Qq^K$lhn0c$?pz;uHPGG%Wg2a$FbuI~n&Y$*b%sB2wSfHwKsU1bLxlZn4jnNntZo*qNy?&XUz^6S*%8zU zQFfe~ovt5U|1O#deOL$|tR}|TNAl=={h0b!zf73)gYilm`_JfV{fPSBmAQV|-9IMm6guxe31LBXO@EvlnB*r#%+ zTm6{&UXusrBRxCWc{H$oM12#;0}&3y+kZf#>POVKbxer#bH^;i;)oge+vq{?bfSIo zwcNEceNuW{lD#il!0@MGu+jjy0}v#=u0*IY$@W1!y49$*>Q>*wVF_p+da;ZBG32Tr zaggTPCPeBeEJW)lEK9Y|zgE|@kHfc4vybsQ3DD{G_o@2L89Xb{n=>l>(be9Z3x$ww z_Lj@av7|M@6_xXg7R7gtpH?_8zGM!5EnMLoa&Y!3Qt7W%c8Q-_GJE#axrOtJ$eB&N z>AVDQWvI9XKB!4cLaLhLFcagu80e(2;yrRj$H)8RirV!9iCk6|(Fso>6B+(=;tQ~; zo%9eoMXKn$cM2|bx4#z10B{xFXaAu{o9F)MVPA``GR+T6!BgCC2B5Av`N}!?T@VDd zX)k+E9@&cx9-GG6vm<^WNbF3*m7f0iKPc;L!m%Y%TPTku%WV+DbkOwhpvs zqjlafQnT%uW{hl;b=qp9h*1i)P5=XNYkPc-z1X|9PX%VB!S=@oC8OsVDTuZso-qJ* zR@NOOnSNwO-9O0QjYDr3?TF5zV9v+V0Q5cs#k$uN_Xg}AY|rz=I6cvxhE93G;NK{Q z%a4U*m{G7EA`LI?qUnJZR|`XX9}iK{uMAZx-MvqQbVYwLP`7mauf-6*E2Om<#mpk~m$3~XHns5vOO*jVN_T5?I?8Sjzgo9a6aA`2*9elLwR)!G~EO3PZa0>>1Hg6UI zhsWFhMlPe4aoD>VXq`*ArqgHbJus-l?(%}cxnTAroC2CK%;R>P)^|om+IO!)fByo` zxBXu8$@UgQ^QPEK&~Zix8YGVy0KM;O%R+lg9(`+6Sj{n06Ny39%)tQM=7=e>7kd-t zjv_3KeTL!x)DV&Zs53Z9$VbYs|2@zM-H9kC8SDB-a7myl1wQfywTL`f&p1X@M$Dc$@asYO%K!SeVm}_a1&5 zbGdu+u2b9{T}Dqn>5@^OKR(6Hsz&z&kK)fsgcpB*in}hOfCbh8+a^hfS~36$AUt4v zvm3q^=+3B?AJOP-ogj%Hp61>Xv3$b{^~wmdLWO!xRHzkifO$(>@@x0?Z(VdywB6y? z+^4K5I1H;7+0B7{qTZ0(1Ood+MOFyx6Mblfz&=rwV60x(f_-Xd&HHq&R=-GS4X2XuuTV0GiUm=bASw_V=N&;_OUt@*O_etr&AeccH9q=($*38&i?w1h^~ z-=W}K_Z}DPue!M)!dGZ+6+l{k6DFZ;^W8P0*oX*p35w3#U?Oz+@|m~eBKP+in_M=v zxd~*U#)mTskq+ScgYNNcsg0lfaV4mr&=T(AmmYNIYMXfThukgL7S%0G&vtFh$1{n< zj0Bm0lo7`rjHW^NIL3}xIiT|hbz*7MiEG^zqu5bGownY+jlD?#ppf|@Rl)}M-P%z; zbAvlsCnWiN<)jK-iL^Qqq~V@Pt&Q#p>`N1;nBO? zD_GyM88(&-dzZ;DH2pEy=w$_Evoha*8dWMQ{6(C^kU4;yMJSc z6u3laWnTP@`?$874+*)CS_y43(<8{lWZC|#`wsSwmA5@v%ndz@!bm*xId^mRS=q$q zo}QDq+4Jsn?R%d0Jn;C@$|KwL?HK#iWNz_U_=q{uPa)w&;^??4RaY;&zY_oK1$WO_ z=Pa6Ej-R{Ir6nK#qC1U67g$pgC)0peLBrV`UL?ARooIgq1b(bA*76dU>-p^0J>3*F(q6qo+ zx8SLAsRBStAQo_3&Ewy8zohA#Nw>Tg{o7lcuw4o&xOC#;_@TC$FMij(*Fqwfl=}rb zUHz$09F$lJG1V}4-|&mrZ(9Xs``=IiXi2rJ%#VwI=6&}VjeV+mQ9n_GBq%Lv$Xum7 z_^HcL@NV5nx3>cOAp&)bqBdWK{f6g#>~2%{$!=kFO%u&-3v-c10Sd9vBtsd|9Y*dG z_XbvRY{}3@(%t+$f-;jELlZuA=jpMExPa$Xu275r^{IOa3n;K0FMP2mmKUCPcdVl< zGuKASTW-qm(_gsLTxny)o=m5@nNV}1$HSv)zHv(Fq)y+TaTn+rO1P=hoX_2xSe614 zoigk?nVVCTH`VFx(sVL+iYT4bY3^C~ay?%OH+5=x&iyqjRA8c0zFnuz&iJ7^Eh14h`N9m-W)_my>>Mttc zrcPbIa(~WVQ(&Ugi*}s`m+hy|q)v4l@noK7BRcWIZ`?y;oRb8<_>FrkyJl4z)&9?Un}C=)q7bpPJ{Zh00x&Y7Tol|&Py(Z)C^Fk3sP z2eaG49G^reMCMnh#})UJ8fzLs9+}K$NqLkUr&K?Mm} zLxx4IUtyZ*tBB38z-eZX0?V*StLJ0dIJ~ieOf%+TFUp&S>cnxSOf$Wb;4<8u>z}5b+~Oq4q9Q0kzQx#_9njeY4b+>sXv^8=UE7U`%i zH(;W|I{ROffgg2_Mx;z7;)^^o+?y8iPT62Cb%G1&R6HGf~X9{+>Qh2lSo|>(i zgO$Mo(H$&E5p7iv-Yy(~^In!{;gr}_w62Vm1>xj%6+8#@0Rn{e;DGV?7TfAm=`r#Y z5$(chAb-5v;`vXu2VR6#gnUwpC)+<+0iXrTeExVmK(w=xr>VA>e^|-Wj6JAu1W_lR z`(+2Fjh7D;`J$5+dz7Qx>-Z(dQ!k2bac~iLZfqPM8sEngbm<#a_jp-GD$eF+kcG3D z2|{=JJb!EK8AXcv;ry2*jwkFTvBx#jcc1T{8l;Sb1WpGUkw%Qwc_YCp;6o|8RTFx3r5B0QSwG;*p5joo(H-T>*>S>@;CiVa@ zD^;olzc$5_$mi7YWX3oR;_uh-jAfmyLbGEs6u>khw7srpkj8qejz|%dDqTs*rTB;I zM;3psK8Vk^GR=+|sQ{*Uez<{WSzx*iZg*cCpV-io#O5h9yAP*N;KxRITI!UO-G|Mk z5mX6j#QsK}%*a8JzPd##?j7YxXWOl^vtza>K-iVdEVv9O@&o%9vJIs$Ue8K zlO6a}0Zh|Mh}-eJcRI(0-Wltet+DSFUZkKgFLa^Yh?>{aJsFV#H@mrK4AUlBvoGdf zB`WOgz%8E5aLJYxQ*Jb=sjrh9b4p&KL)XY-{`j-E;Y84aHMH{1_SaK@uw(d%Al%sW zP%BS)jkQwUk^GS*b)if|{0)obh4F15e|lT_WykbXfUp-b+j`)Q%OR>GlH_bDnUb5c zNBhX>`+j>6Ki$eSJ7$UkgvD>~;CaEt7O9R%;&Y{VN-iq)5z&gwS5 z3Q@n*Gie%J;5cUD1aTANJyr<(L|ANvz)yr9St0Nf;dLtnej=<5{ve#;C&KPl2>e1= z7-I#&PlUhlYu!9Gi~fX;V1dvsh#Cb^3%Jz~AwpUZB?OTx+--pPzlgu8($foJNO7Jr zL<^TTuV`feeSuH3aH_5%S~%B5ixx~L^~)8+h$d#WU$ii%VnqvMysBtT;fK3>7E~6l zhaUuA#2*Cp`l1Kx#`=Zw_JhpD{j02A|Lhn)?ZVM-RY>Z_+Y}*RIT-53Oa*`zL}aT% zs2dabr#(Flw7&diPfsIur@|3LP&bN-uTP;Y99xNAS~yacv~V03iH(*Y8rR3O#KrPS zuh!4gEkW@$%SI>P+5J3Aqu4`)GOQj84ISXQGm0%DeKxLUIcecKDPC_zs;5T@weVKV zHU)r|@K)%`U{572aKzT(TrHnd80bXurr;62Whg9Qga;S829yWlT z8bbbe`3kM1A-=j$2A;JF&-R~D0BGT`^WGm+41`{;>&ejAkE$D$#UF!}I_6#}VItKL zWmJGV)MOnFkQ)5RFi&ep?B)v=&k!Fd)Dx#O+e0XbFSGBjw&GxrdfD&tZb_Q#5J-3$+T}|;6 zX@MR#9J@`e*c}SPZcdNTFZmu_V}yy_9`mLY5X$ok;zZ^kHinpxT$GGvpLe|BJl0)+Jm z$6Bg97TWd}&wP#TQ+SaSYbFPta1)9RjdA*jPnrZJ#j93!+5Te+5Y~eaZ2(8h@+N!W zcJtG!JCbwAuMwn7 zaGx}ZLTvL)7g#Ab@s&9-HMH&U1)iAd;aaTyWPUu?2*6c!r@I*Sw5NIUAS0I4S8YKT zIT=D#)+XU4SnAEw*)Ky=MoBBc0shC3v8>Zl;Sz@9uliwx6DB&b3HCM)De(nAk zKl@Cv;dw=#S{2U7V-BNdKwgc0)s|sEU4aYSRqiowSs6OI8eP!v_hbITW5tp z_4bk#0@d5sRtQvYtOy)QSVQ$T#|mjnUVm5wUBLpOaS*i(qGoWjH1LHxtMRXp8bnF( zV=m$ghNPn7@XrEF{q@l5Td)n-6>JbdT<|uE7OoM+qJ^{TCegxqZL?_MM6yM+FsHYQ zmP{ql@=lg#yu@%oAiX5dcpVX4SkfKg^B(XVk0Ai)f~Y*s`#k7b%ibr5*B*ot?p*~i z5hu%^f=^znanZ%js&0P#G!$0H1%MW8lz}YRPCe{-Skr%0l#n;s@T=qxzt>p8epO%& z3Ye#pj{Q+%Mifx+c7N8W9f9G*a}Hj2Lc?;6W3_>(q!y46wknuR2_7l+`{(9r8O;-X-~H+rq7bNGi+ zMQ6V5N9p8U)t;L*X0qFeDmWmS3IMu`k(;fu*kU9|a(|aM*1W9bZg)8 zt@yEVl{~y~b&H1VJ)#CW_H6|yaqN)>aDUI?t)BDjbJfd*qtNg#2~hYIE}Fh|yQhvF zIfwn%iD>NbbhRKV4^^D1;@)Ii;ZaZBQn0H#u|I#*lUfRPiWB?Uov_VF?X!8`+(M-O z!QXU3|IVsuXnJSGaWe1I!EQRN4RVUE{AxCC?rB7 zX0Za8_nLN1d8c=2Os^c zr-1_-r<8F{C(OD*T*f<~yD=wj%-}28NBL z85mF5(BX3HtuK0dI`zHSphX2<^CkFI;SC#!P#P~wp%QG4ze85j7RTc+YMo#9oM7h( zNAx>O?AVZfOQ7iY^ZePPo`p_qRIT6`sP?Cg#C3ieKYdTdcngh9wSEy)6El&YDjQzd zw;UF)u!^^$BE)yWE1vxk>oY6|hQ8|Q!kSFCMt@8r1qe?~MHgV#O=R=KUs}52(^d(T7%Ce`+sf?lvhhylDv|(%6JmoDf) z*rBgXwWEY2>*=Z*tzKKUvk@FBvtY6u%!D&hFdzM<1um#*m8E|wg zWi>=0W;L|(q-SKL7^!>;rc&PwTQKPg5Dum@r#$Caf`Z#03Z_V9D5X?}LQG|fKk$qU zI0F_$$p?%{;zv3NU2$ztMVSO-80m5nZ$0wf78k?&+RDrOV05Ov0&X8F}u`#T91WcUXDJD*M zShnxAp=)#beV=^iyxQF`RWGgb+6By+6%kq?Nq)m;JSe zzW3LG5ZRu`w?>dA7M=i=FFjC_V!LpE=kYI%2O|0D?{7RS{mz|)$@1jW@yX^%cz8g? zEuTqT{{epYsn1*d;AxTl1{BrSgHQKE(MTY$^HU4fR|0{ZpIR{g5eV%37&FW9Lo*Vp z_i#fbkuKN*YHNkS7SI?g1h#-GfWrtC>;R3K$)mqBS{F@%o?t4N2qIT#i(d6(-Xi#C0fyUR(ZUt|0nx(8(g#HgpGF=Mt;JcQgbs=( z76wa13nTeq(ZacVsc7NExlFWhhFUIKmG51K$(iNz42D`9rhg#>7wrjEKWL>9S`#dr1-U1zTCR|9J&~7Hmcwo+)>S+D*+l z;?mzG-R7G-GjhhW4;7dnsmE^PXRmpBY43&_|LXZlvl8J8HHQU0-BY4spJGC ze${XCB-%*sMHN`pC_Pp&o+*ugxib5T1r%5q-YNK z(xUD$Y%&`~(9xpGes(X=jPtWW5om5~$m!2!+iBLsvaUdLHkRGbh*n%%!xFjoO}!0U zK}oV%b`+rTlubFcBgmM(DQ7aKn=!xp= zcEo2}b9z}t*@Cm0!__l!VTza~c>B}gJvnLYJdr4pD&`9XfOr;3#dEu{)^daIs_MiP zjQLpsOzhB!c-BtSZ;%c-T66d3EMyh#Q}K?YrPX2u+6_Lg7Hi80jr9DVV=7lDN98DI4m#6G2gDV zSrW&u)@S3`!-S!jaS~Lvnr8?JoeZG}qs%iKvXOpgtjy$JT!x>_)XwEWA`atgp8|v< z=AlMxt&6>&I&dl^)5xtdwh5^inmB%HWAA6!+ojW)Z`|1FLg!N1I(Q|^Mo2u-(IL=G zCc?_pekL!vFiBbX|_raF*tS9;N(b^tdy{- zJ{mgLoMpINRcBiclq^T=pFP-q7h=g(czc2JY zt9Mj%a=xGaN|!X&RYB!^-;u9q&*B-umb1YdFZIr40|~ZBHdn{l9Cv&i=%JT;cV=TF zpo{Gri!So?rt+BivJZ8&tnn$toEwLAEF}-%+gq9Z=FF}Q87Df3(GRRqfN&6nOAI*B z^seR){S}i7pC{d=@T3QZ$L4ls2MH8CuxmCx;W)63+gLYt)P}9?;sM|1KE@wWkdqey{Vwj}3P0+T2|y z_ZBwPiJjbw4b_P*jzL{4olUHfDLuVzF8m%kU2%jl@K;FUsr7T4uz3nBb8|ZH(1#tj zqF-87F^O+(kXxUvu%Sl*TOMebTZa+;(o16+=4P@T1RsNDI$ze8Jz!;TTihOuXh$5^ zQ*yVm=LtiMO%(GAfnvryKS!1W1l>t%3ebsAeZVOg^u8Lyx)j!<0o874sY{!^$X#l7dy8OuhpZ#8{4 z>5xS=I^d8369??(Z{)M{RvMcF4oE|YJe=rxqXL%2-XUBumo^lzO!fhRVlKTi7hk3% zgZOwUTqhjKeOLch(Zd+NttIg$?`PL#R}>g08bjbgb@O6**dT#JC1cr8K6gB;%?Q0r z4%DjLJX>;n%ZE>3DOPF1c(VE&cBm;wF^0IqbU&Xs5mtF;X3yje-!bx86CzyYlhe4{bf0!CK-`tpE*<5*hp(5 zEP0%bAgW;O1B&ZwjcKkEH0V>8eMO+C;1_VP z4jv&RWB+Eujsi6PU4uUN>jdAi%zfif$;<-c$#5WSUcg2M${5toc&C1?^H_3`N=8hF zS_)vY0vTyl0{m#tKC4(W)oYKe|48L1y)48j#4N;TFJhx(BPqwXHp_w!X?#_w5$i)l zVWjm^fN-R}xtMWHA4WR(%Bxk9`NI#gSJ`L3fQvvh{!~XPAfpzqDw1SHy8U-b;#AB;h{cF*^dM&@+b<>;C;mw0XzPk>>nGd z_9Z{K1{M;+*q%Z;iKg8|EBU-MWG&mKvDo=49jt{!PI76K1D@=2QDgN9C2p1--oOrN zwfXRkP}tN~oequal*YG1F&m<>PKwlAL!a$4m31djT-iI#msK)Bmy*bs*K3i8i;G+E7wCVNi%UVQkqRS)1xR zK$~4e2x_xK0m9n+yn`KJPb#=wn@*-SlvHX%A*MF-cC!4))7R0NU0d+B~5mb2F{yV(ZUS1`=y-5JDX0G&-Y<6yW=#kb6B*F> zf@^oATJX0WWb;`DMHSoc;~!@|w7UG+$Juu};VvV(u9~NZn8sUG!zI4ifA7$vTmu*2 z65qAp6IgJA1)sv-r4Q;LV3w-^N7- zJb^BCkI0*v2UmrSEL>Bt8}=*7@04&*{y$a-{9L*cc7O;D{9IZ=uu=D(!q25cg|m$D z6Gx03mpW?9)Tv`8j9ydly%nwHnsx=Nq53D3@Y`v9L8*AbZ>RmO5cuu12=t$*_pMtL z53@KyZo8%+TR>R&Zr9ZGv^51QY#=b|eH#d@ng}^V3BjzbHW1i#(gKQ4O^4rqt3U)& zN-$yuD41&Wtx*J?hR_ji4x(>^=+7Yf5PrW!xbRgFofAZVz^}mw5q85>ugF0d8bsrQ zXipGLfR_S5AK1Xaze2YlY7-O+h~I>ZPFIrORM-grF2H@WV$s5#wN0XhzX5C(E!^?m zB3iinxmC2}{+wvxGtqX@!flZqqJ>YvkBSyPN$nIZe0lFLD9lF>2cBWFOY8^h=7NLJu2TmI4ZjE_vWK~ z`-|+Tp8%i>a_!^-`5Niom*4^SEI~j1h@KsDMgdIpP@k7sHF%Ryb-;(|^=^Ta0ziK$ zCZxPDUQgqdjcOW$zCFeUM=|&P%79B(;0MWZud#brG=YNj zc6{3jHqhn1pHFz5jkeHC^682E=Ibnl)h9H4-qf=NI-VG$BJ!>?YKr+TDbbOi9;(NM zlHX*HS6~^0qtY#lKudJfGWg#oSe}z)@%wBE8)PRbWECs(!6(@WpgVq&B{}KXDYlvw zMx^`c6r146xL=;sq&f=Y64W@w$eNrOw?JGzP?i6EnicxV@Rf|q@KpG2&XXUo9&8@HX3g}nATb{q37RIy)pj@{0p31Gqd z5W=2?+&IrtEto>Z7&XeZq^OEq`;v9`M=1{BVZtkWeHUPhEuH^S< zh~)1?-g&--SHHv-F~Wn}6f!SOZdRs3p-Eq|N-j3oDu~);zSKJa*~B>Q;_2V8d;QeI z;n@XVK91+TccxSbz4;CM0Ji^?kOg=WAdIn>?$MJXc-yR+7U)o z9P^5CYQd9!WOF0TuKduCuqnEa$i``Sw*r{M7MlMPYv|ISB^{{y2bWnZc1%H~?$7dJ zSJ(_jusKXvhu8-cQOu(_@tnKL^0jAq)-S-yMv}-M`-Sad-$kTbe~qmIy2igkLQ*;r z0CiMErb#zhZNeJ!lV71sb-5N{jd}b3Tw^NM<_j={HHUnBhQ%yWnPf{v^NmLL*I#S4UN7wff&PZocK)gqYPeK9A!!>-Ve9mvxM(#99#9VlV^g3J}i0 z@X~qv>eEyGp`(AWyIp!`f`&u;<_`&VSq}x3L))3Z{5MeyGnmkvC={cF)h6H z9|*q*Ld*eR(GlN` zanP9|Po#&(Ij6Ed((m-x0)FcX`I2697Fev33j@4{0@wq5n*52sV(r8|8cR`lb~nzD zDiTg|(Z0a+r(CQJA;faxC9mF`WfCaH9iYKavx&9r__Np@HdL(*?^H$aU`I^kHyS2p zvJp<~j?sF+f{pdx=ZzAJ*>r-96$Q?z<74#MQ9_~2#)2txM0~iZ{;%#;hzt0FDR4Mucy6Z@7N@{iwnPCQe`!7V zln}@qZb(ou!n_aiq;$QD1rx^vtBrOxbmV+sV`5zkzHRKyUz&*#a(Ow`TptK8hZ2@3 z=-yZ-1s<+lf6aQ*XlJY}l^PFhpbdADO_*p?#I_6Vq5j8;$lE z|E!aq86eo`ga}XDgwpo3{TV;rSZ8VlGNC`^pp(TG3O7Z+m`9*r3%P@{YaqrR+ljx3Rw@*`GxA zF-|MQK1ds$nNYDBDSAxPNmR(8d-wOmTy~uZvpp<-6=CS`4Qj$E>^*+r7C7aQInLcJ z(u{DVkN#k!{f{1Z=!;pspzTW&V!q%3!=J5}r4_J0H0k%DeoO0%mf5aT=-Yb)mYHI9t z%G0t{n&XNilTuDAgBK*d$8IOeh-syk zBJ?{6&9axoi<$U*&{X~YNHfRPsZe8#CPHxL7@+`R2FIr9&#-9Qywhl2GE>#n$RQ*#-i|K>{>>Y*|t-3%(d6qGNs2 zV^k7m#l<3hzKb0pJgrlBPQ%hDH?B<5qS#SFi8{W%CMk=(Nuanc9p#Tdp#K;k*rjCO z8A53*UXJok59t>z5^YwdICTxJ4C=i!c8#z_H4kk}s?Yu+P;@1r@%9^&x|f2_9##oc zg5R__>97Ugrc|m^DH-L5mqA?BAuMfC-pom8MmZV9aFF(VL@!_+2s4c4b_!r3hH9|6V9UDT>-gj* z>;l0SRYVk^@iBqqnNIF3A-OKQM({CU1^z<`$t|4xzfDMP%A%I4059P`zE*N$3xDBc zvH%P;oouxnOAlXS@&_(g{L)eufbj7lLMd1Ip|z7?E4vZZ237zfb42MfFV#uTH(aez zX1lEa?>`FVjB@hE0}1QWqg${ZL??{tt_om}>Gc@Xp{JWCKcuk%3QrFIuq%lb__!9y zt=VwWg`)(x{GS%d>nudJ(B5cjN#$c`2Pnk4*_X3T9w03_CL2RMZ)(qvKBLcz6z;u4 z`YN`DsEXmfQUSsYx<3oKze~Y6BJNOta9$)lr^jjRN!1}8Gvs;rQRoE%MV|l~|7BnD zl2Y(b*zmO{d8Zfkcnh{|V%~3hkZ2~??Xw4xTf5jdgd;8)9S%XhUM5h?*KhbcNA(s? z?4ORqKJrZmcIbs;dPS`i^ypWbUeOylvEO|nxecr1#2)@C{3zj2{LNSO&a9;k z+x5*-z96YmyanCnp@R`Tgd0r%JeB+x%OM+zQ_*xF%{3Zkd<&M~u-qPE#Sx)TrZ|Nx(Y}@p7$Y}%wAWlzh--chzTq~F1md5{n zMo|@_MkA30a9(tHSI_r5^JM{Vd&S$C=dNIl*we&3%$g?@Ae=Q1zo&1|^jAp- z$CnCo-`DH2cNJJZ$-c@@ystmO2s%C=kTvpE(*`O^P9zj!n@HXk6UopRr#1Y-Daigm zh#ELc{#OA^JK%qE2dA%^wssoEj8~)FEcR(!Ti};IG6V(mV zlCPI@ZL7O;w9+mdBo}|upYgC(g!T5{^?59V03adF6F=kr&~vp`{G~tid<#k1pYWq< zUrHiQLbVFL|EJy*J}5*w@b~YIYZ~0eMiQu!@Xp_Q7m(n)u5S+zI@H#=XLFyG2R&fc zDm3sP@x()z;4l;C+%%oj{1J3cjKet#_~~3%eCVI`4dCNMn}{qN^yf9B3EN4aID(r( z9b5*KHx%7AC@z=WR$4FRItNAV#gh3tJd~E8#A9O=VrJjf@|tk#&X`eW z6d)WH8!H;iHFiaH$lUpn7gaWTupbFr7)N#-s+h(Rp7OC5Z%p&7PyvsF-h23M%;oOM zEjOkO^ceKUw2D?D`k)u%lqR2*14O=Q6Z}uEJk|NiH(JDUyfZDr^PNXGrbayfj9-g9 zxxlUz0U~vo5H!8r5=1eV9Lm;)8PGp_xMe9;N^QPXLkM9HAD*mmG`or=1OI8RR zu1|yw#HI1$Movwgk~(5yswCz~`x4+VY=qIZMnQRoHd1<_%_f;`wt3Kj?-1<@}-^hK}$%m;|DJt)kD zzlVyzvLMMM{T6j`4SG4f>VIR@L z(^q$h7M^YED_VF`tDk7qSPZX06x=DAcov|)XyN&gyF?4m4Ga)1{8@IOXyNb6cZ(MO zY%@r-aHDmwXyNY95YfW@p`oIMyDP&)3m-6tixxhX=0U4_0oFG62q2cp_lg!4nRAlZ+;bl$Oomxhp&6>6cgP8slAhHA;AC zRxMtb*Sb6((!gk*m8(l)(GzM)LRptHa*Q3 z2ONY8Q;il{XnLyAOVe*Jo!opkfRbMuXpD&9X1=$XaY-LsI;(oJuAr>I%T+_(bmJCH zFDRX`K`Df7v#FDJHgRbEy07n3Ti3fofp7n59ogA=v+DW*Z4jSN?^$yk0lDMo!c zsg}u+r}Z&zb$M3dhm&;m;Uw28@hWaWJIjysj7dsRA5Ds29v9!eEX(ff((LZ_f7qS< zKiJ*PVz+cJ-*vk&&^2xqd=qpCAChIbYp5CM4jDP4CD~YBlw~~YnzxFtY!=&YU36^q zq`6_C;b9wKquAfoXysat6n$zsu!n`Q<;Ow`x*4gua^Hwm96wc+>+pCt@P+ugXwB}1 zuE}pz#VI=KcAnR^+PFwF*B9N5@iBCTkx|3%?g6p?7MNACbmJ29I)Rv&jkArl`X>Z# zOV{zzI6^5_i>je6Jq^vJe_cA^L?B({(aA>m3&NaGdH6>q1u2frXdIxhQYPCIAu9uc85sZ_$5}_j;Z1YO9x@*~1cQKV* zAwG3m%16~Y0gkfToQcNr_xc(=UH7hrWEtuVe)F=n;gWPLU*FGo$~AR$8R_z{9O@E^ zV|N@`nP=68pVaX={a|99=kT4m(McH|vk*U8! zdTlwiO?rUP%Y}ph?5Xisgdh>0LDs%2J4n6;E&i|6xCA&VNFL?S3^FoZ<<`gr%8?s4 zOpbCL`N1(vm&{=zU*IE)NdyxyL1LU8e9I7Hq(8zC@ok;70B=6j7!~mm1V6opvwz8_ z_n;)eJ%tuLG0#ZSUg4Q}M%AKcz!LHaJa|ZMvc>|rg?s|91#|@qUV+#P76`&1B9mvz zu7FU0+IAByoW8q@7RF%@(GoUJEBLUIc>lfNWByWi&(zA|Aqt#-T)rPa_k!Uh*e<(Y!}T`*!pwZ)vZ0&*27o&|BC^J>Z8d?606%hJxMFjHb2?l&){^g{$eSy(I ze@ww049%w{2g830jEU?GMJO4*!e1L}wAWuza0f%5Ofm<<#p8?x>`O%`8J_1u#v8Zm z=M~(+(7Y3!Fbsjok7?|0MI@MY!ms)&SNS6=5^7&)e66v{YfDDFgg8MFS9K7t5f71V z`TXai8?qXN7y}?q0YE7kFE`r4_lKuXF;X?X0qK?xy(gv`^H?(l7CNXe4@UF7(~P^d z2E6=qqj3c4fzyqttc#r*K0e5*0nqX7K@iW+yxJg@5j|ueroGmnAG^!SC_75vpL?xA zvQ;ux<;p|ma~`oABQbP-rty)+CR%yg$HsgSoDwI`Hbw*pAneC*`4M7bC`V5cfZda6!jpqy zolaa+j^h`K;U@3q%)L$}i11}>MFl9~$bWgfb3A{0k?|3$rn+Tpy}8&(V~GTcZmq_9 zJzzAoWA|a{PQ+#pg6)K@!}c~ZNr_@;yPp8Un)0LLs#N7Sj#rL`6)7$w#%Vmi{t!ga z5TXV~(A^3Uj-dB~Mk5y+t2#<1kbp{$EU6nImlO4UON|28*j0SoQe!3`y3Dwj&9ySB z$A2B(FsrJ3+A)73lDuZE!!OhmA>Eup#Nhjh)Dj2GZwVEW_^?;R)oMZ;Pb+yB@*biN z&TYFCpoE$4zAAyx=KT%fV#{Y#H-~_)&Ao{o>#>&!6vzD;K7Ez3Lnqjd;WVHAh&&w5 z7y>XA;5Sx7iQ*i?HM~zz6}b2BF8D^`k3<8E-|rM4Y)3hMzQ^q~L;i;w1vU1k>W?&_ zqol717pWZqgta@#jgf%}+J&dG5j^_ixE6fTdgBgOlUvg)rkVnn{6ZNUj6@e}s5&C) zH&yCK$YsENS!_JdT9r*Zy%gHSJ}E8u{4)mB?rRz~;a68T@`%`t?vv8l3SPpxStZoh z9^%)w7FWIb5HK7*pjkF2V?(0>tk}lH zVv)AfXi+u~wCG@2JkIYlYP*GJr`%KEZo!rMM{QJA^^Y8=@_(qGyy*5gzO}efU3S{W z$zsE>$BbKaIM z{@|zg8ZC6n!>;rEh{CIeuJ1SQ)wHpp%lnP@Tr7UQ%6yn2|CfxZw%(pG_eT^J$M+mE z=CCxY1bY!?-l}e!F{+0495!+_$n#L~VPl9Ey6Z`!o5ng@dHpZiW;nEk>&eQ4(Kd;3 zy!ZY_V*+<63C>Z;U0pto&mGmKJ{zXcaA?STEx>_~Inb!HPFdLpXL&>&s)o`IHahDH z%uw8&N~oAFQfPK1fCGQwaHDBDWo1`lg;NQv+K6XRJUn-X7maoJVYI>*jr>T(%a1QY z@v@(2g~iJr1u)r#UU4dGr0p?}#L@((80th?c@Y}}7NRip#9f-`0L^fK=6`;h@Ay>6PsOr0hPh)#j zw>0%I0bqRY*&ySSVk%o-v7u{w_?8pKRGnb2;hlUHYV*wZjr!~(fGiR$L~IAq_A%ZIVjhOtd*c9Mj7Q~pA4RtQAS)MDz~b9+l1%}q4}o_ zcn|YmA_4QY;zn!8M*#*e=#jF(f{NK!H9IAjRgZ-Ka&}5RC%(}$r9MlEguhhuP*srs z*`6tNS^G%%19MXHb%O5*uNNa)9vAA`D+P|6^&>n{Qk77H6gHSZMI=N48u#R;JfahP zha~gn1DlWIc+WG&3RscPoq?az*-R_z|7DGvy3xKOA9LD-&tyb&NyLBNPOs1L4u9v< z0)O|cv72otD&dsAMFC7Uq0i45@J-MsRR=Cf9KQ*AXd`|TR6nG89lkN&l_#9#lLMY` zJE;f-+lb!;O|Kf=6T%VK_IIuL_L{?dd7jD=-iaZA@PxAROXJb9X43azL5$@izA}bI z+^)sbZDZG%x808A!@e=T9(@zETN*cYa^9#>WA05IF*0vzern!?ym7OpjG3~g;9=N* zAxFdDWLFeC6A}n)Ro`WWz;Uh}RtTKt`kL?i)<}%nB^J2VDT(#gK=u+Ya2Bmt=%G%h z!6CFic$M#rHbp|gASx0>;XxD_L?OX~uR&C>pn9?R3*6zaU>!tu!Gb>otvYNK184;p zSANmLt+iOu!mXjIqJ@q>{N z6Jcrn=LaLTve=P_{rXqretq{6mfiWKAC0&D1OQ#I0Xwi*ZrG>I$r{B*5%lO8-t3rr z6~IL2$A309z-5PnE*o>%Ox4Y|zvRt!O)ZvbK2UVfjd;Rn?GbNWXxkNIrp6v7^nI#( zy9E@Tx!-Q5+x!ds7OfSB_FXd!jcq3MD1U=PzPZhA=Tr0_v0NM`^fvkCZaSgk$q$0! z`M((xHTE(g)coGWP|pXm+Gy+z0>1Vxyyfx0pKw6xW#02I*r6jd#d2v=)|z|pR9fEa z-Vu@fzx{9cec&M+JZujw`%BwWM8q=*GiYg&MoA`ngb;dl&au&7wAiBd$9~ zeQ$KDRGqi|*BBfH1pLbKtmPKU^qWR+R-F)C%Jya>>i!3NjM0e@hlR;<+9P^G9K6EP z2s7ZG$Tw@=5v&b?3K6cfO}xs`Dvfo5?vPL?l7u*ZY-p9^ESE4uBL)zFkf7!A+2y@0 zb%H1bG*N>jk6EpCmD9?J{|bmL;9W?%M?(wNX036#3OC^!M*sWEh)PEIM3x$^VtFX9 z=g2CVY$4Gahkd>Rlni@l#fGd|n!b{B@x00vYVi%DtK82vD6mY~m791*|4MII@%!}f zWwHGcP#?dm(k)h0{JBFJ&`yp5QB34JFD|I^6nm90w56MQc8QR2kpQs-P+}lIwKXet z^|Jdb@mW4^{}}5qh|uSkeBQZ{a;LD0cO|<_w7^O3M+GotgvLaBp;Wl8Iz-ZJWKo-K z`SQKrJ6gNWb7Q@e?AVF?r&#Y!R^3i=wyJlw>-r{nK9ops#B&cbo|O_fb57iy)eCMa zA#81~?CGFGSH?KaUT?-loIdk3C-G{ z6|F^0*j$b;JCN0Z6%rPh?ic>a>cM6ZC?;beua)4ftrP5Gb$d&YU~f-=)Gg$f6TI(O zuyKC%EByvb{l;w;clpGOQ5?bpUYO{ObFuxZgRe~X7O^J@0OvZu;Fq7s3h4w@jvSFT zL`vI@()>p{b6-S9Inxk8iPAiCIQ(n} zcNBT#H*B4L;C)gdg$5Bt&;tV$poE#}f!Wdn9h-W0urUfvdSGa4Z*w+@K+yw$#vA>S zmFmQw|3_96w$O&Jjp2o9-gupGcX(m0i~yo1MqHJ2Z(WTQ6NWf2Lz{b>uty0Lv$U9B zYVJ+a3ARH_kwc8EqT;V-ZPeHcgrf?8R|yp5yug2I>8)qM#^L|iiFmD*_cjZnR9|@Y zI~#TsNayozX5H?@PjYoF&j+{hHe`RubXY z#uzhXNF0N?z&V&=jrNlu3I{ts{IRD#$6t^m% zi!`=O;n|m=N2G?7le{|ao=)EG+BSZmleZV!VWTG#_ex2>Wh-9!R;&=i3gMSMPj>d^ z!q%|rMKuT;^9143rLwWl|E64`w@j0Fi@GMc^beIJc)Sr8b5*;)YZLZ`0&}qrMgbn* zbbr?mtpv9E%)HN*h{F2pw}o8~v;Po|wv}d`!?S#Q5ASiNZBx-Ma&6rMU3)M$0b&Y( z>znrU*3k*JBf8c*B!FVoc+UsBKEaX+Ly*#&H6j2ZAqp@!hPw?lkvFSUxdN{g?Anpt zY9n$bZe3S(V>=HDv1Nl;NT5&y(1%4SzB`<+(#4PSY?e+0Fyzeu#dNfi%nA< z7+9oE*dvu8q&RDP`+4D8Y71?2q&(Z_peyF5E=N@jo!!-SSw*(iMoB{1+}K{Z4Kkv2 zohQ46pDoSB%xrQ-ryWsXj9YCl?>Wpn$%<}^+CvTl(C|MF zb%jmvw+Taxj?)By(E%7TI&7$k-19`&_UtPgzUyr>FbKLMFpfA>l7T^d5e|&+?~NQ7 z!$v@0__nJI!obiKARHKJBfW6&B0+W71LLSvhLB?NbR6wH$QlzeST}3)8u{KK>=ptQ zKGGWV6ZzgII>DAElQ25&kYa|>yfNOx6QcNEtj9!(L+1vT)tjckGU!ivz8&W#@ z>k55P`Ko;5ByTPoTRQriR`ijRVV0j&I{MpI^rlmQ`-7#UziUPRYl^oOTU$E%2`l=( zsopI1XzA!DOVHu%mIxVUdX9`NhMAuL%qS`5Z5zRjn)o^82#fCK=@4x15=AiB-co>Y zuuYiZt?FWDREIs-%nMoxDJJ8JKfAg$_8p?-NPv;-e(wO5O`y2t_U8TG9@=f8n1x<=Uy#r^vhT9AjLMToZPTXd z4cQpN7xfyY0Aam0EcVvW*bLQSAK71}2tpcyP0t;gzF5)7C-K9bx;16X6jW9qfW}*Q z?$(YGeEDEg+_~Epww2)HoU@ppSmJG9;V!>>y{%P+y6gx+#{x&NAKsX?M6ys}R<}%e1TUTL&r;|f@n*mycdhbqo8idW=T$EP3mSP z#r@6SR(pFyX?1ue_jV3n@TmxOCn3%ZFLJM@v2-F4XNK?Adz-Sh1d1_{&c|)=w$TZ; zJridAUyJuSt#ANTQ2yUf>=Dun$IxyvArK?*=#5 zO;LD!X)d2=?wxL^NouE4GYGT?&#G?N$Zs^t;?&noJ;W0pL=zh8t99XQt zxS^}9=7YC+6B$95Ivpg4=;_rwV>?XC6j6)|mheZN$lZ2$w^@}CnWxHwoTjCyKjBet z0^|_kh`&H2ZtFIST_8}L4rlN34t0I{C|}v0)wIxbdJ;;PrQ5ruv;PtrG~`ph?=f#( zok(!FHmwxhUf$8IpT_i^Dr+z_+wbhwjl~kEkmJ&K%7=dkdT6gVlhu!a-g}>Sx=zp? zdNq%%7th`gd&e1sBdS&7fVUmXB2ZK-W2ame3A#g03#S~JG9=c*^TYmw-h6+Al;J;q zUa7PESomb315Ps&6(G#!ugAU1*n9<-QTPx6;NZ>Y-4A<{EQn}p;rf{JylMOHJ=sPl zNxLK7RGsj4*xT8(m*|Ddz~v*}dF%LhZS9%R>)B!W`*5->S=F&jC0g@k7vB& zm}i#?a2&5n3J_*cE9Cu?RabDH{47-INd$o7Rh?gc)|+ZUgeeccY0|xWN7meleeOAL zvIQGGjy~z)#6J4Gx3&|Tz2I%n`a7|=yx{Gw6O|nfyu)-LF&Agl@h^HCX>2m#D1JWH zCh*HId8g?U6x_kFUu2H_yiYC}!rzr51D5^tH?y*1lu zBXTX-B@>*`IP~i8)Juj6F+Due7mr5{mAhYoP&q}UW2l@^fG~rmuX^{e^9s%{z3T1F zzNG-j9ql}S@HKCNP7obxhc9*|LZsRR5SIGs>yg#&^9HCL^O!Zl13m>X8NmN!Ayp{W zZhvUv-0qn!mZb2+3{{&SdK(tSh6IXXpTuu}$9vs^jjPz^(QFQDN3dZP+inP^P%zzwAyT0TbwvGq=}eLkJYLyp#7m>D{Cg zY=@YsPBCIDuNt3z%KI*xMmUNJnJn+qBM=@r?Onwd5*nB@;0lWmV0wI*K!t9ug^$T7 zCg=|3W=4>K2O)@4!r>7AkvG4r%C1mWcJKQuH)0{83s3v%uk?LqAfk|z1PKd^K0k53v@yw zN3)iC9$4oTW}aq9+r?V2bix=1rKtjh2j%gL-X$*9QFYi2DmG;hS~Te8ue@hi4xz)W zfk`%l-ASOBH95ThHxRK7><_sfCEm9W zcId7kw%%+`;SF3iuz z9Ckfr+C|t)y9gkx$IF*ta(3Fq+gyRk`4b`w4f#+3Oa>wSs#kZhuT_VAq+c<$A+%B( z0tjpK@3qL<%>30mHB!F)`>S_j#ItdDI&xsKdG{Y2mJ{#kM^)KVj$g~`(a81PCVswV zsAOHJZu2_3md3!h(3k;`M{4s^j#4B6+|Dw-F~19;DZx_ z=!zhkA4H3TXk-xWg1h|?Qz#!4`oiB}5vUeK1%pB-dWf_R{IdX$@6{D8Jd;#UwD15^ zeT0dFJPkw(k6APnEj)D4NVM=r)D+ReUzQq+)(G*tL=(}%-QLt9(Zr3+rlN(#elyX+ zO`|l?!X1!w(ZUD2=AwlU3%7_C)`BfW3(KpPqJ=AKE78JbthH!i9=8!KoWa_P7UaAe z?)($Y4|j`Gs|zYYwn35esyu3%Eqd_uYBvAnZ|^&P0)Q^qj2W~?9yR@DNx!MFyNEw`r<-kqkJ!E?9tK*V@e@BSi$#? z#*UOu7#oqWYACg`??X*LstEUpdywI?ED9o&?}SI)wWEBm$Cn=g{Y)hEC}7Jk?oL_c zAV}gX_P~1%Kb1=5+ndsq5v};?J1oN$=P+lFyjGgH6qt)K;r|-Gdm{w~AD&vd6@PzU z3VgF@uL?l4_SEu5%&&kZD=_E4{**EPSZ5EvILC+&C06l`*H}~4Z6EklsW)LD2R=H+ z_npQv3E}ocU$)ks_m1^-XYC1GID$k{vxp3REC&`I*Ft9h@YKf z`M{dK>uj@?RX4vP%#e0%*eiZ@u5144?C7@e#m~%9NI02K1dRaS9RRamCIZpy=S{Pp zR~-?}uF0Pd_zeDJf-ixcQn+>p06XD;I!e**&he24h56|(+-a___u_|A!ry39bbTCj z7-76+qA!pAPBcI>el^YbRdqPcsF&osn^oRtO%XDBz{I9}e}@vlRs0Gdl@IJIMfsr) zI-z_Gp89Hvj~6xZdDhkTbz)74DriN@J{f~4s>5l;soK6fSf;|T4*@W-S#hsJ8;ceF zO0#0DgHBj6g^eP@QSW<9z3)*S5%sRgPo?^NSWDx0#eKBGjD)3GXe7CbLL>Dw@qiN7a)!{U#YC~TxJFGD5W&jhL8Rm&YqK?Ik z*GeXohFM%m|O_aGH^s24*yA?~CK7?(|jU+fscQEJ+dA z4FaAvgLv5nwb)-uns0T`$?&ST3=D#C(fPyed<;$%!Z77F@Kxn2n)#Ah7Euk2>}(p@ zS#?A-aw;33Fzi+V6Pr~#9okuoj=Sl5-ce~&gkU8yr$5@<| zo+=S@0CzlD3_-D#ejk=1;+72G6Ratr`z6CSjI|;F91(nXwdnyo^=?78iTSt`Fm%X1549p+$s~-J)+Ds)a4W3i6H8OuFKrlP2Z58~?>VA}V2A zoh5*hxY9o2z8=0-7VO*}zOL*F!4@6?#49~~9W98q_%pv&Y|Esop(EM8ZJJ*3U`Yz@ z!S{S-=Rld~RZw&sKD`gBfJyh42%VjLtvcm;~UF*DKxZ? z-1pOlZ@a@+pAkm(xG=xsOdM*7i%|zl3H6($*!6v1-wSLe(FjeN8a4?UrJIz!5lm{_ z-d9bOAgO$47OePB-w6*~OB9ve!l}|i!WS*9TauJH;qMriX5tQMVm)z#IBwg3hGG{e zCwvNt63W$X#oN)9dEryOo&o2Q2kw)bNU!ki!#cu5x1~#M|jX4b4M8Vv~WlG zCGga?#*G_Pi-w1=rS7TuBU7hLoi<|Dnt~!&q?R`3+Yj|mt@es&8x!xDGIH|tynDus z8#5IUo<7JYJnKvB4=iAJQP2mG2ySx)^dR(Gb{bC!r=tF+MGN;zJ`gReSw0jktPegC zt=IRLlUPloNfj1j)1DAu8DVsp!m66fsz;;%;gn#0$1%O*Cr z?Ht4#$M~9RY+wXp;v;jDj1Ys-!`%1!DJ1NTn}+Y6NJBz)$z~IA!mF_}6(H|BtpO4~*&f-+Lj~gzVd_-9<>^Y9vuY#1Tcbu0&i_6m_48 zv(&d$b@h@~Tk4orQAh78LTgK%)vCHFrEW^ySF2P}zt7CP-I;goMv`Cu(9OL0+{b)o z-njZO$y_fCf8vm;B{MC}NFKvk(( zJ{#E^3Y`&SB5R==yc^Y!unGg1$V5iqQT?7;qlEs;}UF$%ukpZ-c@Q}03=2Wx8p!z6C;p0x@6Q6GT;DoPJklpg$nQIrQSMfO3X zc@I7BfJDc8M*|ap)i-N{10c@Vf*7VM|J9oY^2z`N<$U#e$+ zk%12l`-dp|-i0vkcCwAEQ8PjBvslm{A~{J`>i!QUngED9OCR zD@uh~kvVo_yXS*hkqu>($pNUX=mD%;&+6A@0yuLMy7=|tg2);U{o+?QK#22hC#0ii zbf|?w;^{oL{>2HYt84~B%ioWzj7I1%>6ld4&J3`y5QgxcGKppIwfhN`@Pav!QR=!_ z8N6#w&Jv9uAU1QLC0V|1Ec}*T$-CDyR7(Zh;jCp*_5t zK4jP6$vkjg7G>lWO5FB;%jm|Xcd@_s}u&JxULeU8w8 zHw%tX3xD}(WIZhmJ?^Nr(4Fd})(U(rBeIdUtIlVx8Tq2K%66YePLm?~ag<;2g{>jH zmGf1S^z|-mUGXh!W#Rf?L_USTS`t}OgH0bPH;jDHLKoJn=AtPAK_XeuD=XBcD)`}B z2_Sh~Gh>0Js#nk)-h(nLMDQys@WKv}RU$+rdV8x2e^&NhVP)^T7V^M4RRW&qPMnT@ z5E!FEZS)ESKdgm<#j0AkN!i3iylx7tQ&lRP*a`j00rWC%RAm%#QW-1zd^4+?Q-#uCF8CH(jTpOH+S;r7lgu>IhkylEYTw3!caX*K;uK z)T~Thf>GAHGW96Ly?}`2?@>{frHxtD)z;FRixN{%08gAg( zitBHM*@b`zkE~>i!NVISrlQ}qcrvA}IOb>ANF?^wiC>P1FEY*y`Qf(6R2kjXVr1)+ zTzTb9po#MAB0i=Fyk=+Qz-SYtdR?jvKJ_`Oi!Y7{O+e+p=3Y(}Tb4HfN2+4WeUVkx z^Ky&CAu>wj&xt-N;^>UTL{wX71-)hlK{vc0BXO|4e+(YHBC#fFX4ZdgCSVfr>ol0i zbRcrbG&rPn;-Mh)j25R}gX+qh2AaB`*y44+^mr6K+Z7i+t4VkhyHS-m{kKRsHb@{y zLw+1@@ahidR)e#^KU|XdK6;BkH4F4KCY^`_?AKgt_aHa(60 zh=gmn8w(F;1=sk+$AfX%%ZXJ{3;u}Zd-5_~YK*6ykDRZ86OJ@^+6*QLh~VQ_6626S zO`piSF;$3+vdyw$i)yH27bE-o%SBIP<=5z*=v9Fk8cLISgU?uzpDE=$-~FBVp@e4e z$7ZplF87H@Sf)66JMl3oVj+iKiPL{55r=nQi%dkH^JYPd3q9?xM5E(#v|Pwodw9LcjCpBpYX;OF{z; zyx+gU^Mh?47<=B=^^|_clWxO2SwyLe&=;8DMW&eH#THf0l6U+Y{(m@mTgjfN+A3|7 zMpxwxK8e+EdX*i$_FSi=*CbSz_cQYV^`aCJ8_T9I-HZGQH4}ho(i(O@vL?zBTB+`u ztzw&I#O^wkSf?mII!Wyb{pPCT-7x~uXV&{O-|$R~RTDOx~< z!4r>%_cM#N#30*X^bL^q*7r2!tl$k^&%^JWgg0%|E`*fulrL`EE1}K24~w_$LId#` zX)~S|Y@2KBc+A-Ge28tirlZcc)MZ zAK;|YwiZYL(Tk%VSSAu!n^YYMq*# zM}uEyk(~zdS2FXv&L`E7QD+@ux@&2eK*49h6SOVxRq$?Y3w#S)3C3@M7JLf4Y=X84zGx1Dd?j>(FPfW?7S#Xw z{?GOuJgR^7WcZ@_bzKv%JqnB|_5!{a>zaUZ88jgF!h=erL`(>W*4%8O3i#ld{!2v8 zrDDSFJrE?9ijzx4$jx2`T*E~*z(g+PE|)TtOL@qpWOFGcVKp@dNMzGhkXZ7IE;+@K zU$AsCp;&fB@{>-|E0JGxLR^{rqVvHj)_f3}{c=b-X*4d`*w#*iFfQBX4k+@%@y*@kpCSas^=FZ5Hb7ixY?~T{X6rc1 z@~;A-ZFLeb3m~Di=afpad}E~a@8h;7Wb{$dQHr#pbmZBLvc=H~fl_iCutCiKGCo6V zgjQmM@_r@7*D`I3f&dd<@_feA8kEEeg;0}X!aQ9kyy#5%8XXk41m0gqCxnK4xDFoa zPKlDX;gW4_EhBaiSUOKTxSGv`Mf8P~L*0sMF!!ox7gwyp?DoU?eo2m{B%(8{mSO?TrR$WpJ;Kw$PGXDTLlz6Ep5< z=oL~c>K6FqeFdY^9 zC?EDZ90#NM-QIYfszS3(5!F>{2L^NbeUR zTH8H=2SEjGhTb zO2Qplzv$G{A}}FC@a^F^)ZklP%v0*!j29$yia)~AQHTtB>(&LK_2Fz1K_IDjomxXL z>M~Loo)H<3?iLLNa=({`LLnWv3FBQ<7;fJs}VEwb!Q-)ec*^0_|!xu4?9A+~a%-f9*PBY%0TSv(#7vWtm`p~CBj*qlMYA0D}& zd4(`9FqF8qQZdP1Xz(pxa zeAB|e{-TW5XtdB;P-y_O=lG(GNLfRpkkWK8k!EDMi28WqY9$`Mqhq@uRmD_}L$$o8 z)L2_fxM`C=z%bP0ppS)yhf@+CF99ij?6Zs*4R%^P4jX41gFHGC^#gm=)Z)W>5A8p5 zYVg3pqX#|L2aYWRF{U=dlg8Sb;d!5Dgd$!^&cpA$Wb3Y>T}b0f0$kKl)IR3XM39$52gA~Mt~1DG*y z1IFj_U6$Y*2_ez;o16=86y;5}b(c_;wVb_z22I>rxVCJ0#zX`^G_p=8xU2)2tmOe? z{$&*gr)a{8n~qLK*;kX>t{eg8l6zmZB?u*)s(jIdSl+Jwn(aN2GU!o1D1Rs8zk%&Gh5&~gw!P`xdKp_*ex;4e73dw_jZ7h8Fdek9(E4zp&C9=c zaL9+Y4jKZ54DADQ(Bu3vG4KPTq&s+=bwLJmdW5|3}XMelI0C==3_c1Nr@w6m+KO zc%Q&{Kl%U2`}L^IYC(5^_nvcLw7gq%yia7j-~NB({rE?=X~@1_JMFKONVr&rA7TLP>%~XdY|u zVM;xeBD9h`R*+f?FyrkXrc~3AC}bv6PXaIqgU2pNnT%TNxGuyhta?tTkx=7unHN!4 zfe=+1-0)ZecZtqyhWZGP3OWLG#mkr2qBT@#HPN7aWuNQjQB>hqi9~cde|}5LIBtK|8P!@-2l4GQv9+PNc-UeB-&qPvMssy)F36J6 z`y7XNATmz7;4jPyN1CFb??|2K)*r4#$z%#U@@WMSQ<@xKP2Oe960Bf|yjRZLB zTi9jd-k=?t3leapISy~N*l@M&(RTS5N3C~07?G~VCra5;@%7cPwpNRiq@i38wrg-4 z-aPTf8e0aOzRw@9NrtUvN&;#rv=%gQo8Sp+ZA&!-3hDHDtR50&QMV~{&%BFz2|VkT zLk0vaSQ zQp6AgXp>Pvmqfl%ix{KtHvS2|uh}OsOD$byE36nF7Fvm=3o^Rx+rVyy6)8|9UE69K zk1p#d6huh`bI~ZtW2U6SS9+q(b)(ukE#vq`VubiUu=n4gf!+riQ#X#-4#k~gW8udd zh2!uh?PJ?*kISecf55h^W$dyILJ2}EahI3?V-jvWIkODxSu3^M)fEQx-_u1;o+g9UKH&P}GJMaKE zR$kAnr6EE?Z0PHm@u-iENI}w2GrVBGZM23!A@!wx?xfKd-97vM0o%W5tiUrJ=;-e2 z$wDhpSNZ4sKIARTaLMu^OL6#r@GaeqF5^W^$*b!TE^u3NmK~nf<8!=t_7lnWn{sG#rLtc>VO^|An zU_pntooe>hn4s|4TSTYJ-oI!WhwaZ1*7Nk#fb(>dRGxMmQu#fdnhR2Y-{CmCsXXF@ zEm20{oA@|EgE?VWW>sVtT8U@o-)(p>hi~$nIAwcU(vT=*I3Hn&T$F|_1+4qs)=5GM z0^2mq=o^b#LhHi`!wc4gP3+~JfdYMR`$UmZaLnj+GFVR7G-LW{xPYY+>yeGPKoKV>TCH!A>>)INUG=+96-?{@jr6ZaDxaBGI2T%7uZ386@ zg+j)adJl!DKUNC2ylLwngzgAjgDi3QdTf&_@D{=(^Yek|3cd0zKJd9ylPpHG7HTRnC8{X2SV$^#U2-B2HsmjDUGk! zD-~j-LMxcBv{YP;X6*@}CGpIiCM&I@>Hm@)=k5Kz&9 zsOJ?p_UwVsN*pNvdf@{RV8$a-TYsY=LG;olz#5PBd(|vSJ%!bv82n}3*7K2Tvv$lW z1f?J|O6ehR@%x2(t!D-$Y%Yc;)^9xlB?%;9<6LF@XoJ>|quN4iL33f!X1upga5)VH zqQ3mknDwuvvr4E!#RGc<-ksrQ38@Mf(OdtKEl8d__$wjsfSbuubAt3Uoq1?oYP%#fmY^?^B;V{tqevRbUG=>gl#Ry;hp}hDWmL@ z&`$n<#p*kITK7Q*gw}%A5IgbkXr+RYz_h)s2cUC00{I_f_~;I-vz1JP3~S3Pz0e&U ziGq}LJ2$hEPNY!CQOvEnrDzfMQkVvS@Cq19vkqM}kxj`@MtjF~#L1u=Qd53FW1Fiva6XLJ+_;+DlV%xTB0Lah#D?QCHWbkENl(;F=xxGAzH&# zsHXIUBRToghb$Wmg=ck@=?#TpS}m@OOc!Bs<<+jnpmgT7I#DSjp<{whXvVykq@$=j zbuom0ZSyF{p$6t^95XE<8n^u@p@e6Bva&)(jd`EKrm@G=@D$0?kJ<+Z=G{-7ETYp5 z9gpjVj$(LkvsR)3uD^i_V1PY!zyQ5BsJh!ApaTUIM9?GJI_8tt+g z<8c{TBhYZ(7tX&yis)2Z zoO1KkxLq}ygKviIU0*5P!2eq@V`za9yxQNiJ)#d_>iq{h6+ zai~7ziEOOI!mTs>L1DA=K-IP)E%yHH+iqE_WfZoB58iZ}#y~DytI{4nWxUf@K=C?qZ$)b3t*heCco$>Zx{{$E?qtF zNIo@q)bQt??c0AQ95XmFLqSqdzb$Z9aQKri1w93kwlMt3bHVMw>{H9)9wj1}F!t-=ZAj=6|6A06aXv+P+LA^&;?>D$#b^Jm^ z=SaM~je;f+9p+}&0~O_F6W!%z+d=T$Y@)PWs;FG5oLs69_zgnkW)tyqsmQrh%v>TG zv=F&+sVs0ZF>N6%=Ta_nDPy^m7vHJF6XLUWZ($Rea z`AHX2Cz4-um0=S3MT_*wZN1&v#ubU0icZ`Uu?Vu5^kJ2!JWzhF3um>Z!mQaUdi2HC1rQ*TYhAP7kFMsxHtY_OK`L24I}n z!&9xNQZ5Lk@dtV%lxJ^bL{PTW`g0$cDzvf&j4=U(bJ%L&{e6|!P*(wv`buZspz^kb z9oToL9~>%_!=EzO8pIoX-Fr5Y%XyadS6-LU3;eNOphp;AA_7(nd^b>;FQeD3A*-1{ z=Cu!XdQN03cO^8-8ZyxYa^%@CC+;;=X%S^2`iv8!;6t#XN)lQsV5N%sk~jDypL7W> z3tKo$878B({IOp0nv4q(0h4^@NTptJw9Oi_mIdUe?Z+rV=#UODnul;510de`g3`rI zWPEKviB#NsELi)7fRM=SxXK&6G8e8~kmg&d-ap-}{N!Kl}j7Ivcx z;vugqL(xEi0h&Vk@dj0XPx=()uORdsf1tO)QeJ7^j2qqkd2hU`oK z$mUO1zLtK#Prj?HMq8|rwPMI%w-a$H3(h>JW+-iCbj%t}21D~3a{?n8;so{ZvA)5H zc2WCk?(cz>8#21BLofJDYldC~Wro{7M;U}l{H%=`0kDk;AQ`YsxWI99mBD8IH+QbG z+GNDS1LrBZ4sj?{D~n?I*wrWM;Gt{7YNEOVYt(I1c!O$tymvml7jDVh>9`Wzj5m0l z#9NL$Gh^@QD9?rul@(G%C!rgLi?QSI{Dn#t)Ppw@_esa?>cDM>op9Mj$~i5JZiMg2 z6edz9cN{-sH(~tbVqkodK#58?o;P>{Gw&niD+#^BALs+KAEPRQ5~?wHLQT}jjPzrl z0_o2Lgp~BhyunMl)MrX?5L(3_U|MH2`ciomtruE(8MF#-{!(cdA%GalAoYMcksPZB z-&>+okpc!DSk1)Q80u=6g7AnbJSXXsRvv z!6T)j@!3sb&Fw~y#q*XcpPQD{^un1>wy0NBL(xpGsFob~rijnHm8z)#|-RjCgi<@4ka(W=Cv;wy+mSwd|NR* z9OP1}xs(n}(P$rnFqa?^ug87_{>-MjiYLEl z*;$SJq9arS`9&+YMDmMPGD+L&!cRJ`RVR%!TRlpCQG?VVznTH5?3&~k_4Q=(>*Jr< z{D;hGVE*$HyIZ>{c|>dUruf7vWk;0I0FR(%?y!wbd2V`?0jQ_YJ$VxZ{PlYX*?FT6 zc$4#zD;r2Y< z3crXV@$Mg$7wsZpwY~cmWd_>G`!l6bEZcai7fa`#l-y_|7SfR_r3zLKI8$)Vtx6;G z2M6a!V}IwZDpDVC5;=Sy?>!P$Q@*(kr{hxTm75Gu{lH5gh3P@W;=7=}qd(4)aQg#F zWjyU{SfePTZ@^V2WGc6DNJuyyF(V}&mEO*Mle)=*72&8HZ`AYNfDTxFwku0yREc-f zJAhgl+If#{EUnJi1w$Q5=Is+y>+4n51kII`H`yj8Emwm$ny6Y-?|N>iix zJ2Uf(NSOKW?N_4Z(Cs++7p0t;cr6YnLmVb{hx6_qZ&(hWKA?;2Pky^bl4Xk&f=Td)YOgr^--l5oaRr60Pa z$910LvX#j`3y-H3A2N7Y|CyPId_k7cu$yF$*N!P$QSc5egHjN_amk)6Lyr3Ilu{X3 zynkFNZ#VJaq!Y><6sHHTK)`De@oaMTS={@i;#9>n!!iG)@+)en$5CHpA)B($fFx|M zU@g_xtxuE!w&{6>#&GZ{uce^8&UzvpIip(LwbAP?+7F2=M&jS!l_}_1J&EC}9Min2 zOg;;$6r)AW`n}GAGc<*@IAux1R3Db9J8GyNgQLU_6n^dw ze5$!?GWwiD;^|H8H1{BdH^MI%d*-e>uQU#d@Cfbf0`i};}T4J z1Q^_YroCnPxumzaVEG9L-$C9X_Kg->RBpX63cEVG-4!KXLT5N6BTVNHC-Ls9%CLx& z{NWC~DYHZcjFyGAL$`P{lrZ)N_0Exp`^;OJMpG=C8MR~c<&P>t4QDAxNapKb~0u% zPc6TbVIp2pzx=x4P<*iy2G_$+)}<_T0rcbxc!Jk+|4-$zB-d9FZ^N55M>P>JrV1Eq z;U*=b!sLoO@r}v$D0GP9#0yK>D+C`U4aacr#~iWIr+g2Ma^m(0_H2Lh$D7E%p_DyU z9uPqOz5=%v^7qopj~i#ZTFMiw#2+UhRK*`;5Wg1@KU&T{it}3A3n_Xsh_2dP?*UW; z%K~U%iNJ7ur>O^gj-7Xvn$le60Xd#tca`#rymKd>e%R5z>`U+JoKaom+qQE??-Av2 z%|`ZM{K~hE>Ji++KkXy~P6HUrCX}?tNuM)sSPqC(Zz#?Ceggcl(P}CSs3zY=h2XSO z_EHJdN9jOD@(;-)B=~6T*Ji#;Tq%Hlf_C|jkYc+6M#z1Qhp1M_!Astbi}qwj*^`3s z=Wn`8dKyL9n+3@+yJjhl9a zn5{V6Mqu^m4KJ|g;|lhP!EzG{(!Pv=)^VntXgs}&y#n5tY%h-c&5Mc=EL3I}wUAt5 zmp*jw`!m+RT4SZv{RbMRmKf3-X20J19Q{~rh1Y5U6W(=`fG?E@0Y5f?IsX^foTHfu zya^Bg9B=O<&rtCi^4&B6VJ$rIdTh94(Aj9B=pu^uJ64i!3?TVBfl-T8w?-qm*O5K- zlI+2fe3UwFoZgwTim5vkeq+Eno(^jep$ZH{MC?AvPyeN zSUc>ms>6P7Q2rVU6l{@QgyDMO#;Boj#=*y%Q?g=UGlOB2U0chZD%Hf&WA^fvgKYKP z0aHipW9K}K1718c?7M&<(dol)G?;kZW^Z%e27ihjYl32i67Ht-7HByZ&3b--FQ=%sPg%AI=j*7@a0DK z&(QB6nQ!bE`X7(72Ov?dDK zqoI%~-N471+F#W6hO)YXZ)nZxt|~=jgXU`!#&Dx2?609jEfIAABA&N;#Yk!fSrXOf z4>0BQ*%tOxlrFTwOd?aNj~}$K*VFdaa+46272}$eW3T*V-e^^A!!}$Px!G!c#CS1 z>L4$G4wecWTLk=0RVB9()KLZe7pjEY}Jx1%6;)6yH9TK=~$r>m4SpfY>d;R;+e}VOPm+4O( zDtrku_GxfYx%^&IT^bYLMwP{~ds%tuIoQqqkt{#D*H=^;VYcgGuJ^DzWw{ZBX>T;q zL0^BMYcJmk=+|DcuBT>n;f*yJXr3l z7A&?;4VK$E_F9tc*ykr$LS>d`yfAqFQ2TPZG6gY-6^F08X{_8=W95QD@uxr~)_F{D zZcNHqyU^erWE+gIua{7Jkj?1sPYbQo-P_}Dp0zhH_U<{&o`7lf2dFrzc<9*!`Buk*Zsv$Jh#vzgm_LTzzUu>$=*Y5 zL4i#o`$-?5X=KO#!bZV}U-YA3aZq33BKzFS_L>qJ4Jyz?HZ7mW39U3TM&n(t+W*q_ z)&^f+V`O+B__j-Erhtr(m2-twN@6Bnoolab?7j6Z`=e;7p|@x18+O>Nr$MgesK1dT zmJY^GwZ}?mi-3}{MG5T^S}9vwaMs)Q_Qu{cr=2wR-Z0(n!oA+HheQYjV9oz$sUjZM zD7_;3Qwx)hdsTiM;ZoD=k5~{XzMq>&W$ENJdo5${hSTjy$Z6~iER}~aKQUW71G+;*gI^d{V{ECt#JmL8^`I{ zG1ER>Lj44c)HtutwvRzWgjTAFez+qBZVkPuCdTV}%l-D_jnnP0aTlzkhZ&Bh>AFk( zuW3 zFW?%V+DB+Q(vbb)Ge`|HjJ?}@2FXiA%X@!p>|Nt?doyEinteUS-Z5X;M`?R&0}*@G z$)|~d196_2H?H{-mU55#_r@c@V1PJ01YNi{F2>uI*cVB+8CpXa-W2euldY2m!yh_O zbaD8JQS!Ms`9R|uuzEdlnLS>32Nd@!?j32bXZ}{W!mpx~-k9?=TyB3hL`uVPn=ONG ziE6NV3`35m#<%v$!4NY5W3g=O(SvMVZ|_oE>P|p97+)7`_IAg~KiDhkS8eP3N&>7t zzP`yRzLKs$I#;k*u@&bZ7V|0`_M`p#h+Gg#jjbIsPQ6e8FHdjzD4Nb&g&hpJcn~Qm9W5}V&gEFRyWcx7~0+g+X6t-$YZv%jsSpbgvOR-*Y^B{^es z-o?1>4j4bBgZ{_Q|A5T^aeEiKh;iFf-wT-QO4Pz~ImgEV6c+Z^sPpEBR( zU^F3Jo;8`W;}g5>mrygH=u6w=WdOBhI*!|G?}*ZchZFbO`=ZW51DMg*yTLwt8%=NR zrkSk2jCP?VHZJ*#{cAMJ6zg#8-fy3Ph6@h~R>6_~HewB&r0<$pyWJ(Q_M8CL#=uDc zYtMu(qP2JbYX3)GX=Ux@0z%c=bD6b;S@z6>MVF>a1Oamv3-MG1zXwpkNr7XFrLkj7 z1%`$A!}do@$qx=%EX0=zVhdgO4q7h6-#JK27}r@sK)(=w3>deb<{kzRpOZiILVSqI z8woA{`jcwoy}?n|uWV}`3g|)Ap$qpQ-v~JNvb|FYsV&}n!`{FjiVY!=p&H~B(E9028RgQ#N$Kb<0f!6Sw|vDwUTeiZlN5NDsA%b3hRNH z0LkP#W=-D$dtOk~W$7?OYZy5W3i#Aqve{sU?+z7RF8Rq%E};qt$J68e#6rk#0Toaj zx`2B1sbq6V)XrF`DnW1Zc72a(#!A0gW|G+7sGm9`2!4GgDULUGiL$ELB!Cb-_2J&= z{VaHxbt0k4>*`;5odYYcBU7IKh2FKqs1Bv1F$BHU{B=WdmWxL*3^|_f8$_KcCB05y zEK2FKdXRD%QT0kmn1D3I)4D`CjWgDW5?(T<$z%jGlH46CPwh6(j{YpvUT2|)%q8Ed zg2e9$_)5Q436s#j*cCz_US<08{9S>Kw_Rhr#h!n=Mb(m|iwv(J_Rk3j)!6^VptbEx zYY$a5`m35BGZTM8->6jCb=ZH^>^K}S@)hU;+V!SBPt{&g%_X^}irAol>H4D5`?q0aVaKVA!IL>c&){Pkx{Ei(2EBUpj12N3~ajYV2Xl z?DxOJtd8nS2#^Nhl5A(>(sHLIuRSIMBDyN>WziHn4iJ3=U zd01aWed*UWpXqG#kcsbKpK$^vz9)lC65o&yA@bvo_>cT5M*>EEMd%_#J|4FqYLA?* z;xz<*BLShB`4W!k^;Qv}iBA_<>g!>qfYimHfMEd?kR$MG5%+_13g}tc(NcchN&&A3 z2vr4)FeqTqk)lg|11)9$I)LnX0;?9XFV)EIoBYiEG%C2byyu8{%nnoIX(t2D@l;w8 zbzGKD9r49%MZ*@%=XEf!BeZ1_?#n(X)5zU+giU`|84R#g^+5C8 z!ordb-Cp5u)P2iD{j4H$YApo;e!{yUn30^IJI!Rej3qzj`!ZTQClSWwWH>aH&1nk zml<%5=fs+*6j{bceU4`wESBnFrmTxvBFUdp7~@wjSsT6mi6YHEs+f3`x!n+h_WMzw zd@erw^SZqzs>dJx2yS;cfbI_l*8P4__YsTR7Asb5(#)4;#%I5ZOKpytf=g_UnkWBd z<%ZV<0;(GxH7H_#5xU_Kq6>@KkEled1V;z>nfJyX3mAyyp$ibvmwsEfM0KeuH74jy zUQe7+J*6QY8Rv-RA4nno(Nlf$D9u%cpw}0E<&XI*{K^7I!3)1*Dr^1=KdQV@{*^Z( zu=0j7<>~9b3D={hMN01w^j7oU6Ctelo60ccd^63FVv`mS5Q}MVNT?RVQ(tjRh=g}u z0Ae-mt?7f|gNR_GTxuivxnue&W~g5SW$O&|kk#KIRrGvJd%J{!YpNO2x8l{dk|PzS zry#cV;^(=*wmYM--C|5@pP=I`y&FcLV#j$TsiA+_ptdu|imvwQZ6&%~Q{~a>gV^c< zs}@600(9Y{uWtzY<`KtDS#EvYd~ z4J9BZ%V{tAx^s6G-sUzx&IX@a@P->!X@vQ90;t4#CMk^n0c)OD%+$Uv*^w$Q2%z?P zfz>`oqxQvkXD!D}d9{_xtr8HbF1N@a`JCfL=W=gb%Kk?H*?$*UwQ#wU8rgj=H$2tx zrzFcK%w2Al>JSeYaE|A6J;xW49CgA^)iX~IBc(awCAkuXF)6e^@%1-#x_heAoj0id zWRW@DQZvPOZUj!(>4g7s^T`uDEm08hx{j!;?t#!3S#1dOT%<{LCHyQnqrqnQTo zGzSfw4xoV(0>2g-II7hE4r}QcB;U1Cz&`>)RRL!V3OIVA=_)B3X6(`lk z@c`O5B5-OEhle!U@cJTN+1as6{+GI9l412IG>nz~w;62CyTX)p;nR*c**4FQpLWcU z(J4RfY1iSwUv+hSEtjJpCf-@z+uhnbZ>rvT(qIpG^9wFrB;NUmnLXZl2E4P)DgU`4 z^Hjjx&=R`v+_2d5VGl1;=YB$rna8{Dp} zfKhe3;M01y`;SRpWUn21nkiuU2v9&q00p!V*tKxIC!mWEcev*;M@PA@mHfQ~gsS|l znf$^G@QKq!SC0%LvRkaWQ5DPxpn_=v#}+Dhi>W}r?DpG8N0&%>*=dV6t|QgpSaRC( zjqB&9X>hn^5d!*!x3_?C>v{4U08;RUw``R+{|j$af4>LN-^sxGJI3^ z`N3)P^mRsM@g4)t@iczZ@qMst``ypDc}ov7=3R#)SdOJICez8Va5i4wJ8e3hyu-{R zpEY>!F~7Dsth3ESuDKoa8OLhdn&-qE$0ri%^1I*zzD>6s@zJ@CFC#kghiq$j-aJPt z%I2-Y*6@zF(R|0(NC45D5|Z7$<5ZHtKcLKt5K5{fS zqTi+MOBjCtV@HApJ)SfwI2K>~*b$FTYP+kbhkXJX6&PY4wC(!Dk%a!#0ucP|KXpWF zduul>S2U_P@HWHvaFY@^VGS(0mchN(K%H&1@aQ}faOjJIE<)z_eEhlN2}!EO@ES(G z8UjK!^OrlLUyO)4Q*@cXHWA$-^HUA<@vniN0>c)GzdO@_KJiB`b^H+~ji=}_Y>17) z3%c1&HnKHTE&Ada%MsxDGi(ItM=0q>fbM7fjQ~#rNWn*dI)b+a(BlgKdR!J*k4u;y z^#ef1?;IIHaC{j!s@1EPH&r&bGYmPNm<^6qLDC7Pd-IRvX6s=xHalttN!NV#GWkkw zkq^dnB-qN#B!6x2=p}w_^tsMP4>=ON;xkgfy*FQ(B?9GVNCeez`(1t#LDjPX6G0{D zA|`^kZH{}A)Rf^hB!b2QLNyU2p4BIUN@t5M5q#?>5l{_0>t6%I1%@pW!4ReaeIj^# zx1%+Z-lpjNC4x<=9p5}_nFywwWr<)kp`=d)L(ck31cL#j;E7<3&&Q~dEfOl#LtW-O~Fywgp|L%CD1Ozp4Zi_D&;`J~+E;x=B zmmc`+Ws(Ted@!bo;1DyD{DZ-x*ZQ^5YMqT9G7&_oT;=06Y!-r0RaXdnuVMFIhsj|5 zKm5;zQ~wB<32H+ZF%z7+;V3T29aO}IRM1wysHTFnKlHQV+Bom8B3cmaY?PgSZ5q6M zIK)T-&O7dm6<$(~`@_#Cr!Qz^Wg3mpEa{EB<@ge>9&ay+pS$H)DbM=Dd?wRVHQu`n zVUFkX+m4fx{K+4FW--VEsOgG=K@A@UFgCi*}J0Xc_pp%=@{v0g5D|<7gz6B?8GqSc+PbzJt9`h zX394&$-3%cc8n{%HAWiiGguwtXVrOL7%a^zZN9kpB(s&=_?$ke)TKZci;F41xoD<` zOvd*k*ie*@WE@h;BpD}uSUOeu+P?+!0$XsY#)6A++Je%HBse4+Lcn;2>ox(Onu%8# zl(v*8t%#PxZA5a5WIz>g-@gL>6&SY21-F?3^tmADqta#5w@d+1 z=UEDPKnUnlz-@n?brT>&&w9Ae!0ak({u2Pvo}6{w|5%=JK41oD0bNWoz_`<;E5^x# z&zp~B3)I_42QXlmj}>>Wj+4iNwk^MdxTS~5s_G1lli#2)CaZE;HfEs#=S@qnzRWsu z+w=NKMGH`h^@`~ez_MtYhm897RVnfj^^0vLQGdCW6OL;OV75(x&9+`+w#A-%8O~{v zd`v}bD8UX37}dbvVo={5NFLGxhjP*83}6o`kRgf516&&O9qFA7d|AQ%}sSuXR3!B2<$3T`4|Y&6qA8q z$%+Oka<7a2)8I3p{8*oy$J#Ip;@y?m^1xickGm%7GIO!MC|)mphS5&qC;#@bU=Hja3a`I~ZK~L~lM@ zjuT&SR**i!880|%!lwKeUvS2!E(fV|vp=K%E+GH%YtA;qpV{;T{2$0KdaV49NAo|qA) zMBU)6UYHrunrKh8mw;C!U*aSv%$~obQsvJP81Y6a5eZ!fc8D!1E5)!>rC}X>vYV?G ziq_*Lyx7a|R+Se|PczaF>Q_HVX@Lra-Hj8Ec0Cqx7`% z1RV0R^9wB^ddDr7MZIWJWP-{PE4FxLQRR;@iJlR;&J?-pC6nlh;@3=d1}2$-tWOl{ zNCXkSBtQGAbBZL7QZchKLO?mfhmu?+6yF{GgiF#!_v`=cvomwETf#TCnUbm(ekn%B zOX4bbdH%tTiO@K2RaABipjDmD>n~nss9`;WZ?$&r`I!0NqBiL37|#$v=}%3_XZ@?7Vc zAUXE3ZyYs(yr%;>yujHjNUljie2ase!bjfjrlV-sWojJx?@Rh&;fi0&T+~^n9z+pA@SieC1GvqN z3E%p{nXc`vOOYO?5RqAS;riMyot}tg94m}FgtvK1ob`~0H~V;#mf@tYoRzg8I%4Ym zUj|~H17A72NNBeXE!GW9-&yeLS+UIdtAvi3fmh-lxy}eqy??RizdYx7NxpPhbK5Ql z+++k~!-yz|E(dId$k)FRNgnJ8$S?MM`i*n6EXS#s4Z}zU zA4)omgu|bKhY|UT#V}$bG;V)K860c!z?%_&Gibx_E0WABeqNEZ)ClieM83MlIY*NF zT`|vhCzuI)GuRwY=sLLNLw@dxpM3X+4rKfW=R`?tRSxDDG9?HPl~9`5WKZ6#6K(9Z*7WsrO1ETywLtoZXnb@H3m8BhWg~gE3>R z;jQ|Nbr)~y)5w9J`~iy8?YtX}etnqUXPOYP(Qt_qTeRVl6=Zfl#>hR7q{!z3#LHRW zCeRRh8v2Ow(*7ssv$8B*Wszuzm;ZbyX}ny7KLf|hX{&fKk($PfKXo{a>hK#diC6su zO#D?*dSAfc9nSgify-5K=IzUQS!LDxLDCs;j%U>_XRs_kb=4O!-s1!~Oq?Djd9U*o z_`rq2_-5L?e>Go!)0k;=)ih?}!EDwsBWRn(j9q9@of^;I?`$A{3lT|f$ucfpYc_rHbQwzdDo93jWA9Sjt~qon1Vvf)3_9jDX1+L3_sxCzaS=5Owx~OYpbhE{{{h~H0@+CDkG&}i(naO!zGf>o> zg+5}`T{-OhNRo?RvxqwBninOFx+?%3IO@(`wHT#Lq-IfP@<1J>vS2c$AGG~O-J`I( z%kuE(L=cBd?~OX#|Ah0j+~S&f(6v{M_ymK^@oYWm%#h?R*Zc%s7aa_K{j_tdJcxpr z#9S|5chi_lzh)Y9iC{GAm=jdWVoqrAMoGQ1&H-kzw*0I!8!Z5N4Y3wIkGJZEqpYD= z+8^TZEcnBDPeMz1KRzA_p)p()S;U9;TnTb`;x0HhOK77Ryn~0TJoC5-~ldXs1>D}V%;gju3#iR3j#>kRN^jY4jSIbLG zEwA+tdqP6Dct2CMOi;xV@zIQ77h4$Ho~75E|49+bb)TIs;#2R!M&+E=O{$_YyqQtD zo>)SW6#Uem&Y4;mlC%WPzM-;E^18WZz0XC4tXRZxH_bil{hQ!nnR*uK>QqbK>h;r{ zznwQDo)+4LDOqpc?91e^ZK3LI=UZA3U2c9)6;mX~a*k4hy=uX83^vEJM0P<1dH1@X#Qd`!revz? z4@pKh2#iT)KH%$bnwigBXDcRq47%S6O0iDPf}Uw|juRU6`QxOS;zzuhkSaI2;os-d zZUpwZdeBGkIqV5{HIh54hz%~+(T9<`T$3C6_owynCgk#d(<>}<1SbV{z?GB zC;8a4_PFsH!L=T@;D))!U01zf9)tCITpslvdPBOg{=Tb+VIH@Md7NPlH7i6tv3?%W zq`H4k_ksDG8_eroGpK(&1+v_gCRl;h1VV#1*Jiq0e#gSuY%ILKqFOw<19~u)2)B5v z-k06gB1 za1$s&SAaf3uz1!*yY|Vj1&<;&1WN-SMp`>pg+Bw=&K3T&$k`?`vj{SI;LX{lSLRV= zWcydfKp*SY0n|^U3{3z@uMzaxZG*gYYpB}wWrl!8QHtalSk=`+g7ct>GBw+{Ii&Y) zJRc;DCFxTJBOXZ4VZ7Jkz5J(X2A}vRi=`od>POFhfBMVdg4S6E7aH_l-^0u&uda_t zg`?X2`sBfUm|?%h42yA#>aM2JUktCoC9nGs()@kYAoTvCbiaXCa?7!Q`5(E;{}nhG z%R(O>j2i!w8~$aUz=x@>SD(Rp6L{8NeoBTH^e`-eKSNP+FJw;yp7am!&R9S6*eW|T#P^86X3}OqjIKK3l>otFKF&KZgq`)mhja(B= zU&PZ50yO-68wB9>Jl!C06n~cPsxA%2zoxrly3K*9*wpa;&-Z_}@8D7WtJj{HeOlX+ zGBdjwl$JuDIy1BXg27E_Nu8Pf4yZ(EsXH@!KW^95^~i*y@E|vPFuVZC&Avf@6Oy@< zOfE&8OVQ<06uH^^NguvF;TrszO(&(-$uII&OdwNhW;R`ko=KLb=yKYhq!*p!|3!Yy zt45}pH_1;rQ~R6zqT~H7@{4-UZSw0~NEWTapThmmmmGwTKJIFd!f!&ey5WJoI)i~3 z;mB4}uoQw9UUMY}WzW2dADmJuN$2p z;E3j~@9jbZJc7{|wk>Ow4o@m(URZ!0HxJ9dKz++YdtjDvrkb2UfQg z8Gt8raODP}DgJ>SY@uHV?8I+%a-BwVbg=X)CwcZwT#Yu%Jb!Ia*J( zPeV^jXa$EfGlAO(Jbi$>pP5%e zp>xq`-b@&3fNL}h3wNG@R>PK+!}y;bu6MPFbi!9<{0mG_SHO|ITt7$L<)m)1b&2_T zp*2y^-`*gqf)~b>$&~Km+}^HCZFlLDQgL|RiqK?K+N66QS0inA`m%TVGFZg^8=j#@ zj4*HXb=AjXis-&9(^wGMF+S~ zc!LV#nV0K2A|nrfU^cXFV+;!5WN0ew*}Xb+s}%7g2foSP4P1ZQRTb^z%>-wr{NpX0 zzBV*h+n+`7<9+WxwcW``+fPJDTN=;4Ul9OF%TUFr1=p$*Xk z-b(p`+iRE4a81zk))ywbjAZD5CTPTK1n+>h-z0a_Z4Fg#`wy{7xAPZbvCxl)*kVuL z*{&gy+*rkK7|sE$a@Q6`K5^TZhrJ8XzQmf9qAo!DVE*~u)l`wMQ5fI)1@Aw` z*WWY~Z@tYj@z-#(wDvgfC8|pb{STW$DjcE=r3^Y z&l~$_^x^eJy!)_gko?L&;%XZAl&z|#Ok%J(_}e3{J@Tx7{5az-J;?o|t~T<=6vV_A zy|3RU{bTBjVBU__lxoCCtX|Q z8&?2G$~&==2H=|h5>%&+O+un6Rojih8$0eKU}*cDUUgjJ>0GOZS~3bIT~R#r3^e6;j|7BEM#MGoNOdqA|l_kNt|Pf(-9kC~`xF{7Ar> z7C#OC3hb3r?i5{yj3?@_n1NEQz}3+HoO8dxzrQ@WmuW>m0qyput6xcY?Luf6j~(Hj zldLXK10Kk~2t zVYu?Y`HS^9=x2;|497r4dzO@Nca`zyZ@No*J}luLCCiWhYd#LWtMc81A9rnsM!J%8H>;eHg{WPI}YKzSk%Ruvw@aSnHy zT4qo4j1@o*(Tw#UZql0drq7P-EsL?x!s|-A2Sl69Q@vB9tvD_&rYBk~ za6+c3(F=HkZdR4G8=v~f?(nqU9Qr>wB2VatNA3)d!`FWdt&3LkX1XXU=lzQ(Yzb|n z?N26><$28PRmBl#)9HAe(4c4LplNp8R6j*N8NhRo0gL%rv^)&`xaTg$N21+5lZ4SxkrkB3z!F<-MZ3Qwmrc9Zt=72E^tMq}e%G45=Xc$YgHHE}#|&}$Wr zi+CAK+%DE#PeS#1Ki|Sc1#Y#As?|hvI6XwFfv;{0eNSqQH&t}cLv2iuL~$gSRU{dB z(xdLCQ7w3HFKaU<4K3%nvmh92vL1=;rQ33jzQ48!XQmI6Dtc2b&ffjUl!w7wo>2Oz)`>DtU1p2k&#fm)x zSK)=F;0+5(I%oeH+5~;9LyO!g(37t1F2X0OyBkI<;yu`_9zjumsZ{4PrGFrFWubAC zC>`69-FCd@U}$>ek0yNJ*h9d`HV#WoA~5pP?3(Td5kK(`20m`8d~6QL$CHs4bu5fn z+suWh9fj`&TOJNgLDx7LJs+2G`C9I@h|9c(fswyeM$Y?Z{$uXl5h5d0H9{H)4PwzJNWqeb>wIWi zDdH23{3hPJsbn19*~DE1E#=K@wEW~Awp|PztL=a4M-+!W7egOG8+HAqPw?=j?k(Ex zy1_Nvgfp^!8Yi&o&9z=5*@D2R>b%VNMsVThusU<@p8vA&3~-pA!SxjM0~)?>DRY{+ z%a)Le;gL_eO^!6XFJMiRFWjTmmT;!wDcnBOZF#7V5cn!{fpLFRuAv%jc-I5)`F8Fha9bz1gw=9DL)EvZG6Xp|{SS9TJi3Fs8oPeyM8$H| z$)9!Lun<6_xebx0wWfM36`pi=fNi7z;kyix_ip9u&1VF{(VMyV+0wvs_w`ePq4y0_ z0%65Uvvov@xFa49rCn|I<5O zrT-qv@uK}W-m`dmWV8d@z7KC{Hs46<3G*EfRB19zmQF*MYF@XbGoa6WVx{snAI^;8Y4Gs~8^l=uzp1b|r zRV8%TKlFGLXgcf)yy%DBSInGS8sbic*QEZP`zA1xpJDd~^yAJAR~!v;!^fev2W(I` zM0Uvs9Bo?s9RLnI^4$2(V&pLj&PE<%JLrWKi_?ihEY|#pUgRb!=T<@gm>__^5vT$5 z15)}$zl5Rgno)B12b$Ax_)suMweiz9ZW4@9H5=K3v2NQ*C-NxG*_7bdFZIDn_cu_r z2yfGbC8D|j;f*4)zwIGc`eq337eI&80_gCqeCqHGrbGRSIICZFUyPKOJTPC`JEijZ zIRnn|RG#S$w#n;2<+`KgxY~;sXSKEu=EINN<0Ivr6vnvmBrD$ApXj?HCg0i!Y4a0m zA^F`0`l9j;f982zXP$>$!8`1;4_(14?BP8fg*3O*(a?@Sq08B+vA_q3=i$@XO0In;Hwr_bGGyPS3UVWNE4s2c_eJE_HV{ zfu_kr`^%o4~vANe*`d-pX56f`T-5!oTuma?$MGw zRmE;dzPSS0H0e1!@dvjqU(+29$j=k=jJ z>hgiWt3MUoV=B-OG&^^=Yn6uAtAq%K>MvGv%@9w0Z>o-6PQnY1$Ck$%lkLUnkR!}M z+!D_FxLgC+!w&AIA9L=hUSmG!+yU+iG3dM^gk1oAb_k%)w!nOTVhUd53NhuY)`w@s z^pS=U8Yb2H|FQPmfl(A+vztK5-lY?A$<ZlqI~0O{e2c?&zJrlFgI1~Wl*hus-j5aG=S3%Wu@`NO8g)WE!dxtN)7Bj z92wZgCh7@H(HK=OgMNeAB+PO z+6S+)HodI6AQs&u>|!O~XszTC|D%$J5+yUGDQZy9H4(n;w!EIpAWC$Vb$A=WtwhNg zt`jiiC9C6|CdxOVwdmZNL0Lh46MDG|4oU6m=X0W!E?0nCtJ+ZgFp)-QfJ(N08L48Bi}Ul2a}*ppo$cr&{H(R$h4d%@L0oj4hk=z=(wF*OL7`5R z=EC^!&N<`=xSB?S2Wlq=P{)~t%>-CzP(5A-{~_S=MS{b+em5bkhuoR%>KzHm6w@PR z#ZvN4sU5Xm3&GEG%@ly$8;6qr%+ax-*$ zBUh^NiJ$8L4*F1Q-Paqrilh0NGId>KznLQ2jxUeGj!iA_Ux$t~c9|{k>jfqCp1xi6 z!`Vg(z*lZOZli$5C{C>ky|s}FK>svx{lxDvlm8`(YCC?DPX4w3vHXjSYwjgrr}3ypohF$kmizEYEl`wCnsJl9>)fZ6+uN93{Gg;1yz2eonC%X32{oPqi^ zfshxxnUZ-!ANY2#>I zSScS3qh4Fkx+bqJ=oaR+#U4q^Ch1;sKFEsLJWiqUxJvP*5|<+l z=8;%C%TA@&(=V|fkhSwdw0YsQGa468>FcFl*uv={Nv&pUdQjV{S>#`=>Ft%7lQe9j z$RDj0dG3EyXI zvncatx?WD;awQal_i!UraKj?0c5Q4W4sOy}>`J3j$r&pPeZyGjYD=UznW@j9L|a%q z+OL%*Yzkgf2h_r*;B9SM7r;9p5ZHWTF$y%QWMHd7Fp_9q&A?yYu<*<5ud}7@-a|C@06a!b@tAZQ4@~gy^`E9k?dVgbW-8Ajr z#^w)<41jMEa-;G?Ql2%7%C0*9n?t4p9QeHIkbNI?wdJ{1GIgCtwxGzi3wq%%dyh;< z$shk$CBc_^g;=@;H~eU0=B?~b@u`i0-w z4VHf4m5`Vr(oe|z%jdVA&oxA^9CtmHGC^v?H|MW^&z9t97pz@;PlGJJqQYI9GjvOn>LZQ>H{=zfbQ@!2n2&%_7^nGW3=ru?Z)3KLCxENirpDteuDE!628RCM~Rs}nyfMhqM( z>B_+m)O>UBG+*%@>UZ9ilkpw&T{XSp2z=ydPIbj!5+_n;(^1KB*BrP_D&a@hn@(q} zVoCUg61vsvj=~pQvr;44rOM0`OYC>ed*=}ZxxrIy}!9`h24gQ zzq=Y3AT9dcb(3QhgVdIM5^4-I%X1#>lTh8zus>Y6k(8Eay1l61viQD^TWCs0R%G>p zo`?MDS{4c4ylH;-`kJKj)l9UcxOk`$hyUeDkK&icqSN#JB@LvjXt2r^70EX%(TJ!& z*RdIj|Hn1cv6kjVvPRm&REum4?tzh`$k(+T+o`A6dTCp!76l%a3{J}0c{Fna=h#C% zM$N0c1<-r7Gn+WxpqsG{_Mj$Fnb$_bbI%6?XnRy%yIN0 zqvb+og_SDW0%V~IxCm5-&)%upP^7}HnF6V0rhiCGuMnJ;?W z5l7w@O_n-f7d^(tSxrMm0SZZhP8hXyJ#E`teb&p#I#7Gf=WO)%vW@;;wAbJBM1Smp zM{;Inb`*a!4qZIsR`1Ty^tXzz_z^*_LY#=i>ivI(op^8ZjT>c)@M_B2)_sZ`RL-Bj!*vaDamR5R}wNgiHC9_X_ z5i_ln_8m$8LDEwq@cpvAY$LMqkK4vNGn}>y4h(6e`@OEzI(IoCcOkR7P ztV|F!lYU7|x-#B8KCFl*@nNpi6B{3HiMNUm(*foG5g(4r{ssl&EOT`N_XpAa;a3|MD9igAPFEHuc|>ML z0v{*fz@RK%Yw+V#c*A9+FNlfw_u|>e@P?&*USsXk`hSQFT0kiE$ZT!J5h0*YoJ!~@ zU2Jsm1irVaGstYU1+Q4JjR_q9go+91y{VZK`JpmhT}-%6A&6r_SNO|5CUg*pn;ReJ z)ys_wh7^PLGdE?9P0?4TsC;_n1jka~MIA1afp*@O8IHulvmdNAFO9X}j>6uY1Kodn=7LCgY4)Sd^GYAlb4bPx&9Y)?d8>Sl z(b&P)dv$eKkDX4yqExb56xtmDgdRJS^L$}(>b%TbIDWWHT{nVmP{`sD)E)k^A3+@* zCRtT4I37F!eY+Y=o|P10Qf_0tEVa?g5=8*>yt+TyN_W<7Jt}-v~0{rSh&nnRA|Lrk zYA%Ev*E=bPkur*VFxA4unRI+Z1bT5x{6~)Q6quG-rqZp_Vn-Cfk=2L@1T9nC!D8^^ zooM|B1zGwYNG_^o5n#{5sc=@7)YAi}Pp6^cx8w618||R>Zi{c>c!7n&?3R6-`OXl2sWA%7pU_*`X+{l5kEnfMMumlTxqI^(Oc}xQpPoR;AE+V9_R=p9K&) zoF8tM^%EbTKt-9>~iQa3D`_FZI9%@_dwhcUHu15$f$u zbHMn2#PM9p>&)XgR^UB03cTB1fiVA}TuObx*}iYqgDL#R1d~8MU*@rfU{{LQlxJ;A z;YEOll@fg<-^9YtoRO8A!XE(sjh0GE4=M0i&*ZcO^QonE#6JAJ2{@cnuioymGR^|l zI9D0Xm2Zv=c9L!Q7XJUMQ7FLI6LN{xq2P+W-TsQOTaDQBo~+|he5OoT7YphoQn4Ty z1%KJcg1?9!jb}xAxp6$O%0O}C407?rxOjLAnOZqf!?jo`o}Sw zCaTWI?x0(fAMy1@vsPvG)B_X7s&&v)P*#&j=zTrI@cN-~Rx`&&78)D}r&k>-B)z_1 z0Dn51l^F%_T6%q(h2j%Ag!3j#c8KG+5$yVx<9kK2ykMO#fHHQ+w{)Cm5zvk`Sy_?L zjM`I8)!u1O{JV}iNwhaeuUZm(9UD3l=w@8403h1+O8kOI49wd2y}+8E#o+5CA?_|u zRwM$$U0pNo#0_h+U{+X2Q(b@F6F~0uS*;v!+(YwW?16=7^ZKmoBH@{Wqn^GmQgF~7 zN&H{UvL2(e=hD53{5X)#s^Az6EZP(tl=W2_d>jzt(D%q{IA5qZhI7gEWOSr;>vr(bUgiwopO!ZIjkVEL79V%1Mk2+B z#ZYh>odG-o*DP|kTAObMXx1hwOe4yd%~vBnFSxgG+%iH}7ZmPO2;!hH3;wbX3e%E_ zs~guIda-e2FsKqxVxrq{MfUDQ_fv*DI_7O|+Zv5{ExxnkZQxWLP`C;?K()w93MIQM z9G_9`c(*~yQL2SNihm}%Kja)|s0Y+OgNt-CPG$f|rrr@4YSj^yLNTWzqngEJ6TK z%n-){78sZ)&T`)y$pn+68_B02DI1d{O*OEq0=Y(`QM#9n+l=)X`~-Nxc{F4hNpKiEni=N10V z6ZBc44<6EpFhQ`yymb`reVQcfW-9buxYOxSm*HX;ezVq{!04G}L`TW_bm^`42aUX9pk ziaUYhju5)K81bG$P>K=3UGSHEjCe-UqS2W?y~MULqL#&JGkljNmu5Y&xuOVQ9wh!E z8exKjc-wUMh78_==^LyY#>oe{GT|$yX193MOC#%sQE3JN;V&y^`yF_SaJH*^|HI47 zNgB6~2Yi1U1@;BrZL&^pNj&vXh#C-Xzu)~$DnBXBWZm#Ona2u(T`7K9xK(h_(3nYXQ%Q@fqz&x)bFI&qQV=N?c<1T_`+7vLz& z7o@v8^n*f8knigcwALW$22=h`8>78$Z?snbLmJY^WA^#YS9t#4Ny^@?5*mIr_q)U`NfH8(H5~?=C`HPq^>ko|Nz+&iQGTT|A4n;iS90bi(+gdw{;QNLHXF_328B>bmR^ ztGN=KSxG^w6s;fbnV3Si$UgGcX=CRv`2w8(63D7XBmCO;0@Xq&sAlq@Bb~x&t3Hf> z+rgz%c#$U*N`1136eThgs0MZ@G}Irot3mkIOZeQ-S&N~N1&r7Xg$w{uhk~P~A9W$i z{BPWC(5>IN`*N*GH@cybuh7SF%MX9q4~>j;lSz(V0c2?C+f|)6(l%Tdx9 zx5-xd;j|(+b!0qr21dqgNq)1D(Mq=Ht%Lv`8GE@U5{h~wfi@u8vCxm7g#ocff+iOd z=yPo+6~!>u&Pd0@g1U@gc)C@NrS(b11>GV$%-cV>$GY`NLDjqml{AfRiuQKs(ZcZo z2p&014pS}6FzJhjiJ10Dd_&H0nu61|N1UNs@sbO`ku{nK1Z`>LFBXG8ole$LA`rCW zBhGph%W4<5AB!)JI(I$k91`suba5d<{Z|?K_oibfr z%$Tnb#OZV*{AC|AMxz~nK$ts@cJxW{Q(tM;OH4wBzFl?Pa!C^=o8GWOp0!cPc7=cQ zInP$25O&TZ{Oul{!5_l(4NB??*{%ocna_FNsz>HLJEb1jMUbtMmfW!+IB^W;4L(QZ z9n$>NZiy{`qYl%nUj-ROxt+BNxhQmTu*dwpMXd~5m%238iX(KoNaBjTkWkjgQ#D9U2*DK zPZGyHKgfDouePu$>nkNcK*q4AGfO#S31M3xnY-e?g_eV14RP>p>xl)k)B`q z&N5w{%M~jGaqh{5zwBME0a`v0g4utOd&cNBVd-&`ToxWz5h1ziaqUKX#`23?Cd)#V zvLD<@kn!hg+oM;;c!K0}Afe;+nn-`Pwa_fN{7i)23+KJ%*OpbQM|=G(|;IYgc|Yu1kYiPzhvfr z7Zi%v|Bl07_Wt+bf9HSq>Q$llKWe(gmM~&NT72wF)?zHqAp_)k28{Wx>$ww&=pX^i*my zV?xMk#J zSjeVY;Fgi)XzQ(>%+^j=?w}sPWg|aCw!md0@50=Rf@xh{QH8Dm@;u-Tt{K@6w5uv4 zzN#=URk;5u+-FtAattGNQ-w)aVRBU!RZ{!S@_iGbil^Yu3aqlN(l5Mgf1C6R9}Rn2 z`h_?9Z~Gm44wB(C4IINz!7@PU#n(06#DNI-HI#C*k2B zcG)b?>%yB-Bfg#FP2`{L*_%o=z$2I$9nB<{Sv;{@C>Fk^z{@iNy;Hu>8f0+s$Zei_ zoN!5dfR-0~dw7mY4fG`zG%C5FA!e^|y%3$HaU^w-#%T?57nz*+&R*fxC?Q3Agvy`t z_|U}t!i_>E)w;eq*a>C5F7%HASTyBzVQd7_#czE+^v~-;SZGEe0ly^=6rYOcQdZsN zaYrB=Ipgc$)fF zgG1#_Vq2kS-xqobYpG7L^&Zw5RO_MPO=C0Bf)9ip!dC4u!p2y;&KHA5eJC^&c2bWN zi$noDI{TsE)g!k2Na!mZFvB_ak z6Q_JCRB!_PQb!R(IMa}DIvW0&a8S5H;W2~6t;5Si{ihT+LvI}y2E%r-^{YKygjBcI z?}gQ#u0kf&aC)l0cN9RNgcCw;1gOMfisr;#(p4f_u-4Nl)uEA43`TARN<1li6V(>z z{eDuo)!m)}i}-R=^6>Zqp|b`dMSv2g_Dx1WMwzFDI|PafVz}}Vt_rQW5~qD3#PGtH z$i8Ul{DcmC5*DOO(MyMRJmwjdMj2j_nnM@daha&!hH!21z}Le2oMWEW3m7BZ*^gfT zR>%|X)|wGkI>4d6-w8hm6ap5HiX7QG`=Wg#e4|tJjG%R!Jadf4-Hz{tal*4y_c$hR z*BWG5o`1p<;)Q)$I|6U%@ObrzMd97qd@U6`20sj=Ecg`>P6CtrM12q$f=_EWb4HY7?GLQ3x2MR=(j1H znpfsCBSjYvzu@@>zRqGMd$mFl%RXNx`^^7Z_Mrx{<0}mI+sM98;nZCAJ(04bt-C!l z_|MHmKc*1GqQ9XNeUHavwdr42d@M+9vh0k7cY3XTKHh8V^DzJdy|By9UG{lCbnrQt zzPe#v8|zcZz-{C;Uv;kUC0p+jr4HCt=NPZgST(-gcHZ8%ecwM1&Zx z1r;0h4YN_-_4eu;Ow`A&IZr?0SyY>!<;7E4iElsf!901mTR zJ@^+4_&=X}Cf4Rx1NYSGiAMbw1>A7iZaT3GKf=oftihH>8N?XH`nnRGRo+spf)|@p z3YR#nh064VwPhpinA>iUen}L-k z$|uPw21xZmHOL&Hy=OfYLaI-5bBXoTB&|VV9bInS&5fQu=lN6!XirI1zqGldSjeGT zm4coNpq}SFee@Wwoc9z8?Tj({{^;o$fgu$Rlz7U0GZd3pya3gpa4je6()y;iXWZzs zj$9*vNt_yd@}`npgJ4W+GRAKmXW58V5FByew)dSCZ-Y8zyIr%S^*87REp7r}go%yDz<|FSD z^#cdO11{oAj~m4Wd}jV8klCt=p8|TfG3-QQ8Z|Byw)HOMm&kN=abdAS5XXfXel{*l z^b?0SuHyAF;^2^C&_21ncdS)%$|6^XOno3fBs(%w(UeP{gud&&oa^ zV3J(*;@OIwVsUQ?mVUjB^p7gMnoGZiNY5tM-}`z$OyzfD`Uc50OTHFkSHL{EiUE>b zYos37W}D>Z8)XsW zvq^479nJ)nAn5K+^zcuCJaO)F@75@E&x(eLsL6faGU->mxa@ZCP=WUXO~d@XkfAA- zFZMP{;+tlhq~<47c*E2jla0*}pFv=v!&ytyf5({qDl_v9s_jW;){i>FVO?T!o+%Q$iK+m;HP18?*nrKy%bo729l7 z@ub4Jd4$;`HONdT%wye`e;r-?Q*rYrF{@f7Z-< ze^ucPy>~zHUVeKvTP1DICdth>a#8+77g&-~s{q?cX)XV=2RPwUd=u{mguUxR$W;KV!-56NMAR+u&S zxpE>so7L()<=s$+zZ26p$ZEPj83Nv&McQp9l!DyIzxjDMfg z666aPBz>FbG^{?+Mt#rOt8WKUACuF>jOV?#bNmPOO_I_8na9HfyHc$Cg7-U){|ev@ z6V5Oe{-#~t8#(@G;NNJmuXKU}kJW5=7uUP>$$aodod@r*vduQeHdmQ+daK5NkzsK)ijQ;ti3YcM|fN2Vs=EHt+gaVXQgT}n(y@_Aez{G9umaTUmL9RqY_Ir=< z>jB)*Ywu&hH@)s1!tGe~hFASAo3?yWtpXcnnR^-#cfCcY^2rVUt1PqHNa4~sLH;Wn zg`c)p_=yOG*Psq>c}Mb>&HU_7g&_8`Z*)SRkcBp0fcO{Aw!uhtd@w8wJ4e0dTkwMo zZ3kNe0HFq(hz@#VIj%FIs~cj)3PD`q<-%X~6<&je|J|^ATGE8c`!%eP>DCIFs_<_< z_$CpBusQeOVQ-fV`06?6+hBmaAPGTCfb#E??hctb z>!gd-_nNi(_S&m&H&Gv(bElm1ZmYwcl*mVJk=KIE6!~t4 zR71IoMOpHfx4I5rtC7iEZ?y_<7{@*(7UExT$fl0nmgd>TnCB|0RZ)6O=7SlJVwfD)kd$^JLz<;O_8TbpO9@v3D zr;*jbpA9Jge&Fv?9Sa-QByM5_eqf`(!}bb%mne`K`RM$v^mK7pn(r=-|FMxt?Gi0t z9B_`1s1$EZ_r>#kt)NNqlET8D&hX9W_@to8xDTlChU5MWF%bWe&WYc(w9ea%b*^&U zUslayJMNq5F9#sUx%gfnv(>oo9<&|zT>yk0_px5zd47~kS2ylQDg^Pk?-OLleU~6{ z=&P!JQuHwoJ?i&azJ58U-P|s$1g4a6f?vO^&>G|kz4%?g_Xa1_Xb;%eFD0^j}ZJlNWYSn0Sxw?gU2*;YF%deVe}ntqJ=4dW>a>j_ZYYj4@V)d>!-{mqWf{;d29w zC}0PbBs(%AaPao(V>!Mx!jBXV-lRAw#c>o~Yc1k=@xkU>YQvwd{8(teWS=1w?i>FXp%M9Z!Q(;GhD7dU%p-#dRU`wD?Gfq{S+!12!!# z2wA1YxqzY!_p5)gGL~{N8})r+t-cTK)pvxbkIjnGcRk>p0%*^y9Ns2#d4Uih-}d05 z(T)MW$ctIEa`-tGMf$!6yw}7i^odao3LLZkmJ1C-}|*u;2kbioIk_|r#+t50LkvQb$O1EAX2SLK8ylTbRg5wHUdXV zJYLNcKa_1w_m7r$=+OrKGqZb0c%Pz+GyEZ~LFN<14fTB|oYLCa1pler1%)b>5A$8% zg!AS|pXrgvE;@<|tEkgPPC0c+xPTYJ*5z7k*w!m+0|@PvRpq|+9N$1DtaHnNLJ_;A zGt8!=+F_G)q?eDRBYnH-Am>cw?r$S^UxiEaMASP%Ze>+e{9uePgX1TKO{Nx?Wb;)J z>`HOsINu!{KNsK)*F|f|cPuFIXw(GX6@DqOPhF6wd2NCUZWuqug~`h3K%LrqhpiGE zrDO8`jcQ<>Ez9WAm*#EZ!~uDREkZtUPhSG+z!UWNHsc2uqseXewk= zt!fAZP<*`)i<6BG*LO4#@(pmfOq4Uj*FFM+skWQS?n7~icYKLwXZRX&LLZ7MOgZGf z22rgFfACG$eYf~Njlf{~$}{N;`Dgl`6(&+d@$BaEOka^OgKAZ}iULryJI66ekJEUz zuc@%e0Ee51w$JuuMPM-OwJ=~07yguPSl2H!a{X;>S{LwJ8(YWOEx@Er(Z2~ms5pzF z=J*csZ^(3YVfHnJAa?zy8?#|{Q)81bs~3-iS$(@2W;>aReaS}b3ksL!VfKdzvDGm9 z`Fv>wCova?*`l&$B;#Y(G$tBGv@M-IIib}DvB!3cvl|r4lF0>k+|z5@R5Cf4!r4`9>< zuQXxP@vlux(y?AV5)bw5AU!!7aZD21WD!o19$XbOY4%yhP71H)QL!U{Kqu@X+`K1z zZBseeuXWPbKH{4TT4elEw&U=o<|}bGG{vDSy}Q&4yAszC9ocOfz1jnYvU+g!3vtIO zAG1;6N^2Fauvg*zM1{;koS3oKcQ6jt#X*H;D{;5UcMWYL6e`6rZ~LB$=U$a?OkPZ{ zVNsTT_cFG*$~CwdGEez1cHphF z$6^2+kHPCutJ*n=QVg<;^9#r_$;~uR!C59jYmnoJc=8M1Xio5H4@lm?p)W|aDxoh5 zKv9PxM=KU58?7yZNm&~+oQ5489rQT&cLbc?W;k_=9ex(ahei}Ta)n_AIBypgZu4bsbsJJ9m)W|4_kK72;@S<;c^d)#Iap^{}t@won;05h&=0RVkj_TQ%zh4AmH}O>`EN?hwmK6&y)%4%88p5inyF8&tuDp>+(#> z3B7z$IZ^4?T!0nZ5et0D^B%RRX#P>hW_7ktflFLqLGeVopSrK~u{_uyhNp7! z-Xj6xFTJmg5L2B^Ij;DY`uLaNhP*TG;riKBN-V*CfnZmPSziArAAbgMycc~(<+O6O!sMK#FU zM$3l##~S6T*b)B4MpG)7DHWn)Bm8{@cXMr2;Y8-r8f5C?vXTB7oFhyhd3T~ zP@tKFsf2OhQx_%f@FQ~i0uGkWkQ)BNoOiaKkfE5^*Fi|42LGdbaHiXtOctvE8?80*#*@0;$Q z#=DPdnApMeHNhzj0%selCOC>V-Qxern#MnK5;M`ETm3zRpR5Q?p6TyqO$c9j7TrP{ zAW~9_U}o4Xe^8(VVwK1nt0G;DpY6Y&6WkPSoZ#_-eFLgh>JcYfH|lY_|CR_0#(|^t zeJKvyYL0(P6xSY|n(yzV_up7OBJtm$3;YL#UXk3;X)xIU5pS-cEHB3plyIm24v&6u z2Og93coyykecL%gm`HUe#Uu9wtwE-x;&{-s!R^w}iJKh{3bQpZ_C2XjW|N{M$yZl= zdZGWR+QMRU%z!awy4YlnBZ(7MQJC0#!b(RU;ZdqpHQy?<=RSW~1cqcjsu*ct+*e)k zYkxMiHKKB_^>Kj|SYv+UdG zH{a*g3HY$73OfRbS`|iqC1>the+IgFt-lF3oOGkB5pPiFOEqGsJN#vTHlkxole$r_ z0J03FZ&wF*2UEo?u~y7tg>m!sr-ig))UW1<;$!}09Jfg#Z?<^SMKN+x@Fz`H`5u!KVBLvO^5Z zH(&F-J|BBUy>3zu?3!m$zLjIN1C)Qi=s8^G)W3@5-!iB~&X>?C$jTC@&m#iX->_bQU%xZXl6$gj$0$MsT6^DSY_ca`g+Z>aVodlN09 z!tVxA0r~%gp&_)gUcrcMWt*#N1BjZdU?c9%*Zs%%1~Oe;TnH!x@dAdk6|1t^t^T`2 z#KoKXHIaUhjr9E$X3YabUm`sl7@8y5PuvI+~m0p;I^g(#Ud%dkMyx4}kz>+RL|C{Z697o=Uu{N7e3 z!@sx8;%L1d!`t)|9HkzPL`E&w}!b}LOWMfjj5o1yftTFF5GUoCeFlKUV>*13C-vF_h*a-ka8}q$i z{b8OD%Y=2~C#X=w#!PL^jvt}5Nw(C>N2YE1cGZsS^m6OJ)wxB(QIk%~e6LE5%;XfswKNT!1%>>@TzMK4;)q48IiAX&Bl+P~iGG)9Kj3ygJJtg*p*S?gX+ks~9}OLz~I z6A|U!(Hi7l#XT8;hP-fGdmxRaY?PE0Xd-+?wJKu?t|F<<3N&(181kb0H(7zO@GFHP zt>OdtICo$++kp=WoR^#4P+-u(cb-75kV&D)9aMUOSBf9JKuf(rz9`!= zQhFF$HDaPK@IKGAKo<)F9#s5Q?S}f5(_i%1(kg`q$T24Cv#}@vLf|oG+A9jNv#sTx(E_k6Hvaa>5kt0STn=(z-U9 zm>*~@+)6!C4KxM)nICvC0*wi#Ed)}uQeBc@N;R-=(rzEHsI(dVxuF)whE_$SQd!NfE|t z6bS1BKEVj?YO0T~6#mT%h0{bI>{O&#yTF-5KB|qByA0MSddpU=)y8~{;&LHbqc|h= zz)nU^7h1*06M&*btE=Cb)rE37YyI)9v4Cz<1?IQ0b*Sb5qB)eBv~KMih_1sAY-5tN z-jR7MBiNPV--7~A)!|12ykXKh!NPln2EMP&&j9`nlh#ivykXKRZA0cGZQ8KKLGw0N zhG`1y(uTRp`N)3NGGsnt;rg{5pj0*nJUTj1z;Cm$*^~A*+Zqq|Jg<#7ZvW!gTVPneV}@`1n%ISZAsy( zQ%8JTc~Ic`@>iV;o&T>z?`9x63ZLj%z_*ooG+U%?t*~k?dp>}u<2UlH$=+E37kcPO z(24fX3IzCpW(p}&dcg{5-xiN4>g+5m_05JTt@}Fbzwm;7k}6Cx0@lc#HX50)@M^A+ zIYc9DN)YA*IwkOHF@1xSFvLL;{ljg|Q^G@Sao9;;DD}XmggKIym@k7N@<7ZB25*>oSk$2zI4-U}d0b3}36A zNly5Lg|B!dFux9;)DGu_Ox-D`?-h8gXp~o!QinZubcPs+|48S}#b9J~+!z?25?Qz7Qt!o$fw@L|o_cNytPlpb)0_rxFBqgXWRfTb|0Bf~kIJ3d zZP2<)F*(9`4UC*B8KX7Gcw)UL0_mJ^i}rw2%)@rUS5oFutx~a!4(|^N==_$zy(S3D zj1c&C9P-{7gyOM8FmzdWVgd-PX!8jVKYS+&*qAsh8fa!s#U4wqW}~gd<8Cr zVQ_rt>^?_(;Z+kHara(FG-rbJp$QV2|EeRX$9dnrUH@#LgC66+YmQFB z?*oF1z zI0}WZ0Y(%MM{5r_iu5=!Z^BIj?agpjzX`V#(40vkQ4?H2FB14GM7$cY&07u!#|=Wo zy8`Y1#SUqwo-&!pQJ%*Rsd`T6nJwZ@y#htt^!C=PVpBl@HZ!?N00QLIO|Vrj2d?M% zdu779s-;Syh?Dfq?b*V2QhR#d<~gnILN$;Nt3SNjIWg z%vyn*11(R_HlO&$b+C1xIsl@%k2-IIPX??=f@_a}yxFFZ88Vv<357}#?)~4M#I?aJ zp~J5>F3@jEMhp&ud;Q_NJiW4SM`aHeM5E#=Zwql=RQBaM;#596BbMt)sF~b*qf*mm zchrvKY*Zq^Cn6I%us&X=gO%~3Kpxt7SDC{nsn#PoTt9Bm=Z@_0Df$$Q20ODS3X7@k z@ha6qtwG7TjT5pT;vB1}2dHFI*pJHIb2Jhj)tbpy)Bp}0de5<4pb*$Co8QP>Q=O5p zMm4a*`^dBGg3#3kwa*lSIH(=a8T^$F zbWn3^K}|0mnSkosL3mOh{bmu=uk+w2_) z+!CUE-TC32~H2F=!7B&mQmAhjul3d_`tg{xdCe1b;_utVogG(d^HKeYnd13>jD=_rpkw~s@S8ef*B(_O;ilwi%k$$_BuR4bjSwknaK@OFT;7w5=SGmKz%xeB)iLmLZ#?PY?yzUOO|j3 z>W{#6ON#`jkH94_Y1DD9_|H9!hRucVyaGPi$gE#pdaABWL{h)*82FzZ(X_jL?O3-y zVP&h&7+YOsygnu?!PAixr1}wob_hYkg0!(CI8hi`thovNXaO8jd`Wkz-nMVMw z#3W$or6U1D->wFXyCkViN*_sh-rLE#@XP9CD}4rlKrc+`Bfgm*ypY7V#q={tvULwkP@8k& z@F~HkcskhS#C1M{i`;D6+NdobaF5*hJO;YW4K`>IfLZ`BMa@i)jCX0tA~J0kmDHIJ1cnEQLD4+)tMxOJ`yZzB*bdXWF-*b(2&#cs)$0sL6o}5 zrLAm%h`ywoT$+e&zHmGrEd(j5_=OPM&k~2Szl94^no*C`QV-zKQ{Or!>k+$r2k(VS z%y2&X&H-=7w5Rl@%7I!lkxc5O+xL!B5uHf&By|@|ds(vjoze1}iaRB1G-PFp7ZwIz zi5G6x9w7WJhP}T!MhJ7LR{Sl7iN86@q5u}X@|$C{)x~QXvyyec&8WhjivM#uk6Pjobh}-3K;n0FuXAc2> zsCk8%#`Ke=qo|UL2KvQ0M+!YDM6h=|R5r46JRjEwaq-SP-q{CDJMC=bKLC8lnJ&4H zaxY9*3KbMipULiT(5G}J+e0xSiw6HA3)_P;q+Ql%+ZWD7Mykr(7@U#vrUbnXF7~OA ze&OuI%jya^&Ry%?*h%FxMvb2^d0cfx9k~3Kg2=C~$dDj3x~-}!(&3Jbd$T5vnbBl= zlhIR}5M<=v5=;mRaIFsoTu@z+AOUOWt*a}>!j%CXlboKyH(_@-^{BAA;ypNSLAA80 zuGlNV2%1!R)fN5GmMuX~T2FX)N zs4Jj~q?JsB*V2ZpLuRq;@k^e-3*{*^3LRj~$CT~#3& zr3xFO3M;<~E4&J;xeBYc3ahiKLeg9n)>f6IA^0t+rwXg23ag>2qCbdSRUrvpRdEg& ztE#wT9>`jS#jC;+Rbe5jFyB=bbun|(qZX(y#3xNX0Vg7yhWia_Lu+5B^yp{lcFrdO-TMA~+BJt(Jb`yU15czwmA4tE6A} zYF8xv!k6MbDE-2>=shI;!j}@QmVV*OKh{XU@G+i;rC<2q&m+<=e7NCJ=@;I*vsU^= zHuu1?M3mftPd(m!RSwx%ku% zv{ntr+ukjHINI5R7rxRSqvZWTAL=&FStOjJS|w7_4HQuTDtYx{Wx;MB=xKC?F&0h<4LVJI6C8Kxu1#jXOqT*MB zjSUc2z8YLEJQj)gIDmihTCkZw^&@%VbU~y575xM7XZwToBY+v3W)cNbVqxzSPt0_F z$O(rSqFDQy0^K^~E_kxwr^u;VlHENUCXwvxv8h$*`TV)A*3<7Zz>B1B)Vy)1jq$B< z-v9`ZSM~*=C2s}4<7%Vj2Vs#)xAwqylj$wk5o*Vu@5;`uzUiu4O`^628Ayosjme&1 zC3-Uh(VI`Gmk&peFpFkenVTt`noFJwAe7`{#k-K|xZWnB_fQC8(et~pqUUz|uSIWX zAo{e!!F+C}wdgl1oSKV%Q>5r<-jQGtx7Ioc^Eo?gB!aEI47= z_gTxnN8#06_Lqq4?0VCw4}&waxX&?pZDWM;-bPD3rDXgb>t??0^hr0e?(~|}6T9y8 zlI$nj;jK}{=cv3xnxERX{Q{sU$rxf@+YS}Kzgw%;z0u=mOqy6N)514Cl7!6$if&qP zvC(5P>hB7fFGDAEw+$QufM~-7^n8c@)=`h{twpqRk04)5MdAwfj+(twI63N_WM89H=kQ}u z3H9Q>$IhzkLe#uygzQD%65LAE-y3=cZh5kB)-f!~OkXIE7kWf2V`@E2RKX4X6n23~ zetKA^_BSp4lu|J|k`tO_rSqGNbUv-1cRpVPOj~`{q+Ji&5K#yqT8OAY>l%k#=yGJ+10q=N+U~@@6ONXf3~s2 zMSDw}kFW%G!)}}tK0*QsQ0IX0J?RqnSDnb`|4Rpa)J$xyEn&~Bylt&;Y3_gd0HO^( z)&G8K8tThki%Ob>M(88n$3jc>Bo_=X6L*N8*& zL*qH_H9}YCXnPfcQl#UaVnyB{i%h+k|9?ii{f46NYm?7iuonFXg;R59`#w^1^m1Y7 z1wO79$sjt>>-3_=821w^`uG1z^c2bs9YeW#jAaX)A>n3Yj6KDnW+oVS8(>6%04Vtm=i~?+X|2Pnjo44*5lbtDl&^G) zqE@+l{oKgY);|G7#WvX`%;MUUz^BcE#byA};#v)A-z9Vpf56Pu_A3N&J+ZwPTk&u1 zMIwvwFf))5uUMq$AE3$ILSx-Vz9uW>BkB|Oe=z32i>N8TYORU`ztBDOlMvHeb5p!} zdSIb5Pe`O%6-SE#P*k=EoJxm-oikvD)BJ950~&{MgCAu#pjjktK({b%@QaZf?C76c z!1X}Qud$eYb_F(Vyr2_+P+lN@)h7hk>X#F`x_~oWA&6sbFSMgyM0)Ae+hi7FARM-T zz~F&0cdN|2|&FLuvLK`7}0rki&ciJ#^@?`G0 zi4dq1+YAix9QTrhW0KiZ85FdAP-s5)j)Y;5*)vsW!_2;+H_7bFSk*5ks^_<_Knwi! zeAH41rD8IRp&Hn@?9=Pqa%1CPy)8C2{!Vlhxj8m*!`I|4%16-1IlNNdo$m)84 z;)!*hwtDBOLDN3&UBKTDuh*@n!1n^PHgT#7K&Uu{rj807=QqoAb#dx(g&@vW%loj| zstUgRo9}YVcVkfXpn-TKP#HW>l+{&|+ia~>691@;_#Y|Ung^`+iTIIYsS>@Nn>kOs zc53K5`FL7UtIVm=-#^FjKjTi-`&_jU)>pReMal4Pavy_qpDQ(n&P$Kl)jKA2%C5V< z-^Xes9Rd_(AV}-3MOU@%TH2lRJ8PxFS=rN@EK*;?Qd^hG1`y4qlq4WtF3#jRbRjF8 zD}J^Ee_idP;9y~~S-?g$N!;krouo27~SWjRVn7nS0+dqR&VaMwsU zCTU_jgMyMrWPYKt@rS&f@A$e`0ZlKtag6FE6 z;)G+2*`1fZc#Fo z989?=@G`cL;U>Zbwx_Lq_yqJ~6Ba)M5Y2~c(8TSb4cwoEtS&14rqIJt@k^Z>d=dff5ztC8O|JO2}E)P!FJH$+mOJJYhrX_?0d2zI6TeQr)s6MhrG8?L4{k0wf2;UBp^ zXICyS0{_&;WR3nED!dlTs0_7CGZ24!UpAi2u(ZxJ#yVFU&yK0)!SO6bKM2rMRXLV( zSUA?xJGT&RA1s7~UnzEQF^CsWE@`c7opluL`zSX}Ok0w(m=mJ=X|AT0l3F2mOjaXJ z4s-3HTbO`#DjG?*B;!w$8dSW0-j{Qa(1`6<;yR_i)~dweb4zplypXRwFsgXJli8&3 zNyWQjdCqG>Cu`*I&5(Wl!}(~wR5N$1&dEhTK9CbHmCMQf!<{0V?-2%3T|nK^h?{|y zZ^@}2o+Z^YPfHsxx5Gbj7%-@!%le_@K&K*)=D_F7xZ1YX`HOpk)*n_>#OC5x);X^g zrfCpZW7OtiKt_|-J6l^**|*+VAlzw9rR*_hz?uqtoh%*s9(VeMl?*9|w%d6^KeYaX zf-GxF&WCb_2%8up)CZj=pqC%Y$+xC~WqOgJ!D!~x2B$wx((m*eE8_Cugqb41I}Bb# z-~HF*xUKsR+|@N5tzDDTK=_;?#4u34(b-&}42+~Ag7SvDzuDE%-vy6jiAg%H14UKE&@e} zH5p%*1n_lERd?%LotPW zhb^+;zsc_L4ZK9at(_{R&58hBj z^;ZWp);r$XD>GMD{-_T8`M~MZ^-zMZV?&{?0RrKyQ4|48L&INlHV}dafc)!ah`Y;^ z6~PQM1xk^PNo$#`VACy3MUhb(>R5IPwBwE30={p5>sdf=VAEy})B`|(JSku!u2L1t zcIWiu#O}LuhI9NlxhLJUXtdG=o)(q$$JHdYRiX!)_DYU&k1DlRWFRk@6&XBGygDQ) z!emy2^?_{kQLQj*zE-rH=!2aVy|XXpL=yijrmr3Z)y7+M*{<9Bn{UY5+8>pa6}FRn zOgAH1j`n?!V|M+;Qo#6sOo+mi&)MkjTO0j-Wv{=}M1RbL2*JA0KWJEsaIBd4NzNQ6 zA2q;aYIKv#ZLI;=FDpgo*E#DF_%whwoEkmAz)LGXC)J)l)FBQ#mIJ3w zw-@IoBUlMKYz1_9Qz(gVFu-JbwNvd=n_f{H2rl<0J5|o;2E%D9GoN70e6=&HO4ZI} zW~CoU=>F)i;WB(o?Qn%K3N)^`nL3q98L73(`2c-dJN&gUO>3vp!7Qp(Ne6InXIf0y zqsPE8dWiu>6c9(V-gFL#z+no(6SBAzgJc7Ia$L9aV4lt?M~^j<+Uh^9-CFa zF$%jk%b&DV3F#cRH95rV4A=mlxv*aZH@fhIvRstzej zM-c2v@s;fGO$q#TfHw@1K^A^v^YD2me<$b@){pet@%kw6lHQEB;|(2%?=7J+eK!nj zvJ6fsn!F^W8kD#)rzC8-?sFUtrH2dANijDhyabZ#gVhUKt5Uok=oD_k32$i+sAzSB zYQ+&RugD?r1LfjXhlAtQmu5KY-gVyOpm4gN<}Ew*5Ppe-?;Qmo=#}@J6WlbcG$0~Y zG5(3_l#Z@H(E)&`qW4zou9Moet`-B?_y^S&M=@Sm=F^=~MHxPyy zV+<~Z1V+ojB#YU4HHgjohNXk;6hSO}k{ApNbEsDA8Oz!@1Qc5qULJwK^m4nt7qSos zYiW1Oi)SlQ$48wx===WRp6KZT;RN9!s;hr9ZC*JDPxq-A<6J!(a&Du%fX!`->Oj0@ zCmCEuX#u}`kaalU1p?UQHW5JRa6aOi@Ntg+SSG9s=N~8(rEng41^%-Cc855~i%79sv}gz##JPrN={mdLxVF$wXjWh16vBiF&FCWLn-@?n5C z4Dowe_{7=af<(UUH6}Iew<^404V!umdo9)FL8O8(-eyfHlkAhB8dz6z#u&KT)Ft5p zeiCqNRYp~SGHhIJ9MP9@l2Dv~Z#bXh7s-Tmu6CzFQF1kI3MyY3rnmf#yT+<)GLR9w zR*L=s8hXEVa=QhUO!cLqQC~Vo8lQcJn+xiICM%SS3wSsX-F$O!2r69>uAa9GtBHPDpU&`*Z0GME3`P2TM*#5{th(pfpB2nFsMi=Sh$B^C!|8E1+E`>M&eq# ztDp@WUpgconwJEs!i-m8W~(rRRhX$N%m^Iqht8`icEGw&RfW`D74D)6lbuH$z<(EL zRp56q?@7P#7TrVAFT8>Bu=ERWVmc!I!Y|n0mww?_Qy)mb@avurrC)f>?IY3e{>FgekCDKXh)V(ahD>rA>W~?@1tx(_yhQ~9!0TuQ@FcuE7gFzn1T*&3{TJlR_OsxYzi-8 z0Rw2+W~hVK=%JlYg!3YxCC=TN9n*D+MGL+Tk2W;es)WSyG}_{_n{lYTNo*_h-j?tT z;Q+;gWcif+T7ztPwB^ZgWtzVI8V;Sl-I*mGnv|HxJ5Eq|sC-*@Kbp4<%DHc}W@4NZ z=*qTmI1(Jp=tZATP3$84ZU~-*&ZH(L3RD-YL7Nb@&`cuiG@iPNy?7yMur`pSfk7#> znGTaElqRL>?Ql3g6Mg$^_&T96MREPR;oecf!5rGRFfr2&Ka_!v6&O+9Pb<$zM^kS} zY$0^ez$C?#Q1yLqFe*>()cS#u6JorY<=g5Q1p^%UAu3fou`?Xvgli~*l8mVuYI}m( zALtepx32$ek6I+&D8WH~PKk_lkV-WuQ2;g1?CM6>y$~KE+(LDTRdAD{0{CICf*3UA zg|Guncrok~7HbHsGHx39=R(2~|fgk2t`Daezjlu^S1gnPKhH4mOs)ir-gumy7vlKx_4c8LX zZ_U&oKc}R|YA}iq&ey`T1;-FoI)vqp9U>11_+c*h;p{{gYPLVzM(}E2tnjfzj0Qxx zsqoES53l2d0*W9b{3wFj0_YkJ2>CfHyp<13AU-hRj>KWYV5(=Vi-C$R;D?PaCf}LZ zMwp<1vAP&&sEf&_x(L1<-pdIKD1wYGrV`XSX1b7{v$`;H1kbzSS;AvfS6KK*72)BB zx$wU&Oe_2QMh@S$)|PB=()!sucS zA@`=4F68H|E{v07-Wza3@RN5Z4i|o)dc-O@qo@Ran5zVj4e*C}^wQ$QX2L%jEUTO| zhRRuNrW~=uhvCOLq26_B=eT~OGR8dwHT61^0U|&D-xM)vQd}15cTeJEp^)kkDTok1$j@0F zSOtkkNRViFAL!yvs%NZ=d5SLJhm9`UEls>ZSgC=rx|nCEi^oiL(ff4xmMCE>MUc_O z27>y8nJ(n#tS*d##BX1RH>K#SQndY>@D$-AiUm9od0%T#vo4ytJaL`yt@Z>b9PUdr z|2rs4zNFfv;+ZO;o*`01(8MJa8hR$YLWsIv)jK;Lo+Ft5n8`0crzn%6fof3MmuF1(#HC;;hTlV6hl}WA+13rhyIVX=MIdjXx{e{Ag~ANp`?(|;SNaPk~{7l zC3Fa(iAaagB$r6V-Y@C+gTg`^jEX`c>BGvi835qo9Bl}apKVD z0mZODJZ00aT6$k>UCFVYQ_@9f299kH@*KNAHWzK-_sFm;hyrBX`+?XsNT4#VU*5B6 z4^O_@Y$ke2U`axSbO0Z?(JVFX0Ebg|&@DBx{IJvjBThiCax@w!griUg@Lzv7OGN@B zDw!~5J}^s0mmNv!cfU7V5rw`Km>Yt|hm7>|AvTkUc3<#6mSPG3&CBubznUFH(L?$8 zq!II`p%TvC9$PyNF6<-b){5BYQ3}T}2Fsg<;v0WAtAhk4MkRb-_h&gom#dCf7Lx6J*v z0~*J{%w+)&$M=kN>j`ouw9CMgdd5PjJ%NB)f)HHp8QT^KEf{_LXR{L78olo$vFjwq zTFz6G?T*6O{s?n0l}%c!#>G0TNJzjpw)7v1mZZGSDY(Pqv0KqWfg>GF`|#R$XX~_m z9Bv*>i}uDYMK5y<<3QSnPu6iZLIMw?5B+KuN*hRH6P??l(0PHm!HIrjq@NA78A#fF z!3k^!Qkz=NkB~epG+fx!d4p--1{cAsfr5KuTj36MoKF1Qir83Ozm9VtN)i~6AS*HEpXRsq%c~ebz$jSSBjcc&-t*7+S%h* z7V(o+PebP>3H37ICvn+gg80K|QrW<`WfBrV5T5EhQ2+!-B6bYPPsi(CkB`BVpN#Eg zy(M?@$=Fofa!~AS>y6=Ejq~Mex2Rd~9E-o#e4hR!*mdlwra3(0AJV40H zDNT8RV3!9b5;!kpTTb*uGq#oFitd`;MXqSNw~AcRJZCkzYBGctc#R?3+pq=R3>U@R znu2qiJJp13lLIT`g@c<@C zF3Ir`CmhBq*RRX1)Cis9VEl7yX91LyZtHed=+Ws8^)Cj@DBy_q9FM(6k2|H4FB4CG zA=ZVWhley3WPLKvS)fPHY2ofB^g$~iEA}BP-#Iox0Du_qoMGQ)ud@U-5t^WSY{&r` z-Z0!}Xs0ywve)^!*Dw`MF_pzZK~iR>ZEwWp$*5T1X|Qj)nULrvQ{WWrbI>K~ zTRp5KWlxt4w|H2Y*kOF|t@$M&2GR1cFwcg|07rZ<{&h#^GD+U1ab`~|1(x@PSRQyN z)z@SN{2BSlc-e5%Gfd&5qUN6CtdE_6L^FICmWKJ#HrLETc+ljS_GxB+BHm4hQEhzw z5#+%aC&x5Hr$9(;u+wpxaDoFgU8}csbFPpbp9?qe`Z{SDxOPux3-k>KW8xyx=lFr1 z&JsO(&c?1;xbz8Ub9Bv&ez?Hd+<>khGTOekAQ|(g(q7JwqEP$@-UEX_wPXGy5>kH> z07iczwMC8REJ!U`xdnVB)b#LMFuoJSh~!UA07vjAJiEX1UAdda*yK)~Lma6)Wy7D5 z-Khx#YyO_A;7R5_Q%}k?!$W@37i6_L&rMY_D}qXwf3 z(&Y`bfzSy!J`oINhFv$p{yg{U5%idE%{in2<14OHMua;pF%d|DV}b73de6_#LwK~d?8kj9;rLO!tnzke4=R6w|72c#*tqiVLSb-eEdIL)ASv8V%77)|?R%W}pne>U zrZnkXQ4ea05;&3ImW-c!+k`oTYG>Cq?7lP<*9L!?wNL;$l>D8l4hqAKp$j@RM zqB&;t!u`&PdUP^}3v%tWlk4rXv41<(bB>x^G`Mf!U?$gkeEA7yngLzk&@PLHNRZAF zG-A~49;>2Jr1Z0V3>-3Clzt8*j1;9015PMP>)yG+`G=g}@Ae*YO7h2AL#C*GI@AJ< z+AqMLk)!tEk>Qd6vnFWh4yU1Ktu#c61Iv|1h1XEjsK^?+32;Ihg7e>=!_Hc=Tvy|4 zQb}5fB~?ib{25s#H;uBH$o>m$yk^!$*aL$-MukZVyXrd6as@|;@O@W&@~CqQer7>J zb=>^H{#Ed&N1gY|qet09;uD(xk7R61)T_swMLs6U%3~xk9UknFAe8~7tMNys!619@SzA^crfHL_Nl{u zogpgJdtP<6kmPslyzs3MOX7v{)1!=2&;I|R$6Yb^JgmoE3+HiHbsY^JQNFM)%<+IBqXWl-UX*Y zb2y%Hg07`?RA7ba{3HO3yfdt-h0#jIn?ax9=BEuHNTm5`9pH%3xASS|qmsN&<7|q) zdqOOU-#5Mo{)`-b*HN=p7T!k^mJ;Tkv-!vj2gT4OXQ9hVBc!CRd?tcMJ`Ra*9|=zD zHG&sy>Y8}yQ|BUC{?$$^zl7LQt(^TwS~*R$5_(bT|EG~QW{rf65Oqg~nUm5+i!Na` zC*_}ae#GXaF6W)+WbbI3u+d&~_gu!YMBVj;vx6-60DQ}^(cOqY^eg8fNgh1fW;*I0 z!nd4`T8%cwjI`0=rX$hi=ya4ILbRB1{afdF%l*f~b*cIIT;Cc^(0b^uE^@5l0ORN` z!smBF-+!@7BHKGO~~)0E|Kxo87GfpMt{9@;NY7xRCT2NEj(3eF8Y4kfckQ)hRzan@H+} zpPg-CLtJah6r-+&+MpTY7w~7~81;$f8P-9{tP2{X(#-HskeW*?v~6}d+F8voZ(V^I z#yLjsCkahBKvTK;z^{zdPPz&E(cQj4bO>?O2qbd{A>u0ks_&m0rpRi=T6kz8dm;DlTS)(*}8B5BE5 zjkC!!R)tv7tZnufW7al#jLka1+(R}?nc*P^*i3qEv*Se-a5RDfj)bJOpRAr?3NY?? z?T}m}66H^61ECTIJm1=;8SVy>>5R7_Nd%588(-z?d zdq}XZeq0N*gM;bDP!!4A zQ{n2jxW=d3KOZU_7=?4*s6G-k9LL>`n!O$e1kHZyK-W$QwdOaBlig&^DgrIr;4B;D zdd-o~3AK&H8G~KTQ4bEL{vzj(qi4Yk`1+m1sdg=G8R8m>iUgMAF_Ey>Io*zM&QMn> zRFv&^uyP81Y^cj6^~dWER?fpUhPhhl%6yjrbFIvG8s7VNYRh<6NkWwsZq zk8ci%6<7?H+MK`(kCy{5C?73MH9Km<@j#ZmU>u&DoL{TKN@&w?pY=mDCQT;1J}_%m{%xqF;V ziec_GOEJuFPzrO1yTX)?rAoOPK`H+U^}s&GxXhGdOfjOzxjLjs3Ha2LEc{?08Zu@Ym&b+6G%f*&IG6p)Ok=e$O2F>M z=F%O;hqGK;5L&d{zs*8|wPov#V^vzijFNt=N-Hi@U6yOH`&GzFUJ&G=)6-E72u@Fv zo_1Z794CbvLRRt-2eYgM@K{!2LvYcG;9`}yz4{gmdC6eSB!YM>FA)I7pgA%c+)hhu zH6O3Qw6t{mZQ+AvjoTu-H3A&&))iPe>e?}$#Khc7 z8YI)r@KBH}*35tIZtJD^AIDv#Xc&kUbVq9b!5k1Y|2r?Z+Q4hf!VSUvQ#qKKAMo&g zN8Cw0fx((nG;0d2F>49{qcvw)S(BE;+Y-T=n?c4%S>^`75v-{mf7LZWmY=XQ=e`h2 zIt6ZpKO;|p8^W5{+;w8&k~CngS;(l7Wzpod3OKFQ(`u`w-CJPa3!IvsOiDY?0Y-MK zXxV6-{kH3X;}-#qym_91(Fs>)be)6Q_Q@}J*9q4EJ-WfxYcyL6Ei+pS0HY`yt!z!J zkY!B>KXNlBM7DJ*;E1+vb;`9ul6@Ly)6n&VSW;Wphd(3RI(0(0;cV_YTW46ni{E!m z2)E8y6-^GJdGYrDRB4JzK{nlRF6IDD$5{Qq^@wAx0B82yniS_li#eFuHwy4@i{!X2 zdIE!mAJHrpm5$2CF^@_Q_N05U#NJ1$30WoYm* zy9Q^Raly;5hXtmYXI*{J3j%;1-0U-|6OyaKH(t)V6uEjYJmq}#Mwt(QhO|5^zE|*s zqsXiC=dLvl0RW3F{o?6yJGlm(bGFgEu^~!j$-Z-^l0HZT;*%mVm&$?;RnBV^+g#1I;g5ZI){gRn?zRfYZ@S1RPvB-)FCH)xv9KU`kufZ&R$+nGUt^%cPdBdGF+2&(+<8Zg0-4d*s?cW4ZBKs1<(>(frx9mHKDb)|ar{G+^^wadx#}J4EZI1BY^e zZM^e1)h75ea=2O@2$#i}d(IXmW_T!O9YI>kiZ;JeqrFwy`q{T& zv9lnZ&SIZ(K+s|bzH7ZvLO<{uMvJ|qSxlg1783wQi@jlGFU0FLf-|=h@%;Gi5mA?>sGQn6Ywp=-j7Cn^;+wPp*SAs*z#oG zwGh5#$QxN=JWA1{#55xbC;LQYvZE9tgn0<={#WZ4(Lv}?(8VE1ZH|ZJ#ATpo1*k4l zeIqBXXE0N(XPK!A4B?Hdlhdl!bBG{gt{UTD@l249j*bKYppA}AecV>Tb<^waC#_## zgBSR!(A~69AwPIS2;Sm*8GjY!PLRs+?@{jbN;jad({NVzYBi;waI0vycj24xUW-sG z4{G?eB`1G*^*pHIH;x=K;t;6ecNaP6z#&k>uOU2$6(CTMt9#my=1!wse-V~@pF6pts7;;4q163tg^w>u=az&s2BXUI_ znK{T6-HNPEuIR2*4RS>{HDbvXUE0QxD>{A0lPfw=B#j!s1Vml6iD-E5L68zB* z5}`i)HttvCsf(XG9p^%~3ec=3?tGj%LaGM!_Vy!pUmZzy3wQT)H^CO)uN2#4uYP~m zK5kVMnq**0DxalsYVFNNfm$t#a}SZxd<#0E)mS!~1-eq!>c~WQDa=FOWEs?eS61EKsz`XgMxhc@{pLSctI`qV0lX^t2!Z2VuP9zEt(`%><;yf z>mZ|JdfxfCZ!ReR2#!s2zu`E-Z))J>>Q6RHCE*?4RBoXzt?PD3(l2;@raKQ^5t=G$;I50y?uhG!{t%#`kb)>c z!v*_mWHglNqq$}9j z!0j|*k3nuTVroNoJsl#kP6F3MO{Ry-`1l}q4&GlR#V20ky@M+@h)#XdE)^#uH$Vf0rl?{N`K--w0ZJ4j4aDmjyBq1Sk2iMTf+m>}Z*Stx&>>Q`KWtBGffkvu zeNElDW^DRBn+;}c5TdTOOaj5-8#zh1Z!>o*^pF`9#HficH-oVh#H{XgyO3(eT<3JR z)QLb;o5)pLi>bE%?WDj#zP(yEy4>^S4{ygUKj;D_S03-#6rC|P_Ax%t+&vwAEWizo z)n<)-5TP;k?Zt5&BqUGN`D1}}1Fz3^FGe@)8>qt?xE`i~^ZA{U@cv@iCxk1_zs%vP z`LeisWYkCyWXhAdH=`B;fDSFd!1K!EvURA`HQHB-Z-qKo;TNrpt8d1qyJY}ZWuxBrHQh@T709QTxV9!`tM`cis%hXaSUf;HR z8(j8Gd=vD&$QU${@GS>unoxIibEnGa8oz<5y{H>VlMDmk8gl~?o4P@w0Wk_NaG$&5 z+-Anq9~&C*CHTN+FL!|%yG3(|Djowi<(|DUZmU00GO40b8V?FDk9(p1zU%7^r z-tN0~bOw#KVj2}SMYmZpMTi#ggE@}ZVqar2DHt$$lEo@Hffo$89fTxP2boveSij61 z02FbNEcJ7LB+2C(W41^ZI4%=7Ld}*+iB+3S1yJOLa$u5aZ$tQYmqq7k-Sco->1m-A z`i}RZ2wFKP^ub0e`}JDE$~!%~%kS7J3>tIf&vsx|&cD%n3t+&lPxYGVLs!)AAy zD&_A8O8HahgN;(IF{Kzbr_~;V-S1bEQt{6--0Ar8fyBDHb2@w`9?m?!)@1w5>Ey|5 zb6T2A)+hIqvT)zO9eg%)P4gh@&jnls;k302P42?K08dslG^YvRi2{^c2n-T0Kb^AiY5J2t%$1>0RjjS7>Wy_HFLDQ4;L5%y6@_IGOCjwy@d? zO8GQX;RME@ME&tX&o82+c}(>uUvTD`NnSLNyf(=_DoR=vvQ}>JKoxIAtBf~cvgIDl zIA$Zc-(=&qbPq~k_u2ZcAhc+p2=Bq0EOa0kI3tG3Pb>lhdDB{YCA{fgjBL7NI@49C zZ_IQrh=%eZ)Fn*8@{GW+6&^LIeYM5_i5x4BP5vJShM!E@2)n6RbxN2`#mZAGJvViM z`*f6CZwlR1G`pZyo~$k-E>Wi}cDIX`TLZeVrx?AXMo&z+*%^Te((K{TB>B{3n0YFzCfPt%Si|eaHB{@}H?g8C3570G2 z_Yv^#+u~YBT>%~~w#Vh6t9tJFWH%^@^XaMa`2}2tEEa#_=)w5{(=~XT9dX%FXsU!u zcf_?u)u#%bg-o7sNDh#S$G$Z@8NAvsLUrMM{ zXq7G^eB0b!G+lrakC968>)T*oM#LumA~e)jlh4!;p1U2^->dW-sXYbi{#Mjv#h4}X zGX#o3R)K<+6?kN7_&~7>q=^tHDgcEi6cxB;X2D7M1&yyMP8<~&w!+)rZ(B{8Y77$< zQ*CA-i!QQnUs>GHvX;Uzr0+JlDOJHQ5mfM#AhAtu`U6veF*ijG3Tjl5YT)C~h`DL1 zF|jHv)ohBU*(awl(^ztPg*0VMPJftcdQK(0s`ed_gu)^0-G)CvZcKd&#|a)6UX@Zu z+Ev@^wEeV*&g2Ia?o6TVbo~MMC`p1!UC(IQX_iTedo?kKG7cr`t=R>yN$?3Qs(q54 znrRLjY4$zk?kY(OLl(<58|&2&jpc+th}lW*Jk99U{%PTi)CR;BjTGVBgvm;~Lsp_0 zYPe|do>ep;#TKMz!rSjqWcwY|*{=dm9@C^2zJ4^LAHHxjW193XYrqs0-Vr!!3;SmQ z6ggQvIPHHJD$dy|=I`)|`BMmdmzqJf^RgV)|yU7MG4Ls zTFa03A9Zh*T|i@*z+N)aJbTRDSN2c0$zQL8&@J6Lc{)1=BuzKE^EIbt}EoS{IW*>~MK(DJUkw^i<4r7yN)8Ryq~jBd^f-njG;?fuWYhPBC@8csd)& z)@iIoN7+~O%s24zSFF?6zh7|&&|#1z6cR`pt8##r5vr$Nb=QGCRDOeOKhT_^0e2&Z z_BN}Y9>OdXH2Ab?wtRXzK3|rZ?<8AyM4P~zojOdiBh>si^r8i=i*PZ5vAz*>YconN z016NP6>9!l?o3&V!daidriaN`H_hPI*P_M`z#wwexDeKWdNomnFaw%z;JB0423&E{ zJ=gM4^vKTsJX~-J9xJy6=|%IV`#2z&@COaiSl+PyqoM>e243_oc*?Dul0F1a8^8fZ zR;^hXpVfm4;5)+OI3C*>kIQy9L$?c1x(os|yy!^W9v!|Rt1`YLeM4ZVx$hwWMRwo4Gi)Y3i*B?0*y2XewfdX&5q68_w;5r!Xs+lK z5SrzVE$x?r$4@WF#O2?*pHfr4bXSt3I4pf*o6QZoB7oHF1W|aQWl}P*__CY zHlok?#(i3natOMDCm&6$X-?#B57Ai8eAQ+ecW$oCFePxpj3=s?&UoPl;VfD>1^4M& zqn*{D-t#>S>SE}+7#|YGb3icsFZjWIuY_jt8=>$oEEyMS9Tn->d6D)@3RD=GoLn7s z*&QRH)f^(6RjBq}Tr>Rn&+au*K!M|z7qk*dS^T(tc|jBOpq{*d;{Uk3V5$z^Fqjuv zNlDM8Z22JWIyx-y0*V+rUj5zOQIh3ZECDjjeSZrawcznRfFcKvFK5~W4~u@Y;9+qi z7(Bw&f1yPoT50mz1=W_bA}YoOD4-bQ;`)uv1s}uPhf|t(@u&9`v{z47$^Eku&W`R? zU0qu#w?~ZJn>HPKQGsVQ!OAcNv+S4K-Dk1owwp9=TyDE&nF4{Z+-?dap>g}~m)pV0 zFhuLnZJV77s@%m9l)Espa_2GS8s1Y-J@L8z8uA0P=(@yZT5F%v2G3STE!Of>vl{2t zu7W%KnowPB*f=+mnn2mS5mzS!;$c};g^RKLB)R4NbVigSj2sPP;R+HK22M-h`0gG?C*hlp3O|h$8r*)F{zT_;B|6O&Snw!2x-?C zai5$WF5(^llK)4<9V0lUeZ-};MykyT?{HP-M0B`lK;aG-Op(=H6LRwsH<2s`KaC3M7B_-Xp))H2u~~r{5EeTHpFWbiG{NFn;gm;n zH>3AOOOZ+F6bERN5T5i{ZmAXg(qk}-{mAj@7DU4L91xtvj_%3rE}=j94R#>0tbVT+ zD0;5WRr2w7gS_oX} zGGpW=C{CIuKts!n>I4@?@)0;Fv}z6B(a)2DUw$HYnU05{`5|`A<9$)_n^13|9Xi1e z6aaLB?>(1I@FFIk;3rt1(+M8X*#tk=fFbq9I}YV$>RP7L`zkYHnVQ>JhiK^BFx$>G ze>zu@cH!cubK9YZ^^DnOkGyj(t?nhPT1QxMqYE_Ac7{}8tW^}Cbwl2m8$NQs3Svb_ z6$syd*6qKv7-m&bD-tSPmm?DFCT}_75ox9X}3Njnj8~elcOSQayZkZad~#(Ozz(a z@R$+|r7xVt7fYu!G3PN3CFfH1i`5a~^dE6bw%wc#~BMmVa>EC7!Z-lJGGKVk&qH`rMqw#?TsXrrq65f6vMz-Jk zI{Q_q8FljBlBEAIzNP?iSzxFIh%*3+93bAm<9`?+`kD0+c0)LQUYHHxI`f2>DFw4# z{Cq~pYuWcWelq z=eoi|BzvB5>CEP zoN(p+D9PX1spV^dqo$U3|B+hWnD;*%g)50hY$g|~nA-Eh`%B9Fi2jlYC>HbdcR6|O zlH^>4=Vd+e2FA&E&bNtfpJ_5KX4J5hACgxZCvOIP%jhOm zW;1LEzgbcc<)wKP-3#;=Is>xkws}}oxMVbqCTwtHUw_m_A zcqeJsn8DXy5H3h$0?Gd)NDR@W3m+t?Ugt#6>&(b{oyPQP5hQXXHRJibCuF?to^~tL zW83n+NAjixHc{g-P3XHBI~q0GQU+%$0Yl5M@{W-q zgq3(o|8WiZ5cJzJxLgTQ@!%rlPHUM__42E9X{<%mtw&7M96 zRKjeLn%hX%wqduYo>lkg{*2gRL;BmKibZJ8@j;$9b7A-hHVs6Kkp4~v6kxB7vV4|0m=U(lzRmyjG)KZvhWV(D2wP|RRM)NSa30`p1Pj*MWXC1vx(gIXfifo)FrAr z*7JL!><4_yz(#d40${Ea?j~4w7O(v&LPRy=^>s^0EkqTN2rDWje!EsL%U6d*HM58e>yr zxKH4yMTQjsiX0irG;LZhj4gUk!-K^PgKM|*jJJB$vc8=sfKGuhA+x{~m41Q)v?(ey ztu>CpS#QFg?!-p%v(e`qFLY2$c$2NER(ny$j=jlNmQ^?+>X$O8ERj`Mgsxcd5#Bj- zYJ8xgOunaM;w6q9l#ac~_SZw5tEk?No?#L~i-ay|CzyqI<6IiYDvPv2Di$oQUg`=; zBKC;6q6jfeQmw39u^q0RC%JJ>Z;$=fcn)+T!W`8CP(mR@_Y47Nb@SYXYjyK%hYzUG zW=wwBQ{d11vT+`OBKu_voZrV2`V6BmV_9f{%~%#Uz(DkqC+*GZ3A;ZyYf+f}!Rewt z`2OIko}M>guNu@~x4+#*^N7`qK?&~LxvwAZ>g5@XkG+&p9nb0Ixm(&nIOskT!M8CA zj10;OJ^Q5tgrdLct@OhFL2RPQdU)*piFJjvcO|&x@XTK5qe;PX0n-UyhWK?VVaHHZ zF558_AqH<8WL9?t{_**`dC~>uCU!^b&I{gRlNg-UX}&DOOfm_*CCKdC21MdB?3FO@yE^08m0f13uYPd5C9blsrviY%Lfrz z#+DS^uh`Q-M`AGb4$ahJ>p1?k{IQvwp;4UO7M9-pGmPfIlJKMXHsBe-&|?8bH1y*o zp6l`wjjw4imkA6tLzgZw8hY%Ka06HDxaQGp;F@pXJ`+6?tPJ}4M93@EO_hF()s@IjuWp;Ri+(Hb&<; zm~y2BB%=UX%@|pjDj|VPD}mNEz8U(DkqT;lBDLjgPa8dj!JUp+$w>A+5=5yrFX%nj zvozg&<_eU;a;c~3c*0Nih|j>8cX)bQ7ds^-c4^`gDzOVCP@%-`m+(H!&+|Q5gFNK5 zp`5L#iq6g*mr6CkwgRzMkk>@~ZMkP*6xth} zSgXowBL050r%|-y2q#|3x~Sak8I4}zVAjPW_{!a$a~9|~HhA*TX*2p=8$J0J=vOy- zI-_sR=<7Fm()8#C1#0Di4c$mlTW$87l^i$S$vp#Soprfz_j^3)D29Xa@hM&f_Z`)# zn(?DMxXu<2O6H&25qM$W7EePxbNbyGZr3EXnJ$R66!(+bx5PKLc>1HJLi-`FOKQZS zpa__jfgO%7OR1y2f3N2;33>Q^>Z`OoGjCF>rz&v4@i#nUGX+41t>%4oVGJ2Jv1qNt z0e6Pa8~TALL_mD1iZ=&$cseo0x?o~&zzZc0y8Q$7{B}q%3x&~&f%isG7}oW{USS(Wg~8gX(k@S$ zBp&3+wQs+#-$k!m*HY4cFvztKuJ(2CtNf#RBO`O65(Ij8G|y>dQd$}v6|D0tMf zE>ZrQHqx)Q_VyPa7k$}K{1fkZ9=2z!&VO7Zx0IS+5%$LC0iS6;WL-${6ClxM9^CIt z8^!-SRA5{cJz@Ior5iO?&y!6SVR9m)S{r^nm}Erd5j5C(S@`joz3iWj$L4?+8jqp< zD>d)9Cn-+uvy46x2-c+Ia$+VYJf0%NCF&ceJlS#bC_slN0%r8X2K0$vcn-wMlc5Xn zKp?nR#krpiqLaaDI+5998GTqI=Pom@BAPE_qubgt%|KYuG9GG~N~J~9$Ibo+rdby> z4P9lYS&RzJh=mfC-mj8`*In^kK|6&;Nn9rpIz80W!pd6l5`i0=?WBhecyxYp_)ZwWU5LK6r)X5c=-*_ z8dQBbH>QPNlWq8AnfV3B9;~y#m5p;BDSRn6TONL_H3nh+$=uff@c3A(PzxmQ1WE3s zaW~C!9dvAID0cxU@+{Y2`F}IZg>&hq)TPz3Xzxc73V;y7fn=fk78bgP4A$kynYS^p z4Bj;vzA>PEVZCluZ-WgByH>^>s(35Ir`8t@sg#T7RqH$-QO)nB>!O+iKon3C54ZFI)~g_^w>EjIdlz zepcX74sRw=uT!VV7vUzzL(2p655pe?L9~ZYJ9HBTI?i3`%ss0TMmVBnp0@o=c>dC8AlbMd(o1SNHCe(04=( zHvi%dvEJLz&jJ7(xT3z#I963mN9-UsxYcVzi9@sr8kJd`Wolb%#39Kqe` zD_&3G{LP*u{7Jlb2X6dBehod7^<#aR*k9Az40SUwA&ov?(|fBP-!NSSi--yVmd#}M z*7A0Za*X6Wm*OcYoiec_&D#Rq#=&eR8>y~O^Ujs@_;e=A&G2?ab4>X7M25Ge9^D{W zuz;v28JSzc#k>Ca{L3|xu$1YYkRYzuv@vo=rneY9q?d(l6eK*zq1uF{_R8{}jdmOq zZm_w0U2dgD=vfYC8aRmGYvg@ck8bGE5Y6?3wur7%RH=!#hJ@Y|Skk$9lH1!0eJVid zwEP}E)70D8j9ueZhZkKkV;^beZDN7#1T+3^#@^uc4s-~Tn8wd=yG~4Uc{3$P&2nMr zWNmDmfuCvaEkkuVn5@$~;$RS6e z-g*+cn>SCq)tJr}o2gY$3w*U|w?IfWQiJ%-J^@NKvKtRmyfYmFwn-x;S{oIbMz(Vv zyvHGp)WK){-df?*QbN)`DEivg`-J?SomwWDJ4Pp&aExbI<&(6y_2u&L`Q#<&(m%;3 zF9M#JPhM^B-4!iYUCFqc^2y38MYc4b`~^5f&L=OH+iVS3cpKd?38$7dwra`K1h+d6 z&{`+I{iZ-R;BmDCPr2cJ-MlZz{a5M^x$%LvNwaVtMqHx)(%suklE(nPaLA40Z#UrM z^*y~0%hR9>!WlP?z9)okxu)&45-)nLt|GyIFV#wP@M9R+D@{vU;T(pje|8Q-gfMHv zpkU))wNgASAiOJr;w%24;k7w$A;dY^J;K%!D+P z!f7MDbp^@m;mpzAN--O?RTJq&KhI6%11sV>h5&-XU)Bph%U<|ky<3y;({br2?;z8X zYS3MDrB`DlVL6KY6v5Ai{H|GfI%)0$sCk{Y7NEh^Gd&IWleFP@AWIsBr7_;x<^|tR zW(`3^0o6{&r;EJ9P0}sUq`Q*{wv7BNhaZqGm8uXPpNbkg0Qbx??gXe##>-4b*e?Vb z%}c<`W*O=1oTgW)j^$OdqmhW?#>Z7sPml4!$C+Os!fMMxnxfE;Y`q~sX^Qd!u07t{ zDowzqX-97wWP5{Rs=9IC4bdrh{&;UAbVeX22@|U24xX@k0bd^vOFV%QS@YG!wAmj8 zI<47i6TIUb0=6lm{^P$;0~|DZ#hr|&7kj%|Ep*;4_U=S=R&mA9q?kMrO{mGCTHd98 z9Pnq6&z1{WbhMc{sR+&s_i!CZI-|lT1<><~?E@hwk z>@>wY4fW+`7tY5JL|-hpVGfK4BU0FLz&s zrKRbqdT9(DLDn5f!PlmH7ofEQON*?!x;1gK`sWO9ij3|TsHp>$9jy*ug%qIFf$qmI z&-OMoW7nGF^&!=a{m2||jv1Tse%*wvuAU2#-i$tD1?c@#6FQzV54J%}f`2{_b{{U8 zu}97KHgpKsCeM$x)=-Ly7I?i9s(aMP0NX^@x&(XbTc~r4rp@&Ivj1^vc#L=5SVLw{rA2F`vdI-bnuM=Kp(Z# zd&10|TBe_XO|71Y&)@0oZpNmD8Dqx&Xqh+Lj7<$Q!;F1!x%VD3Hs!tCjD3BD*Qf8M zVU#3V7y@=`#$|Gs&_WIT$CBDQRs~JzrvUci^((#hN8KL-`Tofo>tVp-i-`&xxXar? zdX@1ut*~CwF(nzTynnSZrGI#}P4+58xnMWhYRck9u>bW*|81VMQZ@V*UJX}t65Fq- zer9SgK4?9$#=A3JPFzD)oS}EG_^QXH88i;6OWD19RecRUe#EJykOqv8T7O<`TKx#G z+W!b7!3mo@YHj;(9<>%W6r3%*4&`pNe`&U#1?jxzpZQWg;Bj9Htq$JV=go+h$E>kg z9h}hw9mS|i)QQKv^AhCgfN!}vNYrZ1h44qd?~RU^mqI5jm!<_Fe9NWj@HOmlYmYTX zN6udp&N}TtT+uq-fAzSv@Pm+f*s10)V_>mWc}@EDh36v}?%986xTkf7t59RU^Crsj zhZ=WN7;n^gd!}SRbawCe==rwc)p+qSyX2x0V18+}ao$ zy8h_>ww_#{HewMQ?$z8bbFF=BNMFm|%dARTFa`%{Z8-P40SXu0@81Q74VrL7@Akog zYVps4c&<-FEQZPQnln&I<5wiy|$k;QX^w=~ac%!o@cYqv%-jF!|NgLfuaGcBg1}^Hr=i21SQUM|H<8^})Q-bCBI8CsAP2+WJ!ZU1#HCSi4 z9adupJ_Ge9t--lb4bPj4^p0RjFMy-8n!aj{1KWlfTx4ix88E z4&M#0!*~9n4&P!rG=}81XWLZ7Nk7{7b^Bl?4@O*~7X8#FCSLlRh-Bl$w;4#DI_oQo zlVjK0#N>4$bjyV8TV^2n{dLBe{8m`&yl$}0zl_OVO)4!Wr-c~;WGq zhX{ba1)-gm7Z~7v?R_cgOIf}SGWyV-Fohk{G!d3J@STy-R|4VBgMD@J{$sGma!G*F zUcrl0)ugYmqlvG-jwH*Y6S9_NTgmu~CcYe0>F%J#HW@ot$C55Zy{D<~3pp*36M|e5 zl65=FSxdX5;5{y11C+|q2!C;BIT1H*?#uZHj8--WM$N-9s?@?)iUf(UK?P|xUAfxA zH(5qq^sGe#XIK;B&yfSES95&vGP+ryrpC%~`?{l{0+bu;X7!}o*HB6mXw1rs&+|<{ zw;Sk%9r>H_$vj_IUAupq_!ZL=X6rufqPOgdH9_w_B4(Qbh)wRZl^z7A-g0Oi)+t$uW~ z?|V4iB-}OF&S`3gO=R5%`W}cvuL^|FSOI!R0PuER#T$nBR_L%vGwFQ3Y+-69>1&YGLej67}gSma* zSf2~^5}?3E3kjXoR^xn~B!@t=k-n3V)|B9jFJcO<;za>SL9UPY)rvx61-@AiL0Z5G zwU;mjLKO&iRYp_oX|#7Q1sc}ao+-XZB~&I5Lf87C6#{_wsti}1?mO)euuYvxV18n1 zXY35$pYV36z?Q0TF54guRFp!SBO*bcSv-HUuBQRqj3EmcRe z69tXXRRPKy`w{QF(|5OyB!8K&2a4Gg8VSUUHUERf<1*h?9X4$M($Q%A&as~LP#tSJ zwf+j<0LdXp#`=`b-7nQ-;*IP@)0CCI$tYLPw;-_<2SCTzs5*aF*EAK~{{RAXw*+2q2Ah2!7)i2lvvo=~nr}n02m87@1aVDXqNN8yM^*5~V-ngVa5N~V zv5j(e-RnCjJ1RIK#7A zS9^SWQEhuhZpJ8ib2vt6>V&<%Vi{%I^T}m=T#QemS)h$LRO3w;uv$MvRnWORQ-o+k zGdMX}y>`6k37=aUjL$#eGi)CwlGmGOY>U4qJ1;qz-VOKUUEgBP3NWN z+PA9(PLo2M4m_0VlZS3L?l#@LnLVGeF2-chH~K^?$>N5D``lVJ6|a5DH^j=b{&>o_ z)jF3T8${G!LK{SoGSIpsJ8=3lK9}?j?)i+bg|r3FdB#^SZwGX#Jn#+pQF&ksx#s&d zPr{!8>eWw?E9&rv$koM7WS6EahU7A!w6|IPiC4)jn*We1s6Wx3)t_khtZ#0j@n+z| z%`EL%^76n;oOQ(KLl-zb&N>#{XF1QIlq)493DCJCzOQBU3%`v|9rblV*98D@DUg1_ zw;zM-!GM^B<7O)jkOPNgCT$YzamRgLhk(7Ay|?)x;Vb4yqF}7tO}!UM3W>!sJ{XY{v#S*4qWxB&x_g_*y3}wYoK@z)Rd#TUL$Jh#cvR`)W!Zc zVck1GfYRRf!pGnA)prQkrrv6s9SSGi%z9h=mTz$sD&=r$Gf(=lKg#Hcp0Cm5Em;^cu~2{g)aRDb8{w&QEU3vB zmesvyeeib5N8zcpIIC-$7$8lA1l>(@@HV7e7=HJh@9s3SIYPsr89uee(*o~34}LZfd*w6T{3f)-obx{yd_5|m1_CP>1zGr5p}PTc2~g?<4b(3$`VLDD0o~*Vo$Okw zcgYu133V2D((yLn7hf~fOMudrI^z$1@jYV3e)vC-CXO&;x4z;#=@59E#Oi7%){0+! zFGQi40!ylZ1-|G8Xn_EwV$H-qU-K<7V#8)xN~dhJ&Wzpg4_K-ic-O`1AFxOFpb1;; z^`~!@70#$E4X)zl2`eA=o&n4+4jo7)V?zU?`Y3Y{sYi*c*U9g zUZKAPPnfVPZ-Eg-hinycMPqCXxuS!;D!KX%v#FcR$1ruDAX9f5-cnWBHJ-1 z3zjB(dZKg=!E382UpZQGz!p5^V(o5eEeM28i`t_wk)~g=lA>NiN^-QLtw>3df7KhO zlt_*)B7D*79rE$zc;%eb7N1H`+6&yZ`fUd8$!dP0vO{tV6S)}Vs>Td0P^uu;o@hrv zN7ML~N|`1JMTTT+!g$5IRYFH)7)_4stv!j(#o+@1QW@s6U5*e@+Z7MUHJ)TWGOZD3}_9FL0L*8#~~vF zsD1K5mU4?8-ymuY8&UVwQyjA6gvgSdc7fz%Xdc2ZLC!)=s3Qa--Lr_=?|44;yT1U`7XPkGKUz{KHEMY%1= zp^0C4F?}qcXb)HW5bSGpZn`P>N_kTp(^eU*7ti1_+HQ>4I~dN%_^YB^y zModNX+{fA}EgZ{5>4x|!Kgc|_Wzf^L$e z^vB`0U9UFbew~$uI+lw%E0Y~Z4J>`3B59qvD9z>Sz3`Ot)f?420k3drta+(4K|bi> z-`%3p@rPZMPZCTj-GpE4s;qE`_-tbqRHH>#ZQn`I1wPzOc?*tMEbp!aoHszsA|}A9 zD$^&8nLc&gxQ$G=8Ut-V=hD68Bugsx^ibMo3EV=aVCdwXo*(X&HvBv~CF*DTe?Izy zsDgAf@TdA`59Nl`McOJsVUs3-`tX0C5&3CKeq7|ICHZMZesal=m;5N?rycx^3q-+h zfgFh5D&b@61|%&ER02SGpfdcf2vnihF$CqNKvnujHTWe>)r0>74arXv^5Y~wEyzy} z`EipU5Bc$tpSJKbZdJ9ZMYF~fO`cvnY2wB}K7cesIp8v=q8fAxYsSWN@>Zgww5T`` zZv8Du8O|iaY#Vv=?Z4O9zK4K zv-7xV#kWBZ{-L67CESLPpW)$WH`}}WwC;iLm^SXT|voKX!{~v!3k;Wv|F@w8s}*19SMKh`Z#h$Tc<8VTi;7yr1iji z_p&UEr~pRVJ9GoZQ9*>I30TEe_5kVKTa>#JMKIOV!L4lTWY<7t2s*}z@Tp0Pb~@!b z4uvc5azaB&cP_nENrs0B{5B!#o_3G`sOk~3yTAbF%z!j5W3cjsN?p8j7>ImTz@{S8qbFzZEyI<$W|C{el~NRQUr05q zmxLq=*yD^PRch;qj^C^6kG9`p=ua{pI#T%tH4xZRxij&WQOYWmDZmZ8O%$VaKYe>h39uPe!NteWn~VU73!~3eb?d%ct)PZD^phjqh4Dw|4(j4VC2_@XG z8*E~9(4Mv!2vgMJdCGJdWeS8;$nB5FO;8g7%7x6t%N8m;dLIaSSF44ESu&F?eA zPFn)J0s@qGY&5R6RH@LB7_{Gp8ChtQh1gbiD#6ECHjA5@x>l~hNsI^eOhrStwUIGxjq-(r_6vkm#wP2OR_JK~%Js1yA6Tc{ zuOl%Sy1l6_X6Q6Q?2uWsX{yVHMeCd6z}?CSbjH{$eO3Eo4%KMY>qjjB{Th z6GR}T!vfddq?Ah6@iO=i{V9->DMSAKep)C=7{q-n*`%n4H!JWVlh_CN=%TuNc#Co$ zswqH2x|3rcpyv&AGzJUzvu+IceIzzoZNF97ETfis-lCarwxQ0B>lCeyctAMtY zW_QoQ8*mJNGEvOhoBw(&NfC3EgENQitqQnoIKF2j~m$NRZ7q z&knZfRMP{>r%{ewobOg#blIJWv!8+>y_bVYr#j-Hhm@z~U7FnmB4caAY+8F#Rbb2X zb4-X5k;sjLA*jVN&s-l2I1T{AZHe_4XsSDX{Gg>iXzR$li)uzPvA{;IoqhqfHfC& z%3I2C39S|A4W=x$Bur6nKB3HuM)%tjPP8OUR&Rb!c}8+P#tF3uk@o?Z?;r;=_x|Ps zaI3FdST5C2Y4Q4gbh zbk^_6p;{w&-bLjvbSsA&C;b&nV1bflV>iB6ddiM*oKRaHP5n`EquV){Esw_GzkY;g zQUW^D<>8-TF||;@23>Z*JuX95IZhpM8Fs{VG=|Z;(o!~9@cg2DC?Tw8D~8b3HiX-+ zD19XKkU&U-U+t?(SM<05pz%g9*=OFZ5=JcMVDe);NEfm98{=pQd>ax}>0fQV^9RqArGsjGEq_<|A_l}H@H>h$lZ{2W(u259J^y)!fWCu$|7S>jzYo>5 zBl@AfzlE-itWj;dr(Gn{h?}c|csS>B+p!k%;=ddC*P>3whUjiZ2M*PGw}XBmCsj>s zdC1;vMb%$?DTh{f|VWDSEDA zZ?(sOA|dH*ng9sNuPLY=J$f{zrGH|QprjBMZa$@IF0Pa9e-v%dx2px1bsWlx&d;k} zN9~^DUoD{>{65h^_jGO>?ctBe0r#8Kp`|*#wZDgq4hfXm6WZ0qC(gIcL(dD)9T(aa zNQdzBJpUs)Y@*IY-i~&l?1=~2!P|YDgC;RP`ANGp^%svnK|<&FT})eT(Z=5aeJem| ztLN~`ZTz?EunnzhhnCN9m8qE=;E&)h34`5)Io&~ zbz~h9I8ebd1we?UHk`UcTs3~(gM8Tv4*wqL+~QH z%ceRQ?fVzu`~G=QRQtZ4VSP8&nRu^{e?e9024#;gA4sf=w+~H734ZE_M}Q(`$UiFV z3r_rAf%CUyC@G{NW4(zp73_?;^%s9W29n_Xd3=aJ{I{6M+)8KE-~=^<`&a}mw!%51 z!+223oe@3A1t{EuLY2Yx4D?=P&Tyt_3i67k3I8!BlWiUe z+J?O-VICP^OqOQ63u-kEd-8oY>5=e8+ZEYp6*{9;;JFk0-%2kqwx&^kG{}#R`o~P_ zs@VCz8}*;r`z!7GFX6lXQ&3doBK8bR2zK_9H06w+T|@S8V78HWKKX_-S4l5$KIb<7xDRM5Veuq`5`*=5ieTrC+HcKt%GtK zkXf`(_%bs_0~H28%v1vNCY;^RvLE_|!_Af5D=_(>m-I|{+Z~E*yMsF0Rj7r_{jDUZ zJ46hiy(=Z;5bp#T(!u|%Nnr`M zL1FEO|DUY)#^GOam;aSGDTDIIlLsYc(n&v9W{SJ-RL!kYciGSSwRX{oB_(>7MFjXW zoP%8h;Y0@uTV=}RU%}6d5Wk9`$o>%&*#|_AkU91uy$fZIp?Uw6ZT>(FX(Hhts+`8v zcTiJb2_r615A5}q)qs&q?26->WO&S@|9vCPuIKzWszV7yN&~jaGmrkOK^h$YmOld@ z%Sni)Awc+azyxL`dB84X4CqCPY+^tUkX$s;zl;IFk7;NzAi*31)N611;q=CfLOXns z_ND-(OU4)R?vwt}W^B4f`^=2}#wmYmhrnCg4{7|ae;xWsK<7IPFX9^S`FrSEAj>+w z@UW( zKK3t=2W#z^60w27252nqxZ9Yw`gZ@jL@b;dTH2~%Sp+pK2})@ngv&%VXkTu1l-zyO zO-&bVBqhe~#95#DOYq6pyI02zKl4wMAKa}gBFY0wo@U`~jAMyf`>cNi?5F}h6cKf4 z-_Pav?G5;1nUK-9i{jID+KZtWRf_45A**ceX)~QgVFZh!rDHflS+FB$Cj)yg` zr%w61sn?hPhfX;>Ov!N4d#ODW(k?&n2W7Q)%{G7nBh;85_`mfpLefye-fxo{jMv;^ z(8Knr!7UH7)F7X~1qdb7+-;+`08*41nsBs00*I7=JrEEiFo;M|QIw9#BA|evfCAD* zdJ#ngG%5;$_)WX)Y`FyG_wmQEdHdSDdGqE?+xZ`j4s!Ep{G|Au3n+dEzp{Z_e_L97 zd+VQ6EctjzaRlL?_dRg4L->nT-mv!qxBMaR(U#u@OR%^6w%AO8MxCt?#eZ-2zvVd= zsn`IcD`LN81=w#%!S;KN+Rxtb-;YV2R$ScnUVu)#Is0V!7D_$BcrPJ2r?_|k;k$O? zeQfw#CvNP}lJ6FV%lEVhHFj&sLJ{#SDi!L+ozY;Lp9?X*>loo9T4~}6hhx8%UyUua z)!4s`1r3>E`HT_DbxfWofRgW0LZg=tIq;`;O;$lW8@^BvMs`bn*TUVV);j^zGPK8&Wwf1} z<7iz4?6@ibB`n$_c`HZ@O!&SFAz9ny(=!%D-|LyY&V7CJ=Eh=;;PPI{i@>W^QEXxR z6%)#)?v3S7B$o&R%gq+!ywcfe7OBT;QVaNleH~?EaUk>$!`ka zS1Vh7O!tWkB^lFkYTMRBI_?g5%|?mU`FEMp>H@pWq6mfSGGU*mk~fRh8DB?_S;fzg z^q8eq+sAN4R|gowIg3Y@(Bhr&ym9lvg09i%RY2*x`;`scV|JybxA&MyBa){{Vg}*w z5_?awN*oL0pH61;GtX~{NZ^K1qw%X~IABlN*fLLIA@)wQ>uSevio0Q_Ga~u#z2?`P zlcBl|&}))QG*%U0!<7Zw@J(t%d#_n)a`K@danI@iy=LQJI_dYO@R%+975q5zA<=Ka$!MeLisuxej`6a((vQg z*c*PiHUGPYKM0pPkkjH@28QKd_#u8>1GoEuwD9(JKj)R?iebX@n0?+Q4WZGK3eSCMMX&wN|*H{VAEn{N{}pS{V4u1xM# zLO71u2Ut0hEs0wle!MB)Dq3%=qJP=)-^;5b((=QcE#D}1GI^i?YOFO~VZ{Wr&uif~$-_V* z2Ti?|+#Y=`qx-4kofd3cq7u!n?%*WRjYJ%Pr5o_xx5?8%S5Ag4E3M|j3-7_(d?vZO z00wY`MCHu0D8U-WL5a!(V92@TrWR~7_kV`NCTZUQc;{U5UJJIZfHeXrW#|`@M+)Fo zo+CEoxe!k?u$Y4qtzLyAE+MUWY*VW>95&JFRoMG-@+k|pO{-dgwAykdxw#1Ta2#z$ zPH?A;G$wtYJVyXW15?%wKnZ7GLz(h{ojDz9|6N{~b>ux32 zwxAQQ3;r1m)+)Q8Fa0^Wk_FvXWzC%`k(QEQhN?L4azfjw-b0g+?cs`GPvGvk4N|ax zwU(9$h3}sK%uRk<5C%ixUUK=+1?pqMWB6a+9G|1BPW3a#T{XT+`}gDs?soB(>;88= zb*F#^KzEnqXMj0=9RqjKvn&S4TcO?XM{-KAuom0FWremotHt*z@d#taz2t?#!lzi9 z0NqQfon+}<&m;lLcamorb45={5q-`YQM=>=qw^?TJDGRakyJpKZ?Az_>l|qSx01p~ zX0npv(oMkZ!k$s!9x9|iVX%dfOc!s)QzAxY5l=$_6kTspl4e7~Vkr(vT3ONca7BJg9^YWPfSF77;h-dIdmMi9glD$}+ZJxxGc#~86(=aAjY7RW%LS0Zaoo_y^A?!G z0nGWp4ETOu&nyeJO-@G_Ib`0I6YNj3qxyRexb4@!+uySktgJw;IoYZQUYiB=#;n< zo>%VixZDAzc1ZC{ZOXs+#WxjLe1K4p6nje0aGIxlxR^lryDTD4W3^awQ{cI=YUp4N zy0M^4IF?{f3c#lPl7bLK^52t!iJXfSV8GM@4A`$=1NNo{v?m2?b3B_%h*LL_q`vN{#GnAU&PG%fl<2hA?T+VA8U*ox0M4W@TxXzMavvDzMeB^0YLR^YUpfn z$Oop&l6ZX!h8*y;uwdIlVUklL+Dm_Vz;h17aSTaVuFe5SppSzohdiSs<7R}jBb7I#x?&)N~wyEDNfco(7^BsxFp4x8~l{k`Ws z3%1Sub@wtv!lKtam%)6Fp)KccR9a=nJ}_!lDOf+{8N&(NRa|EviA`R zV$XWiw~R_Zd0rO8{fx0ABm2V7kz{0>KD75;?|=Be%gA~KEcYJ;l>0ZomVswyezBCB zp8}mLz$te;+3@CH$wiE_xt=6Z4Erd+bVGkuoh3dZRwQ$xD+&Dynp1rLhes2|N{HSy zrx;ZwH`~`m;rwZ)dsqc8cJg0>)Zt=vJo+qfMxN43b?0_5MP*(N*-86hNklNRG^N zv1ASt$?>9*>spXESOl|el-$b9Tqh;c0=0xwa8P0IMe%i11((Yv!agOvEh_&s;4#vU z@&*g9I;m+kaifTLAy~_aC1babH~@)9YhhwhZ>$|L7Lx9GuM-;-^Y*Y{<9NiCCda9d zzci~-|Gx%ZShuy_S;3vkn>B*ZhD6|S35QbP1yB|q_I z7GDon@Rkz5Jrfb4(L+U8Jl0zU1Q}+_LourZoEhuwX~8A=7N`(k8I-o;z8HtXAkWv9 zKW$-#;dG=c!W_V^^rvp=z{W4oT2%`p|1_v6Qm=qCC<&qDr9sx?cZVx^hryi*Nuls~ zC2yM8oe6WKMqT|<$l9<6=2rIdYr{!KfXv8QWI9*ngy+@YK5U8rb5+D5FBD*rXZ^Yc zPLMLGMeK7`zG_}ITwFo;yUbM`VHLa72s~Hyx&bd0uZ*r7Kqj|ORb?8EJcV1onu19D z$;ZE6zxtAMx&rKXq5%6HE!civQ~TMcs({CPtAvO33k|JyECe-Z@|zM@S}bUgQ8ITbu@8nBYaz zG#s47=^GPJoLTlihzq7WH{avIw0@p=eqGxkyF;qDcZ#2v`l zE|-lCxM6lX(y)N=`!Pbv3%}@a*|te2X%$Z~#*R>X!q1V6LU(Pkk3v7*5+K$(%SU6a z6P_1q-^1k&5Nk>CLq5*G_=P?$u=pZEK~n6oc5J3MI$W$w_`Af~O{^BFeSE88JJSGQK&I@iKn7FLM1Wd;{eMEcUjTKQla+cg!+Wx{NmyZh=J>< zKe{Mg8Spc}D+#3tRZOtqdEGlogiH3cC}o`7?h&ov$t@a{6c-?Sxvn_Kd3;@i`)J|| z&C!QqX6z{&&TU)kny(*pM#bbi-GBF0tB$|=9RbeU>m3~CY-vW3ecr+%*w2X}nPuZI zQOrBSL2+~oLTGTUr)``CpNw#>aH!@8XTP!REALx^1>F`6hcUBps^Rcl8kQVdvXF7$ zpf^UK0}; zUq>vh<7Y@>Y5A>o=Lp;Szl)`loyA@P6Hj>S7T$nA2v`$tJRcdy?WO4r=bi8d_&#AT zODXdv@XDX`J`lu=tpW0@=lo5CQjaiRJLT;oiZ391*QPqtj_*6;JuZj~kTqSK;H!D~ zvX- z325Ej)IQc8sUz%q(Yv&EpGJ>8HZ{lB5B=v8(WQCmtYhhl0pxoxXPHl-m7QOTq(s1a zm%Js+W3-$-zNPk9ek`&WTqkrZBK>sG&tv!h#waVCMtKX8mKM4#|CUy4TY)XD2tqMi zn%@WE-7DT##TwfJxZo=0B2_8z2q<0k-V&Q3bXN~tXGb6Ny?3P84k_>IfFI?dyY>N< zw$T~l65H(UyvR03GLWAmx&(5#_nP-Zx9wN6fApq-XHjwe-3STKc#z@l;V-$~M#7u0>aSj1=mtmp>a8XG0O7Cby7=}eUCWj- zh7Cy=lQv{rYQ~sxIld|I%U``sGWQ^3Wrq$O{`8Q+2}6bs9Wp2*o%-w$Yt2wk5@o~ICe%#-^@_yzQ*kBr1F;wSP2 z=u7wseO0&RW4_DyksOr1f}hCNz3=c7nc=#MpU4#c_xOnn0Dr(wB-mZUPnp~Bx5Qh+ z(BHkPa2lrk?p+gh7r!81630)&N@ur%U2YVs16$no&Iq@^^cCGszban%5AUlWa(f;r z+*lZ0N{yW{Jlup5hL}e9)9Z74VNCne+foDxCJAQLrb1B+Am0Lyps|o=3cCp2x^UoM zXwJ@KB~;+Wa>W6UOM(yL21`wkEDtN*^X`y3m^9mq3dOg|&*vmGEJV4+=-ZAw}f+LRUEB$wH0b!6I^%`h0H{OnWO* zJ&n+ilvslFSPMs=Zw^a*7IlZLZ0p06qQldCtQ;UO{tqauy-&EnuMadK@iAplK! zy!@n<#%7kpKq_{vDE}aWIaa=HDw(aOfs>LXOBrx|6?sTlN0co3zv+fAUVdXcOzm5{ zQSrC2cdf)f@1URg=UY{&?csX=j58=%Iz?%v{JUxOeDnL%xR-{ zCXgj7((B@^lwB*4VoA?1yEwdA$vV;SaqySO$~9M1s~uic#>4->&- zpITZiuV}kKl<02zS;3%qV9E}GD0eoJYX^boz?AI9MT@p1E{<&~KM+98z?AIzL;?v3UbD*P*L72&aU7pw$D&6EJaBkP&V&Sb! zY=3>h+!v}v8HYXcv>-6pd`+s0W7dP3Za@LdE-6|B+1(ZG(1R-o^?44Er%dtPHKSo6 zUG@rDu%#}`V3t)S1*SAY(fcK=hL_8AQUla1tXH9Vu+gO@F5OZqE8e9B1t2#bZ!7;K zN^49?76?alkgI|ZO)wV-*BIA2$cciD=!T+$FWm9p-PuXDq1%Gs5Eu1`_q9xscM9OV zl`mhgVF4)N%&u}>w8wR8SGgYe#Y)d?e8X;Ic1IsyZM4O1>L!m0l7e>RwOEuZ4@Qx{ zeNVY204CTpk{GlD9_%TIR^K zC3?$)twf|}TGku&OiCc4N`2(cRw7(0oL{r62RVBL_UrgVN;J&qD|@2(`07uwS;F3m zEWBUpEBA8``%9OUih`s2$*bH47icUe7Tr$ovPTbi823eC(vvNLnW=KsLijly#>I5`udum9IZw#_Xc4<728#;XSkc6~x=)R|fF+&ql zGtkSY@XJE!<1;3taznU@2%6=?+_DIH7Qy3&XS1-CNne(YpGbE%dq)ZMNbE5O1226- zu4@wR!jgmJHKEHejEt_(6HMMFHh}jB$&#0`}PpzhM7!`#|bSdRhx=!$1RmJh>uh+kHxBh8ZFl3^&G-L!IK z{pfWQik^sm0$g1e-6}L-xQuRHyvMzV@#kwN!1*KOco4KR&qP=~a}uKPNV%4O5&}Lk zQU;|~5(!`7pv=GrE1LDg64FP&$mO7-m*u#v~btV2w=(=kn}gDV~&!)?ukB z@~Nn;CL!TyZqw@sXH-%eE}S73f!?WdA^+&O_;k61oS2gxG=ALh9A6Qfg!73u2B1Wn zG`5DcNwC>nUQ*s2_ne;WDk`U*O{dA9f|I76_BPFKfpQW~$&{ne03Q`Y=Cm){xUgMm z4Dc(B2l<$pHU5Q|t~hz^`PwJiAGXm&=AKpH7!k97C1QQ7xmP3OImS9>hO~;I3!o z^4P*Pc@q}h_%Zs5@DC#Ko2 zSgGIe&+k~Xc#Bpsu3D8sP@Tj^;8G}yVY}#QlOZN1(_-Old4n(mZk#Q@2A(tD+5;sU zsAN(;;Z8m~NZd7IUy(-$U~ynZU8zC~^I?=XOyF8AD+g~1Iv2QSo_tLJAKCR1 zfJ3*-VM88^9O555gvBlJwmjd(58#Hk*0Tf0haLM~vAkJ>b3F}aLt6<%RiH9#8bj~Q7t2li1jl1@bDjjDYIQDNm+Pa ztSmD(%BgN;`Fo?B4$AJfHAS*`Q`&^)HS1Ajl_=x)P4Za*R5f4Qi?o<3#xtOKRrin3 ze0>sJ_mSKXG_le*gK3~}2&}tV?kYCiO;-%eZe@uJM_klsUWUJ8V*{Eu$>=l9kh?}W zqZt~3DQQKcV6Gu&xR1c_=yUxJI{FmQ*H^a6`%04B1g9G`7bpe4-73eH#n9{$qf#>l z4I4iCss1DIPs1GFZ?NPxlw}QuwYSMt%72gIRd%VgapOm$*9nuxj31XUI5i_R$9Eo% zz-TYSmk=8I9^u+;a+%C9WSs0GspwAPNzb4`Y9IV(iS)D~gN6?sJ}6<-n88Cv@+*#m z(fceP7LnyUPkvuUZjq1emq`2D%Z=OhpEg9`7ug8CdcH@=${}p5^g+( zCLdvbjOrhklO*0ecGqT82fSfde2ZNB=5f3hy57dyRx501?;vjWjeJJ{pX5)>76Wa> zN&YqFTi?pH{NvEhr{xNbL+#^G4DgRb>k=nK-a^KqUzw6=w^7M#%WNf)6N_91HO34W zd`9l=80{V1L&u@tVwR`z&l$M!j9k$&+WQ5;o$F;+5EQEg|2~68d#CqUmdi|q*a9V| z5X6lvf&-Wh=5WnoQO2FKvMvDObEFK5swlk0!lCEURBurZio=^Id=9Ulm(!f+&tE{! z6Xk+l_@X@3iN5wCTFOaqLErdHY1c zjgu2ZdxIx#$zO=zCypbL(>7P`0e<74M9xp}k6bxh;;F7)Zshnh45_PB=u{C`3

f;;- zS_xSXFsGq&nY`k-V%X+mdr8^TZ3o`vBCK`HF-U-2w8 zyeBBdL;N$Vu#~7oL=t0?9`y}e0@~R)JnJc^7No*gi^^f}kxA&5*9~{4T^OwV4tBed znjSL3LF)GqUm<0yc%)zt8Rg(WJ>)=Pr46`}zw|K(Gki65&pV*bUczftG7YL~3AX+m zhaP2O`}~NHlr5$dw`}$+%Eh7=EwQM?-oPHiW?VR}sNwe&Q>KAxCLs<*ok3j=K%!7J z_$N?mNgSdh2u*Vs!k8y1IYFScm6?5Ubr2gz!jxhH801E0 zdh+uQI?k86J5tify(F|q6)@Kr{1b~HGvsp3S+)5aF+M6V4ZU}|(^v%c*A^LHy*PiD zFCJaMJf^f#&cCC}45cqR6eMot*3-vFDj!5R(}mpv9Jxkl1S^zLd|)xwnPsk|_aqaA z(1fDm6KDUqj4~q32{%TTRYF9t(IlXK*3$B54*6paO1xzwjEz#dyI@Btb--6n>`Ku} z2Z`hD@U1tfH8{O!_VIhP5)uTiSUK7qY?+goB*Qb}l*whgH_|b z)H);av6DTi$ci} zObs2?`h`P1OSPV+y2sfUsul$M*W}0YjY0@RCBgc$}oV$&bdO_fu{E4pwAYRv0nJ9v*`4e9a zK>U6S1$}PsH;$MLwKnW5R2AIgpd#88}IzoAC9Q?lF)RiwQ# z9AsH#v(>5>O{kyCsrJgZ=$7zJ9Z62bXJ}Kdrc%-Y5h`^+TaieCAQoP zFQq7JB@Ua~k`rH;iQiq2_`zM3V`wXBlWxjc@QYOt?cu|bx@6?qu?XXNBOjh*Kl1g* zl^23QkuPojin|$;TL|M8^krZJnL7=fhUMy$=4>3mU%}u>WoWcp&c;d<1TTGFJOZwG zQqkR)Zt%L;^4)A*Y&o3KN7>he%$4FPP&)d>16n%f!9y9Ew&E<5W&pTLr=7-RIHRvp zITKUc*Uu7j2rE0deh%Sl2RFzeLhN9)2#0eHJGfB}5kKCyrwBfG3!}ElC2KTBRg)d! zU&PDt8E6VAyChj@OBg&PZOG`sLq-ppl;g{Refud%!bdQtpHf?hhr9YIQNnZZTtB6f zP!|gQmGYUGRTg28<;y|E&hmYPw8-+sBVWq$Jx6})Vw~~5BSeGhz7*^jq*l7%Co(nH z6+e+-Q#brXdcMc;6N!@D@e>IHJ@6B*>G8f}m>pa^z462lyzGXiP>z#Txv-}&4(S&0 z6FS+~ou2G_FhH5>c|CWy_(Tlgm)c$@?%ufa2W`mV632UhlvvAUrcWVpGi|XfCikTBWb8?%{c%mTLU;| ztWv{*m^cdg92qXwGqG7YHjh*83ZR<_Ck5bKfUP+3lyqCkvghwZ3zQpP;1pz}Hl z0#mYWj}}UDE@{Q{$_pZRi=!l7x0(Zxnt99k`X!~j4HLN?r(F{DZ;K4FCu{UfrH24^ zb1YHq$HQM{DOJH&9Fz#!4M$}wuh_9;;mZq()CT9A*ze6&`dF}$!|+-)4W!k~ISSgq za+~9b0~1%C<}Q@PW_8`17^EH<%xy&=PQE&;GnoXV$cD&B}b_%ap+&tJgU?J zG#ydFijTtUG93s9AY7pIw1}`3E7?UkvKNLozrP8xNUOn8h0xLe+=a@RXt$Qi&}z(| zF)snW2bF%HtzA3P5L=m0))0*`i<$%OHXBrRQ zQpO2(>{z&XC7OwP+kpH^r#aU_iiZu*>6W61=fhX#rYrl2Em5aBjciW{5 z0MBuJZ3){%N}qX;m^>bkX?2M>A$`Ao; z49sW})oX1&j4ato7;gbq%j>>Segj|GWN>}LWEb0!ul)OMRu(2lq@cZjt7BsRdst4gKe( z;*Pt0w1wjcOC3-u10G;=n=D%N%ce9IL3ju=WBG$hx|?~I9aP4+MV7cj%Ia|Y@C4_n zE6_kwm}ta(ji&WP^fx;FcSUFnI~-9O3L2boM5$ExI*KXTvGD6}dc+3h_>$m(BT9WV z2>a&7z>g(8h=Gm`g*5Sw4)O#8+`MUN{lhx1@!t2A^~ zXR49}Paj7MVN*>ac%+BQ0?0Ea6g{E*Jq_+Wp{xXROgM)<%Y^!|51v$33oGEHZ8D|wWe2Iz7cpaimd+#Zw9=glz&MBo4*lHrVaV$YO zqOXwV$I%c^Lxk}^#Y zYC-XevI`{G7?6_^VvVm!niFnvildyWd`+UWP!Y!EDs7$bOQQFsR0V``Y!m-LS?u_$ z%6-s-gJMU-Uczb1&QEr=XdC>4k|GGBVE1b%9~)z1084&T8wd_%*?G#Rn6iWI%Ch%e z11M{Ja9w#;0E;+b@(raWSk3`RJ0hn&7QwSOltc^mu3l;zu3T)qn`0^0@|((sg0KsA z{~66=>~`ZU?r;>0ov7T#3bw^wF!nwtK*8V-xym=-hE15Q7TD>?YrM9w%Wuj_G3YR? z@w+k-6gq5ix(N8;?}{u6hwVPYjzIp+wEfGjEqi~>sjY#02953NSOwYrr4IGUnumGs zE`LWUE(k4Qjk`(~Xl-Lay<2l=T90z_9wy!`wm1yqbJ5&~>HZ9%CPJ{gH>&Jruw>=p zWx3eE+8x(yNo4r7Is z6`H^wi>W<8vW*GRS!f2wmQ=l5udGvMNf=JQc_KDA0u!HCOG8;w-wW=Q$F~jKq)nmG&yHs z;_*ur@Yc<1pcTya%&MJlLh#7D%}T?>FxBVQ4%ddMqriuDoyj0|qY2Gx)GY653umkq z65z+-Y6oF2EF7VB0sBqtydIk?2Ak0MoR&APWj9dDB=9%$lBLyM0=Q_t$m7KII&5$2 zS?VgR?;l)7ZGbK}vr@JXx{Z+PEiX|{LJwwsNj@>spqzRffTMX}B8ocHZEWi%wp5R8 zb=u4@R2V}%ODpU%Q!s9#G@^19#_Yn|npRj$wAvxunN1yniK|im`$4qY2cX96 zFBH|Dgio&t_1kq~1@$KZ^fX_%*_C~2sM}H21pkaxy9hpbq=p)W{u>gfJ`Tp%I8bwq zgsJfkbFuFZ4a4tLamZ2H{I8ft$~3PISg zih9W5mqP$dOmb8g+bCNMzf;8`$7pqRs->cL-Xsog+*J1Y{`>bNoMOKn;+kC~ep zn8e#IW^ijK%sYAKrtRd(I_fyLz;?cl`VtssSDLhtAtuz{LJrnddj)~1<_lP_0jm2K zH~^}J_QF(nxB&{oJff}RWfOCgj^2>xai4d|91M-8`@Nz5PUIDy^HW}Q*|=9 z>dNqP9z!m$vq{18RJ}9QbByuL)$xKDd>r0rq3#5QkK5dk_>Ks3+gkcd&BotGv2)dF)_!EevOQ0%GSTl-0o`DiloM%tLaV zU7A{71bu8`Z3B>zv?6;Q=hONZTdBoFA>EkQMlC9U@iq=Lz>c*mKALhGWh#y$G%5t` zi?~?B5PKb`vBsfy`}XJ>9kA3U)uwkEmA2TTcWy`ZMN#<3csd0|bYR#xP`y8}>phNg zTF>dd##L{IxY$K+x8T6q9N(^Ka5&XXbsc@AJg&Y5ZrYV5!Qr|IWx)Y<>8}1DK6U~& z>!CK3#1nbGjQV1{!DmqqwGJq1f^np6FN!B%Oi#6<6`y1tzMkr45M{-u0RR&{-3yIl zI3Xml=h_>aPJTdbDBte}!W!Iu!9^Zxmb~&z~imUrs5AWy`+m7BC`zUe8d+c`6@XZc|yzR$P_R;VK7Ub$m#G zv*v_E!4LbZPrLOdo&oB5_t{9iwI}Tm``{Xyo+MMQufx%U)Fku~vz3F?g!t)bNR(YR zJ!42(LL%B1Lq4cR4zoWsCKVk?_pO7!4N~L7Tc9pKyBI-hkT7oi=p5fbSZ%Oc1$|q) z<6t#bm=8w{RueN{N2bd1-9?IL`7q}!-#V0IX8ACAmTw>mP3TM6sQ$8i^D(A5Q@ak^ zm}Hde@e`TP+kl_Q=zSx8BIAZl_=zN>AK)j_<$j2tNc$@C5q`Xm_Q*_cJY5(7R}N86 zgzd#JGJT7m&{i2Q-72$nsG1ye2!YU9uEX@dqx8Sy^uLoQU|R2%iQ#qzzH=w&MDHt4 zsVOjdxLOR2Gg7CiWeeiAv8h%z{5oRJt3$ZOw1|R3hpFGdH6tII+wy6x%2harxsmB! zK;4jMPgiC44_D6%0G!Md3unw%W8skzYHbkCL2(IU^S6fph3AT(x!sen_eeCX;(5lu zu9ods05!5Sy9l8el8a`)P3=Qnv`33ERXZ2V()R5nE#0XCcEExV^D!`-Y9h{ zXksh&Lr7t~@8$7sWb!~TOJT~v85Pt7W9?}5QX$aA#3N2pA>R_gLm6r(bkwWDc=c(} zkt4U8ilCk^{T0g4Kf)Y?I* zCx!WQch&)eFfB3pcw_h^^+S{`aNMx&ng3mP_C55mh~xNyslM50SNznR>b{3%m|b+_ z@bnD0W3nmP63-aC>GJY;1Xm9k4_ymBquwhb=z)n^z$OfyhSSHX=x2r+ zBAK>ddXnC^$%}tP+p|g4#YpIXvAyp#T;{^WGl=aY;mBvz&OzTIKfF||a5>>yc^;pC}aq!YOH7?U1Z%iAV`L88$ge>;4{crMN zSUtyQ?^3u%N^C<-V<5L&DFE>sWG&iNkyz2-;muH}Qyb(XsPu5!3AGaElMmn%FRIUi z2b_f;(I?_)OaCjMf)`xw`n2GL$B>6>({TMuYRv&=pTXh+ifPC0fDIhXdpQ*+aCSDi?m!j|*?({;mi*lxV4K(5yKVqe@ zb-YBx@xM3JGNe*?Yp`B3aitn%{5?lCMC0ZhbxaUQT76)ViCuS^h$rfhUQH-aL|XS z$$5*_3P{5G#cD;1gtLp)W)=yLXl%CeIp_b)*ipvy*VWE~aEw~J#~bQIaO&ULB6O)* zlQ#4in7d4kacSr$;OM1lD{z8iOiX`%sk#W<`pwJKM#%IxmZ?dc=}*9f<*M$K z@cMETxx`b}4y6G1>9#_xObdkOotCLp%BN?f4;o(A8NW_^1Jew(yhZ9GRybR*Kl1-m z;qmXQF>vjh>L8&CEcKSU9Mt@GmdSlft&MCS^ER4gF#}k&Q`8LAIA)J%hH5l?RYDy9 zf8zL?XmpXf3ay)Tgukprv%Ot8-5;VQYy7`6!k??uT6pXOg~;L^I5UiU2(4X}c9?;E zoNM$$F#Hc@K&|1D0AbK-wIO)z-xYo0YBcGS3g1|*Hs%Vx;34#UxPr5tF!LUQVSQJQ z?pYlhp+h_q*R$Ys!dC-_<}rmI^Uo>NM1Nbx_-sJU&jR30*j0x<1oOZX7Cbwfz){k9JOq;5iL4hg1&c zE^k!_CahDR0EcaU(X!xzIp#7jW$8cGuyFD;Vr_o?f^ zb{o{4LM{Xw(IV7uoIuk5&fKUD0Dp1NhX{SCAE*(?^}U-^In)e&h&2>~i&k*TIJQac z1WJ7SuXSUH^V;b_A|1;qjoblOe^{;84VYr;qnjFZDRdz z=?v4;AE~!N<9}z1wVTz}G#eQRmv2#f!eX0M0Q(qf2xppxaEzfwfrcFGM>LK9tPtY( z|7Du~Thvd4Ct-z;Q9J9yX^vd;Jurv^JiJ$CZdH9;X42TXC4=GL+tKRxE8Odcv=a5DdN6l8+W2tz z6U)@u%gkQ9)JL=zJJ$95|D(N*e~PlwO;FgOCV~%b26==DSGG}W!~dh^MRuxBiu+k` zn6^_L2@cuxFJP!rbC()RE3^ijw^Oa*GWPn4hK8>=#*bK~UfKlq{y!RK@@Hs|OD;3a z>Ce=5;15oJ?CJkzQZQp&>R|M_=~Vd4ZnZiWHGiX~`Hf@!h^CRLX@35HF^w@}j~Xw4 z*wfa&R4X`b@K2zZOdmEpEe)qd$RtD2H@De5aSYtJM~#Vaj&P$+)1h4yC-V_aq)-!; zK^*^k$5NKeZaMqh6aTx^mgNR~N<~%@;heo_Dx(!=5bTbRu;`~zgIEMTdJfIAv*plj ztvU4JeQNa(e-6EHzgoS%+ko-_&Toj--7;tR_sgM;;4Ax4IyuZ{ng5b84>5VLWXkCI zr8-&w6U-NQ{Wc!vex+6g(>N%ujQ=uIIsuM8fTm@60oc(Wp>U=JsWjAA}Mjy9AY;Go!O1$3NGqU9kpiovTy+$aXIrlS~#jN2#B#_>!4 zPR6>EWV-*{Nwo^s>Fj}_-=NHmmyr4mnt}Sm#{A!OaBWk%cOW; z%UhNY#k~BtFC@U_7t{pU{IXg+kc>Vy84q98JuxK-`wIN)vU)9$gwZw$a=}Rnny@->Iq@~D}REJ_zxP112@z%GcgTtMAXO~VHKX4?vlBXNG zOm^hR;Tb~`^y2thpVYiPg7Dt2YHaKLGezEgZ9@B5gu>L{)LMBtD9k~B)yto?GYN%1 z|Aux93up6!Y@j*S1;LLAkKuo)e%yqZZRCOJCjNMS_jmPpP{dibZzlp?zm1Z{ayFp_ z)@#$fx@8$ATWf>u(T z#`qsbd{$|^%l!{lQh0W@7WlNa1t#26Ynv@F75!B}<94<{7G>F5r!L1?z;+zBIF(~1e`3bGY{tC_+%82>>15q(|> z{G-MR`(f>W(CY6%*ybO!l6Mb|{zt7|={MBgvrDJZ(3hSU`sj|sQOJX`E5dvCdQ^gE z|51w#9ghH6zWr!ijP`V+a8O$#t-&C&F>cLSxIVf?L-?_v&5Yu~q>{H|JhGGpkEk^x z;5bq10lqMa;gR}Un+hgY2<>usKJ-&cJcM$FYlAdZ+;WA*5lLc+_K&^#J)A-LO% zI%o7~MQ_W4B%B^j62E2(`df{uYH z%eu%Ul)^#QS`L_OW!r`$j1E9(+%2npFMzDTlx%~n!!+>ltYX2&uqbV}2%wET#?&~@DVXih z-XEh?6VTbw+*qv&Si^BZc4`kk-~gtH))>3vv`9hX(5a2WO^Ixy;Hq=ZFoaLaV4kzG<%Gz0pBXOv}Hqsr*M+Kp(_K9#G z?x?Cg4IXfEi1ayEwW^@dd0Vp~PVxYruZEn2BXLM)A0qiHAL-hSj6Ht^;QGmGbofP1wBJ@F(3DNq`iiA4zz5B= z>Tp@IR#}R?U@Kvr`~~2;&n_}<$k2>QX(<1>10y_|5_JDOn$ippssg8aG!Xe1=1I&O zZs(p^Fn3l*MGz_KzD;|SrYuV!_`}AFWM&sRBmKc>?G@X0p4_Git)1ty%;}seU zBowTxITqMr%+fR<1igGgfbqq;O$|b}fGdi1yDIuJ7PivLmd!wQW5(Wvxbm@eSnPch zu4|>O341rsC-4)By)E-%Z&CRAxgN#gGxfyb;dV5iae+qI$~C%0!^}2X64+yMg1Jv> z?ZbDO0K%Hk#I%SunzhwN2TMn}*HC%4W*nT`2whTf+5}@Z>=Ok?VV6$Y5WvyEU7fVk z;0A{s-%V5Dwa(fs;V8^V(I&e{i0XpU3*n+a2EA*Mu&9eR+%6#&*6OPL1j0EIB<4&I zQUofcr1DOD?Q!ilP~F5glrAVY_$4U9>AtNK#3KN>tN`f7p)E0wutGxDMX(j;i zM#0lCI`!5Hi_#441-umDjf2zsqRcAG1k*weK-ZkWqWw_kWuYLa)i?G-!@JjADf;!- zI$J5oS2nNqM@Cu8QJ{)y4pRnb#l)f=V4ne6b^lj3;hF&&C{wBfx`vB%8@zM@9!@V> z(aPRtKej)VFFvtf1P`GGL0(eoWZ@|IYpS*(nm4%rHLH?xj0-Hs zLQRjH_PzwS4$v1H!?ZS1C5{RTX^q>3$8iu+FpQ7SJ!?Mgd${Vi zkWi@mv|pt}4i6_{tt&)g2=A0UD>|XRZG`qwu;k@QNxNB+rd5|(^WYgPE3^~5M$}lX zvS1}36==$0Cz36)$XK$_BCQ-eH%@y_>d!N_smi`@$&(w0)3vHX&^TnqjUB}bFmk-s zR+?zzAwzQeN(S6KUb`q|@Ncn#;iiIN)GyO6!7j6PHH^dbo0nWvGGd}OR6v)25TWJa zt*5nTr6n9PwlNd>8r(Zc8z{ZTzeVi~#oVhXD_h5di5Xvmho3=%Een49WUZaF(*^aj z$=U`hs;xZXv^)z6C{OFD+VmjldtQQBg3CtC46T_UUFKigPj9L{M%W`Q!V(YiYmf)W}=pn;(}jg7Gh+< zpEtN!9IQ7muBJ551z*V4e> z=B-PELiQ`#!60cV&yxg&#W|?x@9<#a%}Zf$j)pEg;$N8fTX-owTc zI|~ES>100e^X)aHW`{an(93(Fy#WW~}BGNj| z6D%#|-qY%uv`M=vy~Be^b*=tDTOlkpI)13F7Ohk^*JFDidBG%@hVc;Qdgl!76Bk#4 zYqn^sr4zgkxG-TyIS6yQ9Up7&iP9DB1tfXntJ_hq`H2S;7r0`?exhXwRsvfAQfM#5 z3!??#A*=wicWCcM@HLWWV{jNp!=%GykGG75Pk*6Jb2DzpUhNgBHAhAIt}va0Fs1(4tKAKjx^pk=O0kcM z@wB8lEZh(rY|J>QEfA$aJUMBeDTk!0(g+?*>SmC!}Dn*ZJqus2Kbxa#0L0$>sVmTaySz*9&?O8!u$-TfX76*%;L@Co+9!!d{5@wx5 z36ce$bTa>(M4i$O7yN18pzv?Ox0QM-Ej6zj4LW^KX`cp3-|#$53t!;DM73|=p0nDx zK=`>%eB;77?Tlz8u<4fRq8sUHcx|aA;j&BG2)DY3zN}4-aLKgr!8JiemR=UA~Fq&|;poIX-xk2a{qgHa7jLofWJENLW4iBoS zu0ORV{%hkLuPtUKz2d0bs8`&{%f5nF4COh$trVH2MggaZI@DSo^ofaI`yIL`A4d??}0$vDh ztM3VVZ$TQ(vouFM6L>I@G}_o0q&Kk<*kpYaNY>~=x*GW#)Fj0ClAJW4vq@<2`Jy;zbtf{XLbJh`@Q%nCK+AS?%b(c-9-kVul ze^olbt3qPoehy-bg=a}DbRrl+9eoBGn{br&eESDlES{Dcvq(LCe2|pOlahe&P6NG} zbe9JczsNNjH`JdLtOT}-`_V;~kfi@8mAb|?CR=xW!%0MTyVQYeQd$*-po!iZe%n|t zi>A4LZLE)ys@i#RWAR&*SH){|Cq*oW$}CFnH#$_JWMSB>ss23LwYj6I{)&{$VG;{+ zOn;_Kn-;{hQgeN;^msmuexZy~D5Ef^cJ{8B6~|I{*d?QRh|N|0ATG8oSx=Fk;dLP{ zHj#ta=Ohy{I6)%)cQ$;`;BK*OZp>U`haIsru(ue4DpC zpyuFpqMms|(_a#$%{)(YjPfZDCZaYQg<9*a1S7UMebN`A`{I_oRw(%^D z=Th{GqE(8mbir;KlG6RyO&=jh#eU?PA8F*%y6Z!wFdmFeDHi(?w&2$~RL!GY7gGrq?fw%hU!>#ye z1~d*n*I%zEb#>w!#Rllh1S`SVNJMZVRj(rrb`roR2kQS=@ok0xZiOK|25%bL%%FF$ z{(OGT_C8t1`*pCsD$Ln`z%@fqVHfdAlHPs+2cdF|sYCU9qVx{;g7)^ue=LMnYj`lR z<2y#IPoFPX32fyo&&tV5qj^3LVdY#jQXlG8f|8^3DelXIXoXUUG%k%oO;|+Be`JC3 zEDTN4qlJ>NW}05Ja4Z@&WtWDf#_FX*a(rK-DZ1>2F!5rK(l9$sj~7b8b!mE{pumf1 zdM#ldl*a0ng)%U4tR7ML3)GKgC&DS0do&PQz|66FCE-)})>yq^;a8C@vYSBRyB_7> zA7l0S!ZR@-0t(~w$jsyTx!9mFqX&%~pN{rupc5`%vrF91qE}hIl1PaxA66`jD3s+Z zh2}!Cd6DSzT8lBnFlPbA&Ei=RkR^A~<1eaSui zMBMg1dJ6I__>rvlhTsKVw2ApN*~Bb`UPoADms#j_I4VQ`I-G|P52$dRE%=Vtmr6Bx zeC)B|)i_8VK3?#BcY>aTE=D?!{*zj8NVqemE0JQ8>-5Us3ivg@^vg4)J;>RK`eIS) zY~$0qf=S9&axJ7}YP|Ghy^S=0r^Jd!^yMH-aRIK64UK}AC+jauqq)~K12aXjwL+c) zy^po%RJ}dAkG1<$y^-`B&w%WF*gO?=A~Sg~X|c~i?=-!p6(2X)a8n>#%*?z_vY@aj z91p5GytGn}hMr9Q2--_raylAouHkTK{$sLZ``K3I%Pz{;IzulZO1tfhB1}eX=hu$w zEWhjbygpGl2~R$+_mxiZbmW$TzAvEh!v!9k=L*6pc<}{2(MDu7LRp$!9H&}~N3N3_ zVvMg})F+FQ@Du0A%FSB3RFsF1zEJoH{+gvPvEte+U5*O*n+g$*zG4dA6kXjPwQ!B^`;BKozZ>vej{c&QW20o77UseM3-s2~T>dStIxYazrd8+U zTYI72P*?|37ot|VfoEX4-x_Q{a^F^rSx0r844I!l4fRZ6AG`zg=cO-g9Qj(VM>%{! zt7kWd$=7n1*L0t70d9XyA0u7jaEReJpGlu_Igt&yG!}AGtO+##|YB>d>E;e(Vf7IY?a3fVle_9c!cv1 z7HHw66|JHT;Y0m=uoQcft0rV+J|1?YO7I-$L9oFe>lFkkfhQ&X^Xjc=2C@+k&Z{?c z)8e#k`f3{yioeljxJ+@#!~J7vxOTff+_jhKueV5o{XfyiNxgWXq=V_sL0Gv3Sp07g zW%T$|-y=vvx%c)ChJ9a!XF-$5Wjpmvf|Ow)jYPYurhTR-NK<$)Nz5_~akt*cMqq0T z>~kI#S)|o%-=nV*q#T~9t$v=M_Og(Ygf(cdUR7GjQ(}{Zy~#nSNsM`W^)NyDfO`SS znEC5{Xw1Bg2a^JQ0DJ7$8(Q(n^u}lV^_J2>3qC)+@x+&UP5<-;T>YgEBFzo67U2iJ z)O%Rj+swr_Fz`j8A^+X4&}iW%JpYy6RQj1$B+muKpKjVi{s3x03pX-vap8czI7kw2 z1#TPzT}a7DpJ&EmNWUZc6XAR{`5R*HLOB|Ke?))TExDS0RG%Eik46}`&|~@$_fZz! z*<0Z{+u4hTU1Z>lTF6Pgb&WcxEZL>Wl}$s3k4w);NKH>4{?zDELq=!h__`v4WtU4s zUxZDl4=;Y-qqI;JUOlPT8xe!4g30+_bG(~`fLT7wFpE%T`KppIs9q<#eNk{zj=1n@f#G^;louE^_RST~S>xW;F(ItLD2MXHL0|hrv=`V)c zU;0Mhq65wC-|E?5vPlXP+q7iIWuG>ogdwKE$7REuFN}mU`qCiqs!2ik;N_|4(HKa^ zn`~gkk;B9iEhCMT3n<8d<@pn{(T|-NzII7J3)XS8(=Y29*vtV?iQ1!#wEPu)wFR+D zx0Y=xnA)*%1}ESa{YuK<@AP)yh?OBVQN$q=ik{GhZNv`N>R&1fUi`CGu+jLco+5$^ zCX$;~*p(X`E0|adSw*_0|0sf78!_F=eADRglfFmuG< z5T3cEF8~og=Q)w-2@$1Cs9DU8YSAd;_Rsnn5mYqa!_+PPes`2PIxbc41dE zdi|!qELdo;>YSgjEuNfIYLOwg^(#S=YO=jWH_(l{tG^H0nP9AWGnfVnhrr=~>CXu2 z|55kefl*ZJ|1h&DloOT>2_b<12}SA#LPF?LXOrDcXd)oe0z_a#FN%VMszzf$0!Ks? zh}X&$P;{{ZHtc|273|oqm3GB~3hy)L%x%UYx-9m46+2+;oFFdP?>6;Fv`ID-JQ_m9p#_fiGcdK_f`B44it`EPcO*38FI@b^ zq)yUrAtVWHdeoTjhPq3a=~z4AI~(%@5c75ASjBk`3o|fI+>fvs`H$(z z-O=T8AR7A`kCLv6K_U3>RQ_ljnkL;4_#&@Mm?mcMEtL5+O+*hg=WpZCUHU&3-{da)F_AHY=2yg_z08kEFm2I}_n_yPtAbEz9@vYYX~%b#{X`LPd>UAR zOZai|=syao3aczu{Wu7z>1GG|lKCCs@f$aP1pUBVm3aITCw1j}%YHJVE58W+CI7ac z`w}2h&Ofd=Xxs>-svh{`o_&La{AWCdK(<5CCCt|GnHd7~LgZrtIEw+UNs+pz2IZ2ijQyJv2k>KI=lA7b9(frUzO1pP7zd!QyK$s!TJt@wRp!OGL zNREbQ@#kat{to9U+;SYB$qmPS$MNlkT@B7$)nIDrwDK7X=Pj8#y*e-i##V*M9BO)* zFng*FEEg^%kxL897A=_#Z_)@nNxmj66~d*2v-q)beA9}CXN5_V6Eb>bU^vjP3*db_+~rd6EXBlgipkV z>b4g??mI)D+?<5px`IE|xVLbPOtOSeFv+??m}CvY2bzpc$IE*S>C$2#T!&*b2Gf6r z(tkYkpCUZ(O1^uFl1O0qSvnc};YxlXK0l3b!1cy^D){u4y2Q?6^77jWK$~TWP!pc^ z{(1sm6_4ghxAB6FP@CUf%KOpP%vAxY7Pi|>_G;9@-dPdo_YO5tzvSTxIbXk>WL52y#eau%PDo>Q>T*A6B^%n3t0Ezy8a zg7AXB&EnhDNAE~ChzV90Ca%&#OFEi2fFgU4hf#u6XzJ{F)9?$6c+^r-tw>bHzwmCF zOuTZ$Wv*b#V*V2cI;j{$E!N%j8s3|D1N^3H5+1pjpM*cThOdWi5{M9e{D4ng!;eNk zFjNJ*w;-BqO88r#Xi7BF>v#FDB(C5S>juM&lg8vs4@t@*f2@?L1FgT7?-qyB{|BO> zQIN)zAD8phD2usjAg1iUo_E8GNq)YbAI!))J=kXjpT=b}5M)@xNbrCm1?uPH?6rJ4 zeq$Nm0N)0&3-wR{8&*tJ{G8IoGpngG1Vr|zL8EpWP#J!Tco>&jeDhcG8{;y462B40 z)(4G}zCpY&-!L;ngkKV?_2I|Y@(=2REm_C+Lep&li@$+?95Exqf{R#);o`dsWilka z{=PTzOF6V$!L$V=@i;CS5@~Grs^lM!LpL)>B!Q;h%CAOuGFJ^4`v(lb$I_@g9>ohJD|hyqC&`KGTnZOhR8h5YVYZZzqqn#cl4fgllYmZ zb~&k1=@E%WNILk(H3ORm_pawRaOi||o5soo8~C@;_smrT=Ch)j&)3UPCveA&e19d@ zZRmmmCa?DKh2HKGKeKEh9Q<{|Sv>cCPcMAyCO$1mN{J`_M_-H1j?SXPi|=+~#YtCC zhhd?Cmhp=s=j^zPUx%`ps|MsaV>90#-0=3z&?b`xlYx(K=EuqqEV`lC<6_2QLs`gB z3mF=RSDt8;T1vHA)qr1Gws6|4MP=?>@HDv_HYgMCWeNAfUdU9@F9^0mGDifLsoKKN zLL(HyHsdWN5{=LxaPEe_&GF>hTnWJy_weoG&?M{IlW_ia{tX#`MK=&P60mZjZm?zt5ASPQ&oC{? zW;1hDkd2w4tjA^d^H0bCEDl9%*QthrxBiR22klYtY$5B3tvv>axZCjBqn%FHW2l7^ zN6QEKG;uD$I9qqd+3?5*`PA;wy4P7a1nQec1F$O>bwKYaYOCe2zeP;ESY{! z#My6hDR|98`~`GE`WjyK8ngwzXD*nvqZ2si5x$*__K8-W*0@`zUOmvC3V?#zRU{5h z@;Trdm)`AaCW9cA*{DbPM^VFbQlc;rC;IQ?JJZxU0xx)!AAw)k$=919B?m!9vLXir zs@dNm_e6$O(}Kw~WE_!1Aa*4N|C>L~p|%X)#IyNbd_UBMxhjmNhY5kTJ%{IZ$Zw%U zn1?P^5H}Mx+TugI`TJzF7wqAepb-k%CK>0}wrDORZZRf_U1GHoK6{)$%_Ys0xIRnU z(ZBEI3($P&GN}_=)uIK=t*P6Ln;E?2Nqz!{7@}5ZMdJHB)a=g=^5-0=lHrqh#4XS8 zHE2C^)qqFLeU{Io9??tih_3j9XZd8NT&l!ppXH}!GFT+W$Y$vCpM!?U0}5Q@<|WNy zD{=GZ`4`m#tNQ|f9_>>A)Y9h}v>yt|8}RJ?{9{ZhTX~L_vdnm_YN;%Or)L)xr3GI- zzz^WidkVHKWWJdyBpc>?taZs-O8&XBP>8vg_|#&pLNm`yp;`J86q@H00xGP<-5?;V zQs7yMMmPoH;*<581&6)N=Q>c`U!zJB`(Nd|g6*7omA|=%lpNxKNN7WELe`fntFx-t zRj;bPzFOQ*BHRx(%1BIq`w&EvOy;WDm>%~l-u_-ebHpN$6rQ6XZYIM5Q9ROs^6|t198IALk`AA`L*0ZocS)_7rn#)59lo5(Z9gz)d_{t3 zOf(W26ZFLL=cECOK^>p?4_^##wa9s&FGAdJQn)o6ST8_e{hV)sE=W+c32|MzrxQxC z2Vs72a5EW#MG=eVm7R~7h?@u3eaN@w9C^RtuJ7|L@u6dUN7PFp3^T!}2fS~RZ;5&^ zq=-@9ew=TMe9Tp|UehDk;3GbXlOb4?_6lmyxxig)3_274_%Wa32#CV&_9h5>o(-~? zO@%$1Ar*=s9ndP~svvCR9xtU5fwHVZ1TQr=S*{3-Ck?ilgrf9vO~c`vL=8eBa?r@c zgFfS*h~EnIaqf}2894cKSPR>s5P}(#zK=@zK86&L@{}i>@%X3DVO?V{bIYt<-v_6V z@*5C~V$rNuQnTIy%*Dv8gCC#ZM{wvP8;1V@74ioRDI(;1zJ`+TC+4bI`F?=?U-Ruz zWPl5{0JQjq?;-<`>N?l&@=RvN4nM$-Zy_nNBd};8tEh#%3!^u0A@tQOYNtGlg|{?~ zt=+)`X+l9TFR@N&=S)-ho89=}7b^}`DUH|um!E?26|%KZ60V^FVS&VwaLsr8IIa+X z@*O`Bc@==hBde+gT}J_VplDtLw3ZqyamCb9nb`RQKL!>~%69dvNPs48O{R)9t=(%uev(}X#TI-6h4h%huxow3h-J)IX!spLGkMD#+L}vDOd?wKlhY@`9EWeyX zr=%NLnuPzxTouZK{*iLcMn@g`Lg$E!%8z$gURlA#J9bW(P$ZK)Jv2 zZ8+5E52+-O3WcW3RkNi|Bi!(JC=^rxq;t{H769iT{7MagzP11qp67FA02Y<8MN1if zpXcA@&}9myEvS8~7Siay`SI``N&ArQ(?ZI-$WP+XJOz@4ptW6vw2AXvhpty3Sddzc z3PD^wZ7*U2YT8*xQ8Ra37a_afQFtQ(IEy%iqeOft7aqG zA^erovrGmc!~+W!{itdrHl$%T)GMYidvw!q4|y6s_(@@knN263WhD*3yT`(&lRp(g zHPnkC>zwkP*YYz`*qb&5K_ZPp&AleT~*RP zJK<)ur4i7eRag+0{#>soKK*#d4ydz2d}dZdJ4iIbL&R^UxS9tKq#5Wwrpkli?X71F-1php3S;GP7Y(ouL-ifT--ZWk!axntQYt z)q9$-D!j6}XBMhZ$l8pHFPCVDg9why^jzUUw@Npt{g8$3jm%ZE_H!#PZRJ@a1AtsH z7CmSS?c1|JGA#3i_S3e|-jnUgl+m_WlD<#PlGOp7AB<}4`ImD^*eZSu81^mmb0nTdr%Vv+BEC^ zNVDGO!7d$88ws0~>SngVW=S+e{=-mb$RqQMJ9^qWP_Fbf8oXZY>=}%DGgr+9uUvd( z7f*XNz|Jn7OOf9efI)6gtB3$De7D<^gC^R7(kjQ(T83gV#r}^vKBFKT9G{`4RQDed z98hxn-XRYxjNtgfO??+sTQuI<)l-ft6{0uef;UJs#4!cuck_&d_cu#7h<}(5_az)h zwZUK!ZH%zw=M1%wHt_y$TBLCU@%}tdlLk`A!+X}E+S-T_WSpH3GJaYi1~XyeDTzji zQ!yfyG{oG0>ZanxJv>jLL(#>tEVSEF6lSs20r@c;B4&f>uHBBN|#M{ zZhpfL_w_uR$s!2#fo$V)@}vf7cvC-57E1n0odv@s~lC5=ZYyq2h zsi!kyhDZ8R=9f21T8L)KDoc0{JS~_#z>^z~`YO1#0F@O9inNN34e@M4Ui*;RL_#9Z z`(7C8+3P@K?SpEk3Dv8}bCm;?*$34=5)^q}x~<o-mHOkYZPqfty1Z+~Tmo&!*-%RR_v%b&kh+a}i$xKo> zAkhdVu)8nw+>MS(*R5vWzM=*gC>ttIhMLHDSVn`C8W853C^YwT=ZY(;3Bo?Pp?LV^ zR`k)E>f@c1dL7aK6f!fTkJA#3kUnOP@!X8KzvZdXf=75oeK1f&A2Td@1Vc@!kKuBC z;L~G0O@@d30lq9~Cp7!c$`u;z(Yps;c|U3bb#7psCu_W%b{ZUmu&^|1+QPEwvleH; zA7yjN8**xcQBU)s8awh_-5xmO3QsrGS)ma#+U_9H5QP@pbA_iteKb(ILEO*4-UE$i zAWO!I>h1?5O>bZlPwMS0u@$mT*bLr0c*itPUoL(O+{L@b_svG*r0>xa7@C!Nj-$!U zRbhJHv37$Kk4C_I$~-;l!pR75V9*FWqRcZQCG_}_^kmRD{Ml8WM`YN-l-Yvlt`J2x z8W@k2=qAqeoQqFdD~aYTJvw&99OxueNtaF63TtuPT+f3F1mSg;AI$Z1LHF8%aK$_i zmLrfi?Pbn~Wr*FjAZ(ovi;IkuNWEi0wc|zAt_1E(t2Tp9;?-V3cRjVL#lAPxUDO%p zF7&j?RL23ZbeizT;#J)o?F@`mXO^l%zEmEY0T!Zheb2mki|5W;To&$=P6~Hv>R-j& z(~r}U0;o8u%jK|m;UZ7IR3beFf92}a?kxz2ITer`!S_J>CONgpTo_*BqIpXePJ@$H zhMx^q4H?pai*sDyaCU>su7|S~Pb~3#&z-_=UhT=PcoufKlGAkDq0@8%aWE;aVtT~^ zA3R$wEkVLDAc42#SGrdRPQgwF<~w=SfsbKd6muoNI&cn_a+xbVssrr`pzF_EDyR-z zE5FjSI`F6bN-y{s-gAwoMa3F{(eTo!yLWZq3E@gO(YkZHRR_LOTmtT&hXREC7BKs> z;u3J%0^ElE7O?wY;ZoQ-aLH0nQpG8_Rv8e)SV<&TNyJr2L{v${Qb|NnNrqn;Xa}RI zB%`b(BZDi1f-sm$GJs0Lb0uN3l5kc@n5iWA%!!n)3tXLw05QR2_!uB3Dm4~9k+W7( zgiqvnmsH^sIeDT9xh9+ykS2U0JNB9ipU9?xbm0?Ox6Tkgk;TPk!Y8u$(OmdM`Zt-v zC(;*f(M$Mv1MnVbDSRT$qE^BuGJVJrK9MpuTlho@sMf-#4u8`FFneRyb)M4=^Mz}~ z)Zr7}p4zZK&N`jZ0Ds|t12AVV^K@z17rp_tY=8RC0Q%1$`p=LHc>a}qZi~;e!K?-OBvaNEKuv-(&NZCRB|RwtT_A512o~Sy>BXVvrR&BlX4&rz zug3iM;atSf#v_M$(=7}lMLmdBH+$L-uU&_M(ZWbBhyRIn`557ErR?Dv zahu<6hULR=g>O(lCu8SpM-gey4AcHfq9M`_esPQERxarm<_3L*gL9p41Nuw4OfXyM zV&cGUo_5^Z_>S8=Bhg{ur({6C;Gb^u+<_Pfe8N#U93@|r52&`FGGZIwEDosPM{o4a zl998h#%#(bBODSGHXd^BM4cEWOMmmU!dp4#bkv=>D#XJAUAcfH!YGgQ=I9LTjt#F z8P4RE^Z3yHo&^y=eoS@VkD5jcaqJAO6 zS%$_-cSv}&AeZsfH5e?seOY0*;I)r>k~wY;zGbIp0Gh|(omf}c8n4WB7NV<}t7a1? zP{vs;oLMr6^@EDCakr^iozP7Rh+6$aINvNzAbP5W^EDY!AsZW?R;aSE_|lPbV93lQ zqe?m%J!PgesE}Uq(T^@|9(3*YoafL^={6>{*6wWQ6ttJQDhNB@ut7<+)=vE6|1#I)1FJ} zT_lDVI1u9VyQe+x^o8SKbogvAYwr9dizk;ZEGt#>iqAab$(*dsX)6<)f_#N`swkd7 zT@GLROiBA@l=ZT}t?_m02ckb#lw>5UrFeQsgXSp_6o(I%weAu#b66a~9CBwh z&94}(C+2_)?nW>LK@|07m(HEBq;v-KmYcx0R8}e(#z-A;57unu5qZa#EuFs*TChMt zOsp*hEK&y!6E02-TTSrr^PZ%7d2`^Z_I%0>cU9x5&0GTTqi79VVJ>6fOxayUDYN?m zDVF<4h6BRw5EvkQaUlG!Oznu$1bk?i-2b^j-50^27944xUvW3^q^$s33gE@*~=pLN={(vm`OrirxcU1{xPyk(9Z7}e* zaR@4nrhiu@CADVitd>RSg|eDh!Ik3)A9+4Y?+^DPg;snpSd`L8QEK3koeR@)6-7{0 z+``gps>Rqz8#3S0eAI{HmgC&R-T}e$AA9O@?%^7EM61fYgbz0NHSMOr3k(AiGPs`= za7#Y*yzHJF6;N&uU)sQ0fzGi&YNN%^edb9Yt&mw{bL~k)V_3y_&l?%7$|Sd;8dY;Z zON4rJr_Nil7;0H{85@}!Hq+znlUj6*S5stot+|oPtVd2}%K(IiZAtCHMXa2aZESe%f)+Q7%&_%UKZcs90bKfvr)jCm zn1ojnNh^RtehzQG%M$KIYfJd}FP=r{UWKU57||AqhGax1cYqNM$Z_sKJEhySDL<*F zvpd?$Ts3P%J8}EpJYAIle)Ot>b`Qf!XBz%-c;x=!&1A$a8qgrofEanv6+2h1vn_`{ zW4H!iXpPVP;pvFJWv-f)(`R_ed3gGf1+X}jA(4mDB-rdv&lV0{V3?NTMq<1?V3}Em zxqw&x4Udkp08-pYw*}ya3!Wir0AjSAYynt)(Nm}dXpK)_1a0@T17PF)!b}zYjZYVL zM8j+%-(!gxH7E9`)##EO0wv`|6X__h|wr-5PY>g&vv35RTC zTC1RLCSqKO!@F++A+WZ2^hIxL{ApZaU$n^{1QL^21dEQ$M{r~zsaY$+nFtro2;#k!FZM0qQ4PituLuLaT_i&|wS$S*8fb2NDZ!%KJcfIHqdw_jK4d zScC76SJvQ^dE0962&yNGY%w#aF_8@FXi3ZbinxTB8&n;Dh=D=?;= zI~-F6HCcy!g9hcN2F0v_Q06rZDw;Kr|MTFqP%tHND~NJq$Wg(f?$lL*Ef#gVj!G<8 zR27hg!M%#t*G)<1?xEXA%7eExF5HyveoS{*iUk0&XyR42^puMjCCkK8*2EstBNeevByC2iPH^B=4I8%_PX(c2ogD(v_CqUyC$_Cq%M%l@ zmnWkO?aPNA;R~n?g*~ciP1d6IwvT~3*4wVEy;T%A z4!@~Nm|eQKY-#9_0J1I?+5g&zGTjn~*QXX=Vyzb)A%Tf|4@(|!$Ts;Ci(`7x!kb%# z_F++^UbJvC>i*&LOA7;N3Rod4KQlZ3CrUJcK_NN>Z@;#12Z!cLH^^RX3(ecdL@h8_ z!e;Gj<5nd)@MD9V#b}KJ%z&b_I>oz1unHg<-8Kc0qOiADeD;62#Fi+W3v|cx;lWOL z@7CSYZ6YEIT<;ON-V`IQ$*Z6YxYsdZ|1a|@sN?Xrm@;Ta3yGK2C2Uk~5`3egFx!Fl zG9rQP@U3u@)rC3eIp%6~ebh|?KV1f|>1(~CegWJ*7)O-Xz2U^Kg+ZXo*9m^((E@agV? zS|hWM@W#RIcNadAexHVwSebVGPju>gC~kT1tu2L(IrnZ2C~(nmxfd?*$h4!M(iBzG z?LQPycS<|6@qJqhd*Mx63rpMwqCz${3#k)F(=8pOhW*kFP=;qAn~A^##kVsw3sLST zq>9$$CE95RYx`u=lYzQT^{|Ju>4_y5+QuQSw3YgiFVCNe$jQ()kyM66?va zEL2HO(efB*xNme_+pN=X*MqKulVWkhy9 zSzFU%Y)9$eEg)#AO36JVyA)L10}_gHDY+RSVo*wM0W)Xdl+=09 z@^Kyh4VIGk)+1|rOf5;d*T{d-)RGajZbK~@fodo%b=9<`FLh;aOS}7X9bH&hd-(*& zO12a#JA>1oEgY7RenDecR_e|IF#`Nafy;w=2MeD{a5t*2=Z)st-K9#XNrwva6Wpz$ zf-+WU-YSFAFzzS|&EJWHOt!nfrhdn4wx^obWG&jdll2oDHruo06m{pmNN%^_1Ajrq zC|yn3;&#IUA_gJ67|2R)R}(yPxbQkIuUvOLrb75k9sUi5@X_^^+cGHknx+)(X8Q=b zk8L1-C6YyPv(pPI?$XtOEf%#=M{MDT8`Uhkb(vbvHFA zrY4}wYZ%l&x+XZRHYI!dOCJ+`+Sgw?CbN%FqQ`%KSa@~%FB)cICC|SvX2dfTw;U&@ zXY|9}ju-B5Cp54>*MF>pEBvT%g1bpnNXAnAmog*`n~gHnpA0M8Tu+HASCbdZx!pk1 zK&Ph^A-;!7>hHjPlx#Cg&B6;7!aXH?;FH4CzNVW>NpU#&gUrdO1Z=`;L&+!6P);~c z(uPt=nR7Nw{H5<%U3NY#njHg88cO)m8P3PhECz@)0bcl`a0*($Tou|3W_G#*Wqf$1 zvy%+MVi(}7dMrU`S-qNwZdGtRr1n)_t!~vXB1k1({}U{OK0M!fHQHhy`CsMa?_S^> zfgZMx{O@w|Wec6dP|!Z|=jG&c76JFK*hl^^mV7aK&pyf*SjuVmk;P6AI-wwMAX;e| zO`UkUU{DDp)sad5)LeKO1VTXgOx->(Y0HxBF$mcq>$uiePZ?^;2$UEPb)a&K=$==h zlAa+f0XlgXL`^QqGqs_sTpcT2u6g zMMcm(nJ*bw8qvwpYN~kqFNIBe(+JEYW#QHJT91zk_d*#OpZTS*Nqgzw*GLZ`iwiy{ z;d$=x8|{aK3alpRVu^;*J+kn@_hH57mTR29b7-RUJ*x@2wHP`WXu9Ha$M1#pIaJOd zN!vaKE^`h*iX22(q#s6B)@X zmEI{*OgwUVi-L-sAfOn>#D@VQ1~KsgAj{79zy7;$Sl%nT!!Z>SU({jWU`Tw7hD2t@ zPnp*UiP6mXBPiX5=1~Nyp(#tArYW7(mAx&^qfTyx zB72CH?m!nAp>0GLo67rVmj>l98U#i2u!4N(jcFMpJs7wf_+-sQ9KRSdzptdD@nzsKU z3bn6kyF+Fm;kbONYf&#Q{RIs>u@aYeiV^Ht3S1t1D7R<_=RT|fWhE{@p@iC>SJaYo ze;yT-vAF!K3`)adqm0Y@h=c@Hn`_xp)oSu$IS|jRy>q5B8Po~HFM{*1Y~$?ao|Iy( z31LrWLP)Gd?7Zkr3-P5ri<**`m26(&yrh9d8ov&In|Qql&aQCYh*~w2&nwM5V3aA* z5T_Wy!@Y{W=aSsa4f<-4)~lW4P!H)cnO_<>s78E`Y*qZ?S<|nDS2V&KK#s0<7BrOJ z00LOS)HTjx4l$_Y9UvAqEWRQ72s1+Z`k@2;i@KxB6yq=>yAcwNknF}^TGWg~rP2+n zlkmghC>ShZ65b^E$AF?+IW&(!g588A=o;oibW?9>BjG&UV{lPF8ErDb-!i!9UQ}rs zK$_dn!*>iRYA*vITOlX^-1!o;#WVmrf=NS*?vw#ooZuggtcNswHD9zCJ)z*)g4w>O z0Ti6?DH_P3gZ3f4uZeWK^HL5Swh!sU2uRkuBaBOk?g#(S{nnqV>!BLVrI!>``~;(l zad+fH5lV${ zJh;KLx+7@ahW1DVsv%qYQEf~1)Ye@=&e82U*FSc+3!xX9e1&Rj{P*ypJJX9a%*0A* zeMaYf!9lCi@2f(%K+T%#uB$p*Ivkq;LMw_{Xe@3b$_zPK zO)!5<(bD+5Cw0eTDhfZY!@t2Oe6Ld(g(>$MrW8$wBZAgr8-<&xZONV}{5esmeI1TZ zWCjw7!oh1N7B%M5f7h@RD`7Z0fv)hMqrm0Cq{&4qICuR}Z z>@^8xMV`3ysTu}m#cTSA1~!=j!_&eui>l(>i!`9DR4;=RP!GO6yC}}RCMqOjUgMP^ zX;>=tnrL5-FrkqRuScL-*5u1_C1Y*Bh&rbQpI=aPFdjV#s$%zV46VHrskI&Ja#2Hj z8sP=Elr#yRzq;s%1HGgGu(022Y#2arPz_Nl7aoaqi!7`6dxdyr?qJrg6P-xc#&uwt};%3x!MUnW4h*Vk<&fbt|WR@C~ZUuS{ zJ2?(D0mzVpkWS%$?{em#7R*(%n{|OQp1avuAcL^j%3Bs;FxIpz%8V8=MDuT+026lzU~2F};5= zg6?gY4Mm_D>Pgi^vZ%*;_bjNmSyuzLSk#R=8nH05UJGPdi+cCAqU#d!YIMhA%A&UE z@Ndwfs#F$5xsSO;SoXxjit<4N0`Ef9mjh^vKZ2uWN5#K7&&{xS%1 zmR?tzsQY#}@0C%vsE)U_)G@cl*@8ob65E@$72Sn~OMeqRw5p}N!}I^;Y!N3cgx~Qm z=Ky9Q90=oX+ZtuC2vixZ9&qNP=?Wa<`j(U-K96`7|dE)}u$gKhhKI|NbHYotiNDC!^mbu>Vo# z{pc}hI@^Zi{zMi3-YCAGL`LO2fFLTz%+G zBqXdenK43iZ7Y@a6C0K!SaOP1Qrko@Q01cV$roA`RBX`Iq%Bj| zI{+dEZg(ruZD{qP2EYDF(bBw~y2H^9;5x^bJ*>mN!2rIIS`xGCoieXsN&n~w?$$J= zd+@e16rn^(HNGMlHf)$d!D4g z<-s@47d?~VcBI;05}Z^*olo`lOLsSp3d&ebFs3e@KhjZY7hNzcf)}PLH~LcUH7w~L9l;N&P05~(zBdtt+PBenoyZZ zT-L#N^zq(`>NSyQlNGPs!aBW+xoURBt6md)qOZ4=8e#rjjpK1nKW{N=t$;DJNC*SK z{q{IJ%Wy2NtbHeX1|u}GAprlp$GHOaVYntD8=m1wz;{3HY=Z_fx6JNu=z|}<)Z1E( zGUW+agdVK`Fe5SGAOHM>Gg}RDcz|~xx=I0IW@)%j6S~^Tipru+eu$tG>#LoNhDEo4 zf9PuGX>~5F!CB{_uDTT@6yw#-n*kyQb=8ePmaVIXm5dm}#EzE zC|fO*dp624kFiF7@L>eqlUB=&S~idft7yu%lu56=ia<4FQ5WPn0w3nRP1qE1=4LY~ zBG&^c;uy%AO%Wq%AA`8%Tzaq7`w|VMFT~fw*>7?wxL?ru5&Bm89^D=@aG!GwI>}rW zLZ6w)1eEcqeGto45S_i=!KhA}e2``#K7ZQTN)17RUt^mf4nE_|QbV9;o&8W-n;^D5 z>nxN(SPZa<_2?9xF$1~_ZgjEt5)KViux;S%5z)e=?QZ?>(Gu?x)Q=%$k?DFGOyjqP zc_*Q93=nx!))eM~*}7(28huk1OZ@1I-b-+g5#F9?p*;xXO<630ML9KyASdhDlQ9)# z#BkM9Hzn}aZ?g(2HiLv>oIN)IL=3X$1|Z93&$P?DH^k>Xt~(x6*>jf;{|2+?mNaEo zf^x5sJ)`MLM9{hoOB4~PhVo`7wJq7xmH31x)V{97ahZXHx)Q-zE|@;#7bMD zyXe+uDR6mk=0xvFhdZ&Uo{O1VKkluBdUJ|*y2G6o6_l~Y#2^`zhQ-pxM6^#*o=P+O zBqj4KGF7t%U(q~^%-XyS8-G}Gij6;ov2vk8(7&C}A`d0>Lc4iFE`(1k@}}YOS9xzr zpQ2%KR@|sWG`NWrynNFVZ$EtB4DTE61sZ6O?o98cyG((GKbz@Y>s}QVk}*dbFGJEW z*eE-EK)hjN~hXozJQ-aOm;5IQ7X$50Np#&hR*-RLlL z)$GI#DC5ePoik++7E9KdqVY1LvEk*e3^irRI#(SdYw%}{Mix~33L=Ve$@)Klh(XDE z8ptvwE3TgJU76P?U2izr6|2tf_9P&w#lFFc^>=)5ftTIgPI;HPoDg(F4rlz-vIsi2 zpwseyzFX7vWucZGL~d-lObuCYm`a0n8?R`lBIgpTwmQGPFv{{SFvU2mxJPN#GIkb=8QV8Bm`}lQpzEefjyT^!T@^fAIH&jDT0n=6I+vsV3=k37fS;Uo@#1%# z!x7KiGTQ*|pFtNlSs06g+ZACv*4wj;F)2OrNp*!%gV%S2T6Z=`D8{w!EP&7|7AfGd(A-^ze}kd9Wi#cz6Ux1&DMkB;PXyh^HbDOw$)fI^4i+_4 zR|B@}5TC505evzF0+0<`R8r0GI(0g(sum`A>+q_r-VD5St2ZZaneOmR8Q4;t;TSZq z>D0iOM}FvFGz{z?o%`eKgA%smJv$qxb7Ddj|Ej^n!XDLCfh`vHkd8_$SlGXSEDY{d zyuNOVFgP+sII4D=cYK2TknXUQ`FdpM!ZfdP%h)hSIMmV&hYjn~4LC0oV2!c|vMAo& zxv)uv0)rF^V(Vfkv_>hZgL3l6@qRprurxF z662ZA?*I{l^mvziCMKSF*gFnCy`phLeC}cIl=P;}BM;R|u{%(dbSlsW zX3B#fJmT%exjSe;S*dKj3Mjm0r}rs$uc(lWRkoMOkTfE6l$C8V5s={DCJrO{nEg1b23)dt*d_7$)Z$C5^^(=a6uxbjx2f3Lt3tfk z9d+mCi>D}(b$dMGa!+dXk7Lx^4b9SPK!0q^GP6XxSfU|Dtl%fRy}xp3opi(M+smel za%QkdzuKC>8EPTU_dVfV!=Y^o&Mh?W=ZT!(10LNrrtQ3~LVrG1Qca zX9-kBtW)AMV?C+bz55nJbujCTH1+_8}zoVWhcT|U{@n!z7~&5k2~j} zBMN;QFdI?&(w6eKB^pZkEW-=N_Dv0r{>b?yhdz_OXVvPj7j1`urakEAK5>4V^pgZ6 zt_-~OsdEwfMY?S449QiWIa9f}@tpfT9{kB?&ic&az)!f<^WN2nL9+TX#fk_+N`ApR z9W~Ch9*G)BG(!IT=?mVQ9Vkn>VO1w<#Q`u_R3|Tds7L`}JXlHVCj#GcA7>s%(JOyfDShFF`pL9jX9Z-v|IbiUB323W zHpPT()83SVigFlKjEmrz01<;CxQwVHR0P)q-+tBGD?V?n?s!bK09NVnZ?FY0CsWz} zr`)p%LuO3IH@ieox((f>2vkGu|9`1X$)5KAV??1E^Wcd7rT>b)M`Z>QYX9R2A9*tH zk8gWlNk61vD^_MjJH^oVG6gRW<{tKXIQKCPDDYF$`%0fsK;fT`cwcsZ7ZsARS<$mH zBn_jDa#nPZ2q?;aKeH*DYFC4oXf|cDrfx&0pCza0^dF3s=cKoYwr2)1lSXknC7061q6prik#Om)fhGiwL zZ*D;6Ip0v=(23Q5Xh2zs-w!FF=!w`+I2r&P1@piy#XQyA-n*{N^VyZe7}wFo%p=Vb;n~WgpbnU z-(U!bx80QPDoU9xtv68aHBBkn-4Orhf&A-87IpB^Q3VyNbv0m%MOEl%#6lon4rCdN z!Uqp^NeS-m>>K3B+oC%tQ)YFS&L9k$)mmy+%pM3j1P!zLM^^@C)dpox1LPH=Rr?ws zFUqVWlO_h3w%wp z=)y9)L|ecv(Q^32r%AOPna8a1fcXfy8qetIn~i$5vc58sFVP6m?%T`P)tWHWM1xQF z^4;S=!z47T%Pp-$6J@aIa?5~2uDbZkzP=r30)rNML}Cn@&RjM7RLKNL-%;KM-gU`w|xr5$7UE+ zq&6D-6gtAT6d#)aA_nE`2BMEpcd#b7WT0;!9E+nn9#eJ4E*<_2)*V|~DLWFBdyUu` zP2CYe>o#;GB2W$4(jc`h*;99XLKJFW-EmxIAfdVgpXyqa7IYQ)TEn|lG>pYc^-(BB z!Lt;-96yxHJbcj{U-bJf!!vxolkUVUJ=argw8X{=l93AZ;2VBlOU|7Z6_l}xWP%Jz z!;+({NKS=Kz}z{$ROOnyL|c)tUSPum$SgUrYB)M9VnxzZUXhI4Tk8pp5h@b@aHvRz zf#$958uLpu#KaP8HNuzVKog`JR*Q$ZqBSvCHtZT>sD(IBzRdR`hpu5bUq7g*75;m) zFCSGfSEDOLHq`+!-zRJZz6RfPxvz&B;J=sq2BY=10IVG2>nZ~f9s@OA(x~=zLOJYPxhsCt=+$2 zEqUIOh11Ha1HKE~Q}r){rzqNI`IU7fEUTG6jTS28_KTqtPZ@90Gl_fn&E#xI3}~=n?|zRy{ZF;;g$0YbG@qr zzra!Wl7+Z)yHy9?g~N;4OE82d;N&Fs5{%(hc!q?%1cO*0V26+3aA&|S^T3PpYq>BE zl#O>y^EK^|3uP7a^;{TG5x6{i2}Tr`jZaSVHLFO;cGRg1fb8M_g5WCyAaeM>An!^d z<4PjeN+QcjBEL!^vq~bT%D@}IN@YM0N+l6QB^i7r8E+*SVkH?>B^gL1VZ9Q#6~3Qa z0nAns{wjeb_`D==v@U(>rw9BQAa-3KeELeT!JfjW6~Jbom+2e-_>|zhotsj~iX(JJooSaE&}{Bz&6Lr0NQMux@@4?skr`d;`Y zm4JxTkQRqZoJ}A1PY7NZ;u`2cFWCpyC^A^^qlLca@#rW6#I5tU!mY0HJ%o-kR}Ja> zjNi45JBlA!>bp`#QqY10L5ZC)g`m>#4{7;((XR}Xg!K`_Tr<%H=BmJY3tcr~*D_yf z-1mY34R?8xeiVL83in^L>G>)wh{eIAYAE93aMvIQYSB7MH(SuYZhBlsYX?rw%zq8R zhp?9tVcdS1YYghfTs0t!{wsZ%i6D$RRT=n9pS~G*%4kwFu~9OkM46`WY-Ye($y%oVQT4JFY7aeVSN&uuc4J(xN`wQVlRt5+Z0C-h7kqQM83&lCVCv(l-^= zFjoZu6&Tja9l|e(#(^?Up5*EzgRnT1OEiXZV3O+~dX`~Y(!xv3RkK3@%J}+tXPyi~ z7|Laa<)X?r9aKXB+l4iNn&78XT=&NH{TTRWC&jfRg}o228dcZVQc9tnB0%Bw3mfL( z;xgAjbXFlDzIG^;3!ai_h%OjRy3@CeLv`9nG4Q~2$Yq;nxK^Wj%+=_W(pdl^_63yj zfH8GnQA5o0HR^zx*#xm`Y~AiM2#Y2>kaEumjC$jifNL-6u3*|injWmi5u*6a+Lar& zBXtyKxDH2Jv3@FIC#(R1OJ=(=8c0M|uJ}}#r8Yhrgu+7tw zC2?`Kt7UhIgjCIq6y&CnXMoPO%b;++XS2_PCMpDMCf$seXh=LCe0oUp;PAPw|8l5Y zx-XQ`+4#D9d|l8Y_9}$b{Mr>EdfCH(LI+nK{QDlCSB_xO97j;f%$P`d9em?nA0LNq zVVM?Y1ig3oiqQu4s>z|;68vO`FWDhO5QZ|$uvk%Q_y1yhRtaGQHe%a z>p|CbE)R#ElWt*>cvdcR6{DA#t3r%3u5c-bK8O20Ga@W=90|h|u+C^6t zKeu#FS#?$7j9H6kE}2>#AcZB5S6%1g@z#fZY+?Bv-u5k2 zGbw;TUxAgTBx$JyfOFfGG^usMu;<3X9hg>$s1nAUXe{q?gKM(`1(=~9e82cIw2-+F zT@fY)C?JZLSGu~%sFN5tAR)OsT5A(T>CLV-YKS}9xN^`Yn;_=+^1CP@CZdNF)Xn%_ z0QcJG>!YOI3g5HOmxG?M1t9xr-@7sZi;;R3wQZFpO}@=F%7NZxcqY0giuj1RYSx^9 zGA4>pKuknG*+hN#ovwWK0En?(P(YZ`^}Bf3exF|rkmCmHa0oT^nD{kv1n7}5p60hc=sk3yhX4N!!xm|u664r z;8WN&01akt35M0fXpRX;ajH+djSC8!t5M#(%QYH}RsfjM3-FIe{MXe|4RK(zs|a0X z6GZ9Vu4Xa_GN*q2Ro`5+Q~_Z;w@Y(sK?{m`oY2;jl}!-~B~^JaC*UHfjSV3}u{W`H z<>|~n8EWB5L7aasim-ojeq~yI&n++}%|=T2RJ+o^ET9Nu4V8iT;%mP25z2<<$#DDO zE+8u|AVg9B;9O_prg+8czJ~QS5?M=o2X?;hyV{YlPm5c;{ppgFMoK1=-6ffmwV8a< z6q7=296peGYdd`DGbQaaD7(^{bXbpg#WN+%RE!OJ+t;G8T3vYl+dg;9Y@jlN4dl*h znqTpQmQ;z#AAq|m{S#}bsyDlI?u;d+Ghi+JQTUe1G$niZua2nU0UjL}3O!=~1W*W7 z+X5ExpRa|B;S>C7aNoneqP)0EbWA$%68uCp99)Z~)B%#wo3qSPeriWHn3Nq=FdxBY zh}hqc#3vEED20#0g#ND$=}r*2#^I&Jp7L}RV2eF<(@}^8dvXI=7@YF(QtuV{|7qYJ zt~)Gc>~VGTrwvlXo~pQorPox;7FM@VLoO!3(%#`v{JL>lte$U+gqx#Vg$UqbT0 zbSV!|O>45Y2+*SOwhH0<)Ne>XXngJ51+ItRRLM^w)p5U5A@?H(kxnu|U#TW(OX)ijOqYA7P}_sJ?(QPHTw850 z8Vm+WM={3{fNI38}Uy=VoT>1nJOVJMewMXMTF+^TL zfy;vnR_9+DpEE}TDsqrB82Jm8SZ#02-xue;J{l~8k$-{=O2cS7L>KwT5D^KHzYX2d zDKj5sHH42O__LXUpK4ZKO2Ps)1>gbWMTn&ho7$BVlRiUY~=i%oU@kuSh)nS+@BOkJoW`IxC4AxMhS_aWY zsa0lat-H9iHWKq?R9=~lQ-*D`sssynv! z5D=ItEJe*rtP`r8X2IWLtxF%K3%Mp641`UcLHE}DuQ;@tkqB8$>2qIxFLX0=)of$~ z%J|Lu@;k~PEJn6lM4>ANa~Im7VAw+RyfrdL8XnNx{{!0101% zZFZGxRL@;%@W>s*@+*FZQN?%~`~yH}O(QKdxBg4?5t`%F;HFvrBYBA(^@d|=790m8 zwb(Z}3qI9BISZ!DD+|7mF-0*8Rx6z>0L9Fbwh5M`(YPlDRiLW@Tly+_IvTNHP~Ctm z3{Kg&M{WJiy6#cB!%}p{vCu8`DW^%wZfVKGV#FLyfYptAQmhKIOT4FZVQPf}ge_&I zb(~^7TFS{KAtALDdkMd#uN|8QJtmrCsZ_vHL$4i^CD#stXlI;m0AXi-Q)Kiaa!6Z? zve%AjcNR-_FnOpJTfG5ziE;2-0}xu#!-B1@6jT-N0frkq>-XeO;nH_#49iM`=SNYh z_fg>T;Mi{d*SMS~G@yuOsg!B3!SkCEYuA(caB%-i(O?;D@WeZ)mD6Eq#N#L%JogY0 znQZOf)KS^mr>fRuEn5G(9=K!u?@FWoXSB6n@^#n&ZRqW*^Bb5JtMFI4J)w{_Ae3R;~0ut9(w;TL7w#=($>G^1yE>6_pufMXx6!bgjge{K@Jd-b? zNKeb3lV|{W(Lia<;>BmyG)@hkI+XtxhY~x>u`D#-{9;67pvgn8!I_V{=5Z*ML4xjE zYaGAV)fZ(lSIsuwfHJ;oudBThq80vrFRYd1*aWd4GdWWY@xqe;F;D?vX7hS#XL{}h zD<_LB*OCYtvHmO`qhHaqg5F{N0dc5IAq4{ts@0wxCvsj2B%`ZcM2as$eUv3L`w&Tn zeX^WtEiEzBlzuiTQd&A%(lWo|CKy$W=ltscA_i$`HPMHZmRzI#i}SYY4o5pJO;UEJ zqacGxE!~WBFZZW1S&8zl4D4dRvjdqLM3a@&nztbE~tuuQIp6xRJ=+(o5`IA{EkjL(0 z`B;WyaX>2~52#7-ipem)Mnf33iFO_-^-n;4=Bl6_+WTit~=TsRjybWPD+Q=|VRGjges}I`BTs7-}KpA)2)+j>;K~{rLz2;hhb}1mt zNJ(Jc9x1JkBqi&s!HmqsxF@*t4mh5<@28b9GM{f~*go~r# z;edZ{V&0FstD3^mN_ZsCucW)@^8e8>3+2-+0!^} z;*NImq2D-dOz4H|Bh)wzj#%u^bfo9N%}8c%rE~g-nBO{6;PT+lSNrd9QY0EE5E)@9i{wC>7#1lH1-c}EB7C|Nv$t(P+ee}zGb=4ep%j@tUf0tf(_gK^c z-3ZdPTJ^7$XaI%~zJu*6{6igRqjZCw{^)xLP9xpQTorP7EvJ$8U+r&BPJeVAcJ*RT zBi-nxT^Sa{V%2$6G+$;w^aPhn*ZB8wXrIJ*5RQSW$Dsq#6*2{BRf{#?i|@L6aNpxq zH~7~uXNc~@jc)Ykv-IgXR&#FjcR=qeFw9i7`|wXU`WMRpEQ;#A$fAN%E#G&YM?bSX zhfgv-$6k%9K9?pNKjT|(_SeV&ERN)Tt&z+;=GuW8=E(iSLKpT!EuhyV$RhUovX%Y%B@1VJ`fvZEMryMGHRR8TilO$$Wrsiu#Is%h54 ztyj|wH8B8&W9{ea5~v39Hf%!(z^EdX74TDt@wTjh%>alPRMXRmK0?(}P4Lj~`GdK< zHM-+5RZXwd;oo32Jv&EPO;heQDuQULX|>jEsHW9K!>073U`iUBD~Uxtp{oH~ENZuo zMl7tU{u{``;FOyy-`M2e;c_3=9hRcyU~qHgFJdfyivZiRx$<>ATB_Y{@@KZ66n?AR zTuG$@mTJ@H%0~c%t@Ui*T=_GT;cBtfxUMmeesusM2GQ?tqGpAy9t*zqi2oO-yOr*+ zl(zc))Bf&>basHVpYdl@NRJri$I<3$CJ@wIW{Ywrm7zyVFwhDi^T?(Z()Qm3;m1k~ zrLxe7rP1&HMduY3YXA1b98s=o-8O7L)CtyC#zokExMyUSf{H73O~jTcJq{pZVELC5 z`;qeg_0Ri9b9sw($73q*FVNxNVBVkDRhjoG_ZqhPPtN;gYE!bOi*_&3r$+LNoUo*G z1tM%e+#<7&P!|o~d(eM>dQihktTfTeMPJ@aam#}*z35Nka$eJbqJ_0024@>=qAgHh z;h``4Z+0Jx2FhR$ZK(`N!(O9|{CkLm%=XZzUNt$1wui<>P0~ZNwmi&|6T45rSN&TY zsD3wjxnq3lsamUABkCjpNNQ%|h#sT4=_N#xVc&)`1Q=>y?qUw0>pGPXMwB{a`isIV z-i2KX5% z4m3de9(|Kmr+569phEVl$;ED<9Q@*hYaA!Tu-JlHFPaxKyx@W({@EOw%&<&ON0`A} zFuTS*8JE82Z-P(va@LgrkhT*!iuYQ(P?|d?cf)t&77szUC`g)F+6HORLta_20M`@I zR-34I{SFR|V5wWw>;|=FZP?nz*oo2&Hmi$;8ob~Ge?i5|Afg!en+^g*4C>AofGkwg z;Ule9edvFR%llM!Jf`Z-k97DqSa-hKO<8wR?v;@@v|}QQhk4anx1rypCJGis6UKvr zDQWbZh($Hbjk!fN0Eie^R9zqogH!gKCVt{?o#F1NJ1j;0Xt3Y3TZ{vj5MYgxTPW(H zc$l}19<7MQh%}pTB>Yx6o2OC%OSP%r6b~RV?KeHlMAuqubt3Q*tx}_N@JyB(Fm(Lt*6$qv#+E_<3|GsYpnLSo-T&1m9(A=)W15LV%2dw_;+&gQ4T$> z7>9*fPcP9B9t$hasP05X#IFf7hRMv3ms$dK-CIo+!GsyH-&<-1LB2`XeSn4K6CyY?ul!<+2>a7{v2*aUI<57#wnh(4DT7oc)`Ac9$cy4u5}pP?r0(zu?vYIagS z0B`M3ESHl-eP6Dn?~WH-U0`z-!?ZAzjTOnoXe)Ek?0yp0AiN{!pswS z8@uD(Hx+hJjR8+_B#%P}?Lip1e|R$)f<=9di>!|{yelqwBRbA7O*%a%mWoJnkuN96AC_htoRa{ z#4W0JyoPFnPvsR4tgcoka6;1MT)7egiB zoIcQ-yq39T)@Fe`ydtP$GZ~H`Knn%<6meX0fj?8r4$J|t<AWujSAd z=|0_jN?riAKRI~-s$p)K6%UZ7;$d+tilR zui}eaJMuDg$78Bxo(3ef_&3-xcjPNu=9GJl-cB@IHPl+Sp=GWnD$Lu+vvb#}P060E z8bd(L(PaSr2c8BJdLjD=ZPf@~?kf&B(kEz`iIu$?t3|KAf&!NZ2bL7S=*XF)0Yzew zs)ucGuSTU3>zWb810C+`qroz`S!2BnO2cC5W{s-EMT@7GEnH~ytsi6Z9i5}lIo|%& z@T|$wNk3G>8XS>xIaTkdV-tYX7-h}fhSQ>0a^cWHy$1{4qp{#b;_+Tx4cfAGZVy0c z#WM>VoF4Wn#f8QTVaaSgBYv0;-7xr#}_OYX5@Mxv;g` zu-929Zo3mA6wrHK74|yoT8k|KdmKQ-zzHrV_7f_QYJ#nC@jHomi*?6is(@ag!@t1- zdSVY{0ZqBru+@KZ0bQ&%C3_0!dx<_Z@?hlLrN7r%W*^}K`uT0e-5u#c4KuM)Kwp+X zmxlII;PT-7n&P`1Ij?CzSt_8%E3qmbC~oXEUu$sk&n%p0#>#8z73gGS6JC=*=!K$c*lX^4wD^aF^lZ2pX^V~(ubC&BS4#?9 z9&GS<@ui75-8G;rdCgKK*7N&{?@w?Kjt0x1*Q}O7Y1pc{X=n3-=%<~`A>UNPnjA&@ ztN>ee#CGy|i`s{3@R7?~6jWTTt3X?dm_+~)gCb@=kcHALv~d>K94x*+?{?kcn5to_ zbl5jo!z?WzH4JkoBxPRHlA=ATn6)G-Y|;ueun9$H7nYi6@YGAibsgv#kO(^yHQu~e zb>8n5ef=q-%xEeY&0Sa_k_`J~7nbe9$T?K}RXqCGK4IJ|3gbijgb^aC6vm9&cUDDZ z8IW6Oo9ljvG>lo}(zlCK>xZ_AW#bdgMyAwqglB{uRtMjP9aeEY9} zCCd0C2^)?sP6-~%NZ!k#Wa)c!z3}!U#ZyrRbJgrpAyB6KM_7mjM~l~?&Nfjer=hUa z$$Ic}Et038{t5^)8w`?r(vyi;1dB`QJ4L%^v_lX0B&%P@k;i8Z?ao zBAZmonG1rx&4_DSPqImcr7dkzx!x`SvPs1;ttWjN>2?KK;~OTVgEpt(GanXb$z%e2 zPej{op?&07aeEnUix#vyf?};Nt1|Yej22HtDyT{)LqYW#2q;paPpfZR3aVECA_fK3 zi$InssDfQTF1~@wJE1!sQx(-`I{X`~sNU$Q>-G*gVHBn%X zCZ3lBQ_@%%A{Le0E9MsE1c(?|6aum^IOUT_AAepvs+rrZJ1k|h-Pmgd-xA|MCjzWd zP6|`UC>Dm=>(PqbCPm`E!f%zmb}ALHRGSut>H!E_j@!O4^a>MQYq8Z* z;3dY-4l?VMr%#UzP~wB6j)2@Lhws^pb*# zeK5utJHe9x5d$Z9TrdHqr;?me@@n2u-Qk$30N&AI-(UssOfO|mg)*;cs?qjT)T+0k zr=lhrtY}_R=s7HlnHqs5V&c;5sf0)}?Ay>&VW^4qHNMcYq-iG(yAj zWtD6~-KFc~5ituB+4-W187K^U!f)ev{CRfCG*qa7vS3XMMW`V_Qgi=;o;5Msv%D5oP+MP1z>oGl5uK)4|9@-q5Bm8 z#x*UqClf3sS!-alZdh0R@@^eu~2Jj}nPQ$fWc z7*&jmhnE2&2F1fcqL1)`Oz`f`B}2KqFLcLas(ScThksrDOHbXu-dou}pxkRz5C0!^ z?*Si0@&1pq8z3P|OQDw}^mdRCNFbCX^mfTz?vCCfAaH>YnlvGxpakgzMo^mA3q_F= zY+ykwC?JAL5$u(ss2?l;XJ&S9XJ_x0+q=u}@Avb1eax_TPnqX=&+|M}cFxSH61~^M zuzsLt3W%cX2g~(P3eTyM=nS(F-}qQ|B;lvvL)jlkD+i>%Q@b&I<_q%&&Q$Qk> zTYzl6Y+cc#gVKkg!*4XKg60iMU*EQaAHg)1a5K9=@6#*gB`>z7@3r(YBPzhX@&`1M z{Giw536loIUbt=y_=E|wM^3%$R}-^)2?V{N$ONZp{>=P2n@fld>_^htC)aOGbTSjL?2jli|iE>%IC2 zy9=dcz)b%j^vYM*qR}HPi~R>cL>VOO=ZHU)V7v=ucd_1;ddjdnLFMWX4Ac)WSHGCS z&-AJCeq)T;nZDljBx6qwX^&jb6hJ{U_94KNMtO83wNIRSp~{YK)*83CP{m+QTZppT zmT$W$C8mQ^zKb@f1v8r!R31u@IN05KT9jhd4?>;Jz9t6=Miv>-!$R@^!;K%&$I!k( z);Q1F9@a_~Bn#J(z~>^miNtZaBQ1etP?Kf-r9uizrZ-^-{R}tRHt1wOYpn<{I6B$8 ze_XUWi$d2|NI{(07}(!BMRIYb4F-UDDi1}~gaOv$(m3@wy#}=?KRsD0V4s?r8b1Nt z>5BX~w8n02q7e|{{`5H+7ffHm;6#R-VwuMVS-+IlayAG7&|k}nuLPE10<^-C(Vp01 zQb>cH;U?PxyOX@P`Xd)^(UPa^@m3Y!uxPMSnlN|5jB%4^PDo5?AH;$p>Xr*=e}S`m zFlc{X<)QdA#s+9Vsy?S^e`gY){eAXnkZ3~pFpVdLC1W3A?a;~>h8sVg zDn#<-%k?*_#`zymslg1WMMJE$qG&`|nTWcJgOj4^72bFc0391*ZPmrs(w=%}x51Tj za1Y$cPuijpL#??|$FABEDVS4*?NuJUt)xhl^sW%+Ngieu;g_A&FNRt&Rf(jzijht4 zJM)aN9ug%xBZ>U_?*pT)t)yYhQ*-Oa>a81gPyI3027*QcxgTz9pO{us0Vg4t`{6)$ zPs-f%bghgKV^TFA_6mK4m$5$Y`I<0Fblbzl&)d?9*Mp79c+$8AM3lj#aV4;2wue0z z##Y}Jk@}Qje}bAdK5n3YfV0NZuKcW#YOk4isrv;j$P%ynOjEJk1f$(7_38k<@5!t& zfaG9svRcm+a7D|Qc6`{ybxWNglk#U-dQBd088X2#VD`*e7L?pSMpEaJ7bjaA-{Qcv zK2o9-w>%fv+drleI~O<)|88#_ct>N6cfgNryK#%65D8TxZ4{KhB4vty~dHC(FBJV`5cpT^%;<))Xq+jSMuD~r;b7XJh1`k9Y9mAV_kP6qR& zbE*4ZST9klQA1oj=N9fe!Jf*0MDaEts-M>KAc-yW85i~MLvW!xec=~lt5zGV5N zDsGY&BdXyRIgL;qx5&~>3~rHWax89<`9&OVk;*6@x8R<}BI}YU4D;EytxQ5G-FhaW z;nS_J$2P+slQDo>lWMGVp(BwUdLUbsAvMs71vOhGSl~I7GVSP}6#6HX{^{5a-Vqql zJ6XrZ-4(^mwC+Sz=3AqMW@yPaYwcSyx*Qu>E51K4X7zD*1rhdk0;(~`I#n9SJPkC1NbwQUAtb1i?phno1_0~xmVHiz=Zq3`Dx8rrd@_^q(b0s+sdr4wpGqCGJzi?h3B4FEE!GIlj<+SCs&7^9BsJxP-ZEa< zcl53!TtY1#gcUf}6U20PJZPOEb>djw0=_M_T9YaQqROpoji$fay9wI!pfxg12?C7u z(5kK0$r_o$HtTH3%84^!wn*EIX+@JJz(Met=>2WhWCqWdP^Ilwn?@SObIz@O;t$WY zba)0hkU)8HyY;;Ysfg>xEj=;4d1P&23aaq1)get`h+#}5pt~Nnww3N?p5lQKz(|+1 z{|&>RM3E^d@)1}&(+Sx62ng614gsDEsO0RNO?R{%0GVkGD-Y=;< z6yAp$*wWFZ5w+S&C)5u~qzOjAag~QGz*FZ*Yla|QR6n4#%EG6tcS~P0PXowlSx;LN zgqdjU(^e}J%YZd1Y$&B`WRO_)K|^V%^cN>1EnvH)VoCycEMjqjl1O_Q}&hzYYb?E&K$T57aRlGY1SQ$}gUWO9Ej%tz+Jgxa5`=+ZtoO{kMn zvx(GJ%H#wD;~3zKwl=ZW%qlZ7MZV(oRYvsdWu~#=#O z4xLJ%PwZ-%Mgi}EzkD}8#oF}tfLc*X>_j^USE_}kd8`%F?g4)CtiVKUM=4cfYoSGN z52zA#H!xrq$*y^<_Y1Wj^P?u(anKrHjZ+R?FU_q#T2W33>|1~Zwfe(B>4@uW@0)4& zp>Bt)EoxI`)ip82dT8MxYrPmwEvP51^^C3;t9KJxayr*iX1?$3!}lqZYjr68#E(${ zH88g>g-`W8c#!f;A#4a<{gR?vW)B>7ChAl5&rxU0-ovs zTNY1?U$g!xq;@jwPf&R3XrRCGaPWqnq%3;&TE!F9-VdG#oOHM+Q2YNKNt1L)l8;_1 zaa0}=7&rxJi2_Bt!4@re^y4!$e&Xx!<^>tA{sg7Q7sBQyWh5s z7A>odusx*%!zWZ0u~xcb2v$h-?P3WShksxbouk#npwA$RLn}!qZb{2-R>?;vIg(Aj8ThOG{&KC)BPcy$O-_v)1(@>WI_-ZpLatfJXI9OzpiCM2W8$McfQ zEVnO%5#;Cc0}_(Y8u~3PA^Eh5AYH{5LP$PIe5$+r;PsQ%&pTOuG3*wH88XKD-x7|i zDIBj6xqh(J!o4qx+fli?c%KN<1j$0voFH_U&MC88x&ViSf_L->Ja3-=L_VWwJm zAAg_jtpv6M0;PHFR;2V|c4U}k|9h$3FywCm#+KP-ULQ0A5oJ&xGzPY6ec+A$)vD%9 zY?sm7s9WZvzb+(OBSdQA9#o40&+pxGqT5>r8_DI-g>dxe6OCR}5ijbFqMTmsEVr8y zg~NaGt;U=6qDGWoeD4Fi;tL!C8gQA!LU{0Ypf8OCkoLVJu5~skteC7o-R@U4vqLWt zv}1?fh+AvtZU{6hD@@6sHDRt&`THM>*1rX1Fw)B#0uaFaNnQVBk{HA$wn(rJ^z}>f z_J?vh6z?!ZN>~!kRuEAJV|)v+Rmb=)G-g-MfYgJA-3e+6aKJ$Q0H**CQKU{#>ldoL zAEbt13NX5?kmNM@A$bC*?+iT<7C?P%;E@n2m@j}W0E)l9>G-2LPxi7@=wXx#xnM^s zm;wAq1`OiORXiGe0nj#>qf zs$AcsL6-S?<`U-2)H7o>{CsLigKGInv!+f7Af^tMt!iB05Uh4KbZS_zng$}uAo!&c z$SCi#c?+D=S911u$Z#2TD;x#RIr+yZ@~9RCo=Qz}g>=j9Msj)223X)&<;%FdqKZf4 zZs}mT!<4AN3Y^0lQGQ}G9*!mooLpj|APbx>J@^8Ly4|m8W(%BT(2gC8;V*Db%Sbui zy=)7d_P*X(ot`$ZL-Afiq=aRRKLaAlV2nRWu%nFeU5~x8Ay-I!+ps%96*xx?)K{_) zKYF>z@3R!C1!{pqmG_I(Fs+#faHv7I*%45|+)eWm6-`kqqkGG5O~LWne6knP2=-lQ zT2_y>CgKlMiGkesXk&w(J?qrhpC5oP(51qb=tv7`jPy5nfgOthoQ05cwR%e750wY7 z*USKVqLV#Z#d#iXDa{k5=$=|x)?4RbSr&hY(Arym!-o-#$PVm@Ex8Az+Tjz_*N-62 z1&g#vkeY>0Qhy(k@MdplH8o=(-Z#0vf>-{_9Xb^EgkJgIAqz|J$^sE(5WKnpTV{6V z`FMM7j+i>qus=aXuVDuI2N=D2_vCkIsP=xMmzn9A-s@!VxXhq5(l3-s3{4*vDBWY= ziV)^ycLQ4$O0?FkT(G`ext2>x7nZhgFGC5B=6-_a?@FwK8b6wQIpYzdu7;!j9VbVK zhp1)+o@I~aUJ)z@jO6keG{E||kQeps6S+eL%TZIJ0;_-LYee}0zsdS{JF!rZ_3wRj zTrvxM6bgP-Gh6>Mqmyj=l-aOc=4)7`+Fz8bLfr+$C|{x1q7raYy}`vsEO@{|FRoZLy653M}aGgWFv>l)+o6u;At zkLvXERi5Gx)$&x`i~k=k9?5APeX)w7_vN~!Uf>C~L=EPgYqrWmwv^}mzTCNjl&5|` z_PLzF*Q7`eWLjB}LUwsBw3oVz6UTxq|7Df0bvE5B0-sLP6xhnuWQ>t#8C+(~sR*fhI;SM>XPx$juk8i@{a=K2jM4W+%GyVSD7 zl%&8Wu2(dY{Gi$7#C0CA5ypXhE39ETiq9w}G4oXFb-$XJou@LRD-82gh8v&pZ|H~B zF0{`MzyAKAq2I!i@lSw=G6>Mei6_1DRL`#`b8iCh*P!ak&1N{Sx&>!g{G}Yb@ zlK#sPx}5$(pzuWKntgD>4PS(gBm5M6C=uGz;!N(}5gF~^L%)S?IAU^?d{I*yszrh4 zkxz4Lm$zgY$qh0fD|bS9MYaDd_pS(w&6KFXB62NFul%5wMr61HXV&-$GiC((qCm?& zVynRYuO1#Bt?o@ykNeSz9MILB`-ed3<4qnWl9p{;ZlE7ba$H_&=)JJS&5-{jU8Ec=Y)20833oG5hS+uSXdBc>z; zHtNzflKkM?WF54H7%0dE{CoQF2Uw`n{i^n#EsU~!4Z!JV2BsC?Fmz;C2H z3URHH_;#Vkf6P6TTBWZ+!VB)5%xGZgPyGPvqTeWxn3WK!yk8)hUBG7|xm**M?fiA1 zFFXlTYNr)v7&;&gtKbjb*f*SV zlZtF*#OxVxfz}itSQ$MozYy;IgEuc`!m$AN=#H=sGX*vKJ9kdh1{pBuN~EpkWDQ%B z>2R$Xo1kriqtJKZxPn_g||!7nBvY-ZW!J>T1Jfw%7b)YeQ>$CG^zI-0ImH z$Me-3izhc;!`lfg6&&FQGu^vTQGfdY%x`0^Ei(2I_yXN9JqInE;X=pP$D|(tjyWD* z)Cm8V@U^t8@D<%Jyo&^pgdg{Ah#b3K={cklDvYq109X+ZF#JFP7{Uze$OkS}kR^f& z;Q?6#GsfXTMlJDw31q9v3S_xv>=-~08)N{o_abeT>_I2UX*}NW125iycXcM3O$Zy% zZZl&b0<`gJwxrhZ12psR9WfPt*{;=W(!&kbYL3DhIs$X}T}%wm{XM0!?*MJOHPR4D z`*p;T-l?MJV6-i{Lh4?_{sdLpKVzVOfTjKBe*CUE)!r|X!ZcS5;K07_6p{Ka0s~L* z9f|YnVr;eYY0bjCdVqgkLURoh^X38m%=FQ&O0hP#^f}l))T3RWsXXK^c+SPzMhMb1 z^#cUwc=DzHF%R$=pA%Ihr{@zwOB5OVnSnA@VVSJG};;T#(<;5)eI|T|$Mtx$80JJm+ z2Mjma81RP*d<*gmAIq5d&_Rw570B67ls|Z2T(Q}h;Fa~PFIkm(<mq0G3$li$R)Ly$ga^d;v~TQ{?{mA+@5n)8EtF7IwB8N$h;Zdrw(U|g zMrE}lZJDRo6#-l^E{9(=t2G-yFZ^XCgxHlcKDrY6`C0~_a=7qD*Ymz+3MX6*(u!SR zp)#H+pEe`xDemp};_Y!%VK;cQIrDKU1LE^VwCd zx6R-5srP*tc9rx@y@0ym3sCuE08kGYIv^~&O7|N$Bm_Wh1hx#I==s|HhTRDYPx}ni z4-ijVDV~^XeyH+(@MLCFN$>QsMbb?@lESm8bdk6-zy)pqHvX{`_F`fFeC;_6JiMn! z$obmJ={EU%ZH07O-;CdlKogEbB^9FRcEAm)6FpyBsgvy;OVmK4c+S0W6yTeo5+@Dy z>ug(UsclM9VCPC=HIn?G+2lsrbuSKrIbTb??pG7D$4Hpb6^6Azh8v&pYezvSlR+w9 z1G)uTnxgJU33DB#FJHr>C@6*7;8=xb4+TP1}%m^gmh{zT>ay?9yDDc>N z**XZ87mVcc8^ZyH<5W%*`lGk)S<5j~k^&3I85&7`uxm0L?<5AoUJoW5Qy=@)l~(+hq2Iz1j{gTD${-y7N<8V^szG1(w-u(w4>GDhf{Mm5z|x=k0Y>A0 zNHk^+^-heqjXn{VZP7fy7o1WuAiHN9+CMCC>TckV5T;*UfGwNdbF8+(Lh5kC z{se`mAqM&fh^L;&o@JT6{|b52af4yzR0* zDP(+MgpzQSiv@CJb%|X{LP22l;tGu@ zKj<}CFJ2%P3btOPUiPcWf3{xStRF_ZPCnC=${tRD4o}BFZ34e-3QbFs%$jba<(KJ*u|MHXL1AlNX5+PvliWhnLy!_CAZtD4%0cQiNlS zej~$I070N)0ZO^o{xViz8rrcg??v2NV5woGMUX@E8YkFubD8aoU}@b|tzTvGcLY+ZL^mnf?jU=TwHk) zc}9OCtH>f(154dm6T{Mva$H$y%H)~ol?6Sj#NVfC<=tCDCnpGX(dvL8|V41PJ9{yZ5R4y8DH=gj;wM?Yp-}iw0ex!}J8GVo%0}^s32b z>ur4n=_u2E_(ks|w0)v9UwWT;it*UMP$(L^+txT@CR|@%JW1**&Bn6H-JnO&;ZoZW zjf@bFT~*fulAa*jy3zKy^c|;m2=^z(`VbWQ`7Xu@UPQ`%s$B`vp`5C{yS-OlNk}WM zm}`)e!}BIc1c)euI;0%1RqK#lo`v_@zKuvtFzioI)5ZD*`Wwa!^?X-UEUt=U8yCb zEO`~9)%ydRNh!=z+=am3%~M~+Xo)U8Yg?%ipxUTs&;nE&wM3TvwpJPeA$oh74{wKF ze=>&WhsJDu(Xa~@KW|Gbc7uV+`2B*3AfgQF&+)*Ptv}Zsu#K&ldbeSJf~r3k8|WWk z{W-hhiCG>^oZEd7P=Bc@Cs3xo0 zn=aUfYxv__6?kc&%j@-{XhloPquUroUWt{aej(JgU6k zQET>ir{48tn*(!w;Azu!sHQd;nm;VNifawr5yIh*Rlt_5rn>)NyBLxBv|)dOg3}WQ z`UeQ7jRa22X*{aDA2^v=%=>>0B)2~xePU?%umI_dfg?fy(ucqnfW+VJ*z#xFi&4t@ z1^V%4TkUH68Me4zY#rj*yY_BpucmtV7tPgFKg-&ai}tkX&1C&?l_+eg?yOieW7^cB zS*7lCnAW{@624SRy|0Rzzz-bF-&e(eG7P6B7;b!;oaY0LDDh8-Yc2E2JWVzO5oM4j z8v|Q5u9f~~dt6BEVb~x4an0aRTc&~j0mik~dHgJqYVQY0|K-4TuU{xlGcJzu_I{A`Uk-0i>!B2$MKICf10TlrHM|tzrUoC%A{ZJ{(SACk9?0^G`f#j) zJu5FA)Fz#B7kHkIw09RQZH(jwxdwKS6NSc9vLCW^H654V z81=DVO+sA)(-zmfe;}S2?m8Njo5x@f@me$2*QLwn|MJN7b>#jJ^#CCL(Ch&~P?auW zPe#+z2ed_pyY*`?%>vW2JHf%+F*jZ1A(zyiK~?N-LAp!*fE+&y;mFbn8Fq}UFszv| z++@wYMmnPpal6pPYWB3^?a(W~aU(oOmL3EVWiT1o3~brSz?JIus$%L3hW!aDTRv}~ zzi~A8PAzvj_{jj(o*yyF6|g3@jPza)!*ZFPsTWFL>7f*!Z239yr>WZ3Fk616!G||n z{*&9U7P?f!z98c-BdCNUW&R)!^Z!vz3efqQ_CGC^okk;$Uq{*3+g2-uKL@f3ep5mo zQ8Wl%=OqoSZJ%qYZ%R^N8S{S{Nq+EaGGqSg^?We5R8T+r)x>PZWS~zLXhO@F3^zU| z|7)BvJINWdJkFTtQeAueE$(~OACmWu+4p^ks$!ise!>(>pUJakO)i`$OHk|j39Eb=j(ZJB9$L2>iYs_grZ}Yr``f-uh8W%DDJ;{;$k^PixSJxlDx?DrtU3p zI7Ac5YwKmww*Xo+wf7dJ4;fPt1G<~rn@H!Fr@?MEe~4n6+uQmP@Kaa>eAV2(R3jk7 zqgM$&Y!&*^D+amzplK?B^W{>)d-Q)@OQ@scT}DU<%Svbrh$w?Px+<_`>*$@W?C}w) z7Q_AoRY$in&_BRBx~7Y-qp9|OvcH*CC%xChP)F;T0-|Wi)>#jw@YK;mh(E(uM>{q6 z@Yd0HCEMp_6d9o;93^y?Ji@0^B?{1j6#JK!B}QWTd>r6KZ+&@5r`y{{Th^J96j%wJ ztC8dfx+Y6#H?fbYMJMK$lc|gSXkzAFa0c&T*xh8f@qyS?R-@;L*N}mp{5QVH_7%cU zw}TG9jyNyyAFi9s?>6BF@@|tgA*F2*)bDZ)qyDhiS&)p=Md-g?ciN0i_#YOd2Kc{( ztnqRqtZI(~@i?JIJU#g%>AuwWnFKOi2nXYR}S0@`GoSQM(Q? zQm|2*y5El`|H-I5zpO@9k=KyniP}>MKVMOM9C|F%UNi8}O->WB=b-QdC3K^KS@xRD zPxRdbV#5=%?>1u)K4jD0|6c;u-DL%==gruWOz@4%foCbO4x@cf$JQ3S#dJ(hdr`*w z@L8G0<`r@XdzUIvfW%(*^Onzy#0D9b*YT1Zz3qc7S4~L@EG%!yuGYOPr{J!7CiL{Ki^@wUGE_kQ9^&aiJ$8&;LB?KK#tABnXudu#D*s< zw>M)D{+Cl}@BIMF{824tb`^$=4u%^)S9=`b#cRzR4d^UyJ@ixe9@L`&_(S8P0s7^1 zbbO$FiZlgG&2Bjaa~5E-%0uoH+BwL+SDLRr4|TbGuN=P^QDl!HfYpA3*TWfZvf`ff z9Q)?-(ne16UcoPpzbI?IZU{QLd|(aFAcuXmAnoD=1h9SPZ}t6UuK*lHcmye1<-Qi# zWsdrnl@y&B`w(kSzO@-lSsRQ_SNUG&v5$_V_KB}HKmHjVI=g8||1a;6Rj z;m1@S3Q)!lvEMI9pQs<;SMC$g@_VJD(q-l;-e*X-h27BFI7;&Wx ze}-=-V4wyc-pR}K+w5OvOf*7CI2M+!$|HO{RieOiW}H1ou*@}*8|3WeS56e#Ji&g{ zvfPxUz-BLhYb5!>E}gxYy&^V$XvkN@Qh)o=%FIlL0e={_1sHC8R2C}h_GiO0lnxTq zg>NVwpeW|n0X(xN+gn9uoH9aMIL1EebqvrSff}#c3or$Z^-76NTUs<&|jfiM$lF<6c`! zbY+G8nq|Bx!GVoJheog;yqjE*>qhK_qi+ybDz_X)Dn;f>WeNhns+m18%H*T6&2A%o z4ajZdVa|aJ9T}F>N2MU53)b+2K6f|_$YW1xS4bB@gvNz7dZ zRC_;2GIRQf!H`_jl6iS~Ge}=D6I!p1v-#`H8C-OIZW{W~oOUul&^%YW_`4zAR2v)$F4-b8fw~5L_*4=X**)s&GqxwOpi@e2hPGn@!GtqCY zlD?LDhELEEAA&+Z5X-2|yZ2sw9ND#Le_UGeSm>1B&CKwuf{g+ZWss4E16#F3+~xV; zLHmzl>O8~#1eKBQFwj51jC9*@eie*ruNiUpolbeYnOFtWJ3R~;NzW7jMOVs^9!cTJ zNV|wX!0MF5#XKgc!o^+Y7QwqJgFEk_&G@F}3@quw>LHn>3+ah0So|v(qcu;sY&y%3foLT6#cW zTq${fh9;$b5PQwu@U;-FLwTK%ZLQQ&O5?l`%*I@*%0qGSfv4^LM5&kh0sUE;7JJ~W zok7ggVBequ&S+YT4)ygS5=*5tX>^!G>?xI6Xhej#^>`z1kI&Plq(PqEB>-rfhcMqhp2UchXPE=3&=*oR0<8D1gU=N*4qcY8n@ z1snE^Bzo2M3-(#kQ_NG0r;fMS=vChcRc|ldH3HdR&8@4E5Mp26^U;^k>stmnd;~eA zuS#~IRu}uH6`ukNm2rXl0f;Dr0{1;&%NDqv7wyd=QhzY)Pf!K!w+8wfW)StaUQUnT z3tXzbpTult$wlw=Fci3Yrrr$kqaI4(DR66yG@GG~-{e#(-Zx4?b!h~1r;(H1`R z3;S>sxHse>-kNGr;MpkTIr>{NjpPPd;Et|Bx52!kMh(ofWm! zn`$vKdWhs0yh$w@&yb#!`aoIcW z=-$+Jqi%&`+;y%>2g8F@3uSL=uaVp!$6XIjl+V4X!=?lWHVOx61pC3e$!X?hVy__g zrk0K5_ogTa{HkVl-pLH1Fw8p{Zt{RcRZw272q+HG^*5`=S^dtfQiGUVp?gu@6zP9p z-%!u-{;Kj&^d514-ltNVkm1&i z#z3_F@w{4zbbVx{)LZ^lYfDN8`MnnUS_`tf`UJ7fS?38zfggi8LrsAnsXP?De|jSC zY3XbAd8oUbn`I<1qQZ~@8E&%T@P}?0ZP&-GUFgVDd1=KFqYYv~cv4_F5K#sx@E`C8 zn*vWhoi|uat#8<$pi*ER1N{R`ffYvcDUfRKXXu(qfqJipAqDE0dZF}!9!lX!fqlTt z=C)6a7iW4BetZfV+j5! zBlI}cqQLXS$-KFu<+737ActT?HM%bD<5x!Q6} z=;dlNm50)amp;k+T1r=+)7MhZKPtT?Win3#dM)*<$E5ZZX9DMyaDZyKy%(DFs8n;B za);Jz_<+J4i{s8OGN-8w4nOFw5^X4>n(0^=ierYGY$mMwLvX0o+N2r;COIN`uc};q z0gB@Z&?&zY*>ypnd?hETG1I zo%f`W8a>u1;06V#NMPwNzy=7YUnroMw^^w6egI`=_O1^jWgDCN>Y)^#*?R{tb2w-3 zDTJS|3yj91SNadBgff4~GjV~@RQ`1q`~bhsvi65O_5z~;GFn1^ho!F>gYfUL(BAvO zm-%;C7?hE+Ie^2i2A8-n-1t(;2JqswW>i6hL()X_Ajg%1c6xY%n0@gr1 z`L_lYU(ai&5kT&cdG#47UwVQQaEoJ-^M1~25CNq+%GzAX!W@)bgHHaO_l-sdK3o{W zZT~~%5?yOQ29%>ZCQU0Wb)STP zEmUS5x?chq&gm0T&fP2wa|Uhq$ED-~^iqVQ&BnHl>1bGaM=NM7v}D2;10Mb8@?Ex?1C-zTz`whSBeU*z zn^wz1ysJ^C@LCtz*Sc?fp05xivwk~M3ICmqcH@vWw&$9rR zdw&i{)q;UW7?zb8ZhT5BEi0f+Gh;_$1mm5XDTE&nG!Fo+mta{AABG!TTV!x8GwO&* zaNT9Zi$?}u|4|G00hjsuj{!v(mQ5LMGQ`kN6&=1d_LbkVR5teaOL6_ou9SiZnsNtg zYfDrd>1Y+D9HT?~;9mobdH2VxcHrpJOxD}WyS(o5LHqMkTb28WC`WR8WA2zI&m9R> zBI7N$E(_tts%f)ljGIvE?&|qB%8@7t7g0jAqgd#Qwnsa@6W&23lEX55UVkWwDvi&d zm2WAUF`=l`{c8_+;JpIWl2YpK-b?eOeX09=Kh2ZWQulPsMy2Xd>K=@$S9ZkrACjZ_ zpkt}~Os?ihTB*Abeu0i5PA_%m;6hDh*QwO~8k$mk>2eh-M{3mlF3OOf}nGd@_>W!2Tor+fA_f6K=iK9sY9#w~pi1Rowam z{OrDlTiM`W_jTO*4E*Z;8MnyK+5LiBtDrOP8@M$bRCfQ0TjZB$f5R>E3wyug7QP8~ zsQZ7oNp7S41GmUcpMT;OxuoDP+#+ub{*7DYKPy5U)=tcw%62g*hO(1vd22Qqr|$7 zA!0T8AD+679%6m@AD!zt28b=?f4pAL(N|29|1qGx!zJ`YJL)^ui#GY$j0O&uI7DmdgJ)m*D6pu9N>UF3~Yi+$R6yN}^-5_>}yQl}QeV z@B+G&_DL;F@kt0_;CI6#WW9Y+Y@;}ZshEIN!|KV=p7$^QA|D#G%M}bfgB{c_E zzR(ox5l7qon>jiQiM0J%GjN{;w|5E|^pV)Y(M9M>+Y4Jj@^;d;(9$tb$fxan^ZFJOKwRykK!E$&Np&$J-fc_ao|KyNAa=kYbU2E+a zobeDxpJ^rZ+4N6O`lmPj)0g~_>8GH@Z5+0YJskb}9|>6g3Hs+0{d1cBIYa))^namf zi(^E_OB{Wde+hjz`X`hA$)0JXXu|j^v^!>N2Wi6y0mlT zXJ6y!vwkM@J?Nia^iLo9ryuzv(@%weKsUOflsHEtbhDkKeuaN9FEsr_F%>zIA)?pD z0qE%nNbpT@>lxf?k6XKOD-*Z&;MO4A+KXGmaBClK-Huz&;?_*udJeZ1Q~mvKuR2d!6d zs~T>-id*$@>o9J$#H}N^m4;id;Z{%FdL6fHxb+5Zje=IO`%T<*lkjW!>zY*Ya4F8gIiDG*1Nd%0&cyBTW{jlaojqETkqr6XSnqNZvBW`CvfWz+&YO{ z6^p?g?o+rKhg%=wRw8bl#w`nOeS}*XxOE1%`r_7E+;Za9$GDY`Tc6-oA#Qz&TMKaO z9BwVgt@F5r&E~lZrT^!AXPcgf`=x~-J1{FQzh!=D$PqT(fL%(%(bQk{cQpKaS z-5^)~rX%}B*5sPjZhN{rnv3;sNBhzpeX!J6l$`0XU^ittI!UV8YvKnzL@o7(oNJw; zs9Q2s7K5R#=BUA&dTLZ43iVLc9*&CQZ7OvvD(vBCE{x$>fNy=U=#>NsvTZkDu}o%h zsVCUuE}k0vD^n9UfDMToPReeW*jsf&adk&S@nxA?W*>mnA;OKppyzfLtKxb2%Qpvt z`Tp$Ss4slN%RfWp3m+oE=}1rDXLVdJ1N2@RyF9UKN8A2%)eKFUOC9LE5ti}pAM2l^Xx{B6MyeZU_ zwcbxj``R6ignc~eZlZ$l6nT!amN=q?)r=ZmqraC2==y?kvN{0jmv~MWC?~J4lAKVh zRh&eJ2=Vbnrz2H}KuZQ|>{bq?j8uA!#a;i@k&dpq9JR%kGI8!;M+%hg99?6M&Kq0A zL99?5VTArXaUVh~et0_~zy@SuU_&(ykm-c>u5v`81;doEnzkv%(O6t6bG2krRy(z&69k=ktE&eN=LQELPV=PnYs)57>n*7>u4iZnv9c8Ix{*d zqOs$^U#zytXljZp5)FJ>?20btLsV%u8Ldlk)khybEyl_yOhffp&*}yvL-7DaXMwjIHGW};s}C@zZ~TgWHmNm zx?yPF?T*&sTAdQBs1hqCqa#a+E2gJ{XaOzDWPxWe z-7N7#ovag7)^U)$AY+9msR) zivxw;(Se#ygWNF*GoTd;PQJi^@yBg$jXx$-sL)n6&%Kyz7>bz=`Yh$;E}?Q4q04tb za)AJzpFB7nwVdHd7oNm)2v4Q8sy@t<5CD8M)6rEpPDK^quDrw3y~WcJQTNRTQP(it z2-NTn;PDer_dP?G2o{B?*9m3J0gJ|=>x-agug-C#iq#AFQB(!R+)YDv9g>=en*V%R zp*vbT1e~8riF?h1IeW5>*n)}G1ocgY`e<4spmI>ESLQofh&D>aIKf&#OTYmI8pIv? zqe7DGj5}nhcRDQMOdWlZZ~B~tur#=tQXX6AXeMsbQEu=}`R*b|Q{g2{xl}x;BRZfG zkr-_$pv6Zk^380qiu~_IZW=KFVcq|!o5`hGYn3z>MJ{!;7g`WvCNwrB5764Y^3g&gba*Kk2FBP@$b&g7 z@wR1<2M6+!`%OVhuDjBeQF&!z#RjtELY26S0KEo{8KDp;;Q|Ft2<7J-DA)kC; zgruWKUh>-Y3zku*m0+4nJfjO*Mg$JvDB|u2{8?ADe-$Z3N!~pl=SYSUdF>h{9@R$q z8#Fen0k?gT0hGN4mh>|4SLX=n{I@#b2R+1;sfrb8EICs#MjkJtFyS!dTIXmWz(HiK zj3GQV_+X0YUQB5&tq035XY^Bb^542-7Lis$YSqP)AgtBO;0x zJp|%PDdpOifpVRWa>PpYHoa(zTCWRbjD#SafYwFv(dRW@){%m_-p(6!nL-4Q;vQX6r4jT&prz?gjqVu>68+(;q=#_ zvZ{>#&~zkLB46%;`tDb|du98)_@rZKj_H5m96lV*M8oCAjV9m!4{Nmfbeh-s-l=z zHEBgcM-D^6;HdFn5IeBccu0UJIqJ4NH69S+5S9=R3veVyXy*yNgF>9oQsbck&g7_P z@zi)=h+9>{WT+508pP9h2ZwlAC2WB35P`aYqdw$=I!FA1C2aT)sCtPfyg&$ruPD-v zF-UvU>o78z&3PT58au=5uvqlL>yEZUHMH(6jl(LF2efv2lX886;rghI-#%}u_#Imd zR-XpQtVh2k0~j`xFl#1-^_rm>yrb`}6pyOE1%=aOm9{@t zkZynuq#G|%_G3RF-5`_nvmZc2><(PrT@ zbX5E$0N^Mg9g41f39I<8^Q4FUkbZUsNWYUwZD)b>Yo7EA|D=`BqQYpUe5#DH&q47A zOeA#dV@S4@X7P!u;w+MeAX2eL``}xshT383@hI(6sD|3;2wVCf%oXx5&0H~8_w_+O zzMh44oCi6xshs!=AZLb-a2h2Poipj&5s*P})sfnOtpClrNUAO`xP)gg%f6`S3nghi zN%=B!vB%Jn&&a&O3ozk5FI58qGVyJlHb-S`UWZUjmx8K05h2*&ehS+*3lD-5rl2?b~!__GUI^b^T31a9@O*J+N%R&`Yr>)(Mc|Dgml*j@Tn zlVfVar@I}rMuJt*bd+_~ks)>=G(*wptFWToiKppEXz+$13F9Nkm&d795qJ(uVLzA06MLT6;QW0(Ai68JqOsb+cWI9q19pUL- zQR&3IJLnLHev={I9`}H52a(!%TlM<&P{Qw!n13NWhoa)&VXNaBVZkJipWsuv(Mq~b zrW|qT(jPE9NL^JO2@y`#Y*okuRCG2{K9OE*}=_&qdjLVLmfgah;0z-YgF? zG47!w&-6)7Fh7YUC$r-TI`Z3ia)SE%SV}TQUaq5D=A|Uw{2MHcch3I+2+}PLg8HkK zob|**D!W*8v)15R=!edZXwjqNxqq$>`{Ji6G1U2Z(tTD(cX}>OEhoK3By)>@SW?@= zFpK_ENBX;t)H@Kw#Ccx-%TtU7D5kn*@YN*`Xz{2@$KyflsZu8kSv+AkEg`WXbl;Z^ zt0fFh7H6p3V$r`b&JMyf!hwk#Q|4)`cP$pCgX>kY2I$hWur#ydac8u!hF51LqfW^@ z1&UBd=ZeqEEQ;zn8=|ZQ5EP!}srUG%zU0akKW3@-+zHel@zke$QXkm})PJ$mdusvp z|9I+OeNvOPxS}syRmFz$sS}C%33Y%)Jrq-4xAPTTl8{i? z$k|4yf_64_4nsE@IopfT3;38Axqy!6@(UCs63UNHNe$(-)nrP)q=~bYXwlKP($T|+ zOh+Y6owZ=^3M9`FZ8{<=L&QWdIDu0M-E8J;C_ui!I>P~+Xf&i&%(1+Mb;(i{4PgP3SMS^g0Z=qR7_O-WWm&r?bg??2H|o>3`@ zQ$bhaWNc}s)6FbkDG4oU3;jhFX9HN=U6QUDGZoO0_D;MtNLEu@IgF~zcKhRbm6gLiSE<4==`aj_J|-EyJgCLH($7bVX+;HrVDJqZi?c{<8mm6G%xwD1L|e^KRz=u%f_MTlEOrL1l+ zZkOoTEdpoKtw}rN4&h1j`bYP&FH*?SU+l+_R3#s7EV6Q$HQ2-Ugg@ z53LfV?9c1?U9|(h0v*3elpmZp+&A9Y1C~7DkGx1)j(oWb8t8C(Pqx170JA(QGru`X zo+636C||}Yu)!-=)SKeEIXA%rXV>w%7Hpcl5$|l z468>bAJcV2g*qa#tFU&Iv$=pUB^+29?QAQS>L}OgD2cd3lxX!BXD!jABigScqPYU^ zHC~W=hxZyk)lr`HMF}riEurHI5RfeXqoev$M}?>O5$?t^89*(TPV^Je<%yaI*?>Ht zYe6qj6z^bAyj4c=%n1a=`LDyKePMk^ia25k66PwE=un=k3#}_~c2c+c_AGQY5$6+< zp~$kxl}IM0u!_QIGYivc&%Iu~?n)51$fT7gL&!rsRVnR5QP)lqZIM&2upC#S494k8 zG*#D+@4MQFZ_7OE6*$`qM|qyFV@+_`MMmIvsk;#O-9) zy)w!#QtHe~ck#og;$3w3T+&jKf!B^wl7ZJoN7+(GNd{gXCYmGW>b^fn_kDHX!Gb2% zkqo>UI?8D}N-`4er$l7nZPXF1*Ab~B;YC>-9tkh#D4(a4`0P*#gx1%6dXtRe%ufB1 z&=?CGm-`-b9EL`ob2X`~t{{D*bfM@ZXe->n_e_m#Bq8F$SuL)=kf5tyGnd;wU6(9u|yeyz) z0WS-{1F!E$4Fi5Bg%lSKc7IZ}j-2`1F2zt7ibgDjKm(JlrA~GWxW!ThH^dfX$sk9j z0COh589+?IByyNv!2?wNBZmYfxf~V9V!?Ekt}-Hv1%*6ufiGerxxsR%dP-Ri>y|?a z3-1wV#jn}}2GNiOCD22TEyGjv*&XvN%{syn#b*kT5yv%&XYaha5$0`WFb)F)(D_nW z8Gu(AwEf@5sIhyQ0xs2f@Cp?sCdNC<6QA}^OpNyrCY~?+$fU>u0+*X%7pl$=TiS?lG#CmHmcf90vy$T%Dw>{wOE)E4|Pbr0li_kJg%ezN0 z8W|V(P@p`L=McK_$g&j%#w=cm>8cX&T5!q}Fm`JoU?HDo*g}ZMk<)=tZ*V;*^+inb z8rcqbnGg@%6bXnw#M63w(UQG@OOy=3Dndi35;>Wl`l3@)cLdt`1o)b)K#<+5a_HnE z8ngf7ivh{t%_!}q`(V-I;*;>cP-C7p5iNNPVujaGY7XyDX{&dHzV_kCdg{q?gejE5 zyTl?)=E-i?lVu^Y&I0i8_R_n~BCO;YlyD5dueq?64zzROpc-eFr};1A1(A>NmnR^y zjDCuzfFZ8223gAZAEh8m=fCn4KXViWt7Or<-g1oY@nrczti7DC3u`PVb)jl`LP-*6 zcbO8eU5H(Dl$|K0Sa=T|VK7k02+O4~An_?_pBm%W?sH~{cPytdKH;D;HJzzrT(lgI zIJ!km&hY;Dth1%KQKgJU)1HHTv0g{HW;tGTN>gVAwZ_MEMQipuD~ivvJMalytiBvDDiteGME3UTw>AY$&PyB zuR1P2>$nhI4!;2Du3m}Pc*#O-bmWj`_`&)uJfKmJ)8UnSW8zWPAuvOCl|?Mtambk{ zbm94Q(()nE6D)&$D?Uy1%@)DXv_CXR}HH zFV(&WZ*^|smD<24wYEetFo_c6M8Qiei>!md;vmoBfPWSwsD8$<*tEl0UpUWm_(aQr zSO&VHSc3c;z)Su;l~}3^YWlh|t(^o>FaK>NIVYlZCpDE{gB2?3$!0?j{B1eldQW1* zJER<4S3>9ABX4`u*%;m$C8SRsb+&}pdocl1FpeY-2u|Q;lAXs%VuEotR#-;KIv#T- z!+X6PS+OrNQVKv;ZV3DPAabGb2v7EqN+u3lK_dmIjBSM9JU{NF=PJCO6wXp5E)52z zrwK6woRdB}`#UAT3nftgaavzj#S2&1&Wd&Kql0O{o3L`R;C&#jg-)K*SSp@8pqBCy zd%G-lV>x{D0dUCRIi#x`#4B>|p$`Nho#lUndoEA8Z%Ngd7+ASy`@rU#^;4Mfv3t1d7j~38JbLk_J6z)Fj#A3RW+0mXcy@x{L~&%a>jDih&s}DaPDQTN|p+jG;untV05@w+nGh*JG+U` zsnoHk#t+V(@Zv4U0#1s8fv7!H76hheFJ~xY;XL@_LxLJ zBSR^Os;;I^E4-$ZX3}cDT8vt)n1)O_f4%BV5iKg+0I`*hr1@&P@YrNE zQ!1n*blq7)w5g=AsN&C1R#|oQ16Ct@k~KlNj;h^oHYi{D0ihfc+KX+9|JowR*SY+S zTmRty2=J*}#Q%wa{|pq}<>60`y8`^T#9a~oyWAZ~+EMV|f#uwl$UmatzitWsGn-t{ zH?RrZN!xZaJR{ejOk7Q_9l8$uTP`VGSlYsU4_v)B3N^gptm$tAnFw0FA{YyiL6c+AL_t$ zkLd9NI93Y2!?+W{_XLLkAM)=C#LHb!z2DTGtA88A)d5e-fXMovg25+rfOyo4K{7l) z`5m^D-&N_-#bY{>H)RaI#$qrHx&FWhUR2U}bm9-#9{fQ^|1GR?(amgf)^^MKF3r*V ze?mE3bqyUepl>W{`xhMLl2FV|O`wY+4`>llfwuAHfe1W_EwE1V32wY1arAFkk?6*< z9sQ59H&hlJ+jPn*u{SLHc{z}&!aoywDd}je%;(a-P|=OzSq#^(APxfC5~X%g2W=eY z^6o6IY691Y+>b6*aCw)Puu4qaT)##M4#Y97MOSO64uAlTJBY3nSYG1#u#YN0^3HB_ zvWg2Ykr3KfB3w>5okVD-ly?n>s*s~S?U#0Audc~emX+e6N(b;in9l>S(8RI$-7kwD zhj!~NXQ0Hj=rZo|KanmwtTbJ(2o^C_@tt@F4C7eX#ps%U^Z|ERxL@pO^U@uIlOyiyR!EJt`lSjyUnn?=q{QYu{y7 zq&3#ZGMgdQT}iO~!Ld1|vJrQ~Dog={4FD8T2aY%b(&(!38!=!=870Y09sPvrXmL#i zl2uSrJ&k{&QA}MIImt^jdLYi#5MCz%f?+5w9<0)aCum6?P=_`{LL(P*>^rW8t1+x# z6Y8}!TrGuMo_Y`#r`=qfQqvVD%)mr5;Fu?;-V{dKWZEVhi-S;h16L2YzXtxurFArY z6iL5DGWZ*{i77}(I^PstWje5qMx$=^UGmZB=Xi;Gv4-BG(JxKPszWCXAE~6V=&!o2 zrot(n^aFk8KCI_zB>t+BW(Ys?R9C6O$-6To+9DnNfcEA+Y+>)9|FnUtozMgc&0KvE zbRiavYv}4ICavd-kcR8&l9iUa;v-qL<-Zr%_)G+iMP!_7Hzu(B!SX`kayw^*pdKOAS?CfW#d5CAbHBmsGj;1zq)DYgp ztZCd8U(<1Yb-gBxeBKmL{w1bZC|=fm`65+8Jhxtn8)PMXWOG+{F>(V1(C#*1{Tt0; zxR*!Q+h|6VfOfWZ^r#Z~|#D@&c;+SNiBz*G0- zsmbc#2ie(;>CClAWzj>J%2T^}YLYGAx43GF8&twrl-U-{x0a_~<)tQ}2~18BV8(z^biK4<~WKShS3&O*Av0*87ENIh5tXIm9 zsM@7;M0tsbQ?oj{I*ZvVWi0xzqbpPFt|RZllGA`ma*_06wvvm+vuq}&!{Er*u^C;e zR9QrPw@z>@V<}5_ppy&MM09kEN>S28c5Q`on3-ge*NCNP7I`Lv z3^0QH23-L8$7DH)S+cvtH+6DegHs?(wr+bSJ6X=O->B5FNb2V5Dt@V>zD$iIUMy9{ z9qHw;t4PnF+DXHy)PJ(;eSqD7_87F+2^oBJm1p6#kD z+GNrl*{=4YRYy8NM@nvF+1mpSxy)3h#-g;Iu2iu|M?Y0ZPd(hOhtl^=ESI->LEks% zxUBWfnA(8y9<99>mcb$CF1zqn?0s)!0ujpSuwf z25QQ|giV?Ouz7gTK5|Cu1@un|*@S>u%I%I$Iv{m)ACT>( za3$TH@HyUOKQTgyOYnl1R*gG0DL5xrnfpR1(+2 z3O=(j&}DW{0Rodg&-Bca6}ZR}_jI@h2=wOJDNwAioJ*wCc4*cOm z*qjb84RN&=`?B=eLt%>0OGlsWn?84#tDfj)>E9UUN)jjP=*O${1mj>&f^pR;B=8Lw z0fBF`%5R9cNylmf9EGDXkL23(BO%TlR7qmdm{G1|@qmu*Ia!6haP0%*hAE?6-Nf@O zeZ&}7Pw^8S{TY>>bOH3>x6YgtqmA9fgxD?eCLaZQ))OY+uGu?=l@acE2+I;ZnR#Xv@pJlw5g( zWwf!t)g4y$I7eO4I_jP&u2?aCGxaZYx|J9McgJamT-D8V$VudrY!O%x4}l)Uu+T4J z*vGM~9wOL>{1Yz1mi%cGKG6-24uZQS^Azcp{m}cqu-&UC+K6gtKVk1j5^?K zC?3^ud0oc^-iJ>|d+PL#mHYA|%ca8|P>p@3lYb7SnopwP??BiJu2rw9|2EqvHZvq@&RTdRIe<^I=cRr7~$N=IQ8j zReFLJ@Gn8n2-4p!=&J=vQXg$uwZ+8s{pk8SR~vj9t5WCp;3|K*9<>5Eu)i>Qiyr_$ zH?P9jy>|s$%biuGm|qSrp56^w)n$an>8AdB`jVcv(C~Sg5~&WZ>_*Zp|+~sA@dCMTw_m zd{tiJYGnBv__9ABWx&^+gOO-KQ*XE$GS2@a*v_fW|Bc`hFUjFU3zqs1nAE8gxkiHV zdmZ3lVs!WdWKGj7;>Gdq4@!5M1dCE|yI5orBk4DlwhwYFaZ{G1cImO|!UV=kW0t z%WdX62QLh;of~6XGhOFKnr30tIeh5RvdnzH;F<)sUw4^SO4qMq(=7CnD30(5D2!;M zh#HB03x6cqzTDN^vfr$YEhw?X)i_6u_WMj5NM~cHWlLQ6eHt=g@r%ip(`NO8{g9V6 zzCRhdUhkV`p~v*Q-e`o+(^`Hv-!FK3hQ;&^(@N>=ecdz*qka*m;a9XRbssdHLg3Co zwsW;h;QSoRWV1STLU2J5>-XD3*J+$-7O`@_)LLyU+PRS|y;DrX>-(0KX8V@S6b&V& zb<&yo9@8ugx`hwBTlSdkk%hd4#&qjx(>m$8^@M2_M%{vA`Ib}Wy9KYu)nK~yfoYv| z-FnY73xjUqcLyxLn(vnK@*X?Dem1R`u5VXOvoPqJ_bmrY?X4!0h6Rxh!mEXB2WtSE z5Hm-tX%_m-F_su9q|DJXa2AG{gIT3aibk*DRMCX1!PPQeGD+y`Lsl>B@M>`kJFY8R`jJZMf8bsbh$kwv%H%=ZmnNRX@c?N!r?$wNTx+e>f*62Iv7xp~FNqMNGN zXQ3;0-ZTqkY^p~8#551tK102Jdx@}6L#P3g>$o*Pld7uW^*uSwFnL5|%~T4km~Gl@ zW5C?q7Y{TGn(~mV4ugQIz=2IPh8)-*aa9o@ZBvFFS$Rt_rBnWHI9P_?Dq==l+t77t zZJLELCseK8Vw-;D&1t@KWaUjow%xR5x*?ZinuQ+OEeMZ*V5vo=ifk!x7Pm$=iP#T6 z>PocS4Q$!fWJ5$^O!sHtyx6p9bk<$yg)^Bpku}L(rgS2hCTo(a+joSn*jCdl^qAh_ z#WY!yJZipQWKB}-*XyR0(i!})X%j99eWzJNLC|&2*jn!ZZv0SlvQ+ zgfvzc2F@bDv3m4rSCXanc9Ub(g0i1+HDCs84d4)B{)yeL9IW^}jvLgQgcH$a;oN}EWDvNM#&iCXP#6O(spLxDgS#!Jan<9zr@<9nH9O}K5 zMYytyb|lNG+7*_lbCy=t$Eo=QDT{DrlC=@pT-C0M{L3tf>x(IC=44#BvWPDl$G-^U zKSbR){CG@a;|3{f=44!dWf5OAj(_pZf1bK=_+7Zf#?4mN%*nW4ltnnt8TV)uO3|Eg zH2ESNN#9eg_xKsf-+@Ug!g|#mlnfDVjGDARl2nGJM*o!TCG~4(T!TG+*4Gq{?ZWF0 zw?AtsC(moR{b-yP&KcpH6V4ydb5FuPYlZLsz<;2o|0%!mSv9+qfSSXWrpI)5m-FS2MN6APx?L_cK_|HVYPlU!kcWT1atb=&sr zk1Wy1s=ivviaAwZ_1Gjk$=}@#%ac&_UDVYpd@wR!qN4AZa`nDf7GaKvR_kh`EF+S`^u#M_7t#$HQSd&-;mDGSN_zVL zYNFMTe^wUZT+(l8EJ#){B`qbZq^~AlMDwIFtdhR0JR~Kma2)inn}fdm9JT-H&#I{M zM;i3M7EU$cgbJrRH2K3E^iLrYgIS-SL8+7g4XF<|-?9xPDNd7=4P?loeC?WBD1?e?VEp9+`pQ78RG}Yi#D>#xXS-(oK^W1 z7nqxWbokU-Ri}i*CrhXAQm#{TWfA6!fmPsaL6RLn{%t}3AJvVc!zar)hq7i)je3Z( zh%XvPM=XogjiVzL%eV!~nmHLaPg#U3&uKUVLIob7>vItjp(eXk0g^Dvr1^!DMo{8*AixN^eb9g9=aAlXc{>iU22df)L zX9!lM1t@FgRB0uYML183j4D1^b6V0V&6*Y~CSOD{rbYTMRr&J_{%uqX+Mj;PA<^8} zQn{3z3i{iH=G=%aprQY8Rh<&bB82i)Gt< zWyPGzdycXQ7q-!1!a*go;vblY36@#=ly!14YqzopS7!0Ega_(o(OH6J)?H8k;>FTwS^y1Pds&aqJ$Jq9ch$BxG>8)P6$-DjgAwnDl4h1m{XM%Qx@?h z+vqf*sk&`+nqb-1NLeu_+v+Qe_>ygOn9xt%HabkOZ0oJ8n3HWiltnnt_yefBrfA0h zHu)lwG2_$zF#kQBgsrnhN+nHO4*1hMxe`tJvC75dRMK-7nNvP>UH-E@{`-{_!(k~b z(PDN_%5~bQEW&v)yKRyAI?R7j$p4Wlx_k-yhs z)oH|0!Q2(Ix~)4(N#RtID!C#Yc&i$eYp1--{`QP@hcxj|ajidj4 z8?6iG|Jlat|F6cO|8=*Mzqa6Z@C|c27+*J9`8WKmp>)Wv^W(ox!s#NMuEOaK)1E|@ zE&n(A#I9+*&nnk-;tx;oi+6Pv|9^YHQEFOvF|h~S&{CzViYjDILSJl;357MCVfZua z>qN8#JXu{Y+5)!pnvin6#wv?2XTHjXOxs2)%Sb4mE>c8i5@9ue7nPmU=$^QUEj2nU zPO=3|U;fyEauXjHxsYpM3*>cAU;ePlc_Ym zhXN8$d@kE$;-+r3s65IdT-iq3z_pak;=gc~xX!98E9F#YA<810N27C8@5vfUl8z+S zXcU)x5y>5m=<6T-)XSKE{iBi9FM2B%kW(4=SYocgt!?t@>WY~^Z|9k)*Z!Px?WQP; zaBkTXmzYBmZJ2LXH;(`QULw0TDl6qw>g$z7xU$RIF#l8CIQ)UY#Kv7z*38Mc^U5Ne zyX{1hk)m$fBl#kd(QU17fO!3;Je|=uK&)=-juKKh8g-GB z>r_Ztgma_L|C`xaMWf~)0coIa91TabV{VoDH_GZcwd~r;B3xNWTjo7gjZ3(HZ`svd zSt%#G3}q26?c#gp(du^5p1Eb$RAr@{?3$!3!j)aLX}(F_F4{D=?D}0YeQvRRX4v^6H-uRZYJ7fbf56JOio_S8*tdy4kP z^Jo!e{6jvgBLA;xk19|&!NMsmoU+iwhl#J$R_KRFZ0&sgS^2t@@HKpVf?rCmwDhx` zDsLZ_&A*MRE+LI9HCigE!HrDljSLeCOTHzoP}E7!wCqJDZnw&!n2jbw?)X_Te0 zE5Q^?4LkOUM87-n#4{q7fA(cbrz@AL@v+b!K4oLs8d_zX1tlb&u3Sn;te7mc0WES1to2P14MWEYzR+Y_GR?Nw^UzA0B$u_#Zw^!XZy1i%Fwo6$tC)>6w zi};dlbS>>Kb=$h-!8=@*ZMT#abF%HavIrNp(bY7M70Tm1T}`vhN{tdyINs~ZBAk~n z_h>3i(Guop@FaV@X9=E2&D!5YfgkH=z>0Hd$(vSAI23Xlq;z+#0*Z zx5moqM#3*fKMV-Z7Eu4Qrn2lB{U`4V;j9wQ8sV(F2EFz~=7gewtb~8v&#KpDLKq&% zzH-!3NkUmB=%4<&`ESG3|5p(mu4}1z8QeCv2l1!aqWlMaW_`$WvOY{WHH1@3ICbD@ zRdZ)>EF!U=*8ekwTuOK@{*SrO3iF(ge&6d;Fw5@$i>fC6(5n>7;;=NCp`=No|6-nk z357Ay$|B5>D8s*If#9#FS73>LC_Jh(?s{%lx9)mrmbsB--41HevVEvMnDxo4R*R#_(}vqme6aAB6Uxwl%~ zHrm{?Y+IqMn3HWwl|{I=t)YLss#&3lX4sR;>Nr_+Oj(4vD7I$Uvox++i{fMtU)kg& zy(#%3au{_I4}q2%pHKAjLRcYxw^d4ma|mmYXpaA&TsThU`*x+dv=U93Z|eCe=@b&i z64!YiOq{~GBB!zl=T@8zM%17=p7!&qD_Mk7V8ZVWS)DUPStqBW{#sdtE3^21UPpDa z==X*!v%Xi>$;qrX$|78uwJahOdfvvb9*k4B&H7Cq%fK< z{wT#CW%;85e^lm=s{GN6KU(ldEBC+w$>DEFaI!^6_jfAJ5T8Q3Q&+TOPIY*DCv{~w+m(gtheDy+;P4y}*p1cFYlp$^AHws(^lq%0elZM&xu?kn zkGruN`t<5BH)ERI(5O2L)po+P?r6ntaJf6Hr;n%!!$yV|gm0o)UHxM%INTsjA=nay z5?>`zSn&kKsVp;;;_Fr=5c%t_>W^bqkW2IfPg-% zoZhb`wDt4whiLAJUjzRvv_jqCT_5JBcWMqF0nM!37b{^gOzX=AXobMDA8V)GgKqs; z6Ky%{Cd|8+uK3U=_qn(e-@nTKGp>^`H5wRkO3?wWEj9a^ee64{Ww;HlLC6H z)=+!A@Z|I?9b;_b-D*Cp9)OkG9^Ps zUrWueCNvp@yS!Tmq1L|bp~0H)Jn&`^Yp6%HhZBW8b3yyTC}1V58O(-hZz13Z);*OE zCM5-DWU^(1RzsMlXP+2jGuL7{T>b&$uY#|JuzFg3=*68Ou!B3N!E-3qrduaqLorSe z#G+U04Uf6A04ff{ruDoNwC?4Z4>k^C&9T{LaIiL7Y3S)-O?3|g_B*ipLZQHLHbM{V z4)qUvehs&VV*{@Wc}K9?+I{Fa0t>tdY#+he>Mwi1(|TTC!MxEdKdc$W+@af#%oC-? zk7k89$OtPC=oO+M;}{l9ByFimF~&A-N$V(RWm1?whNVhFcqTL&iR#9~uOrch*Kn6R z`5<@{!dftN6t<}DaFjcbA=_xwVnlDLMX=U|=Ur7h3qE5o##?BKj$XPKG#-ih?;edR z2K>al;PDu&@@~Cg_DB{aaV9MqLVv>Cw!*}pupDppf?=bQB-=fTrGk88S!&&*Hyo2; zt;Vv<`k>yBeKacyQRC66uYnLe0V^rZ02n=i)z!+usR@{< zBjlXOzR~r8&~YN`taltJI@!mGthqjF1ccotEXpO-TpULJ6ev_Fm%<;CT zb>GRW!fOb;orLAP2x?7c4Ya2a!=1@+3msh_0>M*oaBBf0rm)7^UvOp$22KUPspu4h zDDH&A_NnZ9Y=?f+(8&&?reOoG;{a_V%MACXVFQ{31%E~%$Dj{)y1_nl^x4Bfn~gDw zL}QHO@O?Bg?-8&enl;q=f-MHKD-RJdtX8V0yhrSsg?+Me43^8u7?vAF{vCrh$Bu-x zXVT`v{>>`j2()ZEvuj5{n}N<2Xg&i+xy-PDJA2^o8Q6yJLTNy!0{j37ufcx6o{$^z z&O~Pq44jG37xv6#Om8(FhBZx>2g?0|l2=2IUofaWZ2koY$t4qnZFzNjItUtpD$SqC zGQf@L%md<<7x8i5#mjZVMA%g&A{X?Xg_jdY!s=P9rM`SJtcy!m5Q2V1wi1kAu@?V< zjoisQV>Uk9Kt1j(0Q52a>=ej%JzZ|_nuAk8;8an)d;i0-N8hOG4r}MI(t2M1MaEPOT}D3l`2}CAA1RJrB(q3!d{? zP2FtEFx$sDZtysZy$Cd3%<`u#6=Uq>CEIka8-!#{ zpnQlX+8_Luu%@of7Q4ZpY3+HbFJsmP;nXrr?zzMb{>fo4$|V-?DwB})>LsExMCP<-r4Y}u2_e_u z$K^P?q+SZwM@D3Y7t2|7Z46Xc!6LL1Fo`=K;MNM(P2ai-g5Rev0s~gEN~!j*!!8q> z)t(bhtz<>@^vj^_8a%qVz7m^g#Z|17J_L`i(q{;QIjeBpuxkZ0Sj(!2;9{#;Hf=qG zu4aAoG{3{_RvC)H_0=fzyp)-5El!_})-WHOU)rp}c=y*zX~iLME%wh6P=77f{m1pN zYidLm*tM2**WI^3z&h3^)m<(q<3?7^6Q_d%yheTD@jBK_>kqZoW5az7bJyd7qA0xN z&Jd{oJ37ZoVMSPPuLm&dW6^}ZuxolAh3s3gCI&+Ht*FgB*pH5`9fjQ6 zSd>2R7(9#1SPV99V^vaBSdX^HZ^16yvrH~1flbRRIL0`{3nASxsInbbRr`-Z$bpPG zA#OX0zIqh)9L$&>f_LDgl9KwKzhIsuE%#2AR&RPtq+Ya> zmGi3F%tG2z`VNCT;+y9*(0nYPA9XEurXQghPLqwQ1P#-E^+l6KuMz@n#JI+f*$IEl*;d-`S+WFs)iH*nJZ1t^*%VvOd}%=yi(q z#_8)0I<~&MGziWVSryKfMJ z9~fa>J*=S3*D(5}2O6v@hA(hguH$=mZK!q~7f;@|Vaj#ZAx-YTG`ERa!0%XSR`9vO zTHzqr;|80er@u4fCL4;=@UWZM-X_D7n>ZHvLY-Tzn{D4c4X)j)UKSqR!tPxWf^V}y z+BR5mn}KZ#W)@$vMpYPjhgEm~=>ba5Rsfo`!^*jNhn2;e&Gr|YVk`ZR1}i#7)_})< zVXgOpfV(&-mw+*MvB@@ijICvAjl7WS9_wN&h%vRUkpZyr9(Jo-@a7)tYV&%o&A42n zGAy{yO5m7$@;g^!$Nw~5t+?;}=6FS$*uCi*_Y zwv+*OKf->06>>ku_rZY>#hqx_jgIcV3o`$M<8AaF7_r$WFZ}!uzE7v!4d?&CcKRSx<2_Ui5&N^&_9L@}4+|lPb+1^cgO?X2EpsT!9DA z@GYg*L2xu{kQa>SSh>@i!Jc2SyIp(Ef-pjcf3b{xq4B>s{N`>f>^O)__iZff$om4{ zX)Zy_7q~8thLtaH!4%&ZdOXGj&D8%e9|(BKa_DoyA$AG2#5ON+jkOGBy~J3l!{M)& zIKEAXfLE-kb{$4=Cm7DX!dHm$koQ06^n=daxd7|`!`kVSnnC@`?nR;MYgS2b%7l57 zUbFHzRUUYa#n}xqzCmX@v_wabY$m4G9d9tkXn6SsGwTgi-=e++Vdz^{)^_ls2Kn~j z_;KPbt72h%Y)AcT-n|Jq(SH+mIr?Pz-rqrqi!Wp8IYluL*B-|#)wPqT+;x1goj=WZ_nbKLD7wv$D4z7$SCPZ6P=Z`|!oaq&^#!`{|*DOiVI z@n!PB2@iW1&Uika_NKO?K{{XlCZt;BiK*gYlc&8ij-vUz(0L1Ey)a&`iaKBF=7HTG zasHcHt$H>Hakr=S42m&s@P79W0@K1CwnJ^v_?);8RNmWO7R#`^HWSnX|Zpgo88-u8xCWvG`Pol7u_J5lf; zy}b#(ZdT5KP6SNKfbc9_;Z9d5;e$>+80=$jkHW5V=X?YigUJRu+3x-R&LB%7W5r!{6w|dZ?NeokuW@I~U;& zI=1I;Gzfad3d8O!_5z;eVvO6oI19k|Y#66MT;V%{c9sFy4l<>VFr_&stGR8Rb5fe`OhC4^GJQrsb_#AQLDn1u z+DkB1fKC#;6u^+64Q1glx^uFIXWG013F&D9%CxuXGj^4w;C>P`5%C8~P`w<*_(6iY zBE~Qd*77W3D^iRRCg|+o&3YvFuH)gWs#EwF6OamHO`mbJ5(Q6?;CK}RlO+hLN?@7< z_7DOw5-b*3fB+86bdDgiWRydplxB_uwZjO^m*AoR3niE?WGvxey$yx#tV>CjnSd-= zVfu^_H7R(tLz0iRh^&*~l>i$gs9J|WRmg zf-joDVJsHpPm>shT2Pd065JEurUc8sqZoH2=q@t7#{r!gY;Q*~9-4r(cx3vFE3GK_ z35`FLpjB%k&t;VP0=$%)AWDFA608&;0|#_2@wO9*%wz(x)YtSG%SCWD308HW_&E~*j=%Lg63HW@ z3=zOjg3|&Nl)z0$Ei6Hh0L3KeEkH>L76=e1!E*u*qZB7wc_gn9u%dX2}nW%(`QtO zqTt37v=$&-f|&v^3E~B4F2QR7z7v3tKlwzat!0#20<@E$y8s;|cq~9?4z_dCNAxDm zx|)C#?{4~xvpp%ervz^W=;M&2bT5k1UxID|43Z#PfFTlW6~K~lQ-B|33=g5!XbA=h zFqVTIsJO$38c6w0FbQcs$@Cco`%~~#3HJ3N5G{eDFM$~nk>IHS+a;L%1I5@SfsR733GbDl#V`T~B=}3jI4r@`p%mj72M$uSph$C4MhO=n zUVG)HeB?-+mg&4PO9CN;J5$}B=8oBJd&WV z08coe!=Lg~Nyc*%P^rH#ea568DfmAEph`yUNFr}#loF!|e30PCXaa7yc`owUB4XGi z$Sh){kzkJio)X+0Lo(7yP=NzSjFCZ-Ya&V}33894G+89r^AmyW68MT3xg=;co?_&c zVD$t7`6XyCKp_GS-uRaYQbb0XFp<&}mtdp-{t_&oOfiBaSUHJ6X$k%jpqvDGMUsjV zv_ZhV<<))6Hsk`WBQC;KT~i634V_z&^Q5L z|1Tyagmbcoi+n$eqA(MX$Y!R`7(1PUTS(wGgFq_@A_QnF!8`%lOK?+wPU{?IrWt{R z7&6L&nFP8^Q1urAJtdeXKpzS4G?0%4{UvxIz#tCjpw4?K#Ta4&vHl)rdW}1?DSU(k zR|FU(LCFOa<0lF5oRDWaUIIKKR4 zA(8KF3GObT81p2+LqncqfdqJ3$iZR>x-25FR03_W7?M^v{hpMcv{kN@_er5g<$e4+%yIkXC}8n<+_p3FZrsQG!nb_;PTN7kS2` zlq8!8ME}cSdX0c16rNjx!UE)zVDTY}Q9uHIT#60!D+yX1CQwv@yh26^2|R@s0SFvI zuYn>;u#7TKfHD$jB29S?=v;H&G0LWr38-ePm_9sFrQm83>=y#UB)G}}&VMx}NhQ+M zkpRzGxo!0%XevNM2@C<6NHA4^2o4VOB4728WY|qWdNwzG`2H!vzcYz3M}XEG9N`l1 z6qakz&IBZ(J@*~u!FV3agFBgkg1eYLWA<1I?j}LTi3EBOp!pY%Xt{*moE+mK@syT> zekLH11Gw)v51u=Nf(M&`f`^zs1J7%DYKH`PWXr*i9Gu_+p3WpNdOaV1I3Wo?$?(xY z;o~L16J0K0k_7jKgsB|x>$t`cyc~-$qD?>&r<*=w7~TxV;F%Ki74aRva&n4Gz(Zgj zWv&TG!hF+b;OQ?9UMNAxd;&`(s35>H32F$5Dm_7r~ zjCrPU65z2h2U{h;lVc8cNHA|Lf!z||F*1*_PXati=HMU)4pO6zh;l?m86?y?F2NoF zPH_;=HOI4NF64{}Nbz%~&)B|$f-gvb=g&O;WeM67a2QuPIm1QbX*7>=!vrMqmgzHY z@1fwoB)}7D9{;`sqxTZ{TY`82{*fSq$l{p?Sfk)ar z)AtfgJ4E1<1nUnI(DBq#NX&bLKxzqw3*dpkA)=HNnWp7Y&XE=;DNTA4kQP3s&j>kA z!I>qvCqPySN}r$@IV314B<7Z&5C=H^<>TZ$&vfQ_N>jiDlxZQ;XS@;;ibyc@G{rA2 z0iLGw!ts}&;u!)#65!D~k5SqL4&%-_BIQhC;6Xc&QjvoTTrE6n=b(xSNUf^ecaaC< zsXGr2H30=zH+=@4x%1#!99-h@@z|Y%x&-+6M+xf5aPQj`-cSO56psm-NN`-lh>#%t z9g1O>psE1hN-$Y~mJ;|1p^i3^;ORZj=6eY$3eZu4Z31+W01x$fl5P_4bA1FoB#0NF zHwTxw^?1O~WAsY^4q^QO8D2t!50(H={dt0+65zo<2g4=ECBR4y{^WV!EdU;4j0vcK z$C^GP?Gp-~z=4Aj;MD-0V6u$TM}TP(ggm1dF%k?C03=v1z$^)Lp~V~y=zPB6L7Iu@ zn}Dn3Fcz3zyh=dfizO&2z)}e^?4lSeB)BSKtd?Nl4vMi(g6N$DHb~$uWW))8>whD9 z4@KE3qomzUV21?%3b0#(2_nfp3GN)ABnKtfw2#0M35M?{a9o0-JPG#yQ<5|jLe5Aq zOMvqdToK@+1hqt&{>i~rUiZ_RQ8w31Ky`n^^clX5DEPJs97gWOMDCiz@D<>J1eXMO zBtf(QPb7#J;JE~I!b#{$36?b>@LGb@B8KCgB+~`?D8cneN~3KsZ3~VdkV=B`B8IyJ z{RHrm;DP|&5=;{1@SzA^#TOOXxy{e!~sx(4rp#m#U7Z)|YjFTv|S2?R;-RDjYF;6)Ceq#Os=d8T-m zgM*4DpiC>9J_B!c(EfK-N$_R|PY@~rUhd$ah6JHD0<|TWF2FYu*wavq1`<4RC(u}e z8eRm#5jcdRwbBw{GD>=pZ*vLoo(NauI|*)OAkbQZ<30r1N$|{-nG^?2EZ3t1zhysJcD zy#)0u6WA!h8UZ#-P)KC6O@ea*?Bw7k?+tkCh3B%z1iXwL#y-<)^sh_d2PJqOM&O79 zm1__=LHj zk>Gnf#keQIUI89TkoQ}P@mK=?76@?uc`C`1?wAh)PJ)L5RFoj6$fk+}cLb=$0l!XU3@=3!SQr85 zR?R*a>>>8_kUhknOM3xjLhJ?cl4Y|H`!=W+YA+b=sFfxas`Uv%Lh*9j^iX?#m>6pJ z)ZJ1+_fUI2@M~8gHEavDcS-M_%8mXbmfqCP!09l%FRb|#k~&iircdJ>=v5}5XH+L1 z=nX%F*?Vj0;GZ!2S9qDRNp*W^uOKtj;QlJmxVpVebel$LplnTh8946V*b`FK!2iSS zSJNKsUAk;*8NUmU9|ZHtHSvUDHSFc_CUTV;_KMLyjXb#}ohUf^8m9L_k+8F_-4oW- zw7WZw#bF`+#ve2JV+()$&L8poF_J&d@yE~nF@`@*^2cHR7{DJx`C}1(OyrMo{4tzA zrtrsL{@BGIzw*Z_{+P=jvHYqYpZXNI+ N4|~UbU(5c)_J5SWI~@Q3 delta 722862 zcmcG1cVHC7_c*(^aJUdTF(|OH z!8yOIwqj28g4v}@=PV;N-Q9tC-Nf`p_x7QYVnbIr^hZfo_ud|v?o-{nxHpZ85*wnR zcxy?N(CEG}AkuxZXB3Q`J-VAapnDt^)ZHC4Fg&awcwY7V>e@1@N9n>@rPjpL(zc1VE5{7ac$cUADf*szI6V)((>vu_rfmW?#C0Ngb*nH zxFp0qqeu9yiBA8vv#PJIsw}OVHLI$kw#GdsH%V;h1{c2&yJ2PGvU<7?Vfm|jWCXHC z%~`m#5i1;jyd=uj*bob+uPKRjD+%E+^X3vicTj%3*booJkPx~xaAI4G(F26XN_zM= zHlRgy<@2g5N-N81%iPgDJGh;RL0u7MS6aKUbV*fNWn)A5gyG{#=T}$ORxO!dx~ObP zZF*^XYC5*uA6XsXWd49IVndv}tVfu8<6x(I)9B8(j&AP`&X09p*LAo%EiqY$bI(ld zq-5IKv}p*3;?k0Ed!s9!{OS&6l_lNruORX(7#8gpLxl|Yw}~BvP7vokjOm}C^d;9FVf)J^9g`YeeaNpMt^vu_iTBEJHf0^5ru z6L18a__!njOB+mnMY$Jc#3=scG6qh6T@r&U29RG}Nz8S{zhcO*v@JqLPY8UxM8QoP zX{ zN?Tg(E*=%;zNc5D;OCCdz-si071G@2d!-4n_;;q#l^`WU@xGu`p}TuSMmMDwf%Kt$ z!M!OfhPFd>1rlgCZx0E<(o+c}k)(x0{40R`>IrMxP9(a7yKnB@Z?%G9bq#@~l?y8t zl+CXq9cEEk?VQGyjon>wxXzVL3KI9Op`;)&?;1u567R0zq{tw}2vUTSB8L?1NHLNW zB=TLkqzEI$C{mEfca6ryY8MH7R~{)y(7W*XkS-iRo7z=$~atPxMZ8o$1Z zyD}#p|3$&0Gw_e>oERMcYjW;&Zyy;0j}DutxN}B!bH6k)!~NVy)&0Q8a8}V{WW?jY zj9jfiQqDxX``DPx?p=jN?&M;{J*#lIdvnoUaPWVH%B@A4-B*n%*z!q{!<|vwU&y#_ zVez_!#e!#HvH0qZLIy0}X$$q_zbB6I^ZwXw;}k z6L3I??MQ$Zqg^N4OP#$xz8`6u)Y1E+)Mfi2#QS6RD%*~xA2GMu#zhDj9;}I@3ApiD z+h`H?d?EILuMXIT!uHc*kXW1uDZ#b`$ba4zE|w%h{773Jogu*2&)YI}=Hj?S*n39o z4y6ZeN63$|_r*f75a)uI#B4F2{!fLtU&S7tWru8vAl{h>o444?#oH3$PxnT;%hqiFr!)fsBJQ#T|CcrEA)QFmLmS3BVEvuzS9{G zIBc6F`Xy;n)g(=-URfSLysDzQ2G5M*3d-i<2~XSvJQ-So%ZjQcwPn={YL_*-Zj{=z zncnDn7XNGb3-~uQuBBP+9*pmb*X71Cxm0s3KS;)!FFJ-bAFU&e)RBfKX(svbbz2vq z0`5F+>nc{^x(T-NVp$TgY#-SEffy;y@I`Q)MsR~pu$CuS#R#YxSW-|jRzo;xOA;T~ z)!3sWJ))~|YG}3{+P-NUBfh3%95!IYYJrpYmaUiYIjnxm)>r&eNBoou&lXS9|5_Y~ zA2VvI1d%fkEAh=cSc&Ll%~9==siTB&ICR>U0_WegEf;&~b*W8tLGRhV5DSxGZ?!(>EkF<}l0g_@YcCcjYXMr2OaoLH4S^rpwu!5C z7OUZv4{d|R>va~zAK6xlYm;HIXbXd5vup@1d}MoGbnDD;4UYC)SmYtZls@ zz^1Qk9pS^Xwk0CA4DC#R>cW4g|8+b6%5%^)col0v;_lkdaoqLMsBup&{>(O1OiR(i zZv7Xwo5V4CT^?T-1GlBx5<&XPcC+9jYBY-Tbi6qPuPCbEzEP~Yg=bQ zxB=8}ZGFUbDVkeu{?^tYUYDZTH2FK*o4At;=dk;(gT3c$X|U;YF_KzTSj|`pRitu? zSdQtwa)fz0p11W7#b@xZMB7wYSYlI!r#yQu;_f0IPtl^`IQ;OvElYe;7rW*M+ePt& zCf2k5M_ZO4oYv%?;N)(ajyWCWVe0^=PTK-u+OHU)pN^1e zM4+kps^4rYgbDEdZ?^8@#8i@YBcbSk7zo2J;W(XBtX|MokgS{}^esC?$wr>QtZURA-t@5uk1n+6Zm%M7q6Anl1jR zBmT}K#=_)RZ9QR$B)P;WY;ckQqTn}4>LbRbX@*!OOI2b_nr4XKWND|ElBQ(=3?##p z&<=uBX(-My_#bt04>1JelL&iRl~xJDBpB|H(!?nkm}n~(N;Ld&P52$PzF(*lZSa#$ z3F0-nI@dshQ%Vxo>gp(MrS0M>U7hFJN*{`wbagP0=8-*tIQo`T8RF73+J|6ffV4q; zSm*dKI0Lce_Uat33zX``M|F;!f}|J3gE~hH3>si76m~T+!#QazPysb?F<2@RvCdd% z9}>htS}SnVDdfW2qMty$F-17z!Cu=Xh+*l(0>zLVF8xpJo(_8o#3;y(kVcD1>Ds`Q zkPeHI1ENIyp9N-0r1XV2Bwh1IMLWq&s!3pa+P0UFAQq-;4#7|?dN4ftlIRDkq9j%5 z3a7hZpWuELBy{o|iINgU+x6*f;M5;OdwM#>O8o?-HXRSJi#_EXu%}knB;p^7NHISd z7cNrVMT*-=u|0+SB*izR_>vS?r{bcH6#de0kx7c%NdcsIjTDDTF`0-d!9|_xgxaPJ zS+Eev^{$`Vw`sH9l@ditD2C!XQ&rYeHP%xV)>HB8 zsp$1o?0PD4Jr%dU&UI23wb-+=qx6VSMw{j$?W0YrY-(B~Z7FFGG&SuExuQ*5NZLo6 zmfF;`%}q@^M6O8FTt(>+cSM;0r#ef!#QUhT$EYqkh1uc3p6Dou2My5Yh=0#T zJOd30QcpP1O?puLz<~80#oCHj(q5!tJuuRL4M;y|tZEaySm(u{UL@Sc*fkCOdy&kP z3b!Ol!I)2YqSTZ0)05q#WcVUMY7`R<=sk?++mkRlj`mffgf8%XlJp45>4jUoolMVi zU{|vAbO;B)Rdd2zC78t}B@-S_k*-D+9Quy!QZ{6r7yLqIGN_lvEj$zL*_kRW5zt~* z3z#N1x`Y7!56jF$TBA66*zA$QJ=@cz88+u?M%W9|Mk#Ub!FMO1bqq?_WkcKy!4D6R z4`oVaMv_BE@K##Z>q=*In{OJ=<9#HzfH*l&+|Qt3+h!Cz+E02(aPDPnv5|=DBs0^pS`{ zGgu66x=)JV`jN9MispdK&7lxkAU$WGFo}xrDJl#mkCDzgGZ@oeko|xf3$qHPfoLED z!^wN4JUk2hwNRRcICQh&+gZiDUL@5ClVNzVG#X9iIFgtTVKE=2QBKTomo3T;8P5>0 zb!m5Vubm$S6=S92XbG#NJ%{5Gt#Mh<;oGZUnAoAX~>HI3`RlW|->%Aj0V_!k_REL9?o#BAOKt$CbG zk{H4~d#6a>3Fs9gS3a&2n<4BtUAiQox0@$S_DLA-`M*+Wu#C<$Png;aVO5nhMMM{x zC+uY<+_Xum4B;BxWay#~0;1v29O=_&wRclzp|xXZCLL2(?)nYqplYc<3Sb!2<`E8} z10BBzF~+3J_b3pmr6^eDlKij8G#s9G;lvhi;*2=XkTF-vL7aAGmkzczm$(%Em@9oB zPP+$Hu^*Gs3wFdPgSp`%%O{I)&sFoK|FfYIMoD{1C)VeNS_rZ2up#b+Q%j^6cxbUS zHFz*4@1bp1+(5>|p}k@Aex-NdXu>v+6#2NocOnYsNs$Q!_h$#F5ap#4tC{(AvTag_+a+ zQXpwzP$K%;%$3evzF<(VhOolsjPhh$FFh@zUsyE_D$aKmnlz4qHhEcclO)@mN+#!` zphyYdow!B1g!~zp@aqq$LlirFwLyAKP~eG;(tN}bnte6PDv?A>D5rwA4Q*h+{_H5| zv{@P&%-chc$)%g6GBn7ji(p#GPrxfZt;t0viOuU#0vG+-{(M7HT&lyJ|wNF!jqh_MZ0)n1$zjVpTq4P8K zcFhsJ`7ddZL569TxuzMd8y}E%izv;=mbcTj%@Dr23-4bzhcLokK$FIbN2FRbl7UIv z^rSKHQE8Ge1hzaX9WfHpmB>xI@qj(eNT{!shJd_BdK_`W%!%guX0#l%SK25#YZ=#G zG-?0$aVY^^!=TIoLM<$PLdr6bkcP#<*(anuXoHbPZ`i3PrCTv!%~R5D#K|%%xz3`b z2Tv&Gh-fFrwP`)EmjlxAi7Xr25>)Sm=w~?Tky7E~XQX$W91E?9AMKaQ(Tl!#2s>fx zv(gU+sitVDw`i($4*vsE7n}0~##MLv^h46S=qv+sPG9qabdT@>#JwnWuo8NzUzEZG z^ovi*qc2IP#1Hzw$-x2b5hv4Z)`n)3&3{F*+fYbfLpS3?dt)<%?;jyfiEo~8vz3qx zYtdX1@}^HLoNgR|d+oI$FzmRL<$H=zdIArAj~$n4L#->IUTq*{TUHcIcwO4ybGzf@ zllWd-NiR>3f7=lPzJRq;171<+6mS;gpOku#+1$Zjl=eyiZd5}O?44DTqCAdg3i!0e zAJO>{_)h-_`23{QZFL`}$z&d@5z6&>I!$rYUmRFNxUygKM~L|G~1fZtov!{{mkrjy32 z;Lux=CxipwDm+)cv9Gq(^X8lqybu4j)DO8in!TUs`#r&%7*r?ptbIqSm(dPZ0R-JW zvs#V0kpTJa9-bVE!^JSq#t)<#n{zj#?o0DZ;wO05!NZ`0XP&Uz^S@7|g@P4*>uJ3D zIbuPFZfEcaU}2tr7B6)_uwtJ-D~+~dS9~hD(05ks&Yww(4cHKLr!%Ke(0(pSs)^c)F@Jn#)bQn;oW+=_-3!hQ0vNX35F6I zz=3;MK zsii678JPB)bRdKSXpMZWpO!KzE=jAKEMgV-e;OODdzvOUO^JR?W*(b=;g&_SvLia8B1{Jo*^Y+x@%^APG;Mic5@yEzHwE3yl9 z=+7+JWRl=$2E{7jsCdmYM3u*h&Lplv+n{{bAt#{T3=9_?a-NXn8RREFE+7t{D$ZF? z-y!5gL0XL*?x}Oi{}oUH$I)c=SS>DjLSlB$1%LTk!8w%?_R}=HGZ1T7!N8h^Q#~<3 z@;Cu;_+|~`tb(Y9KLyKo3C9QL)a(Au z?PQOH-eeW#&Y*8Ia-_5~c#g-)KiZt97@=mYZ#v3}=t~CGjCBeYbds+^9Jbjf`lh5s zOm$~@sEFDOV9{)fnoP}P7Q)nS@)XJG&j|ZL{4qx-c)F+D4TUqXrl3FcNt7oW&}sL5 zCK3C-y9L`bBuNeu5yxF~{_+(07Sx|Zr_LXrDpw2sa3EDKw375mlOIKeW|H)DxlZ&S zpiP>2F(hEP&eqp=>mfB8-%iQzB~P$9U5qylCNf^f9SZ2?$Do=8Trj$iJllxPZe(3= zMW57H&OjV?}!9rk&Kjgq$u26TE85CZaWzIoG%zbQ{H7ZAr@i-qU{`3U-yL#MHjJ_hHQ zeelK@`4KD01BLQy=vOnzfg*XQxKED-UW_RghFP0W)0%y(e4~Iu2R7ShmKxlFCn)2*5i_97jeyG9J@e;zXubKW*2a zji&il+0-mgPLt<}&V@WBog@~N;`ms~z?xkadR{M;{}d31Z|*5$nh`X%Tz*SL8##`o zr*vW(7F!5$!|*Js3bH@U3WeQO@<_`RbH+ezidjY2&LYKZT#ysGy$v?og`w6d=3N-- zH6WcUjdLGz#f!5B8s?fz!*Ny(wOI_8ul1pb_=K{YOxM_(XUpqDtixMBxcD>5gz`D^ za`Xz(UY{j44RWC`GH4TLNXZ!ySvgvFK zjW&MIsgq9&D3&9n)0dj1ayjbCL1}O8c(q(8#KMxR-x2McETFlp zIk4uSJQCG#0J207=E8?7<#kRDu^*J(?iUZ6R>?`|1|xd5JL{AmCJ9|F#~XN4pO&tc z*C601uut#D*qheKQ3h<2JLmguh9`9`cBk_(#!#P-Z@5-|7(K(l+JyWu*nFKFhd6X? zT=?KRxfUJcuxX^-dA(dAJht@)Io3*%dxLyEI&G$CccZ*ed~A?5RpO4P7qNpLo=uFHJa8OBbvft!bW*E;=;+eBa zJ|T$JgS9i4<8Q@rxPW6rm&S8FDQ@{r+_kw15`rPjr26fR*@Nj_x=M!VZ7iHD5~DoZ zx5(cL;s#yXPQXK*o8fA`YLjRAHhGcY+{7yIj>r*VIJ%!fv~gtI_}9=i`u>e2t2C%nl*=)pNVT|#IG7pY{0AM+4iv4wC@nz$k#mX`|1v*}^k zAv!r4ea-dqqjFc&og<=29>LJva)CjFDF^F!MR-HdnMLRxd4uH4VhpMG@sB{pi_Q)sDJPx0>`i6b-Iw8x`_G!65 zG|-ruq2Hr1Hv_V2`$(R%`(=D2V;$qI+w7AA*k&6USZm8V&$Q>|b^_w?wIOte1ruTq z$@d!><1W$>-ss-HBYND5?s`GqXy9vVh1(J%+Qwkq>=BaZ+85;ug7YZjs?GK8d>OBn z-eOR#5l12Z6?qxru+4M5t-fV>Ivkd-7tl8xLpp!>fdkOc`o@!gMD{mgnwqn%84;hn zCLhBwoYfTf-hG1``gTPj46HQ;!T8tZcYL5vIDy^Q#e(j6^MpJ|KpcD8bS@3wZqW-X zK(;=)@bP9$tRo%EcF>V0=uLUOuRXDc-o%bAHmaiU5|3d}FHiWUBR+?7;4L}AhDuqr zd8pZ`smU?WX4X^wEnhF8`OOnP)C^(8hw=?J=L$xsMNsf5yjr-9K{d0l@VHOOI|am{ zn?vYPs~ox^aOjL2DWW?#jwFe44%llU)Ep4Xwbg5^HV_n%(;I&JOuh*{$+2u&kcB+P zpk5+aFv~w0q%Y(*(Tl8>8kke#c})$TUOQG*_a$D3yv-3(VVfTAjiMOPE6W=pFTmPI zghbEeukbE~@CDrRwLA%Z#n9ox*YXH-fdkNP^c6IGBkwgJ(sVfcTX_)@vzxjI&~(`O zJGn&sDodM-^2|xk;|AQ9w3dCAMJEDhm{70M^epb&bMnt(mu&K2O?y~%9#7&E%mVW+ z$dklw*|0L$8HKuWwN%NkFW}vkAsmz{Iq7HF34Ox+L*dvtIR$>Yh=TjiH{vj9PvDe)MN@uev&w77kyvYW2c2Y|A?v(wNcc^j7R(2v zHl>Dbzsc*+A){hif(bpqpkD8`fqBux+rzz=dfDKDY`4nSp|l$Bcq6-pIlf&tqU{jX~Z*oM;R_oaYoHmGaN8A9{M zIaQezZS@9jhc+l2q4&e?vMWPTHm7S-Y6>3ApnBtBq(j**jvor=f0x@!<8eLgSuLla z$qbWp_4~z=p>)5H>(p;+%^IsUtB?_R?MgfKgGi|nmumclrO?-@q@rsWu9iohbSm@3 zWflqVXcFo!E5Y+=TjdV{Z8!5w2~=(s?;NV-raQS>lXu?Lglub8h`F!m?dEJrytBYp zH(493T!-G|WHVQsU{J3s=7lJCi=XMH`V6{-D%t33hNhb;R4Eg`u$bxttrcgrR-9r~ z24}n%raURy@!u7Mg5k zo*AQ5F#lL%Ufe8m>UVB<)=kViPMfCj5Yv{!r`q|c4oZ2buYL=G>G=HA+Z~kc z(Y~e{dbfU#GPyTSS>SVnctesi8nWV*MxUn!=)r~8`e_Fjgx6qEC*{@lbRV4TZEHI{ zWba1XTnU1)ot2KXz9DG-!UYR!7cRgrA1W`aOkT8LcB88ZHgs0niRFV}<6)(}umfJ| ztn?8M!0(-v1mPfb>!Kv%hk8o7DCt5T)RSMg!M-j^41P@U-7d<2nEg2WHiY7L98@h? zw4|!GtbATo()@*$Rr6}_`*9$-s}d(1gTk&#JEb0b5+Cy_T2KzuuLBm$>z=JUnpKyKbYkn`ucT)w>4Zj!^G9MoYqxJLToUKV5X!W*@ntx8a{A zS9GiX8FEE;e)bO|BLd^z_ijJGllPj9D50WdI9}bbL6GO>^j%)1X zPzSzS@tAhz<4saUck|zbRo#{SAshf#;hn29!?ZIW*Y;5I(RmL2P=%t;=D%f7FAY8O zF*ZSY%ZC2PYC*U|$&EQf0CfGJKM}~&!-*m(1xBPOlOQ@pi4+2%cZyPnf`>Cb36l`U zM1N|}e>ff35JPOzg`C1(ovPpy6g^li)rDiDAN}Y;*#ukJz@olNMKG_bW*(T?OL-a% zGco2GsXw*HQ)-Rem!S-bDItXVi#C442Os%|Qc57Wx6&U?<#-dLJK2LclZI>KA+v`5 zsNZEKFTC?4Wj{*xT`JVLbUubvo`SX=gcA+Bo6*C2596*uO0?a(3k-(_DWPGM8NGe-DksOA`#D+qnH`I) zse=`lcxE`HK7}7<{gmT@n?}zD&J#~*j^LQ-=XlJ_JpNhA9s&KvaUquF2=#M0Cc-e! z(4k643E4*&`yEH9ADb}|hQn7m$}1?mdAcsmm^dR>xrjP*bcgmS9iVWOl86#HXi%M! zCv=84M=4v4*v}Z6)y=mQ&v&C0Q9#2vhQuD7SOoO25aQsWw|A@Zm2s9^11E-ScXr<; z7XCLW-ou4^;fQGCo!wF_(RychEQZn?>+KHst$q0Jz`tQlfzot$fa%uLsv8~rLpdjS z`*|Da@97@}g=3UOzOvTIF^U_l;LO1K&D9L*?Kj5?mBRw6XBFmt(@)ckBc=Vu6FF9q zLIYU#gkhfTs<^rk|fNwIdv!nSy)6R~$dwjCgo>s?rr*Z?G4@q%49d394b#S;hi53+_~j<&W+?a`vx%M?9Q9K!?Q`fD8^I90 z(MDHUj+x3rp%*NhiA~s>;Q;kqR#8AE8puIulY7I=GG(k08#kE~JzP^g?ee16l`9`b z&tTlCUhFME7FK#THs6_@xN^R(wwnF&{zw)4Y!pS}f!{Oakcv{o3 zdAg}S>B2lutX6u9D3v3`X732DfjM1JUk*ymo(i{Ks}vcrjrnG}PcchS5y#3DyrmWr zJ=K(7uk^+*b=!75p3+vC=!4l9rymC@gG1}^ntldD^oBJ}H4ogN)ZsS<#oVZLLf0@H zF4bJeL1}BRfuCp+^odP=y>yl`f(&qq(+#!Sve!34>&?PIt^~bqtjUq zO6~Un>~B=Y7_p7f;_|6q_yZfZC<3~~@uR6=-&UnBvgNWqMWl$AMnWzq1I_61um`YG zVLs54x8aRX19xNQm}k*S&m8vKlpB3bjke#07o2@LNlm#Sq&I_l!x2uNwMW5iw=2_8 z4y!dMS^dBXN3VHc`5nq35sh!2utw9~L>LYS?^bR^<;~OSPidRz!r=UJKiPBQ9_3CE zEoz=xf5h5Ejh_nmKLy{=Uu7cX(zO0WF-JH|d#za5{fb>in@p74IKM(`XhSZZVr0V8 zyOba<^7TrNt!BPUyOfPKbU(+HhSn30;_1vI9Fzv|{ZPCc!wuNR0AA_S*kPWiJ!B)} zWsV`~@|=FFeG-O4%@c-YV<437SAy}2g0;6tXpdLfo>ZdKyh}*(0)n4y>;&98@9Kaq zDBt2V@Ufs=+l&^6p2WMU-$BY#N*8pVV}awEt|!A`_fyJb@ta)jFfPl**ZF4XS?*B= z3P>Ks`Yty6NYs`CP>ah@`ZVt3Cd3XO&W0K9j}4-GN~c@SHN$SK_(mIlLyD$ytOZo;d$*D2f5Sc?Y+I?xDFM{wRJk zeB%M-CA5H{X(J(hR{JUrO5L&mYzOg1j{)1*5w>V;n$A&@ZIA~}9aKcLfrFX`f3VOE z({`shPUZ&OMK_kuyr?YkHC@~KbYPhKmTOhG?j@z%=k6rkTRt;P-&;NdYhO`b4Wuh^ zvbxrM-UlWhR$?Ovw86ikthTgzL1|6dg32s@tNc)ja;OkVFIOzK_fIQr^cgtp$biHaRcniJMA9>28R(HCMb zDQIg=Ne~2HHM}~+jO98vO560UI;vDUFL68|{&r<_@Gl&M_K|atc1)S;1MYeBm@-Rn z29IWHXzxxVZ)$V4=fOd*38RHz*#ElnjuD?c-5Gt3h@=6pKS#>x0P&~s7G2mI%Dc{V zo+CbXgwJMuj5;~{^I$3{9d13T95mva1nG~F@`4V%sgye>@XV+^#&Qtd9yh3RD8(A__Z|s|hYqEVUe1*!d_0SeeODP}M5j;r zGAl)CJ(1Up_QYTwqU)OfZ>1`PYbK2p5(A4*1Z2W*|5j3+J2@3-421lPgJ^t40g6G< zu=_n_iqpf@y7zA2{ikoRarDH0VV+yw$2T6GFLQ+2BhnK-R8~5V^WcjG_-WG)A1S56 z%bwLA;b-2BRMgO2Kf&>JhNB{e7G8!OpD6u(pv$K)`j1xhHK&wxBf2R_^es74YkGP2 zisznIQnbC|OgMR3iDi4mKc7}cgi(Ldq1~C+)I*^7j534^_+-tMCK2JD7tY{*?(E74 zN71L}Dn3O&-id{b{?H*O2L}QjScT7(X_lSOkUYBciP{rU zQKZ1W|6J)bn4imx!|)ncEUE2)3(I@6axf5&u}q0{`e;j3o?)=%sx7t{rR{(kwbod| z@!NCSZ~ao4@2n&W=xLCIV+`Y{Z`|?p+IbJ>SITaDR^ZvMlqa0aO!Og)Uf+_d%cEOk zOE^TmWn{hT8S#zsB0e|F)e<#0Hu__94U|o=l?{HbUn%6&*2NmsrpNVoh{?7&bfkU$ zoRZ@sQ$xggI%jQ;&8P11!c2vzz&QxHX9~O9w2UCGBZAIz;13Jy;3wHNTc7ANdhOd!&(15PJjf9y|zw>O+j^v17 z9-_N^V_Wr(5Njyp1C8;C`T9F2CgziOPMj8966^|8Ga{t|9FT!gvyehG!} zt1HJJ!|DLrg47q<_8|2%_V5*yu80`~i(Yj&@M}3r0^r$THL*h~#=xJPNZ0;lX#X;` ze|<5{#W|x>Lkw(4#11LYrmJg0)M=;?W9veoEL@GeBG0tCf{2iOMuo2^Px@Bl%24%t z0X_^-{e&KWjortqb0TAg5O#bl^Zd0~J`=7!hEFUrxs-ju6)b?QqYt9i>A`4~ z)Gk^bE;?5*Nd?->YF(_l0bR$yRDqbwDgYBYsO#`M6+Y^qK5OOZZhtHg?u=0r;mj$7$|#5jU01XtucM`X488K zZ?-nD_|lLRSk_S;fcBXhG2$;vn%<=LlZ*$xBEbdGom7wW6%MYsdA#tD~b#H|s1Jx{p7&6+mq8I9?wr*{e zX|!HwH4W{B6R(`sT)D(d3l*Hbv|Ayg@Nb%WFqqDo^uRL&`sV8bBH`IVY6CiAvU2Y$ zi_`_NUitDESky&rk6z|^VcWK1ucf2e%h5E|hZFMy+xwc8L)puCQ*v%Y&S(@+h=pj&37Ro-uB@o89-Epu84o=z6~G^4!J|8JVw(n-t<%)FEATSx0ch*=qG@Uk3NJDaG%eW!2w^<*2#222 z)#TzU=YY!$u2!bF)f*?^ubC{0M(HS($!zfenZ$TB^~`DIj%e6ALw(;ln5)&s$J{Yn**JrwwRZ%B!)=x7el+)=6Qmz^GYBGmcGi_$aG5~k z*_o#5OAM}nqFHJv*Ms-=Kp|J?b=Dw;J+stmbc@L-E$MYPF&=vKde+WXBLs8@tDq6u z3fC^zf`}KT?S{ovs|y6Q^PiJ+jSor0w}q|pEw8xdTUaz#4cC_^4SplMH>}bd%Zxko z>}FORsk?llwz`>gXu8_F+7Ln*JiW0Y0OWaUa8ve%4)fG@X_uE^P2U9&ustXf?wO|! zMQ@q>(2{U^gYnSA2}aFVlP9;z{#K?mzhC2E{>fLxQ@*R^+Beo^_f6aL4`g>r3 z`m+sPVim3J4*ENEcu{a@6+WO7TBA-zj$-3b+KPUsze&d+h;D{CYt;h$P|K8Byb6gm z$!o=;`*yAOwZ|M=vgp<}FtuH!2&R?p2fC{SYwOf;_z9YK>hOK6-VBGjq!pUqp=qA> z|50;gsXAI14aG~fMNwKv#dQ@aJ8cRZ3fB6>SsG8j1hhCZ6753>}mVSFM}#^6b1*5!e(s zFjT+m!wp!y_yG&nPV0W9sfaZdgJTt*iri}ogO=pp?Tm+a?D)?r^#`<r5LLkXc-&!zK~=fZeYB59N)h7o#jyH0XM4o4r}3Ttm%EDPw!(om0B?l$j09VpFIV&(qJf&;Rvux$6e78mG0&O1n>-B1p zfP}IC*vO~9D$L?%&+9j;qXcIFlf><0MKCCJZcBEu0>(n>Aph=&lK^zbFREVci+Y$O zWd7v{V9645hD~?&Xm1dKw|wqE15Diidj4d)Jw$KoT+=wI^*N2Tgy`e?tvHJhAme8B zTU2OLwiVNyCw+t!o#s5>pl-r1k}bML-GVAj^8UJUEG_eB@@7&~wcz$Rz2~P*bEY$` zywe=*HCNAUP@k003RbN}(KYw0_@f^jlyv8o47n>Hwo$#l~;QzTzO+asP(7zWl%-~01>g{T*K|m|VgZ(}_ZtGX;ykYd!`iwi&aI$&2cvIUD zwqV|ThZ=f?1+#U!QvlI{ftgU$(V33^G+Fg8>@rwxul>$=cr$=^(SMje4FBStYK4H> zj$>mZcIyZf#sOOD(YA2>ZuL_GZ{pEb%u9}F9_1S4iQBHeZ9_>Wbz70{k6L7Cvj|vr zpZY!;zzL!QFHM=lIOyNA78`g6fbcK1$Rc3trI9kM`IkBbO)v>*$^2o!IQpQAK?=Q} zQ~H3q0L?Z@`0Ilh8{vt8{+SW}xIV&j-Yy`|8g%^&YF%b0m1pN&zUbRvZ&?-R7BjuQ zi<#ApF703}xBW&cFTXkFqpvshL?3d4i>fQ;CM{c7w)~UQt_=))JgYY(>{5p#FvUPil1?MzVNN>lyEnhrxpnJLU)aMMXO4V`6R+Ljhc@Em#!pV&v7h}Ir__^LU(9C!ks+(MU3 zTDKzaf8$FMIa51*zdBYxj`3`SBq_cXlFs>%MDp6~D=*hBlh^prG3B)%jrj$3L`H;g zw}{g66GPH3pEP{-x%esg71*h>@O{pnCgZeZd!{?%q4zn@hX>T31k{gJ0G)CUyeF$W z%I2VdZ^&g+&VI1`keXu^@bw`z6^;8x1T20*{n*L10FPiF1jfTPFRDFIRf{FCSwlbg z{Y7<(p$V;=HUF+fC+`kz7v+PO@L_7Sw#7=bIl@X9`-(aWt>jqIxm1t;3r$9D4*K^T z%dD~zMjuwMb#emqJ>_2y<2~j3{}Bl*UsV%~5-#rakB7Hk#j|J6KO$k#5jEOiq*i+N zk7hiJpBhw`J5Mm3>A27lo_-B?gMTw{i^qi%kabk;k2nc*SZMh(BL!`QX4WMd37)jkr!bEk9XyN;_fkz;~!eE18KRDH3=`UT-^Ox5I0YzubB z3PeGF52>LWw|?@>voj7d1$M!zIyZanqt9Mt+@OpC{LYNFSGpHq9dqFB6Zl?0n#s~F z8Eldn5AR^J@C`LzK*Lx?i^F{g1iz_%kB0E9@Vd7Z;U1`mJFoUXuoU9inYgR=seTZc)u%gJ$eR)O-ImPf=P@3p`Fue% zto^_l>KXeEp5!@Ka(L_r>J1D^W1=Ms@0Am@jeAalw&nWZzt!;wOcGj>pD<@FKk*`1 ze%fgg(USZ`I9oe;OY&2!H$U;7p%MKT+czS z*W&n%_SJE~gOw<4I#x;hOUPAa^QtS$YO5E_j;ozh6^Ad&t|-{o;$7doc%OduVaf;i zhTQumU;hQ0S~d>fWjxGXCV_O(ez2#}*#mve&}iRiNizO|@$e?&-#%1d7tt@Qf--MK z22Ig3C@)L9H9O{%`YTdO*yv5y81(Z){v7o0O-0!nLxJy4tC z4gLy0OOKYDv~ESbWcw5qE{1tt|5^C>r1qkH*sPL z;G!B751)O9pCA7}lZcjVY^{f-=hU9oh8#PG9}axNB%tMOh_Gv`n)M~_&1b^s&i`HK z@y`D%CJ8N>9$@Qe_w_k5kw-aF;OIB_xyPbedH#@klj=`?#=-LssQ&0Zli0s*Iku!( z5BV4IJ!M`f&9C=e#3w?(Zm|HCU)RH+@70b50W`*r{bxjH^t(ww)|GeIET_ka>iEGP z`sL+li2qiNfutYQwg!opwI&2d<1#lixZcYcEx#! zkMw){k2w8ypUB2h(w|$Be!DOp-t@cRC-n&dWwMIaP6vv0i}SLy{q_fcR|z)(My8er|Vu~*uu@sSPUCHp+|l*ta0tm$`)q`xW(ZzT9y zbFl}7A7{+;$ie^U;|m1~wKaT*Y!AY(d*bl4`&-3|Jq;aW;1)09Uz!MUL!I~?&Wb$+ zadKL_o4HtbGT%gPadMw(zZ-qZsZPc=Ix$#mw+}(zay5Uid$9Gxr=U9QLk&V&**$7} zHK+A4%Uef_Sx<_eJyk?)C$T|?PA=-5_5>8hLI0j@*yN(E$FHp&-}K-mw9+`Md>N;h zOqTcf+xJN*$)t8Ga>p89qW*vQ0mg)CxnuD=hIL%fy{H9a&8wj}brhP+(2}txpYhN$ z2HY8D{}4@Q@Yc>FHtHtkMg0TYSUfvDJls&F%&DBk5 z^cLgR6MO7nyb)9E-UXY()yK_<-IQ7TSl{Wn9IGFk8 z&@Y5~_$bQWHNuV`b#Cylt1PRiu3eT?lT=$(Q`_hYg!a+)7|~t?JAU?$5ROA}v^~7b zI{X+HI~A0a*64cK2uW{rZH9(ud%He&;iIM;YOhAuulTGU2gzu3)#Kw09He)n>n->& z+TMOt7ksCPtH^A0^~8H+9HdX9tJ(;`Z@WBdg!F54t%V^m_Jo-^c#YH0v;as-OKo&@ z#6t@Y!cCcJ0^zpoF@bO^M&aJY6XIqpgCjBasMYnjrrt%&S?>zOX2I9AJWfkux_WA^ zde>&$?s^xoP(8IuJ+(x=>n+@XdKYPYJ#BD3ZDc)dSiNg4s_N( z)9PiUWH0{Sg@3wekUm7N=(|@QCRg;a_D9GSeO&%gaz&q@+)b|NxO|da(i>Y(kt=#;!$Yp}SXo z?X>&J72QO8mR!-*-E-uME(H#dD>|)vo?Owv@*ue)xrDx%9J(D*mf@Eue$c`Gu=6CT zqOWc_ISFD@#SFNx&MyQu)s^7sO`N?tgh!w$==3D*9gjo9$0fkgc>8d4j`4uKx%O;0 z^+<0N%z*d`zYgH^B>Eo5#*X$u0%|k4Nh~4Bv;B^H-Gx6B+BxwBQz$4>iiP=|?Nd>( zk$`?K!46?v?8C+1C&9^r;AnUwLg*NCnvnDFd;EsyN8gq4Sr>Z|N;LAzhOF~~Uq}xI z^(qZ<6#-G6r@Pu$NT@%nrVS;ZmX2l;^%od&Oz_K-?ctuMd)hx2P_7SRPF?*2jvVnM z?Yl~ylkKxY_*Qtmur~m|f9I`a`wUcOVoe(pJcB{?#&~W^vG14BLRR6c8IjuN6Gu*( z5$1WXxBaw)R{9|3nxVhUjU%2!#=#07+Q8id?3;tFEraZV_FK?BCOL30P2{7X$v@da z*gs%EC>5=eR|)PPz8$&?O_2 zJn`qr@JFt_H~N{cFg7*Sr+VSAZCNyPlV|@H z_2TJpHy2W1bH05oO5x!~e)=1ZObz}874js6RUW)C#$Jo^c({?3{)QnFt8mYeLi<4h z&E*LR!`X1E7_YKs^Kc_W{bfHEhDi(T4nerV({{YwUqI`42AHvU-4t_-=~Egt6SImsStb3Vw3CuuJNshMi8LwgvQcvjD!zs|5bA$yvAs`%g( zc%x%bln?T=)9iE5%gvMDH{Cu4le?){d^pn{V<6d!{lX=k!4`|?NryAAo-g3zGJCzxbb4r|lnHyv?HMR`s-YL? zV?z{!Hszj=(@~UXPKEuHAS8Q6RoOokP%1;C$rWgtNSta8fdWlujw>B3z?Exn4*_%R zfx-xgn`2KxBaIC6#9S!`i5t{IiOjj?ypRJsXv&b9YN4Q5{JExaZ)!)xa}`!xK~ab>=}6y0lP zbB~41MBi*YwD*eprh5Fx+uPz-T$wpNrE%ioP5)RRXCpn{c!)Mk!~Dhe**@d#q0jN~ zz2*`=-ZJA0M*=!+6q^l2Aqom&K<^O#^b&i9C|;cEIbVyH9q0#!!G+s-OXKw~&wb3H z(-E#I+(i2{h@WFmM1Io@(Vq{em)nPMW2OEA9Sf(XU=uq`gPdx-)fR8$lqbZPdFk)S zvG5|nCT329I+r~Y^)<7}Ftb^pdDg;UmI|^bzZ@6u{)}A8>Pk27L&Ymowrx*f@HvGXRQ;1xv>AZu( zHU-;JJ=l(OC}bTV95M5{z8PLD+|KCX_NkfIDKoDdo8d*n?N>eAE}7ZE?0Zre>JYcas;oCa!~xQN?e z;iP9b&YyaCK*7e#huj+arIWK8?brKUNYZZ_oSvkA(*Un5@iz_53f1uCt@adQDnz>N z9faGUuN%+8Bcar7@3i^@oWQv44ZIt1H})3?!J83fxQ!g77k+*H3GzX%#_q0aTvhLy zil@i*uG?rCi5b?r2-|wfs-BW_I|J7ci_u=Sa(bK0HZHnCTSb6$k+Ygy(Rs!iaz#gg zwd9Isqif04j%nKWKgd!V-$8y#`~HWURMC~U8y0S{9}3|BxC*bB@13r#w3ltQFF<=Z z^c@e`^FkhB053XOV8cAHKZ6diN=Vy=CrkGd0KYEg$>}`?&qLenZwu&H^OX8`4Xl*U zz0^OX9R$#`+JiSXLQh%?AO zgBc#%29LC4l_N;5NAWuL-uOapJPSb9NdQibVSb|57`CLnafpZ6a5~K+V4a~3`}(C4~18^^%KX= zfcTjaAwn)B?6&{tgEn^$-V~`Y)20ql>@YuGRpHw`_5ql>`(FD16E*&x5EotgyNh|P zHPh#pMI1q^H~~SbqXP^nk4Qx~a!}$Bch)ICan%esTplsnN;04#A_Hw}j-(=Dkd-94 zGGZv&)eOn2l@ZBKPBDwyyK8aCHHo?~lmqCVncfC&ziU_&q?S4SVCF3RZOypGjQ+lS zeeNmj>vuVgsIT8*0I#o~_t=l%-2zr&?#}ummnYSFN!$JQ!-DgBMmZfe-zUXwea_w$ z{l=h>_8eZKem?_NJ%^WJ96C@3&De|`P z^UltU<8=CQouotdfhdtdsais3IC#ju+JJ5Dl=@Pd6G6Qb%>kOcqi4V@SiH>{1A~+O z2mA8P9WP?vOyX3bzL~%PUf;}n$=)cUS*$`cS;Ap^f3$#udSe=Y7hwNkd!dt~umoGK z7Hpg}Enjc|T|AtB)m{~C%_F#4OY}KV98y$@Zs#;1Er|vOFk5Ck{f4RMmiWlN0(y|) znS-uG(~{?;eXFhKG5a=ge<}RgDe_MAoQXjQ3yet`gQrXB$J(A^h+d88yZtj?w?8YO zw^=RKgJYvF#NKF@4P5LNIfhG5x?F?e^rma#N&7e(I%g8aQBL*IWcsO}5!vA=G_pFWw6rzgMlf=#KBaj-EtG82W88hwI5LdfaJzySJE zlAxIolM*?=8N^VuNaAdxfB(JhOlo334pX085EDakYUH?p466<$s2`&sX6MCc&V<2f zk^P*R48UXQqsa976G$5O|m>lr(=Z&-Weq!|JOflN64XW?`B_SLJe2(`P&oMN!{-48dpWE{<&*;(e$XwK> z%-C1B82KE8FYPCsyfWJN*;qEx*VueRv@vvJR^%7~MRLsXpx6=K_}bnD#c@#5Kj4jL z{SoAUV_#t==m0&3MJAwhUj#xKJTffuWhW;?izv?USN&zfL(I9$j|tekukrb(Ut>Hp%{ z!n2$RYR{(`z--S(SX`J8>Ura5`?Z4eH4cx?gRc42J{Y~ppxQj>H3<669%aBb8*Zx> zB)niPhJV{1iSH?#<5`kurHh`gJ;#2xZx)|sIjou2HUSm+AhBUo z$m`fH5m{(vD2{Yg-W*M0r*<)Bnvtm12fC06yH!V?lM`TZ+JjoNc^hfVu+?_QAE?2| zmG{{$3nBGcG|x$&KX?vL z>NoHTh1b2#|O%!5WqAG}`# z-+kE5zIqR?sCN-n>Z$m8Dzcu6si&;*0TYTtSa5qrFXEprIyHZZT+x-{%jAl#N?svX zbV7faT+w0YRdPks&Jl7&yNLQ4x$IJ|?H-ZsA-sF!(RPnMAXRj7_yH^obQ}rc0JsWo zD11|{?H<)ej0=S=L5^hf3rBN0*rDIo`iVikgmfP%H`uWODHTi%CdrNYhG6siNIW^5 zD3Vg3F2vDSXa|pmI0m686MYDy*LRa5D(L()lp!{0LFT6iLmmC`7m6;0I)=#aN28i&rtembXqFl5-GX0heSd^woHPTofk9D@5;U`U zhWf#fY0WaEQ}LVIIR?0|of|3C!HRZ{NoZ;F4E3$Cn#(hMu)X6Ow4r$}`l|tMYL*Ku z?yHms^B&eB3l2p)=K6vUj&a<8o-j(xh6}F*p&$m-{p;x&>-bDSFR%*gR4&5eG^g%m z809pHdA7tk@SAwvU~n^~{&6)UB{^F=ucKqUh(2zfQvYmS8 zD4}^ueN)Lo`M|P7hlu(%PpEJBSP0>dWXCy_(>$TRjbk9B=Hnr{`A()fR{ApE%rwU` zG{-1IH(wQldd-)e?wBp2t5}8EeEL=lPpXZfNxdDr(Dls|j@IJVKuFudL-e*ho9U>F zw)QZrq`rwmZ=lTV;Rnm>=yT;sHMMn>)%eA6 zE<34-AU~HSr6tW?HXpxKZhm>ylA1Zyi*R*0sSeYs(~~O7mLyd#z^|MuTR=|8ZikKi z9q~DYIX7q?~mR!;Je~w&HR~{f&Rh8P9Mg}cBrtQK(0c&1K_wW{9QDhfe9CS2LK6GKyLsH zgoYePH^h-bb^+dq|0u^X6HVkO_ZB$vgn`gF(iiq;BORkrwH5ouTt_D>@3(RtxoCwI zd&wwAwy6>1W&-m`7p)`l2G9-@@(|4@ux+%X%9q^(@*LIZ0ZuqG?0pRCHSDQ8M~Q%* zWEI3ZRp>bmKnx>3Sp}&Nh3A_wJ3w@)BNLr4p$kufP>9>g@vYSMVOU#xX>H|ng1v=~ zH7xmPC9trP@&T~+z&=*zUdNjO~lS8+N=S%yf?jb^&_X@>B* zagOf=6lNmq#0dLY2(h7Yhi~)@cszWSAa&yMZWbFPNqlWs#cNl|unF0RPT@;*~?05%_XSL>3k*}%8(`)MS5It42 zf!*=|{f^LysgA+EbnGw<>v)w>p5FIs7}Oi07p6I)1#~^D&_c9<1JH=LewMa&HDT%@ zdbbH(xE^+vI&N@s*joH>ZkeLBo7YK8kvznkBEQ{-r^xt5m`|_VREAsp8m9v5l!qDA z+v2I^j#v@B$12PYnWHJjlWKW_hv<1?Mit&_@R5gM?<~C4@ZBWT9sOpMq`4yWX9o3# z3;w?6%Ol!*4xS4iAt3u~WB=g{r*Gi#95lo65U=54&)K`ep2+{l*>?v-aYT)058K`B z-r<2*I0P$2Q7}f06&r$xf{7*?8?gkjfQr2!Y339a6&)1|8k1NPO}lh8F^MrnO*NWC zO>egJXw=`EnLXxhf$#f%{~W`c*XO;N+1c5d`rUmtS_Vg}LUA7vUl~a-3Kr`6VkNXv z-QbEIf6GJP`U?h&P7+PTQ3?X^F`yH@ILWzOMTnNb&=>8nNa24B(fvPWihV!**%Szg z$w;^iiHQ;#42hjnotNP33Rz(eiPa(`FsX1kh6G(cDh6V8@e8ffs&jcMpNWM|cc$7- z2^#+ZQ-ZD2orB2^qgMLXDhbqWpu=W3AJCr0aJv839Na2+D0zoIdTr zkf5JVyWqOP)E@P7Z9P!Y6TEnImUD~kyp7LP&yLe)sxXmbGu2ubL2k)yw9SH{9gDWG zvNL%40L(_W!61iLYG4g01#%EUU=66i2!S=ABSr|U0sUcwz#33sGT4zLp@20-LkFMxlzhx2A8g>iuU#6s=E9U3Q__+dpF4WHj`GGmZVf_5S1AgUX zS;>XQ<5NrrEAf;MVI@ArsliHo(5uNxe0-^u+X0Ha%dO3TypOBHO1w95vJ%fb7c22_ zC#8OndU}ELV=n?g6->EX(?bj4sq}V)c=!=#Mpy?4 z&=GU_MElJ}&Rq`DPu5aE=UdpLS~DP?Y-1i`v3lkM&Y4Oe_W|chg$${lhrWJfYLdc-5L~N{nUAjB4sM#f-Pu41rw?s+-bErN%FGEyxL2weFI4o>o{u_vdCyA~kcvKf z;8AC}(u!v8a8{7S>KP^ohVj)ieEl)!GNl(C__(u_^r@aWF z^iQ7d;;h1~#^#Dw-qJgI0~*7Cth|(Ol`j=EznOzPzlWVH$C39Woy62sLk_rhHGEW4Y?At5 zRqOi>yzyC#&<~slz9d>Gp+Oox+TV4|`I22LjcaCqC*WrUw_ZJOGUVO zVhv;lL&nnrB#hR*7_57E7W09xUSRmubkhK90?XW4YSv&mnBZ1!PtV9@YBpH zbkg4lSao{&oO7-EfE2FlH1E9gH?mBEg-#FH>!f#fm^s#IYZW@_pTl7?;ir?|IQ{BA zDO}g-!Ec?X$#W7cblPXH(}?Q*^iCBz>6_6EI`zEOQ_sAk+NMK@`oTGge2vtr?7X~Z zB~(wgz~vvDbro`1R+u{k{mV2&8h{P~zJGU2u1qvegZcvfGqf9%?E3<}8nNWPTQ~yf z>gDMROOIZ1QiVjDB%*F>u5dHrz*&YNK#(PE@`=kwOFnaMBppl)Q75CXrBu0-py1A@qXr*1Pi5Jw^wSPl{xm*S5+yc-8n_Da1}y;60iR1s6JTj|7c8x;Z7MHecr6uVi+am97mcK*bte>3v*=^sp}rZube zSnah}`Jr~S?(W!>TFs`wT(1+|Ry?$G*cZ_8p!KKZvb;z-xu&a82ZrR&W7Yn=NLH3B zMIGSZJl^qjWF_85c4DQollZhx8B4p>a_v>q8H~^O(x=dZwRQTfIg#w818ckP3&T}> zBp)_K%>0rvUGPz>B&5YHTp3|wB>+k=@DH29cLtrW<7%VKqM=S#TQW!DFe0(9&`~%= zeC9Ze)#9lgVi~yNbae?KD{UDpn-bVP*yVSq%VhNwFbh;qwh#lWUMSs-~+aqRm8Ck6!kIuS)0l-%WO&<3fNoOYs}`<%6p|tX4 z^k^*f6INYlqd0KsFvOMT(@+Trx|E)*fKk~M?<(-!XR0-OG=lDpcg2u=iDq`|eN*Z6 z@vhrc%*pK5cETR43bNN^E??4aT>T=Tgtzb9qYNHkz-jxy%^et)as!)6t zrV6uJ9mr0JVYaAZYM@P?izq7QVm3*CJB>9ECcQSvm1fsEJ(64#$-73W8Q!B35VRmP z*|k9-pUVn!bm&L1U{WEv&8@C9dq-a0+lo6fnf!+MviR^`l7OHF!`izx!)aOhmC0t- zpr>e0Oj@Y{oGdZj)!kl=Uta93=gOt&kSh(51Rkpq5>Oedu4S4p@McFBeCr!4tIZmv z3XL!W6k(Y&T`6`03q4t?br8vWZYC&{f&_5qbd!Lfa~5`X?Q@WUvcjxNhEN5Q>Z)|B zst?KE3-?EgKBPOSaUWvN{W4AhD*aNBALyNV9tW1_r1~U*{GKT0~@}gd@ zyOc7TJtLyMV_iN~I>Yg1alKtV!`KtJ;IjrK@gbQO->G$^KfjdPNLfKY=mSEaeWb^Mf1)rVXyi&{exl(?qNgu@jl=1*lO zC*EO%z)QapBLrUhy=jENOTS-@5P0bq1`a@+;iX?^BLv?0<#>%Cc==Mwy!E1V+0@z1kgIfuIr|K{=W;sz`6!R;n1wFUaTTMFQZ z_sj|_@ea+wO3=T=-jWx>iagP4uo6$Onykd*yA~^r%NJ9@bef+5Q^EQS#;1by3;0x! zhCVVhlr9?Jniz)bcqGLZpt)dsNlDL7glQc=9xqu!p#;$vTL2TnC>lP{6>&abKUvzWzvWGk|<)rlp7Of zqZgfa+|yC0b59)f#($VN3w5qYXr(%>8^cZoKCN<0lR3Z|!R%{&TIG^xW`{fIf8$*p zRLsci@EGB6qzTal1l_vRnJAHw;)~*K>Ul&ug*`^Mp zx5O};(pCeWfPr}(4c$h`-5sl23E{+t#Xi`WVM}6`c6;8M07b%&V{*w zRi}0Hz$uRDm8r>Digdmy1y$;?YMv4qxHQkT)j>i{MEq@~>|OMu05KCj%ZkAeee4Rh zejixCUrvh`xf&{~Y27SugW%LFaXMQ)^1&H%*`eMR%Hwoeyf++8sS-dJJ_@oqSf{8b zVIU>XDEZ_kD1Dvs#nk6bP(F!de8hRxHW zYQ4`OAJA!IBVwXHtgN*$j!)dY)(SeW*mYlZgFshWx1eJ6fhk-pv@*hhDcl$%1g3CHj1ZW@J!yo% z6z&rv1g3ERg&9FGg_|;+w(aj~STqy7?9XHB`MFAdt_Bd!I`WrM0RV2>rd`7Y_2iL=l9S57w#UV?aE4!;Hk_OnfGsO3Kmmy&NJm@(CN9$o*Z;cVp$ty}79P7onYDRr$P|CmYmfks!S^Y0l# z0G)2S+AzUDH*JS2nqI!za3CQwD&5B9Wq_3A)vi*Ldhpdjv!^R9(`S#^GO^AbDF3fv zM2Mr=48xkTB-Fpk!-SNbIK8%CqdBC#QIp_|T0%j-Xot~bJJ13j+@{`FR-&fsC80qQ zy6|pz0Qda_l$R{dX*T}mPPPvsIApnn|cj=t%u4V>A9&tC`ceNqk zS+V;+>gs349z_1OBKFz=34rBu=Q#^aG5jvA|ClS$iWq4{{PQtajEXo~e5|hrz9f~I z&R@<1y3B8+DeA3~C5(k^TR}x$XdLMx!NQ^ZG=W=b)=pO|f@oL-MpN#WOe0A~2%ypT z7dBdKlwk@1eX3(nk8eK05IqD|?RJe1w}t?85U_aJgC=bO#pfEe5LxJ*C85Dk_=H}lQ-Hn8%%b}!6xxj6W4RR0ccMT&ynNXD_H0OY8l8TJBM2o)t0sBj2B!=kCao}nD zjEs8*GP2%GLrm+vp;tmHyEeACMw5zb)(9+I9obeP%_I(Mlcu!w`p9_F3PE`%2WWwN z$|B@l2+Dhc-gL){u2?g61{rBZob!@vumO>$ z25+={6SkxGOnw-*6`f~Nu@#-iO7EF6R@Rtsl-^W%72Y0TyLc2lW<~tsRo4ImBG+{A zYpxC?V8Ujap6u>vq$0kSpcyPC!pO;@i=jmaUGJ0Qh$R=4^<-Qe`3yn1r;pP=54j$& zVsAeTYW-xwb{wBcr@d18v zgDK3qSD?D`Ludn9`lPG1%ZejDpu;SA&U|db1b2-*?kZ6cq9xkKi)h2GCwfi{(WC8y z6Rz<-yWr5L-ealKRvqJ-Z4*r%JMn9|9niO;@ncC1^A-u|KMCE_-7FwXF22$eBM zx~+>kuC7G{J@pav^;V7PppT)iPcn<)yEGFeR9BS7eB%0nbeC`u^+u(Ng;JPW_z^>N zKmPh@^?od(=chPFlQCwAG45F6mB64M>6jF^FOYxP*FqsvWwn?Y%t8R3Y*S~8WW$&; z>L0N|=hFidx;`i0XhK(}(!d#4FM}Gq^W@RK*M#kuI-5s3s1%I$R^&A+k_dOK0T1^R zCQK0C?JL(t6(L%}eWhrok&<+}XeJENo9UIa(79TJXF5IfRA@cwd9_w;nsv@KJlv*- z)w|1^wX_0KV~$Necohi^c9-v-cP&>)gsc#87BdP?0rt|TzH#+ey|U6`+Gb%IX3S^I zbkVo2F{GWOWNbUr;CFjT-?@^4-|fY`8dAAZB){HkVTW#dB@ydra(MKNe z1b;|>jPGgR`n~I6yYY!`_!7R@>pwH9Fbpp*=sd)h_NS-odzxTTfv@r0OVfXL#VYmb zw4Yt=`v>5;!MKrW223jv1eSU{Fgha$EcJMx2SE^6>bWtSUi#V9F#W2r29|shAcPPu zEcpyKLSV_~FCzq2e1_BPUtFDv?gf|n^Xdare;!lSpU2embCuwi!*2kwKaUCab76ii zz|WaNnQ@SdKQmby@j#r#N_Z+m3W{pU?tx3 zFJvX&#V%qc-isBn5>J%Htfb5lFZH(56TiCldRH+RUkPHR+XD&jvYF&$J<<!Rk#n+^XQ=l}3DD64u-woY4s?_iqWPvaCJ&Im z5S06eFZWWyYKWo+FDnixkWkp+k?>$Z^b`ZhvD z$b-kGdFjG*1<?r_waZ&>=5 zgxOX?v5fk02eMls;qzsBnfyM+j*@)}8*)2&!9kiCf7&JppYkjWIXEbb^hfx-k7oFMJ<)>y$H76p$Osd@BWb?q84$Xq zXVAa;L0%VefB=;deL{i#viyDpcA8F@H5lelxL7NNjv3*MBaa|$SV;IDl7Jw`U|JQ3 zEdU+Dv)~2%I*BKovAJGWFR}$ed6%?~Dt$<_6}u=RD~;?oVTS-y8dE>3jf%KidYI{= zQL&;T4fjumCD2p#v!Lrgia7J8>e?`?GdY2vyr}?<9&eb{Ohxz>-xpfsiH->?Aaamy zOC#gGR)^CD>13?!Ce|O|u4A@tZe;Chlg3f3R8Ba4UZA=2;!cAQQgQ zjE)*aMyW^}OA|jNT#oG#li6omWGz+H`y@+|xVf=eZAiX^io^vpdMP&RpaGxX@Ig<< zWwj*5b_B!XvziekKzM4)P?AE{AbjpACZI<`)`La?{QZpV_mkLe zDwp&Of-*^tJqtu1fzT~+>bD5uaq7cf)W?coMz0j-62G=Ky1UmJZ*=e7Fld}by6{2c z3klGpEU<7GX`qk`vO;+6;BeBO{E48<7Ucr%e-9a=B5X_hQ(+30BrebBK7tH`6^QjC z$S4xNP-cwj5om*;4_(L)&ebGhFfI6LvK6ISgbp7?MpM_StQM^F3uz^B`N)T!t2PRz zu~jk^M>xoq*R?QM!4F+88UwR`(ie$>iB~zvL;#p`Z3_VmdUI{o5EY?Xe6`8OSNv{- z)9bQ!l3c{oG~wD}Ar$d~^)wl=Fr3MC^0nVM(yV0tOSea%Fk%lR8m3^ zx=0kR$`ypo6Xi3yIiDmLnVX)t_FL2vV-vDo_c`5L0F!2Gl0&svaM&%DdZQM}tYXa< z)<^<^*+buHtNH>@xU&Z+q?N4Z34U4ho9?B zp}ClztnF$;r_Lm!$q=LyA4>;IfLY=(x~gmaaC##uyPS-bXl7g96Sg2m!WINDbN)~q zKo^?QF^()moViBxB*08}N=&ozW3n45WSPX{Dxr`(EmXpsL`aUAM>dcRh>(Z-m`rC4 z8ato#BHK_E53~*R(0tNVMI<7t(6s*xt1x}X&)o~ie#P%@9DN*>TyetHA%>gs(BS!QLZ}o@|*tiEfC` z)>I_U(tCVo(NrW9_Od?NJAFS)_N?tsvmby5U2l;ojXV+%Y;d|I8D8A~mzlkq#K>B6 zk~0Xv(+4o%`^fe_Gio#)xt4Sw7wqs4AIOeV5o^($$W_t0!B{Vm+WAjsS16?B zVwneQ{((rFR7rYhJvpb4`iPVV*@cbdDJ6_Q2qOypWAJw>;x7`Sx$HVe z>ed^TjKTkhM zNpc=-t1*(!Cv=< z%mKd~Rqtq3bOV-`N}S_z3UlE6vhf9FdFx>r6}^~EF3bDY2!U6>_cJ1S&MLh6{mTe} zSHFXpo3ttUW@jiA7l(anFLv3Zi8pYxZ3-+=clJ}rE zCvQKi;_ub>)30772g48msvz|a6^rjGzJCp#t=~uJ$p_(4@|Xk!(fMg9dk&JTE)2>VF_pd{3b8S9A*G<}_n3{kJ5YViTa zt~bfO#Bsm05)|o7PdpGc%yG4t?s<#cM-UOs{uFx5u5XhBQXkPwdmAPXfX=p88qk}3 z0k4y!Mf#VrSV^(SIqE2RvZmTrvMfg0b(CP{CZV0umUcW&a%^Z`KTejC0cIM0Y4wH^ zWE>FQI6-1;2-8lIH6+JO81o^ScWQkE+M%aTAP}zVR+t!JsuYF7okhQW_G{uHbU>>^}L0MBMYiY|*NsJkL3VF(k zSno4(n*q_(WcpzDeS70g}Pr%6-)T6S-tSH04uMOY_p= z`sz3@Zg0`U(UHH9ghNEGfyLQ!EE>9G?|KQ)TQ2bGuO!YvcF79LL&b9mlIsA1 za@BXyO_#`Q6=Cb0RkzEel)Qn_S!cx)qR|zStL&l=Tp=ASgfaBHE96mf%9ikx-^gkp z%>5m*6iMWv&`ic=l5m#MG(H6l`-AjX9KSz6bDkw#{?~I*$yxst2y+(e0)N0U$Ry-J zlt=mqhWbSP`(H#X+7JPP$uswFSX#1a!^?k@C8UK>Ooq3q1O(gg>_23-gWM`BXwEgr z|1Jo?nlA(}Xz?#m>kO!-*y|_UiKGa<5g@4doa+!{qp=VcVNUUOle z{xW^cgxWP|Oj-NRHvXo&9O^{!4AKR<=nU_E2?#dKybyJ^LJrG{%DE1Tl(9lTL{7)l zR4Lo^WW^#n(|a}ki+ou<@qHGVI`N=7>QM5F4KY%9qJ>z52v$Y!hL$?j z@pc|mT;M_NAwvdb_*@bYY!SfV6T+Ednf#JVg$+`X60g#s$TPErewdpWw|$!Wtb@cO zYCfkM6c^o&BqJyb#1KG(7st_!t@!VUs>4Zd6TT8p7u8j}S+P4OK$s7)VlVKjJ{9Sr z_oVe(MVFKN5W1XN+-wy+pR2X7b#$abkSXHlS{xuE9(yD>L*}QTZc2>4mn<_1HBZU) zlTa}a5pS&{)bGg#8)6hP`bnpVm}?Y{0F^CH$JFnMFNm_~d8Rf{AMjawOkg3RrSF>J zRf)87Lp6!KVN@)`cSr&%Me1a$^&o4g<|*W)#1s8h((LYW___0=+mO8`e8=jC#iJW$Z_;R=RUUf)gA^+?rWac4G}u?HA9c-rH0dE>!X{}2IbLiDw|FeU>7*x&>hw0ukSEGz0rJJds4qvsk>P5K-XQDD@E zJ&Yc#i2j|-L@c?-zStJsfh}j__Z@0Cl3hxOXkzuZD65UJf zYry8bvwn(BBn_?D^?Iu*KBNgZ-{xr@QG&;MqNnwD=#AcLszD-aMf8YvLWGym$@~%R zr9SF8#nJnb|KCTn53QWVq@>=(=m=WpVssL@!=yPsA4xvseQCp?XKh$1J9RPoiI548 zz$Sz??Hj>!Z**5O39;fKp9|H=m!pda6e`zBd5WCA9Nn2LM9@n7DOaMS4fxDiXg%Vr zP-xsEd}$*`vIzEfe63|`hB_)_b5Of4e~WHUwo6pXrEP`kyx*g<2^1=|Gf6uqq?K1C zEdbIAVTUc^z{BhaT`)*3Ax9A0#QD77e5fkU6xLM+p=pwCHx3ffly&}z&LY1eK`j3G z8G5o6zp=EUnDJt6!5OdbHg|y6p*}<+{L-1M@9>35 zfVnTawB}@CSm2kO7`Q{XxkRHUx2R2M%u}feq&0%_XLLY&;_}!SBR+F2a@7@KEfy^1 zE0K4r;}p^d@s#U+0}zxi=JcU0hpSr**j%s6!`0SglnFZon9>uuF>MX_OfQt@`sNj^ zm%eSN(Fk=#h+~%D@U?(!zQ64ZVtf8Sn;P>5-0g~#;Rane)};+8K~U~GK%*JcVkVpM zo4^r*@FcLs4uA6WnA;8b%%sMZnq}UizlX#&317FG5d%B6p2tk}xJ2X*TXJUEyM-|Y z4&M<;UPZ_Ip2RROlOCbT6V>0U=b;=-XawIP#-x$2OpG*VdkAEHBpYZ!_sxyzQ#~tw zi23E}xonyj(}EzQ_+lOMM-5wlz)U01Z+;A1aad=mOfJ@s^7(%#0`iUxu;`M7F@*+n z)^N>b!_~5pqzB`{e06t-BW|gEFlM@}l=Q?5^=r}r=@IOMWL9Q|+0gN2TO2$3W6}DV z>iu>-OzT-NJGt8^C&N2L0)m6U^;zokWP*fOu7eRv9%*Cbm*H(C0eYkd?pdWi3x~PLipo$& zlDp}W5xsa&KmeT~{Nam4nZ4=Ba`y;3-KLbOlgTKf#0>8}5}>o9J=dyVlF1S-9uasR z6e1{VF303$;$a-4Gw&lSGIT4DB;h{<2#Wrds<~k}UxL${CV$k9pkI}{>(UkL)$Vqk z%vbBx`^iqEA2el#_c003Wdx3HP+K_2^Rj~SM~O^dlSJ|wf-?J*=joPBYD)vQm`-d` z6UYgK%_kqv(`lR4c?N9Jhcs@|oP3S2b>5|0;06t>3GmJ&e;`CY1po}XJGx0L11j?} z8X1P^UN#!cA4dknH2KisP)qp8&_dsoB*&ECb|*|JCIjWony3nCRANmJBzRoaf*ZGJ zlB+r5O89e7>i>4Tl+6-rbpoJ_ApQU5tulcsofzu(7v2qdu;XbXg&SdB<%{ zx{_=J<$VvJ(c3#TS!cjEMe{~oCnQVcBm(Hd;g8743aXTlQ8uwi{|l&#?1H)E1$8xf z25iKcPy7ttuuf54G1a=bN3Oo6A8CsZ$1L=MJ(7io^8^Lv@~Id z02)nB>eR@9Z*tE*TlcW#svd8t|B~*ACpUUTph+A_MNn=C@49 z@2R;yYtB@r>#Cjmi?CV#44R7gu%A$p|;Pr>_* zHVDcCyd|ywIXuZ@Y?E`(>bfIILU#lR>K=c(`Vje2Y+mLYu!kd6xG8r@K+u%gXVj4j z$(0o-P6`l|$4M?-_@(-w0o!EC1>F=RNtl8FK~sMC%Dx$L&Z;Zyh8P$*9wa-kPAp)y zNkEYCg>&k4^0b5tlTO8D#gUf~l$-Q4UGuft$AHaDLQgfOX2OL4?BnCI3Rt(+ATr&0_=Ps@g`ek+WcJ>|JCi#;=qUvo5v| z$QkgTy3L2=a7(O9=97#(dZGmvAPyX$u}{OjQ3%Q8x|_P|nyswPbPddnQ#D>2d zxa!d2$yy9$bM)nbc_A9iYcRS=s>31Hg#1-XHLlxc23r_~smMG82)1?WTAJT3!``l? z?IiCbZF#S8OagQUfzN7dD-?28R#28qjx#Ii{%>6Ap9UVR~Q_!yuLLzWETi-y5;UR^D^({_0B zLly90!`(&*e9y3vL5$xs6w#A)wWx^MFayRl$z^$4R@_1x?Tu}AZv~9^xDE{e+5`g2 zz0i?iEHL#>69{ZwX99smZ?C+CZrvN}b2KZZ1Ao*y7PTtnA0fb=T7Mq26#TMg^0TIa zU)C;u-WGoDe?Rv*+`9#S^>gp~xksTEoag5b^XCnQwI6>T^O2wX#m{}=&np7E{dvrK zKQkD9D~iB2Key1&jq-Cl{9JXo8UkY5pVy43D9`-s4*%xyH~c+ViEsN(VI{slwI?g_ zU5>q2iSOR&%}RW~T_0BB8^!vvlItP%9YiWC@~s5@Sc&g8Nn<6x3n87A_*iUCH~-^%}V?kbTE|C^Z1194hG~i<2zZ2 z&n}0s5}(EmWhFi-x{HwnkCc zqFV6{L2*OvO|n^nX?7#+6UW+8@u{N`pB?TtkD=lZFp$8&fk^FTMSVeXD-}Z4MQQ8F zAqi$edeQlfwVBEb^h#sx1rrSjYAglmmrEc)rEuBzwH|G0dW?2E`3mu^^n>?|ghGk= zA@FmI_NGF9l@;7={57Ezrhlk_$SGJA5oq5`OLdT|)f4Nd4O)nAw$P?HNS#%cElra< zYjFBroR&mF5fs$VQ0fGt;2_Li~Ow4L0mNgovT>GstoT z;O+hp{iw6HN=1m4X4j9zvxxYyi*{2Xj~O|dn_a(z%S=osb=P*0XR4=7wtAJddKh9B zY;|@4mXAiHXcNgX#FPj8t`sefe2Adj@MAQtr`B0T*cQXP+RKlzkspk@UeLvwZ>T!A zBf5j*-&Jhw)^tOaSKcf27wE_O3%dAD?RNVMs(uF)U@tDHf}5|__tv^QysHIY%SBb5 z)xplYm|awLZI$_=s^3@f4~LcaY4+8+_>L+Y^Y|TA)!CgcHipArX?ZMb7q(EK_}P@gGI~TEhtCOx?Quo(#$k1 zl4c!>(P&JXcBdnMH7$PBJ2+-)&{09+yG_JDrfD4TxXN@77{;)LXudA!b zCL8laHrZ4J?Os%s-JNv(s>-I@bTzBVrgng0%qC?7bq>)6IPP4-@@bScA@pl1O2@B{UekbodOo(zIx}mO@^ZwRY)LA&f^nD9;E42r>;u#^W}T!7raa^*=<$ zC!oszkP#mO3eJe%M`$UID^+F0MV(=(XrR;P2KtaUP*wLJ+L$QrL9|xTGo!TeVb=bw zlvebFHq0NbO|X4t;nyGX`Df+zhwvoB7b05F5%+2_MbAJNP~tAk9iKRUPQm!;6Q_)y z3Z3v1U>Lga5FWFm$_$WO(TD#npvs@e82LG&pChAZ(oTSo$CbaGm3W8VnU$Vj?SkJf zthjrPctm4QUeExC#b@pVSQURn8$i2_(_RTf0H}h-98pFOFNEt{Ll4BJlZgoZ@ZsQt z*#rp<(y(*m1ECYNbcZ?{)zT}q>o%be=W1O@kpxpzrf-8fb2OO9i>kzd^^_+{-+sS(J{*Gd%f3#Nt^;m>^1V`26j z0&}Nn-zwx^8{#NQT+c#WCcfR__Yu0*%FvOqP+LNQxrm?6UEnt8X9~4MMQwnp#RIf! zmbQq*NH7Zqc@bn?`u!|zxYB_3oUOI8psrj9d9oOjW zimKuHoo&xuthFWUC77pZ2;kASDRKRc1gp-3HlfkQu;jkmM4*(?t;JevBRco}`}f1+ z(kmu(&i{JPxWuXmJ}?mg{{aucWiLp7b5rS;MI#5$ZQyM$0_Yy0+a81=z|Ome7uM)N z$G9`vk*h`p#KKhg-x3=1?kzNNf3HYd>tXF=8(mFk?Il_w36)^c0oI|* zmS}B^=&~`ITG1yz0=6UWX4^Z7{6*>s+YumW`(eK}-fOj;c3KLvl7U9i`Zb9e5~_0v zIG1Vh4l+VkFvHC8pDMIMJ4URgyOwKnX!#0lESZXUDEqY*wC%ldsrAHjk^Ztt zu*q9Tw?)j(k3eE z6R3jnNaq*WJte^+lK_vNd@`5qs=7H__A1PB^(3r*VFKb&T*)dtyFa$qf3 za>l5G9=oR`R5FVk(6>=w%R0@kke_6|U1LrV&PH6gj$sH8WJ|LYm`N?3?T%b?@Xp#a zV}sVxXN@?(7GwQ5I`Gqo_B4NG{9r<8Wd?C2c&FyABcZyC!2FF`w1YI16?Qu7hnypF zF^h=ati42HtEZhM?6uH7RTjTQ84;)`i-#ACw<8`9ye%DbAxK+$8?Jji-sxDhj`o~d zKg=$cZ=>c|o>PUmUn;aeeFLQ!ZolCrY-v)12>L#aPa#7k8utd;tvitJ+OFMRJtNro z9zl<aCQkzu!cF-f9CTE!`B~sCwClC)S9dUu=qRPF^>$G8nPx z3GG&b+SlAQET|$bLbt>pC8tfCO;f@}RnU&w8h^z1qolRQRPk=D1Gy|Q%;EGSb??#I z6U4);_hO6ez=1v590gJ*VW0M%gQ)9ervG13r_OqF>fCP;C9?dx{n`T31c|X3qV#j@ zah8Lc5rOXyXoD0Or~;=BXd{(C*|QpKk-8P}`oE~$)}pe0sy!CVA8$(b#!vL6Nio)z zsk<+}E6I`=yk$^u0x^AjUwkiuxR~2!h1Fr)=&4V}pKWO$5495p{$McdzGnu=3f*RTHYvrzKEuobn@DbE0mLi5IkypX!Eu zVs5Q1LevJtp0^eP1Y4{ATiWePEt>t7=Chli6ukvA*^WjPdeWrz(Znl(IgR z(87kGe`Z2U5@|>94%FBXG#r@FoFv*2tQ(k+OOOp_<6p5F&&G$qgM$(x6t%BpStcGm z7Ejg^NTvh};{lKM%T8EH5P?~eenbOyGarfkr?pZTs~eqxxAUW0nlm0FIda@Y);6q46=1MT`v-DdDk&Gm~G z<+T}aZ~sM0ti#swVX6Ohu^X#%CEL#Bv>?>kkM4hLXalnw|_Z5+&1!}wg66eTz^qpNG3`gMxtYUoS%7H+Tn zp~0a7+YlF%8u}W&iLf5spO9KJucliucR#AhT&%<07|?KZ=s7*xj*g0bA0<|Ml_ zLI8tKTa`M|fNHX^i5L!$hCC$b=+&uvNfX4eXKQyfJ?(IhBk>5zRd&=A5~F4r7PH!dOukz z!6;kr-$eIM41LRns3I>kj%=!mC}vXVtprIjhj3@%d88(9;B_ANv*cOC)Rb!aRw+!z zBHxPuy18^isC$N~1(+LXP0@#`k>?KF~R zc4&V+l(AseiSFH*IuH(1L2OMf9bhG7E)BOcnx5aCdLQYIm@)r^b&-Ief9RDFu&)08 z9_V)l$Xd!|N6By=E@WeRe)ChZbS+#*tIs zO@?U1ked|iZVBJPR!x{=X)($Z5OE47V3&CJ_%NF&qRVoeDKsksRxtiSf>MMoi;ip>Hfh zDst1q5Fn^C&2IqnYJNMh)d6%x8}~#q0BOKX_ohog(1WAfx(|}!63(J3dTmm_cH~|J zW(F4sEVsrLL0Yt#~4YBvWjeF)uR^&cxnem{g+y%kiCejZ1HCil(#sb(StWqo0;*8 z$Xg~gd75V*S_4ZuLYYXDE(TKpH1k%`+R42J$mWQ{*z`r=}>5DwE{Gr>>Ti-P-K6OOhUtBn3zVo+MKw zKxY#eo#KY=>x*QCd5~EtRKldqj zK@BeVcEeo;(kpW+Lx zTt!fxtAIw&E$P?Ph;Iz1^;O7uTECj~ z_#l{Dw6-CEd(a|X2yXJ(MypOd#E}z&A-+y=wxo;M(ZDtl{zW!K_}xejkMJQ95R9*V zgWU}sWP+^V@r7mpJB3DwRP@yuL)>sFU7?8(&A)bA2+QfTpPcmq1$ViZ*CG#_DABw~ zU;Vzn0_H^>o9##oK4a*Q^m?^Lqa{!FBMRAw`0^>*D^K-HAlngCMls;h9{c;{8;DFT z@|494VSiDM+oO<|5MLf9uOk2tlb7@`!I(U7`#saIEBV+4on4h@U~JOpfK?+FBR=Gi zV2lLkHvx34uuZgV8V}KO%QhMDJX)?x-Gb3FWr7G|%7anNfDM_8LhG^Z`e3Sqzy7^ka z2^Mr(8kJF#?q2BbOMWvEIZlDcScV!z7)O?~!nasA?l%N5`|Ug7H+E{O?Q_lXS`HsQ zUF0tCqLn$F2_3Q6?I$g_oAS4r1O&aBS?vB%A?;-aO?kjQn{-70zA#YZL3e+pePGao zZg{@O=%%jdf-n?GqQy>k5{1+EUG(hn+Hqt!V$Isxcb5d1eQ;Skg+13J?LU$$(abIX zn-Gc^v6in#D~8pr8R*h8?Gc5{LezW^xX>%D4OxVsm4kpXi$1l~-PJ(C`{z@=)3%UO zM8ZP`IMd^O(pnhsxrnSSwOf+y2)|N92qW6uH?7n_WOC&nwpK;ZOUvDb!_#?N`~cP>37j4NV*aUu3Y*hbi+1xG(i+du`P&zEA}9rza3`N7HmHA-*3VW0W^AL z3#6_A-)Kpjsw~;F!yTolMe|W;(+=y+|E~zT*u05J|r$VkHjyy6wyWMG|<_?r2?D6FKqkO-k6@Ap> zX(^<>4SLBQ_bem2QLlDY=tUpd>)t`yB92_GLp#$tla2_=%y+ciAx2LFx=~Jh8#z2< zP~ZjohaaDG=lZN23{>;ie~<|Ler0}8<5;8%PoOapU{0VEo6Mg zh%NW{#2)E!WDkP!fP0i?KMPCO7VOQ>LU_Jv!VUp6dN?J$i4|Y%nVv$9oA4cv>g{P@ zZ?vM1jTO8-ky*j^)B^5Yy8&ZK0D8b{NH`xb{*izngL__Z|3jRQ$zAgrZD|Vxo-A%06+%LCTvHyD+yl&y$c0hVp($9*0<`s9k5!>j* z!MYQX$)fY!{i-`&A!89oaE*8!9y0ndxMzA$`V0aE{hfbj{%!}w*qv1{rp~PNQDi@Gx2=iZAE; z5I~m=e?(7}hYnV>c4&0P+h9w`52E<+l(@djX7O!Or&n${0DBA zLQ)Y&9yRZs?%SLUL{OfoskHQjdy^5{D5B6RLUfg9m!!W(CSZn!*Mym~sv@lMk$V9t zM1)+w-5)_uvH(GO5)?izMl}PvQNcMja(F-^rv&5i?oX;8)e6L@M(WjxCp(cYJSHBK z0CP+{D5ixSpH4pow<}0I{)C14gokxq5i1eD2w>)2BI5UAtJofP9r%BryC3#hA6~vysj&UXoYeJ5LB+q z@6{`Jh-G#-{pff1P`kyaE`PW;+V1ehOAP8&+Jxxdc<8D&)o3R3Rg=WE17ea*-5J$q~6Q5F;RF?Or z2?WZ&4D$z!1=?RXfk6H3&;cQ=sAMqULnAC1Ech21yreEw_6`k;pU2AR07fw9un7eA zTzTRa+IoEdhDG3a*q(X{cJTP~PViswIFy;Y{oKWV?p8S85FF>{?(=h(`MI0mY(&rp z@HrLphM#-D&yDtTJN?`=I2(~;GX4ErWq;nhB2dlG74$Qm@b1`f&@7LS4E0!v?`w-- zCBE;fK8LZ5M-5nsZv|<{N_=NTBUa+CeYJ=EhHD zSlh^xMCKUjbjdR%6iPzdn6aM7=RWWZ2_X;5S}w~cWrd2xJ48>j<2(_854I*eqtJV5 zd0eEdYHDv4)IZnq{HKuZRTJum4VuK(qm5%))uCmNB|Jn`)zdyO@bLsVFJwRB(We4gsb#YFEO8R{VE&CB%_0?C=NdPH1DmhZm4( z$eH@dh6bymJmbO<0NC=@xrOHJNyzcyHWoE>zsIwO)Y&D&u`<4VH6^r?j~+8k*Q`2~ zT{jc;Pw4|OVog|_vlOx*N@~jsa z7U9WokaR@ILLYfB*@h527>2Y9S}xA&d%U4%C>dvDC?36)F?3a9kIy$oR&r9q2TRKu zdHRr95`#IXC;DJ%%q}_8LTc*!RFPJJ;z$o%8nwd6DlJTAT6baE(p~tKx}_Sigx!%< zSngV;`RKP%VEI!~(J2a_5!>o(ZO`HisW8(C?!=iVls;pAV5 zVYcEMdn<-ov@uwr?XJR#Q5HISCBf5><{e4!&{q;YE}GQbLui{;9=Nun*wchW?>1#L zv&<2>n-;Y3MEW9St<|)gj}scwmd!o4lVpizwhuU+%=G&BGXZL)u@*fI_VumGzDX83 zVc)I?JRUl!3)pwAg{LRE%cKx*FUK9aRd>kRDy&jl3r>U<#d~Ve*w!9*WKw+DLuJKf z3(Mk!4ihC8v(X^P&gcS*@&=<9R%Nt)7=s}P<2=*JN|Oe{%4NEh%Ve$9%E9rTEV4~v zm@NP%b{6Q{Gm$0+3!baW0{x6VM8}$K26@}0fw15W-GVn{t7t)2?I`R}?4R|iT~dpeO>Chf!#FEb>R z+m|gbtCUPNkC&eFWkOK8xfxt%-LXt6y@vKPS zQG^(X@EOy^)3NT=TW`4~UUZia)qr?DM|XCCVEEd|4o_;n+9N*ElVh^J6Uidr!bVSX z@~4p#R_vtknuTs;H_vbfJ5uF$7`cY^^K_QK_lh^zJ}3kqL#^q4;2-cNuxd>Q^?~kqti&~^d*)tR(4uxD zg4j`0o_uc6*O2=2>9)RhJ=u8+nFvK+s%ITpZqkVNWFh{baZsq*xRidL*T`0hVK&LH zn}nE{P5R!Vo57?&6((J@kO`BPyITEA-b5P7zaRToV|3&lo=K#KMB^cW`iywG^)63Kf*6@2Lce$$IS@yL~>iE4Lw5@~rqm`9I^Y*mB)H56KHzN9i+IbK+a z_;M?oSN7hS!CR-RGINbEGq?du5(YP5Awn_gjgD`1r`@PGXqacM?aCNmXdbXrUuYgc z7vJOgHsr~Dx6m(Jw~F;T;IXX4$xg_fQ8;tl+_Jm^S~0@YuE8@fvXp4~_s$qUeOAuB z6DLnBgu2IpYD{9Q#zTP|7AzU9Kd%5V;ecHJ3kZ1e@-TB9Uq^YJmH1lA8?3~qCr4O` zPX^v(rRVqX#XqGhJv-8~SN)X1_^RKh``G;@!|3Hvo`Nt8=BqN_?-Of(yZ#?-&m9;= z@in^%Da?i3UXHtj6cRuTNq_`G=p`r^Q-FvdNGJh93B6irKM{-+K_X+JgNo8cJQ1Xb z^cn<2=}7MgqJrW#W%p*b-9eJ?AGo}o_vZC^GdnxeEx0$h%aEXur>yEACt?^u3 zZo2j-tZ;XWDWpYS#K`>GA5V>~{n^xbbnVX;%%F15u1YLB=IR3Fq9Hdz%Ht4DfoRot^+jwhrrcyL&7unLpjs=_QPFXM3% zQH#IV_jtcGs4sryu3(#P(cLiO^*vlReG}Ut3 ziXQ09!sV|7*9PZUGomAI>V+t|r(PVN@+ajSTdo*6|s@RclliR{jmRCXtOU@p5qT(&OG0zdmMt`exh5VTrA zG~HUL!dQNej!bF}-P0Q}b){-VV|Z{PUIHNoN|V_{h6Ti1Iy5T4m3L5WT!-TV3n0{j*;CMJOf3f2^N+mg1<;bU&|09@ zDntI?(J`Xpzmp07({*T+f3!q42=wQ;ApG~C{P$sSJ^zD$i5me%vld$Z`xx{8fsPRs z|1(VZpQA&g{G%l?8(hBtmH%VT#s$H_6VU?t%4ui;eG$hQk!c>4X&!^?WkPFxBfwhL zLMzieW0@A}m{ZBLi^!zZ)6A#j?=86$g(~kl!SjsD61FgQPQxBu7(30NM6CRaaOwMK zVeB4*L#zg$+pFlJm<9b{#Vo#ajT<(;q5`RjvZQNSO@yh{CBvl^Il#sPnAg{x&__b!=8}V-YlF2$&3Cw8&rNaj4XL(25wq-jkqP z7R!WZKSIl5t<^O7{F1(!E{idH%Ij{rUdXaou9_0hoxGf;!$Zqr0IvEyu8q7lwiygp z6XDqzyqauivk?V^&!IcEdWDXNmr_r!=^WZ@E@7&s znG6f&1y5JuX?v7c;j}$Mw9GXMtmLSY5Jd}(i_zPyr3|hQQM9Tx25ez1v?025HCfBD z@I(k#oO{cQb{toHyo$e2_g2>BnStdm7&$!ZMrbw52Epv$#_;wU^ja!lac~Q8jbo7r zcZmvjiNW>4p;fK051Ph*3jSrSv;tm|1>^~71w2RNkYiLOV1=(t%D$^QJSt$^=fVG4 zs(j@R)8!ifh-Z&D|EK~lFA1)%!sAxCns7K+L1LA!U_xeaQ+0cC86>m7Ekgz?%#5B` z)^#%|eu`je&&Xmfqaa!4>cXHLgY8|nmj(N)akL(M$FN5SL`zn2ICWHlHCG{X4$hpb#(TrMAii57bB zA((y-kYH1)!ZQi+m7O)vhQZ!wj;UI~IGD7rwm$y0+BFX9{(cC8^QP&sU)oU7a6%F{HyY6x`cHUF8D5ZnXNL0 zktHnrt8axVUEtX_15@Gr^}%n4XdmX+UPBkM25kr)2bwWdIKyhq2x-g!gcfR!*RWh@ z|5^tDWU;3(drL4muQakY2J$OcJPnxb5G%M^ZwmfQuykhFYv7Ew{roFs{*TZ3zYN&41_KL%$2ju$xNG%75Z z6hSnAI4R)x{lUF#8~_nT%X_t9_ibo-dMVch)}eg~1IP{6lz~%oo(Xrg-5z{eu&m>r z(-Y-7?F{}FY++!mhlUW}a3pMnxx0ex!a6u=S8y%Bp~4v_QKCAqD>wxlR%0T|Z$)P{ z=j;xCs763?a@Go`a`M~~Yr(|vWqn;|_5{}!!F3H~a?Jo!RiustQB?#_ld1~SAwE)N z=J@}G!1*ojQDs^m4gzGZGNVl4{8ceX2kbX;UIOQ?}*pL*8nMIIDcm%ihMuVb2yF0Q+4p1 zQvd%VEB=@dXsxB&y`Mklck=QbhfS0j!T}V);h5?Go$Bkdl!K#%a?R~}*F?Hm{b6cd zdZW=0u4C+>wt);FlZ0)K2d@QV7~Ckn8&UaqY?!^GB{w=rMEKLQ&$vdqxiIVffjcE3{zh={?Y z#QGK0IO-J9OxGDT6|WiDN8#yQ<$5oC5SCGbg+aAJbJ#rx9hdhz#}UcLw-~@}{8P0- zge&@da7_V}S<9k?s95b%S(HzX2;tMt0Tile2Km#o;q;y)y*t4#F9!DmmAT%CA5~%i znU3p?OTnKCmPGCWOnTlg8fIPzjsx`>n5OzfxbI5vTy=Al>Z4)v{eD$Jx~91gA`8QB z#m4}SzBYY#rZRJ^5t(fqK=JvC*Mswn63~q6NZ3(a=fo7l89-4Q%=|(Mca6CbJWl`< z*khyEkr(}VA~f3$x%jNF>$6+I4Ft>kjKmr;gazI~L)ga*N|pA$YucUQcmZ(DwMvlp z?s2_QC2#;m33KlT=SAo(jvmv5-3M-Ifv$#}ez;sL*v_$nbz;kEF%zx5M+>zf9xeGp9;lb!IXs<~zie~mf;#~ziR11R#R zKQMNJEf0_rRQ!g;7Zy0e$pCJFWktPB4o-2cd>A}Y0I{r{kvGVf&+yb}Cf(R6VFyUz zkV&>$@hG?kXv#s|s!REXe)Fh8QD?>istZ+LTgLb~;IYmLoj?aIRg^)vA#Jh&GD-Qa zoP>%(Q`WHt0VB7@i*mr*}z+ z4bOOw4&P-c@m`FDHDvvz3ac=t>iZ|J3i6;+w05vHMYQ>yPyN4vGuHdn1;a4O;rO2s zaFb|_Zp!oWE`lRoGSJge=;z4%Ie635GnmbJ_}6FzR2U>R%X>4ov*Kj#%r9Sz&k!x!;I6{*V+$!hWVv+JT1l-F@WN1aPQf2;jUfl5{3$JyPq`= ze9hX>2;0B`6gLsRhQIn-XX_j9H*Wk?pmmk1u_nCam0ONKBC(wVC=8&GJs{NAz6gu$u82<=Y+>Z(20tj$1MUkvxmgNRjTlR* z;ke$27!e#m=^k}RTwygUU(dV^49nMWD-x+O#}O9E)_?(In((I8y5Ew{!AZ_fJCN`! zc!5D_&QFKqZPph7*IJwM*HK}(eyA660Hx#aLacp^Yevc0sxI7|o|O#7a2$}#_XY!K zm9mW<8C9i%b+Tm&*Nn(>tb(;6C}dD7&lK3tVSNs8t%*Eb=8;cxb(ShYEGULDBK4%gY_>Yw9~g=dm-UvVELAX6p|u?wC{T{p$6dS z(*zTxZkjq1PpL5ZR+kdS>B--|l+YF=s&Od!k1i+FRgu>SzRyhX7q2AL5y^YVWB{$qS7_B@xmIVC0G68k)k!xC8IBkZ89S^rGSCWm zs3yDLH|91%&n;q_X7_)X1B~m?$`|fWwl*>vwZiLK*BGv>k)_1iYviRwwA41Vir+Sv zSl?=^gsY0-`9JvMnrKS-oq8iH0Nud5;G3+9NmDlGK<@(?uyeZIU|4MATl+Yx76U+9D7`D4`}^y&3I zH3WTnoq|#f|LrsS^!il|2(jG@*_v;K_%76d5aV|>ps~q?Bl8asUB%`jrJw~B1u91e8eicE{Ob#nJgfD6%bYmNbd!tLvH!ix(>MjnFLAr z*OIZ=C2aU7S$zq?zsTg?j(?Hqa|Qg1Oe!7t7nxZ(@h>vR2*tlh0T_mVk;14V{zYnw zaQur5%n|q(NlB6T7YY2Rb!B|Z7F9Ay#7-Bnn(SAafb)m2b z9>}tG1{_6*bzcJQNP5ni{O@qZ7&M{zMZwA&o$)kts|3nTF?(A zDrHqPk4o+U#P8f-q6)9U`sVobibxk@+oR%`>Eaq()!zCDaGelUWO-JsC$E<`>vF1C z2WL$8t(NVbWPV#LYc~2v4yhOL-^6A-IVH^C^0(5*g6bMYwDjJOOud(zdNoD^!Eg|} z-t1_dDp=}q54gLrnlbR>DL;BrdKI7b$fO6}Yt@Ex#d_b7>$KGUkKENpRfY%f~AAu+H^qupDtcyhm>SRJ59fzoGWtlN^5VPM$TB8!zMZ8XNz*H4zr{ zwl)VpYIIYa=-a|*DAAYH$NGi<4zUMtd_F23$PH${a!@>cJ-%Q4>kjxsaAiO14s8d| zf$OD0yHbC2TO7}P34OLXwE(9l5`E+rHQ)8>ai9d5yM?YBnz`FNw(DRIq{R@++#J`k zb>Yx~R)<(`9b9cKUok+bSmDxv*6;wOVukzBU-4?^RuxxGNA}3$eH*S=&?+iWA+`<* zIsTQB6l$nrcbQfNE6i+6A-geu`8d55sHM?saU45=(U3)V4IXUu6+sjBfL6tc&5~<^ zmOK2@N59q?PjZ6HluUIod z9uIw@C}qNQaS5+lB~jHw2}OB9FA7R#J-|2(yTvj0XhuUZcg7pmG{G{Bdq4-snw66? z!7K(Y_P8<)b{}nxQTHH)`bNQ}qphRB5={?Y3eVgzR)-&|Qp!we3CBl)WOQ~(a##>6 z7LgqA)|cro15TilmWv&!L3rJjLb=G3bC-*W%hK&Q?PT}%58*P!>gpgQ(Q~HYJYTjf zoH`D@tod1^-{N@9VMart-F3Y68=tF4+1WLdTY+1w0dbSZPYbM$x{iqLUy=SQKtGh( z1hL%M$Idaj0;D&!++{>@!T=2H_f566(!kMH5;`gEAmq!$fBYu7mW+jviL*-&Y@_U&YxucP_#5=qN6JPWe@|Sf6hz-&oXeay$g|sMce}Govc-m-T zwI#S$Y}%~gS_}uyvR+WpE};wcr&*G7As1RWXe?MP-@B7K^&WCrU&2S$X28xK5f7^S z*kcq+7nbkIog4aYVD$F%7eO^m7sW9%k^r7@)s0g3ap#NjF|$5F_NZS6$Jce>D3S4YSlTn6hRn<>@^Fn@8#Dfr0rF8O=Cb)A{3Lu;pRpk0+;; za`H<4a6RKw%C&qoZ&=TM!}HK~{apGweTn{9VmEcvRdqpiYy7@94v}536=YB*Qk}`tpgO(AmL}l~>d73UBKhLo; z0#nwH#-`g5Jd_cW-}!%Zu#4ta{rl?`>2vH@2OaC}Z|NW&*B6mW4x zwi>(!vqRc;15-5$evAcmIqKLe%6AzJWx!H;nMrqVMWW-a2=s}a%I>wGouk$%|VO1R`Uh?X|1)oh3f#lD%ceq1FL_7Hg9g#^iZ7H z!515$@OIfqgDxK7E{>E=7vy3sPKuJ2Tk@f^oIPk@^m&YQZvJMSC#OmAbJP(HhfWXT z7f!Qp1{7oA^uKTE%b!z4$&uyU?`zQ4933+vYI}|}!%YB#J7&BM0ynA0-{KVIevF1v zl)v_!wPxEAX;)8l9gMJAQ()W5mfD~S>yiX(aoCP#G-S42JJws%1xph5fWCEze%l%c z8ZdCNhu|c*;d|=}!1YklA$T>ddN^T7u7S5US|5UJo@Kn&(TN8X^W{=DoUz&Zk&1Q+ z*E-hdWgr{NR&KFY6Twi9=QCTaZ-Cc008W*~S%W}C;q0CnQ5KH6Ts{2rqjdlkoS(?xN#gejMfmRxcb z$7!iF7K3y(eS68X(j246NL(e0RK8?fY_oBt1vYSgj?ud+rlE5qOvpyqQ zLbwNX^Vy^WXcJ^O0~25J@=~|fL2EdDsape{{a;26IQpP9fZKu=vYGCNS;w_=xL=ymVQ>0g5}$BBF3v_2dW( zM_tbEub;5C0&7aC4>C*V`k?v!c7cBdxay=e97ezEUj_fF4z_7}EKa(|9qF@XaR$YG za=PbCQW}$Xo}4^s7f#dZ!-7yJKNm^LOz<`rG05Sso<=$RhDMXcDZ;NZ8cGg-{){zV z1P|E*yweN4bbsVu75HpX4;zm^hh^{T9&UC;{ATSWsJbX&03WA`o0Epl_#d3Nb`UJ# zjBDik?i~bG7?>pP#}|gZt_$BnU)QO+U~gsXmP!{h&z!0#gu~mHtj~hyG!%@(oiqXI1>)@uUKDD(Z<#-!TwJ9LqpEGr4ge%IXOlbTs2x)tEZG;WMM64 zPf&=L>ApT-(FS^J?NqXfD`{!n%G~n7EN5nnmrY#y)dRTvn)L%PRb#B;#Q(dDhO&0> z<@J)T9q5U!gEdB3`hw3{ZzST1!|`H9L&;cw-LUQ!Eo-?4wCcQm+qw~a&%lpUo?X3T zji=>VWac2QJX;HA{El9&ah<@T->pNzAr1M*j~JE_*SbEsYwaVbh?g)S$`?m)%A%EQ z&6vzQA8?gt8rNonR@SWve&?aZtj(^%kN&o<(RWa(T4q<^`-6J)D2}eK!uW^Q*Yq9i ze`rksj?(DB)%hQ5bwSkwDaT@qO`HuES7Fj4>uMG45*qpe9r-vzyR!eYrizy4j9t0l z+aO4pAdP{GJ?J(6fv!U9yZBs0UA$a6T_iRsA8R1R93QD87*IN0kcDneijq!<{?!?S zE(VrgTlWLY1jaL8g-l`KVjE<_53~wVb-}8Tx#}*Q@SvYmt~k}sgdcDzBBJi@T(Uj` zR;lS0YatM^OluL2cUp`5P)gJ{eOvb_z*8?_#L0K-a1lpq&9;FOx((!1vAJgNB!5LZ znVyn40-zu6P0yqVCkKn&=Alot{>p|N+{N;GnQK*Dl&nn466DiRwVHvK>u1gd0b4m) z5ZA4}zn(DJPLt)M?`R#}zf-MYW}#2`)-v$>hM8k6k*v#g5btk;{TgMq1XUTh*bx`G z6%O6y9}c)KNb-36*{pVxP*z!4sxZV}v3CiD(G28ZBFaS)-IxAn|MT3rV zW2AK!E9-+VBtsdP7`-?avBCqDr3iHotd5M+^iUj&SbroXr1eKyLN?ZrEY5Nk(g!Ue zImOTtvUMp@CnY3L9al;vNPH1`)0W1H7Uz;m;!CY2IdgT1uYrfeho3!Z;)Cm|Ndv&^ z8f_OR)4jrIC?ZUKTABskVQ}KyB~X5xtbD#JT0MSWIjgJBC&-(ks$}JYIhrmXe^l0$ zb_sHqA0d(@E$wD8wqy;_(ynuy)J*_iv!_H)C1ARS%=D`NAEryM=2EoF8I;b*Zdc0+ z6D<3gO5}9exTcf@jxsRORB67H0!7R#E8`kF^B(f=$jCG`018jPlxivmZ}Ry?-LBuApWe3M zHo}@$a#^u3dp>9Yt!vQ1gq63c$M#m+wCpCuy`_&r) z7P2PP&?_2CiQr2fT1-PPq=x1@D50S{$%f{|B8D#6Y?&t~zXomARC40;ChpX*+PPPi zaQufagrq%bZHQD)CdFAVY22o$sT9Y#P4GeDjv zh0QA8p<+4t8(j3xAC60xs(A5x{X2TM-{)!k{#v?Jm6a#X45_M@

RDSBk8%q}_y za;;dQhWGkoir?_TBZu|OD?|qauE>yp;M0CPnk+wRG1{jU+LO@zzZRE#S|CW`*m{-3 z>g!>6L_mZXy&f+3v%FLAfumbX;m;SLGfvnC$TiTZxC789ejEfHiaQB?c)~%@nYa(t z5OkRDBzU&96y4yzO{%8oOy5grs}YBc&h#CN-b8Z{bf)jIZDruYvGtxB`z2Zx;vS*1 zeMg|;m4l$OeIrmHu_B{J5<1&AQv*U$Ow)jn7zZ^VBu7IO8dE}F>6<&EMz4OoYQR%% zq>5va%FwyI)sbQf@}tSWK1iy9e5|ShqMibxk^-Uz^c%@jkdGxVAkr2P2@9}P2!cf_ zAY!0Xfe8e2TR<2rAUqWiHryxvj*ZRli6fRcT`&BLoHv$-f00wmdgEW@?4LgP7dcd@ zFaAZoN$-b$k{}Utf06CV1Mx2r?*kizf06w%gYmC4QZNs}Kgn9_ zQ2dK5J`BUZNUc5`{~~qb2>gqb6C?32GTw~Bzm9LC7r`aMP1({i+awGlZjOJsFM@j? zUD0vI)xi(``hwIiMB6AIZl?zUPiZHO0*e_57*il+ge+hHLK8JdXZ(h{CcY^BA%d^i zQ@EhNlokmwfIn-O$A|dlkZ(Fl5dzq3jwqjZQ1DD;r*iv-!2?qh!0XE zyZ?Cx$PEWsU8MKH10!0(ewfl#LK9E+a67pHk<*iWjIT;uw1VH$#zRP10pZYY(o_(& z!);}1qHqR4{h%*(kwq&N1ctl**IoKg1PSahu~7uGQ6!a!BLHvrl>P@Anxj+34KF3(Ht}00FzvV+`MATv=F_x+h?90o&swOmJ+}`jw(^kYz9zd z-ZEI4EQ00ifmY^3+CPsf)%OMK%`t16V17RB70CzeGDoayfJj8HGQ+opk;w4Q zpCAR!eM71Z&T(Y1%=Xg^ptxxnxbNdu72%6-N~z#Bd#shbA!UOnK$aU_$)hE^Ao#eR zA0vecpzKZ-7&sY)Fh_4pDF{1f<_<{>dBnO>IDtiN#c)@>aZ+DFsOXwMUK%KX2y=Q( zD7{cqdgKhVb8ks?d_Wy@GEFI&TBc;+ou@-vbIC%ML#+vX8F!m^q%^yM50-)5V$qc@ zXWo%gKu3-d;)U%QK=Hyc1=3v~(3?Hbri^DO%N!~^GgTS^Mrcqtrd#Szw!;H$eQUwH z)1>!=N${=rq(V@j!RL(k9L0Z|Xvy|J)=*{|9-JbiuKFSN25vu2B)J+3Iiw_ zJ3U`IAXuK`9?+|+k1dp9K^q3fev=B@))mSL&%u`#Nte_(`1)#2&E2S?`2OfU#EH3q z!&pDbk%>S`vGuSo*-TXL=>z_zEm;n?4Zhk5)7r;37K$|FgQC@gd z%1iVTlpYK@xb9vLQg%0W1N8Bu!MrztCXT2K|kHk}@v>|02atB>qK)z$pBSB&16C7qL_{ z{*{6{$&bOmNGw#wzh>gOIwD$8^(O>mu}1AAQT<`w@&JB1b_28sh=gEYfmZk z;UJWPD{H+J<70W1doXkLwC5t9!2mMZa?-%(QE6>>ccV1K$1>3zQ{L{T$GrT5bX2qy zYA_>MpW(Vb;hiGs70ag_3YBOf2a$DR*&)4Q<2#k%AMKE4S~ha+DTVbML~dEQQz|f` zP-~a;rsZd@J)sbNn1fIX7(kSlfRE0HF}tNi@xpGHdL}Tns(jr%6E>L&%TsaRHXi_w z?3OYk^wO{%;IyMsRW=wHdBf^G$Q%6jxV@43Q-}`-k@<#F61oF&?p|rRXt8sTH9jHN ziaY_DRu3MKz7i~zHJF@b<+7B+q?WD2p-{UdauC@r2MPuh_ZisZCX@Fgy2X>c%E1pGHVOIKCdebn=kb&Wu-SWVI(heCIX2OVHrFfwX zO#4;pDo)-52bL`t)?_9UuOPn+`F9EV_Y3mxm*n5c_}`KFMgH{uhtJTT`Gld*@vlDc z(XUdtun<-}E>%v&p*1DAXYR=1xdUnp9ho#gu*z?XpDmB*lEoT*;=o;! zu#bb?s`)0szfVc;TmCfc@ZKIYT}%{_$2R&+s)}y7ZFokCv>Et(zcYww+g>J&TW%p3 z-kD>o4gU*o7yvB^zJbC~IQOjNc-oL#1JcLON=Gd<3`xgf(n(@|XNA4)zajPvqUgQf z5PN9`H2gKpHRV;?+KXxpIub5O8!bHzI`R{`%gl~fm>qNxG0Vr7>;Q8vN;QN!aL+|) znPs$_)abpi%LCuK&^kIW5dN~cg9GmPAfR6e-+nxqCw<}!S1MCiGI>1 z05w6>SIcBw4ev?U1tE^oT@UY!E!UhQ__RVWcZj`_7_twZ?GhAX*~L+Vt9#fY{q|wV zemJzJBRb-c`>9?+DCFDnJxLyGAbId#Nb;9FOa7w5sJZ0XYRO@xzoj%`h>73>6?#PQ zPCCJ}_ranpTZFI=WeZPg{%G(;D z(QZR|Ta5VeKI{uIqU;A1SUZS#q+`)&8bob(I{e|)?^*@L=M&E)Lz+8hpvEM^>rjuy zUgS|j_dILp4zD5Opty;ekf2~j$bnbhi-~Z(W49&vxCYs6FZc*nxW#Gf7Om5hd_8o~ zenKS2)jZTz(_e_ets~(4Ey?xtDDqhwZj^JCY~%cdB#P3#hb={KjZ;(`LHkL>p}a7@ zvc0l}DY@K!IKI5Cp?F{Ct2a#zb4_EI`uSH7WJ=iqxo8fo+`#C;LSHEs@|w|Z8^m=+ zf-ObpPh=MJ%~D!lq*XkUct~k^RPjnmgMM+g9>N5ft}dmGR|t~G9=Knd((?9~US$7m zCiQABQm;^$G*4$s6{$I&b&afH^Ak`~!j2lFb=0gf@{Wbw6g9{7Pfgn(K{!R2A)czo zQ9grFaNy}g+jZe4MZumLuIr|PyBiZ%-66Z`8lCc&67M$5A>2Tm+Ri>OMnAaV7C3Qa zRYIE@bmQmWb!;hO%mF+pi7*{NqYilWws6#hb$L@}v z02@HVVQPvk^09{zPg2L4O5Mkc)V&lY&AlyGk(&3mx9Z#86oj{CH8gUzTCx|6qnJ6a zaSd%31+nk|9KXo+g5J>@Y1*=h&mYFs6sIHTa7`aN`W&9IW`P?G3=SBxPolyByBSk=0SeP-#6J!b9W{ z9=^Aud_B0PrL8rHIH-{#al8Xa45&!auazxA1aa&EoStTD4{CD&!f70A{JgEcsv$1i zIZpFsPQw@~`Cg^vDAj8ArXC{7t!Y_jGD*wY%0177X4=r zWhG)RcXjoBi|k*(dS%@>C>~$PvByMtQ^cfXjUnH zgqm|P)vzfoNPPQ_7&yRtJ(Be%=UN^$_q!L(-SV!v>r`{Axxzii)#YX6kz)BGC^WQn z)#td)GJl{*E*0%vY>P#)Qjtkc+@oz@qr1%^inWSNa^lZQd$_8HQBDj%9if~k+#^2A z&Eu|{TI7nxB2QQ%X02090`JTV>18trf)9Jyu7I9MBZ}dh54Uv&{W$OVb&BZRz4tnXWFeEKvxO zVxh1|TbfQOGAT_Bv?`#9wx`r`-&E{lUc^44aA}@Z4k==D)dIZI-?m%4XBHa&%C@^h zQFGwgakhalae&PRTMn{SfNeKN2f-r)Z8OBOhfJa+K&0u#P2%_<+bXfbA(LRSE6q)U z4T4alX2Tp-1V34|bD!ly=01E=5EJ=3b9fwK7&}`K*%C=9% zn4&}$EQ4(P8Chh74DCDoZbpab5tjT86Fbaer}MUO?A175kwVvHw!IG!N)M6tOh{{Tw_q9!2P_v9_Ut6XuRHng}$OjcET#9`sOT z*A|3W+?=kD=m*N@G&m52aw_giLc9KK&FQZ(gKa@VeM-i7Cfd$ThM$RYD_9b|^OmiV z_^-|~e;hI^Q8?EpF&@DI;8juKvF zcrdnMW$>H2xx8oD1v6&Yo>t?KbBswBf2eUX1Q(2a-&R}Qe8zEW41Du_TXo=nnAwx4 z)&>80-xgUG%R3xqFKC_u!qiRNTr8bwt0uaBnmOZKD4d5l0`cmGxa)p}wwmg$38z~S z7&Os0Z}ow#3E)(%wNf8LD>=k4SI{imRKe1ok(90UBeabIT^N{JsXd(WAyT2LIn&8t zO>?pRVK`~JEmGZ{2*L)2@fswdJ$&(F+dCd{X6kX4e}ZPn9A8=u^fS_cx4~qvQC4j` z2Ms3Q9riq!xDbb429vK*6Es%22b1n|ZBxXbWV*V+^6YX_6B50~Cx@~WxW zWsZ0j`(K4i^TFhSA~rvm)JlwXK*3$zqcuq&U>iaHqJNn~WR|cy=)wIm9DcGdwt48Y2f<-XChS zyJ~-Cn;}^8k-+lEA;;#8&r#ttjDcxv=EDI?Y(os1U-|+ijS2eZlfOXeO;4RPpQUd; z;7eOegXSc8F3~s7S!x>&IO^Jfgo=)zWV$xT$TR<3h63_{7th>_IP?;byHFE8ApKX^ z7K)c;y1Ib8pb#VhS)}uXT}MhUAU{)yO#%n~QwuF*f4|BW%PqXvj>7RT2Guuy&lP-B zmXC`(*K4b7!~BH=IAaqk$5!Rop3w)-GTBnqDSnP?z&cx1KcNZ6F^Dynwt3mjwvN6+ z7H-}MT3@g`^#Qlljl%~VCs;KkSb19m*mj$Ze*+zSv^2sEy@)`C8tk>*w%GDI64D)Q zNzeO5!&@!V62Si$7)P5tmcI^NJ8V?|hoklKpUk}6XmYrDr>(pIKG$}IH!1`zqROWq zPr(?!zz~2zs*-XY2Ou@cBKUB(E!n~~l=oh&Z{%AQ>`^zDWm*J}?y*f%5!aNVr_5yX zG%q`^a$))H$&`KQ9pLZSG0b;0+(KM>3Ebj+4XPF=g+*5}nu5OIjsSqS%#Me6IFFRIxIb(-u&LFZs^dkFT3ajQh;}0sk zCTDyT7_u)Kt=rA$6w;XN0n?Xd2W2zbe=$oN(l0b^{ENHLrj0*LUG#UBft4p@VCl?ji?m<7`b|sJM4L5WQcT?tSF;)+&B_aXa1Umc^Cn-Kc6(7GIj;X2 zg`6)hyozxe!BuHNq55k3f)=M^Mo9hg!aEq}1-*$ZWtA>WGDt49keKz0HiNYM#Vmug zK>YINdD0B>tt>+r$snG}!rEmGV*cqIWV#0)F*8*p>a&tJ{jG32|Fl_MW*RtpqVfCae=a zN})(fq;jxB&yYB-L=t~3y>yp`#WpOFi0m(Tk-d$=sd>7~q_S($o$Eqg$akT_AUJ=F zQ5P-!g#)s?-5I6p6QXvU`H2)qQ!$DN#Ih+$2O_)wW-=DkMh~&!JrcXfLL|1bNHd-XuiVqn_|2=5w9i z=MkSX+VRWz8+p;{$Lqnv|?A#Nrit z#Lb*1v>_IJqV(KsmZ{L4Jqz7YVba{o+ABiyUUp<%$aX<^1rs-`cjw5SFoNQvZ9F|2 zhq!8O2#FC<0gDg~mWx+ta9rCqhAb0=4{>v|<>Jk5921WldV+df7o7>(pTH<3^|&G< z<PSV=Vf$3{&xAG^=Tmqox zC8*s_%6xgM-H7ITdC^?1cg=OBnp4+q8}5Wm4;IIrG#MC9`_tNOG{wzv?Gxx>(nelZ#bixonMpfYHE_s8k0O}>2^$(+56PA zV*v6*?Q+zVs`eD|xEFIB^KPyqin-)BA*6h{C)3ph`5lEI4szk7R$E6-mfo{L!AGUtAfg#R;ut|5^~bQXKR(WLvT>SltGMIO|)rwB7VTV$Gdi%eE5BD-O^WP73TB_*r#!p{|Y z#0zI?rJa1L^t^DIsmwonmie&4qj_;tq{!^{LLtYste*XMLAZ;FoB7)ZvLD>0_&Kgh z4eehFqVH*wY&l2UzG-87tRUJ?n`Fz+-0e;L?1t=Tzi2gIR4RV9!bs_>F6?>k+3IcC49*kNZp`@7?eSAP#dP1HjjN-`TV?Pw9U?io^! zCFs7KJt8N7+7y=`8ez9K_MLQ}ThBK3gJP>QCQ0XvhK6fNTYG{ab~rq>i= z`hwlyJIY$9BRq8vKSN@W`wSukV?54h5T0i4e;V0f`%B363cT20qIVm-rPx5uIcRw- z8qREQe+HiUsZ9{9zA!|>f3^`9%6;kb&^)CR;*OJbI(Q4~AVSR7oddy*@A9s2uV4EK zfd=I!QN;l-s@SV=X&!~U6jg9z9=zSrzF)jXy-{B(1q9M!|1w3*aW#7xl^o(fW}au$ zw1-za+rJhqXH6V0QfY4Dco$^HE7B=_S7|uj(?;5k?ui_)*;&uQ-}tQ8;BSDMaD$!e zL^pePLF_0K)_GZbg(C5?)U(>ruEE*TOL|GBa=-0G?*A!VntRz;MQ+~9(tFvjiwn-0 zOhN0*ZZMak=D1vW_Ll|mtFtEgEmhMVPV8epB>q6XOkcZaxSR7e7553qClH;m+DM$F zQ~KDm7^9@?L@yetdtyFvvp>A3`*-i^zNM&}<~P@@{&tHXl!tc)qiLGX%fLC=Z;6-v zsT24X5x5lJZ+0`1{l-v~L>f^R%{GA5S2#8Iw7RGX7h!PrVEc>0izbq1EA)uuP0nfK ztM0kdi?6;|Xu~BkBKZW*l8;w7HJ5x0m0Y_*<`{187%a>uw^LY#%$o`Qx@4%&6^K zT=iF30Du0}-b#f)zxXBWY*J%jc8-2#k5e@#^y5Ca$AKbsYnlGi&+REH1V}#JD!;^D z9sH)o$PkDBMsJbl)T7mSWh0Gy+ZP;L&Y;ZgvmT9z<<5I9y!_95ExdeD6K+^=o%_=M ztRPmA3G0T$XoVsf7%b5c-{`144UDUppXVoi`g0(oypg3*r_z58k!Kz|EKJk*-xg*gFVtTn&`roBd$_Ne~Yr zH5$HEnWdrRn)IVR(MLRU-eg2r=x)!~wA{Bc>kuY%G(xWoHRmtM(JV;_VA2QQyej-X!XGQ8S5ab#A=e)J9)w zZ1kjIA1pKF{bgzvKyj&knOgpLG#QM8(tjRaD?WYEYt&aoP57vfx@-3p(4o?Vt}f`C zD+Ec7V;d6>({FZc(8%Ocan1Ain zIqAkB>Etgs0UUR_Spc`cIA7NJ0=W8gvuN(@Sgx4&x(jRsR<>bhvSM{ zm?zj{RE3%ZyVj>dw+6xkw{GZpy84;-XjwsjUNlRz_lSlXI?v#Kw2AiEMYBYE1T`-~ zq8%mkB}3H%PbdovV-{e(J@F3%y%$o?=D$y~?W#Dl8N?%5-)4 zcD+K7Y8_{^zyA0i*1+!i0n7L$bL;>)jS7Wrm|~tfUEhZ6)H9o%Uvc#mi{eU zSb1tVe;9MNLWI#_+P?TnBj;^QUK{$CO&#h2YR)^<6MkD@liBhV`b2R}FMAICMwh*Y zetpzL7y9ddt57*ceEG6TjWu7s!t*7Ho8!tU>sS{f_P=Zr&9^kTkkddYOF-7TPeg6UpE8EcqmbQ*+5DP|3B4J*cB2 zwj8=@1KZxydzIaCDp_>Jth$?jg-)ZV;EuE@e!>;AnqfR@&gYXSOz~S~zC5LPqQPH1 zYw&098azxjsG3DXw2BttT9xOh=_B07J(x{X!X%oC?@}T;F0`EXjgRPm)g;wd)wX|k zpaU(MIj@?e`b2koKGk#6liOEd_O_5lg3gN%o0_IbW11&T^){I&@2S3#WRU8!hdYwR z?5mzf=GIrej?5XTi96=S!ZshA6>8{TANNrRkzj9kRU7OXSBYYuEW;a}n&KSg_@7OG zYB^jw%CXq!H1^zA9ODeHE5f&a`I95k?+$h)b`L^Zuh1n%zV3)kS%5$V`S?LW{tWytyX@<0^k+V~cVI34MOgd>{|Y-u??1#>n2hW( zr4r1Bad!CC8;%uVCw@-uH`xjMzv6~^)q9L1Q2=+@Q;2ZVB9CDJe?1b9PcG>&q6oA12lfR)*BGa625jXRRA#`H zIo>f-u!M6D=!HpvZ#j;FDh!NSY6#oB8dOev>Kcsc?hFya;jryFHP5k;hM2_`_@KyXa$QnO)WRJaLZPejB*!~~*h{9X ztAcW6f^g^_N28~+&|m1LuMxfSh7Bt$$ZvqYIn5B{%+IcXXbHzdhkFZIBzL0=LYG}f zR{d4D;GnHvv-RQ(XN5( zWO&p!|4`H1xzN$wM~t~nM#nID=P9GUSZ+>Kt>0qsfZ9jAc#ULzZWAclk?z4b#}T(m z_QTo0%K)jf&P2sJGdfY6%Au15YAtnSsZmz%3XXx5x&_t& z?---hS>{LuTrb*$=%Om%~BRsD6jqdr)|z>K~5u-^(tRluQW z`;u?6()Hy!lO5Pm0GriR`Qc{0374*0tI*5|?AKscVV?KB9+QM(p{vmv#~498aUJJy z_r0+Uaf=?2jubrmnrPpNVqE(UBKOOB$>QIn7xRmO?jr#_hxc970#R3v7jm8d#xX(^ zZ8zu$q#G%MZ^$l+M~c{o2-*8carZhuo#I9c1BvNKVekOO0x1xF;Z@=7#YE#99$ri| zK%x-I`8D164UUfmvHcB`Y<8L&?*)pQ<7&AP-D@HCM%|!yW%_J(QPX_=X2&=|9Cd?a zGi9}nxyDVUxk;(t2K8fbmSlq)syUd04aK}3q43B)AcBWzoa_%c^g~M|Y+AFtG;`C7 z{xIXCAOHvc=m*^LNUEvW z~`g>it@b} zwJCm%>+S&u+H%+m<3y_7-Z7jQEzY1rjtPR$f#Tq|ce;?ts;=O`1*aTzfm-vvqZSfR z2^y{d2qOq^)qgfWR7FNi_U z@pzPq;2yK$PB<0|!XK2ZZpivwrbj0?r_f*C!|^Eg4&{D3Zp1Q>mqw$(19`;CLUSi> z^!65wm2P>6#)w<`XoL&TIL?XnZ>e5IFxzFzwyR4~b6jQ5Ino93dDIQJy@R#ysA&&> z{LQgb>~u@DJjI%KcQ-c~vudM`lDMEc&E;6g<#5u&L1~ zb>pHVAIw0K^WisZOc0P5Ob$NRrb~{BBACY>kWq)LI{Bf%oxb}JsOhHfs~3Y23I zlEfgnG+Tu4-*prMt~p6Soc`XGJAY)NKjk^kiWzgT>mQEZ5&B$>6hm)684a`NgPL&M zUTba8Sj#Y8-Lf@cP$hLQx$n4VN$23)r0WF+CQ{=`mzaJV-s&GX1#mdpwELkfHQyag zyF5hWN^@1&hNj&Q5}hgHYqvcwDvd&1dQQ8;Q478dihby)>Lb1{)79nO_hf=3?}~5S z)-Jpbzim?T7)VExtic1tXf89cH+d0zgIBTFDPr^UgtJwg7G0;8C?U0rt*1F@_=MwIC^SSD%1?O|{9&k1l(`2$bmuo50BQA&T zrJmt*@`tljzf+1Hcg0ldkzS-8=2hy!iqv|Sn{mg)O_BeuYQAnH;EGifoWzoc%Wov z!wcSsCOUi8L`SchXs>8O7beK_kUG@wY*{&`TRwhSlfqgo0x0R;H^)VG%f@c#w#9sNk-eM1+ z79{rc9#;d?HuJbaat?{3`1<55G=)hGoa&>snIpZXMW@b(PK;{cbRVtFnk$z^#oaaW zyQl9`zYDpm^*caN9?S1+dcT7ajhwwBJ=E5rA}k6_t_kN43(N)+kuvld`z;35X6#w? zx|>nM17qRd#?GdeLar@+nVa0i*$vEQV4Tbw!d0J@4}@o%I9rN^cVSV};EI65)Ro<` zvUx`6WP*oKPl2(`oD+>EW1E{f=Z5ItnO}wElkyOb3h^}4OI)5^nq%ly9I)(W^sUgXQ`6;OG3xCkt!8;Z|gxe;)suRvk}7FW{eKN_P?eBK5!}{EIl= zW&G={yLbmfdw8a*uOD1;C8!4sYw64e5Aid3_X2W&mN58v!B70_E}DHO`sBZT6E^-$ zsv;bNVXd5zMk{-1t(-M{ko92J?XWO7qm^@ckmH_068(bFcfy{7??2~!Ekp&!6R2wU z;FgDeDX`$OlnLrEEV!W1DesO*WKi^r;Naa6Z~zSW4y3Y&1Z8ITe*TfwFp%FM!IPjj z*)IJs;IIJNc*d4DhwHJw&vg0=$1Xg8c zu5%Z-&cHCbhqDd1#{q~U@Y~|+aC;ADhJ|Z<4=#8a#K5LKok_s&4|kYQ@0C${qHL{3 z+3Ozz_kA7E41^k^?C9mJrD6%o!kHmfCkrt{G%uX2SS5C9qM=*+8WnFa5t_m5-X7|L z#)v~~A@p^s*@l}2s0m+`$Mtc(CRZapH(*zZ{xdlcr)m9dj5L%a3p<{)Rqast{DfgF$R&sAP< zv7DPt1-tZz*&d|xe~?T-Gj7~IE~pJq-_X=4wDX&O+4>G!Xq8YQ%X3cGo5?V zp%``F^D0pIeXrpaikgt{a@XCe16aQq<17&1Ys2dXxqQbsX9!}$`>GfCOr7&7&-Ez1 z99M;L&bdBf#(mWbeAaxaruowooS{Bq=liM`_^i3S>80L%le#+@^@EqIK;4|YIZfUePy-xPw40cNj`IoN!r^S0$Oqj!&-TvB68Kx1&5K`B?4@53!y0>%KYxweP>`W|p45zXsE z6LW_RvNqo3fUd(z`ozN!X8+S`j7g{oi7`5%cg=^+0fLZ7>FS2C8VW(2wqwK4U*3l> z=}!_DCS#ahYC4AL;kYaz#qb#eZID;YT|8^!Wrcb3wEdDs8|7v@ML`&4qK)ASL86Ur zkEM;5{^VELxIs)WuvbM~H&etS&x)9@@NKS$If^3OsTUmx8a3aUBMF-@ak}K8?0sUn z@Gf=k4HP}c^kte|ZhZAk>5lN4Vyg zvz3@2)76Dzb%h{tzzXOu@8KBq*ONJ5j0aV0F?t(9RME+cDmo~fo4a5;MHQS2Ldywf zUvcDLs<$D`H+IUtF^r<3Q*L@kHiqw?bUsZFqdm|&vIhRMjyUlz)msrpV!xI|!&A=I z;;g?^FGW~$K`%3I7 z)Dx~erN6b_7f4V_?0q3di|(m6oXO%?FDif2yUJfvR4$h$ZEiZFMDatJur3*Xpim_4 zHy-`v-ThwsyY!M_EY^kLoRTPHrx%56Q`k4ph(Az;XeX5)-gWj063_pwIx>l+s3du1 z`|RIllgU%mO`N+ieeGoO2eqegbCgY}IX_47{H>>Uijoy4^M%J3kD3d8;5m9LJn$O5 zHq=BLy$~Il6ah0f+RMYlF%@dM!mXhW(Y3=b^c_)5eqa*P@5@XlQGz)xbdJ)5vSP~z zCLz68+kRJYC^|Q({R5MbcDdV|gmg{R6AtN$540g|dw@~gAo7%|Hms=<>@CbK5H zEk)mm=qm#Fz!BOz!eA{_so8hJEiD4;!Nj@NSWu{DN8YVAgF!V*4p|4__@OqttKi3g zS47J~t{vTO6}KaxA^4Jk>6{a9w_5lBZrBmf8gMw8#nG%HSvIbFGG~tA09t;2Hp+U| z`BBMYkr!9pkGS-*rnm<+A+9QqxuH>^UB#<1U0u?db zz`c+V#WLGf*>+*9**%!*FVuqZdjmd1*YP~65;_MoV^7^gLKuN z0YeNr<Os)l9$LF+uSMK#as`V+XC8zb8uz6x=YVbFD7CM0S z41-vL>-}5UBq_8Z_?By->HVJE``4a&9~^vK)3Hz&$$p@AXfim%(Z=scEKK&35217d zC8U#F6HWJj$ld?qsrv{ReKMd>L@Gz!z6kvOQ3nnuuLzgb4Q&8Ku7#$<`*MemOgq%L zq+%YmOX7D%hffDgkBDPk5p%UB3p1@z+CuD(I}?x&YO@wv^TfeH^+RI;M}y?#r&&n; zC9})-PLkrT?q$lrqO$?Fg!EYrLmP_~?!nC!noKTdH`_T z5an>;9-v$%&-_bXK7FrwXlua&8FBQAZm)k7+;=q~7R+N{nz``!2>*du*8*NQz=?k* zG!Cpbz(GgxEqf+(JK(y}4yonz9MU0GuY9Cxy8YVfgPceEmM$qOB3V54kLT*|2x8L9 zka`F;;f7S#l2)M=%Zhho!n!f_ra}>qsp7ByXbY`F|B%|uWIS)qp|e>xid<-M8+g{hqoi~2id zIRBKn#4jg3>7lNv9(sA!L$1QN`P`|iq6cpN4s%1pP+Y%&N{w;21NA;GmX8|C4n3OE z$bs**sni&@ZWsC?I)?)rNVR*A;kD4>b$&7Q1@r|JLE*n_V<^unC~!;rP=gDOUjLVt z|GobuUdesh)|FtWUixt>oV@qZ6;2+a$)0VD>@f61Mv8FQvmJ`O+hMSW$udcN1uROX5>wTp)sbUyMLgLc$}#31i`Z*>mM7g8{7Gq>v| z`$8RxoJPHqe>T|#5&YUb&j&|Kj;Orf1}oda{EJPq>u?BYt~IiaEOSeMWm!b=$2 zY^8mGn}o?+H1QF2#)wDS6ls5?nu~gJM1vt2-uXY)zB@3A;(MIkKmwV&kVeQQcey(R zatSS=1V};^5D1|u3L1J5P83m8K%|K!hyoHA5d~3ffE3#bDuSZo2auwER74T@Mdv9KUGqW?ZLo>&u+Gi4Y+_20jnh)yWX0vSim^#mBrS%&M zd&%(3>m>h^mLE)G6oNGtz0w@HC|Insi_A){y)H>#AL&OQrzi7K0)H&V^6$Wv<#S;`}bA3TL^faJst+?`A4AT|%Rro0EC0 zw)7;SK2-Y*oT0YEDtnJJ)Cy(z;>`GDX&uw|Q`=g$w&PT<&StGT&cSChr`MLY=r$^{ znt9Bz zmRbLNBXgzXLDeM9lh~GsX@AyikJ5}*l1|NE4EkkuQxNd zOQ@NdCi^f?T%&4|^6~ka^CbjN8YfoL0~|?{)seEz3^T2$C#I zK3l#slRp_Zq#7Qc?Gr5o+9hOJ)!wdW)$xv!@5(HKk2J@W{CSO0@c@36Me@WQnFnO) zJ%Qv~HG)*~wN!F$u)GRy*y%KBvCHNv^K2rsV9eJ&z_(jQXSVL;gw5^$cMPLjmRkA-VN50@WzH&#dUupK?-Gsy z`2R=wn8U?WOub!+lYfd4Djg-)P-zDsG*tLe_nsr65%N&b$twR4dnMSVa#z7n=|t~S z`Bn)R-Wcd_2j6c6|NHw;cbG~7=lb~^qcnY~L({0U-&;0_Sw!v%{WZ)^jhn#}@t}~9=MIHeCLF{v-s+?dreYm&#@%JKs-s0cfegX@K5v(X7yQ|=hB8*J zl_uA@2i_^s7e-%mSai{P$vvT_=zm75zGf|bjc0^?L5~ds&m8Z~N54Cx^r+`+YDOt6 z_Q0plwtAbPT5%>lvfB~A#`#w`_EL}lZ!xnSP~w0iyfL9x55%!%9gPlCbj`i)-qc+>a>UoMx;##$Zp+s~k2 zK>_TZiX|=@SfsHk9-A#N3y({i`Oe7eMY6Be2vXS}v&p{T-a>#!k^J765%7?z+dhwKL3pq6mq-0UHxFONf)#@z(1ysTXEYq zgLvX~K0jU%pI8^~O-_w>_I-bKd#zC}w)UmUQX8C7>~mP4cv6kwRt&X5Sy=3wCrdpD zxF0(&P`qHpd9k`y(excEubREQPJ?}VbGGxjCd|nq-ppBd)5Ew?DM2c zYjqW|bvAop{!rD^i$ooyFq3H#r>5t0H3jQFO1iR6mF89#jm;kbaK1oa=Adb-${Epa zOeKEnqQtM=m3V+D(KKjMMqcl$S6ezys5>}vay%>De=^hxB|hrwTwC_m5Db`FTjAfH z;(IGe4%8rJ$YBCIREO6bm|XG5S>~K!8Tm+cYaKZtG|T4}vs~`Dsg}yvE*WpD%pMtz z;r;i=+lw!(_xg(D>!{e`dBZg|Tphn3fbfMkG|!hQ$+xP6ZH4z{jUvgvxr5*@_x#%r z563>I6PI?GUGwjwLR~!RqKn5h&c(F|Yr5bD{Yv=)UzH?psv#KlFIDaMI>W6{Mm*|+ z&#(SRj8N^}_Vzfyxv#pD&xp?S!UDTe4(F0Xsn{QHTM z*2z6QvNt~V_%AWu)dLd%g!jOQmimfixuHtf=7Cpe6zK?{HvHx8feG>d-U#43lP=sw z0DbYw&wb7DuwPOWoQr?CCOz+SOPBjbB+29A1wMC7^@%YIw?dirlJDard1|~MX(lDG zB&)-}^OmoBl028H*db}Q(BTD1b0m?fD?asU2LD0Ja#hR!f3^PF1U}oj>36f6eibME z*7?{6+p|9r>36Uy|6WbMIs1I4WchoMe#ctj@BP#_M3&Er^gBt1*Ys-{RqZBHm2*pX zO1x=!5NjNj%15^PesSLy&NJ{HU;1V`-a?7`8co0}-|1L{zu8pFgZG55PR73+@)e=G z43c=;5uf@-ZIaPSJBmi}L*M$ANpo@TVc$43&-j@jbx(_u2L2wH2NSTgtYxRP`wU2x zPy*igWFQ-lKH}?#o-uy4(ow(6xgrJ~>D%_b1Gb)d*73sU^Xe$4zVp4DfZn$B+2BLbC5RZscc64dB_^PbQXn} z)KLulIxc!poeXx-$@QEB0-apPbYflf*qM|SsU=OJ^o`9$+SJ6b@RiKMch(ZTCAz&9 z9{#^T2~nJFz2iFg&G}vAH2|(ARhpS%Uo1lsE=`$QIxIEZE~ffka#7!EclABb)MsAq z=$)NaFHZW1P#>yYY+$Ht3FGbqhFPJU%E_7+Cmmp_Cd+nqlozZh^|ETl!R0?BB8YX0 z?1oXlO!NWOF?nfkS@U=gZ)gZ#ZeCx@y4>-+&?>7eR_PS`@EAIEXnOu!nSNs%u!_7pdqxlXM>!? ze=i#x5V;cMv?Ughqh ztWhv4*5gU?u|(6%-hl6F zfyYCC%R8hj7?hP8k56@KoP>Q(M?O)?`)AdU$H^~7yz*aEE`82#P`Xj4q|He!-@^HX z*-L&0crouQQG~{N)nY7{MN(@rFAu0pEw9NIN$o{c%PZv%I$hg9zv0vp#ZDK6$TeLw z1rRP>V02s7c)47qYs(frIf5)(6hVu7wrGl|>IEl)?6T7Vgx}t->tqr8!ijz}m*aRA zOHU=S^!u}kIc6j>0M0QYYMJW1 zyb|&7(V;p@$=z9A$@7~*IRP&`2{W^&qHwPLg3-)o6``!oNCqXI+Lf4RMlzIG+haB# z{Y=Pj2=BTlYnB;@Flo#l%b&C}Nr&lSo@?_EtNaDYX!#!V{T(=0bG*7T8v?O z0f6w4wx%$cue>xf>rP4Tqf)oUTQ80*i?=q=;vR1W9zk`s%T7ZrmQG$FI&mx~wgj!_M67vQA)>d!Xg7#Z_EF;4oTVc*8b0e_1QA5O=88fO9R8O4&nGgV*WRL$}?*P!VhOhi@; z%X6GA9-;TG9ic8OexG~@xO7S22LXgn;NHUQGxFamU0dq@gCodN_xI4^p1Kcu1*zLE zHcQ?1c72qTFT8Py=tOFSJKd2jK0F;sa#cwK00EU)Gk1Qg>@ykU zdt(UELbYy}B*7%A6Vy^NiE2W+ux9TDNuums55WIFvUg+7>4e#v==x|{5-yE~Zf zOvziB(kJ_|RJcL_G-p2bYG`hz%3>A6uTUNxk-aWedV%2RS4bM*&s)J?yCb`Cs`Lgk zPICWr2jlF~ariXOosC$?j3eKZWSueHA+*eG7R$JNJ=|7UwXc12$6G72M}=d!{W+&B zK(73g&cwFbNq4Iq*Q}=Q=Dh!*?1OPKs?COnwk%Mywh==t3!DW4?pfeCRio(SkzID0 z3Q`@~Qx;~ANwe3sns~#pMxEG|L+yY^E@adRQnAshW?AKiN3;7$o-*zSR^1vumYs*L zHk$S7CY33Jsfc zE*Z_bb>aXP|GqVGmIKn$+knTEWV0WVnI1(dd^a)6jAUW5j)+O+@Kf1kk|)ogoPayk z>sB9EJe}Pf6&lStmr@@7-_zNH%qW(TNnLw)Y-GZ_FpGP=6bGD+meYF=2PVg!S`Gj% zT}CGT0fZZwD3hLr_p$Osm9Q---NI31N$GlMaZgJ9lLbQ)yWDJOVsF>=ktaM~PL;CK zMJdZU5d^c!WlSm7vB~o1=^>*4tZztUK_A}F)d0et(M|R&jvNuIAt9(f1FENEWVudpQ zo9r=l6pkR+twiOsW1q-5)O^=r#u&%GJ<4iF3_Jmb%_hJ%!0R0;}s>gVn7XJB2pA zmu+ck?7F@L_;d;FMF7Ipb=)E7-yy%O(zQkQdX8Xoyr6e!VlK3}NA{vrL0Pwp&C0sH zT`%ixg{Oh3PL8-0j_P8+>Y#|32m975=0&`C_V|z;{-S{CBFL z!2bd2APW!Qla8zv{$Q%8!hZ?iTtd3s3SYwco~Xi86*fte=!aVSzi@~0AH`p_p!PG^E8MpeAB>7#H zuq_e1!%<`%wch^AwPf9Ler;ol+M zHT+8f#1{UW7Wj{*Nki~ctNi*|He*&aNM-K^hFYP7p7ozklP9DLqJNeZe&Htn)HHbp zW!@qBSL^VC=pV?eB6oov&Cy?)E{guPz$|Z)%Z+~RN`jAINJq}G*`q)&d;3jiXVv|k z$&qFkUiRt>dlZ4x1%Byge|voFkbk!PL>)ouNwne|{?=bAucbFdRv zSej7BlySHdOS~fS%DUn4e!hjdhpyVXIOU{22XDx%+dkDkZ^hHU^GDJ5AUK!8)TQ~u zMyu++xbOG=AJG}3-5Lr(RZI?*g#y=L4TT1#Z z+ytK-b=*GLN;TkEhDt+Wt2`}35CtVx@FT||3g%J$Iz&Nd9b6Cvqcf~g&?iF_1-uSv z6r}Pks%Ipe^pA0J`xz&}?YD!FcDLVVw5qPE^gHFhQu6HQe&Aja9Wa{p^%-eD?sUeV zV@5HSL5@44B>(F7n^EX;13jv8(E%k6IKrF0O6+Jx(icIJ>zd^wiy*)mbW?|J&;WG0 znnTw>>Nx|?`pq9SlQ)(?S~{Rmo;rM!_?Q{VvINpsbp%e=EKhI^);w{oDKOMLL9TO@ zZ-5*Z>+-LGz^6;e8~`AEo@nx?|AahArEAL*6FGt`PYi|@_dGG6t{_j?#b$ZJ-md3~ z;Y1yd`{k%kR=Mb8B`1Pl=ChpX#5(ioe!)K~Q{GxvF!PD3rhU7vVCJ(Klt30fo+IR~ zGoR&kP2tYnm%9wWxnRBAg^!V($Hi3KSr^5fc30d9ra1Gf4de?fNt2T^Y2wYl1?~YS zE~%SyGvjaZe7KN@9{BKPQje@q8Z`;5O_Rf!f)sp26-x}x`fwXBtOHSm zc9?)UEX^I=N9ZuUk4^2=gt>HS};CWYVhYW%QEGY<&90fOt1srq9*M>Hr8| zYt{`9oReBIvNjhh)R*xSXmz||)&!J;+S0#~2R2D+z?C1$q1NR}QA zbhrcM8(5^^THp?pEii-PT3S~{r{a<+fvg$89o&BM8c?r{63!|qHDXp6E8pr?XnaBi+C7 z3~8iGG^@xHUGjXEJV|81x+3RRDbL;^yZo3B! zHDhgC+BJl???Dfu0ah$}t;o{7XjB}aF4>22%$QUi-S?qIC~CzF?MHXYZL--{A2=pq zUS^Um)h-=mrTf!)8|r2mesk?s_|zw;Ct6_cuPpsxqrouavSu~2@Rm=}Mzq}cnb~9M zXQ&80$F)*>02q$^7v)&tZ$@u8f!6&TwJ?ENgv(^YalA3p?fD!vlF_FeN$NsW+gBYx zBjWaEOUl{ zPWDT9*f*#%s_r+sAO0Np@vd)BLxi|iN<1_~N{jq#4ef!}_h}r*{{n zUNE>+t)^^vG9XKFjeu6G!{{!56Qe5%Vfu2@#49~TsHFixbAs3S3@0Gt>yDt=h@(Qa z$Z-^89OVf)!oZPVS@#`EkkPf4zG(hQ)wLR8wE8nzX?E$dFx;rr8V@Ti&A~H8P^t77`R?WUl?$#c+dPB)koiQt$Oj6zQ8kn4m@T;A!CpnUC-sU)r0DM z?@TtnMRlMH#{*GRJ!oi$Oq#UJ7)q$u7Kl{!-wMns6wXC>q0;mxHFSZW>P7T6NObf-nYj`fA$C zpd9iNaXIPNnxB^hMaf_hfb+?q-R0!x@&c7BVgONsrk->>wmyFXd>2nT%DOPWLY#tf z9!ZjF;=;Tf^Fq0yxXCJuHA0ld3gyA9oEMTLAHmU2Z5!ZAE#P?O*xaG`+n-x+R9^Jt zyd>k9Q?ke7r+VimE8jH9Ia3RcE$(ZbqkmM*AoQkAh)>_#o-H}V-YTB3`T0?ywZ5}h ztIcJl?(&Jcxm=UNLC2&(4&aX@niIe783uZGG38)p3hkXDzM~}P5osDDYfB1KG zYtd0BWPJsv{Hz_B&HTcgL{YGQ)&My!9D7(-E$r%R7l2`|04e>t<-j%VewDDz z+k6^D>TNZ`R&Toy)7$JqvN~jM2OY3OcQu`^OrR%9d$*wa|knymu!^@QplX6~) z!&?Vtd+{5G!?y~7HpR&oL9g6COGEJ^RPp|1U02|#$HEUWO8@;e+=6rmeSEm6L2Vp; zB&RQKSOrfz$kToBq%@qLbDxZ7{E~MCK5!;H?Q#)oSNQ8mwej$$VI0AK>dN5nJ}ZAK z{tgc{OIoM41eKeR;P22iNW7?#pk8AC%<3P^wdC(@k#{hrUwvuutIHe}+@L!a8x`22 zSYO3H~)GKXP=0qgvO+sBiDP%a;A=Qd+Fw_d=@Y6X} zlC+C5Bk<{CR-9w2a*`zJAj5HX;&U1f(WSO8gj1(`2dYmv9tAOl3NSqH816?ikBu)^08*7+8rA_5tvJUM-Wj!2 zC^^$4X*Bnj?z1m`C< zYNg%xX5fs|aRl?wEzCUfYMU27Ews%Fi)}8m;*{yeajiI$oC2O4@Pksj@}n3b@2~F~ z@;(6JL;j^vkxaaIYtDA~Mkb|gi~Cj@Q4;r37X?gvO&d z;)iO2>*dAtS#Nx3drltiS+}1Tf44oSP?|+L6#4N3sx7B8niY8Q`#A?-Y(o@?o!$6h zE6VpDEh&?&aY~UJz zbpV75K;_fjIdFYeOO>!q_Ck#!kv$TCzubp>bsGG8A-SID!m*Oj!+E1z6f#_6UmTc2 zm_n?jxYquhE}8Po27)>38)|Ue(?C#xr-Bkl1s+4lTPyI82BHAD0l@!x1>UG~6{`YM zy}jz9w~g+4TgUWfF2ZYn$ypaK?**kePBR8vqCw_Bbvf_=MDjk+lVVCygE*YByr%NIwnY}zwNR0x6NIDTbTY#agN)*9SY!GzvOt7m+Ay3O47Ha8_{s3 zx_ULi*NjqyvZ8J{KXCg6dHFLesjNA=ADGgjg}(f`*Jx0ORr-Qi z2YPFUax&5Lf`qCJIH#9Com98s$g!Qdey`_M89mKm(=7shBEjZpHP=dZ3&Sw_i%2kJ zhu)p+xgNb`fsO;BcxH;H!~_pJ73$%3`N4MRV+%Y`-3f>KfcQ+0OOx;-aE?j9BpS?Ru@-k0~b6J#&b z8fSQpqEshj<4smyJF@yF%g&8%?Q5MP2hPYf#aj!4DRQ$&>=AQgV9DjxX&!)Z;iJH} zOrDbD?kZth{B+eQ()cNas0o3UHDN%c*o>VP6^7BU4*|wV^v%| zZ)3t+tLMa`;K6jcDk2yi->h14VMI_g9|0whqB)h2w-(LYBBG)>0l>91aQSa@#&G@> zQ*S$5^!C2H-ri+;GgnRewUX~aCys;Tbt-#@8LIlVlHb6A;IN>5Vd_;YIQd$MR0D_m z1)a7==+J`t_zkm&{2!aczAH4xI~H?XW_^5Kw+E|_F&urHLzL6Qi5-Z%;*oJ_o@;ow z1rR>GKfET`UxFoGO4k!u#L{BZ8%pTqmE^ zE}Ijk=BpH`6JE4A;ki6PiLr~vN{qc-H_CC5*m7r;J<-A74jPx@>QV|IRBnAyRH{&t zZwzKi@{oK%n*3EY-VF@5LV0m)aJD2*$QR_vYU-^H8a#ZSEqGC$L78`0LP*lV1&MNC zJ}q5x7wFJj*-P_9b&Jz4TlVA{tbUg5bi>TTFN%ufmt7RT-d*8qHHE8FjDxoXPsuw) zezrp+Nd4?po4{+Sz@n8;yNuM?{PuR;*&4EI!e%b;wol~~it6siCkCVF0x)IDaeo;N zsxFl+w*~Vggc=!;ho^8eiY7b&-4xc^ze5vz;eo1~^Un;y!RmRNSXtY$IOtf`l9mKV1?)q5JyqbXnHDVgdOmQWx<9fKugivt{RaOf-Tm0TY3gb zXev+fiQIa){fb~7n$5S8#k#3@>GI%Y0d$oeddrI7-6m)YS06ZVMNjR%^HlIxw3Z`C zwRCW0un4`%wNfpu#p9k1UTKH!Qw%%bKd?g&eI_`_1Z}CrJM2uUm6%hW)lENk$_n4E z3Kq$~G>Kh_j{%1+mG}n$(G#RprJQ;;_?#riHx*2A;+m=yX(>M0#9E4fXd)=ZcKKK~ zw72W=b%4n2xQa%FFH(6F&2w64tcp`&0f0as)>X8(RtJmI}N;I-_qcz;_X|FpJ3LKAA}BJ;>eZunK4aukHu7%xym+4Wvf9Gy2|E{ z5eNtI!rMBe6hHha2#4vE*b2p2}SXL9~>p2WDe3ueVJS1prhWTi^5-%fHHhf8WHcRL9nFX`gxV(OIS^ZLg4<$KkL zW@SU@RVkahc)pe7xy|UU6WuQV)`{|?cG~QnO`Q|L3|#XB%!D7eFi)>LG1k*g+bLw> zg+Fy|hQBxwd|rA9Z#x4oho3kJbLW>iO0@E=$IVU!XQB06J5~6BQ^8`iooiL0Z#o?e zo1lrNjB8xVe^q%|gTrTool{>hD5%~^uW`XE$~;5h20CD@FZ#)V!L*m7c{8&jsfp#I+Op>4v?3Q|TuZ(ED-H>|)RxWO{Q; z51Qbdi!d|R`~zfc!SzMl&tk#foh(Q{1i_J06$t-h=cq22F3D3@lxF@35sGLKzqgjSR|fgUpUEiUwNY3p#{e&5?IgRXWtM6&gHInZsP^xdQ7glnV%?(>eJPB%y5M z2R6~kS>LTOx`Jz^(LwI9lCqT(BSW$ohr}rtbib&&;`(Fjec1y&Py$Ohy2hY+J#CuR;Z^D`x+ye6gx7TH>YwIS2GGOn-iMtn3Cp%qG+(Wqq5ZNjRuXt z#`{9AqnnI&r#GEJl_L(FEqeTNe`rk&G$l56*a4d?PAEAKhms}q0EbOSUEP;>dZGDT zD>c^x`0qzTeNE67XQ=Pc4~>h!EYD0CJEhJBGX@R$4Xgn|}=r6aq*Y$#}N*A>xDsEBE?6){C)T)b#>r=|#fY-m0)v~^YJ z4ScL=TMvG3RcISrDh`?#ZNcrLT6r;}S)tT;F7$^ay-1m)M~3W+DE%xr+#(7td@-~J zM_vqVl{PUF&PRxb>LmDgKHSMwIJ2}mR3cArVO`(5vxVrD4`&Vb%7<&P`ssKl^QzOBP@*e#copLgf+HpOTh%UEMc@(W@ zHrH4cyJj;0fj+G3nO!!9meiE{wWRBr_LnfTRBz~wS8fjZ<08PL<DVXzpWkrJR^L6pEcSEc2{qKg}m*1tbIBb78rXva>b{RF1`~dW9 z-u*H|XrE~o`&{M%<_Efg*fzl!@&1QXyl*?#w@5zkV!S`yjdxBno*M9HJ_sF<>fnio zpx)UEQ)(+d-Y?p;b*|;VSA?WQk>3*0rLK%cQMh;3I2DI`2LN#h_cQ+qO;4AG6Y>r_ zP7@Q^GR2Tqg0~kpw8H&XhDtIBaqG*A4y{DNUJBsz(lZ=5BxG%2UQeS(_iQBL!eb%+RAGD(Rj=Tzj6IRj@ut&EvGLC^ zrR)QpX|4|=`LfhrMuR%?Q7--*dR0P$jUS9Tr7`BeRn;_)&veeWFiq)0-8-FhzU@{R zOHGZf^Sd-1i4)8u0O54596K2*kfcQdr7zG3Ql-Nsc4nndim7zFgjDGPd%G_AtVBHV zF;4)WT$a?{$vDNohQ_1!%_=WTeb;DEjf0cUhQ3Ch80~E5HJx*R#kG=YpZrM?+iu5$ zlX)L^iE5>4M!qLzM!v;j#`#WW{5Zc~ku0~4y=Z?4Sag}Yod*!!j_8k2zAR^}gl*B2 z311zd6zQUU_14x@bG}GWB<=FCnVP*_H{w$!x!o4+y8_F?Mf=XcHkDGJn8B`P`9i3A zO?gOb!6@!I)mAq!+zRD^8sT9zu}%@OG&4NLX=NW!|cTclTNpBeqDq-bsU$}vcb{jviQ0eIp7og9$R=Ps68}IXn8=9c$((;KXU=Py| z95h}2piBF^@v1<0stJXyf8~Vhqdz$m(t(%o0S12yF72P^$A#HpKmIurby~9QF{5G*O={(@jC6iVH2$0uDAqj26ZR8hJy0%36tVWP7gDr%= z+?T;B+X#}YU1XMA?d`f*Iulhmt~gMAeBq*x&ouVMBZU1-AJ!Fz@ulIPYRhNa2zF4F zsdhaLmkT-GEO`QyK+Yi^Ampu+ko|2$laM_CuBEWc-#yiZ^R`%egR9WC^$v>{Qya8( zb)$L!LfwcjRj>95SC5CwAAq=M7P3=iu@l3uP}*J_UK=kBpbQDF82ZMFbN%4(u^Q57 zhC>zz?Mp&uG#tEfWZ2v!Nu*}=$GG`&%b>p}ufEpf9 ztu+D6dJ;y&D`Fe&33tOS)eOfbHww+faA!Gn2wVKWrV%9ZpSu$Na*zL|RON!Hi9Oa` zb3mz+Hrl2`T zPzM?n$F2jBV%Gp}03bAg)k*H&sp0-|7nQEf4?1ZCspw6Ltpn-?#s6N;??c3P%=uLI zNiMQa)L0c;{T3#>HRpGq9`2kZFDMqQG7t2yTK+KZ_i)&8m3c1trKIkiguFH9-%>2f z`8NSLpI0vLCgFZ6S0u1v>TSD=-nO~xZ41+zY2``zX@28s}vQ$Fc-f3}Jhv!$FxYt1ksAc32Y>vA{XqGoE zX1UCCzeTqTP4}q|iErBTFv&3w%IVnx|bNJo+p5wWr23VU`|a;=oF zrC8b+ZfS=ex)H|luUMetfT;4(-LJ{P~w0xKDYyp>DanxzbRadnpof^3Gdky&No3@rl-g*3HT)BvMS}) z%`nY`_YC28!U4Rss&>vlnJRi6=;OjE9Y%!=wOeDMt{3{Zj=%!j!bQ?3%8Vp>=`kGS zcbS0=0T7_B&A^lo-VR?cN%t_iw#qwIBSn5Rr zo?;7hoRw5>Y`|VR^-zFfSa>j@4K8SuoSz7q)7*oW+&hg1HMEqmwd*Z~ZEwa8Y!mRs zgPsVQ&$a3+g>e9jJ$pSHOh}gHqob-Ee1~lI$hWYJqqBb8DR-T0RIf;Wo!U@*9QhSs z)FpXs01!TTRi)R9m*hPvVO#dvrBS5W>kaTZ^E>Y8!*jV=Q6WcvC7h&?ObF2*(6Y|b-c3k zoBl=82eD1}p1bL`YNk_H3hEB7_ndTyk+lW z>ysAEnw^HX?(_6awdZquXlT9hD5Zm82a>=8Nk)U3z;$}BC9xL)NuPM~B@{FOo!)mV zs)cxZ%vOAhB|pFIWUGls`WMNi9bzx*v;}Tl;;aZj`25^rRJ~P_JU}IEGgp6&A~je0 z4p!eT>LAF^cKKL-wzun=-AUwj99>f3?{g7;w#KSBKhI#oTk`V*7sl38E{wfm&~x(2 z4ubXkPgO%M?;sdiE(1lBb|}dpJy-{pGdhS8z%&5o6Tsyy?d;~fE2io`b5Y%Xch&7- zsx#;3*HY`JU64@(DH&Tccddr`@Y|9>1KFt->=epUc(O4 zmC|_)2Tzw%I|_!HYwKtP_#Dj*HGhUHT3h6nNH#y-BQ()2i-|5XM;}mikko-K^Vt0# zpYY_4bxKWRy}9F2zmA57(6ME2qd`qgN@-H=2?-4~eqiq;=X~KQMK^M-WJ(_gVA%Ji zC*K5b8CLr0GClHrv9!gvSkhLou0x4=_$Z{UN2tBT!^($%N0+qqAb{{`t1KEd+1vHBRbY~v4qxCO(V@(Jz_M_E$H$tK{2-`r zW^U)|^0AJBAS+UB^#jALP|^aqtE@@u=Ji@jZ!{ieEf(DKxmNsfb-4vir*R0304 z?Vy8}`;7*xE+^JygO0W!*|;QwbZ#C0)PmofzfKb!cp*R=6v5 z5L2po_yg0^LPJa?^(pIYvppum@+J10talio!0)sI!4Co_U{zS^D=Nr`8d!@M&r zw^ss8L#auezfo|~N(3gb^^)KYG0lt)p9V|GWHo&=oh8CAB7Gz1Pp;KSgaC^dAMtcHAz2b(v8rRfKXM&OQ{~R@Jg-+rnO7R_PT#s* z`=h5Ag}7EaL<2DV(~q88?C`UGg11M_E$~t%4$aBkZh|(pA$H-Qb!h-);eEMBOejPa z?jn#u;p!vW%nZA)_Sh2K3x z(Je+ZnJKHE3wZGlPv1Dez~}$)j6obKv&XzYVR`gkGbY>CNRSloU!KO2Lx^&!5VD0eQL@4nO?1V6PP8Z`FyEA6Di*BB31P2X!4~MMore zk?_Xv61$@;?pGo$cMnD%RoYq{2z|{t{rkjWsF-V|PB-C*7s-E>;e!7q7RVRN;47uA z8;0HhUeux`_tF-ai_ECjdu#gH`&G~DbDU^_vhumyRZcp(?)ltFX`28_t$`|h7T$M9 zpi=@pXY=a>rC^x1nm zCk=0M`{+q`+*%c#hqtWG4b6BVM1B}OdGu`~$K5`T@Evurn2!uhmRaGXj2t^2ln=JEp4l!8wm_D zWGbkNcE&%f$ql3z!Pdt8dZEjB72(V6{AH790z)aODqjR&#zsvpPUt*!k=sZw$Wt14Dk{Y6t zD!-B{yppQ9lB%|nsH=GF4JBDk;wmp6Hi$=8&g*b7#Q6_mM|>nfCqUiQc~b0C}PpmOe;bS__gu~_~>vP{r zT}|5P2?Fvow$8kAe0W-|HhA!9Un1_m0ixLo5#8JcuY9Lt5w5*4wL^|P) zC#A&H?M5r58r`gH+n76AMxPl!;KEmP2cxgK2EZ?i0|+H+oEL7?;9(E<%kLi8Okkge zcV*gMWWF0bd~~P|ULW<|j{daL{0)5g?wh(vAQyLf_I*T zdhqCAkVV7BCHM`^rP)X*1#jp6C86sa@HmaD>yRdCQg(D{hHv$w=4h-1nR-F`XrmSM z4ij8p1DBMm#E=JULBys`uA}siF1F*S3n%mh#tKW4}!~ z0IU!*;B9Z^wGFI;5*$Aa{5N-Uw)8P2 zZ>%8s)SGdQR9em=cPEz4fT!3l;MhUh{dntOZ!qIk(vx)&X)SdTJhNVUb%!&9F9M2M zn6WfBucVYNL{uL;>E`iOeAIHao8(tDMRYT=N=zlnc(^AbUYxt+uEg_9iRN{rQ)hE) zA}NOuXUj$*oAxd+4zsVKQCIQWPvUu6y6^D!;+r^PZwF_(zgu!=LyIn^|Hr7tonY!3^~ zhUI-EhnVk|nA1|465DEbf=*r1{OwHbdYZp6JJJ_4M4iEw>*j0pXw2Wu)Wy9Wxg8Yg zxTVQ198K`CgdQjq`kmN9zojuLj`vNP(A>)?{9aC^r}Pz}ZC>Cs9BHWPNMA7Y3j9bg z@-p0dSwB_ZnLR=(^aO0=nP{!8LxZ1vTk^MEUn+> zsP*32E#+q2V-G1BcX#!*JOBYt)_pBpKhjO^uF|zRTUU)Bb+*Fp)*(e+_kYjX?iPxD zhl|*^Xy_uU%u z;>ORUHo?;)kt`g_@_FQ^K||b$5`)fzRysH5MOw-)Q^E8DB?kC>9bDjq4}s#zH)Za! znPfuuf5izGJ6U5-BVhV}F4j2WZjD2lHPqLx;DkPWu5qM^d{N|ye`{2!C;ng)`_RAW ziOYquH|h~P03$tI1F!*r&;Yb}VsH7X9s(zPR`rH143#?J>+--J0$*EW1tY{21tJtO^4XRd)PYDvYoNykVp6Cho3@Xzu# zM%P%N=gC{u;?;gT?!!l7-CA-$Xxjim98zEUegFtpIX_| zI)+%OZCM!KVLdxneH(=;Z<8Fh*#HebN|Tpf8%UIy2EaywOx z66=-OH1jcrTA|!|O$5H`wia~YI9g1zz~f&AL}towQQjRYc$NlEG{{bOSnfz#T*hkn zESuJ+Fs-k|8xM5|an+mGE}OCNEtbd%n)FTe0{@8iC>{qngnJZ!Vk$B(1GUHZ42m2| zD{ntFbD;brpwb5#gXZWI4f;U}h z_>k8lqwWSAecMA`E*LKf$_rGl;K<>EVc@0}kK(%zcpKr~k9dplmf?{W`0JfySyhUA@O-HwP4ahjMJ>i)8tKy-WuZ^sp)Kt(x#iFTsYq zL!bn5)O9BzZ(U4%4_v}|N8VNd*F2sqq{cjvU|p>%zlw9LSbCFuc;VwQR#G#{U0o&( zK&Z=bSzamboFz-RAS1uA(&xTN?RdO(V76B&m=h^ZkXn&0MXOfxRmPh$sujx54@I6$ zlDZKbhZWWh7H~ZDx4c72=sxgTW$W_D;6(U}Dqyn3R_(N(VZ8ksIxbx8G^1-)&ZGHzl;9b>XIkQ2$g@<%=65tE8V9SzAW?QKLsQ+NUV*dQW5* zj%74^yPnY!iO|j&jYyu2XT2IDGBbO-N?r#*pbKk4yZyDux~rttl)Ukx$o?iGEsm9~ zmT+6UjOm--M{MMw!s<-bI?jO`@-{b?UeIl% zUz}#(%+_#-q8(PFW-;r?H}|&YuF)dXjIfyIGSk)p-8SrqmEHI8PjmAemotVxlov%m zaNX<4%KyF5YE2to;1o|uy0T)47p{W*&46Em}Eapto1{JgoS zZXd&cbuLrWjaHS4lD8l)B%=n#4?0^ph82HQ+2Zlpo}fLC=Dmkn#Kt}*#9m*O_W-;U zeyS=jLqc86R2s&O?j_+_zouj^c`mP(6vch7$xnA0uy*QW9k3p^cc?5_l7}S!^+q35 z0j3?i3kotb@NS&f5sfgws5-dM?*Ik7=4o&1*redIRT+5CV|gJoDK@ExpYeuclaiju zD?;~MsCbOeab4dBr~K;Aj!k6#D(^t_n1zT%s*cZko5!YNNVPgPslapIP%WbC+ebwI zYJsT;Z&^^dtNnk+u(}o?*1|iz0J@Tu9c3|U&j+S<<-TZro9qOD0E!E*8&{}MDeigUN|FC zU9!NFO@>3>^)^LEoRGFg$^%yV^>DNIV8#Ee1zw^o1>k@4H|4cQ@%>DZRHpGzpFAu& zd^jC1+wQH8GM&H*-%ZRi^=g@fq^g#BmS=%1tZ)rhOJ&x80i|^ka=31wNbb-t_QFaj zu;?-iX$v4gUfWFoyI1pGmgRveVcR@pfJTwdLpt@duB^1}Csa36$S0Vo zM%9*dnWb2f65ZYVYzu}1*jRU>~)AjW&JzXHYs;Y@Y6M9Rm0rQ8lk)j5^Q`F~>usuCM3zVG?YiivoJ2o)s8^Bv zyNl>&HBQAT^t4%YrF}|1?952MniVFS?B1(YWm4Jyw90C#A1*t7Ao(&88GTaK~{1y4PCCQ_%7NoXZEBtrO^G|r? zNmP>#sjZg|FGy|WS6i>$XnnP*^l9pV`rsxIA6yzsp-&LYoaZE;qf)wbI-KV0gHk;y1w?x#?3U_^&_q z-sa)xcfqrs>DV0|HN$qo!&cTtGSEN2$2-o?!xL?o77=Fc^>##mSn#0%;}R4YeQo=l2nM9<6#TW zEnF)Vc?|B_FMpv4+S1W9QAZfoqFUkw{qwJuDljZaT}hwuv=!bw^3(&LSm8}VbIm>e zpQow!Ut?XPnr>%=l`YQb)~L8Y9`cT5?7z66Zjrq1n%G1CHNdt@)p`LyxT>W*ac%xV zN&ZkJY)jqSHHsv4M>fD;?q70v;Tl0cw~Ng3xxHO4V^t3@;BF(vj+(B`Bp1@ueGMOuS{Rr!G#4Pi?ecL*KMm49z;f%D`o;oUh01INkd z!|Nih1x}M6hSvpL3mhg-frTZm1aE^#ezTK*Y)vMN7o#v0IcWt4DTNja^g+*MMJDk&Fm<{Wyiq`g%}3F%5o zt}^-z!8HzsZ-GCfbh`2md7`^Tw~{Bi#cvyVqT6iVB~SF7@p}W{jCz#5huKaV>AQ~i z$rD|%`hYyqdC`aDiH=2fkf#@61Vc_+uf`phNtnzwD#k^g^f~hpW(IV;V=H|;K6$@Capm=t~Gk3 zB);15#sBviyhQP<`WftoN9$ z_n6E^nH&{-dS!kcW%r8w*Cf^BYS;E~C^ic>VVdFirxsSOu~M$&aL z1E!e`nW;6MBd4nadmATa;q`ac9)$d6vSo3Z*TFgTrnR&D@Sx=cif9_DuNwjH`(C=M zc5~F!0Ha~WyHnp_4m80+-xzdvp*a1PCfpLJ1JcQA00Mf(V47Ac3JM5Qrim3i|oD zc0f@Pr9{Op)dr}5T@?Jinc2IYZFlndegELtynXM@oA=(lnRz?=_SKBV=vi%hd0|ic zRRI^)st^ulj6g?J41M39Ht+jA7Jbh+lyO-^U+DPh`re-re`3{lO(& z)2pNF0MigL$wD2Y-px29ps6~3I(1B8#FH%4q1-m8BZh}417gsLj5%nXwz<5phyDGB z3+w(nmqqqPkEw}4*N@zZsEJ|lk7qU*|SzN2(Jm`@T}Zwc@& zXQRk){QdICLFkOO>AbMd{Az#;Yc;^A=!dSU7ySw=xPx?9Ijrvc1};dqa!29(U>1e5nq1VI|b4~29(8Tf!88gGsRvkZ`CMp^6W(!Ryw{J@md*}my_u9x6 z=8IEddqfUKk3_oBTYA~(PUQ_1sxHa)JrcPceWKnWy2%qh#IIh;7-0KQg&UTQ&$143 zOzCn8Z@QfE2>L}OG#e=YVYJsQl%w3{SSxFF9-@TGqVF@to2z5d`p9W0c~HPFm>^lD z2`E+ts)`u0A#z+yqT!D0{xRc z^cuNf&)WPh?U$2_>A5nI2l5YYeq!7!xHPe%f%Tt9d zuRFFu;UP?$@{|ZWJkjXQH445v4E5&#)NKI+_s)xS+BnpE@!G3UB6qtl3X&om0ddMO zLeR2TWIHW^E(LSls6CQ`kyr1DTqB@G98a1%c%gS>KeU{K(%iu!IX}u?L$Gn^h5_}n zX+!b&U_qpvM6pzyxgTD+dH3nad{oIbK)bRXx>E8?WOg!KSWm^TJrlVEJ+ETu2N>Z} zabIL(8_z}WPQM!Er0!G^XWtfv-q&&0xzq2A_{3m~QKsDIy@2{fuu%rz^?O%{#ZB&w z%)qZE+Sj6=wKC*|UG-}RF08fFr(I+s3C4+dev;k3evv&A4^Oi9N7V`gM0$l0##CWE zW2!JU`IRp!FD`SPVgvBSWP5UTl&)j1)mVPGLY;yS4|c@MeH+<#i>Os_n(91Ff;^+C zy<9-;%xGdE?y&P>HT^V&bYV({Z4-T>B_Isf6=iY2LzKlqrxy09=8J>c&qpTV2?HZ% zo2HyebzbrEy>iLvuH6K0+ow5RnS1Klt45%MxhQ|2SsWxinqu4d!s z5-ri}<2-Uj(}wqxE4o;mPp;@XXaTuOghc`*)N7K&`HT^(GH_|_`x5ZNR`xi&G}FE_ zW(`528Fq37^-PCy^-QN^+7ocpbN#F1S6+@B7puqhZ7*cW_erlrE<*cMPI&F*HhHmo zQ~+g7&`I81hP-=!0llo=#s^y4dn9is06xpkF<_pRe=u^FfZpK z1}NaYj-z5!R&WImF+edVCw0!n`$yDtqQoHqi%>nrB&YxdU5@hD{}yb`xErh#=)j|q zFQ8T`m?+kR`^>H#Q7;>y%2~xWQ16!oIpBb2zZ2OKajbAbFL)ks@}03amF9Ps zMkbFpX?@RGLxMj;pAK>m_2cui>=yMsONiRI-47EvcfZJCK1% z$y70QXmD>z1}Q>#QzD>n-h}^qxBY$5t?)HCQx3?NN8tD97^X$W1S98 z3rer4AEg=LaGQnVz96pY5pAlHu_07a%=N%xfQ?`((I3%1aG!l>ins)3qxSU!^)%Gb zI*^&Qbg0D%?FFC$azfijxa&`7j~J>sR>8eKJq*zOqk@FacD`U$MA?i9(c7=AeyXzt zRoe?8)b`)dYI~NcO>;t9_RY3`5h;EMO5qM;2gJ*VH|}T!jw(i5D8Iejo*pfJJydhT zMa6Hc#~-rU{(7YNE0sQQVo}BS1@LJwGakl1!K@;_1TAWheLQPvl4o=#Y0FGfZ9>uX z;@QT^u6mmUmbM3n-~+EYMkQGe{QS*WScMwk`9efTv#|N&Q}%JlIZSmBvdD?aRssGY zb#R~kdDK~j)76bS#pUl%)WngJh?ao=dfI*y_2md5WH!W2_CtIez(Hw%?TdHsx4ZS& zsTduwH%C4r_KE}cNg8YtWjUcLt%O?eto;^R%rT^Kd<6#}@`#Iv;jAook_MAB(Li;N zCyY(7xjmiJgrY?Mkjj6`tUMB_XDl8V7Can34I+jJ$9n;V3&--p=k31<;xUD>As)ZY zab)rMIe>(Y$9v)HQ%Q+dU$ixLo(AP$N_p8#DWuY^_Jt3P!QqGO{RHvu z;TCcAgyPtJ8Ev85=5_lkf;eipMO^h)iwoe7I%0PV;&iHFlel_5z~3US<`37O9CQuW zOmW=FL0-M=S*F_P_T9ysTlr$=TyIF`X0)uE(dd}Z~Z;xoC=?M z&;Fedh6_HoYYRH40rQ4p_dANHPZr8;PuTkkLL8wLSsg< zsA)`~o`XtK%TI#Wp0%6SCcA0yuW$dof5n>k7hc;esTn>wxK?|!nYQHzb{{H)PWzW) zbfz7s0+dNY{^tXGF9G?~8+5AWrkr|8*LYgGolNH;I;U@7R_BV;)rImKMDv1`&o2Q% zLd-a&fWpr>r61e(2*P&8*AQDD;}}wxZ&n77&=XE6wPelazT@OO6(?}X$b__HwbZq- z?`*~~!UKW8VWtyO{FQ7ng6ZTK*9D6>@U~7T8DH4TMd2F@om}J?GM$|KS2}r{=)|OU zp|R5;mC;tCj8KswYDAFf243*jO*fhkb>amV?4RJfCdAani!a#Ei7iH0OhFwKM{mmb z70MSc+B=G(XN1KR)I*QI@f-W|g4h#e<=(SYV?@6IzQq*OXoP+Wsy)JL3gT7HUPj^} z${2E8wvRRo4$oYM;IJ6FsR<4XRe(P@lwPqvA)qzt4NQ}TJugK%&_)hQlZAkWPhN_A z)QI1AYmKI8j}Bj0gA=dX8)>n%tKE@`#(2qC=;0x{&@)csS;~A%>kL;>%UGY(KLHYk zh&}HDN+9;w%KNC#o8_l}vNspx$A7Z7gKW0ak|7#>%QeAPdLIBJbToRGI)c^m*QgCT z{$fnvYkxI&iCVvbOC*ofxkRE0@Vmt4zrnf;WvDmwTeHQA(KuR`Y?}N{*J|<;S0mdB z$jy;ckE(SY(!(7&DD@~nlh<62Y@s92I>{1ad&-uGlR%L^5Q|rsISDBo3=bgI-V8E7 zjRF}%_(&0;1bjp&mwmU$ienMuYw(Eq97DDw8#hwFBr6(eu_QD0kOf{NJkawEr01sD zDBAt~!MneYlh$G?+QYi9Pez>)9YbS<_b7W~;W9N!Zd1(p&Pa>2)LWnol9qaww4+Z; z?HQ>Fm|R+F7ohvY9Z5^Izpb=X{zlHrf-3M1D8=fqUfhf!egxrbNeyNFkXp zw_56c;}>xh^}j;-yB3b`B88TOCQyA*Rdg+-;8&s_y_?4|B2s8a(6!&UQE6HRXe_3% zgi+KuqBu(L!#6A~^SjP6x0{_h>+knSIyb}^oge?5=NO%0OydUz#UhctmAmG{i00^i zP>A1C$f`McjtbDnk^Z=(Q%HlkMQP~pR* zsRfQ*8bn<#XnuyJ-@D*cg zhtcE^ zOoOh=Ku$GpXA0`aG1ERR%%5&TQ&H&1658WV3pys??+P6bp$k4Rr&%h6Ylb*7<7u3r+413AbMRa+8%N#UDY8*uxXm;+3HQKtig8^rs((y-D0I!A;~P_q zqlHd6wI>m_lgZDNVgVl(qZ)MJi)Alk!sNkzZ5muElY?3{doBQp3kT$w9k%YUFFg!6 z;!a^vb(_qCc6A6W+t1leSzGWB9oGeBLyXpV-U|J=RL^<=xJ0!f{HJmBtJs?>}5CYz?{{AfeZw8;dPgAx2%WRfrKD(ELj4@~NaC z^tT}t^%d6zi)F}prYQX~q|<0e#{@_jWmm!^*YUo@z(?FvuP9f%^N!ILE0CMTI6FK; zB7wrN06AZ5wE#H-=>BQte^`L5=EjWG0)#jj)P{w=Sua4GqeI5=Y(Swt#--Zia|<0G zMhj4wqtbE#;xC@sm(dr>IgdF0iWVTOSDGzAs)w_|6+nNy(lIt#n9giNKCtJn`K;Q; z;itjrvcsfqYW`@p{%AXzu0Oc1_+(QGtD4W5ATn>9+g*eBtEa{m(-}A=i0c=GDDJef+;)y5o3T~_B=n56WK6L2qp|bMoF;JLxMQr@fSq?7%y}AQ z(U|jn6`+_C_c`G>i7u*emPhMx($N)N;h-ezAzZ{4Pde_=Vrx?#4=D!a8)63KAv%MW zn;Mi9_lg-Cd?ZGW4QWstpzsEr{JvwkAlenihM@=_CJVR-GiV$@LL1aJHkd(;ou>v( zF~S4ukcx2nz7L%B>S<=*w2#2PLqIg%zR81BfMVYOzg@JbHEt9iwGxe2(U`eEiI4K2 zX&jU$xd081Pl)QK#Rr3PCku8f2IpF)IW^f?H>!CUTFLQ*4MZwllVhunSJjVdiq>(r zXutqmjFO_VHAK2?#9piB4kblZ2)4Z{&q92#o8-VN&N>>R=TtD+|9J4^3$>AWBM;v? z>yX4-@J*i0uBK@ZgRYcSli17uq?6-_OV2qTLOehx+&(Me%FjDai>Qi|f~FSNedXwd zKINcvkX7N_uO0UqvH$zEV-UJx#2)>Pqm>4mZt!n%h(x)+lf(YX@Nq3;zu6AO2oH?pBSasj zc~YvB)ghF!g6o3C4rLirif)Ipto2V0_}5Zy{Zr{Q<3+%KpOzYL+n&qC|)W2QqcSE_mTCvUsZ zs@{9-`!zc+v}*C5_~$r_r+2@5n8r%|U66@?sDew#t#})tz7sqhUw{2b#A5-`m!q{ex zAq!(m0TMclE${_f$uIrb=KgSaZ|wXJ zZBhh-iK51<44H}k2Kvw@`o(84(-^zWW*Q?rppG*db(kK7;KD;YT>5Jpiy6fOy`g>Q z6E_jRwRv5DFKK}StezZwrC9N9MqeoB|Iwzk2#-RE(ku>1{ivt;nz-+qF|k}3KhJp0Y{ebM<26f9LZt8zo$H0!*jt1zWk)@3 ztAy?Ywcw_6R6!eq|)~;i({nMsr@O3Q5k*s6maO#X&QHY1?w&pc$EWq(1 zv+&D96dzqBI8BFhb|=)O%THG@Vy5U6L}GmydW@R#H#w_ zMacU2uA0uBwc`mYeFqY*@X#CKP8>DARxLc_dSV3bSj#yhR)ayJc#{e2&Bt4{oc&O1 zl^&P&aOTCfQUP$q(CM3xj`k3=QAhPQj_%-0#eMFo?m#^_Xoby5itqhkbN01y*b~@` z&P@m=|Dq(<9*(Z(jF;O@?72D&4d*y^>g4K?tP(1(Ch7_CiF4KnL-$(~Mw=2ILn}Cv^ah}j)qSGIqDMGrMFVGNJTbjS4SYD!dAGP?0xLAZ z5gL>eYuZ@6>@A3b3Wx`I<~C<1+&4#v5cc6-Db8bPA9oYvnStKm03gcZFu=gaN_+lo z<4_F}#2X}#*QPnW0;I`Kq&sub*BsaLdC=|5hR$B-dk$LK930_mT-DH-ropC4N^0a> zgl=)zR7u}8a*hX*dm20K8WP&T?#9lsD0X7N-?7rb*d}J!uQqXZMNN#@1DZM;+Bo4^ z$759Ys>?cl9;X+(vT?_(>d~=hR5{^_jfn$~r6l1#&76CLZumwsXJgczYm3TDKmXF3 zgHn0B;{rR?)}1wsBq=RGv%`%fds;Xf7_nRIh|5G%jo7m?oH<5p`dyeMMr;tLNf-!E zKOVE%?re=V=#bJ$*I<3~3e@Co%6+`6LIO))T9lEdpgi@eOt%ykD1Qtwqq*X&{iUA>#g8z z$q`GUItu7#l@W8ctN28=bFuBJ3O6)RpEYpBx&h%_``%nQQ~b>kkj5>G+9aa7lT?4F zUX}83FDFXnpv0@f01a0?-!sdIzxDZ?)+pNyf9uMqMn?SYHKQ_77ahJ(7q4+UGxgX* z(7ifDD#)dY-az9c4P@RFuqg%B!g4Gv}x{4&Wb`0;ZLs zKHc2&PPCG54Cc1Da%wy0w*uOv-Y1h=KC0jVWL^sc4B5N2XLrHI;Tq)4 zVDfU!v8nCqw5V=j=tYhxokEAsit2?9b5Pn8pvg&+6b;B{dN`9rbXmQDsh?3l_=$tk=yjR-few2J3ZJaHDRoG|z^m3p zIgN~|Lni3(h0AzBzBA8&O~-k29da09K5>22Kn*%o<+b&Yd-rhobTx7r&+g-V#KuW& zFj;G+M@~POxL6to2)K;0fN?`e)a5%ceRaQRa`43MP>_#IB4mcK*ijA!6n;0|zMu0G zL7b~FHf*P7aUAJ(y4gs8gx*dM#wDYj4J;nJ8oQ3GPC0$SRMOK#CG=(MT_IFb$#uX& zB^6qg;Mu2o_7D$QY2;OoA=Ak2f2ENMq7k!i75@*~xCgXhn#rarxfVhtKX5&;P|0Pc z5?v-+UOLG6VT5R#qRC*ZA!7)0^;%Obj@eY7LeFv}{6x6xv)7lY$5Qe-R*|1K|Op#Q&pVf0b7U^)L8oRlS0| z&z6LXjwhzs)Ta(NpeL3u^#1PeJny9g7CJu)6Jtv(yi}@Qy)&Dv#d2f6SmDT$B!YEKhi0QV7X)Ev{kbVz4Z;0X|g|WfQ=5rjWmx<#* zzuMP%i51W%mr5kX6Uv?A(6b<&f85hW-!m$} zkJxU#^AtLy!r7XS?k$dTP`Z=@G+Y{$*Vo43>(`fc`{9;uJdnx>)H*A4@s-=8Wwm4e|8F=#+*f2S)x#cU| zng{2$^-<><)Ww=jZ-q?UvJOw@nE1UxSvKSkFpUiGqQ9^i zm+W#{AIZfaM~J{s4k&b;pah)BmCjS}RYc0x5Ek}x{8(6cbgDiqluxyIfMx6;U2O;J z_(;-m(*-6ea{!6DpuIoGNo%pb{F3!vzrO6zB(F{l;UCK0_)3{NUM48U{Cld!O7l-p z26?6IYtoK>rTOJl&66kYm9ozO-5=n{Dzn|~tTOY9ITs72Ke5fU;LFUcX(8RGC7@9E z;V1AD&pL+-VxMW60}-m$o>t`R#b{xj`5)&|K^#8KVg`Rnk6+a$?@mFSLZuHJgi!gv z9l*Dk!S9;J&T{8Ki`qG@NH5#Lal8^-)0jw>DW&7T5D=mlpbDB1ML)c+6%&ROc@S_qx| zz)5cr11|e@!nrVh>!8yo*l_kC=dg7BPA30b#hA6Gvn41#aLD<-kV3Gby5C`^%SiHr zp5%|i&c5&lB_$a?A|}`WMuO_bzxYXT$*I7GiF;mO9Sd(bCGjVN6JORkF}EJ&RnOL= zJVdu1y9V~6Zl77Fz1c$4d(`PedqFOLP@oIZCslwl ziOY4~an={ni|P%!h-<9c*`~Z@s-=aXT8`6?MP~_bGbia-jGEd>2_HVAkRNA7tk2t# zIt9Y#Aq@8kr)P`NavD%*z*n}b3ywR}MBx`J%U$Om>F%o#c>+f{&KW!&)t=Y$v&_-h}4 zoAgle=_BZvZYsdy)__?p7l5L{m7II;BLk-& zePk%pj09zwO3Da`pHWY;&VqdmGKPo@9|8&=87kK0br!^*6~>0haE;^0BEuH|2^|?e zoM{mmjQwVj!3YmT2J5OSw6;PcTzWG|0w8TxNS&kr3g|??1+K9%?^6M%9Z7focTvvz zIzk89kh&Q*u2=o_RlK;geGaQscX&iX7Pn$;OYTT@n~)auo8gpMnz7AohU){mf01?j zn_+)>6{2G3rfD*PYI0g|O->1|$%#yp2QU|T<>@gw-a5j=_&{2Y$xh;&GD21{(n2{q zJ*QtCC^<*0syQF4t``O6eeD3vAFXmu)fV;#3=}vYtI{+I(D1>QGff#ajW}bLen&jf z(k?!oUEH_z^d!f)Q`d!qGn`CmGS{ll{8p=yB_YpQ|1QEzn~|^l(87 zGt4bXsd~mkkfg&TeDH)zQGIQk$cFgZOR*}~U;0cxodYNe2q>+eWetfDvxBd^hJlPB z;%gzG@bPtFj~u95H&0<~h_ACbjx4^80!ZliS~%Mxz8d?@;;RuJ&__}5dJ%g=DCJ46 z3l=-3$C*;}0e173{s6mvQBHOFpTRkE;5=))+}iSA19Qr3;@h*$pKj;-6ssS>*GK1= zyq|TLz?Jv2_K~*rq4x3FR-twWp#Sfob|mMHR-u+wEBPygQvV38)L)rWwXyc%xSZTr zvF;p;1@0k5zPLHmOAF=A^K*K|ip?SIFeas+F=z9g9)IxKoMSPfdyd75Hd=W-Ep84U zWVt7Y(Q{bd@#buOl>ODxBtPj)a+^{1#ehxN%QHbnLR+) zOU#l2Pw&myfZhZN{X>OLIHk|C$5z~@jXH_be8u&s5C~V}v z_vQ2u&=2Yja&#{pPkAQCfqvznbi@7w{`r}lZhGugoZ7V4P*h{CDzt)K_dw1F8^_x) z$qZ1uniGuW5&k)l;}K9Q$CB|@S*I~j+`PCP4n%Ou+Lstu} zy6Sr|M-ni8;>DcyXcNbn=uligmwr-`+iwmv;X^lAoUs%y3QTyT%!WBFzwt8YE?5z% z7eJs8!~DO1!Y=@Zy^>QNCVr?eHVpGBjw4$Dyb6%e3xNO5wO9Zc`^^>rMtDFUvn^l8 zCQ1>)ar*U~Ah~W~UPz_fVoK330Mg#b*-=+Wqx>;E0!YJAD`OM<@3yIH_fo~kDf28I zGS;8R9x_%3Q4Ev)EpVEo#B@<9G|la+{sOW55$yK&RdYGlvzqLw0`Cc-z=F^U>`gjG zN|W&$tMoHD|HKGW2zQf>Rh1&%L`GUDS6t7Dixo{H~|TsFu4TMpzrLkjX=u z2G!UhvWYmoUarZhHXpN%*ngh>c|~tRVRou54@Bnea+@>$v4CONj331HyH*3O>K_!G zhr%sTvN5>V9}R7^H~mIa9uy2t%6(6OqK%BPArzeFIMPti>^ML|hk`eW8qLnN8T%bF z6clLmL7feLtg^6m?hlfMMfV$B7XOu+`@Gofev9SleTpkJW~7C3>-5|-L3H15u{<53 z!^dwo%zaes0a9`00n{)uDu8aWI!(V{pKnF?YhnkNZ{?NC9whP*77+sx)~8XclG3BK zF6L2TtrwQFK@}lpoEd&aD{i*6Y3_t@v0PznaI>`>M>gZk2S{i)n?Y4!RVLfm`H;Rg z&qOJ-n84u>I(d!jfyIvVWt~n?X6}!I_?eYXKIS+woxJg{bn^23|97+S3Zf3P&iJfS1S6goOml-mXzsqyn!AT-j+=e8l~4{><~9}NRTFcc74f+p z9hS?PeR8iLapruBIQOL@`ZUHDw&8vv zd_K@|xy~u7(ZoV%RlBXc$I@a2I*Z-r#QagfWFaT!p4Ckz=A!;Ra>c3;_B;{Vp6~kY zsYFcMqTILO!vYFpL&W@+CgkLF&Z!0QC4TF zmB2?W)%DXaekx)%la>A=W@~W*G^;(CG|I}*MLI*@Wp^g9bHdc@z11Rc;*t{h}i3AAzUUV9}c6MbkyN??=6MB5|SW z+G-Xjf`ig5j<}FzaSZ4*i<4}Q&ayZ_qGoY2%`iz8N5^;w>S%)b+6y^NZ5*Z{jnmMi zuQdI_bzZN?<~2-0``S-(bHy>x>0s%XQ6OT7#c&az0Q*3ewc^uU_#W~ig|Q*D&*wO@ z&^`_zp+kGoLW|ID>^EBn8{vV?K`zmUX=tZP*&jkF`?xMxtcLe6rRZ0F_0IQF9&qER z2a?0(H9zFWB6;?eTvu)Jy@fR38*?!o6pO#J&>|P}7N~}PLxeP{kNA5QS}g{50s8+Q z^4**t2Ggc+2fiNZ3X;sa8Csh+m^QhPFBHmk{?5G+3*Qg{?k2gIjf!}Qi>P-N$|X^* zKVsqVD-p)xyzF5;&6&oonX&K<5lUlzVD^fi1|N32Od@o`BKG)2T%=#~-LN#w?>fWW zW{6%Junb%C1sMo&HBACT)XKzMsC*UNYSTflAp%1QQ+*&X{3W@b65u;ojIkjwtmZhf z52ZH+Na(--Z^nV@+xwEYcqFy z=1y0x*rYW0Jk+o>q`Rd83O^4W?C#1H#P$kfgS$x_M>Y>N14w9hOD(mShm8GZ^NE`AL1jW z7R%T?J}XJt4z%mPls@|_c_O~nB7nMm96l7vY)F`{L#wOu5b)n96T=c06{`bL)`#{j|*J}yJm)oqZG!5xKPA#WN{%MAfe+z zx5d=OE#@I(=b5!k;A4lo#s;(2IBG37j(X140&M`<_=zZaoeI!v8NOB9-xZ5*xuW-@ zN)?S2oZC0Tm4%+-pycUq7@*;zw$Tl39KK;kQl?m(YnoY{1L$RW*v#V5=lbS~AB3>@ zDUdOQ#g79DXK}oy*tJ6Z-pb&YIEK{V;_1cuwc7EZ#x?enEi#PofX8oQiws(+-#9X{ zcdTmyYVd&8wlPU6K+z|T8s|EW94ed{^J#B%7IJb>YD_?5#^mq~#;j0`$+g9d$pQ4n z++}9WimbbGg~2#_g3J0<;Q=6G2wUC@D7-B%PjKCUkLpmihOt}1@uQ{`hTyf6Tyb3G z)q5WZHcXA3WW&@1zG|{-Y_idG0Sj+q7H&MnHQl_T*2#Lkaxos5-xod2S&FVE_o@Iz z*Yf5PSDJ`kQE%wu?n{c{I9m1^K!@qBmqgn!l@bai?(CS3KOdIg485;{F*pgUc^C%B z^5Eh5Ndn@?m}_k>%FjSwX{qukL0XS!m!NG&_&vEhcXH$v6A{UhF@}@b@7OEnxlGSN zrQh#bYFd1gR)?jTvp{uND9H)cVJ`|XICG&ZU1*N`E_5Y%pMuf`T%A>@p!zs@J4`L= z3I$Zt$jdk?1nQ?Agl8VB67j=V`zN{XAqVo+yHEu75}fhnAW#HWCip526oGvb|GCiB zY~eXbV{td27VImqF6SUn3bsCkBn|?lVAl``SL78+!PWyK@F3{Ob{zdhKk zG`;1haidz!!rK)agZze+CocmMNidbk}En4Tahc8j?5xgbcdHsuIP%WHMyd*ZJQ-R zy*qp~HaiKBj_n+BwHIOo6oeJxai7Jmr(*6TFj@qbT#b!i)d?TS49~>FQ#`eCS8faTQ>}nEj+o#elVf~xE&NTx4R|T{F?ZesSu5$+T zG~8~z%Zc7Lq90xF>ZC*8pOKDpH@G^XPj%>FAO+5TJ)%D1#L??dsY|QtN4z` z>nh77?3*zUZgQodKUFX;ZRM8mlnb>Zbl;50j#obv!?D4$HoKZ29zYD5q8cTRrMNkP zmavk9(iT@gRR6(%ud03)S679CWX#66cWFX>Ir>r8UI8^%?_;AIC`COvCiwgccX6sp z6kw`2T`J7f`lCIxc3-y#gD>Md15Y9zF5PBTyRQSFa0>zX+BVlc;o?w*v0*7N*w3*j z+$}Zh4u6GS!gs*gyIsjOoBNKFqEaVt$;gDX6m|c}DZ<}zT<}2sacL$u{KHT((FmPLjTKDmB^dJNwG zPfT@_!;bF)i86tZLFs81^dsGDlHtPeT}(3KT|rgXcxmv#mA*9O;A#LUbZ`Z-N7~~S zrN>-1YOrUj4<2)gHN}ogX;R5wpHEdMW9KjTNYNGExgvTS=(Xis~>qQO#4T8TRolLVsjR&p~dSyl8im}!mQOzeTE zF&N0t{OXDk(0Z;N5^U4>IXAz$Qh0+Smtn&GM6~Tx>6SpUtbH0jepzUW_NrhuXYQ1r zz2RylXz}S9qW$A>wQ$_uuD0k^9g(Cy@fOU}teGd7l_McV7=aH`7GD)KBWybT{;We!DQj z-MDsk=9Ece%2_N`KE?fFO?Ly=9q^36$A1Ew0H)1gxpI%-A20Nq+~aszwz;x591-d? z4g`w)ETb^c7f^ROE~(|tg)`a2eE3j#WRu29eG`?~X(VPI4?U@iJrQoibtlXJHF4-d ze8<-1tHNeX9arwV8K&zC0r>kOY5VeU@V>Z>;;_CHW8s_XarhzR?qT@I_>^VzBja^u z5#F=O&m8z!*XhobY(@RNqW=T;K)A<<0n{&y?*b@YmCdoa9bv$PeplSCd{yGKwvwN1@B^|nvTMx$4nU1ky#i1w)sMA7Dj=s)H8w~k8Kt7@*J#6V zmrvAjR|>Yzh$PB>k8MsKjdJ%u7gR6}wBl#WSj^<`^)d5KleS?jB* z8{~^~dy%+2AOLIW#xi^>&RvW+d`yGv>Uei&6vv^H_$mT=vjq264f?4B_kE}-he`I2 z1ao0s_X({ahgWtb>GIRd zrRq381)3Y6-eXf)U-?9ed#+$YG&L1E?la(Hl;&=QxHj|#@fWS+r6UuI(HU@Bx_fCX zzs+LqwgjhVdvo#CbT@p;K`Vf=t6!%={c*Fbq5Dj@t&+QeulMe9CwfYSupU?9sOIh` z5r?Vo!63z@xK?OTlH0X#M+)c&$C0|oQ#tNl=sgZfr{E(v(e7?$#NPi+w{YC&sLhGa z7)k!LyPNAt8sgp#w;f$GVxMxj`)jaujxxlmBYRuA(*;zsOdSM8Q(-~zTc&#visGQK zv)(7v#I3U2$y#j9hB<$jMLYOZmb)_?1c}WCS8B!arTH21%@@&L#$I|;LtK#wvjrY^ zrkvZ_-75^;#j#PfU%)}B_V2=da^3AU*hD#TYC9v9cDj|ZNBW&r7K%?T!JX!Ii^FT? z)@_7`d%X!btGIf6I_DLBJWwNj=uYcdmg9F_?n-e+8LoQQ*~vKNjWOvTjNW+pird{t zKo6*5&_scD?K;j#EQ4|;2xucm2YOMQW;+L^dfA9KdEGNL*gCz8SDGkS^s-iE;qR}B zUczxwdv`rY5ao;~3%v3^Tos`M?cI0bC)>M+ibt%JHQCr-GP8^dW`!AME6D;tarYj0}8*CY}3j8M7VfEVQg4S{_f{U*OC|Euh47B&&&8@58N`+M7cC8 z5=sWR%lK_sH1MZV$hC^v`}u<)14uR z_pH#If>80d>+tc3Jol60C@Op46oiWYQ~=##+uCjg+qSlV2DRJP^c9+ID|Z@#*E>56 z!9$ce%O3+|Q-wo0TM>s)czI}ruk|Zj*~mQG$2~|8_bZGI-nY-sk$T@I_$##ctpx?C zbv^$-z3&Z;GD4lY`3(ADdFtk4f7dx*lh57lo*;@pTRGb?#T%|M+CuqwfAVw>!MKNwA87U^-_Gtj$?``Qf<63ZMZhlxn&fIjxi_Uha$vqkU_}{x)jM3Gw zd#Jmee_QnMa0vBJ4|Uu8d!uVZ-N~+h^jjhV@NbE(YPUq4SE{Q3hZu zcjBOx7W3RCBOzTy;Q_r)VOC_1W^C>nJx;h3hNI0(!+p} z#h&h}QBg3_f`*H6>`3{dW)zH0z9v2?UmxXuUO>+gaoE0&?4BCpQ;nnS=w%K{7a`B#{$t#&lR0d< zvgl1$QN5w(H`?IneJ#A`I7dm=jHs3q>_f8>&tcbCcacSlXE{2h#qQ%^cgMA;U-bWF z(b;6J*Jw-&io0x&#|M1w?j{c!am09cB|@uImC$7`c`TV+Q-%5$Re(nQr3OA}VPW5?M!4L5mOENR4{;o5*M?TF1=~;#N*(GU zEY5YeFk;_3*X==18nM5b>&`Y}Q{FEbu;pX(Aj0d>^U-?-O#J+O$YvO1p1d6P`e%&T zk1cRF(O~N~jFILFikG`Dbhj1IZyZOXcB9RS6Xfcp?j9lvU#$)Vs@T~NfU0a9lqgmV zUyb*+aHifLx=huA1!e=uyM@cS?!M)E$dMF{AL1#Z%E+pb7HI(Ph$v{;BAN)tXHU_pI$Kp!=s{@PAMH+j=6J z--Pq7V9FERq;u9!XL242={T(cg*pzuvbP;@H;5MQAAzV5z1 zMkppU65ijVc0GU1H3K-+z^xy$vP>(Gm$yvY+j|O{e>z|q_R>)h$6st#4U*RQehx)n9)amX03*0K;J)yE&f_3^7;eCrVK6Vr!2 z1Uzun{ar&L4zK+Y9)c}u8k1@f2R19N7X7eA9H;|DW=R~lLE6#BfuAhB?JA)2-gcXD zV4WfsQMpwdpbG3kdnj0aGostWA>%-2KrzIDqw#Hfw-!bb=2mfFoKg{~h|w3yxJTRX zoiL`U%CnBd9d{v>o~ zN?}%{s{_c)TjzFT!3d=vHCKg<1^+RrNQ3ETBMt^P-7BF@_oCl)N-U^)uI*QX@CoB< zhy|zp3~4Ml41a}=1uueb|IcE<5sfNBrKQ9*LDEwH_kTD391iul=8aQ+UAO)7bJuPmA_`U>azY?EcNjD z!);m3Ze4~devN5{>K{ej75Ko}4ryF2ln=cu7s^A}7>89S+sb}rRrQDZoj8q(ZCxH} z3g{=qqH`isp+4y59BKPqUGd>Hn%BHlwfvx{aTQo-Q*Mgz2qtxZxM{s?4UM%4GYETq zter@eX>}6K2PFK6zRh_1jUrmGcuNMY_(llj9SW_ySDEs(?|RQY+jeJ^c-G2yJNS!I zFxo$SEuqs41h9y>;lpCoz~MTvK;weZ+AetgwqbxW>KnQg>3p-F8aj#q;k<|UnB zZa37r70HxP8)Ni)d@atiJ=x@Wwtqa-U|*v-6z_S+^ej7lv4Xm(|HTTSKfYGibF?u% zRzePmutOZ=U06guIOL{FRQYv7sks`^-ZqknR}YB0mEiWoUz#Ew_>+IeoE+|!?8&T2P7J~l;$0m5 zLHOgfmj)Qa6;90(+mIIu*2Ze!B*JW1OJ5_vo(7%~Xs1er59fH;iG#T9Dip3Ljev!h zqQ}J;@5rU8p1(x&l1f4uts6eBM#=^Pq^}Jqr_6bBymnWMcv)!V=_sP3Ce+C)bpp$R za@6wvCZ3-}+ea$hT71~oH4UFy6Vn)-QNcu*JmDjJR|`)+EjoRPNNuB@p^de;s5mVi zr)7Au&~I9fopjx+Z$eDFcRIs!K}-&R#BX$Bjj{2X-0y)*Pd$94rKcgXsc2M(Tmm>8 zkIM99hh*eI4TACL+{!b-#tVaWN=UZqN1H6q6cOd>nCrCAz>NC1ClROBw$+f^wDClX zwyr9RwJgUwDaX?T^-{siVqN9hxt=CMGLLUiU2m6XEE=jM<4~v{c#A6BTAVqq0=ALf8U7k5&a%YvLF(Q<7vE`zkDh82}ck9kLIp5PPIFG~Q!V~a} zd{1Lk7>v=ie9r^H8G$ef_~gbGX=qX~M#+6VuHcM>gBkU4Ssxhei-ItcoA>p=>z=%R z^g*h*m1@5#fFNbtsB%}Falt*Fj%d3IW;Wj_$KUI@B53h-RLXLFeC z1(m1LRQ_O(107Pqtf?39sllG*T6A4YnIPZfC%#c}|+1q+1wt36FE8zbP4i@<2`GtqmjXhl@}BZ#FwUe_6VqiC*J5u#|Njws$vcgC0$%I zzb3+W&hUI>;|L7>i!t<%$XQ>0e5U6Qcn6bbO0@a*9M3&y6A$%kQ(Rk4j~v@L8bfQ! z(#_DZn0cOl;pl*luTG`P%1uWcFMqet18;#JElWL}(c3)KFRE}5zg6m4V&g~* zk}5A2>KaRsPcHV14?|~pwxqG`&-HDJzU85T#?IpNOFfSmNgi7U)AOGeBn_5(wirpS zt&eJo(0X+M!H7_N`K&y=%yW-m<0NB!N>P0|$zbbp_Il0gXEwm#E;J=5!k*K5f&w(j6!+3bSlMyX7`#DQ8tD2FFF&`*1Fxtq)iKp6 zp_zpeE^hHWC!%tWxMHiP3O&jJK&2j>)uDP#d~lm*xlk_m*zQ>&*f<)4s4Wbw$(?q1 zV#1NE<*PT9!$3z&6)%7Mgy(Gmy=g+sd6qKcaQZ37Yp-^V$BlM-md0^|$nQhKy5S>p zaNHhGJg%|F(+Zu@^3RL;Tm>jJ^42{bcz5*rdi=^>&n5J;iV*O;Sk>3tuq)FfC11l5%z|TDInH6L7 zHSCr>TTE9OG;2f^?9UpBu=b$kI3B@+Uh+5~5x?vuPo}T}KmU@aVeTW)l``Ka;7Vn_ z736w`vgB#*dmR4s(YBu;S9BokB3GZUXZ0E)@WU^Ao{D*az-Y>bTtU5t4y<0oyjMJP zWA!(EM>nvQQ2SRsgV1S}6qlTZxOncRE+|?BQhvUp&%fpg3$tD1;4GQZ>M*R|uc%(^u+Lj6;1EpA=u+Lrj8qaaf&EoUVUU_HNF5up#cIf;o+~!?)h^G(sE=?R~N;kCOf1T9wxv_iPM9L$nO}ek(Z-j%EXU zUzdk4*>UanJ>z3d^ntS;?2?NQzwfypE!4Ke^pJeN3JvH%u~^2ss_C)v>mPW&2(zu` z(AXQj$3FHnMG#K?{>!OjHSYe2=PKf8^vq zRaa=p4b4tWGkjCb8d=|X?y6>sS9yU0l1ymFKdLoGDJqz=eY~9Zz2_wXaYTCKcd=@2 z*pHr?)oeK`-wkZ!t^FC6#_d!v*IW*c`Ngx_gy!pCVC~q)f@aFEo>PcxM=#->RuaDX zo9Fc~+ZdItqL7!R@WyDe3g#pngERl~JfNkaueiTgw@Vf(wV)aCw`Z&g%`bm@+M{*m zG;-NZ&nf|N!s)xERA(^SdGkM>hr(=oRlX3KZ-AZe36s{M=TtE1mIv>DqE0Q`Ar)1_ z?r>?kuov$Omy!@it#7xNi8^Tlf|o=IWc#W~55}1UG6B!~9VOwS>e3X`iIL_fj&4x$ z6EIWKdHXBeua?v(VGazERkf!U7maFJG;;d5nZ*<4l>5HMD{D!))xUu5!K0fm-tM2& zM}0W+6+p{;gsuz_$uGgr`R$H=%qfCy+ zl(tf;JR@2fFQ8lwobHi27{w7tv~tFO}_dn&d?5IjAbzYI%6NR7)_@tZOJWN4v~va7-iVUK`hp zLBcv#5`N!EvWe&*$Cpaju&LA$z0E;Y2@lFIHkC#SHjc*7T$D+3(MP+s!dXAm4#x+Z zOC!()E%Us%vnl|tV9^Bn#Vvi_6hazNssh;uhsx(k5N}u zpI$U|O!4$`-=FpGxWoUpHem##{S|osWmWaew0p)DrZWb3Gyc{qje$1%w39wfxi`?JuOq?Jw1>O3mj>E6t_Djhc^+-o>2AD(bbky#TA5Ap zfeunJn$1fDF)C(;3Q&wMFX$+J1^Ev31}1?Auj(v)h92UeC0(Q|VSt7UmWIXQr_YM> zHV8s>{7YA9e#%zBQ=Us3I=2)*)JOF zfES$<&T9QKPFV2Wf4YaI;JEJ6XEDaMH}sH}+jw-A3kH{0BC(Rq;`D-l?;*V>T*F81 zl6=Bd+^VNkH&(@0vPNe%lc(}YczRE%Lpn#SDAmuNyuS10W?|j+5eZ=z=>MJ2_oUyX zTfQIUwt3PmA?+uC3<1}Q+X8p$lArqICx!f^!4GbqFD2TFeZK%690>RoY*6Kjj9>U0 z{9Wez9e$Vl{-D=?5{x^1H|QUK!7pJOOZX&^pG5MLOny?yPebz4g#0uoKX&qy2|vZF zBBmD28d)@D`nbuH%6+W?q?q6)uw)Sf)K?pZM_vXS5Y@L3eI$noTi_*^+?WRTYJ?db zE4QVcXihs!e0(74?pQgjkCY>1`4x2+Vcv`U^dUd}$j`mxX8`E)_ZEIrffMQaDDh5M- zs6L)pAazSN4r#wr<)zYX$@v0lVKO2>wg}O=US2pZu-DJRX$`B_6jL`TYpT>uc-TLk zC48z!#N!L6kS1zRBdrOMcptpJC*uko=4#D8=OGN%H687Uq|c*ltKSX$`#9)-}yc#qX@IIVP6BPaV2)3rose zyiXd04ye@l{6JXDkeAeApH`u81%m)+&M$E#%dZcR;^0w*dYcgSNUkIRK54=+z*Qrp z1bOfv=~)3C=Lpwag}^&$jMNpK=Acvtvh{;{c<&cVUu#IRCjrU%At3g*97+0jQXXJG zGE|yt#LgWiO+bI@u){zOyy#V1q6YuKTuo1uBo5z`P8*~IylJ@f4T^s>pme4-DsnXb zs7P9cqPd$orpkjcj;RdlStO#C9F0z;N|j8GhN={&rrB%CXNslK0+KjtRj*w*sH#^< zt~FNbt)UQ^oP7EiN4omK@1J)fNZi^a;{Y4GFbm>_jOS z&EQC=B?sf}6Q!kk?7Pr1BVyGgsig){*AHd+#`lAmP<~*tv`9ePIEF;!DXJGMD>sgC z3rl425H>LIcO}v+^rDuRk_vfVg@OmtVI<%cU1}xCUrm)fB6?fBkEup_%#fy|lN^+2 zM11>Eb?d_owI<9;TqA6#Etx4jCZdZR7s?x+y@lgb&EaU(748;Q`9*wmj&w#tqSK`E z2#9ZsYSKPWf|_Mvk7-5&9}kqLIXoea2T#nGri&<=BcwuZ-z_#ri5!&57meRoB;BRK zCh~CxQ_d!E%_s)rA&SASmrB#(jE01e5S>>m2k%=9yOeI62-J~DSd8neLREX7=uNQ@=_^YMAJBiRAEryDGSZx zptPB3a!wf;r98T>9c2bLw3EA1+8Tz|aU99m;M}gAg@6MemM#dWf+M5?4&Mkz#CCH~ zDqscvajo>223u#*4u)nFi*gbxM!-|nL5kuy*G9l(F~?M>f-O%hmx=}Sxq3rChvl=T zIZ_PHUMgI{Z)||sugwHXo304>_?@|B1+>J>TGzoflw~pCVd3o9I>Xk*FZzG0@c=bNSg)Z zwI;mJNJvA#UzO6uFk4TRa0@PJ3+dpRyQM9tp9&`CQ63^++bumH^pvOXk!*sIQr@#y ziiLclDQUz$=_7bQ=lnjYyMZ!AE_hn{Q$Y8dQObC~)KUloIaxhxPGGFF$3Tmoj(%49 zJj{kw?n+O`KQEm_+f*>u(~Yw9f`FL^aD@663oTl_{(=Pg(U(-#N{hQ+ksd&=t6;9h zIj_P>;w60URjH2&;lS6VTj*m`!peivfiP%_sfTM*FYGXbu=4ps(i8#xq~*&;n-K;Y z>UH>|*QNe~h+DoP-G{=rspE-`eER6%j&1q@Im*b3I%2OQ(q$3V<+yZu8`PA_0qB6N zi<6E@<28tDk4i--TZbst-NuR+@+@_(GTJB$8BO@oJCKREi(^Ow#1F?H?^wV=sXTY# zsqey?m&ew%GS;G%lJ_K!Fdjeko+P1(99va;;|$vKne&pLIW83nXpxo+Z^8*iLaO#P zC#Czt(L>gRlZ=Ek;;j7;#)j=tl~8f+X&*_WP^AjyoV)SI(!F6o!F-e>)%$3Pu}vy$ z(kD{yFmzDMobTl{3&I~imqv%9TEC@e6Ck+$P=hlR?EeKz|DBTcjmsCPUJ?Foc z2BYgLm{U*LH&S=u60Z72x{5eLwkYlJUM&ZzzFi$-)cG#qiQh?S8f@Zx+?s5zK|VHv zCvy{PU>T)s9~a^1DNyxz?ImeyvT>pZY_`kHqe+3*m!z+3F&|;}J zxoV43`**H^JX|-Zv(rySxKyZrN%7(p=_cx-!ilnYb1!F|<0#qGEBzq#6j6VU5Ozm* zqoEuiFv#E)AI~*uod%l@_usF9oCrr&bnnHt_@8f={^H<`W$=gKefVU@k>!muu?^Z<@&xV)(CKXL+IkRZOxKZP#!}Debxsiqs9P8f@ zihbNj^12sphVH_vf|Dnaw*^VUT+N8?fLmq04zM{Y^AVP1l)lX8rf@>YJ&gV@{OO|| zd7fO+UAj!JXwZLwT+vzLMRG;G>Lqd|N)_}pT1}GFgcRs0_PXD@3tl z;kyC9akp_*f;$c0YUs^Hw^T6WMUJV7zg6H>jlAczMD%0@ZtV4-s2zb`Xo*@h@n#~f zC0uZ}eUFsSNgI65l^2y|t9S?#9($X5A4X1nOEkNYtwQ}>708EdlH|V4yqDoM6z)Dd z<}#{>~WKw4FQH5#H@8 z2fvu~RIuEttrxzAQKjC-1@C)@p-(vgZLtcAl6RsOQQM+&GWs}cF~->9hI8%Rq)4(o zhU>B-jr^F`yGcMdxn?_&o>$wcarHd$<_`R0d#^)-NhPjpg84-U?>a3eh|F0aiv?It z9O7FEyMF2D6;UgWq0Vxx&FS!*F5cd#osNzhf6BRPu07_GCJMn%b@hH}=8Idpc@Lmr zTpOw{7OGIckp=wuUO2;W>P~O%Ff>uUPkoV-tTXEo&w&n>G#=s~EJ`%#0ddvz`%)`* znjE=~QIA|N135^5#Mi&`T71)Y37`P`z}L#7dwIVQ#GMLbL%ERc97p!m&{aG2$FG;{ z3X>;;LF9=Su?`L`8xTsqp@ z0BVTn>QuC?WTnBHKy%tU6)A+Gp~+XQ>Vu%XFA>l(Tg@mpiJ-x?uD_xqqp z{phCO2HPCMP&l-q%Ke5?MvXkq`9pXi+%A^uZoF}A;9mirqV*|Z+bpUjsMz9!uD zgZoP>clr#ld3UO?2Fu21MdALK}Qw8SJC13V&ri9&%{61Qf&2#`C;Si$Wj5 zTwC}nFkbWhpPlK&=nLhy7I+iFgyB>m%oqMrY5bpy3D6WQ_Lhsn6h;H}*#d>XRGNMQ zQ$?@GEee0#^*9^qIgjh-rIwV$tnya|2+bSEeOqHa-~ZvH!ku)mryJ)vhz@jPkUvCI zgk2ex^vha%f}3tvXwy~tO~=^EE0%j(3&I;N8E*Noz6Me_-9$kM?t`yl+K`kxyvKPpSSiRq-d=6Bfh0))TDM->-zd zez^Z&=~9;gop-5rw=WITYDV51X z{U!TUtv#n`t&q_c%0E8iT~tS$@`R>Vnu`CS9{=KN-dnZBMO6AgF@F{Rw*bDyC?CkI zB6foowV#e?_k`8*$^*jkCb`W~?*E*HGRl*KjPn0S+j9p-QGD%gA^~;-q!3CHNa!^b zX+mx+j^0J33m6DZ%3z_{06~fZi}Z+vUZg4=3sMvj{Zv%^rd{@JxeLfo z{x~*oUz_*d%)BW(Qv^*K79DGJIGXyUAZ-F-=}>D20FWVHB*DNQp!;_jVpodhMM z!!=a=RO$lxcatj@cJ@^2Wa+V$rgiB^iB7Qmj{SsN5cai@>E9B;B$Pgr`mz)YSdjr? z36n6%NytWap_-m@ZYM3%OK57W3|)OvuqL?-pekb&T77t9e&x&5pT%aJucOs%3>dOj z_lcGEl(aJ1cp7)&51L_xDtWb_B_ESZ$wvZ3gEY9q0wo8d0Ced>>i>!JR|aV}>TvhX zWu#q=PM1=<;mdom4f-awbG9>H8$POdCH1_xiRzwn#G)A;O#|q}g6xPz+dyCzp3uPu zw~AvORv$)bEGG$qqZUC`z!R25k_U#edOKIElWS+LDVdWKjmVn@aWx5hdpBPRC5NY#Kod*FhP#Xu%VQGQuRL5= z-<@j~s;j5Ao0yC3#^r9i=b7!ShfF^8duq8b@r_kMs%$pb?^Q>g+J_{Z&D# z>>(TeW+6=u6L(VOU8?Na06H}>AGrg!;EyA*Tg1s&oOR&-d`O>+vH9d7`}%D;PRTW+ z|Jtpx)1&Nv%f(^8%u-hGCw}%+Ohid5V z1g-7V01DSLSZz-O>IUg!>SGj_+P+0fJ6TBVx;jX0zsKFz1+`5~WBq`wws#_L8Whn8 zdwXrKzdBe3Sr?=K`e-D z7hlb2yBgo6q%9~Q?pz(DrgydD-%d-5E+8JJ+Pft6<8$y~QV;6-yVNP-D_Ed4r=Jnj zBhzgjdB}QRi>veiIsGy;OsySjjBJ%QLXd>_%s`+yeLesnIlUmDrESvQwjf&92wT3L zBirOf7Ddp$wrSU;WWW&T{-w~xc4=u+MF1sY!Y~@U)d%8ZjY^_z?b9@=fel|sM(sPK zt+aBtCjajSQOlUvF-^f6ssTsqI$+CHK`2q9r_#1b={7=;)W7E>WJ!G@OuJaqmNS#G zA&l-g3h$COH`ck5h!>qJeVD&Cy3i$Uu`~sU##UqN$k7u`D4)DFE(b21tO0tm|=it+A3c7v>paoGsm+5K0 z%X>|ZeDL*WPpsQP6U=l|PNqs|TCcRt5}>fHQn%b5M3j-;JMB$D`Wi5`4a0UiDfuuA zsBN1PZ@D+<1sIQ^NdwY?Ph0+t70G23b`PV#QP`{f(zXc27+Xh99Jj{gN4rV9ZS_uO z8oVXo9-fYKo%wQ>kFH@QJK;HzdN}lL7x;#|P=#*KMhPlN>QHZM=-HU?J?C zw_TW{rqkS+J=X-80_(npO@TEha_qgOz9v|2sbKVf-&-C9A%+X*+FR1gE?y07zeTy* zZ$7i1wX^Q*@`Rkd3gxBq1JU^&&=GvU|aLZdQt8IN}Ddu9OpX!zjVv{KRHsI@^Ry$5pd4PP6i#t*?pAotrmL)hDEeEYS* zYJ3}v{_ksiMj)nGTOQnQt8=m2ySdx#EoL`sm2dWLTIYh|r`Ra2linM+ejhX1u14uC zX@d)jr*R0mPF{Us$ItUw+N}cOcT{_q{P@=#{2@{rYh zb-*RGn!BY;jnAa@6r|$sn~skf<0*+woK5Q|l>$)psHZtTi{h0p)Am@fNm2|_!32Kg z2JBAh5ZpyJs&_7JqNGD1mW^pG%R8CTEp2GXpA8;2wDW0g1gR|`r<(7$kXBRb0-#j$ zwy5F7v?ndtILq!R4FHHFAs5=B+LzKkw;~)`DnLsB$oce*Gq`fhcVT9BmnYRd>obW6QO) z*@Cn;IAygUl<2^9oUk9a5tcENl^RY$oM_=@c7gHbjkKDAc`GsomRz;UJ|K4 z;elFV7xZ&KrIogz+v-XKr(U@y;i~1jCB9}+qeMb2F?C(&?)XWpVlG*D9gG6I<63vq z-WJ4;lyR}hh1z4nW8~kn3;d3*xgFrnx@ONh`;=cDbSIC;ZR!fP7FkU+JuWs*9GZaI&yEm&S<+D$A0y^gJ%)`Ov^HE-%raB z#r4=At{qLfo%Gy2&sa)2)424P=Q;L>jy>*)6nE3oxlF_k4lp4`cG*I;cpY0gdCB3H z7b%5hb{wpnK;O`n6StOpe}rd{bPJa}kUiKMnhDNOr*+rZk=Ij8knRCWv&|IO1Ae3m z-dl&(=J)6pbhFKmbwPhi@;q-rw^hMOPQ7xkg45kXFREpQI%0$Mp{rm$tYR)zur@}4 zRj^|Lk6#cwaK?^m*A{SO)h=zlJtMBY{(qMdzY_EoGHQUAaxuUppl*=5H=Y^5o)Lc= z?TL;Sm#+_!5x>qIxdh+E>ALIdHEaZu5l@4q=@}tLZ6KAwB~LDs!zDW?5-iY_q1oP1>2UiHRnbE%`44q z4XvwZxgckl9Qiz<+|BcnG{^*lIm`@nt(#}21Ze0?AxO(xI;F98&aE-;+{1Gy!EH*G z?}6KbYHTfr#5!*YT+ zS^Yh!(sxeml77!}J9bCucPHZL0iIHJ#FFUa0iG&S{*7j6aU~iK#MXi;+k&Wju)?Z? zJaM8_3UE}(Xr~eYP!Xk2fuSC+1<@v=XD|_84E1alB@J-IB1)o-BRm_VW&ld%XlUz5 zPc;iRu04&Vt^ko%91YDK<*95(#FuI0EtDb+c4GTSd)}~PH9yo6R=OE4Ljewj`$J&e&c%4;J0^f!7ApGIDCjv zVB&D11_htMCL2`$pAF$jZ`~#QV;jfLs za)&>#M*lu{7y}|Kr0Lp)HeGA1bS|OOf|QGVLj;FAHx_!f6ch%d74LYuJ2!TH%C#H7 zNV^)z?|P0E6ebW|toOy6cK+T@(`SpPSwUeAp~<-~-b9xp*zEj(4}zo#{g_+C4jkEDIkn7F6a-2dZwGu-Fe6NNnsd;|9Zp>Bsf)h*aqm5$OMR_x}& zCDiaR?&ly|Tdz>ZU7@>D)Q6^hX$xNr0B8#zg=QV~C>BI&kl&7a+DMfFHZh10g_a)k z_$}BrRqDB`5@*al?!jj)=zt@Yljj6Bd~*P$a&$EHgeS#p)b*sNwFME6 zSi49=oQQo+d0JTzZJO5)qB*L6+A~p_4jEcE(WW{HSKtFa8dgJ3pYe{-tU=?wrUYQ>uM&cnGc{*ZkUyU;`pbZGR8SoHCip7HqJEG*0?ePSXZ zYNu>;{wtikWCOTOj+e{XnTs5w;(5>Wf^-9Lq7uGC_bzxQNZ$cC4gS9X0Q;5)|97a= zC7c03Y@0p`*XJtJC)!zV{9SHqkfR0+<*1dDFXLNn6g~+J zzKW|Hps_FZYfh)L0YkN~J@|YS1+b-Y{?@lxSQ7xHaju|B-{D*nV$<+_8X!{ZDk$n2 zj&q2J*_J}Hu6dr21_Er(w#fIM)fQ}9u>0KAk3)^Fd#*|^0fx4%3XPnExo27}B5;4^ z$h1y2t|PA46gtydiZ#ilyL=s^(C(6N>g#dK^Rggrt@U(2QJ-vCX6WLZ}NWrwK(o*A7hppX9WWEuJHr7dKSsM23)67u}&i4wxlq`cl> zi}2mKe;?aStxD%j7ljM4gr+8HlU6L*nSBhf)8Gly*l?i?qZ#UnPKtNTT|AdV6C|DZ z8+#?ZQUm-=hHdxSl}(lm56q2%n$LEXM?(k;q|N8N8eXQtr3>U8wgAs`3vhZ0|4z}{ zLh1=9ab4q^pSqh+-Y6Tx!n`ShG}L@y`*gkKY%U1UvMi$PjD7;xs&Lf(C1p)I6^tbvXc^QKmIxb%&n)Qh6MyTnp}*clH?oy4eZjQ4|t zTBf>AW6iBzv?!_@>-9*fCK|OExWT*@Iuz?IBLPNsgDrOvPWNk$F6@0n?qIU!y>)7w zx0ck^1hd|H=(1P|eIDn1MgkO66fp6dPEi39zgooW7e@jsIZga_aOx#Rz4ygwA*tUD zPF=gWw}rSEP&+-e%1O;)x>CG%MZ$ZgHJon3F`a-K#(E2(m;`T}^nr$6Tix2f;A2L7)>tC?K?9=33ZvFn1B8hdxsz&IXrxMmMmz<|OMgchwnpejAlh}y! zb)-BxV8~LQY6k69rTygm3;JETru|%f)tkbGO|dW;^TjQWLND$AaQjY#7&-siOQAs!NO(A2-t48(v7fi^Iru z3B7?Gzj_bve@VE_7t}!?Yh6FsY9F(_w>8Ls(pg5Dr;%M4&|UDr+YCd3GZQ4Pb}04YxuD^lDss{4RDGaAiX;C1~{tRQ*Qpva#@ zguR8myVWwXD{OvE`V&U~_pR$15MrThCp0Bx3%=~p=%ZX?N5?2McHn><&)wG$jFjcx zck&o}mUybs=Z$&rw***Ruz~m=T<7I6;Vl^ou1 z@D4sb>rTBaHvh<85%iCOxmdyFgf4!_rGTGvd`vU5gb)>|7m8|HB*sYJ@4YTa+kjZQ z*J;c_Z(ZqQ0442S7)C=kyiJp2fDZ>ICjkL%!;|oNn8G&W{2}jKRw1^DxPIJ}Kwr`z z7dFC=di#jdEx^|{QQ>z|=H74)&4;7Y-f-T&)S`}GX%a0%P?ziT&NuoRuvPyACY&kB+Q<7-S07fS-)fV9ABFD+It zaUFik8!CEO98H#+1_}ym`BP`S_XROyTaXlLN}$d#+OEdwFTGtwaWpQoYYH{Pj=%D} z_oN_Bqvmwk#`8)JexOb!{~cQql&JeQd`omOADVc{n^!gy|EAo;E6~PE-Xt)a1|pK5 z(EuSV7;-wL#Sdj%Bb0GBF#}n99}k*y#k=&0mbJ+>Z2s2xKfj2tWE;UYu_!yRF{Sf*0ZI<33RPcpr(6^(ux4p5b)D7<$kj+myw@Bx|G`@& zaN8wX_Jda{Y~FJTx$OP{&yGQWEi2y3Z3-1+A8tShZ;|)^=pE=*@W!{jTU?KbCWmH6 z&}rDaLyYP@A{z?49VPpS^X3@o2}--qJ!Bbopm*3t=3pde>W9n2&nh_4))K zT6Nc3InP-({77jNQ( zo!DZT{_*&n+)RHLd<<8ne;ocUDbqh6Z_3K_`!Ic`pK!#N4bta96n``MH0LQL|t1BEdm4>sRmE=o{n(JtCAm^(&m!2yILWPeEh<&pRo`{?dOBSHay% z9i;!}eMO4ckwc1-;}sPZ8kncuw?MX7}Ons959 zhza?Lwy~`7f(#H{vRL*fo@A?LCFFuDjvs^#^ z(tzNEiOd{;(AX#{H6NG82B#_MprKl#etDJBf(NPNl{oZfUZtj>qm5%9uZ{BOQ_9wW z-BCE}j_7&iwebj(8i005(}7gn5Y|}qiBJF(vy_Wu5!>f@J|#X(S_X*ITPvm61$Qd} zl=wkdX3URNI^!$-&qIQ}! zlqx^Gh*D1~2B1{=C?pic(jm4@3csEYgdD;l7iX+3s`y2z24HA2ZdDic2;uAT${V8O z4Nh1s2;q(r%E$OxctD5?mb~bKTu$l;fV5mKQTb%$D?2j2v~+##6sfNhdqXMZX$!W^ z3N?c0G^ez3O_U}8hQtb`%{Jl*2O(~g@K7QH-72SKM0;?07g!F&)yzM82Z|EZ+JzR9 za9Bis5dO(3g_6rFrK&FQ!+QA|mg-CsXJIImG2+CVT&Myf7el}gh`RR%*t$&$ZsmNXiD0? zb@i3|f)pQ|kY7M(Cq%u|lyc~)G)0jr+K557%r7AX#M{}vusR-PypW1Edz2}X$3`Dx z)(U$k)x+e)b+SkQ47+fXtbm@EHojSuUAd~GdXhKoWZ zz$Uj<_6X8Zz|a<%{agtf;!U5wwO6W3SFDuWk{2A7 zD)LoVB}J;~g5KjNReghF60N@*lKFdRUrCDf4Po*5~U9x}AQ%vZG{^_ZB zpV)v~xU9%A{f1N>Q8j%u9xwIHSm5u0jgVEC459k;ADmHj=+pX&K7!7zn0zTE3eNZ2rzry2n2YuOJQRIt|1kKSs zU}^Q2SKh)s)SltWD%k^YsHXro zJ~pTyirWpLJ(5Q$C*+PH7*$|uwGG860c{$ssDdB;-)Nsmja@J-+2UmiqZ>v<525y z%9;2zfReb#+_^@Fr3xOAMoFqqsj(m{Y}D}n3;cOViVRa=0>CLSty;Bct- z|I{HyEges)0mbHbBLU4&j|s|2`E#HX4GB;hemN1K+09~G`CTc5_D@tKHlD79*6B~> zK?Nr%c>+bK6(~Z4y$A#lC;}N>(|D#uI0aQn{zLJW%F&)*cLX)zql!N#DQz61iYmxsZ?VU6a{3Zmlde2GZ`>iztBPKmj_Z1T$eA|n zbpeFwWHfnMNfhNK;DtRjTQMadElJ2zjIfzXnjk!5s9B0G$j{nY#F(yY!&r35ra5_Z zCxFV0Oxw>cvy}zHaP;GBG&DP->s)1kAkPfJs2$U5I%5>$)QdJ% ztw25HC9xQT^g)I&U-@2;-?0k=q#a!BNJ$4TRK61A5ACF&Yv)4|AeF{gGyw1zLsb_m zV`JT74=w*SPdqxcSm_k&k`V}KQZhcOa^$N@5BUPrgv3qkR{#=-W%ScKQSnBX*AzjN zZ-V#iw922V%T?sN5PW=XVl&|;iddpllK{TGlkd%}1SQgj(Ad62c}kF_k3nt8KIloJ zQ(STk1XD>8+P)0u-vHk(sZS6|=#}NlO1U!RNN;1TK0msQ`~(D3L6y`ey0gBsE@C$3tp)Dh&@Ly+?8p`E0? z)+lWRd9|Gs7~w_cP(aFz0003aEPh`Z=4OQWbxMYO5XzuN*aslI!TNrk^0oXWfZJ^_ zgJ}avnGM=(P+k$_Yj#plkSqr&D+uJp)%g4aCEcwc^*>Zb$ocky%0dbflLtU}MMm!x zQ{#;qo0Ri{Tm-zfm*+L66y(4%lvlRkIrQ@A<`$)vToE#u^h$XZ4K$Q?LRpmbhoZz| z>$42$4F@k)K**dIaPC%Rh+6@pK2qkn4!G#Za`|pPvczMZJ4Nb$UWjHUB-3D7fQaID zC?$&%XjZ{N=_7mf>p!?}_W|Um)&hcp=6;Tco*hyD9ZFf@44Sh;DVlf`H)mO~gEG=b z;EZu_->M_}59&WKeK@@ocP#n@V^;VSdo`<2uYMW52(PL=(+8#x?uCbA|B)e=(t%Nl5vcL#=yHps15d z9jTp(L0t(xd1;0&e4#uMnn#rriYE0A#pBZxO7+k@s2-zjJR;4Hm2e^G8Rnt6Oga`B zhkiVXm*ifyv9c6t$SGWCU>3VW`S>5&GyN={_pEf9EGjOyvWAY}BXmG$V8Q~Tv@SRe zUt|L`hzLW!e5E7>)@UoAQz{46XtT~KiFNbahmr&k7)n-SvBO8hJ514g=~Q)Tvo7*= zIv^WI2wkC4&nwS3Mr(UNp<_wu0AYEM{2W3*o>xj)Mr&6v+&PFmiJ`P{s(%5G)-bJQ zv}S6=7XX1qh}5N605B^@WR?8!M(vA=Pmq5m+OT$UFUp>&C!u#P;V`&og3U%s{P`19 z{<1RENSkh44H}x&mJs83qPLcXC#8=}S}=71JIsqtbA;r5ul!?+hpb_l= z)|db@#Tlv&aa^EE2;qtaOV1OUt)cn4bdqteTQZR>&gf+G;ex{F1(mCr=^ zyvY^!z-tprplLrVouqF}uvsaD^XQ4YN|pp@?55+h6Aod%Uz9On(qC4tur1{yc}Pgx zMdf!Tp0$h4NkZA)ED}JVS?p?Q7W03WQ^{Gg2vQV2?EppN6s5Sa@DF9IAeVxa)IjzA zRBB0;OfWD|DP!-SN;yFSM0N}Dc?T$s7Ig66%A1mA<=O-^-h9#l(BY`Tm2E$oc3)X6 zw)u?gY^0yq=0{5-)S9LFceZ9@+nI$m;J~_`&;C&cOFe^2=C?=#Iwm;-(V4!)$x7Lh z`N_Wp{%P0&_$XKVUWX`DNKorYMTv}J_~=UDD6nz5Y)G|+tooW8QP8F%+zYkN7N$;A3B%EN)=pTeG?Q!)NX_Ji(1k3;jT_9jq z=25qaALkx0gB%=Kz~sxTHjz#SmpsHlX9<|=dDSPP>>;v{g~%I(>k{&_l!Qp}8r&by z{I~IIXQW)kP#P&8<-?JJSp#XlAt7yv-j~(tQj!S*fPFlIbm|Er}B#oo7 zD_OlNNLPasu5c34h99WFt%rx#w@S(Jv_3!J5?&;(#FkY^0th4+>nyeU4^u_QxNEIL zM-aq8mdYO6Ms}GlHWqG@u-vgjqK~+n*eUxdaL2 zbq)n-C?~iXk*S5FSk+rRzdR4V$UCHiR0tmQvU%+~F*wVpN(&5_A99mjjTQo&=u7W6QrwE%G-;8AZiA(EyRXdA;Tk#JU_%;DCusXzExu)34UlSyIvc zrgv#yQ`iJ>2F6ldy)Me-zzf!=Y;2^Clu}GED?y=s4J2Vd`;G$8*bDG0D*zBj(*Pr( ziCSBb8<|}BSoDRasv@;A!N6RNP;@i(0}0UBh5hCfMp}?)AU$BM)y>t+1ZSY)*K8L1 zF3Q&OrJxsEs5PYLfjY!^iDOIv=NF)B8HN{f-xsQ)mMzs4!Yp*VrP@NC1JKdD+j!19 zqZLl$7MWmH$~Lv}*SB-ftyVZW05r6eF*(DEmX8apm@`q0_No^BvdM-kV-#wmMhLG$A_@^VJM1ZPBd3p?!yyvZsT0C0<a4dIh<0^T%M>Nl_SLc)3;e}URChHdye1x+kf*q!Bn`IX;Z?P~$cx|7u7fPDRjhCT zqvZ`OzAf;t!gDoQg$51joiVU#?~I`tgL`KT?lpFSe=2&dyIMzh7ai}eRuQ7n{qAbK zFcKB-p_Uf#@_!Gt_yoc#lQPKkPsP$R{qJJsGyT!nUzz@q^f!s%m9TR6Qqt(`8N*3O((-6FkhW0_!*@P#T!a^)~?{{VpN zZLIC9E(w#i2j`W{8W})J#K)l{1JswK{lV!sUejrWht zd08zdeQSc5y{m7iB%$QNswM#nRAZ*agnV7>s{`y)gEJ-*{DhMw>|D|o8TE#!#RVzi zU`}AzeZjYvh8+yf$hKt?*oDhN6Njl&arvs4U{=1Q*}8<*4p%EmfP$2d zpUsGmeYQlgzn_sdLj6OKeC7*U3gCXe(gaAU%Z%-#)C56lXCq8BRzS7 zM%OXwt-Mli8zl&0zMRwJV2~i@?*V6~Qi)0GRzZ5s#u$`^?}Bs?J~Ktd-@Z%>PRMsD z+6W697pAJyM0tTp2*d9U6U^O14#HSq$eC(!Q36CX0)d)!ShU-u#Tjd6s+|ORlgXA# zt2zq@!wwS+q-{d)%~I#sXvjj>=ZhjLNk@Xvd^cO|Dgilm1)p>%Xl$IL{wzq}Ss69~ zg=*lSAxm?-Z|N@+Y!*uVU zJj=Auod|Vai6asSvb&CN9(7pg$yI6vL4M!l%B#$!UHCJo%_bOV_&&=2o_bCKGj+TNUEb+AFI#c&CYW_R(nVz!Ao13HinT8 zJYi(`i?Zggd>Xhq6r8f=0B^h!DljUIjfG9 z7MQOIzB<20|A?4$0;Kcr1z2FrJ;GXzStd4Tc7)B6H2g{}iW2Y-zSgYvS88o(jfv^T zw;k$qJiCkP41`;D3{l>n4NDXqC!{3y++fGd+2b=*C zC7|Tr@R;?!sW>`*Q!R-;_)h&xY7B(AsL4OC)R~&v_iAfF=!Raoj{&+aSS3cg+*fgF_iv`nqqYRLyZ)KI;hV*HB+hwNNI%B!dQ4a3Lvk}$g3Y?fn4>N z8OTm7EQDSnRcNlStRK3f2tVMv3K;1>-{bD?t@;9DKb+!oT&%f1~(il(< z?5pO{BTWEr1B@T^a5qBMF?t_FXeM;Gab<6#O47SF zPGFZ}7Fr#qjS9_(YO^&IkE7vQ+t55rWe(UF)iSqZ5}V*&l5fWxQ8C4u$pDj~Kz#+S z=erH53j54;l;7A3^Tl@0_M0GDq)Ps zr>zsDxZ@#fgT~}VA7`hNY>~9~V#VXAU}deiP!W}rwN6qB;6SymeB53se2h!^Lp`Q_3Ti(HgV4o7+E{6boy`CT zn?{UHU&cl(bDUXg&w_%5QPR>{MS#~d=k3p?Mld5TPXmE_?cdL{) zVzfchJ3wPvDc>{!yi%gwvDy@2E7A*VZKZAIYqunZ&yj3lrHlE{#OBOca%A+6)7}xJ z?ZmSE^#%D4}f@q$Vbwn>qREKfW(mt*Vu*wH2O0YH2MV|MzCH z)(v0aVdb>9@bzFuc37glLvzrXwqBw z^s><=1d*lz-%c7?ThkDD*$c{}`>9=#*+o7!4BK3TLtWn3@jqn>rN-qK>gn7U!1 z-G059{pL~o3A2rjb+u0f!9b&*)H+HZ*~vFka?k|v8NiKPg}3T!qlM#4h2yAB1MLOr zw4KKZy9#_V@F-K^5W*@HHa4bWPU5d8P(_cnNBYgq!}94y&9K z2f}P7bh@IQ7KBo$o2K2C%AB-@u$Xkx-cj=}tP@VM>~(essoc)kS2A{S?8&~?7ldio6 z$HG!V==*XDd`XNn2gnTQ3u@?4CU54J*4idfc-Pq6R%S{>ZrXcT?D$)s(sD`1X7LJowRG>os($HQ(7(g zE_ly2*PMDvOOfuGU|P+^yC=~zowZUDz(;h1yRx&kMUqe10uZBb?t;e<5ZxtZ=Ci}M znc-q?nNkCtFq`Mu_p~-qsDhe4qfM1kfUJNILCo=q;7X@xpa*C9R#$B@{${Y;v$#QQ z7@8%Y4OVkwIk}s*Rq7g=*Yhk?I)~t8n>6A!f{tW|Q9?*yh{#ixiR>`S9@=xUE_slE zh8D&9dKaf_uf#ZK{*JKCH|aFq#u%R;j zgk7e87#_ml$zYsJX8H+vroTOIaPZ;KI3P0pFA+?0>&r4?VOA{iMCZ;{kS983ev>@W z{QNEQM3cj}$rJ4!-yu)5O67T%Jf1^6`e>7cw&-df?Nszu0;2Px_bL1DbJVt};iZI3zBPirGx#JHS0+IUneS~4WZQv#|n zs%4Rwb0!sj!jpKI=arZ0CZMAHV}3tLbF2`CNwIRaD;H9S*^qZ5wJIY z@@u~c=y|`EU)*|%txXpgq*al^Pd}vM)s#ZT#lKFW#e=lAIsAm*5{k48ts^loKivP% zKw$&=MmqF8MXEu$*15CvpCzUK68~`KUy;A*R%K9pE)X3Vtc{Z@+KT)DQaJBhIlRl6 zJUDOiiW)9X|&b~f8h7@Xze-KW0K+q1shn;-5S9R%un8~ zf0~_+)Mt$Lry%w|jh1I?@o4;5ZKBlQltv>i7ezhKYgNM9ofhWL-IF49AhguveT;XX z*ER`qACnu?eZs%joge<)6SExEGu=N6Z%rplEDy>sE8oEWBSxZQQwqsp-A~ggj2NTD zIPHWW&f*3rFadWxub3)7hyhMa&?*Y;(BBiZ2B7?N41J=8?=_qQnBDmh&lSHhNqbRR z3817_*U7yMS>c1z2W2eC%GtdhOKLxA z_~?wWcwMd?T7g+kFfDWF->UCuq4;U?`yPN{DSx2jz)eCx?QW11Eh6KG>iBiu%drfZYs+oqgHj*cW&+iyOAHG&(XR=^s# zT4y|HwMLVwM^xxx_H?{)s82O{U@mTMsSE9M#iu12^E0(#f>`DZYbE#3z*9>V&sdvt z^}(H0z&C0@MpFBR4Sh*IR*$j3tax;8h8FMQwQ|UqseLb(GX*}f*Z3k@Da`WUG^DIf z7olE*#$t&J%HFKS8};XEhG$6T$pi%nXgjtjJI zax0TDP7}yJS$Z6FUlUB_)ymyByt|AhuBYW{WprJrRTixxNZ9+&I5JutJ(r7%VvyRx^wL{tvc?_X5GH08rAI zslg~aO-tE&NSO5yjc2%R$m4Z9y!YS#^iJ2Tc%ZF!CnGwT&k6D3HHy>nq^ue=`+BX8b5xywph9dpbudDyUVrOOk71O4i$J) zizqU%o;^a zW{+%*@~nM}#Vr3TYs`38n})|OQ7iGhuLo6KiRXQFvjh*)1sq?gb;RZz zc2(J71b$9e_XlA3Z;kN$8tqfzWu&atYDqI5uJoJM;<==D=&Q9_T~PXI51{OWm7Z^C znfw3@|4r%N*9t$Cd)nbIPMXmnd2$Y&kH>%0*&ht1a|nFA4rdwYgh-zUU>CPLwz(LYuUs}7BeEY$)&TsVQ7t6 zGSU-eZ`YneL$+v=OX5`)t=)n zG+-}m(`HB=0QBDm?2hf4AEfUsQH>p1f(+z6vZ+#8g>3pCnyS=J?PXyMTC)>x#~BNZ zLQFNk_@P3m&MvK`G!eWZ=BoSf^_vXvtD}@%xIKy7t>p!V8_Ns_q(8FZ_-9|E{zJn> z?ZN5lTgbCVt0BE(GtVOokomr=75|~;zHIGjVH;^XUY2&-G|#2k==-r&GB9>JlC4#A zX)$)N7GsCW_>sNoWz}Hoe`u4fd-3k0tE@dO@`=_=x@PMCAldqgPqf0!F!A_v9@j~% zZ`eB9`|z|zUDF^m)*fN;P-phA2qKGzkCrP#cD7u( zsWn%QJfKxDbLBMrS4}flHfNf5l8lCq9bGf$`ZI9meCPm9EW6lD(Yw@gUx`DE9@g*$isRVXd4r!~|2P{F@onzG%&1O|wdP#MNQ`RV*wMi=^R4 zw6EmprqX;}d-PGQx-`cG|Ld|$M}HsHW?3aXVp;fhK1W%Mg2y%dk?TsE){jsv_!dix zqV@q>+ZO$mXD^wY+ zMaX`0u5L4$_NDfc3}o{lto0S%Y4w*)_`j)8o6$#KY5T1bNDw~4pqKCT1)*W!L2tYu z6ho00v^!G#IcwMV2)P~Kqgw=XeALb=*3=3N3FD0~E^0=YRMUKm=6$WTmg)ll3FX|j z(9BxVu((hYdB4^gJDIh#F?(=FHX)R>*{_M}exrTwYCO>nr5?Yi1f|$E5}4 z>qpIGdN7kifrvKQDL-ndqVy(^M4RjdKWSOgdjR?XO?Hnvbjg9N^hKJ@7-o(3RA`y# zl#%$eHbmO}a54`4td(Qk0$bf0;#~0|WwE4D*t9`6;L&%%wl?*0G1{Z2f6xcE^sm1~ zZxr>5R?fyg~N&jG|23Vu&Yn#R5k1dw|qE$AT9mjuFf7o0SRrwX~75>@gvChuG zUl{(F@EG}r?d~ST-0XJSWR_C{_(b&(cBJ2+|I?O)J${~V?RgxP{|$dOkpH~38_8t^ zwfZ;h3Ea6~_)Y5rrv4)^lYiCzIHr2}S=V6?z%aL||HsUdaf6WU4+*H?AKI6AEA#a~ zw3s0(#jnJ&!b{yj~Eecn2 z)@6GY&dM`l$f)7ub}zhD%Gl66DxV;XMHlaD6NDqE+dtZMq0ho5dXlhhVShb7PkWrE zW|ct6e|1U{ZY^A+S19ofuJKughmPtwuz#);VId;MYu>}5h_cS}oQal~bs~@v-G?6yA&fP;5w2_E`{(%%`uES19rRaFrwDy!UV@GFJVW)2{xL@& zdBQu+8?znfNAl{EW9%>e_s_HK8jLREx zg;~6DF~2@DOfCfoS+OxCw+_FL402%i0RC7&zbDAmLy+?G6fLAQR~Zzg?-FHC2-2d= z*iO<7vHH)V+yau)GmZ`w(W}cHAow`Bu(JhfUsP`>0eqBPT5pnQman*rq;zsCcVaPp zfjkg$q_^9elnD+>BdNIlmmoiHCj#R5rdemfRwU@3i}K4MNRu4$&akFM%BBO-~b&^-A*F5KK+8WJ@VMPLKdTHBF3JK)xC9)eG!Xnni#G4=?t0&dt*L z4dD}Xx{O|4{tO_oPYBAF#o`Y`Fctq9T2)p*F9CeJc)ls_ zhH~fu(#tF8W#s>ZU@HDLim!+R1K``mmtp36uCX zNkkhWZv?v2EdMy+M}+F>C!*))C`q1hBbvq<(f6Lz8@6C$> zy3?;&^%y$`|LTjZr5#rvH!B}uY}T2~zlhX(#fs$0lzh1py9JQZ`m!2}!_9G(F1hGL z^!<f`0JcG?o53qU_LQgCUlUC2ocfN6SYCIZTyQYb#=IFQYa$QqrF9{t&H@lv3W z=RLTZN8mp#g-pps2DWro#PEzhBgYQKdC+y#)~l;wKM*&?gq20DHC>9kLlmHf54Url zkUMwoz27ktoO75aDa=?thFLy@NwB({;Xg#HqExM*7Q%Nf{~%YhEB&x0xvJ_7gPNqW zo%NHo2~b01ja=t!eY?v8)B3XFQJsZ{t$#x*Nn`ym5I zv18=Yt?gD;z7gORXvD~FE7wMhjslwGi#e9(kmLbT`Ii)OdhGpy(x z^^z#DjlNyJ0MY5q&t=={GX;Dae_QO*#B> zpmkb&2~iQtJLs>5VfE4YXt_9~GSWNh(SlseL9wTkeiSP;_bL4##3$u0iKceOnN|v< z;Y#J{qPMZ5H70jEaQubg14>Z)HCq~YdkR=Dlm^jh-sCX_pMIBL{gAMZr}u{$2lWx1fg z-a~IK1MZj5?uHGjpi=2LcU}tdaYtVt4ZRwfU%b~Gy_&99$T` z@dYkjRez^zK{6VcrBVuT!f1(4H_hysuRIr-Gt znB&*K!52${*KCv;K_D(JZ$}zrw~3-2iI9s`yy{;>OD7^u7Y#gI(}> zeW^SPU?D1L1`2;c?TU#257n@vF_ZTcjt10|@s?Ad-{F%}uDf5D{*)pQb+*CKm>{Y(#zjYhM{T5rU}$3ZvFD z@My(}zj_89iB@yLuQ?OPss$fU7&Mdd4RU71=B#^W;X#BQH3=oHZ&XQc?}G1{r7OYk zGhFa1&(;rG@sG#VOG2gQ=yl{VF8J%`=nJj*wpz+3FQBDai?DyLemG2?19=W3EyA7! zxJ5t^Op87TsS9;~F#Odn_?;H%FIn+zs__B7Q?>3$uOZ6WkSA4*I($C_W7V3Y+OO$P zyI@mypR;2d+Uxo-!HRCvi+}rK(TfH)gz&&#yhKNC0k1CAC&&?Bg8-sali>go2zZoj z3tDAd+n@I7)CQrg@6u~vUq9vXs@ZkDjTO zzqrwAz3vH@=YaRjM_WGBzm*XLQy+c5Nnat%F=lMm*N9dsn~V51MJSj}sY3`4xZ)q_ zJELJ)IQ;rY`WpE&iw;kxHH+N~AUTB@Hl$FzQEa=OCCVqkd$e(<-a$SOA=L9Hjjp@& zOu>q4D?%IAML}^aor91Z1!{~7k4M+`=rdxSCBYs4kj~9(qixxGKRNF=wi*=kIDl|| z=;%IQyz%bGdStj92VUEgqi#$`$bseT5E9^dzGFlD?ZoH$_yji&TA^gS4!<-gZQPRg^nGQc_zNU69MkT_KdZtb_5_ zalMIP#kaX^2s4L86lvySAtc9T^r)mpC-uRh?BS>O`1_<@PktHdMC;X50LfvSUadg9 zvF((eA;^osdv@tz^D}rdYbgZN!Yx9dox$C+1%DXny54(Ms3dQ2!QXxs_Yf9*n=QsM zTR;_=*ElL ze^npg);4tcT7MzdnU&$1wq$SK+9>fGeWD!qEvRW%e)Beu2Y`UPc-UvrTQy64t4|Q* zG60Qvjjl9QfnaKzGN{Ql{VyxNt*oUY$3A=e8oi| zy&S9LZM|Z+JQK1uhZpl9n3ip(ar>@*Ua%5iS=CX*|LIB5W?#F237n47@9FiNT`_-c zu{AZod;f>~(~VHBttVdOQW83FyZswZVLn0H@A^~nXLbfav&D?T$3!zNW;ej(amHr0 z2mhh_gmdV_KkxwX0zjfoCSdm}WA|lfcE<60`W8X{B?P0_7^9zpGqR0aG zDD1x8TQ2Y&s8%*ZzTsj>TD2iVUbS2NqtB8nKxVX$DGMMBbD`=R5bXlq0MUpl_fHzFx>TR6c0O7ngm<4){D)L@1SL*7uKs zssBQhuaGETf_$j@XYln~@-+yi>R&SI#QORORsx%;wg;1y9OvsR%Kt#7RMrPYeU;>h zYoIO=S>iw6p<2a!uUiRhvUa-2BDEv|hMuj1+Dp%UJYL*4FxsUqwT}0FC_e#}p>?S` zfG~cBKf$Mk$trlky126?@ytV02&Se}QTrs{J}W*ge#2y6EBP50{2R%>!!Gz&O8HXc zK`!`xO8XjE@om;R$gBm+Vnmhkl@FJvLUy*6=!lbw)-qHuqh5sZNd;fJD9;Z;f6RrR zwq#Hb-je07;#=?Lm4j7$AG(dC=T`OYmv=(p)LYvCgmcbL!A+kNZg{HsCgITwAh2iM z*O>m0mbEgz8op6s@>NJm9r|@GUw!!o1k(VxYK*Myds?s(*gSOIMHcON+t>A-l*R8s z9kF@omJ22Act5M>>n9XO)t>YXl8e|GfS&S4#vld>^?h1QA%My259@e`)%VT7TQmQv z@0%m103>_Idz-PVlnc8aslLzUh9UU;#Q3Pe`PlkhUJi@9?(8bjI|?`?5ECBXba?<2 zPNSzEfG|vBgV!gC@;LBd7`IXPy1oQdU-Mm&3EZ6aCpT=~y4IkQJO_el zP>exO1zGJKCBXX18yu|YoA{8@=6}%+yILRLDz`4+dLLZaOsFKS#M1zTSK@7beSeBF0xw91 z?UR>52sH^Zx(@Ko7p%CpA{OUGgo5adQ38Zmi_$U~9e=$*Vf4!&Ut_njv>fbv(RG24 zE>=cd;fs}c#gHsk3Wrg%VZMaN1w1L2g_d3JRIWrJJc7w8+&g1Lui^cNj_f}=175ec z2dy9GYaoc|<}hCk{E1fLa9?F%GHN>9S0+9$A&eZDJ_29G*Kf$EzWqkxb3hH;WMr#dqIHR*R^%k2lB@%~EcXCmN!+$P*3XAIQ_R>ulARtm@*9;48Lc`966?SAEG7-r3QE?d-TX z%J+JV{iVOa4YmOM@o3*tIsS%8%64`X1rQoe7@r<){p}cEZJ{!Xf6iA&t_qOo(xh1N z2EE=Ou>g5P>k;3U0Qs>7rr22DYoe?`7BsssN%?ZFg_KT{w|mjoL~aWyN$rbm1t45! z0o_W9j7KHM`CgX0gV!{1C}E1?E3+03=vbTZ6x3+EuQ|R=^_B6y+VV)qfwqQs#`|i? zFF-J@$|KQ>6L2$W!6!92#+1lcH;3M!Yr)Zj01u`+x-uJg>@Q689mgApTTb$wmX`n= zS^&U~Z(DmcB)fRyx5>VOqP!^tBfi;d!wq&H$m>&mV}#F9%rxJ#@_tB0@49|%ny-p{ z41($E?tYXw-B-hkZ!3OLmS23z^bPy?2D_fhkYDz_Aj&^OmUQk(Ig+Q0d=G+&p~atX zplUOHZ&(RzqKYw5KQd9`$2Ztu)x2}cbPCrB7e4303K@C^k)vhNle2uIgmP&8EZyZbqUl;oQc*&JyKKS@EQMk3P)Q)m~3q< zfOgFF4REg8^i7keLP{DilhBeyzQ*z-%L`mzKs!=}dC|#o!&+Z0e8Is|ge&L@3j@3>LtJvx z-XNv8Frs4?Z$WP!w0*H}tnd-4{i^RJc{}80^KEs;#o)f(1W;l1o&B26FC0UEyyhDs ze*tjp)wc#?cO)n~Bl!&a+u|X)laot%u5H8#7|=KEwl{bCbP7K1KB=P5)FIb=LO2~Rbq>B)K4Ye z@@*Cxpp$R;w#jLb4{=en8HDwiCQqW{>wQ{u9e@cv)axDJIQ;3}m3OeiI{+N&A;9fP z#;r|gZiDr@5vcAeUk_u&N?*7j4+z1LuOIiN9AljNIo!nyWU&YxCtX_YD<;U9P!@I9 zRMdKn@4P(K^1|vaz7*}?iKx5Y;_iCK!hyJJh235J94HGT(_K56yLLl9Hg_q^z}uOD zw*pLuyG}B9od!5|cd3lq7a_SBML+Nj5#%32@X;8b>&!_`tsG9`#jx0cjzJ)VmB>im z?E5oZF7yMaX2d9<60~IEAuUQSuE!Z~Zu2DwatTOEd*tu8`(BjGK`@Pk5@`Dl-x@1E z=_Y}wHZG#(-S!nmH+TB_#W=f_8|aOOsddmByL`jtrcfa5JsJTBD=qHfo8On>(WpJX zQ>fn_-);FRfMf4L_yH)84NDu(XZt=7pYf z4T~&Vum1Sdw@Q$wLZ&wVbYVubkm3}zqr3zux(`d58yHL zS_r0Pc^l0?@c-1k349bq^FPdP4j{cO8wlYFkRX@9LPA2oa0SS2vYUiM6a>Q&ARH_A zp$J021B?a%iL~MccncnQt;!>Z$D<+$c#F#6^>}f4pn~FC(>=T0GqW?9otgc;{-4k1 zF+Cm((;iyi?FQRMW^f92Y*glx>uikgUJ2 zV5Ag8CNFW<0^cDT-M`*fkZU`FTkbEo#Bq#gN3cQr=O^T$cmkE4gb*p-q`h0PG0yP| zPeLa6i4h(p!;B{;I*z;FD;V9FSCMFtxZ9oiY51b|3vP~-HNEnF!IDP&+(V@1|DfPd z#OahUUA8%cb3TNEmmQ`{WVYN9-}7-nVe2+0VW!&TT6nG3J!SelnD3U)pFe%-teF+F z7Ssd=W7{VM>9(f0?I#79S2YxV8c$xlp(3D&YKjtQ=dGOBw z;kl1+MFwqO;fgqre!>-zLx16FJ?LY~pyl=p-{S$F7Hn-WRA?mgN4UbvJ0)i0&W8(D zHkPyt8Rhtsbn5u$;eu*3gFS^a`g;cA{8P51lT}MxoVD+(rH*9E~`h((>M*blF@XLZP9QU*5PO?p$=n>Y8 zHxKp{Lxwr(>w>L_`#D}wU&5a_dEjB@ep9d*y~>dy5?cFGSJap_!j&kX^s4$Tg0sIZ zxZI8oviov5h+oav#r*>0kQ(%TU+}#heaSTwv|&AMNwy=ws-Ft(w4)>3T^al0M^bpQ zYflwi9a)tF?@#WDhn_ANhZ0VOt%lRTowWj@*u7f@*KZl@ai(CK-O-r4Pd{!~@7ID{ z)RHw*Vubm|!8?8}xY>rdhvc#sH*RvUf^9&UJX`Qp9Lna%u02=qHtNGQfROTV=77X{ z_~G*fi*4D#jK2y}Y?5bWk`i}gD!^X;yWp_RF_O_14Ql5<1?|u{)=Uj*fz9T#Y=>+Z-P;DktfhY5pGx?a&d{O#Ao|{=R|dOT_(L&a*hhk>S85 z?}naS`yZ$9s)nAP=p09vF@09Sv^dR?6ARwp@-(rb2B#&Xi+6|OY(W0tBWaC1Hb+bL zoTyN5V^0rs5o@NMZHW&w_6$JW&*hyJXDK`kxP?@_KE<;jvTsN(uAhs0O-ar|UJj1P zK!^>E2D4VtHw1rZ;yDzDE@L<3K2JPRm3tHuF7jJ=iW+eqS0soxw(wkqW=iSN(9|fv zT0_5{+0t_cEn)3)bn#Q<+>t z$A;%}(*<$Q$o1@3fCa&W!b^N_ND1;L zSfY4_dfgkldKTCn@3RL*2HSS`97Lb7W{$!4u`kneiS!wg*Kf=8T!v0?&yZ;RJ|30j zIe|C`d4Gng@b-2O&((=2;f(6I5)Z6YNd5IoJeS6!#_A7V77?)t-q_!B0A;8@Cr&?j zKw{e`2YCFEY}=pjnThhG^hDe4#acr{tIa@9eY>NGyFs&@O9y)j&@k3a{Xr2vG1zkp z;(jidYZ>h&heSu>Uj?3$$o{~!337#X9#0OM&%rT&Fo(5_J^M43MAk1XPnVhB6iI2^|9W2`mAZSxY(x_I<5yCL@< zQz$(5C>n%BRmalhN)8J?$%}!U(QTnpi&Rs;Tp4FPt^GCXfUDt43r>1WSi78LA1)6q+2Q zXv^x zdQ~7F0ILE5Y!yJw5dH|{s|dj=LW7$)CI1Z4BXOjWa7B{f#=;eednv*di9Jn(D>713 zg)1@&nhICMw3-Q5kDVdYszhPhv~c43i~*_mbhA;(xaXCg*BW#denI9~aE0f(>U;69 zrlXqSbKT;*w#kB~oCwhv}RMt$eT4{2QCrU z8{$afO)tMGh+Zj$j;qD`Coz~hbZBs$ktp9CT>k68Zo%OTJ)hapQ5pNS*!YY^9v^&` z;`ALL_>-LvmQ6P;|@=bGA6x;r)==_ivY2IgJ(86C4=Zu zyBK93M!N>D!=9lI76jk>g?!;0ah)>j3B=DOapELdVDQ#EJ)LbR>DO=&!Z1J|M2)xx z9b@ysjh>Dmw|yI-GRC@*gj4VKjFJ#HIU>cP7T*hDL=LZAliJ`4#RgaR{;zm{cL&OBe330mzOwdrGhm5=U80q2}t%o|d+u_|eUtbS1%`H+wpv zfQ+F2m|Gz{NyIc1&)wqLD*-TRHsYQDPDa%DcR%3Cu%YWYo|$NF;aUaJxn=) z^xDB)cWn1I#iwG+p`FO}t3mdK& z4@X6ahiokN2#rNwI2^LUDBO&8Fhadx+qVq|;LQ76ozUwtu^AbYdl-#y*YNR8$u01% z$2|X__t6zG|zdy&UBtJoGI`4*E$3(9?i*zxOL% zbI-*sB?xo2!N|QJBVJ2lxA+N97n;}&!&z^6F2e6V;psVrg%LqcN=r~J`Y_L{mh3E`|)lUhh1Ogb;I&@9&p9(qMVLa@zqo}X-v z(TsJNB5!Ne7GLrLEX|d(W|G_0I!W!G?`mNi9enErPnivIM9t<_;wL%eT?jtG9Sxg%Y=&h5t7#IP@s$u zCxv^_#z}nN>yWg5D-)2B+2dD?hS-VV>^D56cJv3kp=WUX^`@sg434gEd2Z>+;>NE) zB$Rz6q<^`*CcWmSniVxmYsB3s!u?Qbm-zdnw>`P2!CBU7)ZhR58&3WuttC<*un6DA zBAB~dwvoe(LRr=j&wIzyR!MxYHN;c*c{+u6^bC^#2==U_BB{1ebR8Ag)4-gOg`z+m zp}NtO%-f$}9TdGeK63&NV9Wc+lW9M37OyzfrX^nWk*6#Anf;QucOyCVsk3+G7%WD>a|qHYdKOx#_f;8-m8bWR-;zE7C(L5 zvmWsPCXISIHR@_pqSkcS!De51hS|_N7IgnjD&IFbQbfL=egnzh7hJ1R`M!y7{>IZ0 zMFu!!3BZ_d!G+2IMj_iD(g0(``rgC?{^u!@&^BotE2we21|2u<@#v>ml+hgaIl*^F zM%F&419gR@V0L2owW)gWZ^>REG3$_L(Rj~yu#K<1OtdD_!5gSNcpOLvZ?^Tu&42KW zMR_tL{a#d2TD*xO zPcT29g5ytsSDj`Z=c_2^lVisDD%(-Pfj3ykausFy zc2g`E^(yLV zx#i~^jY^(yFWO2TpwXQt3-ItalE$O=WP&nM(>uUuh@A=6`_*%u4IN`Qgyk-A+Wj5Z zDkK5@B88Vb>~-j;n1U4``53bedxa*92w}48x0)W&H3oHRZ zExjWp044|ao79{*VOd~K95uN)?bkG?ULkXew82cc8Lc@9!?3ffC(d71Hwhm-P`4AB zBU6JB)0)X>giPzUR^HKew2a-LrbX7bS8}aJO=}sxFWtLP4$v0oXLx&}J1qg&mjNSB z)&mjXaT$P-olHQP?quR2Oj_@U)OtC6(7D2zi{N8H=v5ilCcN&)k%90Z?Y%YVpmjK( zDsjxmSx!8nx#GDUy{TdWi}U8aL&GnEGZ*efKl;QV@_vL-Uw>3+kN129Z2iy{Z{e0U zs`7;k;dO`==$uR`I_d?A9p1k)8gf7O&H8npv>P31<}Bq`qXwZt{YSiKQ2k!mmEWrq zN;xl$g+}s|WJV+05qy6ZISF6-`XD?u^oyMCcVol}hkk(Z+u zR-_+|$lA?nprNP%4$1-zaMa`)Xrj+OI}vu4Bfo$v6seZ4!^730B;w>^^ugYO!$#jq7`#`qwhPE<$JT^QCAt$CXmu2BcU$bdJG@HR;b#RaG+thn>i#(7akh7k3Zc=#qX z5j`gpkdd&wozVz|<&Q7(ZbYxLcC%r*k0^W&iiBlz!sn>Tg+EXx{MjSDP3nh*k8Rt1 zDVfpA9v>R%oq@iVNyW&F@HnF(XS@)v_{@=lUmFEbKeL~iRe(=a0EcYBJb|Mo@5fN7 z0^s)8nral9tGlzrV!U5C1uAqV0?SitFULoiDy$jpZEDNHkBs)Fv;6A-{HqpCN0|G! z8RMOb(*BlaBSywnb4EjyQ1Ij!Z&H1f#cmMY8s7(0I!e^78%P@7!X%#P+nKQ?@+)iw zZyDS_+1tk!UkG>cPgnNIaQL|2(Nh~nP4Rw;hOuVSt6E+on={orDD(p9>M7n~jp2Z^ zd%<@G*tTc@C5+)>wkDVU8C|5yaUKq5@4hQ><|7Xy5iO0YUsypLNO-6OC z+y*;Y$*DW;(5X9tU!g8r&DDqlec;v1>hMtnaArtgr?jOpxhf*A zDk7pPB9nhj2ymiw43KDTX?G3zwu4*HE}36(N^!MP>lW!WBtJ8wpn=FKR4YHUFEO zkZJ3TOP6?0H)t=k5rc;--2E?SKRotK^Q1eTf^#vK{nVgqo38K!$cVbpKbiDT5Betu z9udyPY%HN744Xa|=vN9dPc)c?81vvCq@N)m@f&;!pu=YxIBan@T(AYd|G5FOp_^oomAWCX5}qXco>st> zZi&Ee)wymMa1n|e+d+`eVjH?s#-|Czy+@y?Nwgm1DmHNkx22+S83bsVnA4Uu`kBlN%v{}J=j zLgC+XaYGxmBYf<9gG%(V@EbbDNw2-Nj^);BoQSNSip?Zo@nc!xLGEj&!R2GsF(f8E;<2XjYqVHdo+e^*4C-I`36dzD;U1gEGrWins+l{&w#+)RHktI6rK6PDU58Mk1aZZO*wt z=MtVIvT2D=ulII!aP%)=lN}L{%v5yb@A0lZs1M_rsbDZ`Bpt~$&=DYv=a##&9UKDf z$_U-m6dts_LMLEUaFRn!aOVbZjlIv6!1#RbRNLB-!Xpsx98uTbibaKvN+?V|m|8W( zm5=7hB;=_bNihazGaAqfVT1?Y+2~zjL(AC>Jp3N-W^^;xAVggK`d|S8h~n+jU2n*# z!^sK(IMr&SMGzTRxq3Lb4w$xH@tYZ(u*fjn(9roDdPc^y2_G(gyN`#-03WU+^oA`+ z>BBi{qJ{+@NRp00{JJVNp6cWg3n$K;4j;3cJo5pTPj;r*y5en{z3E9T*TdtJovnK?0xaqu5+tb_ch*ms)DvI1#XAOlA(OZf zyFbimgzUc61K!m($B*0%8g<5|IG3PbSTpfPwM6+f4|!X}?Sv5X^qGWIympx@1K*$G zbT$d4Wh@Q>9$wSLIU8}nc=^NL*HFDWc1eh>HN|x{b-L|4FW~aW2bDT_1adf$v}Y#W zx%hDrPKq>L-S((=hz(sNRhG=>fm9*KP0IXEEAnQXI-!*4wSFHTHgfF!75*EfL*J$$?@|n#SvA+88h`HonG+5N88?! z$fC0A+S`cCevOtph4o3{Nb$tg*EZcnz1uu`QY({Gm~ND&(H4@rq?h&26{i zEgLBnhX=mmb;rya7DTXy z^2dASRC=_e9I(ON2$mp7qTY=1SyLC5PlYOUBK%5Wq|7b`X-IpJdc98oiLY2RXC9Pk zfr9AF8wyy&+y)4Z%xHp+U0z4M>~YYlYTbd>a97bEVlCs;t>sF1$fUIt;-}y9rd-t( zDDlikG8^c2r$DCg!z}nug>o3e4@6n?43qo6HmCa|nA6OvBw1P+Zg{}g9Jlz~I~-qoz}Hl`8k^S*eyHkDtLsmjK6Tm*__+w4}6(1OCrzf9$kS}pirH%ydHjPcxb`MYD#uZvAnR7(31|W z;JPp2BgJ`lYnfT}gGpiBrFL->&YhHpvY`DNZ@})}riB}E9LdM65~{u&>iGY>AKBdh zi3&>BNGeU1K&jYmr@$nDhOH?JCRfaxr`NCEVYheIuYH_xL^6=5s#O`92Mig^qRBuS zSG$*2OncZWsWK-I&CN@j!6qWbGtgU zaT?)EV>+fWc~1nAYW(X=cz(9y?eBRTbMrCEy{aWyG#@ippH>Q4eR0hHIxjyzv)!1yxR;)Mh8i=<8p|WGm!A7%zXt(cHly z(CV!5x<0&1K@%BHXryvz&X_oAq6+YRzj>RMD~w6_D3O{m3HPEkCY*ZKJ0Go)N!!Sp zN;RVq>cW|`-reY4)(++~96iMTZP;?|#gqT=c9)TEgJ1c>+Z6>Zp`ZV!x21z)-L%~d z6zzr+6Rn|__Heedp#zL-GRW5UbR^(S+0KsWV|K^zY7kJz={e5U4i3h2j|NBRk+2mD zpDJmX7##PPx5kD}G3J@?_?#o_HeN>cEtH~e)KDC6>+UC{u`P+G)+ zq}Crlo`N5>1N*~cKo~eq#P9ZTc0iM4)D6iVAB!u@R)~dcC|f9_Z`5$I`oXxBn|{-T z!v1KL48d3rh;!oTn;y!ZNJANx!_1}JoU04x72>-G#gS6(16?}hR6Yq3QmwF9vjVae zAkl*Cq%($P9muK9RdCM|xrRvFoTFmTe zWF&hUc%o@e<*%9wuw)8%MnfSc?CB(s7f@4QhHMgK}+xMUXsA1z2KGy)+bJ!k}`1EN4*oa#!J{*&{T&W5}L{X|S);p86&b z2gNOdQ07(aDVjx)|7+JYPq3uhxs`?R{tseKH)zV=5_4Lvp$`-0v=qof*Mj)aKPk;@ ztLbi$vfw+73pX@#->=y%*)|NaHsY^s388d}n5Eo9fK^t1gu*8tcw$J(WElvgAQ6`8 z@6w_ruLTnlY}3h233j~G*{IDJDhU=cN$@VOXx;%hp!Y-5EzJI%WWNX0$$K3B+{ zlO?6n1zdKgX^S6fD$NpGd=DVhVvPw~JV4YaTV>eay>Lv^yfa#zvSO8?vz=CiPEsDq zf{zv!9&GBiCu#+1nQ@ZUy4qJ6M#!N~j4#Y@>TVPjl)hDlr4lGr+ZI+Cbg$F>NF*c- z+#LFGr`jjCY_xq$Ljt#ON0qM1TC~G%A8^MHyDMwwF0dD#sZN+tzMx`JXd95mK)gtl zX>}albIRXAx)2`G*=Q_iDB~EoCpzFCwnunpfEA>(#TsH!c&(hPNDDWkE+U@0wlIK( zgB9}fGg3qx!f1$7#^Aoigj#%fG@60ZJQq%&EMYd++`v*CFaq|-G z_{Txc60|@DsY6|AkWY({bAV)Yi>o3;x3(qR8lhldvF2D0>^oERS z6F|?a0Zm(3xD~z6fJotX$bChA^cic6Qe><+`940fs<54dqi?!;6;$iV%{Lc5i+*8D zlb(=D-+9(ZdSax~2ZS-H^l=FI__@M%_`p!-0Mwwa)EyeBtNt~jYODnZ*L77iUG;B&IB&MXfqcEC1PuCD_s!S*& z=4IS=!U%hw7KE&W-%fbs?!w3O)@oUZ6_b%)#L>N)vQQSRe{W$Un|resuDpjjCnJB# zpzzxJ3fH=~M}?$sE>b6shFjVx6}zQ7o^;PeZXp5^bbgVJxrltvAl0xcC(%wlIFlz^ zou=wYi{#}Jw$+KFCilgOagvz<&e&X-Qlhq>K=>S7)Kh^Kn_(*OJqVYd3h3Azq1cu3 zEu$gtg#*tW*fS-#_fqFyHuO9D9SP+oQX;2lXB;$Lqc6VPxygnS>PdTLVh-X`B3;1A z=Q=kD&Kc!gors#spiHFkjYO!%K+?$EqZ&<|F&poEJki0Rd8)88%3;k>rj9Jz?uz?8T{u^YU^3foqSOP`cxAb>p$(NVu37GQ8EZ70I|5;v zJIWCXpDpZ*rpOSCq>d%^XzIuTm`)v=Mv#{I)RD6x`9N<4?n;q5CYN@~ty~QvigD_A z3qZsmbzB8x`P9+feK!bmsspFb@^3;)XuM+s8Ngb71w;**?5)G%0 z-BnHLeNE9@QuRKlp$ZdK@BKiQm=c#~1~>nwa7aSlDXmUfk!a?MzThXyLs@XntA#Hl zxa-u{8kfeZ-sN(ryWc9zNpQQOg3_01u9iTln0b_$=J!NG2CLp5(hxlQnb75mAa3uM}H%tL48n|TUn*4080#NrG`RGc=Q{9EN4)7#fODI zWpB~!jv;%xUxR&}_H-+?CvJ-dWnRUe{>{0;0f{A9R#w_alxbaA>FtnlaN!>3eOh>R z-ZxqnVnww7P>hRTQWnZ^*5SeT1e{MNqGdA12iIQ6R9iFuRfJlMm!B+z&TV?p}^M%uR+9c$!ZB?9rA7AS9psQsdMhgFBh!+029+)otw~HVw z^FELhz1#rC;$|-7Xb03TfN}sdd zA%Rk{<0zf=V?5+h22jD{H5f{whR?`^0xyRo5f z(KV<8`!|`f>XDumI zaRBjsqaQNLUsg8>A3adF6Dp8($H?q{AfpkI9Uf5B!iFwoH_XoN4~Tu?u!3+l(H5Iy z0s|4hhjD69QCBpLHAh)-XZsU@G~RxTGY@eXWP<<6;G+A`Vi|%COAt%r?B$sWcz;1r zM_C^N1?f2d-NbgN+Aspw2Yk1u=yoZB$vu{bl)9knAE#D37oZ1aOqeYkI;0O(k=8o<+t6<7kUoxpWWMsk4GVc<{)Hr)qF<`GBeQ94bYv4CUp&Xz;HyFF)Eqo|jYZ^Rv9BJo>qDAg8Q6cF|!!JmXRLnNYG(4Ng$7mW(6|Blhv}rhJ@fMUwIBIfF9G?JA zOTG?RKC%clziaBvk`l=+01*RMyozX&tpm;-RkSER`(e%g7;?oAXz;Jo6|Zs1T`}ce z#gd{aktnquTUXpdVoH{|;)6t+*16*SA?x5vBrl9BYGlj%Udu$R@WmMkbmzdgln40y zLyfO5?pI#4jFw1Ty5^2@;Jy=!{%|KX)QCL_Bz>;An*>S4jH7hTUlDOd z<(kK_PcKk~t8hZjO^QCZiLF!4j?GBQ19e-O)bt|sq)AP1(3B!?T;2#R%d%o5<%woC zjPd}*#?~zc;DdS12jJ!3coT!G14Z@X+>^D~P#C!IF_YSlM;a(Yek5sDQJi~0R7m=U zl23x9V!(7LMf(kg(uQWf!9W$S%8=P)$J`zjW!MXzn^&|a9z6^y;x~<$*fw~%sF^Ln zj73G?+R<||(mJZ9YC94~g-8QQWrZ|6BZE8+Dx;B#pvuivB@qp`! zBAh1QTVpSfa4%9P*cKqZP)NTUfP>c+1<>a*ksB!ze#&Tsx=^*WXbbv*wUavCWyUv{ zR*349LP5@56YOz^(;qkW55Q8L|H)kx)w+C5Tlnmvm`2m>2-B6IblcINcRFo0l;{c% z1X4L{w-HV%aO&&E6_V&HenxfOC%L(m zJwZn5y0Tmy7v#=oOGe`BYm9~% zUxQ2UEb44SAFvxF0-bo;IS75u8c75)vM==m7jD?!*90%$Sk%kGnHi)$6O^XfkU?kd4~kkkKwGQNAWvlS1)WadnkYDqr= zi`oLh(k;$@3IuW-U%Cvzh*o}e;nVjO-S6O}WLhEn)fBSzL1!zQqc>w4PKddrPitJZ zx#(Jy&zgyiwW%eu!%sZyY!xT0j_-dMj@#QER!eWZVoOm=#K91yls)3iL6^%wj4ZdYA5Z6$tBVQY7#sDK+$D3G?Q^ny3+7*XAxS+8V!%hnaSLjV&o{}9xlp9t7Irf ztQZL6)mxnl9UOvbBRixbGJNwk=Y!~ej_u8l7L7)aa1BPc@86GyKUUPz!O=F|i}xe+ z!h8nJc|y^-3xi`ze4RR_pGHb}p7Qp}t$Y_G6ypr~9e{{I2K^S05@`k#hRWMj zbX&Z8cvMjODy2;%P%35~<)TApA|YYX!N584sg1}8!gs(gX?*n@3yD{s_Pq$QKr6#x-~0l18)HoQQL6W=Ualzp#ecMQ4mjT-Fhbmc3l zA#tvpGOuDt|7KV2R<)$PnxePFlHSx%g^4oA>p)iF%B%MlIc#~~YIVvASDqs}y{{+_ zWx?kAimtY~f7il|=*nw+8b5NinjQz z4E3>1;IEEkV9CdZEOt@FOr>Xa4f!zwYT z9;G~#1?&A)^m23eFIu<}(}&u(%$$@%^-A^iZRUB)Pi$cuWEdlgIiH@osTC8lKAPT^~bHidDj zdzi*oESfW~Cg6k@TowkJ-U|=XZ(Ne4x2r?e!PV*TEj@jA=H0GkAyzo&{h}LNLs=+$ z+M_Sel{v3eY3d35+oI~jnXw&6Zr@#H}ZiMs$f-4%(`N8 z>;DlF^~yY7(>PeM#D{J|jZ3BHYoUro74s%dpI?!lm1$(r|Ia+%4D=(2)9j-EcZ`Nu zOT_#8_*SDoSvy<5wl$Fg8d+WbGX=Nq=WC+?IJh0oD{O2H0BkDg>fm}{dQI*-aWHVw zqVKDAe%84Rbzxi+Sxq0{>x8mdBUy_zvaH+%e>cF_Rzd&X=U~~|V+s9T`M!%3^c@3z z`Dm1kz7bt_X+qB(;{;?{6+c8!h56-CPObR*hpJ8*6fd=OsYnMf1R1s@+R^PhLn5NKoD(>MX7sIW0_vdW)opYx4gE* zKDebM3U)=;+b@7YNtnmU)u?g(aDc!Wy}c=!QSSqrRR|&BZICw~5_AML#aFie%V@~Q zLOdQmvR7j~zR33(`k4KUc)g`BIY*+StkJO7`xqzteQpK)X@1`zbjA|;wqjp~fvb6rn`Yg~VrZyfS5Bx0lFL$AYGBe78R*D1dI#;9q9|txlDfA}IHg7$iiqPz2I{euPr%7A#LFiH1XG zXNf6UR*Kk9v}s)_VsFSgxKc#$;VXU1?0Mg6nTQp&h#unb{)+NY7JO)&@1))RyB4m& zV#FnKsCpB9lkM)hO|?d~u{Gs^5-1hRrPYXNU#>is8uiPS-0R9z)hY}{^SUx;^%iUq z;;6~pabax6P;bz>m9H!JB=n@OE8`VYefQ-J*Rn4whESDf@;Bt! zs_geohMMPdI4)}b^RvCtf+!sH&WmwXN5`QADUg&FuAHLdm zulq7BP7KEAo8;gxUIQ_Da#TqAV)ShiBo*t9GDi0!A~PDJsU4_t5^ap;1_p`IV`Am7 zH`K%Hh88yt4qoj0uMOP+GT_6gi330G7FDz^ELOd%*J7PjdEiHgBrhDHAfuypt5JaF zsEN@G4_xYNnocENjXdH4q&q8H@iSPIqWS7dTF@)q*TjE2Z}aLqE` zSUY-$-5?3d_j}--hfX&$zHBDQ^pJ?&6E z)@WF4b?_@IefKyx`lj=`t!h0vy2`f?rOTK$aV+o?YC!StJFi3C7!VQJ?~7i-GXFTNi=LqZ%Rzb zvSfG@(WZ6f+; zv31GkBN^0+d!f=bLQ?^j>>D4Zp%4@AZIl98&YeO8X;WbfhUHfRLVdgWQ0Gt z)DsG$l-4s^wB!i{A;HSA_X*Di$oBhJ5<RKQM$N7~Qdi7bT%vH-s#B6X1-V{koy z@HLwWn)7bLVPG$CQyo8T!OR&oBE5z}hc^i?3bdDp&O}kFf``?#)SrNp7*A`y2Z$I% z(r*PtP2{V%jxzpb@NQduS76@^cp1FMR^NoYdM!0NYDF@eFN!AR-Zpo0 zEnK;^=seEECxgPfpYXllzBno*eaY+y36hGVjxw3G69EY$-N0!kCut1fUSgwmpvqdb z+3i=dp?Rg=p_wqFd_lz`9b@y7@YuwAPWd}b(*Yp&qHHU!GKB(HKx-Lg5Tkgp;5j3` zDfL3DNE^2MniyZmeWV^PfBe#NG!1mgJ2E3h(F#UGbYsEh&-l*T(ADe)sY;osiA@$| z&S8;7RdY3Zj+)#72kO%redFhS6*ja^))Nyo`q^SnRs+fC7R6L+^dXX5cPu!Ro1-QQ z2R|M3H5I$g*XVmnYV;7$tGPFbgqw!<8%&f90mv3`v%}8x@F>8uUi7ug)23e}jHt+A z_ANYc&BfjDJBOY5Xpct)vPQki6D7$G zY6Zghj&GgA6$q~X!JBTE$Po0qI|%~#H$HxmO%$Q<1p<|CsZdk*%KFK4bn!AWzly+7 zlN(sIFgujLpWg5J#<`VcAek7a+oJ&@2I=-lAWPD1I?oLzz2)m2pS@7CKZXho^ECL^ zS!fuSCSOIM+^brX{w+01ty@sCQW6D=qDkCC5>v8l72$rOO_kZUd{#onTD9i;>Gy=J zgH=S}i&6)CNAh0OvJflgUE4$t_&jByEI8|+&ueqPt%WP^q0V{Nvoa`r@q514-JeE< zq;KA}LxQAYw^7c!o*@E?Y7v3k3r;nx!bvoH!8v2MVEKTfCilX7Vl#B=w~99L)*d>E zgdShVu$2YRe+UzxytZ&lHCk9PcHR=rtPSO%4A1G%lzzG@c={9HuQqqK76%4L(E%A~ zaP()s&u#9(Q9 zKB7E?j??}@3)i3re^d@dkJCOE6_h>?{-Oj*#mu8jgx)6-GFX7#MMog#%c;^;S^L-e z@;4(5z*c*}m%CeQ-6Q_Tg$gs zQ0`SNDcbE7|JNS<>qrK5s!QA4%K4fKu*9I|Xeh*lN1q8~d4oFK)qj~iyIQk9h777o zgMXa{wU8PVx4(jNuVPUD=H%dKi78oD_IQD4)4H<9vmxu?;{7A%v;4Na16mehMY#V% z42=6I3uVFUvi$*@`-O!0-#dB;s>S)Z?y~g+UH>qXai(3(rmsYOFdm0SyhRJft z>{FLsj5@V3zg*Iu(FjdI7G2`+Zf=QINi-~?7HIvU1&xC#dH!W~G=PDdU6N@d8Zie= zmt>mt^FM}484y{Lx$XqKe{nf$B%erYK_gBTz3^f#30wb zk>~>ohvJINGXwoE!ZAIX{V|l9Y|`LgQ~zvNU3D9I-GXwj;#i|eO_W-_WQTM=U}vO4dy1p zq}0`Bv2}r8)b5Gj7Z36azb^i%1N}z31{@AimYP?i^e;; z9JNq5cMkK@Lxbl&j~er*ij>zIQQK>|%4`JRJj_1>4FFA>-GSDZ(GXb;mJRni?5LF8 zFq;+360L{BvS5=HM=iwpkjwn9+8omu=df{STdUSMZ=^p5&0)<^CK{{ifSk!DrD^z$ zk^Y_$5ZaCM4?@>lg7C^He|IT@u;)jA)}q++bFC=;$-tgP+vY+fIUQJVPzy&*)F}L+ zdjTpXkw;v7nKIg+Tlp09D#l67Hh_ph67v|*2TNjhZt&LFv)|I}kD(;y4GsQvCNbO7 zClf+NE4o)$NAO ztC&1}(t_!;rn*aK<0Iq!Ey9!J4HNv`vb1|Bym%qo8;TDtY}LeF`|dF(uzO%*Su9N&-;y(VzhSSpOwM=~XA2@m;8Lv1o zvau}*ubJd;U)eJb-U>+y9k}n#stHs{TYA(4iW4Qj$*u`}RaerIQxoW&Bx&hc6Ual7 zmfV_vy@8~qS506C?B&Pf|8Tac{HUSiUhkT~ZusIn$Jr${fp6g0eP%#z_&7k|H8}E^ zZvy@wgd>&sCg?yA-eTdKpa&CS2P)UpDhvAXth6l)I`J2bdXSiH+sMY9+Cr|yJ(2}I zx-efRz*5fMcA(*99IR}RsyqCgug0a39c6g z4%MZnv2*~=0>sWc3RfQpCfG^1nhk6QE*7p13s;?mtGqh!pDw~xZ(uyoRk*4auH3@a z5U`9uH{t4Au!ul+;i?Ze^}~`~v*d74**-`lpQk z8HZ0z^Y=)R5D}tU1<=~Q6ZOOw>gQaF7Q&B33~Wm)Zq{0pWCqS$SlTRQ9(xF`D9vDU zf7ePI{?BxOl5HqnQC`{x5A`K>Mb+%L1fY#J0BnKIceRMS5tuyX$Qcr%cj$V5vs#}# zQt54$2Hm46M6s9!am?Zs6N*!V{b%~CPN+!Q` z&PbHOnu%m;@db-l_|xJ9S**C+)ebRPB;mJK_%9$1#H=V%m7*B_PI1SfwQDXgTTsy) z_>VZ!=7v?q*$cD@9tUr|!M_3($)r$NJBmpAhA?dpqao7Hum_i2;kwo47|GqD!)e)t z2J6u{)~rYNtylTm6WJeF;~mP$ek9(s%D)zIAozH-e<+$SBVVhz+_u@%JPyd=)^=2voP_X-%#x;f*I3u%sG4IF_-=!@-r}E#YPeP*pycY-$O_>}GC+Yc9x~q5 zSps3QD;<7KtL%bW-#JOcu)h zHNh4WUH8TH*#~^{ljGWv!h;U)98uTLh0o3kC_MLe{~Yv{Of;U_F%(1Y7^5K$xu9>o ze~As9VK?ycfhBG5oO`_2qd&RU=(Le0JV|T{DC6zZU2iBMHU(Ur5V}a}qV=1t6e8m) zR}TqEct z@A9`yVp%MHVy3HkQYepwpmh-b-G%c)a&rA8kTlZiDSu!_BkRdS; zWrzVfwoOSr@uwU8UNl4|Y$K7Tn9&ILAUJon%Wg+y>=sR)GY8~!LzB5y!SHpYKjK*1 z2mrKSWx>4r{63om!K6_Rqm;Ss(9HVud{;pnx{hO-%mc<<<0?Tna;-+Ya$T_bgZ^Z@ z1i@riE>(5~yj&)plZJYr`(->E(fK`$2Ge=z5|`J8o?y3xz~2UUYnxMop66Pl6BG-e zPvAw5`7<0GfS5XNUFy0Ty%{}1D5*}II(@;kg%csI#%mw`*?zYXJDrV2sNvt3U<+qSW!sXliDYdu{ZZL%PjMpr8O+{yA;x=MM zzc3n%`h*p(=i=(Ov*Y32a=ggdP8z}V`wC_^2=9B+zZfBol%T}Q+QWe8b`%NA6sp9! zK#^aH&`Yqo{*3AK7vO_8xEzh*8CN0IB{wNf3nty@%D17O>@La4^#^d){Vb5>!K|F+ z2rj}^5t9O#N(JCHD1bm$ftBVYLMa6R5o+C?w#Kzi5LRT??Zl;aqEa}cqW(Lu%5|q5 zUCDKxxTRJfm*k*HT&q#HbR|CUg1?6n;Jz1n_CO0|07euDtmFG`bzLNZNZ#o$MXM~L ze*f*Rt`h2dUi6PecUeSz{AyQk33cGTE&lu^e;2e>24Q4)Ux~-P?0-)JVA4lVr`D~o zq>UfhOYe5+s&KD-&u6MZxplt4rAhMo%BTIm}{VwhC_8uiE_|zNzx)LbcfBo~3M}}a; zW`TcvEZDQPggUXRzc;#y&?t)_*4}e*3n_#!g+BMDe-@f9gU}z++5A?}f^4FtzWM+m zTD@XEGvFc-jrSWuZa21e?P<(6Icnh~Nt|!akFX_jPg&obUe(Yi)q+WQPhWXp4CzlG zG=;={_xhU+lh-SchN}%#K$fnHM3eU5V=sH#)mur#%(e-9zt?}Yz0YHsj3!N=HD}?1 z@#XU>${}x+Gdpm1aoTuwW*;`hET}gupTKSH@sb^-9h+0$*~)WRpLoZP(iRQnj4gZD z->Q*PZFpe!Qg_U3p(=tclt11pr}8r`5eG2bRfv{YMRmOy<+G+PET0O?4fnvW6eh~- z;u8%~!<##y35V3!D2R9_#e+a0lxz!FWE_1cGz#YfiW_AX9rPDv{|b$&rX6?=?kc*2 zYq69w@KE$-EwPj@z}dd%ZCvpxkm8w-U^8TG^S_b!BoYy&@J^V}|Ft3A4kC|uE-JC6 zb{(|DZ;3T!0EC)4OjuKEAPZfSpNqP3OwI>M?tIN|$p-j_XG>BC${bI1+`RH@YDBil zX0PJAsUh?uxNKW+$a&yCNBtcp%ScByfjkuwbU;NS!F*VU4tBiL*{IC~+J6;;>{MNE z*2LKh7l6C13A_omS0Q(|kvVG#obe0owa(cf7BuY=cu27B&>n!0vZ>T+Sjwbnh}UXr z%o0Pq8X#g|i1Udy!L9N8y0gCYFOF+=hf1gLo@VFpg=!#yQZwqn zWr8%ablUP7A|hd+il>@}MrvfC2!5Omvn3r!0GP}I09CUpYm)&jnvpg~_&psmq!Kiy zcJ2bR;F)Uasiqnu?^I~ykwZ<#>7XxH6Iaq2IE?OwA$R~yW~`!26oj$ zyCp;V1VF@KNdEw2p;w_yCAjj8-<6PEzoS-v45ccGKvIo=?L;ea&b-+(=YV(rnOZ8B zs!;A#EHz+0Rf(A?xh1B=UgVLOZYPrCRwqv4&nR{XR>@ArJjO;gggV6wZAuQl?&fB| zr8pOLv5xgsBI_Mv#=0jiA4Go7-8o&+AnW+PS>(Ha%=k{j_uZ4T7LB%!=PHrs%gylI zLe0j-rP)!n5BR`nVNq#zVx3SjGzR`Hrml48hejhe^n=OGivP5s`J6b&dcrlEa(bgB zT&vM_B%qAzZO*w^0%6jH-6~3)>j&A*hJ%}Pu1D)-T$}KftJQ$6ODp~XZRUXHwkn>E z9^)E}I{eKzt95ajgf`j0cuni#$!LcRK)+{Zt1klAlGqE*RQ25ta!)Oitg(r^@OeE5 z%P;1p9~?E&&%+;Tz;{TdA7YVucv9<}$|KOL7|&!s0|>R5pouE!Cqy6NnJk|DV9vqp z-!;3VK9Lq+??da&eF$351CJJl{I%_ z5W)Fs7i$bW*YhwnIxEY3Pd|= zYz-j%Y;J;tUPKOQWl-`dGWEh>=@u^TXd3D@z)6hV-U5J#fuYV76eSe!_?rB?&*V(7 zHCwOJDHHXXA4P$#rKnJpe=g@OTek;Qkf`Ox%dB18R+D%j zsm8y~WaczARW6&M+^d*sG*x+})?=H^q)SXmvnn6x3sn@ICHX86a&&bMt|SjpxGDJ} zC<$|9cS$!wPwMjVWBrQ%+svJT5bUOTO36hGbM(OYih=hz5T4^FxOevX@HI@5!J*z!GPUe%I>*<>`! z_q-)hVG}28Zbd^$G#t+dgFSJ~n^Mzjh(jY~QqW(vRIGkpA##2xkc=)j5l6wZkpHAh zOg==CW1p;jnu|OfHTf7D7b)@#Jkd0#@>=LsjHmNg14IlW&wQc}7I{i9FJ6#+yJmL` zMV>Vp?CXp?OS;G-4`rTn-k`B?NxT!u{G*9HO4VBsd6YzfN$Rtw$s*5+Q5uma$4KNk zKB~BB9L%)w(L*_D^+G`nx4ELYb!O;Q1|l6mEEBG2hwkXQ%nBhT8%Eh z0cE`N71uTigvsb}o#=zP?$G78Q#)PfQA$^)S@ynI8rK?KUp5MMPUeq583#Vi!4e3Q zeOadLOAt=?f}^%_IF3oi@Xu?mGSruAHJXy-;Ej`t)0F^!z3!TWhFAiybuz3LDtfT* zu%{iGAOkS+9vV=_@BY`-R|+A#B$hU%csZIUgU}!E*)pZTydYxa9VLoDS#lOu6td}&?Xsx5g7@rTO*_E zBgx48QZ6TP(cuY$c}skqI;A&9N`hRQU@7-C=v9o9pxpowgCyt`qK|MA6m-leel9Wl zbItx3%7Q-C;9qAJ^hQ^b1##t1%DqY!6ixY4sdWp=pGu-(Q+iNhN|u#B6W!5HF|^B{ zafF_<{25%musF@$tPR|XWb!8JpO1@yEsdg<1v@V)UTg1`se(kktHBko=j2%3mlWIW z?)+%5bQVB&NuX4WHOc~Lb0Q+61yHJ1RZgNUfbw=u3ZOaygT@wIo?O`HQ4jpKblN~H zfIGORCrlKCOn(H-gs5F`J934a+KIn1j}DL5#c&>0cgJ|N2;|Ps0gRNg7BU(@Uox*h zfLF|IloIT<-_^nHSjqj4p1`>30GtbY8*3(6eVbaA6LHo-SM$Wf09EbA$FDDTnc5FCG(IgXmdQqx*#6TGt7*4MMXAGmtj z4&$Axif`bKV|omi++3W4I1oBP8TTO^cK2TyhLKbfDC46ay5>nBOeXd3N01mfr17JV zT<6dcj%zYOA?FK!%e5Mvpa5lD`H5?@1j1xrK2+<=L!Y{~pbIjtO_4U|qLw1xA_7Ju&Yq7E_uBgO@kF*(da0wLt!r>p8V!B2nT zYKhZtse6%dbusEKL)77U#W@F?wg^Dhq~xE5QgVLWn@`C(YI28pRFX%DD`Hu#({d`W zgkD9;Pk;hM2TNAOt^kM_q~w;0_+^ggk z(WK-`ty_?iD~W07M_*wucSf&Gqq@c<=p_nCx({quROuU zI!#0U6*!5p<2wToF>rh*1x3jX_3dE7w&Gu%ZdZ4$ZpjTbxui!T-3W}w?I>&E=6`K7q6!9l& z@UJuC59uzC_>_AUTm3gj{0fOFSyqHwL$s+9_aetC$pKgLJ&4sI>)^JXj31()WiPy5?67rvNd<@|(=z7^Q+iz|!OWFG;T3Nb-{O8d8YrC=xJ42q z6-$lM=WihbGFpM7I#uN)+6o-+FG&SX&%rP97iHK>@I1M&!=qX9vN*hMXmR6UqqmBe z+R-@>0v}fNPd^n)UN?w3IvbX2bY}zvl)Gd?B)RU8T{1ej)F@AK)a0|#DsU)ropR;L zT(LY^6sbHZ+>~SpVot#JB`C|2c)&hb=5L!RRf3Ua{x*z;*r{Oh{^G87l*w+;!}&Ko zJFElh&9xe>JOSlktFK&F*d!PxOHb=WE8_Y?_w1ef+BMRKhH-q8g;R3q!4+Jq&>JH= z-iBpz2dOGx$N{0mAy@$5Zg8daiEhIvHUjWhWp=k7?z3Cr1n4W)bxn-@ArM z6kt-->m#Vze65Ky9Qo+JOOh^#wWhhB7w1+!4_D4PQ)OeNm9S#0TL|%}d^~JI-@AgsmqT_|$3F4iwizI-c9qw)NzvGp>t;4H~UV z=5QNM&S&Ag*6>{&4u#GwPyg(?6g889=%3AO6byxIy9Ua^yMJ+2*d!PxCmffGLzj~p z-PF=8qog7ZWpaFzJsPu~>e&tT=2{KUlzZ6m-G92aDe+R7D2eryRK0}yn7zr z2`jS(A~^OhS4WudbJWPjj9FZR(Ty3I`0&LgQW2Td_vLE(p8Aigiyf`xm?pJ^|JagC z&~03+(OSaF9(a3caVsUlBX&U8Bty_YKGbb@?o znirEvgD{6+n~q6OJXuK`&TM=d6sj z5iJ8jTGQd>LuxwpvZapPDD_=0_G~W^j!6xViJ)QfEu>-flM8I9os4b$9|B{$ozn4b zxg}SlbdD79*2C_r+X3Zrt3=z(=`+cAQ-7ncO= z%}P~F#KeA#>%{@>r>JGYr9(@#MmugZg1C44%kKN`f#f{- zG`l4W(fXE@Hi?$Gli+Gp>Z4dv+Mz{DFZwq`KrLEQx(7h`LcQfn zN_UA;6)afOP=5nXVw^Sn3=lCe)Kh|@l)IO2TvXCF&7Is+t6OqI)wQH_UKFVlNUO%T zD3_E_n3jPhrQZbs$SsvhMa7jGSW@~4KzK{Feo5)Ku&G+Gky*oIyA!}#q%Igh`y zWGZtWBggvBBPEUO?zf}C(wR9=lt8H%Ym{z(3lULNdzraxxtct!!pXlgTb>r10rO{A zj(QjMwWpeA2|d|V^Yd*bKO{73lp8srFfm|eiC0q*h(Y>N4rIadL%U(|u~$nT%wDe99rf%*V>9eh4fb_rFVk_>>m?~y zv6=^^KCccC-})!e{mR%k_#4RvX3P{s_@!G|7uN zcTsMz3X$a4CmXCR7sgd@m3$SC_E{&4`$S>9Wt}iWB;~@;p)!rFcN{f{E8@_mm8}Q= zKkB|aK8oUf*xf)N*-#P!2@q1~?I0l`2{j45U2>PZqZvx*94&MdF(86OkS}Op02|m) zY!u}zR25W21jL3)v0$Sr7DVBFW@hhpcJ_9;miOcDpWI~co-)t#%=0|+Oj&R=yje4c zYO>|sW?m1~;4h7Ln|aw@b>j$Zue!=9A&~uGR}>s_r(8!r8gN{Y#4N?!$r9?}V*^G> zk<3%POc=Y*Z;?o(8ITJ1D;0fLL_tK))(l zGGx2T)R2*>7X}?s_Npx85C>vbfROH0VMRptsyrAX>}0PBi#d*A4fGMjYSBN` zp7^_N;?E8!tY=Cz>=s{y_vu}Nhh-;FA5a?>;r&=GiZ{aLz3k>WfK&;?@-=uW6fn~e ztrlGaA+y=tjRKCKot z4yV=7NrbM>w8+o0;RFw^09K3a7?`(IDis}v8o+8%Um(I-YUo#s5@oqw$qd12k%7my zg~LGLR*Tl8#$}d12VJb-*#8WWsDL5xB(?yi+LB+-d@%hj!|v#ZeuHYuUIX@h4E@ie z{q@akwT1GoYpDKKTeOM~LA6DT)U_+Y+*_0`fI!$$;ltEj9;upY%P86We2HC-lZ9=mjMBcUQY_W(pw>qq zwT2i4hulAOUy6CH)JSo%^>TAOBkKFqn}C`R1uCC@b6

${qW|T#4rbd4dcS|x zq4?O2-Yq_eMf8=j|BnXLklYrb2YOmMBa1ofuQp9|s1XODiDN$Q*)Hel?at5IYHIHf zDIeF-A68M)F;_olkkyHlu&NvRuww%6)lOl`Z&b0mocOzT&RTj1F41GrdAuI=!JER# zC3@(gO!LpuIFLbzvhinR6^-(U)d#5(^V7}7-6)yfkZe4-3kDf%KwgdrR5s62*|1^HVC(5jw9@ZeqmtwjoE zMF-m(>Zvc<*VSBmko#Sk#4)Up#?Bi%WAwzCW0TWTgPH73Mf>YiYl9YEuOgwEJEB@h zzk@zlzvshl3fW63Z-xF-Y$B(D1~)W6AWT1{FdxX82TaD z5yD`Td*j;L-Q2XYl*n=J`J1yx0 zW>nlEx}l0hkc-=2%4Wj!CIn%h!Nw2QvvNu#=9>>ni#VwSVejYUjw}F_A+mQjN~Sj< zuy+QVESt3!b6hgLVQGcbQ})89w03emlHRU`wjGYDb&ET%yzFth(*oxH94F>L%>5Y! zhuhrqtzhmhJ%m-mg27-C)~HSMgNusjYAAA1n;A+QEd3F~{sc5%TyMa?kMqSPo%#79 z5)Jbw)f1zJ=Ll#}#{?QHF z8N22J%-cqIJGT?JsJ)@+%Q>-aZgDpyIb=U`+Uyyl$Cf+Crnovs+LDB@?>fUa)EnIv zgpCDHKJsR_AHt5plho3zq_94XM3j(FwSIU`BY2f+G+K0FV6Cu&t>E>U`O$UzUd9h2 z-E(DATDkMBW~wLc%AMb~R6R*AckXGWdXiD@{1C04W=`%f174EJple_5On_UTnJ1a$ z&I53ko_Ug0?o0+=ua{;uDZL0g&zY~X%bhi#2+lm|Q0}}0b7y6CZ-UvqGZ$h!`v`jR zB=-oq5f1}{{T1}%J^Uzs?u6o5rZE%8n9#}+bG=fK+-+q}5F7l(GAna}wBRomRT&Xa z84*bt5kr~tL+DSL6ZgD~^tO!junhMKp5QK(k#3X`*2@UDWrV>p!c!SxqinYGSQT9M zEN$-m6(F4?y#9t;JsZNGtGIOrw|>X1{=kg$58QeLxBkSf-*D?M+&Ta{bY8=)bD%rt z-?&9y!*LzA$cu{q!7cJmkbiNDT$_6XxB8N_`zCIZ(+#(Effm_@AmA3M%80l{=FMTa zMdkpNaEqiym2nG3BT9Kcyi_Pa(`J}|iHXAxiNWL6gxV_{=0EBOmmmS zM0gI9gJk;AkbX3#A5FWU%M<#g#qwC3rY<7dwnu7@mdr9cr7rMmnFuO9=m0#=DN2d=}uI##Nw)q7SU7BT%6yi|sP-_wz{%hnE$*w^8Lh0r_ z^Z2jx}ZfDd&j!oU21MnS-O|QUm7@mdF^-xU}XKWuLxI2qb5%qjrMK{ zml`O7k(p)$BeTCNT&f)=t!LOLYP=pHeJgEZo??T!r8bf!>GrTOpq9HOsjV~)gOi(k z*P}hF&7Wwg?0(QZMcTemrBE=V@w|w?XV=F$?MFmr7xJLKFP0bZq0gOfD8Q+BTZK! zB}!RZOPV2_=a9C)b*J3os$6nM?>sZe3n*A(rTl7&hA`3RW2GTlqHStR10|uWU#{cm z!{*xIK;^a-%}~l(bF(`MMMlqu6f>I9jOGI1G^{j*n-iykR>TqOlX@Dy? z^{gu#Lt`H`H`exK$D`&MQVR~{Eu7%k$IL0TC#}%gwdPi}yz~SeddxggOK#ZX=7CaI zj$B9IwN=G3V_M0Cv9pN2Zd=g^6-P^rywdNr(QHxC$HqS3)|B*&Jx*in2)t+=SN%=q z!(mb}*QHx3Wv{Jfyf6%Pd)jQ1hB3fopzM9x+(w$kJjDYg!)M-qz@vfqm|>{LGf@80 z5IFe^5Lg-t0n5RDEObcE# zCkbQFqc57xjB^Fl==mfmD~h2Z`?{&y&DBudWU0S&o}-lMa~~UHNHPX6q20++s&_(z zr5hX#A7Y2BD3%7j0-Wg!3NpC1qTI6@BDodX+ogGBm$RX?Qi!UP~ zzIzU(M|Dtx9k8>Ip@0_dfP5mA!ySl504X}zL>jNcPJ;QQrqVpA8%N?6(P-MM=Efwy zN}E@?5xVq>S@IHDG06v-N%d4DgVd18yM}6`*3BjGxm+)T$g|pdA%y+cuv?D?1OLTZ zmfL^H4zsO@75r%~Y(*p?+}@9$$(s*{am(OnWsKP|_)s zKkgo#d81e3sqtutgYa^lpI*|SCz&lp<_#c_^NWNmLr81CUy9_Pye zA!T+=K+KW?Ov#LCQ%WFjxeML-rnz}MWnHN-xh09-c+*_JCdXD6RC=UeLX1{pNVr~L zsxUL?>BS6+w`66M9x{@!a|wK_kt~E4xa+a%r>RCZ*mFnUGd-jNONrk>W{ zSlsr(?8tU4eb4-z5I;r7NYJKiORX9lx9IHo{5olzyIB!7qj+w)Y}I5PtbYl06i!OE z$o0!1^Kj8rszZv%iSHGPK2R8!%8_#34JcHU=5myFe`r1=nEvM%rA=L|b#iY>sg$Lp zHC7aP)SP7FT%HEs4RNG-Hkg?DBc?~96$ z6{J>J7+(T|#p?|S#P_~usIidv-UEv5XlC?5_};gOHo1f4MLRz>f0J$c&ahXUv5>*l z=azQ3lG@=}LRQC!nmeCBxfk+lkKssoH-S?|sQ7V7&CKJ?59NwzPxY9jp;QbyX4%}i z9ccKI6zs*nr>ibx@_5Ti7G&aat(+vqVis%gnut7`xR1&W+qp(iWm-WO~lLd0Yyuy zgeSFQdVY_#ra^v@!fw9wR>RADN<~W7o}U2woRH>YI8P-K!ecdqo)7UMo_j`ELLSMN zm^yhXU4Q7A{}J3{kKWnf0|8!7O2Lx} zSYT3YGGOkHU-Qk~*?_E(i5aD<4J{=k;bkR|sDMGe9MF01oD6HsQq z*?@f?Gy8|ArH)l{70SGhrG_B0A6`+GWXG1|HCrL(bkb1%Au*@V4D=C1wsHc{Lf82F znj)Xg-_pbMhhew4T!N%4efe?9C+Oy3@(ZJXBZO~}uat5$NX*a_3@#g?;v)<};i(Ba zzrwKe790_p)Gtw?fSJ1QYf_n&|H;cSjG0MZMyl|6<&b*RN)u*Hne2l@9ViRcD48LK z+Ok`PCo|1}LSDV zcIbsZnK>a_%AT$jo6NNHcJ$PmUq7RClcA-AB>FrCBr0G~KTK@LbM$oc_3{EC{SCwJ z1eDCU4A}QEnR$|0>LewZq0H-AYKY3-K5SXgtXKGy9CuM2oS+eDMWk}f2?|DdIin%$ zWTa78*}a;KPxv*aKCdY(%^#govu=!+T>;7K3MNVyK=$ki3}nZ_&k7EpiVe|qWnIBq zQM#^tLCOO8w~nlGw4W{`f)Bb^zo&f8hNXp(Oun*ASm_LqvWdBR$41a zaiJsC*BdFkNE=+H%*x2)7^oNvyt%25S~bro&46y{FK30sO{D>e3UE_x04+1;a@F2c zkT0g24f_+2pXz78zmI+@vpc_>Lb=!RQ~pf4v|1+%y%lCkMY^VRr=jRWVoGxjR1w5{ zYZjo@q_NYUDL5{~uhr>PFlp>)dHg>_$ricZdbZ%AVA`xhin?@e(&b}KZYocz$@2w+ z1(VA!Qog0JcdAI~Shk;O>?$Im0MppJ=%8b2a#YW{tofV9GDDB7%2e2xTjFiZT=S>D#rWd3iZ7YZq6T6`O)%w>OpxPG0q>=a}y^=;M=Qw`CSsmFJ z<0Yx=y}iIGwFglLn^d+_aLA%?)!k7rPmsDRUy!8Ierw_AC6!3_RBBof0LoqUGNi8J z1S`t7J5tos5co>Z($>>$C} z<0+vd^@0~s()>KPv-FiTpP@u{tH1Vkk5p+f^Azt1_I($vvRi$A4|Hro|9Vjj1$kR* z*xmw*w1y)Q$ktOpOL0091Y*Qp=_OnZjhI{Fx?=VfrHTgOWsrx{Op1? zCeE~9@fMzHZiE$`BOoIEffSPP^Z}62^Y1~Vgzo`bc6M>?tiVA)_?5XNB8SG?1tOd#Vm- z8GAx)GAx(VO@`gkHz$L=q%95D_tBi{^yDY2lzAO{@@KNDReHr*(w8brGTi*5oPKulX+b^Vs`$)%2wQ?_-MYe)7b7d4rUnzEgIjq4!U%>U|D>Lj+q2A2R$oC zi7AwH5!yJRZ)ddiNI^Gb*_T`mwVK%1g#XPqEz+S*^Byi4@^M=F15bVCM+NtqR{KTC zw^`{$6(t=L_H$P1Br?P5Z|uuX5p?BXe|B#m)wV7x{?0;~F%^PYD1%MTzddgGs%kLF zI~}6U%`;2iF;rYg!u)<9Q2}mw4^gFO7V2vEaltqt{cFSi1mu@b8u0Iz0xsO>Va2;&zv=8?2H+{?!d3t zOKjzb!pSD>;mTSeRj&?5WHYRfM;aKXS+Op-foj~aE_k+~=0f6vX8?%`aKY06Enj>` zy?-cpC4RL|pMn`UmK^)}+Bf7L&;^m{`^hGfKj10*V7#GNLp^&~y$ z`wIo1rr$8^PCz-&bp!T&%z1vGhQ!o1DD%38@hrVrPNtq7Yv1MaGt0;Q7`k)w;J z!j*b(vSDWVf^ug;dnl(&L8JdIm|OK;*+$UTJZqhaszo9{Bj6%`1c8cg6vPczb}Q3f z>sb{JcmK8Aa(=~_(@uY+NPL}ft!#(BIjuQushg+Lxc6EdHKY<;gL@FLxeW+EnCUD> zd#hT^4~;AcuPd(~u7%&wh0nv#!u~UO+j^h$!pA|z+ZGkU|0UbHw_CSf72PLP=2aaq`CJI$&5KIm z|B`tyH$DFt08IpLg>*Wr;vjtNLSJlX>&P4`lNi%2?IFkXe<@A9)a~8lwb6 z+IbzT^8fS>lebrF$z`p|w&aq_*|-LorOQAZ-b#QWOxTymx&xG&;T*)`_B}+Ao(Z7q z56O~RIen91e*#L_A2ZE~&Z5LPOR5StzSu2@-8Qet zr8ibqbOY4Z$(1X)K993>6ryVN^(X^2DNX2~f^zCwvZVUTVaqqnhdzs!1PK&kPUhWI}?=`^W?Q*|Jxj;1I$+@AGxf;Agi8b-B~7Aaqn5oNjcY*5y` za*^uY3J#e7e8?M0Ql->*pg`Y$F}l#qvR_N!^X8W3(uI%^7}UbjB#P;Qyqop0fl{t?GhhnJPScN3 zmzI{LsxAZ>`cCMmqc-Z>%JO(rTt7DG;d{wRUy_u^WOxL!Yc{SQ-8IXQ2-dbf_12l- zcg?b0`+otQxKWR^86aZ<;;qwhd-;7Tq-4H`|hd`c96ihEhK)sDj|%-1r}Lj3$`9 zB$cbuWr6Q0C-NTJUL7olOxJYCk$&;35H-}aNls3_@} zu%D}G-w+{T^*0V=(=64tE-U`-A7RE+2+D^HHc+r?{uo~s{15gY?3|I8cMau^*~QchG2S5hg2}`H=QGeGJ9LL zn_l;el5g&}ql%J_sru=DA0z?_*!@zi>ay~mb-%f)K_jo;6c6l^S$f`3aUt=)KLLpf z@W1DXDm|+=s8N5*)bz>&jM9LB+^+~I_1O2({a&Q*msz}_%Ht%kwP*h4lW0{RzmR`WW!usCSd}S-EJ1veXft#P;%jc}U=l=E_#n#`A^wDpi3F1&PLh+UW0Y)>D{Y9S zxoG-chg2{b;+;IHBez>t38vruBIR3(c)yC2jZ>qlBf3h8-<{RzkecQxSOM-SZ6%umrN z_d1sJU-rOHt4t|m9(WSbX6QWd1h;iC9vG$VD16qnYOW9|KzAjoIBkJmWpXF1*RL3t;zKz1aRit!m-p`ci5|I`5yaBuu=1UsbnENNGA?UIe zY>E`zmNaIF%ZnK3#{HJK$#e@9vn8#)W@}jF*m+}TjGj1iY%>1NcyE|?{}xd5Y_Ag9 zMvaj2!8(H7yV_sDA@|1BXN9G%5LLu{L3eHK9V%r=W0c2aTS_2%R{=E|aJyua7#hLu zOOYbz8Y9~uWSwqngSr$+L&FvU$qhwPk+hiOKZsqF)nt;TfHII>lq(`8Pn?N9T3oYQ z>|F|1vKHWC@@>PUCa&jKS*8in!^-zW>OpW_UFI4E$hC7V0LpKF_saI_bwaJATkI!9 zi&CpJPxQRb%aSM)1z`{V!X( zO5^ZgBA0Z!(7$UegH#lP-0xM>n<twT1T+b(1}OFT_i++< zEuWtRQtowPr9YEEt=2=ZM4(0LiDD*|DTQnj*b#*6pEow%K9fc8ad#U{+i1B*h_~sO zNHE!Fx;&&Ulx&e}#uJwFf@zEnDUhaT$Gaz?@Nu6^4o~Xirz{f$(=5M8`Id7IP?6Fx zRzGu2Gm%ihWjLx=T~_?fF&RTA6ThLih=5pa{9VY(n@<>Qo_s(~{su>&)dl@)xw<`T z`A3kR1|hI1U=WGHFj+^NJaYAA{}J=XXYHX7H%hiUm<04;c}TxP$ricpdEc_Es_8u)QpA(;?$yTx z^c|j5>2b^XDyGl#CmZFu%0Uz#+KwVB*hDrtchrmQ36V6gR|f9< znE_1r~x=X|m`%F^9UXhLK)MFwti$nWbH!TNNAuI{}Fbh=AEdA)c+8u9UNu zkyX5!r5 zLt;wr8mJ-&Q+fx`f+_L$GLHMr@@89Ak!MBqsnbj|M;A{XJH|A5;?zk{PT&`VEmtiW zwb;A##wmAE^=p`(F(S21$<*=gccv>ho_#BKja;aw4uF0pEoVq?{K`(lOJ+=)QZlRD zc^JbwADw_N)KV_2qVmx(R{t-oVoWv!J17`zd>(U$H(TBR2gK2Og%uu0ZM zp!MSRmi`l%+iM#?3A+u}_u&WfJ$&H%+UxngJLLWa@B8MEE(PZMMqyZu@1sJ}vDp8x z?_2B5V9(wJ-?tU|S;2FN7iEQlL)J{ff-u-EM7y3j#H&}VpN6HsZ`hrHT;D+h_I-4H z+cmC_GOuGu|7F+rg36LYRz&-aDATW@YIq64Ww&uKMKn}i#d;z>%I4kRgQ=lym+K4> zfE#>hk?W_b)~l-GMUzB_+q3u^u(lJ#(v(a!O zpnywgRI9qI1Y1H2Zl9nw^+Y+0@|l4mnAPD?Jt3P$13Pn z1qZ(efJ6l({`Uh~Ht}y2W34WxKWEsVfTG_s2K@UN{T{UOi9h9DXB_(z{j^#SLFr73 z6b1t|rSDay6td{|G0|q|qTf-sb+FMdJkI)H{COP<2`2jeB9G{wDAgiVH{SZU>0cd6 z!34i6Jf&rIt@BLP>_(%QFUj~8{Qgo=(y>%OgWowKpMZlORjMv4{suqB%1Pa2ysEav zSF)(q^fxdu*yPCJ88bIv%rIOdA;B6uK<}RC>_FmQae_6jp&VwbnWv2zJK5B0;;dN{ zp|V!&UY7){ae^aa~f+RL6`WQ`$t+@GfOKwjBFz$HA)dkR6y2ylPYQ(qDj2#R4Z$2SbCyie*(&S z>l^UzW7b>6!DqdcdnOdpaVLjDKQ>NjwH|`3SBn(bql3SL%9KKu_4WZFYYKwK(lxC4 z^d$JyJNMDvH0!+hVjT+!ChN_WNAz$?wFte|&ib8ch7KjFYR>QaSn}!3Q;N>84maK7 z7bV}a-U1aR9ZU5y>%E=G$G@zXc^5HNstzmuoYZFQI|S>D3^q`$DpWcuX0&Yg$kEqr z`o`y6UMBc7%iQq#!O`e+mbH%W@AD$-!|Xy2e&Al{K?}33HJP_Ay$58mxPpIG+yQ?C z!oSOl_Wu8pSq-lkv-;B?DH1PcY*tsPS*czPk8(R%E%7x6dQUroal&I|hgA)5Zl z)yq22bjB}AzB%FbDoQ#g>ZcQaoyaF(Crp*9!^(fs2|r#jqowAc(9RpH5q#d9@Mtu! zpFf%KMBWqQ2OdxSXFrt_ZVF^Wttydh&tGHfT0Qwxl`zr*}7Glq&yF{ z;JsCLUo0uI4iMZibrv0`j-3*+e%rg2>%ju+{7TYNt}8u!uF6j5_57yXm3s!!dUKiG zx>AtJIRZYInO-e@w}$|BE4)cD>qodq?#*hn=iuEuv+@eTG7O7O_8kR-tmNgX`@5QB z&FV!p$#eNsT52Hn{{A4a_g$Qv16kpDUBMwM*Y)UN>pDR?qVnXCB~#)k(K7 z8}wnBlomDymiC1ErE$z9KZj6Mk@ayEfgn#le;`{4+nEq-TVc_0BkGtcddk~Y?$1xj zEd2+>4J%dq=0`7NXYJ1Q=$!G&*mS1mfg1U?QrW2A-(osqy7X`z>fixdi)!g zm_4T-ZVciJ_>_A+58+1vU#s;H6!5i3!5(M<{|A*Rg{**|147nVhp}`G3;3N0KCXcO z(rD{<@q=|NB$#Q-C3!?UDAgiYt+Cd8!8B2a6dhcFRq%i3NTE;1Sr3}-@Qadf^Ok>9 zlypp$&RhJwa`PoT3c3$e_O}Gf*CduQFM#RK1#O8RW!qTu&U{V4yj;bWn{OHgSm`Vif2@lDO0c5_*9@h{PoZ(2~T3 z-BIbjs`xIn@IGrXzOVS-_zayc1~cSxW#devOcc4`hT>78sizL9V1`^@jue7>iC5t6 z4M9`Z6kaho{G#dG*t4l<>R7s;wYD}yRM^P|a6xgsAtdu-E-0qz*JaJ$y_ZbTsn`%! zN_ZUg;Yzw zbd?rJ>1yaYC|$)54Zc)cTfrgo?P{~$+EI|2DqjR!t1XqoA4`jFPQJLodQQp+9i>Iy zCm1W%H@oC}VK9$puQ^78;*2*lkLbocohLsN_Dj@#!2efPrE9x=pc`@B-*q?yn z&v*m=eT+Z0p?nRCa*Tsej=qQy+nc=lrd=y@qh#493oAabX>eyWi_Q}Us3+M2 zo`l!o3aO|3suojPJGyjSMII$++u^8Mw>UQDWw|)%MaV&#-L4kBlJ_X1Z1S?KD|QEETV>@(myoAzw{8@q@f_Dd zoN0egm(;#>(iuUzgCo_zP(bL_oz`CP;*x)MS|?RgUR*L8wD9=D5^OJLumvfjL%NI? zyk;FHM3pO~WQBkFx^dc8xg0H-pd@$+lRe4A! zP_jj?<6@z$uPIfB6i74R%yxJ+8g4zLHVi1VhQ1{0&TLu0wS? z4j!OPxEGr?>5vL$$aUjL@rzB{{G#dG*c+gtsblGW&MNOGq6%=aX%4(_^mwmY%q)|t zUzat1XPM04Aww~^c@=|=ABqkbiagisyegf}t11&8jY`)Q*6!qOJLON^+%q5TtO`iF zXFe$Ht18)O#PO&W(oZ0Nc7hwoCdG3K4!K`w-TK0l(x1xnU<bO37qOh|N zUjpBUI!T=`kLxLvc9CnvQ-yB`rbRlWx&)D=-oul6^O?eI!L-^hQoaSs`&FcLEY{CJ z=_C>gxco|$tILYNfswIx5*Q~MR%NK#^l!jou)$Ad$4A}pYCbTc=>vP!s_NdZkD|8} z-s)Z|Z74(ow-ip6-Uo>W8~P3^IAqRI%jXMUkUmqM2OIj<%f`f#3PI>&(Qz_=T;;Fi zdBLSt4KquxLbtrR0O)(DLf;i2Q30XvBA{hMU-g#?2a4&{h8y)KpwJfyDE0XFG4%bR z34N4%ozd&h%A;26Aqah1q+kzp_`aqxrI3ZbED&-ich6@KeCp8WO50I*s7ky=$3%je zC+?Gnw3(8Hs~4tNjw8z~OLbS#u0nW&Sg{UKI?e*yNPmncdU1~B2}<?P z{5s4u-7nI<#lvq^q;+l2IkzBo2tN*J`J#<$#L>cVF@C>Jr-B)Nf6L~$hmtLFojYDQPc$9ZAr;J^ z3#&mZLLO2de^LmqsQ$(;QoaqcYARAXChcd^`6iJNPCCeMhU&a_t*XU=>POmPNPN7lW4i=}!af=^E46dZDw(6y6= z=cMM!b9{C*1=W96Iv}MoPknexa?P&`Gs5Bc=xr;8qTal?a}hN!Wtyl!JK0nLq&ADk-8EFB1) ztl*T`1|%xL>sp9w&lR6AUiuK^SZtS zuU0yD!k@8TuT7Bc>$N zE&8^wp^*NnVSfTLsO<*)`)E*)X$*>T|9{q?I(jpx2hM>(ePgJAkfepD4HObYTKE;9 zWew`l9}2e!>DLYW6OcjuWx&6W2K5~^DCV>Z5B<0#4AA z&_6Fp#nJ|jz%6fhdHiLmKDps#!G;JEbHmF*RQ+n<4=O5nFJusR>JOIlbG698cbB^+ z|6UjsR{ARNuAe1)n+hoVlbw6v>hdz@KKKih%R6RGm^QWC`4;@Qz&+*AT)97#D%o1Udejy#m{Q>fKDz>R_I!SwzWmDJ-MJofr_-sG z@_08Hbp~o*DEC5s?Lu$vMl&O9X@rWORPwj8QX%LW87_2b-ggap_MG%k=B121grKa< zV3Q-7$GXZZ#=1uOBSj(t<14a<5q!LLxxl)52&OyW%TQa^2HCRa7KUj7sXuGSSEgTWSp@ONCLpqA4o2SFVLl?Ud@YGwwqiM!OMDHE@fDY!rPt zC)RZ9$|YPnHEs5c(PPV*Cl~-k&(#oA}d#IkYD|dd_NA)DV+&K!PiFDtEXv!#e_QpwA zwJGF1VdLcYggN`wOEp{5(m`<3 z9rHzpa_3I`#B(X52`*)H#=tQ;_7QX`1x`hv@H|r;Ex=%KH8QiG@|W#F}7Yp zDk_e#Jt}mekGj^fa7oMi=6LGe2!gkueGv3x)*h||&UE4(AFl}$CYqJVp&~~SK&^|}o zhjIHi+8$QlHb}S)?N5L%U9E5HCRC&CISICYLOtAGDm0^y?rUIk2pP1UkZ7|Bd9?j< zB0SHh?H)O4Z7*sJTpy+F_$KiDYueu2#5P*^nYQ~iwM`QKr0w6ELXRt< z{jH#vOPkp`2+_2Cvl-A$r0qwW1M975JEw)MlaNi@Z?u5;-jlYwwzTyZ3TgZOmZ0}x!SrJ&{V1Xz z!^wvXzZm`jUd~cp7S^|AbbOb?b?X2o-gbb+vQO^$2c#fLqVu)?wV*iCZ7y*4wys1hO2n;CaH|z=eTrMzxb+!s^~9~uajOuw zzQC;!xOEb@CgawZxOE3^eT7@tSvbGOEj;Xe)Ug%7Qt+7xAE$m{;LY>>&>WLzJG2NCe zgrn8%Z3D!X%I~64W~QwHIDYtXc2x3Mz(~)uk44*tK-^0~DS5Ue3Ydvfvuuq;GYkD< zmaP>;KMuOLSLj!>ZCPRo3*EDWt*bDFhj#MN$A;Om(IbNa`XLs&^$=UGu!@I%fI^EY zW6{|$wmjVT={EShIR;IC!qyet-PtXOOmv~Mt*Q8djPu_-TQu6Z)>cb+kH>icenRD! zmj^P<=xXaC{;Yt-q7S=5K>dLS`%do2S(Oma=h&Kw)y7d(0nr#VCD&#WBGIPawrojJ zK^5`9=JpS7SGB$0QnIeyak_F2b+5-I@lF$OB7#{QQp-XEcbbWficEs;akRh zKa_vm*$lGF%Csd2hj=F5Wtezp9NNFlmZ-Af%PfkQvTQAd3p|RS6%@idDAfW}Au@b2 z5w>HY7D}_*hM-;@Y+Zz!C}w~yk72mlc!uFjbYy_7sgOGI6Q>W z#$L86=(VB5#IFp6tbR5|IGFmD83Y%j`DqhWw&E-TZp$&i5cGSIt-Y|CC%%#phiSvM zVZ>5^@o9n!L#!2E;eWi1`!VqY{qGZ7q0=KkL?xbMXTT(EHvjt>l-4vfeGbh) z=0NBjHxrnCn1cN=6UOE`9&8N{h9h6hY+Gkx4+Yyi8z$Fp@?fv=U~_C!A?yz=bcsH>HHj_9; z16k}9678uPUJo7l)*de2FT+R z=smIH`ta!vKqAPJJe=mF#%`nkLvDkukXmZwVkPTX6>DoE{tI%%`Eu)Ja^@%gt)c#> zTGo5+1;3Cm*#j4YdMvTE6YEaqm0M>r6?m=5Zcjn1BeNjfZ5=r*mM@oriFDRr=`h(7 zpCOWDq1F?_6VR#qY~kVv1-g@1qyZcvlOH%)5t7gWrImr}1eVx@XvMtnG+7fX6{Iof z_WL2rU9Q2rOz9Yl<&X8@@iLZeES3w)Vao852Fvr_v0PjMHh6-CpZx#`=9mWl2!+RK zSQ+TIB*h*nf~trOTqTCl6!yMLiJ2=zG``Ty2} zr+S=Xf`rv?m$GSke)(}MG)^!$Y^pNb_?|w`8ku~9D$#B^7l;Cbv<~U-xRPI zw0AvBfG+baTu@jLfA)wL0&W&Mv;pj-&Qz*Spxg@#VgHk=P*syWAaY=!iEN+jT(z-m zs~r>^G3eYQwp1aLN0jar5#*YA=*FYA>S7U#!cxy3g`AJsYe5*~7#gUDCl?((VyhvR za(EqR;KCOX#!aL;A ztpND}h1_`35rMYuw?&HYX}}LC;3SBGUa+qej!|h74{_=x#b26Vwk3;UC3JvY-|CK! zx0Ub$|96^O!DMJXuoaSkh6-F)F-ZfGP(m~Lx+w20n%UtLty=SlMA>$GD)2F=e7mis z*iC~Z$19SDcL3WHSn%4f07GLn;G;a?`wu`!gkF%)@i%sL1Z2$KB_^vp#&9Qao_}(c>fnN2G$Yx5|F_tq5VKuxpjeRc4^>V2X>hua+-jQ zCZj|AO7rV4WX3;r3r`stBHH?vdt}_y0RF=Rl7Z2L!r*}+G(>0js9b0gTD=brC4?%f@K52BBBy%aZ3*>7WZg8Ar(82fcdv52NO%O89wLScViK`DUi-?s+ z&`<@q9V|$4jM(vmZlZOD+q;6nn#BbQObn`j2&%$&@_=(afW(Oaed0vgk>AlI``!CUZZAdP%(a3s`2#l&G*I=N=~jY*B&Rqs0$u(Fvi#{R zru-9tX{rX(BwbALVz~mJCa%_iuGD~nH_1X<3+)kT%J|5tXy2#6giApZgOWdka_uV` zOxyG^)ofqBq#U1~qm$y395xB9`y68HXBw0z^iiV6e}u&AUk#?pCjryn8ccs`Fe$Q5 z&5DeWD<8>d(-%;6vwUll(88Y~S!#fUZ&V|=9(h1hFK>#Q`jxGQ(49eZ=@&qg%cJRX z3p8JU4QR$OXog<^G^2SmBh_e#ZMT?-&YrP%gR(q{W7|%v&02U2W9^MTI_q{S4-+Je zVXm9yb}EXHuvH7YJ)mjA8$2&AhL=}n8JM(i#)GB-!WIoH`ka(c8sdtFSxw##ZawY( z1jfW|v-y$vuU8aaj9X}mk&QvEJ_E~XMDZ}fNS;kcsnR76jv8vS?u+rv6?tfGwVeli*#k(#3Oyt#ZKFA= z0@UtzBJ0aZ!gmDSV6^KmDCwUi=or&K<&jV^&fhAbt=GW5g}MAtyFtlbR||*CXqsV| zF=!;7(KM!j41tunbZl{uB!BBiAwBt<*joeM!y9-$lwb(Wt=nNPRProTg`675@d_l7 z6!g?BDYl}8D=@HC3D6B8wHI-{2Gd#@6Udlg0y`w8T!{#iW){B)N{JV5X%SD%rJ2Rn z8g{zgEFPnX8N)e(7FDumlcF-2Ol%Fa*AahH03i-nvNsSfYXC1`Ks*P*W(`FVYlM9a zol4Z4$4}j=&7%s4oTssCA(KLqS$4VxGF1afCKE#_5Se8U)BxEuKpxA6A_p)!SG+?5 zG)Dm<6235(>gwmY9;=QYXoV$XfFFW7*Buy#iiTE>6ra^#dU~FF#1nh|fbxpxBjS6S zA0Lp(zNHoovFeKyl34XG8pt2LLt?8Iqwnx&K2@lW&epKA&O$<~qwU>970G-tLxE|4 zJXS5F@z8BN&_qtqTVm6UobV)jK=Qy;akPRm26d`s&k#luY|Pjk20x)QiOu%A6)~`?<>%0 z!a*MJZLfei2msG3fQjfrJdpi~hd$>8x0hQ0XcHKj(aj;D}`axQ+*0;{hb52DaihHS+%vd5C@hpSYItZwhgM z(F_+z)zT&?emT7t;HJ(SP$Vk&(vR(so(E(+aD=M z}fE_;(sB?4Z`goQV*!B~N_B6LQ631vT6~hmiqR@Q`aauPO@6~`TqQqfu zvCsiX!Fr^Urfgy1iBsRKfqzN^PqLK{70^`ikOt~qxyyIYry&p+C)NOhltn-S*qAmD z!2Xd@5k;J60|D%s2Hzj>8`^PCbPy9DJm7UY5PbtgDzSC%;uTouE~>yl5LdS9q z+%lPuB}x}?9gKvIZ7jT!7QLiF^1OnCbOxAlcZN-Fj%3-Jif7o)N9| zC+H;~=3vu1K)}9j0k4ODJ)Osq1NP0s@5YdrAtq~n++YD!TD=8srFo);&)(&z_ZLs7{Gx?fQ#^k7Tf^2Yg7VWmdpmKz2IZawZo45& z;28uwzZ?1z{;>dta3Nw^gxJ7kiiQ*RY6R^54wq8dH_ifYsmpd zp;hWg){Mu~n8%|;GP4Gm63+VZczS!qL&8~!1`mm8Q+O0kfy}b|16T|?UCj}W z`dT1H)hXo%XsuE@=4zI@#~g`tq~rg9b^aE|NHLgaV%`7HL3- zP*B)3nKllO6})l}9U?NhLV8N)P0Q`dyyZ3G}BQ%g?&Ev!2_GZE|3^@elkFd89 zmuMjG(Lj7U3s)$lXCftD)Ik2C zfpm}gEFl&h8)ILK4;779xzg(70ZMJ+kQB3qt(#!t-NcopG!fnb_U<0)_@Iq20AuTo zQs=oxdS4!IFH}6yp1Afadp%`?+4;L2jbS;>4H|+?gGbON*n9)=&>tFu#1% z(Ht$D3;-@3^DFM|)OS}XPBMUG!3TB_sJn1N;YK{Ri1AtSet>@&3`fIZ$>?t$!=GL; zkcvezN-MF?g+l-Ic`AL@BM)eypCd}vKf7Z%Iy#}e&jEMw4vYurI0{ErK}Yj&BfZ0U z#%P&L6t9IY<$)LL1Ct^10tNOA88~>yvHgsK0hZlB)zmq|o?=ezF!qN-hy@7@LF>PA zG)9y5fU-X);7pYI-w#zIYC0V<`qxji_ zf@C$IY?6B`&VkJLlb66uH0fTfyrF2r5_==qz9Xzu>8&mjmXeAk&Af5(B8LDBrnx^! z^g8oU9moSZKr`=k+X|^*jAEfl1!DvcUE~#-FfgA=JH> zrZJ!TW20pQs=Km z)M$-vB*Kw~GPG|EcnW-wOI)f!xfsaO1koc%*mwmHbHt}LKYl`{|2RZM>Wn<1gFROO zG=vK6Jq_dm4WvhC!bJ+1wceg0{-S~WQ48sjS@cr0ANLK53+l)FA5#q^2|ws20<%O| z&{HxZ7s4kl!!>wBvAUOb)#!jWCc)Z%UkD`6+3B7pm~vy3j0^9+)GaMCHpq6z2?RnO zoMfltSe}zngcCS2Ej$M`kXiyd}b1z|&th)It_Lh+30mKmW!YlSvaWREp)(97(k z1^ar20<_*~?;}2`A+d3pdo+XjWg%znp3(BomxCB?uK2bFWS`v8-7rk42P8+Bexh_f zb;3cUa~hy;H9&;kzpukQFRF}2oPr$?>ZZH_?jZu@?NW`EaQvW~sE{Q6yS^;iy}7L| zi{q;|?I}WQ9!Cog4&n=;=foF23ZL#`ow!hbxBzCb^eh*I1heR5vDZ5UTmC_Dz#-!n z$G}gRD#QIO#F^GmuOvI0@8g-emol}e%q>ge1@NY3@kJKJ<-;JBEj;vQ9-27DqbwlM zP7*%k0S|cqi7bG5A`9p?`5z3A{6Cz?rYjozjuI!HNrqW!EXqCTw%h3Y`5{&Pez)C{ z73XyP2T(j)tATzi2qlm8|7#7RcAj}_y&>tiUf&R9;zd+sOh z)E2g;t67E9J|`4Ewmvt;eHv-C0$U)g6Y*;Zg(a}n8oGGNmrm8qCA@{KZCQDpWEj^CPT_zZNIQL6MvV9JoW|TV!slc zjBma~9-!1js0RUP4qA4S2nMz%O&5}3qZ0(GoKtR*G(dUZsT@qb74E@82#$R?D@FFy zIUd*;bmA*}8=*6SWk`1*59FEA3iqfX9{9}H_Bc4u;HI7maS#(`fQ!5W69Er6ZEp_; z8{EJ#aFf5i6U>V^45exe#7dw$*h=6KHvTaUkE71oJ*Q8Pp0%gK_Ci2C2`Wh(LO9us zfk-v#6$U}OZxvH3ZDdOqex$r5dS3mheT z$^-5YH)$Xr(?AkajQzHw+Z5mRz{jAg7oht4jt0qo1ql%Z^n$pHA@GUa#nelR5WcPXulCwvo&p_%y8mWRfEp2pq7&MG*`6$XgBD$drR#q;pp94UZA#B?5ac^%F5uQh z{O4Ev=QsT4D*Wj$I)8_ceCHqVx6Jt`{9We!i?px7-~P8b|0e%jhriB$;LmJw-)R5F zaC2YMdU!@|WEs4YT#ob&d{5s+;#>+h{0&2^u0sBx!%WP>08N-l!!3pxXFL4B7lzXD z4>Rx|3?j4E(mQMDo~y9tq{B>ajDs*U6t`GrZpRONVWtTGkT8QmWM(>fVFvE5L_dy! zZJ?c2Qj-In6B7jUAtv~TY=XD{shD7=Cb04UQP~i>{sn$y18)Ne+W_8QN6K4q*C3Sc zQUIdS%4_zfa6p8!oSlsE?eG{ML2=}sPVwmSpK!eBG>a$lI^g+=$MXfIo`^~(!sri2 z|q4Uq3MWFitL9Y;$smttWU=z=ySD1+j; zI7cmUGy_#T-ce5+si8fL(iVrVX6C_N;2+4&#JJVeLtd8^^%s2NAT87*gow8>jmvF@ za+^Wna5JTbRwg;*UCd8unB0V!R8}vEzuQ;ektiNifMZa0f}@G}wgz~gs)scjfRUYJ z!B#YIG#9_sbn%Sb#jn{e?xS6V91~=YE0Sju9b<*s=vXq0nT<(~_F~L~yq;=2NcH4_ zA!DcUGr2L<*yBvu7|8;$y#~IW7kIe9p`oKTT$@PRu$`lA^=}@c_mnQd zw?nr;VP8HZqL*gmB}+8Xgn!{`%1!q~wm~&BZMD&jOc2>8=@4W-=UM)Quq+;b z$gN=FBK~H5n8o^d-jDitaLAhrKAaPUkJAj*-&BFcG!O=vR!IPe* zkcQ(w7%5Gt03UIx&?6FaKqVyR>>whfG3Vz_?(vw3_BFTVh_B1^&UA(y9y@s!cfhwa zuOXLjO#UpdtsE~tm*I})fTsF%g#_dip3mb7pW;X5ZgmltR{2a`ij3&Gf(Q>$PRzgS z<2aw|Xdx!9p~@y~Ov`h$73;6zy=wd#n!|8BbdK#7i~iRQG@ZvHxzx>(EOyl(>EsZgDFvR`2`HJ^$yO?BlK$4~>v#ahJyF)FzK#^(m$m&Ilf)l2$iA16eY1u- zjI{p5z{te?P~YzEe$`n^^;C0!!z9*POH{<97B$hL0g7Q>9^e=twpSpc(HgVECbpws z%m`|`mTI>3S|+!s3IE{Sq8fSF6=f6<%p~Et&=Rh#nz9z9jdI9$DmXQ~z@>i!NCts7 z3=sjWThhH1Ia9uZKn_OJt&S|QOvBDn%8sxYSsiSe_2^^W6A1jvGJKc~O!oy1<>xe% z&)6Kj#E)dCg?2|j@vw&K`!dyom?};*raK(d#9w8gjsqPz;w25xc^-&#^y2>RCOPob zMrR!m_P-tE=paI{<*tsbfoP)Qp-I564Tfn?HU+$Uh$BsGuK{eQ0VE6iLm{EQodOEC zLqa`R1L&ZD;=#4lxjjd<%*vYZFzmbT9njt)m@3>)@g)s|)c!sVzI&0|vk|bDZgzKv z+$|LDk>N0$Hf!LXlKI#KvvOwY_S^_Z7gz=%GRqz5=q?`8K)$O$l3@oNkYUGI3rq#> zh6yymQZ~u~ch_jJ{DC|{gD{?$)1#5BvILYm3RG5YjH9hk7v8+C3VC(N16tCoCAaZ5 zSiq-nfvv|gkA|D0FupZ7ap=RN>#3j<7t1OcFAuyi^1z!vUK!FqkB8nYUPqn4!U+&- z77`51U|z5e_Y7wnWT+0A2-)`&GQ_^gI3JkkXaScA;f^t2kHAl8h$22`!|EO>C_f8k z3vaQo8Iv4s;1+vMD7%hBwV+h>WCLaw0f>e9XA!qpm20k9%u;|m!%GA>=BJVeG<}-1 z-aQUT9#(p}M>CW>3xXW2fQeOb{5K?@2D;IlA%G1P;j5`NPt~k917SA%Az2?1vE=W z^#IBov5+PUh=q_*a=5jvnd$Bge!M>b?O*L^jdwUjbl45=5};}Oe89lI`SKQTAV7Ol z2R4EWIMWt8=s9B|W4yQ6^q9ZAn8+67e1(^X{o_S>CsjEB((ZrTa_7GEeSc3zzW?0Gd}i*s=bTyZ%)A?WN!vY? z>-yiVJjm7S^Ll85b&u^~E@l7g>l$a4{cT?M#*f%-fr}JXist7p{9TGY03|3ijsI31 zeU(MzcPn=9MMn3G-KsdfZi`Si4u6N@YMf13vkb*de^*cz;mJ6DF2xq7Zr6l^nF=jd zSt&QW+9-?gWET}0KmBhTrEVM^Ky)p%;mVr188=i}gnLKiO)|37i)8LZ%#P^x|Gp!- zGR1Hj4nNT=RyX(&ZreCjlklaqK&E#3uCh{YZXT^H!lPZrFSTr`s>a#m z2LfCh>k?)4+$>zEEaH_G@-y+aL+Tdd`T1a%YPnxoGdJV*D2sTdas1@I?UuT6^qV|9 z@T;fR7F{YyUQ13eU|+HO|;+1 zx`_6fWteaLBVYI3yf(~SY_DhR!EDO!TehlLrWyLLV)FQZE1}&cW8G>2{trtbVbH(a z>rp}*FR^Z=!-3Sy`$Aop+QV$gs@mA#{8D>ir>V^>HEqnLf+={TFlf562&3yM-_~%- z)FqjgW@uS%tGaRg%K&Xn0N+*;>812*a z_i<$z8J>Ad7THD;VfLyX>T!sk>0h{-YW%C%S9kF(1Yw)(J~qqJ%wvxS;d(T0W;XbA zrM-wt*}r^U3(c~B=Gy4^uYGJK)z!j}JQQ$gZ^co9>yYTtFxUTkYpPXDS%iCgE3(v> zW1CBJP1TLV?@zcI*GO42xAsbU9yLr~PZmsr`9JOBO zTT~23{>v1Hqn0i$)(3CSW|wbWX0%x9u4(uvGR93|AK6x$t6aEnmyF zV3)3`xw1}fEvAXG2oGlQ&$!qIy_Q+xYcDRg>B@?^+15{4ga_NGz46b&+mc_?K>igs z7XxQ0Yv*R*bY&6l(y!XBC`xr zjef7YJj2x(*;Bs?2QJ1}Gd~jQcL2{&ocmXW*>_&U1xx*a2o8zhhzO3tnIjpCv(fS2 zY4*L8;NL9R~S2p;S>X0Pbt<0-FeoY{EaR~F&!gy|sAVLIHL=Xkx-y41Xeng^s-1{#N zdzA1(^!2-!8(;r2kB{F_)kGX0k1;j5s-%faUw;8_6vkXOdkosC(pF@y!yb*}?y=Dq zvYn<p18^v&@Q_1z%x>G5eq$s#sN>G7gWM<=!UyI<-_5VT{eD!<(-# zCLZPv)o^v==#eQht*jiYnX zrg6`dHFGoWiL!`S8b=!oC08mAi+GrnpNlq)D~=Mf*<}|~7U4cDHYW#VX-vyJa+t$n zg{+In!mx-x?dxW1r|MoC{X+$p5wWeZZ`|rmtChxxh@DVdTcWB?(e!U8U5b2g_H`Pl zEW*7$_g`s@h_vA{U)?S`7j0JMxynkp`Fggp2#A<7~=*+u&ajbF>IjQs@DxCY9axfNPnWf7i?GdC3azNUq=pdQ;DL|{Ni^#$hfIcL}{{xO~fx4p~+_4vRnFoBR>>xKE&sk;6 z1H=|C{-+(=c6G(5W5R#R<2ni4l6~zyQx;+DnVIj%8{o!WIyuAt50LHRYubkYGRW1o z^U8|3dH$@j2oJVV;qm`cWPAFW2I4<7ay9U8W$oMye5@?Oz4>k+8QE&SbFwbNnfWci ztV0*GzBrayg!v+|I}0MZ>&9B_e_vnQnVn@mTqC}2t`VCb8L7WI^GMCYEqp()g9ti_ zpo<8)L6R@a_{hi=L}FRB4oYwxsXa;vw}>BW)P(No__e}}4|vgU84^@A$yg&cHR+~Vo7;`++;YU^*Z^Y&rak{#3^eYC_xckbQWz+=I;dhlqcruRGhzoq8 zT#@LMzG+twN>J#_{#y@{TUmrByUaD>8n0zs#wmT%!YF0++)6G|S%iCcbc9MjOMOY^ zuEgw))@EHqR=Xqm%1B=&N1q8~l_6oeJ=~=`>ZR-;Hy?NZ#ORLbDZc2-Q!EW>smo4 zNX*0JXGJCyjf=8HuFX7*hSjAtsuCh7DS}cWC6&sZBj?W)ss?t_X74sFdIo>F&X|>jPIiR(QL{*&{I!$#3 zXJ4Ix$|8(zFQu(vQh)q^-Qt60<}$^6RlA~rj;NZw_b1J*0L46~hn zE-Q5_QX@+uLi94!e`T0rs?lPtTre%n+S&X+RqP6FP^Snh)Yf#b4@ywz3QfDrHerS3 zMHv4UGp$XOS5+zFq@Sr$ne40dhO!7_JI!=;37A`sW&DeU20%*_t<`O#gMOxMZz(J0 zR-2nCi+Gi7v@$V7-8MSsXWI6*vSMzw4Nw;0*|xT}57o^|+k(dzO|#}G>*QwEOl1-7 z9Z(69k)_@vbLU}pK-R2_$Vvyq|F>@I5-h@Y0Oh)_wRr3s`Gm{{we!bUaOs8iDm%!{ z$GeSQh?XR7sH&9l2~@M#uV!DR%gQ3$Yx6~;7otu5?$_~0zTWFp+@1IaYvfX!HM}{S z{r!voxmmOzQC8Kgj0Fj^$Vz43ws2(;uPQQHk7%iG8?8r}wl!B)%&mnqQ5NCZHvB!k zx>>XwVVb2Y>*QuuKV=af%%Wp`$**D7txRLaEM=YC%$lw&!h>1nfxfNkw$WKWv&hnv z6?3y~qq2xs*>;*ARr_AuHaewd+V-8YVs5sbRunDDGt2(}R(Q;I|h`554>aNc`Ggx?)e&M@V1WQGbDuNaGJ%}IeA4V7Eyks0d0#E4k9ih5lU?3xBWB3T`NV2uCwxAT##hE4yM@sYoi@l{1o zO$0SWP!p1>W-JRvk3l5#>Gv;vJWBXo{JgpMdSmeo``8*#rz$IKo35%!Bd4jvR3#-` ze%U+$ZxnV+QWjx!L0*pxU*P{9j%MP2k5m2H5XB1GHmVwCgJRWK{utA`b;_z`)Ed*e zHPYj>+<8J>CpwyC>U2E&IvrIO;qLLn+~ab+A$30<-+icV8=cHDZM&zen47C4J5~#_$nH8uk!h>1nf@k&DvMu9WmT6#B zW$oMyj8GQg$w2-i-j3?F(Xk`bET*iJn^|$nB0QNTf5SUg-8MRPWZE`HSur=;Mk$MU zm2I@Nw@lqO^U#rL;9_O%+zk9!S%hZ;+u9DQ+eT+*QwEm&ziH$+0=$9;R;A zoE&GlOY@Us_L{7VD5BSN?G{ZnT*iI+Udxq+tduQX-N~IAu@Wxh{(WT+xjFgn207E> z|KuoWqw*j^hmOpG&y5nYIf&#`7GZ3gnI8AUf0&T*&zt0-qbOD5Dnptt%kMHmMk;IO z=I~0&B3@}6E%Z6mjf)744-m(X%;JkzR?p4CcFH1NVPTBzU3KG9o5Z`8+-PN`-0T{m zEW(prv?jJh-7YG$WWF$F7TQ8(&D@LwWf7i?Ggrp;zm|orCAUXeGdJUQDT{C)N&HAg zwnmb>)Lmyugy)fjzt7+}QVi;}X0>b&R9$R?)2%agYriS`$IZoelts9^I4SERZRUa2 z9ISh1T|~#sGR&c)2gxu`RVmFGa0w~OSVBr{%i8BCy9q~B=<&c(37XZ73)Z6GMpRsp zoW*^Oe>qeNB4Su{&K!M=g@$kfkeqG_(8B2N9rt6{1`Tgr)Q+_beYg;p6ACQCOCf#< z;g?W;DS;QL*QR!e^DQ22%`Y+h(w<-J{L%q0eTL7>+jqd*eTFBD7?LooPtTD9-tIl0 zA0Oj_=U{l!>gAP8PcUQrQD%%k(~R+ln=#Y^?Cn{*np_DJb8XBRSIdlX{mhshuC-?& zJL<==1g+E{be}#E719UeU-RadPa;+MM^fAB!w|LAhr_{m7FA*-MMlwe1tpKhzo+T% z;1z#t`7RW+v+~-#9S!U(MXMHtBJoqDBWGIl;UsY^W*awurthF3y+@*Nkm=(vPb;sH zx_^{7UN?3}P6r#JHRtzE8)+oZvL-1j$tEu;C+IlMSISTET%1te`d)E_Ps{ z+Aa9A1JiTg!JE-U{Vs<3Z!owc3lIJi|Lz~D|0`)#N4CY!>obej)cG?*p+{#HykmGL zmah2)3Dy>_c4lEargveJEL!Ouc@o$+-dd|2mwT}QtEFW$1oe%p0!8|<^8N|phN#N( z(km8)zWrEnOIkI^WA`owEBmn)S|j+aAG2faYt*0B)@s4{{wzlO5Ki`IEw!OgWB}`K zS=t!7KlQE#X#-d#Z6sV9z?fxsEm-E0<4x$PGlykQ9k^FGM`id`XPqsP^&p{tj;iqP zKul@T01{_lisfzAT1$bLw^85Ojp6#3xZ03+5NqhOv!R#Q%mR>9G%i2rgIEhobR&2^ zHZBa#4r2ASV~}q!>!MA8A%j^r?K3zzn6>cxNLW-Ck_WTmPaBe88r8yu^BG$e&FeH(^XDQYiy3dI# z2L*<)DDTfuHfSSQNXl@Q4`RnLfB)$D`c_^;Q(^irG-5kk7{&%#3bcmwR`Hc!*l^a% zqP2mbl(-7~#`@YGXgC6$*0(FvFBpfN@d#Gk@1Rh*F>d5r3qbNnRszb-^UDpfBblG2 zLr19nF*ei_Xoy)SX)=Z;}jp!GW__e3|SIfIq`uwnpA7|ncP$QZPy%6$EEZcPlN zzQbBt<|e?Yf9C<)80M$hq52rC0$U-82gTuA9;}8!@3Kyo)x9CHP+TFH{w}NO{fIwx z|1?$@uD#2mEjfC_^t8B8sQw;nYf0!00pOaroRtP-q-xUJ5}LwO&xc ziNQP=<;3cDvmY!T=3g9sce0LHom)>}-L+D%aRO^^c`^XBB-T}{0trbhNh<+2lGqsU z%3P7yMXd0=Yjq32wTUdRf8>097kAPnSUC~fMqzj|k@c|L8UlIG#Fd6CQ&>1Go6LLz z=IgsL8@AqBkb5dC#bHp+$XWvHqJ(>nHC!y8{;o>AL zhdYD8`2mZdy#CcQ1muOmlQByT*fkk%=mx%1SZmAGA&@qWm4mz=uppQ{g_X4o8z%LN z)H-oZ>S>3e%~Z^McPKQNgeo|vV&)&GGJi{{M3`lefT;QUmt3W;iEwEWKAmUtua*HP z!T1kQv-OEEWO7Ctq)letkY^gpVL6)!yC-Kz&KZp+lb|Pw;5Q|M2GlgD4xde9J+uS} zn$8@4@1no4S8EU23|1NzOlMJ+0;Ax1N4!Qf==9LgC_7~F6)KWyX%J-_``t@SzE0py#WayF+T`MVWF1s6JhXyoNqwu z6xIYg__--8UMmK-Qm~iaH5nqx#fL#xVA0w-NC6xdyx|%Twm`X$Saac|BNi&!MZC|plv6}6@ixEyUA1I?DRrk3;tFl#w_xG9{)sFnUTIT%={E%bsfg0OCn?HyPE{8q6@%P$LsssmQBE|wQ- zp!>bR^6+pK9v>YD6;`7*=NH4Z_gfZ)k5;4OPT;@lj`uAHPgXOgg+lBntgrRK5-+Gw z$Wa!qf5OUJ8!z>OaT&4joY=Gu@}|{qnHQWks6X}$L}MUr4Qp@xE7c2P0#K_4g&hH0 zN;tGx%lxccmwUmn!a{I3q$1LS;nTIOr{%&YkUSxGaj5tyYlI{6kWW!co0VQ*3&GqC z*0GWhxDHFJ(<)IVCgj2@fz7#M0QSA~KPpdi;9Uz;fynQ3VQo%z`0pH7f$qIUMTVJqvP^@I1fVtu>=m$za8 z7lA6Uu>M*&9W$sSl`YssJ9>Ve+Yz)@sqC0WM>;p4);=o({ z7@STB3J3o$*icKMW6-WoP)*qO1v)1Mo_>LC=Mu#1!XO4#?m|2Az_VT04*xj@_TAVM z4S;pK(Sl^qzC_J_KL#DYWP>fq-$0Kqg3811U*g7fd8oVxCy39F!$8D5PJo?;Bkjo1$6A%Ls-VuQx3C9)|>M*IC&$!3~W4%Gs)gU z>RYhv2+s3DkKlguoD>a~-Ha~}{f@8*bmT`zSZC|`1sb%QQOgEze8n1Br(%|epVle_ z&acpsH{i>!SYvHO%2Bju6jVNnQ>33D`6wG?z4Va=K{soKLD<)++i z%?e=;we)LLb;v>uDyPSn1D|6o49A|*$5?0V=#!4Ic<))L9Yh|-L9+8P9GU};vpiZI z2szFi*2q*1lK+VhhH1xHjI}(*Zaj@I1uu`|!>d8}Z`e=`;0y-VUAr|%535rh-u;$U z)|SJ%Z&_RGdn+_ZEK?^Oik)C1&}(x~u(j5A*J*INX`L!C_#_+Xlboh`&8!QFlW>aN zeNqi?xZ1s583;Xv9ehI=dJ1dmdANQG%dRHWI*sj0hfSy1FdV+Z&#+*XOVhT0)NV7?g%a=dl!S zLE?E<1?ShR&a=Mg>73uQvDTGeV;NSkSAcEb;}i10f4;}bXd=|RfK!f8n0|pJT1%hQ zphUU2NT_^~Rr7l;Do1m8aEX~xezl@dcHtf92hFb@p)*zw2Jrr79Va=_J&u9?wqG55^b_GYe3UKcV z>uQbtPJ{cQjoyHvKjOf3{+tF$P4R~FKVoquo!1~&b9)(ReU-+kDOb@QZ^F^5tfBSP zbrf9zn@Ra=s9*%dTw{H#M-kp{ZLbH9uVI$scQjZYV=n^juj5;NG>pBDFB30*f^V<0 zK0blJU^xdvPtQ9bp^s;dYNd6f;umS$_GXre`O!$Sp@B7Xj zlvb!Dq>V>$VYgT{oU+H?Vsose?rX4rRFfu9;WpaV8wTFST3!rc?ARtn;OcGG(c0ji z25GuI3_ARW4X_r#w0dvbE5Yyo!Pb`xs^4J)txwZ62(O55!`JSxH}T~<=dY}><=K6R z{S}>3_n`)D9yTcjSAJzt_=uppXhw_M@;#ikmf0=l3+?V=_iIsgJT=)}n{n;K${>55Yr^K04Cx3Cz z%D?bs<+MFz6ZR7q{=!>ILeSs1aDlxh5BkDt9()ZC{>F*a_zp04yS*H|_XOu0jhXPy z@h7Z?rMN?Qr{F&r>FN-^NST4H;@T4y5`YuCAGzx{I)r03@oddHh)04e)u6BTVNjc%bZY zqcSl4Id%pbewM7qy})vi?*-0w%0ZhK*zKN!)E7AY{N|+wXL#)kf63ylzJV4vJuto` zEPRR0pbA`liIajU3#vHcv=$4d;Pv`~AMjcYDrp$hfQcAbUgm-enxm(6XHg5xosc^W zI$0czweMi51@r8I-z|=K>rVwN&~Oos_WQgYHvSHOjhnw8mRKEj97Z1TU>m&UjX?q| z<3Soc_I7l(J}F^=VjHkZ49wwZh)W$Cb6{F^u=+Ucmh=+P$p;^Nq7FWIK+7=r(Z^BK zZ`d|!S&gBcpTovmR;ab<8y2|!e#;O(3(o^x{2V3WbF>+Uzf-=BUe-fzTHxh9d=ZWH zbJW-FL9(Bty>(w%3!jOH!e@StH^Jub@Uvd8fZma40wQfUO!Ig2upW=ZAJu-5HxvQ_ z9F4Rg&?dmq9_N3lJU9rC0v!FVp{QigZ+T0>#GH;s*1Od$koYOfke(+OO3zi(!e`*2 z@cbnUfChn%k~t&h>({xTeye4Hq!34#nZ#X4Np;~sE=RnU3Izi(2!?@yj-J{PI2q^| zW8K-q0^^I~+SiEOj%w)8b-5i4aE^L6x1)`A6KdvhwACuY2Rt|q7kH2WW%4@OS)0UL zV1F_z0JHNtYU9h&@w}LJ7>Wd8&;|PQpbqQ^a`d*Q;S&-*#P-%SALfjQq7bV#)j%gu!qgT!+Iv*bl)4FbIOaJQx5wc(4}yf*sYho=`v7QPGmV4F(0H>>r=w z)F~pa5?Bg4YI^^Pr3z=(VF&iGFxJ+g1s(acPvQN7j`o)Hf8atv6cY{Q3ZcJu!+SjV z5l-^p7=#zb(!BXZlP^hc!rsDIbot>Zrl3DUiePXD1{HC1L-;KZ65-7dth~#?8G@Df z%u@{pt;2~EJ~|vHO1N5dlNZZ+C|?wvei@yNK~DItC<;0cWr{g!`0$l#JrQ~pbJ(2x zZ(N9q+|DcJ$e95>1`iqhc8{KY-WKcMxA=-Pzx0osGGBklW9deWuR!Z!85+}`^4K#Y z?In+`=g&#NEe%Yz;A$TM669^foce_vlY&BoZdGoXbTZT!P2q8KpSb$R8S8kaCnY06nz4 z5!0vVq2!7Zl*mhX zL6u+vO(a+%Kywb9WJ(KRN=r^QaohTb&^>JoK(@sgF}+e@N^UPf!6F3g5+n=IL4wBu zbe5nyJ;JGXq;L`%2JA@D0!>|d+HEyN)TC(z(fgJG$1fpf)w$H z4+L=HLuU&zLuTQ78>rT738EVjm@C0C0p?3EMaTdSwpdZ6Xm~AT72UF+H^<+K-lg zF3I**1ip}2wcBSOQ2B74xjF{e`BPAa*fKyKq z9pKN4v*09l&Di0O+&vY!M?`%wOz836m=x_yb{mRSY~5G26? z0SZWvEVBM>6Zpla&-v`5At&Ix?GbJ+T*!3gtF8z07Iv`AbH^HlG#_uo^a8jighiAj!M5Q9CP^@K1c9j%qL$}B=8nF z{*qve0RKpEVG7B3E8+Afz#+79|^WhCEzbX4v{051ToVoM;-~5 z%^;9Z0=odg1f1MsAV^`EW$aA4r>F!Y1PGI0(QL{QF2Ryn1WHM8O@Oizz0WR|1Ldw$I03`A)Bc_j8K*_BoNEaYRf~F~yqrC*l0@x)uD?o?MPUE2#pnE#Y zEb~4h&`pBM9~0;y!9)RiOMrWjymRO$!7l>n9MCS>i#3#EkO9Q}dx#O$&o8F*VG^7W zV59`0D=5c165t*sf9QJ>;5H=(<0ZfyN)D1Fh)E?d34v4S^_L)1Wft6^w(%^7cqLrFkrdfs0IGyv7%~0jT1x&>fhuPvheeQgkW#&IL2_u51vPe^bnjlgLMiftzFodge1B)a^2 z4ru4{@0|oL8Gs&f*@)>moZBeC3BA z9SIr>P+x-10yL5!Nr0vte9iS-`YXw3VF1#zr4hsTPm$inAo^?pVmUa*CE)fj*CNgU zB*D&O$9XdD3-ja-2B73lMoh;YVxHVp0?SMS-3ie6TU|)##mP5ZByJt^d-@uHME2*g zZ+S9q9P{LX2B73YMoh;oWS%@!0^CLBU^oXSxPTiU5g4_F_dlGFgm+~6D4_KBB=|{y z@e<&EGZ&e}0Y8|m?kNf@(tI5(z+nR1Qw_XYO+Drh8TzgdV!ui0Qa{%|))2fUP93 zUIN_8<~cS=kc_+82sTU5a3_In5}f~>zzz;#JLiTuup>E{km^7j(po;lBd zNrF)a30#o?H_&;GYZ7>gNBks#v!x)vaPl43qV#dP=RXD@Eq*m(`syQ;d{2UjM+rQX z0C(T{Lmx?y=NN%MB}f$D2?D2hXsCGTGoIxfX>pS7d1(OBLc={sksSFgC3{P7Q2<{F zN}Zq_0TP4?iGdOXbAbI{UQW*QhfX_B_vAMKJv7*e>9>W1!V=(KKex1~1i0PLL6`&; z&JqZh0QdfRj#372>bU>UNm+yFcm#lh3LISEY7NAXSRk+&fYhqYV;6Zc9t+^fRSZDM zQASM10|Gp`1_zgTemo<s+;4wx_ zevN6OxjCewFG|)uvP&6{y*seWmzw? z@WT=4j!hE$yq~~k3C4ow#Z%MGQ9f3O%{Mnv>^EXNGzyfB`7Cy{4GIW z0iH_mwE!<97%%*z;g&IX7|wqhGm`3^LA>)(|n!4n_+hAI-^p$`tKNl?W~AX4MouElWtNw@2(**{50G$0+DPzS9s;ov?8!?YP69kv!f#;`><=c; zQG(@#(EpgFizM3$6G)ICK|Hso1Ze{FkpNGja2fq2C|;bvKnbdg9D^lD7a(yPpMTR) z4Lqj8g^b`?IG~amWyEwmq{5TONKi+Bu@c}p6`sQ>!99^a$J=ltTO@}e{M)}y$faeS%Upt3EY+-D1pGQ5)9~0 z;GP6)g=P;q_=$VH=QZk59vOgY_G2F7=VY8Z9_8Vt{B00Q|Hp{wpW+ukF!{Lz>HiS$ z!UHoTL681}fK`Is0{BSq<73Lq2*1*jlFPVpF<1m^{a;D8?|(i5xD z09KU%eA>XVRQm&3G<1~H9zkM5#~aYRp(8h}Xz0L0Lf$aGks}-rr?zN>N7*I>MEiK7 zA6~+zjU44+EhfSBUeP}Aq>-b4E+20%`av*%TZG6aj)K9Fm4*)PHy>~C{dW>~A-0Jl3TiiX zG=u17j>y2O)e<6%2leOKBIf0d@rPl}9M!)aH%{*8c Class Schedule — Unifying Data Science Skip to content

Class Schedule

Class: Tuesday / Thursday, 1:25-2:40pm

Office Hours:

Date

Topic

Do Before Class

In Class

Thrs, Jan 11

Course Overview

Tues, Jan 16

Solving Problems by Answering Questions

Thrs, Jan 18

Stakeholder Management

Tues, Jan 23

Proscriptive v. Descriptive Questions

Thrs, Jan 25

Exploratory Questions

Tues, Jan 30

Exploratory Questions

Thrs, Feb 1

Teams 1

Tues, Feb 6

Teams 2

Thrs, Feb 8

Passive Prediction Questions

Tues, Feb 13

Passive Prediction Questions

Thrs, Feb 15

Passive Prediction Questions

Tues, Feb 20

Causal Questions

Thrs, Feb 22

Causal Questions

Exercise

Tues, Feb 27

Causal Questions

  • Cunningham, Chpt 4, pp 135 (“Independence Assumption”) - 148 (Stop at “Randomization Inference”)

  • Indicator Variables

(Note SDO (Simple Difference in Outcomes) in Cunningham same as “widehat{ATE} from class)

Optional:
  • Read Chpt 4 in Cunningham from start (different presentation of potential outcomes)

Exercise

Thrs, Feb 29

Causal Questions: Experiments

Experiments: Internal Validity (In Practice):

  • Kohvani, Tang and Xu: Chpt 2 (End to End Example)

  • Kohavi, Tang and Xu: Chpt 3, “Threats to Internal Validity” (p. 42-47)

  • Kohvani, Tang and Xu: Chpt 19 (A/A Testing)

Tues, Mar 5

Causal Questions: Experiments

Overall Evaluation Criteria: Kohavi, Tang, and Xu Chpt 7.

Finishing Internal Validity:

  • Different Randomizations: Kohavi, Tang and Xu Chpt 22

Experiments: External Validity (In Practice):

  • Kohavi, Tang and Xu, Chpt 3, “Threats to External Validity” to end (p. 47-54)

  • Kohvai, Tang and Xu, Chpt 23 (Primacy Effects / Long Term Decay)

Exercise

Thrs, Mar 7

Optional Class

Optional Class

Tues, Mar 12

NO CLASS

Thrs, Mar 14

NO CLASS

Tues, Mar 19

Causal Questions: Experiments

Designing Experiments

Thrs, Mar 21

Review Day

AB Testing Review

Tues, Mar 26

Causal Questions: Experiments

Decision Making Under Uncertainty

Thrs, Mar 28

MIDTERM

MIDTERM

Tues, Apr 2

Causal Questions: Regression

  • Causal Beyond Experiments

Thrs, Apr 4

Causal Questions: Indicators and Fixed Effects

Tues, Apr 9

Causal Questions: Matching

  • Cunningham, Chpt 5, pp 175 (“Matching and Subclassification”) - 206 (Stop before “Propensity Score Matching”)

Thrs, Apr 11

Causal Questions: Differences and Differences / Panels

  • Cunningham, Chpt 9 pp 406 (Difference in Differences) - pp 433 (Stop at “Importance of Placebos in Diff-in-Diff”)

  • Diff-in-Diffs at Netflix

Optional but encouraged: (dont need to follow everything, but here’s a real diff-in-diff)

Tues, Apr 16

Ethics

Tues, Apr 18

EXTRAS

Stuff that didn’t make it to class

  • Adversarial Users:

Texts Referenced in Schedule:

\ No newline at end of file + Class Schedule — Unifying Data Science Skip to content

Class Schedule

Class: Tuesday / Thursday, 1:25-2:40pm

Office Hours:

Date

Topic

Do Before Class

In Class

Thrs, Jan 11

Course Overview

Tues, Jan 16

Solving Problems by Answering Questions

Thrs, Jan 18

Stakeholder Management

Tues, Jan 23

Proscriptive v. Descriptive Questions

Thrs, Jan 25

Exploratory Questions

Tues, Jan 30

Exploratory Questions

Thrs, Feb 1

Teams 1

Tues, Feb 6

Teams 2

Thrs, Feb 8

Passive Prediction Questions

Tues, Feb 13

Passive Prediction Questions

Thrs, Feb 15

Passive Prediction Questions

Tues, Feb 20

Causal Questions

Thrs, Feb 22

Causal Questions

Exercise

Tues, Feb 27

Causal Questions

  • Cunningham, Chpt 4, pp 135 (“Independence Assumption”) - 148 (Stop at “Randomization Inference”)

  • Indicator Variables

(Note SDO (Simple Difference in Outcomes) in Cunningham same as “widehat{ATE} from class)

Optional:
  • Read Chpt 4 in Cunningham from start (different presentation of potential outcomes)

Exercise

Thrs, Feb 29

Causal Questions: Experiments

Experiments: Internal Validity (In Practice):

  • Kohvani, Tang and Xu: Chpt 2 (End to End Example)

  • Kohavi, Tang and Xu: Chpt 3, “Threats to Internal Validity” (p. 42-47)

  • Kohvani, Tang and Xu: Chpt 19 (A/A Testing)

Tues, Mar 5

Causal Questions: Experiments

Overall Evaluation Criteria: Kohavi, Tang, and Xu Chpt 7.

Finishing Internal Validity:

  • Different Randomizations: Kohavi, Tang and Xu Chpt 22

Experiments: External Validity (In Practice):

  • Kohavi, Tang and Xu, Chpt 3, “Threats to External Validity” to end (p. 47-54)

  • Kohvai, Tang and Xu, Chpt 23 (Primacy Effects / Long Term Decay)

Exercise

Thrs, Mar 7

Optional Class

Optional Class

Tues, Mar 12

NO CLASS

Thrs, Mar 14

NO CLASS

Tues, Mar 19

Causal Questions: Experiments

Designing Experiments

Power Ex

Thrs, Mar 21

Review Day

AB Testing Review

Tues, Mar 26

Causal Questions: Experiments

  • Statistical Decision Theory (on Canvas). 550-556

(This is same as IDS 705 Lecture 8 Reading)

Thrs, Mar 28

MIDTERM

MIDTERM

Tues, Apr 2

Causal Questions: Regression

  • Causal Beyond Experiments

Thrs, Apr 4

Causal Questions: Indicators and Fixed Effects

Tues, Apr 9

Causal Questions: Matching

  • Cunningham, Chpt 5, pp 175 (“Matching and Subclassification”) - 206 (Stop before “Propensity Score Matching”)

Thrs, Apr 11

Causal Questions: Differences and Differences / Panels

  • Cunningham, Chpt 9 pp 406 (Difference in Differences) - pp 433 (Stop at “Importance of Placebos in Diff-in-Diff”)

  • Diff-in-Diffs at Netflix

Optional but encouraged: (dont need to follow everything, but here’s a real diff-in-diff)

Tues, Apr 16

Ethics

Tues, Apr 18

EXTRAS

Stuff that didn’t make it to class

  • Adversarial Users:

Texts Referenced in Schedule:

\ No newline at end of file diff --git a/docs/html/searchindex.js b/docs/html/searchindex.js index 3f19590..b53bd45 100644 --- a/docs/html/searchindex.js +++ b/docs/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["DRAFT_ml_bias", "UDS_midterm_part2_2022", "backwards_design", "causal_inference_beyond_ab_testing", "class_schedule", "descriptive_questions", "endogenous_stopping", "ethical_ml_recommendations", "evaluating_real_studies", "exercises/discussion_exploratory", "exercises/discussion_regressions_incomeineq", "exercises/exercise_abtesting", "exercises/exercise_counterfactuals", "exercises/exercise_diffindiff", "exercises/exercise_evaluating_studies", "exercises/exercise_exploratory", "exercises/exercise_first_class_capstone_proposal", "exercises/exercise_generating_questions", "exercises/exercise_ghostmap_1", "exercises/exercise_ghostmap_2", "exercises/exercise_indicators", "exercises/exercise_interpretable", "exercises/exercise_matching", "exercises/exercise_optimalABthresholds", "exercises/exercise_panel", "exercises/exercise_passive_prediction", "exercises/exercise_potential_outcomes1", "exercises/exercise_potential_outcomes2", "exercises/exercise_power_calculations", "exercises/exercise_regressions_incomeineq", "exercises/exercise_resume_experiment", "exercises/exercise_stakeholder_management", "exercises/exercise_taxonomy_of_questions", "exercises/setup_diffindiff", "exercises/solutions_first_class_capstone_proposal", "exercises/solutions_interpretable", "exercises/solutions_passive_prediction", "exercises/solutions_resume_experiment", "fixed_effects", "fixed_effects_and_causal_inference", "fixed_effects_v_hierarchical", "how_to_read", "index", "internal_v_external_validity", "interpreting_indicator_vars", "limitations_of_ATE", "matching_how", "matching_why", "moving_from_problems_to_questions", "nick_ab_testing_checklist", "public_data", "pvalues_and_decision_making", "reading_reflections", "solutions", "solutions_warning", "taxonomy_of_questions", "team_assignments/UDS_TeamProject_Exploratory", "writing_to_stakeholders"], "filenames": ["DRAFT_ml_bias.ipynb", "UDS_midterm_part2_2022.ipynb", "backwards_design.ipynb", "causal_inference_beyond_ab_testing.ipynb", "class_schedule.rst", "descriptive_questions.ipynb", "endogenous_stopping.ipynb", "ethical_ml_recommendations.ipynb", "evaluating_real_studies.ipynb", "exercises/discussion_exploratory.ipynb", "exercises/discussion_regressions_incomeineq.ipynb", "exercises/exercise_abtesting.ipynb", "exercises/exercise_counterfactuals.ipynb", "exercises/exercise_diffindiff.ipynb", "exercises/exercise_evaluating_studies.ipynb", "exercises/exercise_exploratory.ipynb", "exercises/exercise_first_class_capstone_proposal.ipynb", "exercises/exercise_generating_questions.ipynb", "exercises/exercise_ghostmap_1.ipynb", "exercises/exercise_ghostmap_2.ipynb", "exercises/exercise_indicators.ipynb", "exercises/exercise_interpretable.ipynb", "exercises/exercise_matching.ipynb", "exercises/exercise_optimalABthresholds.ipynb", "exercises/exercise_panel.ipynb", "exercises/exercise_passive_prediction.ipynb", "exercises/exercise_potential_outcomes1.ipynb", "exercises/exercise_potential_outcomes2.ipynb", "exercises/exercise_power_calculations.ipynb", "exercises/exercise_regressions_incomeineq.ipynb", "exercises/exercise_resume_experiment.ipynb", "exercises/exercise_stakeholder_management.ipynb", "exercises/exercise_taxonomy_of_questions.ipynb", "exercises/setup_diffindiff.ipynb", "exercises/solutions_first_class_capstone_proposal.ipynb", "exercises/solutions_interpretable.ipynb", "exercises/solutions_passive_prediction.ipynb", "exercises/solutions_resume_experiment.ipynb", "fixed_effects.ipynb", "fixed_effects_and_causal_inference.ipynb", "fixed_effects_v_hierarchical.ipynb", "how_to_read.ipynb", "index.rst", "internal_v_external_validity.ipynb", "interpreting_indicator_vars.ipynb", "limitations_of_ATE.ipynb", "matching_how.ipynb", "matching_why.ipynb", "moving_from_problems_to_questions.ipynb", "nick_ab_testing_checklist.ipynb", "public_data.ipynb", "pvalues_and_decision_making.ipynb", "reading_reflections.ipynb", "solutions.ipynb", "solutions_warning.ipynb", "taxonomy_of_questions.ipynb", "team_assignments/UDS_TeamProject_Exploratory.ipynb", "writing_to_stakeholders.ipynb"], "titles": ["Backwards Design", "UDS Midterm 2022, Part 2", "Backwards Design", "Beyond The Experiment", "Class Schedule", "Researcher Discretion in Descriptive Analysis", "Peeking / Endogenous Stopping", "Recommendations for Responsible Machine Learning", "Evaluating Real Studies", "Discussion of Descriptive Exercises", "Interpreting Causal Effects of Gender", "A/B Testing the Udacity Website", "Counter-Factuals and Experimental Ideals", "Marijuana Legalization and Violent Crime", "Evaluating Studies", "Crime and Policing Expenditures Exploratory Questions", "Your First Stakeholder", "Converting Stakeholder Prompts into Actionable Questions", "Causality in the Time of Cholera", "Causality in the Time of Cholera", "Interpreting Indicator Variables", "Interpretable Modelling of Credit Risk", "Matching Exercise", "Optimal AB Testing Design", "Traffic Death Analysis", "Predicting Mortgage Delinquency Risk", "Making Potential Outcomes Concrete", "Making Potential Outcomes Concrete 2", "Power Calculations and Experiment Planning", "Estimating Gender Discrimination in the Workplace", "Resume Experiment Analysis", "Soliciting Information From Your Stakeholder", "Generating and Classifying Questions", "Groupby and Arrest Data", "Acme Corportation Solution", "Interpretable Modelling of Credit Risk", "Predicting Mortgage Delinquency Risk", "Resume Experiment Analysis", "Fixed Effects: Indicator Variables for Groups", "Fixed Effects and Causal Inference", "Fixed Effects and Hierarchical Models", "How to Read (Academic Edition)", "Welcome to Solving Problems with Data!", "Internal and External Validity", "Using and Interpreting Indicator (Dummy) Variables", "Limitations of Experiments (and Average Treatment Effects)", "How Matching is Done (A Summary)", "Matching", "Converting Stakeholder Prompts into Questions", "Nick\u2019s Things to Think About Before A/B Testing", "Where To Find Public Data", "<no title>", "Reading Reflections", "Solutions", "Looking for the solutions?", "Taxonomy of Questions", "Using Exploratory Questions to Better Understanding Your Problem", "Writing Data Science Report for Non-Technical Audiences"], "terms": {"i": [0, 1, 3, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 57], "wai": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 16, 22, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "develop": [0, 2, 5, 7, 17, 18, 19, 21, 22, 28, 35, 41, 42, 43, 45, 48, 52, 55], "an": [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 54, 55, 56, 57], "effici": [0, 2, 3, 7, 22, 24, 29, 30, 32, 37, 40, 41], "strategi": [0, 2, 11, 16, 24, 40, 45, 46, 48, 49, 57], "complet": [0, 2, 11, 16, 18, 19, 21, 22, 25, 30, 35, 36, 37, 47, 48, 57], "new": [0, 2, 3, 5, 7, 8, 11, 13, 14, 20, 21, 22, 23, 25, 28, 31, 34, 35, 36, 39, 41, 43, 44, 45, 49, 55, 57], "data": [0, 3, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 18, 20, 23, 24, 26, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 55], "scienc": [0, 2, 3, 4, 5, 7, 13, 16, 18, 26, 27, 28, 31, 41, 42, 45, 48, 50, 55], "project": [0, 2, 3, 4, 11, 16, 21, 26, 27, 34, 35, 42, 50, 52, 56, 57], "my": [0, 2, 4, 5, 7, 21, 22, 25, 33, 35, 36, 43, 44, 45, 47, 48, 55], "view": [0, 2, 7, 8, 11, 23, 36, 44], "one": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 15, 16, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 55, 56, 57], "most": [0, 2, 5, 7, 13, 16, 21, 22, 28, 30, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 57], "import": [0, 1, 3, 4, 5, 7, 13, 16, 21, 22, 24, 28, 29, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 55, 56, 57], "skill": [0, 2, 3, 13, 15, 30, 37, 41, 42, 50, 52, 54, 55, 57], "profession": [0, 2, 3, 42], "scientist": [0, 2, 3, 5, 7, 16, 22, 31, 38, 40, 41, 42, 44, 48, 57], "If": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 18, 19, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50], "don": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 55, 56, 57], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 56, 57], "have": [0, 1, 3, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "lot": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 21, 22, 28, 29, 35, 38, 40, 41, 43, 45, 47, 48, 49, 50, 55, 56, 57], "experi": [0, 2, 4, 5, 6, 7, 8, 39, 41, 42, 43, 47, 49, 53, 55, 56, 57], "mai": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 57], "obviou": [0, 2, 5, 7, 37, 39, 43, 44], "why": [0, 1, 3, 4, 5, 6, 7, 11, 21, 22, 25, 26, 27, 30, 31, 34, 35, 36, 37, 41, 42, 44, 45, 46, 47, 52, 56, 57], "thi": [0, 1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57], "even": [0, 2, 3, 6, 7, 8, 11, 12, 13, 14, 22, 23, 25, 28, 30, 33, 35, 36, 37, 38, 40, 42, 43, 45, 55], "call": [0, 1, 2, 3, 6, 7, 8, 11, 12, 13, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 44, 46, 47, 49, 50, 55], "That": [0, 3, 5, 7, 8, 11, 12, 18, 19, 22, 25, 28, 30, 36, 37, 39, 41, 43, 44, 45, 46, 47, 55, 56, 57], "": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 54, 55, 56, 57], "becaus": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 21, 22, 24, 26, 27, 28, 29, 30, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 55, 56, 57], "student": [0, 2, 5, 7, 11, 13, 16, 26, 30, 31, 37, 38, 40, 41, 43, 50, 54, 55], "come": [0, 1, 2, 3, 5, 7, 11, 14, 21, 22, 25, 28, 29, 35, 36, 38, 41, 42, 43, 44, 45, 47, 48, 50, 55, 56], "from": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "classroom": [0, 2, 12, 40, 42], "exercis": [0, 1, 2, 4, 10, 16, 18, 19, 23, 26, 27, 33, 41, 42, 54], "site": [0, 2, 7, 8, 11, 23, 31, 33, 36, 37, 38, 42, 44, 48, 50, 54, 56], "like": [0, 1, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "kaggl": [0, 2, 7, 56], "These": [0, 2, 11, 12, 20, 22, 50, 52], "type": [0, 2, 3, 7, 8, 11, 15, 16, 20, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 44, 47, 48, 55, 56, 57], "ar": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 52, 55, 56, 57], "excel": [0, 2, 7, 21, 35], "opportun": [0, 2, 3, 13, 41, 52], "usual": [0, 2, 3, 11, 12, 25, 29, 30, 36, 37, 39, 42, 43, 45, 50, 55, 57], "case": [0, 2, 3, 5, 7, 11, 12, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 37, 38, 40, 42, 43, 44, 45, 48, 55, 57], "unbeknownst": [0, 2], "been": [0, 1, 2, 5, 7, 9, 11, 12, 13, 16, 17, 22, 24, 25, 26, 27, 30, 31, 32, 36, 37, 39, 41, 43, 46, 47, 48, 55, 57], "carefulli": [0, 2, 33, 43, 57], "tailor": [0, 2, 57], "clearli": [0, 2, 5, 7, 8, 12, 44, 47, 55], "goal": [0, 2, 3, 5, 7, 11, 16, 22, 26, 27, 28, 41, 46, 52, 54, 56, 57], "thei": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 57], "set": [0, 2, 5, 7, 8, 9, 11, 13, 14, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 55, 56], "clean": [0, 1, 2, 17, 22, 33, 56], "filter": [0, 2, 5], "provid": [0, 1, 2, 3, 5, 7, 8, 11, 16, 21, 25, 28, 31, 33, 35, 36, 37, 41, 42, 45, 48, 50, 54, 55, 56, 57], "onli": [0, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 55], "relev": [0, 2, 3, 22, 28, 32, 41, 49, 57], "variabl": [0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 21, 22, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 46, 47, 48, 50, 55, 56], "done": [0, 2, 5, 7, 12, 13, 29, 32, 40, 41, 49, 55, 56, 57], "good": [0, 3, 4, 6, 7, 8, 11, 20, 21, 22, 23, 25, 28, 31, 35, 36, 38, 40, 41, 42, 43, 45, 46, 47, 49, 52, 55, 57], "reason": [0, 2, 3, 5, 7, 8, 9, 10, 12, 14, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 43, 45, 47, 49, 52, 55, 57], "instructor": [0, 2, 5, 52], "focus": [0, 1, 2, 15, 29, 30, 37, 43], "attent": [0, 1, 2, 22, 25, 36, 41, 57], "try": [0, 2, 3, 7, 8, 11, 12, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 35, 36, 38, 39, 41, 43, 44, 45, 47, 48, 55, 56, 57], "model": [0, 1, 2, 4, 5, 11, 13, 16, 20, 22, 24, 29, 30, 34, 37, 38, 39, 41, 42, 43, 44, 55, 57], "select": [0, 2, 6, 7, 11, 21, 28, 30, 35, 37], "interpret": [0, 1, 2, 5, 13, 16, 17, 23, 24, 26, 29, 30, 37, 42, 43, 45, 57], "But": [0, 2, 3, 5, 6, 7, 8, 10, 13, 15, 21, 22, 26, 28, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 55, 57], "result": [0, 2, 5, 6, 7, 9, 10, 11, 15, 16, 18, 20, 22, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 55], "often": [0, 1, 2, 3, 5, 6, 7, 21, 24, 28, 29, 31, 33, 35, 38, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 55, 56, 57], "awai": [0, 2, 9, 23, 46, 48, 55, 57], "impress": [0, 2, 15], "what": [0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 55, 56, 57], "do": [0, 1, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 50, 52, 54, 55, 56, 57], "work": [0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 27, 28, 29, 31, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57], "statist": [0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 22, 23, 25, 28, 30, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 55, 57], "In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 52, 55, 57], "realiti": [0, 2, 7, 43, 44, 46], "howev": [0, 1, 2, 6, 7, 11, 18, 21, 22, 24, 25, 33, 35, 36, 38, 39, 40, 42, 44, 45, 46, 55], "thing": [0, 2, 3, 5, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22, 23, 26, 27, 29, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 52, 55, 57], "doe": [0, 1, 2, 3, 5, 7, 10, 11, 12, 13, 15, 21, 22, 23, 24, 28, 29, 30, 31, 33, 35, 37, 38, 39, 40, 41, 44, 45, 47, 48, 49, 55], "articul": [0, 2], "concret": [0, 2, 7, 8, 16, 28, 31, 44, 57], "feasibl": [0, 2, 18, 19, 22, 45, 49], "object": [0, 2, 3, 5, 8, 11, 22, 33, 35, 36], "b": [0, 2, 4, 5, 6, 7, 12, 13, 23, 24, 28, 30, 32, 33, 37, 40, 42, 45, 52], "achiev": [0, 2, 3, 11, 31, 49], "And": [0, 2, 3, 5, 7, 8, 9, 12, 22, 24, 25, 28, 29, 30, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 54, 55, 57], "best": [0, 2, 3, 5, 7, 8, 9, 12, 16, 22, 25, 28, 31, 35, 36, 41, 43, 45, 46, 47, 48, 50, 54, 55], "go": [0, 1, 2, 5, 7, 8, 9, 10, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 30, 31, 35, 36, 37, 40, 41, 43, 44, 46, 50], "about": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 56, 57], "accomplish": [0, 2, 30, 37, 40], "both": [0, 1, 2, 3, 5, 7, 8, 10, 13, 15, 16, 18, 19, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 43, 44, 45, 46, 47, 49, 50, 55, 56, 57], "As": [0, 2, 3, 5, 6, 7, 8, 10, 11, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 50, 55, 56, 57], "name": [0, 1, 2, 11, 13, 16, 20, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 39, 44, 48, 50], "impli": [0, 2, 10, 15, 24, 28, 29, 30, 37, 38, 40, 48, 55], "idea": [0, 2, 6, 7, 13, 28, 38, 40, 41, 43, 45, 46, 47, 48, 50], "start": [0, 2, 3, 4, 6, 7, 8, 11, 21, 22, 23, 25, 28, 29, 30, 35, 36, 37, 41, 43, 44, 46, 47, 48, 49, 55, 57], "where": [0, 1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 21, 22, 24, 25, 27, 28, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 52, 55, 57], "want": [0, 1, 2, 5, 6, 7, 8, 11, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57], "end": [0, 2, 3, 4, 5, 6, 7, 8, 11, 16, 21, 22, 24, 25, 28, 30, 31, 34, 35, 36, 37, 44, 46, 47, 49, 55], "up": [0, 4, 5, 7, 8, 11, 14, 15, 16, 17, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 43, 45, 46, 47, 55, 57], "figur": [0, 1, 2, 6, 8, 22, 25, 28, 33, 35, 36, 41, 44, 47, 48, 54, 55, 56], "out": [0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 16, 21, 22, 25, 28, 30, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 56, 57], "exactli": [0, 2, 5, 6, 10, 11, 16, 22, 26, 27, 30, 31, 33, 37, 43, 44, 46, 47, 57], "need": [0, 3, 4, 7, 13, 16, 17, 21, 23, 25, 28, 29, 31, 33, 34, 35, 36, 44, 46, 49, 50, 56, 57], "get": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 23, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "actual": [0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 16, 21, 22, 25, 26, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 55, 57], "common": [0, 2, 3, 7, 13, 28, 38, 40, 43, 45, 46, 55, 56], "manag": [0, 2, 4, 5, 7, 28, 42, 52, 57], "rang": [0, 2, 3, 23, 28, 36, 41, 47], "differ": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57], "domain": [0, 2, 7, 8, 21, 32, 35, 52, 55, 56], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57], "alreadi": [0, 2, 7, 8, 16, 43, 46, 48, 49, 55, 56], "familiar": [0, 2, 13, 21, 22, 28, 35, 40, 42, 55], "broad": [0, 2, 5, 18, 19, 21, 35, 41, 57], "term": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 16, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 40, 41, 43, 44, 46, 47, 49, 55, 56, 57], "class": [0, 2, 3, 5, 7, 8, 10, 13, 16, 21, 28, 29, 35, 36, 41, 42, 43, 44, 47, 48, 50, 52, 55, 56, 57], "we": [0, 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 56, 57], "focu": [0, 2, 5, 22, 28, 29, 30, 31, 37, 38, 39, 41, 42, 43, 47, 55], "five": [0, 2, 20, 28], "step": [0, 2, 8, 22, 25, 28, 30, 31, 35, 36, 37, 46, 50, 55], "solv": [0, 2, 4, 7, 16, 28, 31, 47, 48, 54, 56], "help": [0, 2, 3, 5, 7, 11, 12, 16, 17, 18, 21, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 40, 43, 45, 47, 48, 50, 52, 55, 56, 57], "would": [0, 1, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 40, 43, 45, 46, 47, 48, 50, 55, 56, 57], "look": [0, 1, 3, 5, 6, 7, 8, 11, 12, 16, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 55, 56, 57], "determin": [0, 1, 2, 5, 7, 11, 12, 16, 25, 30, 36, 37, 43, 45, 48, 56], "order": [0, 2, 7, 16, 18, 19, 22, 26, 27, 28, 31, 34, 41], "gener": [0, 2, 4, 5, 7, 11, 13, 21, 22, 23, 25, 29, 30, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "identifi": [0, 1, 2, 7, 11, 13, 17, 18, 19, 21, 22, 25, 28, 33, 35, 36, 38, 43, 44, 48, 50, 55, 56], "those": [0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 16, 18, 22, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57], "bring": [0, 2, 7, 25, 34, 36, 38, 42, 43, 48], "them": [0, 2, 3, 5, 7, 8, 11, 12, 16, 17, 21, 22, 26, 27, 28, 31, 35, 38, 40, 41, 43, 44, 46, 47, 48, 50, 55, 56, 57], "togeth": [0, 2, 11], "first": [0, 1, 2, 3, 7, 8, 9, 11, 12, 13, 15, 17, 21, 22, 24, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 55, 57], "should": [0, 2, 3, 5, 7, 8, 9, 11, 13, 15, 16, 21, 22, 23, 25, 26, 28, 30, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 55, 56, 57], "straightforward": [0, 2, 25, 36], "yet": [0, 2, 3, 9, 13, 21, 22, 35, 44, 48, 55], "surpris": [0, 2, 37, 43], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 50, 54, 55, 56, 57], "never": [0, 2, 3, 5, 7, 8, 9, 11, 13, 22, 41, 47, 48, 52, 55, 57], "explicitli": [0, 2, 7, 35, 45, 55], "address": [0, 2, 7, 11, 16, 17, 25, 26, 31, 36, 40, 42, 43, 47, 48, 56, 57], "peopl": [0, 2, 3, 5, 7, 8, 11, 12, 13, 14, 17, 18, 21, 22, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 41, 43, 44, 45, 47, 48, 50, 52, 54, 55, 56, 57], "excit": [0, 2, 17, 45], "sai": [0, 2, 3, 5, 6, 7, 8, 11, 21, 22, 26, 27, 28, 30, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 55, 57], "some": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 17, 21, 22, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 55, 56, 57], "alwai": [0, 2, 5, 8, 12, 13, 16, 21, 22, 23, 26, 27, 30, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 56], "when": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 50, 55, 56, 57], "make": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 49, 51, 55, 56, 57], "sure": [0, 2, 3, 5, 8, 11, 15, 21, 22, 23, 24, 25, 26, 30, 32, 33, 35, 36, 37, 42, 43, 44, 45, 48, 55, 57], "can": [0, 1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 57], "addit": [0, 2, 7, 8, 11, 13, 21, 22, 29, 30, 31, 35, 37, 38, 42, 44, 45, 57], "stakehold": [0, 2, 4, 5, 7, 21, 25, 28, 35, 36, 42, 56, 57], "agre": [0, 2, 43, 56], "There": [0, 2, 6, 8, 11, 12, 16, 21, 22, 29, 35, 36, 40, 41, 43, 45, 46, 50, 52], "noth": [0, 2, 11, 35, 37, 49, 55], "wors": [0, 2, 28, 35, 38, 41, 43], "than": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 42, 43, 45, 47, 49, 50, 52, 54, 55, 57], "spend": [0, 2, 3, 7, 8, 12, 26, 27, 28, 45, 47, 48, 54], "week": [0, 2, 11, 16, 23, 28, 29, 33, 39, 43, 47, 49, 52], "discov": [0, 2, 7, 23, 43, 48, 55], "valu": [0, 1, 2, 6, 7, 8, 11, 13, 16, 20, 21, 22, 23, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 44, 45, 47, 49, 51, 55], "here": [0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 57], "few": [0, 2, 3, 7, 13, 21, 24, 27, 28, 33, 35, 36, 37, 41, 42, 43, 45, 46, 50, 55, 57], "exampl": [0, 2, 3, 4, 5, 7, 8, 11, 12, 14, 20, 22, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 48, 56, 57], "know": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15, 16, 20, 21, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 43, 44, 47, 48, 49, 50, 55, 56, 57], "reduc": [0, 2, 3, 5, 7, 11, 12, 13, 14, 15, 17, 23, 24, 30, 32, 37, 45, 47, 48, 55, 56], "mass": [0, 2, 26], "incarcer": [0, 2, 4], "busi": [0, 2, 3, 5, 8, 13, 38, 42, 43, 49, 50, 52, 55], "potenti": [0, 1, 2, 4, 7, 8, 11, 16, 18, 19, 21, 24, 25, 29, 30, 31, 35, 36, 37, 43, 45, 47, 49, 57], "custom": [0, 2, 3, 8, 12, 17, 43, 47, 55, 57], "who": [0, 1, 2, 3, 5, 7, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 26, 27, 28, 29, 30, 31, 32, 35, 37, 40, 41, 43, 44, 47, 50, 54, 55, 56, 57], "alzheim": [0, 2, 55], "test": [0, 2, 4, 5, 6, 7, 8, 13, 16, 18, 19, 21, 22, 25, 28, 30, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 57], "earli": [0, 2, 4, 6, 18, 19, 31, 48, 49, 57], "intervent": [0, 2, 3, 11, 28, 43, 45, 55], "although": [0, 2, 11, 12, 28], "everyon": [0, 1, 2, 11, 25, 29, 35, 36, 40, 43, 45, 50, 55], "u": [0, 1, 2, 4, 7, 8, 11, 13, 16, 17, 21, 22, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 55, 57], "fundament": [0, 2, 5, 18, 19, 22, 32, 42, 43, 47, 55], "practic": [0, 2, 3, 4, 5, 6, 7, 13, 15, 41, 42, 44, 45, 49, 55], "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 50, 52, 55, 57], "quantifi": [0, 2], "world": [0, 1, 2, 3, 5, 7, 8, 12, 25, 27, 30, 36, 37, 39, 41, 42, 43, 45, 47, 49, 50, 55, 56], "For": [0, 2, 3, 7, 8, 11, 12, 13, 14, 16, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 55, 57], "ran": [0, 2, 3, 5, 6, 8, 11, 13, 22, 39, 47, 49], "our": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 55, 57], "regress": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 16, 20, 22, 24, 29, 30, 37, 38, 39, 44, 46, 47, 48, 57], "birth": [0, 2, 30, 37], "weight": [0, 2, 20, 21, 22, 26, 29, 35, 38, 49], "variou": [0, 2, 30, 37], "demograph": [0, 2, 11, 31, 43, 50], "whether": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 20, 21, 22, 25, 26, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 55, 56, 57], "mother": [0, 2], "smoke": [0, 2, 7, 55], "dure": [0, 2, 5, 12, 13, 18, 25, 36, 47], "pregnanc": [0, 2], "were": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 18, 19, 20, 25, 27, 28, 29, 30, 33, 36, 37, 38, 43, 44, 45, 47, 48, 49, 55, 57], "matern": [0, 2], "associ": [0, 1, 2, 25, 28, 30, 36, 37, 44, 55], "lower": [0, 2, 7, 10, 14, 16, 29, 30, 37, 38, 44, 57], "signific": [0, 1, 2, 6, 11, 13, 22, 28, 30, 35, 37, 42, 44, 49, 55], "level": [0, 1, 2, 7, 11, 12, 15, 21, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 50, 57], "after": [0, 1, 2, 5, 7, 8, 11, 13, 19, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 54, 55], "control": [0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 20, 22, 24, 26, 27, 28, 29, 30, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49], "other": [0, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 55, 56, 57], "confound": [0, 2, 3, 18, 19], "someon": [0, 1, 2, 3, 5, 7, 12, 26, 30, 32, 37, 38, 45, 54, 56, 57], "run": [0, 2, 3, 5, 6, 7, 8, 11, 13, 14, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 48, 50, 57], "commerc": [0, 2, 23], "websit": [0, 2, 6, 8, 23, 28, 30, 37, 55], "user": [0, 2, 3, 4, 7, 8, 11, 13, 23, 33, 36, 37, 38, 43, 44, 45, 46, 49, 55, 56], "visit": [0, 2, 8, 11], "randomli": [0, 2, 3, 8, 11, 12, 28, 30, 37, 45, 57], "assign": [0, 1, 2, 3, 4, 7, 8, 11, 22, 25, 28, 30, 36, 37, 38, 39, 41, 42, 43, 45, 49, 52, 57], "see": [0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 17, 18, 19, 22, 25, 27, 28, 30, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 54, 55, 57], "two": [0, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 43, 45, 46, 47, 48, 52, 55, 57], "version": [0, 2, 9, 11, 12, 21, 22, 28, 35, 36, 43], "land": [0, 2, 3, 48], "page": [0, 2, 3, 11, 15, 23, 31, 55, 57], "track": [0, 2, 11, 13, 17, 35, 43], "purchas": [0, 2, 25, 28, 36], "behavior": [0, 2, 3, 7, 8, 11, 16, 22, 33, 35, 36, 43, 45, 55, 57], "analyz": [0, 2, 6, 11, 13, 24, 30, 37, 45, 47, 55, 56, 57], "re": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "which": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "more": [0, 1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "effect": [0, 2, 3, 4, 6, 7, 12, 13, 14, 16, 21, 22, 23, 26, 27, 28, 29, 34, 35, 36, 41, 42, 43, 47, 48, 49, 55, 56, 57], "bui": [0, 2, 8, 25, 28, 36, 48, 55, 57], "train": [0, 2, 5, 25, 28, 36, 42, 43, 48, 55, 56, 57], "algorithm": [0, 2, 5, 7, 22, 41, 43, 46, 47, 48, 55], "cancer": [0, 2, 55], "x": [0, 2, 7, 9, 12, 21, 24, 33, 35, 36, 44, 47, 55], "rai": [0, 2], "evalu": [0, 2, 3, 4, 5, 7, 11, 22, 23, 25, 28, 31, 36, 40, 42, 43, 47, 49, 52, 55, 57], "its": [0, 2, 5, 7, 8, 13, 16, 21, 22, 23, 25, 27, 31, 35, 36, 38, 41, 43, 47, 48, 55], "perform": [0, 5, 7, 16, 25, 30, 34, 36, 37, 38, 40, 41, 56], "patient": [0, 2, 5, 6, 7, 17, 27, 30, 37, 43, 55], "well": [0, 2, 3, 5, 6, 7, 10, 13, 22, 23, 24, 28, 30, 34, 36, 37, 41, 42, 44, 46, 47, 48, 50, 55, 57], "next": [0, 2, 6, 7, 11, 22, 25, 29, 35, 36, 40, 43, 44], "ask": [0, 2, 7, 8, 11, 18, 25, 28, 30, 31, 32, 36, 37, 41, 43, 45, 47, 50, 52, 55, 56, 57], "yourself": [0, 2, 3, 5, 7, 9, 20, 22, 24, 28, 41, 43], "motiv": [0, 2, 3, 21, 35, 42, 57], "The": [0, 2, 4, 5, 6, 7, 12, 13, 14, 18, 19, 20, 21, 22, 24, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 50, 52, 54, 55, 56, 57], "part": [0, 2, 6, 7, 11, 18, 21, 23, 28, 29, 30, 34, 35, 37, 38, 41, 42, 43, 46, 55, 57], "character": [0, 5, 21, 35], "predict": [0, 2, 4, 14, 16, 17, 21, 22, 28, 35, 43, 44, 47, 48, 50, 53, 56], "label": [0, 1, 2, 7, 15, 21, 22, 35, 48, 50, 55], "unlabel": [0, 2], "form": [0, 5, 9, 12, 21, 23, 25, 28, 29, 35, 36, 38, 47, 48, 55], "think": [0, 2, 3, 5, 7, 8, 11, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 52, 54, 55, 56, 57], "entiti": [0, 2, 7, 13, 24, 38, 39, 43], "observ": [0, 1, 2, 3, 7, 11, 12, 13, 16, 18, 19, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 49, 55, 57], "all": [0, 1, 2, 3, 5, 7, 9, 11, 13, 14, 15, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 57], "replic": [0, 2, 7, 11, 25, 28, 36], "gave": [0, 2, 7, 8, 17, 22, 32, 45], "rise": [0, 2, 7, 8, 55], "due": [0, 2, 3, 10, 25, 36, 40, 52, 56, 57], "pictur": [0, 2], "anim": [0, 2], "feed": [0, 2, 3, 7, 46], "bunch": [0, 2, 43], "undergradu": [0, 1, 2, 43], "american": [0, 1, 2, 5, 30, 37, 38, 43, 50], "univers": [0, 2, 16, 30, 31, 37, 43, 44, 55], "photo": [0, 2, 5], "everi": [0, 1, 2, 3, 7, 23, 25, 26, 33, 35, 36, 45, 55, 57], "time": [0, 1, 2, 3, 6, 7, 8, 9, 11, 13, 16, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 57], "photograph": [0, 2], "obvious": [0, 2, 3, 7, 9, 11, 13, 15, 16, 21, 22, 25, 30, 35, 36, 37, 44, 48, 57], "success": [0, 2, 7, 11, 43, 52], "depend": [0, 2, 3, 5, 12, 16, 21, 24, 28, 30, 31, 35, 37, 38, 39, 43, 44, 45, 49, 52, 55, 57], "context": [0, 2, 26, 27, 29, 43, 49, 50, 55, 57], "much": [0, 1, 2, 3, 7, 11, 13, 17, 20, 21, 22, 26, 29, 30, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 55, 56], "studi": [0, 1, 2, 3, 5, 6, 7, 12, 17, 28, 30, 31, 36, 37, 38, 41, 42, 43, 47, 49, 50, 55, 57], "cours": [0, 2, 3, 4, 5, 11, 22, 36, 41, 42, 43, 44, 46, 49, 52, 55, 56, 57], "aspir": [0, 2], "bit": [0, 2, 37, 55, 57], "recogn": [0, 2, 22, 40, 41, 44, 55], "understand": [0, 2, 3, 5, 6, 7, 16, 18, 23, 24, 31, 33, 38, 39, 40, 41, 42, 43, 45, 47, 55, 57], "limit": [0, 2, 5, 7, 12, 13, 21, 35, 38, 39, 40, 41, 43, 47, 57], "surprisingli": [0, 2], "long": [0, 1, 2, 3, 4, 6, 7, 13, 16, 28, 31, 34, 38, 41, 43, 49, 52], "thought": [0, 2, 3, 5, 7, 28, 31, 38, 41, 43, 52], "incap": [0, 2], "harbor": [0, 2, 12], "racial": [0, 1, 2, 5, 7, 22, 30, 33, 37], "sexist": [0, 2], "prejudic": [0, 2], "just": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 28, 29, 33, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 54, 55, 56, 57], "built": [0, 2, 50], "math": [0, 2, 6, 10, 23, 40, 41, 44, 45], "racist": [0, 2, 5, 43], "compani": [0, 2, 3, 5, 7, 11, 12, 14, 16, 21, 25, 27, 31, 35, 36, 43, 45, 48, 50, 56], "amazon": [0, 2], "tri": [0, 2, 22, 43, 47], "build": [0, 2, 7, 16, 25, 32, 36, 48, 55], "decid": [0, 1, 2, 3, 5, 11, 13, 26, 28, 43, 46, 48, 49, 57], "hire": [0, 2, 3, 5, 7, 12, 16, 17, 25, 28, 30, 32, 36, 37, 57], "though": [0, 1, 2, 3, 5, 7, 11, 13, 15, 21, 22, 24, 25, 35, 36, 37, 38, 39, 41, 42, 44, 46, 55, 56], "human": [0, 2, 3, 7, 18, 19, 43, 55], "employe": [0, 2, 3, 27, 29, 30, 37], "had": [0, 2, 6, 8, 11, 12, 13, 22, 25, 28, 36, 37, 39, 42, 43, 44, 45, 55, 56], "past": [0, 2, 3, 7, 8, 11, 13, 22, 23, 27, 28, 30, 36, 37, 41, 48, 50, 55, 56], "subject": [0, 2, 3, 11, 13, 25, 28, 29, 36, 40, 41, 42, 43, 49], "made": [0, 2, 5, 7, 8, 18, 19, 22, 28, 36, 42, 47, 52], "supervisor": [0, 2], "resum": [0, 2, 53], "itself": [0, 1, 2, 5, 16, 23, 52, 54, 55], "veri": [0, 1, 2, 3, 6, 7, 9, 12, 13, 20, 25, 28, 29, 31, 35, 36, 37, 38, 41, 43, 45, 46, 47, 48, 50, 52, 55, 57], "staff": [0, 2], "person": [0, 1, 2, 3, 5, 7, 11, 16, 21, 27, 30, 31, 33, 35, 37, 43, 44, 45, 56, 57], "inherit": [0, 2], "bias": [0, 2, 5, 7, 40], "oop": [0, 2], "suddenli": [0, 2, 43], "realiz": [0, 2, 7, 9, 18, 25, 36, 43, 55], "recruit": [0, 2, 43], "engin": [0, 2, 21, 25, 35, 36, 41], "didn": [0, 2, 4, 7, 11, 30, 37, 43, 48, 55], "women": [0, 2, 5, 7, 10, 29, 30, 37, 43, 44, 45], "abandon": [0, 2], "ok": [0, 2, 3, 5, 7, 11, 22, 28, 35, 36, 38, 40, 43, 44, 46, 47, 57], "bia": [0, 1, 2, 4, 5, 7, 22, 38], "now": [0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 15, 17, 21, 22, 24, 26, 27, 28, 29, 30, 33, 35, 37, 38, 39, 41, 44, 45, 46, 47, 48, 55, 57], "open": [1, 3, 11, 16, 30, 37, 50], "book": [1, 23, 28, 41, 55], "commun": [1, 2, 5, 7, 12, 31, 41, 43, 45, 50, 57], "survei": [1, 2, 14, 22, 28, 29, 30, 37, 38, 44, 47, 50], "ac": [1, 50], "relationship": [1, 9, 12, 13, 15, 21, 22, 24, 29, 33, 35, 38, 39, 44, 47, 55], "between": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 45, 46, 47, 49, 52, 55, 57], "attain": [1, 29], "wage": [1, 10, 29, 38, 55], "conduct": [1, 28, 31, 43], "unit": [1, 5, 11, 12, 13, 18, 19, 20, 22, 24, 25, 28, 29, 30, 33, 36, 37, 45, 48, 49, 50, 55], "state": [1, 2, 5, 12, 13, 20, 24, 25, 29, 30, 31, 33, 36, 37, 48, 50, 55, 56], "censu": [1, 2, 33, 50], "bureau": [1, 2, 32, 50], "count": [1, 5, 11, 13, 25, 28, 30, 33, 35, 36, 37, 45, 55], "take": [1, 3, 5, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 25, 28, 35, 36, 38, 40, 41, 42, 44, 45, 46, 47, 49, 55, 57], "place": [1, 2, 5, 7, 11, 13, 18, 19, 21, 25, 29, 30, 31, 33, 35, 36, 37, 38, 42, 43, 45, 46, 47, 48, 50, 54, 55], "10": [1, 4, 5, 8, 15, 24, 26, 27, 33, 38, 44], "year": [1, 5, 13, 17, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 36, 37, 39, 41, 42, 44, 45, 47, 50, 55], "numer": [1, 11, 18, 19, 22, 24, 35, 38], "featur": [1, 2, 5, 16, 21, 22, 25, 30, 35, 36, 37, 45, 48, 55, 56], "popul": [1, 2, 8, 13, 22, 24, 26, 27, 28, 29, 31, 33, 37, 38, 43, 45, 47, 49, 56], "includ": [1, 5, 7, 8, 11, 13, 15, 16, 21, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 50, 55, 56, 57], "100": [1, 5, 8, 13, 15, 21, 23, 28, 35, 36, 37, 38], "2017": [1, 28, 33], "sampl": [1, 2, 7, 8, 13, 14, 16, 21, 22, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 45, 47, 49, 55, 57], "1": [1, 4, 5, 8, 23, 26, 27, 33, 38, 39, 43, 44, 45, 47, 52], "0": [1, 5, 8, 13, 15, 20, 21, 22, 23, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 44, 52], "ipum": [1, 50], "tool": [1, 2, 3, 5, 11, 16, 21, 22, 23, 24, 28, 35, 38, 39, 42, 44, 48, 52, 55], "major": [1, 5, 7, 16, 30, 37, 41, 42, 44, 49, 55, 56], "dataset": [1, 2, 5, 9, 11, 13, 16, 20, 24, 25, 29, 30, 33, 36, 37, 38, 40, 44, 46, 47, 50], "govern": [1, 2, 3, 20, 31, 43, 48, 50, 55], "agenc": [1, 48], "real": [1, 4, 5, 7, 9, 10, 12, 16, 21, 25, 28, 30, 31, 35, 36, 37, 41, 42, 43, 45, 55, 56, 57], "mean": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 50, 52, 55, 57], "you": [1, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 55, 56, 57], "being": [1, 2, 3, 5, 7, 11, 13, 16, 21, 22, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 55, 56, 57], "document": [1, 16, 20, 21, 25, 35, 36, 55], "found": [1, 3, 7, 11, 13, 14, 17, 21, 22, 25, 26, 28, 29, 35, 36, 40, 41, 42, 43, 52, 55], "either": [1, 2, 3, 5, 11, 21, 22, 31, 35, 39, 42, 43, 45, 47, 50, 57], "search": [1, 21, 30, 35, 37, 50], "someth": [1, 3, 5, 7, 8, 11, 13, 18, 19, 21, 22, 25, 34, 35, 36, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "right": [1, 4, 7, 19, 20, 22, 31, 33, 40, 43, 44, 46, 47, 48, 52, 55, 57], "within": [1, 3, 10, 23, 24, 25, 29, 33, 36, 38, 40, 45, 52, 55], "inform": [1, 2, 5, 9, 11, 18, 19, 21, 22, 25, 28, 35, 36, 41, 43, 48, 50, 52, 56], "background": [1, 7, 41], "statu": [1, 25, 36, 56], "repres": [1, 2, 5, 7, 11, 12, 33, 35, 37, 41, 42, 43, 48], "colleg": [1, 22, 30, 37, 38], "degre": [1, 22, 30, 37, 43], "ones": [1, 7], "abil": [1, 7, 16, 41], "job": [1, 3, 5, 7, 22, 26, 27, 28, 29, 30, 33, 37, 48, 52, 57], "download": [1, 2, 13, 15, 20, 22, 24, 25, 29, 30, 33, 36, 37], "us_acs_2017_10pct_sampl": 1, "dta": [1, 20, 22, 29, 30, 37, 38], "panda": [1, 11, 33, 35, 36, 37, 38, 44], "datafram": [1, 22, 33, 35], "pd": [1, 22, 30, 33, 35, 36, 37, 38, 44], "read_stata": [1, 22, 37, 38], "normal": [1, 5, 6, 8, 11, 22, 23, 24, 38, 46, 50], "d": [1, 2, 5, 6, 8, 11, 12, 13, 21, 22, 23, 25, 27, 28, 33, 35, 36, 38, 39, 43, 44, 45, 46, 47, 48, 57], "tell": [1, 5, 7, 8, 11, 13, 17, 22, 26, 27, 28, 29, 33, 36, 38, 43, 44, 45, 48, 50, 55, 57], "dive": [1, 2, 5, 7, 48, 55], "mid": [1, 16, 31, 40], "ll": [1, 2, 3, 5, 7, 8, 11, 13, 15, 20, 21, 22, 23, 24, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 55, 57], "spare": 1, "wrang": 1, "analysi": [1, 3, 7, 8, 11, 13, 18, 19, 21, 22, 25, 28, 29, 35, 36, 45, 47, 49, 55, 56, 57], "ag": [1, 2, 5, 10, 11, 21, 22, 28, 29, 35, 36, 38, 39, 41, 43, 44], "empstat": 1, "inctot": 1, "educd": 1, "statefip": 1, "countyfip": 1, "sex": [1, 21, 29, 35, 38], "race": [1, 7, 22, 33, 38, 44, 50], "hispan": [1, 22, 33], "thin": [1, 28], "3": [1, 4, 8, 17, 26, 27, 33, 38, 44, 45], "creat": [1, 5, 6, 7, 13, 15, 16, 20, 21, 22, 23, 25, 28, 30, 35, 36, 37, 38, 41, 43, 44, 55, 57], "indic": [1, 2, 4, 7, 11, 13, 24, 25, 29, 30, 33, 36, 37, 43, 49], "respond": [1, 8, 29, 30, 37, 38, 43, 44, 50], "color": [1, 3, 20, 23, 31, 43], "A": [1, 4, 5, 6, 8, 12, 14, 16, 21, 23, 25, 35, 36, 37, 41, 42, 43, 45, 48, 50, 52, 55, 57], "NOT": [1, 44, 50], "white": [1, 5, 7, 22, 30, 33, 37, 38, 43, 44], "non": [1, 2, 3, 5, 7, 16, 18, 20, 22, 25, 28, 29, 31, 32, 36, 38, 39, 44], "individu": [1, 11, 12, 16, 18, 19, 30, 37, 38, 39, 40, 44, 45, 50], "again": [1, 3, 8, 11, 15, 22, 24, 25, 28, 30, 36, 37, 38, 43, 44, 45, 48], "poc": 1, "categori": [1, 13, 20, 21, 22, 25, 30, 33, 35, 36, 37], "note": [1, 2, 4, 7, 11, 12, 13, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 52, 56, 57], "pleas": [1, 11, 16, 22, 25, 26, 27, 29, 30, 31, 33, 36, 37, 41, 42, 46, 52, 55, 57], "excus": [1, 45, 52], "harmon": 1, "code": [1, 7, 9, 11, 16, 20, 21, 22, 24, 25, 29, 30, 33, 35, 36, 37, 38, 42, 44, 50, 54], "across": [1, 3, 8, 10, 11, 13, 18, 19, 22, 28, 29, 30, 31, 37, 38, 39, 45, 49, 52, 55, 57], "period": [1, 13, 21, 24, 25, 35, 36, 38, 39, 41, 43, 55], "list": [1, 7, 22, 25, 34, 36, 38, 55, 56], "black": [1, 4, 5, 7, 21, 22, 30, 33, 35, 37, 38, 43, 55], "appropri": [1, 11, 25, 33, 36, 42, 46, 56, 57], "2018": [1, 13, 28, 29, 33, 45, 55], "4": [1, 4, 17, 26, 27, 31, 33, 38, 44, 45, 52], "interest": [1, 2, 5, 7, 11, 12, 14, 17, 18, 19, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 52, 55, 56, 57], "emploi": [1, 10, 22, 28, 29, 38, 42, 55], "seek": [1, 27, 30, 31, 37, 57], "restrict": [1, 22, 34, 57], "unemploi": 1, "exclud": [1, 21, 22, 35, 41], "anyon": [1, 2, 3, 5, 7, 18, 19, 29, 30, 37, 44, 45, 54], "doesn": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 21, 22, 28, 33, 35, 36, 38, 44, 45, 47, 49, 55, 57], "answer": [1, 4, 5, 6, 8, 10, 11, 12, 17, 20, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 54, 55, 57], "aren": [1, 2, 3, 5, 6, 7, 8, 11, 21, 22, 23, 25, 26, 29, 33, 35, 36, 38, 40, 41, 45, 46, 47, 48, 50, 55, 57], "5": [1, 4, 5, 17, 23, 26, 27, 33, 38, 44, 47, 52], "also": [1, 2, 3, 5, 7, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "least": [1, 2, 3, 21, 22, 25, 26, 28, 29, 31, 35, 36, 37, 38, 42, 43, 44, 46, 49, 52, 55, 56], "requir": [1, 4, 5, 8, 11, 13, 16, 18, 21, 27, 28, 31, 35, 38, 40, 41, 42, 44, 45, 48, 49, 50, 52, 55, 56, 57], "whose": [1, 8, 13, 32, 55], "record": [1, 7, 20, 25, 36], "90": [1, 5, 21, 23, 25, 28, 33, 35, 36, 44], "1980": [1, 33], "1990": [1, 15, 33], "wa": [1, 3, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 21, 22, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 43, 45, 48, 49, 55, 57], "might": [1, 2, 3, 5, 7, 8, 11, 12, 16, 20, 22, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 39, 40, 43, 45, 48, 49, 55, 56, 57], "old": [1, 11, 22, 35, 38, 44, 47, 48], "census": [1, 50], "older": [1, 5, 29, 43, 44], "e": [1, 3, 5, 7, 8, 11, 12, 13, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 47, 49, 50, 55, 56, 57], "ani": [1, 3, 5, 7, 8, 11, 12, 13, 16, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "abov": [1, 2, 7, 8, 12, 13, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 43, 44, 46, 47, 48, 50, 55, 56], "deal": [1, 3, 23, 43, 44, 48, 54, 56], "worri": [1, 7, 8, 11, 12, 18, 19, 21, 23, 26, 28, 30, 35, 37, 48, 55], "parenthes": 1, "except": [1, 5, 7, 12, 22, 33, 38, 40, 44, 46, 49, 52], "insofar": 1, "littl": [1, 5, 14, 21, 22, 33, 35, 37, 39, 43, 44, 45, 47], "complic": [1, 3, 6, 7, 52, 55], "6": [1, 4, 23, 26, 27, 33, 38, 44, 45, 46], "categor": [1, 21, 22, 24, 25, 30, 35, 36, 37, 38, 44], "highest": [1, 38], "high": [1, 7, 10, 12, 13, 14, 16, 21, 24, 25, 28, 29, 30, 35, 36, 37, 39, 40, 43, 46, 47, 57], "school": [1, 7, 10, 28, 29, 30, 31, 37, 38, 39, 40, 55], "diploma": 1, "equival": [1, 11, 37, 40], "ged": 1, "altern": [1, 7, 18, 19, 28, 57], "credenti": 1, "better": [1, 3, 6, 7, 22, 25, 30, 31, 35, 36, 37, 39, 40, 41, 42, 43, 46, 52, 57], "ha": [1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 21, 22, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 55, 56, 57], "neither": [1, 44], "nor": [1, 41], "bachelor": [1, 30, 37], "assum": [1, 5, 7, 8, 14, 16, 21, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 42, 47, 48, 55, 57], "advanc": [1, 3, 7, 16, 22, 42, 45, 49, 52], "master": [1, 15, 22, 29, 35, 36, 37, 38, 42, 43, 44], "doctor": [1, 27], "while": [1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 21, 25, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 50, 52, 55, 56], "number": [1, 11, 12, 13, 15, 16, 21, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 43], "encod": [1, 21, 25, 33, 35, 36, 38, 44], "implement": [1, 13, 21, 22, 24, 26, 30, 31, 35, 37, 46, 47], "properli": [1, 43, 48, 55], "below": [1, 5, 7, 14, 16, 18, 19, 21, 22, 25, 26, 27, 28, 29, 35, 36, 38, 39, 43, 44, 47, 50, 55], "fine": [1, 5, 6, 7, 13, 41, 43, 47, 52], "suggest": [1, 11, 23, 26, 37, 49], "singl": [1, 3, 9, 11, 13, 21, 22, 23, 24, 25, 33, 35, 36, 37, 40, 44, 48, 56, 57], "three": [1, 2, 13, 21, 23, 25, 28, 32, 35, 36, 44, 46, 50, 55, 56, 57], "each": [1, 2, 6, 9, 11, 12, 13, 14, 15, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 39, 40, 41, 45, 46, 48, 50, 52, 55], "group": [1, 2, 8, 11, 12, 13, 14, 17, 18, 19, 22, 24, 26, 27, 28, 29, 30, 31, 32, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 55], "refer": [1, 11, 12, 13, 25, 34, 36, 44, 46, 47, 52, 55, 57], "graduat": [1, 29, 30, 37], "interchang": 1, "post": [1, 2, 3, 13, 32, 44, 55, 56], "treatment": [1, 3, 5, 6, 11, 12, 13, 14, 18, 19, 22, 26, 27, 28, 30, 37, 39, 42, 43, 44, 46, 47, 49, 55], "outcom": [1, 2, 3, 4, 7, 8, 11, 12, 13, 14, 17, 18, 19, 22, 25, 28, 29, 36, 39, 40, 41, 43, 45, 47, 49, 55, 57], "monei": [1, 3, 8, 14, 23, 27, 28, 45, 48], "mechan": [1, 16, 29, 38], "phd": [1, 21, 35], "got": [1, 8, 22, 23, 30, 37, 43, 47, 57], "under": [1, 3, 4, 11, 22, 23, 25, 28, 30, 33, 36, 37, 40, 44, 48, 56], "sinc": [1, 2, 7, 8, 11, 13, 22, 28, 29, 30, 31, 33, 37, 38, 39, 40, 43, 44, 45, 47, 50, 55, 57], "without": [1, 2, 5, 7, 11, 14, 20, 22, 24, 25, 28, 30, 34, 36, 37, 38, 42, 45, 49, 57], "given": [1, 2, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 48, 49, 52, 55], "gone": [1, 7, 38, 50], "7": [1, 4, 23, 26, 27, 33, 38, 44, 45], "simpl": [1, 4, 5, 7, 9, 11, 13, 17, 24, 26, 27, 28, 38, 39, 41, 44, 46, 47, 55], "likelihood": [1, 7, 25, 30, 36, 37, 38, 44, 48, 55], "linear": [1, 5, 7, 9, 11, 16, 21, 22, 24, 29, 30, 35, 37, 38, 39, 42, 44, 47], "probabl": [1, 5, 7, 8, 9, 11, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 40, 43, 44, 45, 46, 47, 48, 49, 50, 55, 57], "squar": [1, 22, 29, 30, 37, 38, 39, 44, 46], "updat": [1, 22, 33], "languag": [1, 11, 18, 19, 20, 21, 35, 41, 42, 47, 55, 57], "oppos": [1, 29, 30, 37, 56], "could": [1, 2, 5, 7, 8, 11, 14, 16, 18, 19, 22, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 43, 44, 46, 48, 55, 57], "8": [1, 4, 26, 27, 33, 38, 44, 45], "add": [1, 5, 10, 11, 16, 21, 24, 29, 30, 33, 35, 36, 37, 38, 39, 44, 46, 56], "appar": [1, 6, 7, 22, 41, 47], "compar": [1, 2, 3, 8, 10, 11, 13, 16, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 45, 49, 55, 57], "9": [1, 4, 23, 26, 27, 33, 44], "formula": [1, 36, 37, 38, 44], "omit": [1, 28, 38, 44], "coeffici": [1, 2, 10, 20, 21, 22, 29, 30, 35, 36, 37, 38, 39, 44], "neg": [1, 2, 6, 11, 21, 25, 26, 30, 35, 36, 37, 44, 47], "chang": [1, 5, 11, 13, 15, 21, 22, 23, 26, 28, 29, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47, 49, 55, 56, 57], "correl": [1, 5, 7, 8, 9, 12, 14, 15, 21, 24, 35, 39, 40, 55], "explain": [1, 16, 20, 21, 24, 29, 30, 35, 37, 38, 48, 52, 55, 57], "learn": [1, 3, 4, 5, 11, 13, 16, 17, 18, 21, 22, 28, 31, 35, 40, 41, 42, 43, 44, 48, 49, 52, 54, 55, 57], "wrong": [1, 5, 7, 8, 9, 21, 30, 33, 35, 37, 44, 47, 52], "assumpt": [1, 3, 4, 7, 18, 19, 40, 43, 45, 52], "causal": [1, 3, 4, 8, 12, 15, 17, 22, 29, 41, 42, 43, 52, 56, 57], "violat": [1, 8, 45], "11": [1, 4, 26, 27, 33, 42, 44], "final": [2, 3, 5, 7, 11, 12, 13, 15, 21, 22, 23, 25, 28, 29, 35, 36, 41, 42, 44, 46, 52, 55, 56, 57], "narrow": [2, 22, 31], "small": [2, 3, 7, 11, 13, 22, 25, 30, 36, 37, 40, 43, 45, 47, 49, 50], "conceptu": [2, 18, 26, 27, 45], "framework": [2, 4, 7, 8, 11, 18, 19, 21, 30, 35, 37, 39, 45], "kei": [2, 11, 16, 25, 30, 31, 33, 36, 37, 41, 43, 57], "tractabl": 2, "meet": [2, 16, 17, 21, 26, 27, 28, 31, 34, 35, 41, 42], "criteria": [2, 4, 28, 45], "directli": [2, 3, 11, 18, 22, 25, 26, 27, 30, 36, 37, 40, 44, 55], "approach": [2, 16, 24, 26, 28, 38, 41, 42, 47, 48, 52, 55, 57], "seem": [2, 5, 7, 11, 12, 17, 22, 35, 37, 41, 43, 44, 45, 47, 48, 49, 55], "vagu": [2, 48], "immedi": [2, 21, 29, 32, 35, 48, 55], "collect": [2, 3, 5, 11, 25, 26, 28, 36, 44, 46, 48, 55], "To": [2, 4, 6, 8, 11, 13, 14, 20, 21, 26, 28, 29, 30, 31, 33, 35, 37, 38, 42, 43, 44, 45, 46, 47, 52, 55, 57], "illustr": [2, 5, 6, 7, 9, 38, 43, 46, 47, 55], "bad": [2, 3, 6, 17, 22, 35, 43, 47, 55], "describ": [2, 7, 11, 12, 13, 16, 18, 19, 22, 23, 26, 27, 30, 31, 35, 37, 38, 43, 55], "polici": [2, 5, 13, 14, 26, 32, 41, 43, 55, 57], "me": [2, 7, 21, 26, 27, 28, 35, 36, 40, 44, 50], "By": [2, 3, 9, 22, 24, 28, 31, 44, 45, 55], "contrast": [2, 5, 43, 44, 45, 55], "avail": [2, 3, 5, 7, 11, 16, 18, 19, 22, 23, 25, 31, 36, 42, 43, 48, 50, 52], "grand": [2, 35], "juri": 2, "longer": [2, 24, 35, 38, 39, 45, 49], "sentenc": [2, 41, 52], "pool": [2, 24, 35], "citizen": 2, "prosecutor": 2, "guidanc": [2, 11, 16, 25, 30, 36, 37], "theori": [2, 13, 18, 19, 47, 55], "suppos": [2, 3, 5, 7, 8, 11, 21, 22, 23, 28, 35, 38, 39, 40, 43, 44, 47, 48, 55], "hold": [2, 3, 8, 26, 27, 30, 37, 43], "account": [2, 3, 7, 11, 18, 19, 22, 23, 29, 36, 38, 39, 40, 44], "said": [2, 8, 37, 39, 43, 44, 45, 55, 56, 57], "prosector": 2, "shape": [2, 7, 21, 25, 31, 35, 36, 55], "reach": [2, 7, 45, 48, 57], "recommend": [2, 11, 23, 28, 33, 43, 57], "begin": [2, 7, 8, 11, 13, 15, 16, 22, 24, 25, 29, 31, 36, 38, 42, 55, 56, 57], "attribut": [2, 8, 11, 28, 30, 37, 43], "lab": [2, 22, 43], "later": [2, 5, 21, 28, 29, 32, 35, 37, 38, 47, 55, 57], "diagnos": [2, 9], "mortem": 2, "ve": [2, 5, 7, 8, 9, 11, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "clear": [2, 5, 6, 7, 11, 13, 22, 31, 32, 38, 42, 45, 48, 50, 52, 55, 56, 57], "second": [2, 3, 7, 9, 16, 21, 22, 25, 29, 30, 33, 35, 36, 37, 38, 40, 41, 43, 44, 48, 56, 57], "find": [2, 3, 5, 7, 8, 11, 12, 13, 14, 18, 19, 21, 22, 23, 25, 29, 30, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 52, 55, 56], "current": [2, 11, 14, 16, 22, 23, 25, 28, 29, 36, 38, 55], "comparison": [2, 4, 7, 13, 16, 18, 19, 28, 29], "last": [2, 11, 13, 22, 25, 30, 33, 34, 36, 37, 40, 46], "moreov": [2, 5, 7, 23, 24, 41, 43, 44, 52, 54], "imagin": [2, 5, 8, 11, 16, 28, 43, 55], "crime": [2, 9, 32, 33], "commit": [2, 11, 32, 48], "tabl": [2, 29, 30, 37, 48, 57], "characterist": [2, 20, 30, 37, 46], "It": [2, 3, 4, 7, 8, 9, 13, 16, 17, 22, 26, 27, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 55, 57], "save": [2, 7, 8, 9, 22, 24, 27, 28], "lost": 2, "energi": [2, 32, 50], "Being": 2, "abl": [2, 5, 7, 8, 11, 16, 18, 21, 22, 25, 28, 30, 33, 35, 36, 37, 41, 42, 47, 50, 55, 57], "allow": [2, 3, 11, 13, 18, 21, 22, 25, 27, 28, 30, 35, 36, 37, 38, 40, 41, 43, 44, 49, 56], "statehold": 2, "happen": [2, 3, 7, 8, 10, 11, 16, 19, 22, 24, 28, 29, 38, 39, 40, 41, 43, 45, 48, 55], "serious": [2, 5, 48], "Not": [2, 17, 35, 45], "abstractli": 2, "draw": [2, 7, 24, 28, 41, 47, 52, 57], "graph": [2, 20, 48], "column": [2, 11, 16, 21, 22, 24, 25, 33, 35, 36, 38, 50], "predictor": [2, 7, 16, 25, 36], "diagnost": [2, 48, 57], "liter": [2, 5, 39, 44, 54], "ax": [2, 35, 48], "etc": [2, 7, 12, 16, 22, 25, 26, 27, 35, 36, 48, 49, 50, 55, 57], "turn": [2, 3, 7, 16, 20, 31, 38, 43, 44, 47, 55], "wasn": [2, 22, 30, 37, 43], "suffici": [2, 8, 29, 49], "show": [2, 3, 5, 6, 7, 8, 11, 21, 22, 24, 25, 28, 31, 35, 36, 37, 43, 44, 54, 55, 57], "ensur": [2, 5, 7, 11, 12, 16, 21, 22, 25, 28, 30, 31, 35, 36, 37, 41, 42, 43, 45, 49], "constitut": [2, 5, 8, 24, 30, 31, 33, 37, 38, 48, 52, 55], "avoid": [2, 7, 21, 23, 25, 26, 27, 35, 36, 43, 47, 48, 55], "told": [2, 5, 8, 18, 19, 48], "clearer": [2, 11], "written": [2, 12, 41, 55, 57], "hypothesi": [2, 11, 28, 37, 44], "follow": [2, 3, 4, 5, 7, 11, 12, 16, 17, 20, 21, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 44, 45, 46, 47, 52, 55, 57], "true": [2, 5, 7, 8, 10, 11, 12, 21, 22, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 40, 41, 44, 45, 48, 57], "fals": [2, 5, 21, 22, 25, 33, 35, 36, 44], "consid": [2, 5, 7, 12, 13, 21, 25, 26, 31, 33, 35, 36, 43, 45, 47, 55], "sentec": 2, "insul": 2, "counti": [2, 9, 13, 15, 22, 31, 33, 38, 50, 55], "along": [2, 16, 25, 28, 36, 38, 43], "posit": [2, 7, 12, 13, 28, 30, 35, 37, 47], "presenc": [2, 12, 28, 31, 33, 48, 55], "zero": [2, 7, 33, 36, 37, 44, 45], "plan": [2, 23, 26, 31, 36, 43, 55, 57], "congratul": [2, 17, 22, 44], "realli": [2, 3, 5, 6, 7, 8, 9, 11, 12, 17, 20, 22, 24, 28, 31, 33, 35, 38, 40, 41, 43, 45, 46, 47, 49, 50, 55], "hard": [2, 3, 5, 7, 16, 17, 21, 22, 23, 31, 32, 35, 41, 42, 43, 50], "easi": [2, 3, 5, 6, 7, 21, 33, 35, 38, 44], "stuff": [2, 4, 41, 50], "let": [2, 5, 6, 8, 11, 14, 17, 24, 25, 28, 29, 30, 33, 36, 37, 38, 41, 43, 44, 45, 47, 55], "same": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18, 21, 22, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 50, 55, 57], "big": [2, 3, 5, 7, 21, 22, 23, 28, 35, 41, 43, 45, 47, 49, 56], "spender": 2, "variat": [2, 3, 5, 7, 9, 11, 24, 28, 29, 30, 37, 38, 39, 49], "public": [2, 3, 5, 18, 19, 31, 41, 43, 47, 48, 55, 56], "whom": [2, 21, 26, 28, 35, 39, 44, 47, 55, 57], "measur": [2, 3, 7, 8, 12, 22, 26, 27, 39, 40, 43, 49, 50, 55], "combin": [2, 4, 25, 36, 49], "similar": [2, 3, 7, 8, 11, 15, 16, 22, 29, 30, 33, 37, 40, 41, 43, 44, 47, 49, 56, 57], "resourc": [2, 3, 7, 18, 19, 31, 50, 54], "annual": [2, 22, 29, 38], "match": [2, 4, 33, 38, 43, 45], "gender": [2, 5, 7, 11, 22, 30, 33, 37, 38, 43, 44], "live": [2, 5, 8, 12, 45, 48], "nearli": [2, 7, 18, 19, 30, 31, 37], "guarante": [2, 7, 8, 55], "still": [2, 5, 7, 8, 11, 21, 22, 25, 28, 30, 35, 36, 37, 38, 48, 50], "wrangl": 2, "ahead": [2, 7, 21, 31, 35, 50], "won": [2, 5, 7, 21, 23, 29, 35, 43, 44, 45, 46], "templat": 2, "great": [2, 5, 6, 7, 8, 12, 16, 18, 22, 41, 43, 46, 49, 52, 55], "superiv": 2, "access": [2, 7, 11, 28, 30, 37, 50, 55], "pretti": [2, 3, 12, 17, 29, 35, 37], "nuanc": [2, 41, 57], "super": [2, 3, 35, 36, 37, 38, 56], "role": [3, 5, 28, 29, 31, 45, 47, 55], "infer": [3, 4, 5, 8, 12, 15, 18, 19, 22, 29, 33, 38, 41, 42, 43, 52, 57], "industri": [3, 10, 11, 18, 29, 38, 41, 43, 45], "question": [3, 4, 5, 7, 8, 11, 12, 22, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 40, 41, 42, 43, 50, 52, 57], "tech": [3, 5], "sector": [3, 29, 38], "todai": [3, 13, 17, 22, 42, 55], "constantli": [3, 44], "refin": [3, 21, 35], "product": [3, 5, 8, 12, 25, 28, 35, 36, 43, 57], "target": [3, 5, 12, 16, 25, 28, 31, 36, 47, 55], "ad": [3, 8, 11, 24, 28, 29, 30, 35, 37, 38, 41, 43, 45, 56], "increment": [3, 5], "innov": [3, 5, 7, 17, 22, 41, 55], "definit": [3, 5, 21, 35, 43, 45, 55, 57], "toolbox": 3, "read": [3, 4, 5, 6, 7, 8, 15, 18, 19, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 42, 43, 46, 47, 55, 57], "discuss": [3, 5, 7, 8, 15, 16, 17, 29, 33, 38, 40, 41, 43, 44, 45, 47, 55, 57], "critic": [3, 5, 7, 8, 30, 37, 41, 43, 44, 52, 54, 57], "gather": 3, "passiv": [3, 4, 17, 41, 53, 54, 55, 56], "somebodi": [3, 7, 49], "els": [3, 18, 19, 35, 54, 57], "rather": [3, 7, 8, 9, 24, 25, 31, 36, 38, 39, 40, 44, 50, 52, 55, 57], "manipul": [3, 7, 11, 42, 50], "random": [3, 4, 6, 7, 8, 11, 14, 21, 25, 28, 30, 35, 36, 37, 40, 42, 45, 47, 49, 57], "arm": [3, 11, 28, 30, 37, 50], "low": [3, 5, 14, 21, 22, 25, 28, 30, 35, 36, 37, 39, 40, 43, 45], "cost": [3, 14, 17, 20, 22, 23, 27, 36, 48, 49], "expens": [3, 6, 36, 49, 50], "worth": [3, 5, 7, 21, 22, 23, 30, 35, 37, 40, 44, 47, 55], "possibl": [3, 5, 7, 8, 14, 16, 18, 19, 25, 26, 27, 30, 31, 35, 36, 37, 40, 41, 47, 49, 52, 55, 57], "decis": [3, 4, 5, 7, 21, 31, 35, 45, 46, 47, 48, 49, 51, 57], "hand": [3, 5, 24, 40, 41, 43, 45, 48], "situat": [3, 7, 8, 28, 37, 40, 43, 46, 47, 48, 55], "specif": [3, 5, 7, 8, 11, 16, 24, 26, 27, 31, 32, 35, 39, 41, 43, 47, 49, 55, 56, 57], "facebook": [3, 8, 45], "twitter": 3, "satisfact": 3, "choos": [3, 6, 10, 21, 22, 35, 38, 47, 49], "certain": [3, 7, 8, 21, 22, 31, 35, 45, 47, 48, 55, 57], "function": [3, 5, 9, 11, 21, 22, 24, 25, 30, 33, 35, 36, 37, 38, 44, 47], "your": [3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 50, 52, 54, 55], "ideal": [3, 21, 35, 49, 55], "block": [3, 18, 45, 50], "One": [3, 11, 12, 16, 21, 22, 26, 27, 29, 35, 37, 38, 39, 48, 56, 57], "shot": 3, "bowl": 3, "store": [3, 8, 11, 14, 16, 25, 28, 30, 36, 37, 38, 39, 40, 43, 47, 55, 57], "n": [3, 5, 24, 28, 35, 36, 37], "event": [3, 14, 55], "strateg": 3, "scheme": 3, "anoth": [3, 5, 7, 8, 16, 17, 21, 22, 29, 35, 36, 42, 45, 50, 55, 56, 57], "entir": [3, 5, 8, 12, 16, 43, 55, 57], "price": [3, 20, 28], "wouldn": [3, 7, 28, 32, 57], "stand": [3, 28, 31, 41, 44, 45, 55], "similarli": [3, 7, 8, 45, 50, 55], "sometim": [3, 5, 7, 11, 25, 36, 41, 44, 47], "rollout": 3, "launch": [3, 31, 48], "titl": [3, 30, 35, 37], "netflix": [3, 4, 6], "premier": 3, "movi": 3, "interfer": 3, "abstract": [3, 26, 27, 28], "talk": [3, 6, 7, 8, 13, 14, 22, 34, 38, 43, 44, 46, 55, 57], "constraint": [3, 21, 25, 34, 35, 36, 37, 38, 44], "horizon": 3, "too": [3, 4, 5, 7, 9, 22, 26, 28, 32, 36, 37, 38, 42, 43, 46, 48, 49, 55, 56, 57], "popular": [3, 21, 35, 40], "quickli": [3, 7, 20, 22, 41, 48, 57], "short": [3, 8, 23, 43, 49, 52], "countri": [3, 12, 28, 31, 43, 45, 50, 55], "put": [3, 8, 14, 22, 23, 24, 26, 27, 36, 39, 44, 47, 48, 55, 57], "pick": [3, 7, 21, 22, 35, 44, 46, 47, 49, 56], "locat": [3, 5, 18, 19, 39, 40, 48, 50], "setup": 3, "shop": [3, 21, 35], "wait": [3, 5, 7, 47], "sale": [3, 8, 13, 23, 36, 39, 40, 43, 45, 57], "sens": [3, 5, 7, 15, 16, 21, 22, 24, 25, 28, 30, 35, 36, 37, 39, 42, 47, 49, 50, 55, 56], "kohavi": [3, 4, 11], "tang": [3, 4, 11], "xu": [3, 4, 11], "overal": [3, 4, 11, 13, 16, 30, 31, 37, 38, 49], "criterion": [3, 11, 49], "oec": [3, 11, 49], "durat": [3, 55], "believ": [3, 7, 24, 43, 49], "drive": [3, 7, 12, 16, 17, 24, 43, 55], "shortest": 3, "meaning": [3, 5, 8, 21, 35, 52], "option": [3, 4, 11, 14, 28, 31, 35, 36, 38], "mani": [3, 7, 11, 12, 13, 19, 21, 22, 23, 24, 25, 28, 29, 31, 35, 36, 38, 40, 41, 42, 43, 44, 47, 50, 52, 55, 56, 57], "face": [3, 5, 7, 10, 17, 31, 41, 43, 48], "social": [3, 7, 22, 28, 31, 33, 38, 40, 41, 43, 45, 49, 50, 55, 56], "media": 3, "harass": 3, "retent": 3, "mind": [3, 5, 7, 14, 21, 27, 29, 30, 35, 37, 40, 41, 43, 44, 52, 57], "2012": [3, 33], "emot": 3, "valenc": 3, "saw": [3, 8, 11, 44, 55], "happi": [3, 8, 28], "sad": 3, "mood": 3, "spill": 3, "over": [3, 5, 6, 7, 8, 13, 16, 20, 22, 23, 24, 28, 30, 33, 36, 37, 38, 39, 40, 43, 44, 46, 49, 50, 55, 56, 57], "network": [3, 17, 30, 37, 49], "toi": 3, "furiou": 3, "everyth": [3, 4, 7, 11, 22, 23, 28, 38, 40, 41, 43, 49, 55, 57], "consum": [3, 8, 16, 20, 27, 28, 41, 43, 47, 50, 57], "mayb": [3, 11, 37, 47, 57], "deliber": [3, 6], "harm": 3, "huge": [3, 5, 22, 28, 41, 43, 50, 55], "experiment": [3, 11, 28, 37], "matter": [3, 5, 8, 21, 22, 35, 39, 41, 47, 49, 56, 57], "issu": [3, 5, 7, 11, 20, 21, 23, 24, 25, 26, 30, 35, 36, 37, 41, 43, 45, 55, 56], "okcupid": 3, "publish": [3, 20, 55], "research": [3, 7, 8, 10, 16, 21, 22, 28, 31, 32, 34, 35, 41, 43, 45, 47, 48, 50, 54, 55, 57], "date": [3, 4, 11, 25, 36, 37, 38, 44, 45], "profil": 3, "honestli": [3, 55], "standard": [3, 5, 9, 11, 12, 13, 15, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 43, 44, 45, 46, 49, 57], "mess": 3, "heart": [3, 14, 43], "care": [3, 7, 8, 11, 21, 27, 29, 30, 34, 35, 37, 38, 43, 45, 47, 49, 50, 55, 56, 57], "improv": [3, 7, 11, 16, 29, 30, 32, 37, 45, 55, 56], "younger": [3, 29], "woker": 3, "offer": [3, 7, 8, 11, 12, 14, 23, 27, 28, 29, 33, 40, 41, 43, 50, 55], "childcar": 3, "subsidi": 3, "workforc": [3, 5, 29], "union": [3, 12], "benefit": [3, 30, 37, 45, 49], "contract": [3, 18], "scale": [3, 15, 28, 30, 37, 43], "larger": [3, 8, 11, 13, 29, 31, 39, 40, 44, 50], "larg": [3, 6, 8, 11, 12, 24, 27, 28, 30, 31, 32, 37, 40, 41, 43, 45, 47, 48], "area": [3, 7, 14, 16, 17, 25, 32, 36, 40, 46, 47, 48, 50, 52, 56], "increasingli": 3, "outsid": [3, 14, 47], "administ": 3, "program": [3, 16, 27, 28, 31, 36, 42, 43, 48, 54, 56], "servic": [3, 11, 16, 18, 25, 36, 38, 43, 50, 56], "pai": [3, 10, 11, 12, 13, 14, 23, 28, 29, 43], "vendor": 3, "base": [3, 6, 7, 11, 15, 20, 21, 22, 25, 28, 35, 36, 37, 38, 41, 43, 49, 50], "input": [3, 7, 16, 22, 33, 38, 55], "hour": [3, 4, 11, 29, 35, 54], "spent": [3, 7, 8, 9, 20, 22, 24, 34], "encourag": [3, 4, 16], "paid": [3, 11, 25, 29, 36], "basi": [3, 5, 7, 13, 16, 25, 36, 55], "incent": 3, "cut": [3, 7, 21, 22, 35, 41], "risk": [3, 7, 8, 16, 17, 30, 37, 50, 53], "arrang": 3, "hospit": [3, 5, 17, 38], "infect": [3, 5, 12, 18, 19], "reduct": [3, 5, 32, 45], "minim": [3, 5, 7, 21, 28, 35, 49, 56], "downtim": 3, "intern": [3, 4, 12, 17, 30, 36, 37, 48, 50, 52, 55], "ty": 3, "compens": [3, 29], "parti": [3, 31, 44], "incentiv": 3, "precis": [3, 7, 11, 13, 18, 25, 36, 37, 40, 43, 57], "effort": [3, 5, 13, 21, 23, 24, 35, 48, 55], "averag": [3, 5, 7, 8, 10, 11, 12, 13, 15, 16, 23, 24, 26, 27, 28, 29, 30, 31, 37, 39, 40, 43, 44, 47, 57], "suit": 3, "circumst": 3, "unfortun": [3, 7, 25, 36], "befor": [3, 4, 5, 7, 8, 11, 13, 14, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 44, 45, 46, 47, 48, 55, 57], "finish": [3, 4, 46], "natur": [3, 5, 31, 43, 48, 50, 56], "season": [3, 23, 49], "expect": [3, 8, 11, 13, 16, 18, 19, 21, 23, 26, 28, 29, 30, 35, 36, 37, 42, 52, 57], "vari": [3, 11, 25, 29, 33, 36, 39, 44, 45, 57], "anyth": [3, 5, 7, 12, 18, 19, 21, 28, 33, 35, 38, 39, 40, 46, 49, 52, 57], "design": [3, 4, 8, 11, 13, 17, 21, 22, 29, 30, 35, 37, 38, 40, 42, 43, 47, 48, 52, 55], "g": [3, 5, 7, 8, 11, 12, 13, 15, 16, 21, 22, 25, 28, 30, 35, 36, 37, 41, 42, 43, 49, 50, 55, 57], "upward": 3, "analyst": [3, 11], "extrem": [3, 7, 26, 28, 37, 39, 40, 41, 45, 47, 55], "friendli": 3, "easier": [3, 7, 13, 21, 23, 35, 36, 52, 56], "duck": 3, "goos": 3, "rel": [3, 5, 25, 28, 30, 34, 36, 37, 45, 47, 55, 57], "difficulti": [3, 30, 37, 42], "task": [3, 11, 18, 19, 22, 25, 36], "length": [3, 20, 22, 33, 38, 45, 52], "extern": [3, 4, 30, 36, 37, 55, 57], "valid": [3, 4, 8, 16, 18, 19, 23, 25, 30, 33, 36, 37, 55, 57], "estim": [3, 5, 7, 8, 10, 13, 16, 21, 22, 23, 24, 26, 27, 28, 35, 36, 38, 39, 40, 43, 44, 45, 47, 50, 55], "wide": [3, 41], "thu": [3, 5, 7, 11, 12, 17, 21, 28, 33, 35, 39, 43, 55, 57], "differenti": [3, 7, 12, 14, 25, 29, 30, 36, 37, 40], "market": [3, 16, 28, 55], "shouldn": [3, 7, 11, 22, 30, 33, 37, 40, 47, 55], "appli": [3, 5, 11, 13, 15, 33, 34, 36, 40, 41, 42, 43, 47, 55], "logic": [3, 12, 30, 37], "almost": [3, 5, 7, 18, 19, 22, 30, 36, 37, 40, 43, 45, 46, 48, 50, 52, 55], "inevit": 3, "interact": [3, 13, 21, 23, 30, 35, 37, 43, 45, 49], "consider": [3, 7, 28, 48, 55], "colleagu": [3, 14], "tuesdai": 4, "thursdai": 4, "25": [4, 22, 23, 28, 33, 35, 36, 37, 43], "2": [4, 8, 26, 33, 38, 45, 47], "40pm": 4, "offic": [4, 13, 26, 31, 33, 38], "nick": [4, 33, 44], "00": [4, 35, 37, 38, 44], "00am": 4, "http": [4, 13, 15, 20, 22, 24, 29, 33, 35, 36, 37, 38, 44], "duke": [4, 5, 14, 16, 22, 26, 30, 31, 37, 42, 43, 50], "zoom": [4, 27], "nickeubank": [4, 13, 15, 20, 22, 24, 29, 35, 36, 37, 38, 44], "gross": 4, "hall": [4, 26], "231": 4, "echo": 4, "fridai": 4, "3pm": 4, "kashaf": 4, "4pm": 4, "pragya": 4, "wednesdai": 4, "topic": [4, 7, 47, 52, 55], "thr": 4, "jan": 4, "overview": [4, 11, 57], "acm": [4, 16], "propos": [4, 11, 13, 17, 34, 48], "tue": 4, "16": [4, 33, 37, 38, 43, 44, 47], "problem": [4, 5, 7, 8, 9, 11, 12, 16, 17, 21, 25, 31, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 54, 55, 57], "sign": [4, 7, 35, 43], "submit": [4, 7, 11, 16, 25, 30, 31, 36, 37, 52], "syllabu": 4, "gradescop": 4, "18": [4, 20, 22, 28, 33, 35, 37, 38, 44], "histori": [4, 5, 31, 55], "30": [4, 8, 11, 22, 25, 28, 31, 33, 35, 36, 45], "min": [4, 35, 38], "video": [4, 5, 7, 11, 21, 35, 43, 46], "23": [4, 15, 35, 36, 44], "proscript": [4, 55], "v": [4, 7, 28, 31], "descript": [4, 11, 15, 22, 34, 48], "versu": [4, 16, 22, 34], "prescript": [4, 55], "exploratori": [4, 17, 55], "eda": 4, "write": [4, 9, 16, 28, 31, 33, 36, 41, 42, 44, 48, 52, 56], "notebook": [4, 11, 25, 30, 36, 37], "team": [4, 12, 16, 31, 34, 42, 56], "explor": [4, 5, 9, 11, 16, 47, 50, 55], "feb": [4, 38, 44], "aristotl": 4, "edmondson": 4, "fearless": 4, "organ": [4, 11, 12, 13, 18, 19, 28, 33, 38, 41, 48, 50, 57], "chpt": 4, "canva": 4, "review": [4, 5, 11, 16, 31, 44, 49, 55], "charter": 4, "cognit": 4, "barrier": [4, 31], "p": [4, 6, 11, 23, 28, 30, 36, 37, 38, 44, 49, 51], "82": [4, 33, 35, 37], "chapter": [4, 43], "foster": 4, "psycholog": 4, "safeti": [4, 17], "tip": 4, "ex": 4, "13": [4, 9, 10, 26, 27, 33, 44], "stop": [4, 5, 22, 35, 42, 43, 47, 48, 49], "box": [4, 21, 22, 31, 35, 44, 55], "trust": [4, 9, 11, 21, 35, 40, 44, 57], "contrain": 4, "artifici": [4, 42, 43], "stupid": [4, 48], "explicit": [4, 33, 44], "scientif": [4, 7, 55], "ml": [4, 7, 16, 21, 35], "15": [4, 5, 15, 33, 37, 44, 45, 46], "gam": [4, 21, 35], "silver": 4, "bullet": 4, "tour": [4, 55], "pygam": [4, 21, 35, 53], "20": [4, 21, 22, 23, 28, 33, 35, 36, 37, 38, 44, 46], "22": [4, 23, 31, 35, 36, 37, 38], "27": [4, 35, 36], "cunningham": 4, "pp": 4, "135": [4, 33], "independ": [4, 12, 20, 37, 42, 44, 45, 47, 49], "148": 4, "sdo": 4, "widehat": 4, "ATE": [4, 8, 11, 30, 37], "present": [4, 8, 16, 25, 36, 45, 48, 52, 56, 57], "29": [4, 22, 33, 35, 36, 44], "kohvani": 4, "19": [4, 21, 22, 33, 35, 36, 38], "21": [4, 23, 33, 35, 36], "guardrail": [11, 49], "metric": [11, 36, 43, 49], "threat": [4, 30, 37, 39], "42": [4, 25, 35, 36], "47": [4, 33, 35, 44], "ktx": [], "mar": [4, 37], "54": [4, 35, 38], "kohvai": 4, "primaci": [4, 49], "decai": 4, "39": [22, 33, 35, 36, 37, 38, 44], "unless": [6, 7, 8, 11, 49], "method": [5, 7, 16, 20, 21, 22, 23, 24, 25, 28, 29, 33, 35, 36, 37, 38, 44, 47, 49], "power": [4, 7, 11, 22, 24, 37, 38, 39, 44, 45, 46, 49, 55], "calcul": [4, 5, 11, 13, 15, 22, 23, 25, 29, 30, 36, 37, 38, 40, 43, 44, 45, 46, 49], "12": [4, 26, 27, 28, 33, 38, 44, 47], "NO": [4, 44], "14": [4, 26, 27, 31, 33, 37, 38, 44, 46], "bayesian": [], "ab": [4, 6, 11, 49], "midterm": [4, 57], "26": [4, 33, 35, 36, 37], "28": [4, 33, 35, 36, 37, 47], "fix": [4, 13, 29, 35, 43], "apr": 4, "panel": [4, 24, 38, 39], "angrist": [], "pisck": [], "mm": [], "178": 33, "208": [], "diff": [4, 13, 35], "dont": 4, "enfranchis": 4, "ethic": [4, 7, 28, 49], "mayson": 4, "2281": 4, "extra": [4, 44, 55], "ai": [4, 42], "misalign": 4, "adversari": [4, 7], "fool": [4, 7], "openai": 4, "robograd": 4, "text": [4, 7, 21, 35, 41, 42], "referenc": 4, "trustworthi": 4, "onlin": [4, 11, 23, 30, 37, 50], "guid": [4, 5, 56], "analys": [5, 9, 29, 47, 49, 50, 55, 56, 57], "extract": [5, 37], "pattern": [5, 30, 37, 55], "otherwis": [5, 20, 21, 35, 38, 44, 46, 55], "incomprehensibli": 5, "messi": [5, 29], "reader": [5, 8, 57], "digest": 5, "manner": [5, 12, 13, 25, 36, 41, 52, 55], "intrins": 5, "report": [5, 7, 8, 11, 20, 22, 25, 26, 29, 30, 31, 34, 36, 37, 43, 44, 45, 50, 56], "safe": [5, 21, 25, 30, 35, 36, 37], "discard": 5, "word": [5, 7, 8, 10, 11, 12, 13, 20, 21, 25, 26, 27, 28, 29, 31, 33, 35, 36, 38, 39, 44, 45, 46, 47, 55, 57], "entail": [5, 16, 21, 35, 55], "asid": [5, 45], "origin": [5, 7, 11, 20, 21, 22, 25, 30, 35, 36, 37, 41, 43, 46, 47], "summar": [5, 57], "summari": [5, 9, 21, 22, 35, 37, 38, 41, 44, 54], "plot": [5, 6, 7, 9, 13, 15, 16, 20, 21, 22, 24, 35, 48], "distribut": [5, 7, 13, 21, 22, 23, 35, 38, 45, 46, 47], "sophist": [5, 43, 50, 55], "cluster": [5, 13, 18, 19, 22, 24], "dimension": [5, 46], "therefor": [5, 13], "herein": [5, 45], "li": [5, 42, 45], "hazard": 5, "presum": [5, 11, 28], "irrelev": 5, "incumb": 5, "upon": [5, 52, 55], "highlight": [5, 41], "struggl": [5, 9, 20, 22, 24, 27, 31, 44, 57], "deviat": [5, 9, 15, 22, 23, 28, 39, 46, 57], "unsupervis": [5, 55], "machin": [5, 16, 17, 18, 22, 42, 43, 44, 48, 55], "principl": [5, 29, 38, 40], "compon": [5, 13, 18, 19, 26, 27, 48, 56], "pca": 5, "academ": [5, 30, 31, 37, 38, 43], "peer": [5, 31], "must": [5, 7, 12, 18, 19, 21, 26, 27, 29, 35, 48, 55, 56], "frac": [5, 24, 35], "sigma": 5, "x_i": 5, "central": [5, 14, 31, 55], "tendenc": 5, "paper": [5, 7, 21, 22, 28, 30, 35, 37, 41, 43, 44, 48, 54], "neutral": 5, "pipelin": [5, 16], "deliv": [5, 42], "choic": [5, 11, 22, 24, 28, 35, 44, 47], "taken": [5, 11, 23, 25, 36, 37, 39, 48], "signal": [5, 7], "implicitli": [5, 18, 19, 29], "With": [5, 7, 11, 13, 14, 16, 21, 25, 27, 35, 36, 37, 40, 41, 43, 44, 52, 56, 57], "whenev": [5, 7, 11, 43, 55], "am": [5, 48], "faithfulli": 5, "full": [5, 8, 11, 16, 24, 28, 29, 30, 36, 37, 38, 42, 47, 48, 49, 50, 57], "incomprehens": 5, "raw": [5, 13, 22, 29, 33, 35, 36, 37, 38, 44, 56], "eventu": [5, 11, 13, 31], "essenti": [5, 10, 48], "themselv": [5, 38], "give": [5, 7, 8, 12, 14, 15, 16, 17, 21, 22, 24, 26, 27, 28, 31, 35, 40, 42, 43, 44, 45, 46, 50, 52, 55, 56, 57], "receiv": [5, 7, 8, 11, 12, 28, 30, 31, 37, 43, 56, 57], "professor": [5, 57], "exam": 5, "score": [4, 5, 7, 15, 25, 26, 36, 38, 39, 40, 42, 46], "grade": [5, 7, 11, 25, 30, 36, 37, 38, 52, 55], "85": [5, 33, 35, 37, 44], "sound": [5, 13, 30, 37], "dig": [5, 8, 39, 48], "bimod": 5, "argu": [5, 11, 13, 25, 36, 43, 48, 55, 57], "somewhat": [5, 20, 44, 46], "around": [5, 7, 18, 19, 21, 24, 30, 35, 36, 37, 43, 45, 55, 56], "occur": [5, 11, 12, 16, 25, 28, 31, 33, 36, 55, 56, 57], "teach": [5, 7], "suspect": [5, 20, 38], "fail": [5, 11, 22, 42, 55], "worst": 5, "incom": [5, 7, 8, 21, 25, 28, 29, 35, 36, 38, 39, 40, 42, 45, 48, 50, 55, 57], "rose": 5, "earn": [5, 22, 29, 38, 50], "000": [5, 8, 13, 21, 22, 23, 24, 28, 35, 36, 37, 38, 43, 44, 45], "hear": [5, 7, 40, 47], "x_2": 5, "bin": [5, 55], "y_2": 5, "thousand": 5, "dollar": [5, 8, 23, 27, 28, 29], "yup": [5, 8, 9, 55], "fit": [5, 7, 11, 14, 22, 24, 25, 36, 37, 38, 42, 44, 47, 55], "technic": [5, 25, 36, 38, 40, 45, 47, 52], "accur": [5, 22, 29, 43, 45, 55], "captur": [5, 16, 49], "trend": [5, 13, 57], "ten": 5, "monoton": [5, 7, 16, 21, 34, 35], "protect": [5, 7, 31, 50, 56], "kind": [5, 7, 8, 11, 12, 28, 31, 36, 37, 38, 39, 43, 44, 46, 47, 50], "error": [5, 7, 11, 13, 21, 22, 24, 25, 30, 35, 36, 37, 38, 43, 44, 47, 49], "residu": [5, 11, 30, 37, 38, 44], "histogram": [5, 15], "rule": [5, 11, 31, 44, 49, 55, 56], "thumb": 5, "beyond": [4, 5, 18, 19, 31, 56], "median": [5, 13], "radic": 5, "check": [5, 6, 7, 11, 21, 25, 28, 33, 35, 36], "primari": [5, 28, 31, 38, 55], "stori": [5, 7, 8, 26, 27, 43, 47, 57], "miss": [5, 7, 21, 22, 25, 28, 29, 35, 36, 38], "point": [5, 6, 7, 8, 11, 13, 15, 21, 22, 23, 25, 28, 30, 31, 35, 36, 37, 38, 41, 44, 46, 47, 52, 57], "substant": [5, 7, 21, 35, 41, 42, 44], "behind": [5, 21, 35, 48], "notic": [5, 11, 12, 18, 52, 57], "properti": [5, 25, 33, 36], "haven": [5, 8, 21, 35, 38, 46, 55], "defin": [5, 13, 14, 16, 24, 26, 27, 45], "system": [5, 7, 13, 17, 25, 36, 38, 55], "antibiot": 5, "resist": [5, 41], "brought": [5, 47, 55], "facil": [5, 38], "director": 5, "remov": [5, 7, 25, 26, 35, 36, 39], "fabric": 5, "chair": 5, "disinfect": 5, "prescrib": 5, "impact": [5, 7, 11, 13, 16, 22, 24, 28, 38, 43, 45, 47, 48, 57], "instead": [5, 7, 11, 22, 23, 25, 26, 27, 28, 36, 38, 39, 43, 44, 45, 47, 48, 55], "futur": [5, 31, 35, 37, 55], "respons": [5, 8, 14, 16, 18, 19, 30, 31, 37, 43, 45, 52], "biggest": [5, 13, 41, 45, 46], "contributor": 5, "rais": [5, 22, 33, 52], "livestock": [5, 28], "societi": 5, "subtl": [5, 41, 55], "less": [5, 7, 8, 13, 14, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 40, 41, 43, 44, 45, 46, 47, 57], "maker": [5, 45, 57], "co_2": 5, "emiss": 5, "95": [5, 21, 23, 35, 52], "unemploy": [5, 39, 55], "profit": [5, 23, 31, 42, 56], "million": [5, 22, 23, 28], "tax": [5, 24, 32, 36, 45, 55], "moder": 5, "200": [5, 28, 35], "poverti": [5, 28], "line": [5, 9, 21, 22, 24, 35], "proport": [5, 10, 22, 28], "tend": [5, 7, 10, 12, 13, 17, 21, 22, 23, 30, 35, 37, 38, 39, 40, 45, 55, 56], "feel": [5, 7, 9, 11, 13, 25, 28, 33, 34, 36, 40, 41, 44, 54, 55], "lack": [5, 18, 19, 31, 52], "divers": [5, 31, 41], "men": [5, 7, 10, 29, 30, 37, 43, 44, 45, 55], "misogynist": 5, "life": [5, 7, 18, 19, 21, 35, 36, 45], "influenc": [5, 44, 56], "male": [5, 28, 29, 33, 38, 44], "infam": 5, "thankfulli": [5, 7, 22, 38, 57], "stake": [5, 7, 21, 35, 48], "failur": [5, 42], "watch": [5, 6, 7, 30, 37, 46], "camera": 5, "went": [5, 8, 23, 57], "hp": 5, "did": [5, 11, 13, 18, 21, 23, 25, 28, 33, 34, 35, 36, 42, 47, 49, 52, 55, 57], "ship": [5, 50], "silli": 5, "web": [5, 35], "cam": 5, "forefront": [5, 7], "technolog": 5, "seriou": [5, 17, 36, 43], "mistak": 5, "oh": [5, 8, 36, 50, 55], "googl": [5, 43, 50], "Their": 5, "tag": [5, 24, 33], "dark": 5, "skin": 5, "gorilla": 5, "releas": [5, 22, 32, 45], "reflect": [5, 22, 25, 36, 38, 40, 41, 45, 50, 57], "No": [5, 8, 30, 37, 38, 44, 48, 49, 57], "hei": 5, "roll": [5, 6, 8, 11, 28, 49], "behav": [5, 7], "predominantli": [5, 43], "light": [5, 31, 55], "ye": [5, 8, 21, 35, 36, 37, 47], "sadli": 5, "unfairli": 5, "sent": [5, 30, 37, 43, 57], "jail": [5, 13], "discrimin": [5, 7, 10, 22, 30, 31, 37, 38], "against": [5, 7, 11, 20, 22, 23, 25, 30, 36, 37, 45], "per": [5, 8, 11, 13, 20, 24, 25, 28, 29, 33, 36, 39, 44, 52], "se": [5, 38, 44, 52], "press": [5, 7, 16, 57], "especi": [5, 7, 9, 21, 22, 25, 33, 35, 36, 40, 41, 43, 45, 55, 57], "salienc": 5, "rememb": [5, 7, 8, 11, 25, 26, 27, 30, 36, 37, 43, 44, 45, 49, 55, 56, 57], "odd": [5, 8, 45, 46], "temptat": [6, 41], "known": [6, 7, 11], "boss": [6, 12, 43], "yesterdai": [6, 17], "medic": [6, 7, 14, 27, 30, 37, 43, 45, 50], "trial": [6, 11, 43, 45], "soon": [6, 7, 8, 28, 43, 54], "experienc": [6, 10, 30, 37], "side": [6, 7, 12, 16, 22, 24, 28], "intermedi": 6, "render": 6, "invalid": 6, "basic": [6, 7, 13, 21, 22, 24, 28, 29, 35, 37, 38, 42, 46, 47, 55, 57], "fluctuat": [6, 13], "enough": [6, 8, 11, 14, 22, 23, 32, 41, 43, 47, 49, 52, 55], "probabilist": 6, "outlier": [6, 9], "moment": [6, 21, 29, 30, 35, 37, 41, 45, 55], "ramesh": 6, "johari": 6, "leo": 6, "peke": 6, "david": 6, "walsh": 6, "fake": [6, 31], "condit": [6, 8, 11, 12, 20, 23, 26, 27, 31, 39, 43, 47], "sever": [6, 13, 16, 24, 38, 39, 40, 48, 55, 56], "dai": [4, 6, 7, 11, 25, 26, 28, 31, 34, 35, 36, 43, 45, 49, 52], "chosen": [6, 10, 28, 29, 31], "hit": [6, 22], "deep": [6, 16, 22], "troubl": [6, 47], "fact": [6, 7, 9, 12, 13, 18, 19, 21, 22, 28, 29, 33, 35, 38, 39, 40, 43, 45, 48, 57], "supervis": [7, 48, 55], "discourag": [7, 10], "inde": [7, 9, 21, 28, 35, 40, 41, 44, 55], "cover": [7, 21, 35, 42, 47, 50, 55, 57], "construct": [7, 9, 16, 24, 32], "action": [7, 16, 35, 45, 49, 55], "deploi": 7, "discriminatori": 7, "uncontest": 7, "grip": [7, 11], "approxim": [7, 12, 28, 38], "doubt": 7, "previou": [7, 29, 30, 37], "emul": 7, "process": [7, 11, 18, 22, 41, 43, 46, 48, 52, 54, 55], "attempt": [7, 11, 12, 16, 22, 55], "systemat": [7, 28, 35, 42], "inaccur": [7, 21, 35], "relat": [7, 8, 12, 14, 22, 30, 37, 39, 41, 56, 57], "thoughtfulli": [7, 52], "down": [7, 12, 16, 21, 22, 31, 33, 35, 36, 40, 46, 48, 49, 57], "downstream": 7, "leav": [7, 12, 22], "fight": 7, "own": [7, 11, 12, 21, 25, 35, 36, 41, 42, 48, 54, 55, 56], "flavor": [7, 25, 28, 36], "h": 7, "michael": 7, "akand": 7, "unforeseen": 7, "uneth": [7, 12], "recapitul": [7, 57], "fulli": [7, 13, 21, 35, 41, 43, 45, 49, 55], "underli": [7, 11, 22, 39], "advantag": [7, 16, 22, 37], "intepret": 7, "eleph": 7, "room": 7, "trade": [7, 18, 22, 38, 50, 56], "off": [7, 8, 21, 22, 28, 30, 36, 37, 40, 55, 57], "simplic": [7, 39], "accuraci": [7, 21, 35, 36], "tree": [7, 29], "nice": [7, 15, 22, 44], "compet": 7, "vast": 7, "fanci": [7, 9, 14], "substanti": [7, 14, 15, 27, 40], "applic": [7, 25, 30, 36, 37, 43, 46, 47, 49, 57], "claim": [7, 28, 43], "crack": 7, "formal": [7, 8], "unsolv": 7, "win": 7, "crazi": 7, "complex": [7, 22, 41, 52], "articl": [7, 30, 37, 57], "self": 7, "car": [7, 17, 20, 24, 31, 43, 44, 56], "protein": 7, "fold": [7, 55], "edg": [7, 21, 35], "comput": [7, 11, 21, 22, 24, 26, 30, 35, 37, 38, 41, 44, 50], "vision": 7, "necessari": [7, 16, 21, 27, 28, 35, 43, 46, 55], "folk": [7, 50], "competit": [7, 16, 21, 35, 56], "consult": [7, 12, 16], "necessarili": [7, 10, 41, 50], "career": [7, 52], "bigger": [7, 47], "maxim": [7, 21, 35, 43], "bear": [7, 29, 30, 36, 37, 41, 42, 43, 52, 55, 57], "maintain": [7, 25, 36], "chanc": [7, 11, 28], "direct": [7, 11, 16, 20, 28, 31, 46], "mainten": [7, 36], "weird": [7, 25, 35, 36, 43, 47], "educ": [7, 10, 11, 22, 29, 30, 37, 38, 43, 45, 46, 47, 48, 50], "highli": [7, 16, 47], "imposs": [7, 12], "spit": 7, "nonsens": 7, "danger": [7, 21, 35], "financ": [7, 8], "healthcar": [7, 14, 27, 38], "contain": [7, 21, 24, 25, 35, 36, 38, 56], "virtual": 7, "bomb": [7, 12], "trigger": 7, "relatedli": [7, 43], "difficult": [7, 35, 55], "adopt": [7, 21, 35, 42], "auto": [7, 12], "grader": 7, "certainli": [7, 28, 48], "net": [7, 12, 36], "essai": [7, 55], "free": [7, 8, 11, 12, 23, 26, 50], "teacher": 7, "deepli": 7, "manipulat": 7, "particular": [7, 8, 11, 15, 21, 23, 28, 35, 38, 41, 52, 54, 55, 57], "appear": [7, 11, 22, 41, 45], "mostli": [7, 11, 18, 25, 36, 55, 57], "onc": [7, 22, 28, 29, 30, 32, 33, 37, 54, 55, 56], "quit": [7, 50, 56], "incredibli": [7, 9, 55], "mad": 7, "financi": [7, 8, 16, 34, 50, 55, 57], "game": [7, 45], "engag": [7, 16, 41, 43, 52, 57], "isn": [7, 11, 21, 22, 29, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 56], "hu": 7, "et": [7, 20], "al": [7, 20, 36], "replac": [7, 22, 26, 28, 35, 36], "proprietari": 7, "court": [7, 31], "advis": [7, 12, 31], "judg": 7, "grant": [7, 28, 31], "bail": 7, "share": [7, 11, 15, 16, 21, 22, 25, 28, 30, 35, 36, 37, 43, 45, 50, 56, 57], "juvenil": 7, "arrest": [7, 13], "adult": [7, 30, 37], "assess": [7, 41, 48], "seal": 7, "belief": [7, 33], "childhood": 7, "fate": 7, "transpar": [7, 16, 55], "nlp": 7, "headach": [7, 35, 45], "unusu": [7, 40], "bet": [7, 21, 35], "easili": [7, 9, 31, 37, 44, 45, 50], "analyt": [7, 23], "parametr": 7, "cardiac": 7, "cholesterol": [7, 14, 45], "credit": [7, 11, 16, 25, 32, 36, 53], "worthi": [7, 16], "wish": [7, 25, 28, 32, 36, 41, 44, 54, 56, 57], "ldl": 7, "cholesterdol": 7, "regular": [7, 35, 44, 47, 50, 57], "prevent": [7, 12, 21, 35, 41, 55], "forest": 7, "isoton": 7, "vincent": 7, "warmerdam": 7, "health": [7, 14, 26, 27, 38, 43, 50, 55, 56], "y": [7, 8, 9, 11, 12, 13, 18, 19, 22, 24, 26, 35, 36, 39, 44, 47, 55], "axi": [7, 15, 22, 24, 33], "regressor": 7, "sklearn": [7, 22, 25, 35, 36], "xgboost": 7, "tensor": 7, "flow": 7, "goe": [7, 22, 44, 57], "subpopul": [7, 37, 49], "concern": [7, 8, 11, 12, 25, 36, 43, 50], "dalit": 7, "brahmin": 7, "christian": 7, "muslim": 7, "coupl": [7, 22], "disproportion": [7, 43, 45], "rate": [7, 12, 13, 14, 21, 24, 25, 28, 29, 30, 35, 36, 37, 39, 43, 44, 55], "tail": [7, 11, 28], "co": [7, 36, 39, 43], "enter": [7, 11, 21, 25, 29, 35, 36], "through": [4, 7, 8, 11, 16, 18, 19, 20, 22, 38, 41, 42, 44, 50, 52, 54, 56], "swap": 7, "imput": 7, "factor": [7, 12, 21, 24, 35, 55], "Of": [7, 22, 28, 36, 43, 45, 46, 55], "third": [7, 9, 11, 16, 25, 30, 36, 37, 47, 55], "unbias": [7, 40], "regardless": [7, 44, 47], "religion": 7, "sickl": 7, "cell": [7, 56], "anemia": 7, "symptom": [7, 45], "african": 7, "descent": 7, "allel": 7, "malaria": [7, 12], "pressur": [7, 29], "region": 7, "endem": 7, "carri": [7, 18, 46], "gene": [7, 43], "strong": [7, 41, 42, 47], "At": [7, 8, 11, 21, 22, 25, 35, 36, 38, 42, 46, 48, 55, 57], "recent": [7, 13, 17, 22, 33, 41, 42, 48], "kidnei": 7, "transplant": 7, "correct": [7, 18, 19, 21, 35, 38, 40, 49, 52], "blood": 7, "flag": [7, 11, 25, 36, 57], "prioriti": [7, 16, 31], "unlik": [7, 8, 35, 37, 47, 48, 52], "adjust": [7, 21, 28, 35, 38, 40], "explan": [7, 21, 35, 40], "histor": 7, "succe": 7, "biolog": 7, "until": [7, 9, 11, 20, 22, 24, 46, 47], "rigor": [7, 13, 35, 55, 57], "emphas": [7, 47, 55, 57], "solut": [7, 11, 17, 25, 30, 36, 37, 48], "proxi": 7, "crude": [7, 13], "initi": [7, 21, 22, 25, 27, 28, 31, 35, 36, 43, 44, 48, 55], "screen": 7, "drop": [7, 8, 21, 22, 25, 29, 31, 33, 35, 36, 38, 47], "margin": [7, 41], "weakli": 7, "genet": 7, "ever": [7, 8, 22, 25, 30, 36, 37, 45], "evid": [7, 8, 13, 18, 19, 26, 28, 30, 37, 49, 55, 57], "dynam": [7, 55], "plai": [7, 21, 22, 23, 28, 35, 47, 55, 56], "greater": [7, 11, 23, 25, 28, 30, 36, 37, 55], "knowledg": [7, 21, 32, 35, 52, 55], "remind": 7, "expert": 7, "quantit": [7, 25, 28, 31, 32, 36], "expertis": [7, 16], "terribl": [7, 38], "su": [7, 17], "unus": 7, "imperfect": 7, "dramat": [7, 19, 22, 47], "campaign": 7, "constant": [7, 9, 38], "toward": [7, 21, 35, 55], "hurdl": [7, 56], "Then": [7, 12, 13, 21, 22, 28, 35, 38, 44, 46, 48, 55], "accept": [7, 8, 11, 16, 20, 22, 28, 29], "charg": [7, 11], "lawsuit": 7, "pr": [7, 36], "disast": [7, 36, 50], "optim": [7, 16, 21, 35, 56], "spars": [7, 36], "scalabl": 7, "fall": [7, 13, 17, 22, 23, 25, 36, 45, 47], "triag": [7, 27], "notori": 7, "concept": [7, 11, 28, 41, 42, 52, 57], "whiten": 7, "hybrid": 7, "portion": [7, 11, 29], "flexibl": [7, 13, 21, 35], "machineri": [7, 24], "lattic": 7, "counterfactu": [7, 55], "visual": [7, 21, 35, 42], "dtreeviz": 7, "lda": 7, "detail": [8, 16, 21, 22, 28, 29, 31, 35, 40, 44, 46, 50, 55, 56, 57], "deriv": [8, 13, 17, 26, 27, 45], "mathemat": [8, 20, 38, 39, 40, 41, 52], "advertis": [8, 43], "discount": [8, 38], "amount": [8, 13, 16, 25, 36, 39, 43, 44, 45, 55, 57], "treat": [8, 11, 13, 22, 23, 25, 28, 29, 30, 33, 36, 37, 38, 40, 45, 46, 47, 55], "untreat": [8, 22, 28, 46, 47], "seen": [8, 15, 21, 30, 33, 35, 37, 43, 54, 55], "y_0": [8, 22, 39], "y_1": [8, 22], "met": [8, 26, 27, 42, 43], "sell": [8, 13, 14, 28, 43, 45, 57], "sunglass": 8, "pawda": 8, "sourc": [8, 11, 18, 19, 28, 39, 47, 48, 56], "promot": [8, 14, 28, 47], "coupon": [8, 47, 57], "york": [8, 39, 43], "ny": [8, 36, 39], "came": [8, 20, 28, 43, 47], "revenu": [8, 40, 56], "instagram": 8, "nytim": 8, "elsewher": 8, "tempt": 8, "vacuous": 8, "willing": [8, 29, 46], "higher": [8, 10, 14, 22, 23, 26, 30, 37, 48, 49], "bar": [8, 13], "affirm": [8, 26], "wealthier": [8, 43], "relativelei": 8, "dispos": 8, "split": [8, 13, 16, 21, 25, 35, 36, 45], "weren": [8, 28, 43, 47], "height": [8, 26], "cm": 8, "happier": 8, "absent": [8, 29, 55], "balanc": [8, 11, 22, 25, 36, 47, 49, 57], "size": [8, 16, 21, 22, 28, 31, 35, 37, 38, 40, 45, 49], "lln": 8, "kick": [8, 14], "kinda": [8, 35, 45], "att": 8, "yai": 8, "platform": [8, 45], "exist": [8, 28, 31, 40, 43, 48, 50, 55, 56], "everywher": [8, 43, 50], "convinc": [8, 18, 19, 28, 57], "ourselv": [8, 22], "increas": [8, 11, 12, 16, 22, 23, 26, 28, 38, 43, 44, 45, 55], "relativlei": 8, "understim": 8, "BUT": [8, 57], "obsess": 8, "plausibl": 8, "dunno": 8, "dozen": [8, 9, 46, 55], "far": [8, 13, 21, 22, 30, 35, 37, 43, 45, 47, 50], "perfect": [8, 21, 22, 25, 29, 35, 36, 43], "absolut": [8, 12, 21, 30, 35, 37, 39, 54, 56, 57], "further": [8, 23, 31], "investig": [8, 16, 48], "advic": [8, 23, 27, 41], "strongli": 8, "friend": [8, 45], "flip": 8, "flop": 8, "sandal": 8, "cat": [8, 35, 38], "meow": 8, "dal": 8, "referr": 8, "none": [8, 28, 35], "forward": [8, 25, 36, 46, 47, 48, 54, 55], "welcom": [8, 11, 16], "certainti": 8, "hopefulli": [8, 10, 18, 22, 37, 44, 55, 57], "polic": [9, 43, 56], "expenditur": [9, 28], "massachusett": [9, 15, 30, 37], "lead": [9, 12, 16, 17, 20, 21, 22, 26, 31, 32, 35, 43, 57], "loop": [9, 15, 28, 46], "policeexpenditur": [9, 15], "crimeindex": [9, 15], "separ": [9, 15, 20, 39, 41, 45], "remark": [9, 30, 37, 43, 55], "cute": 9, "anscomb": 9, "quartet": 9, "four": [9, 11, 13, 16, 25, 30, 36, 37, 56], "bi": [9, 16], "varianc": [9, 22, 40], "fourth": [9, 16], "betrai": 9, "explanatori": [9, 40, 47], "forev": [9, 35], "rich": [9, 28, 43, 50, 52], "link": [9, 20, 21, 22, 23, 24, 29, 35, 38, 46, 50], "cheat": [9, 20, 22, 24], "preced": [10, 13, 21, 25, 35, 36], "establish": [10, 11, 28, 43], "gap": [10, 29, 33, 42], "sort": [10, 11, 25, 36, 38, 43, 47, 48, 56], "femal": [10, 22, 28, 29, 30, 37, 38, 44], "field": [10, 22, 23, 31, 41, 42], "remain": [10, 13, 22, 25, 28, 36, 48], "stem": 10, "decompos": 10, "man": [10, 29], "inequ": 10, "onboard": 11, "app": [11, 28, 35, 43, 45], "apach": 11, "licens": 11, "writeup": 11, "fair": [11, 21, 35], "materi": [11, 38, 41, 42, 47, 52, 55], "click": [11, 23, 28], "card": [11, 21, 35], "enrol": [11, 21, 27, 28, 35, 42, 43], "automat": [11, 21, 35, 38, 44], "cancel": [11, 36], "quizz": 11, "coach": 11, "support": [11, 12, 16, 18, 19, 28, 31, 38, 46], "verifi": [11, 28], "certif": [11, 30, 32, 37], "feedback": [11, 16, 56], "devot": 11, "checkout": 11, "fewer": [11, 12, 25, 30, 36, 37, 38, 45, 46, 55], "messag": 11, "continu": [11, 21, 22, 25, 28, 35, 36, 39, 43, 44], "screenshot": 11, "hope": [11, 14, 15, 23, 25, 28, 31, 36, 42, 45, 48, 52, 55], "upfront": 11, "frustrat": [11, 41], "left": [11, 30, 33, 37, 39, 46, 47], "significantli": [11, 28, 37, 41], "held": [11, 29], "capac": 11, "www": [13, 20, 23, 24], "github": [11, 13, 15, 20, 22, 24, 29, 30, 33, 35, 36, 37, 38, 42], "mids_data": [13, 15, 20, 22, 24, 29, 33, 35, 36, 37, 38], "udacity_ab_test": [], "folder": [25, 29, 35, 36, 37], "visitor": 11, "roughli": [11, 16, 20, 37], "row": [11, 13, 24, 33, 35, 38, 50], "easiest": [11, 38, 55], "stack": 11, "pageview": 11, "uniqu": [11, 21, 22, 25, 33, 35, 36], "homepag": 11, "payment": [11, 25, 36], "Or": [11, 25, 30, 36, 37, 38, 43], "m": [11, 15, 25, 35, 36, 38, 45, 47, 50], "phrase": 11, "terminologi": 11, "encount": [11, 41, 55], "unintend": 11, "consequ": [11, 12, 26, 28, 45, 55], "correctli": [11, 30, 37, 38, 43, 44, 49, 57], "deem": 11, "half": [11, 13, 21, 28, 30, 35, 37, 47, 48, 57], "shown": [11, 42], "invari": [11, 13], "affect": [11, 24, 31, 38, 39, 40, 44, 48], "pre": [11, 13, 22, 36, 43, 46, 56], "analog": [11, 38], "previous": [11, 13, 22, 41, 44, 48, 55], "qualiti": [11, 12, 22, 50], "tricki": 11, "divid": [11, 16, 28, 29, 40, 46], "emerg": [11, 17], "ttest": 11, "scipi": [11, 37], "pass": [11, 13, 21, 25, 28, 35, 36, 38], "numpi": [11, 24, 35, 36, 37], "vector": [11, 22, 36, 38], "oper": [11, 12, 16, 21, 25, 35, 36, 37], "df": [11, 22, 33, 37, 38, 44], "my_column": 11, "93": [33, 35], "consist": [11, 25, 36, 55], "magic": [11, 39, 45, 48, 55], "bivari": 11, "close": [11, 22, 29, 31, 47], "float": [11, 36, 37, 38], "decreas": [11, 12, 13, 19, 23], "covari": [22, 24, 30, 37, 38, 40, 44, 49], "perfectli": [11, 44], "mondai": [], "adapt": [12, 22, 47, 49], "permiss": [12, 23], "adrian": 12, "fresh": 12, "caus": [11, 12, 19, 25, 28, 32, 35, 36, 39, 41, 43, 48, 49, 55], "statement": [12, 15, 17, 33, 35, 55], "underlin": 12, "embed": 12, "gold": [12, 21, 35], "typic": [12, 16], "law": [12, 13, 16, 30, 37, 55], "cool": [12, 17, 45, 46], "absenc": 12, "arisen": [12, 28], "instruct": [12, 18, 19], "c": [12, 20, 22, 24, 35, 36, 37, 38, 44, 47], "infeas": 12, "briefli": 12, "nato": 12, "militari": 12, "command": [12, 28, 33], "defeat": 12, "insurg": 12, "afghanistan": 12, "kill": [12, 56], "villag": [12, 28, 45], "upset": 12, "civilian": [12, 38], "hous": 12, "member": [12, 14, 16, 28, 40, 46], "afghani": 12, "coalit": [12, 31], "forc": [12, 41], "war": [12, 13, 55], "break": [12, 22, 23, 40, 48], "hypothet": [12, 14], "farfetch": 12, "wildli": 12, "baselin": [11, 12, 14, 16, 22, 26, 27, 28, 30, 37, 39, 47, 57], "milit": 12, "insan": [12, 50], "unanswer": 12, "jason": 12, "lyall": 12, "insur": [12, 25, 27, 36, 43], "bought": [12, 48], "devic": 12, "alert": 12, "driver": [12, 17, 56], "unsaf": 12, "accid": [12, 14, 24, 56], "wonder": [12, 22], "britain": 12, "vote": [12, 44, 55], "european": [12, 43], "uk": 12, "brexit": 12, "immigr": 12, "attitud": 12, "proxim": 12, "favor": 12, "eu": 12, "2016": [12, 13, 33], "aid": [12, 21, 24, 30, 35, 37, 48, 52, 56, 57], "priorit": [12, 22], "bed": 12, "famili": [12, 25, 28, 36], "rural": [12, 43, 45, 48], "kenya": 12, "drug": [13, 33, 43, 45, 55, 56], "dealer": 13, "decad": [13, 22, 50, 55], "california": [13, 33], "lessen": 13, "penal": [13, 21, 35], "possess": 13, "arguabl": [13, 35], "2010": [13, 21, 28, 33, 35], "penalti": [13, 21, 25, 30, 35, 36, 37], "crimin": 13, "civil": 13, "guilti": 13, "produc": 13, "quantiti": [13, 26, 27, 28, 37, 44], "illeg": 13, "recreat": 13, "regulatori": [13, 16, 21, 35], "propon": 13, "contribut": [13, 22, 31, 47, 55], "violenc": 13, "gang": 13, "battl": 13, "territori": 13, "accord": [13, 31, 52], "argument": [13, 22, 25, 28, 33, 36, 47, 55], "simpli": [13, 28, 42, 55], "semest": [13, 56], "com": [13, 15, 20, 22, 23, 24, 29, 35, 36, 37, 38, 44], "uds_arrest_data": [13, 33], "csv": [13, 15, 24, 33, 44], "attornei": [13, 33], "offens": 13, "f_drugoff": [13, 33], "feloni": 13, "total_popul": [13, 33], "total": [11, 13, 22, 24, 25, 28, 30, 33, 36, 37, 44, 52], "began": [13, 28, 43, 55], "liber": 13, "2007": [13, 25, 28, 33, 36, 47], "2009": [13, 21, 25, 33, 35, 36], "violent_r": 13, "among": [13, 16, 28, 29, 30, 32, 37, 38, 40, 41, 43, 44, 45, 48], "2008": [13, 25, 33, 36], "special": [13, 21, 35, 38, 43, 50, 55], "y_": [13, 27], "avg": [13, 38], "hat": 13, "delta": 13, "_": [13, 24, 36], "took": [13, 31, 55], "ignor": [11, 13, 21, 29, 35, 37, 38], "middl": [13, 39, 44, 47, 55], "decrimin": 13, "parallel": [13, 57], "2000": [13, 33, 36, 43], "inclus": [13, 22], "geometr": 13, "confid": [13, 21, 23, 28, 35, 36, 37, 38, 43, 44, 47, 57], "panelol": [13, 24, 38], "lfe": [13, 24], "r": [13, 21, 24, 35, 36, 37, 38, 42, 44], "client": [14, 16], "offset": 14, "worthwhil": [14, 55], "durham": [14, 55], "nc": [14, 36], "index": [14, 15, 22, 26, 33, 36, 38], "rest": [14, 43, 47, 55, 56], "consumpt": [14, 20, 24, 27, 28, 32], "healthier": 14, "rental": 14, "renter": 14, "deduct": 14, "fee": 14, "pocket": 14, "lose": [14, 29, 38, 47, 57], "hassl": 14, "fleet": 14, "agreement": [14, 21, 35], "tesla": 14, "dealership": 14, "hillsboro": 14, "town": 14, "heard": 14, "center": [14, 42, 48], "examin": [15, 22, 33, 55], "blob": [15, 22, 37, 38], "descriptive_exercis": 15, "crime_expend_ma": 15, "monthli": [15, 25, 28, 36], "budget": [15, 28], "late": [15, 25, 36, 43], "2001": [15, 30, 33, 37], "county_cod": 15, "print": [15, 23, 35, 36, 37], "output": [15, 16, 24, 38, 44], "gonna": [15, 28, 35, 57], "75": [15, 33, 35, 36], "83": [15, 33, 35, 37], "62": [15, 35, 37], "55": [15, 35], "88": [15, 33, 35], "format": [15, 50], "guess": [15, 20, 23, 43, 48, 55], "knew": [15, 57], "till": [15, 36, 38, 46], "scatter": [15, 20, 24], "advisori": 16, "firm": [16, 25, 36, 44, 50], "compliant": 16, "authent": 16, "capston": [16, 31, 34], "undertaken": [16, 31], "corpor": [16, 31], "intersect": 16, "top": [16, 48, 57], "bank": 16, "fintech": 16, "lend": 16, "core": [16, 17, 31, 47, 48, 55], "capabl": 16, "lender": 16, "led": [16, 31], "reli": 16, "challeng": [16, 42, 43], "tradit": [16, 31], "partial": [16, 21, 22, 35], "shaplei": 16, "regul": [16, 55], "delinqu": 16, "loan": [16, 25, 34, 36, 50], "burden": 16, "champion": 16, "gradient": [16, 21, 35], "boost": [16, 21, 35], "gbm": [16, 34], "viabil": 16, "ebm": [16, 21, 34, 35], "publicli": [16, 48, 50], "complianc": [16, 43, 49], "overlai": 16, "enforc": 16, "kdd": 16, "cup": 16, "191k": 16, "481": 16, "mail": [16, 43], "creation": [16, 21, 31, 35], "weekli": [16, 29, 38, 39], "stretch": 16, "methodologi": 16, "advers": 16, "satisfi": [16, 45], "contact": [16, 28], "redact": 16, "outlin": [16, 57], "undertak": [16, 49, 55, 57], "deliver": [16, 31], "uglier": 17, "realist": 17, "motor": [17, 48], "conglomer": 17, "america": [17, 48], "manufactur": [17, 20], "announc": [17, 50, 57], "enhanc": 17, "brake": 17, "lane": 17, "departur": 17, "warn": [17, 21, 35, 36, 37, 38, 44, 54], "keep": [17, 21, 22, 25, 34, 35, 36, 41, 43, 46, 47, 52, 55, 57], "drowsi": 17, "ey": [17, 33], "squirt": 17, "water": [17, 18, 19], "wake": 17, "fortun": 17, "weaker": 17, "prone": 17, "injuri": 17, "activ": [17, 26, 50, 52, 54, 55], "tracker": 17, "sheet": 18, "aloud": [18, 19], "devis": [18, 19], "waterborn": [18, 19], "pathogen": [18, 19], "technologi": [18, 19], "falsifi": [18, 19], "inconsist": [18, 19, 44], "germ": [18, 19], "spread": [18, 19], "worksheet": [18, 19], "walk": [18, 19], "john": [18, 19, 55], "snow": [18, 19], "london": [18, 19], "diseas": [18, 19, 45], "miasma": 18, "lesson": [18, 22, 46], "1854": [18, 19, 44], "street": [18, 19, 57], "pump": [18, 19], "neighborhood": [18, 19, 43, 50, 55], "soho": [18, 19], "suppli": [18, 19], "drink": [18, 19, 26], "cook": [18, 19], "household": [18, 19, 28, 38, 45], "chore": [18, 19], "indoor": [18, 19], "plumb": [18, 19], "unheard": [18, 19], "meant": [11, 18, 19, 50, 55], "obtain": [18, 19, 48], "corner": [18, 19], "throughout": [18, 19, 25, 36, 39, 55], "citi": [18, 19, 25, 36, 38, 39, 40, 55, 56], "despit": [18, 43, 55], "worker": [18, 29], "breweri": 18, "outbreak": 18, "food": [18, 28], "bakeri": 18, "exhibit": 18, "involv": [18, 56, 57], "retail": [18, 38], "drank": [18, 26], "beer": [18, 24], "hydrat": 18, "brew": 18, "boil": 18, "famous": [18, 55], "map": [18, 35, 41], "counter": [18, 29, 41, 55], "factual": [18, 29, 55], "Will": [18, 19], "space": [18, 19, 20, 21, 31, 35, 38, 46, 50, 56], "incorrect": [18, 19, 21, 35], "brewer": 18, "theoriz": 19, "contamin": 19, "author": 19, "dismantl": 19, "handl": [19, 33, 36], "septemb": 19, "subsequ": [19, 22, 25, 33, 36, 41, 56], "7th": 19, "canon": [20, 36], "mileag": 20, "74": [20, 33, 35, 36], "automobil": 20, "april": 20, "1979": 20, "epa": 20, "fuel": 20, "compil": [20, 50, 55], "chamber": 20, "1983": [20, 33], "automobile_dataset": 20, "file": [11, 20, 25, 29, 30, 33, 36, 37, 44, 50], "internet": 20, "codebook": 20, "mpg": 20, "rep78": 20, "repair": 20, "1978": 20, "headroom": 20, "trunk": 20, "cu": 20, "ft": 20, "lb": 20, "circl": [20, 57], "displac": 20, "gear_ratio": 20, "gear": 20, "ratio": [11, 20, 25, 28, 36, 49], "foreign": 20, "guzzler": 20, "mile": 20, "gallon": 20, "ga": [20, 36], "guzzl": 20, "marker": 20, "red": [20, 47], "green": 20, "confirm": [20, 28, 44], "q3": 20, "poorli": [20, 35, 43, 48, 50], "poor": [20, 28, 40, 43], "respect": [20, 21, 35, 37, 43, 44, 49], "abroad": 20, "grandma": 20, "domest": 20, "main": [20, 24, 47, 57], "layman": 20, "cynthia": [21, 35], "rudin": [21, 35], "commentari": [21, 35], "arxiv": [21, 35], "plethora": [21, 35], "alter": [21, 35], "appeal": [21, 35], "inher": [21, 35], "flaw": [21, 35, 55], "favorit": [21, 35], "passag": [21, 35, 41], "her": [21, 35], "faith": [21, 35], "cannot": [21, 22, 35, 43, 44, 55], "fidel": [21, 35], "equal": [21, 25, 28, 35, 36, 44], "represent": [21, 35], "extens": [21, 35], "tenth": [21, 35], "14th": [21, 35], "pacif": [21, 35, 43], "asia": [21, 35, 48], "discoveri": [21, 35, 55], "mine": [21, 35], "confer": [21, 31, 35], "pakdd": [21, 35], "2006": [21, 25, 33, 35, 36], "privat": [21, 35], "brazilian": [21, 35], "partner": [21, 35, 56], "timi": [21, 35], "pure": [21, 35], "coincid": [21, 35], "dissert": [21, 35], "confus": [21, 25, 35, 36, 44, 52, 55], "glm": [21, 35], "mvgam": [21, 35], "pioneer": [21, 28, 35], "statsmodel": [21, 22, 28, 30, 35, 37, 38, 44], "hide": [21, 35, 45], "plain": [21, 26, 27, 35, 43], "sight": [21, 35], "meta": [21, 35], "prophet": [21, 35], "seri": [21, 33, 35], "forecast": [21, 35], "librari": [21, 22, 25, 30, 35, 36, 37, 38, 44], "padd": [21, 35], "repositori": [21, 35, 50], "pakdd2010_variableslist": [21, 35], "xl": [21, 35], "pakdd2010_modeling_data": [21, 35], "txt": [21, 25, 29, 35, 36], "string": [21, 22, 25, 30, 35, 36, 37, 38], "load": [11, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 44, 56], "latin": [21, 33, 35, 48], "latin8": [21, 35], "prior": [21, 28, 35, 42], "utf": [21, 35], "hint": [21, 22, 24, 25, 33, 35, 36], "strictli": [21, 35, 52], "stage": [21, 35], "missing": [21, 35], "quant_depend": [21, 35], "quant_car": [21, 35], "months_in_resid": [21, 35], "personal_monthly_incom": [21, 35], "quant_banking_account": [21, 35], "marital_statu": [21, 35], "occupation_typ": [21, 35], "residence_typ": [21, 35], "residencial_st": [21, 35], "residencial_c": [21, 35], "residencial_borough": [21, 35], "residencial_zip_3": [21, 35], "banana": [21, 35], "log": [21, 30, 35, 37, 38, 44, 47], "geograph": [21, 31, 35, 50], "segreg": [21, 35], "resid": [21, 28, 35, 55], "resolv": [21, 35], "residencial_": [21, 35], "train_test_split": [21, 25, 35, 36], "80": [21, 28, 33, 35], "target_label_bad": [21, 35], "classif": [21, 25, 35, 36], "gridsearch": [21, 35], "spline": [21, 35], "slow": [21, 35, 38], "50": [21, 27, 28, 33, 35, 36, 38, 44, 45], "residencial_zip": [21, 35], "minut": [21, 35, 46], "configur": [21, 35], "naiv": [21, 35], "matrix": [21, 24, 25, 35, 36, 37, 38, 40], "extend": [21, 35, 39], "default": [11, 21, 22, 25, 33, 34, 35, 36], "omiss": [21, 25, 35, 36], "predict_proba": [21, 25, 35, 36], "shift": [21, 35], "emphasi": [21, 35], "threshold": [21, 22, 23, 25, 28, 35, 36, 46], "toler": [21, 35], "interv": [21, 23, 28, 35, 44], "partial_depend": [21, 35], "pdep": [21, 35], "confi": [21, 35], "xx": [21, 35], "width": [21, 35], "valueerror": [21, 22, 35, 38], "recod": [21, 35], "refit": [21, 35], "impos": [21, 34, 35, 56], "concav": [21, 35], "convex": [21, 35], "overfit": [11, 21, 35], "smooth": [21, 35, 44], "paramet": [21, 28, 30, 35, 37, 38], "lambda": [21, 33, 35], "push": [21, 28, 35, 45], "smoother": [21, 35, 44], "grid": [21, 35], "doc": [21, 28, 35], "explainableboostingclassifi": [21, 35], "classmat": [21, 35], "prefer": [21, 22, 30, 35, 37, 40, 42, 55, 57], "glassbox": [21, 35], "x_train": [21, 35, 36], "y_train": [21, 35, 36], "catch_warn": [21, 35], "simplefilt": [21, 35], "ebm_glob": [21, 35], "explain_glob": [21, 35], "ebm_loc": [21, 35], "explain_loc": [21, 35], "matchit": 22, "rpy2": 22, "statistician": [22, 40], "awar": [22, 28, 45, 55, 56], "matur": [22, 36], "purpos": [22, 36, 38, 40, 55], "techniqu": [22, 42], "frontier": 22, "hyper": 22, "pip": [22, 38], "conda": [22, 38], "exact": [22, 37, 43], "pair": [22, 33, 46, 47, 56], "repeat": [22, 28], "trick": [22, 35], "massiv": [22, 43, 55], "computation": [22, 24], "amaz": [22, 30, 37, 50, 55], "month": [22, 25, 27, 28, 35, 36, 43, 45], "cp": [22, 29, 36, 38], "current_population_survei": [22, 29, 38], "cps_for_match": 22, "content": [22, 42], "overlap": [22, 46, 47], "unsur": [11, 22], "imbal": [22, 30, 37, 46], "annual_earn": [22, 38], "has_colleg": 22, "plotnin": [22, 44], "geom_smooth": [22, 44], "lowess": [22, 44], "altair": 22, "transform_loess": 22, "tutori": [22, 44], "speak": [22, 41], "discret": [22, 44, 48], "employ": [22, 29, 30, 37], "merg": [22, 25, 33, 36, 50], "covert": 22, "convert": [22, 25, 28, 36, 38, 44], "class94": 22, "interg": 22, "belong": [22, 29, 38, 39, 44, 55], "passion": 22, "var": [4, 22, 35, 36, 37], "pull": [22, 38], "integ": [22, 44], "reset": 22, "dame_flam": 22, "syntax": [22, 44], "my_data": 22, "verbos": [22, 35], "want_p": 22, "treatment_column_nam": 22, "outcome_column_nam": 22, "printout": 22, "iter": 22, "unmatch": 22, "empti": 22, "hasn": [22, 55], "370": [22, 44], "644": 22, "1150": 22, "3187": 22, "4365": 22, "1684": 22, "1199312680": 22, "0957854": 22, "684": 22, "subset": [22, 25, 29, 36], "secret": 22, "sauc": 22, "ridg": 22, "elimin": [22, 47], "626": 22, "494": 22, "180": [22, 36], "3626": 22, "5310": 22, "frozenset": 22, "1199421883": 22, "1095908": 22, "recal": [11, 22, 23, 30, 37, 43], "becom": [22, 28, 36, 39, 43, 44, 55], "manual": 22, "early_stop_iter": 22, "evolv": [22, 55], "pe_each_it": 22, "pe": [22, 35], "falloff": 22, "complaint": 22, "entri": [22, 33, 38], "simplified_rac": 22, "discretized_ag": 22, "24": [22, 25, 28, 33, 35, 36, 37, 47], "copi": [22, 35, 36, 38], "def": [22, 35], "get_datafram": 22, "result_of_fit": 22, "input_data": 22, "loc": [22, 35, 37], "is_uniqu": [22, 36], "match_group": 22, "np": [22, 25, 28, 35, 36, 37], "nan": [22, 25, 33, 35, 36, 38], "match_group_s": 22, "idx": 22, "enumer": [22, 35], "units_per_group": 22, "len": [22, 35, 36], "t_in_group": 22, "groupbi": [22, 36], "transform": [22, 35, 36], "sum": [22, 33, 36], "treament": 22, "num": [22, 28, 35, 36], "control_weight": 22, "num_control_ob": 22, "drop_dupl": [22, 36], "renorm": 22, "assert": [11, 22, 25, 30, 33, 35, 36, 37, 55], "notnul": [22, 36, 38], "return": [22, 32, 33, 35, 42, 43, 55], "wl": 22, "matched_data": 22, "smf": [22, 37, 38, 44], "educt": 22, "ba": [22, 29], "tast": 22, "permut": 22, "closest": 22, "multipl": [22, 24, 25, 36, 39, 42, 43, 56], "twice": [22, 28, 30, 37, 39], "malt": 22, "mahalanobi": [22, 46], "distanc": [22, 31, 46], "ulik": 22, "clever": 22, "arbitrari": 22, "explod": [22, 55], "aeml": 22, "planner": [23, 28], "georgi": 23, "georgiev": [4, 23], "hi": [23, 36, 47, 55], "toolkit": 23, "processor": 23, "latenc": 23, "delai": 23, "chip": 23, "justifi": 23, "05": [23, 28, 35, 37, 44], "millisecond": 23, "smaller": [23, 28, 30, 37, 38, 40, 46, 47, 48], "god": 23, "forbid": 23, "500": [23, 35], "costli": [11, 23, 49], "revers": 23, "labor": [23, 28], "50m": 23, "15m": 23, "wanna": [23, 44], "sequenti": 23, "agil": 23, "valuabl": [23, 47], "5m": 23, "hover": 23, "interpet": 23, "99": [23, 35, 36, 38, 45], "densiti": 23, "lift": 23, "f": [23, 35, 36, 37, 38, 44], "alcohol": [24, 56], "fatal": [24, 55, 56], "336": 24, "34": [24, 35, 36, 37, 44], "beertax": 24, "drunk": 24, "intuit": [24, 40, 41], "us_driving_fat": 24, "frame": 24, "fat_rat": 24, "pop": [24, 29, 44], "python": [24, 40, 42, 56], "navig": 24, "ol": [24, 37, 38, 44], "align": 24, "fatalityrate_i": 24, "beta_0": [24, 44], "beta_1": [24, 44, 47], "beertax_i": 24, "notat": [24, 41, 44], "whei": 24, "fatalityrate_": 24, "alpha": [24, 28, 47, 49], "beta": [24, 49], "beertax_": 24, "psi": 24, "z_i": 24, "epsilon_": 24, "sum_": 24, "overlin": 24, "fatalityr": 24, "_i": 24, "epsilon": [24, 44, 47], "substract": 24, "equat": [24, 44, 55], "yield": 24, "overset": 24, "sim": [24, 38], "x_": 24, "intercept": [24, 35, 36, 37, 38, 40, 44], "from_formula": [24, 38], "arrai": [24, 28, 33, 36, 37, 38], "phenomenon": [24, 55], "state_i": 24, "year_t": 24, "homeown": [25, 36], "newli": [25, 36], "home": [25, 36, 43], "freddi": [25, 36], "mac": [25, 36], "calendar": [25, 36], "dictionari": [11, 25, 30, 36, 37], "exercise_passive_predict": [25, 36], "ipynb": [11, 25, 30, 36, 37], "upload": [11, 25, 30, 36, 37], "ex2_merge_typ": [25, 36], "ex4_num_mortgag": [25, 36], "ex5_num_ob": [25, 36], "ex7_num_mortgag": [25, 36], "ex7_share_delinqu": [25, 36], "ex10_num_ob": [11, 25, 36], "ex12_roc_auc": [25, 36], "ex14_false_omission_r": [25, 36], "ex16_num_ob": [25, 36], "ex16_share_delinqu": [25, 36], "ex17_false_omission_r": [25, 36], "clariti": [11, 25, 30, 36, 37], "supplement": [25, 36], "scope": [25, 36], "sample_orig_2004": [25, 36], "2004": [25, 33, 36], "sample_svcg_2004orig_3year": [25, 36], "2005": [25, 33, 36], "url": [25, 30, 36, 37], "AND": [25, 36, 43], "Be": [25, 36], "keyword": [25, 33, 36, 38], "inner": [25, 36], "join": [25, 36], "quarter": [25, 36], "vanilla": [25, 36], "sequenc": [25, 36, 48, 55], "behalf": [25, 36], "element": [25, 26, 27, 36, 37], "cycl": [25, 28, 36], "perceiv": [25, 30, 36, 37], "anomali": [25, 36], "mismatch": [25, 36, 49], "investor": [25, 36], "commonli": [25, 36, 38, 46], "section": [25, 36, 55, 57], "cleanli": [25, 36], "correspond": [25, 26, 27, 30, 36, 37], "borrow": [25, 36, 55], "instal": [25, 36, 38], "ddlpi": [25, 36], "banker": [25, 36], "mba": [25, 36], "acquir": [25, 36], "reo": [25, 36], "59": [25, 33, 35, 36], "60": [25, 35, 36, 44], "89dai": [25, 36], "119dai": [25, 36], "ra": [25, 36], "acquisit": [25, 36], "issuanc": [25, 36], "tidi": [25, 36], "holder": [25, 31, 36, 48], "metropolitan": [25, 36], "msa": [25, 36], "divis": [25, 36], "deploy": [25, 36], "homebuy": [25, 36], "percentag": [11, 25, 28, 29, 30, 36, 37, 44], "mi": [25, 35, 36, 38, 43, 48], "occup": [25, 36, 38], "debt": [25, 36], "dti": [25, 36], "upb": [25, 36], "ltv": [25, 36], "channel": [25, 36], "prepay": [25, 36], "ppm": [25, 36], "amort": [25, 36], "formerli": [25, 36], "o": [25, 36], "distinct": [25, 36, 47, 55], "hot": [25, 36, 44], "seed": [25, 36, 50], "fan": [25, 36], "patsi": [25, 36], "dmatric": [25, 36], "binari": [25, 28, 36, 44], "number_of_borrow": [25, 36], "number_of_unit": [25, 36], "model_select": [25, 35, 36], "test_siz": [25, 35, 36], "random_st": [25, 35, 36], "gradientboostingclassifi": [25, 36], "ensembl": [25, 36], "roc_auc_scor": [25, 36], "roc": [25, 36], "auc": [25, 36, 42], "round": [11, 25, 30, 36, 37], "decim": [11, 25, 30, 36, 37, 47], "instabl": [25, 36], "classifi": [25, 36], "viabl": [25, 36], "riski": [25, 36], "08": [25, 35, 36, 44], "saniti": [11, 25, 36], "cutoff": [25, 35, 36], "retrospect": [25, 28, 36], "move": [25, 26, 27, 36, 38, 44, 47, 55], "stai": [25, 36, 45], "onto": [26, 27, 41], "wellb": 26, "sit": 26, "front": [26, 57], "bodi": [26, 28, 31, 57], "bmi": 26, "soda": 26, "dine": 26, "diet": 26, "sugar": 26, "healthi": [26, 55], "sugari": 26, "campu": [26, 30, 31, 37], "0_i": 26, "1_i": 26, "d_i": 26, "english": [26, 27, 41], "neq": [26, 27, 39], "hr": 27, "depart": [27, 38], "wemakewidget": 27, "llc": 27, "skyrocket": 27, "wmw": 27, "nurs": [27, 38, 43], "via": [27, 31], "send": [27, 43, 57], "exchang": [27, 28], "appoint": 27, "bonu": 27, "mandatori": 27, "enrolle": 27, "woman": [29, 44], "morg18": [29, 38], "stata": 29, "readm": [29, 50], "nation": [29, 48, 55], "lfsr94": [29, 38], "uhours": [29, 38], "35": [28, 29, 35, 36, 38, 44], "couldn": [29, 55], "chose": [29, 30, 37, 43, 57], "earnwk": [29, 38], "hourli": 29, "48": [29, 33, 35, 38], "implicit": [29, 45, 47], "pretend": 29, "grade92": [29, 38], "nest": [29, 38, 39, 40, 55], "structur": [29, 31, 38, 40, 43, 55, 57], "ind02": [29, 38], "hierarch": [4, 29, 38], "serv": [29, 31, 56], "slightli": [29, 35, 38, 57], "wherea": 29, "introduc": [29, 43, 55], "harder": [30, 37, 52], "express": [30, 37], "870": [30, 33, 37], "fictici": [30, 37], "advert": [30, 37], "boston": [30, 37], "chicago": [30, 37], "alloc": [30, 37], "children": [28, 30, 37, 38, 40, 45, 48], "subscrib": [28, 30, 37], "kwame": [30, 37], "anthoni": [30, 37], "appiah": [30, 37], "capit": [28, 30, 37], "w": [30, 37], "journal": [30, 37, 57], "exercise_resume_experi": [30, 37], "ex2_pvalue_computerskil": [30, 37], "ex2_pvalue_femal": [30, 37], "ex2_pvalue_yearsexp": [30, 37], "ex3_pvalue_educ": [30, 37], "ex4_valid": [30, 37], "ex5_pvalu": [30, 37], "ex5_white_advantage_perc": [30, 37], "ex5_white_advantage_percentage_point": [30, 37], "ex6_black_pvalu": [30, 37], "ex8_black_colleg": [30, 37], "ex8_black_nocolleg": [30, 37], "ex8_college_heterogen": [30, 37], "ex9_gender_and_discrimin": [30, 37], "ex10_experiment_v_u": [30, 37], "profoundli": [30, 37], "outset": [30, 37], "unbalanc": [30, 36, 37], "resume_experi": [30, 37], "fictiti": [30, 37], "interview": [30, 37], "yearsexp": [30, 37], "computerskil": [30, 37], "ofjob": [30, 37], "qualif": [30, 37], "magnitud": [30, 31, 37, 40], "tabul": [30, 37], "dropout": [30, 37], "chi": [30, 37], "conting": [30, 37, 52], "crosstab": [30, 35, 36, 37], "markdown": [30, 37], "back": [30, 37, 39, 47, 48, 57], "heteroskedast": [30, 37, 44], "robust": [30, 31, 37, 38, 40, 44, 57], "hc3": [30, 37, 44], "upsid": [30, 37, 41], "downsid": [30, 37, 41], "particularli": [30, 37, 41, 55], "migrain": [30, 37, 45], "aimovig": [30, 37, 45], "denot": [11, 30, 37], "lookup": [30, 37], "paus": [30, 37, 55, 57], "followup": [28, 30, 31, 37], "ident": [30, 37, 46], "piec": [30, 37, 41, 48], "crucial": [30, 37, 55, 57], "successfulli": [31, 48], "csr": 31, "2020": [28, 31, 44], "partnership": 31, "expand": 31, "summer": 31, "41": [28, 31, 35], "leader": 31, "elect": [31, 50], "poll": 31, "ballot": 31, "satellit": 31, "thank": 31, "incred": 31, "500k": 31, "cast": 31, "2013": [31, 33], "suprem": 31, "shelbi": 31, "struck": 31, "provis": [31, 56], "1965": 31, "act": [28, 31, 43, 49], "voter": [31, 44], "preclear": 31, "feder": 31, "2019": [31, 33, 38, 55], "leadership": 31, "1600": 31, "becam": 31, "closur": 31, "comprehens": [31, 55], "sponsor": 31, "aim": [31, 55], "eas": 31, "thereof": 31, "dropbox": [31, 33], "youth": 31, "equip": 31, "young": [31, 41, 49, 55], "backup": 31, "advocaci": 31, "surround": 31, "shine": 31, "brighter": 31, "greatest": 31, "proactiv": 31, "2022": 31, "institut": [31, 50], "qualit": 31, "extent": 31, "hbcu": 31, "msi": 31, "primarili": [31, 42, 47, 50, 55], "minor": [31, 38], "mere": 31, "travel": 31, "nearest": 31, "booth": 31, "foot": 31, "transport": [31, 38], "landscap": [31, 48], "dichotomi": 31, "tank": 32, "combat": 32, "global": [32, 42, 56], "warm": 32, "implic": [28, 32, 57], "leed": 32, "prison": 32, "recidiv": 32, "former": 32, "inmat": 32, "curiou": 32, "violent": 33, "scroll": [33, 43], "mb": 33, "43": [33, 35, 38], "read_csv": [33, 35, 36, 44], "openjustic": 33, "doj": 33, "ca": [33, 36], "gov": [33, 50], "06": [33, 35, 38, 44], "onlinearrestdata1980": 33, "44": [33, 35], "head": [33, 35, 37, 38, 44, 48], "age_group": 33, "f_sexoff": 33, "f_alloth": 33, "f_total": 33, "m_total": 33, "s_total": 33, "alameda": 33, "505": 33, "1351": 33, "188": 33, "79": [33, 35, 38], "2149": 33, "2286": 33, "295": 33, "butt": 33, "calavera": 33, "contra": 33, "costa": 33, "116": 33, "446": [33, 44], "37": [33, 35, 38, 44], "629": 33, "557": 33, "31": [33, 35, 36, 44], "el": 33, "dorado": 33, "45": [33, 35, 38, 46], "value_count": [33, 35, 36, 44], "26590": 33, "23767": 33, "23328": 33, "21188": 33, "dtype": [33, 35, 36, 38, 44], "int64": [33, 35, 36, 44], "46": [33, 35], "17438": 33, "17258": 33, "40": [28, 33, 35, 44, 45], "69": [33, 35, 36], "17082": 33, "16305": 33, "16040": 33, "70": [33, 35, 36], "10750": 33, "duplic": [33, 35, 36], "social_security_numb": 33, "111111111": 33, "222222222": 33, "333333333": 33, "second_column": 33, "bool": 33, "instanc": [28, 33, 38], "repit": 33, "sub": [28, 33, 36, 45, 49], "49": [33, 35, 37], "secur": 33, "boolean": [33, 44], "idenfi": 33, "backward": 33, "51": [33, 35, 44], "assertionerror": 33, "traceback": 33, "lt": [33, 36, 44], "ipython": 33, "f30d4b630726": 33, "gt": [33, 36, 37, 44], "modul": [28, 33], "56": [33, 35], "collaps": [33, 35], "aggreg": [33, 50], "57": [33, 35], "arrests_collaps": 33, "as_index": 33, "4504": 33, "9377": 33, "3569": 33, "257": 33, "1651": 33, "19358": 33, "71342": 33, "2338": 33, "alpin": 33, "119": 33, "amador": 33, "305": 33, "306": 33, "683": 33, "149": [33, 44], "207": 33, "1365": 33, "52": [33, 35, 36], "130": [33, 35, 38, 44], "297": 33, "679": 33, "ball": 33, "sort_valu": [33, 36], "colusa": 33, "89": [33, 35], "138": 33, "655": 33, "1596": 33, "3851": 33, "1089": 33, "929": 33, "7539": 33, "25788": 33, "590": 33, "del": 33, "nort": 33, "183": [33, 35], "357": [33, 44], "1078": 33, "198": 33, "574": [33, 44], "118": 33, "1080": 33, "3266": 33, "fresno": 33, "2367": 33, "3855": 33, "804": 33, "105": [33, 35], "719": 33, "7850": 33, "37907": 33, "1178": [33, 37], "glenn": 33, "67": [33, 35, 36, 44], "111": 33, "38": [33, 35, 36, 37, 38], "250": [33, 35, 37], "766": [33, 38], "humboldt": 33, "211": 33, "593": 33, "196": 33, "33": [33, 35, 36, 38], "212": 33, "1245": 33, "5953": 33, "197": 33, "imperi": 33, "565": 33, "1045": 33, "97": [33, 35], "163": 33, "1886": 33, "6512": 33, "inyo": 33, "158": [33, 38], "315": 33, "663": 33, "kern": 33, "1732": 33, "3530": 33, "1098": 33, "401": 33, "6896": 33, "26372": 33, "890": 33, "63": [33, 35, 38], "64": [33, 35, 36], "mids_data_prep": 33, "county_demograph": 33, "census_ts_nominal_counti": 33, "gisjoin": [33, 50], "statefp": 33, "statenh": 33, "countyfp": 33, "countynh": 33, "b18aa": 33, "cv4aa": 33, "cv4ab": 33, "cv4ac": 33, "cv4ad": 33, "cv4ae": 33, "cv4af": 33, "cv4ag": 33, "cv4ah": 33, "cv4ai": 33, "cv4aj": 33, "g0100010": 33, "1970": 33, "alabama": 33, "autauga": 33, "17511": 33, "g0100030": 33, "baldwin": 33, "48650": 33, "g0100050": 33, "barbour": 33, "12134": 33, "g0100070": 33, "bibb": 33, "9953": 33, "g0100090": 33, "blount": 33, "26205": 33, "65": [33, 35], "66": [33, 35], "b18ab": 33, "b18ac": 33, "b18ad": 33, "b18ae": 33, "dropna": [33, 35], "514559": 33, "265294": 33, "17996": 33, "103958": 33, "41887": 33, "744282": 33, "130795": 33, "244309": 33, "21154": 33, "884": 33, "232": 33, "6471": 33, "73615": 33, "2622": 33, "1859": 33, "31207": 33, "31742": 33, "2272": 33, "3195": 33, "159": [33, 38], "41873": 33, "350": [33, 37, 38], "799": 33, "28913": 33, "3357": 33, "san": 33, "joaquin": 33, "266886": 33, "19288": 33, "4474": [33, 36], "21738": 33, "237799": 33, "18443": 33, "23765": 33, "631": 33, "29087": 33, "845": 33, "2447": 33, "34325": 33, "9608": 33, "621490": 33, "88813": 33, "5830": 33, "183969": 33, "48714": 33, "549409": 33, "86851": 33, "109486": 33, "2636": 33, "32658": 33, "72081": 33, "1962": 33, "3803": 33, "73874": 33, "16056": 33, "12800": 33, "ventura": 33, "565804": 33, "15163": 33, "8068": 33, "197342": 33, "36941": 33, "400868": 33, "13082": 33, "57841": 33, "1371": 33, "18589": 33, "164936": 33, "2081": 33, "7316": 33, "138882": 33, "18352": 33, "12764": 33, "madera": 33, "94456": 33, "5629": 33, "4136": 33, "40344": 33, "6300": 33, "57380": 33, "5009": 33, "4430": 33, "649": 33, "2405": 33, "37076": 33, "620": 33, "2670": 33, "36731": 33, "3895": 33, "9635": 33, "sacramento": 33, "783240": 33, "121804": 33, "13359": 33, "233704": 33, "71392": 33, "706655": 33, "118073": 33, "148459": 33, "3406": 33, "51016": 33, "76585": 33, "3731": 33, "7063": 33, "88135": 33, "20376": 33, "9606": 33, "36982": 33, "304": 33, "705": 33, "1222": 33, "1341": 33, "35465": 33, "300": [28, 33, 40], "965": 33, "1019": 33, "1517": 33, "123": [33, 36], "322": 33, "6510": 33, "tehama": 33, "45593": 33, "256": 33, "966": 33, "2810": 33, "43049": 33, "246": [33, 35], "1174": 33, "32": [33, 35, 36, 37], "2544": 33, "145": 33, "2425": 33, "3321": 33, "18469": 33, "177": 33, "299": 33, "17811": 33, "363": 33, "658": 33, "255": 33, "12792": 33, "solano": 33, "210751": 33, "60750": 33, "3212": 33, "107273": 33, "31358": 33, "168628": 33, "58743": 33, "64134": 33, "1463": 33, "21020": 33, "42123": 33, "3115": 33, "41773": 33, "10338": 33, "68": [33, 35, 36, 37, 38], "race_table_var": 33, "fillna": 33, "71": [33, 35, 36, 44], "72": [33, 35, 36, 37], "3319": 33, "1105379": 33, "3320": 33, "1097": 33, "19314": 33, "3322": 33, "143851": 33, "3323": 33, "20710": 33, "float64": 33, "73": [33, 35, 36], "58": [33, 35], "arrests_w_pop": 33, "_merg": [33, 36], "left_onli": 33, "2030": 33, "right_onli": [33, 36], "76": [33, 35, 36, 37], "fill": [33, 42], "interpol": 33, "wave": [33, 55], "1995": 33, "78": [33, 35], "ascend": 33, "interpolated_total_popul": 33, "1981": 33, "4699": 33, "3926": 33, "1122759": 33, "1982": 33, "4389": 33, "4436": 33, "1140139": 33, "174": 33, "4500": 33, "5086": 33, "1157519": 33, "1984": 33, "3714": 33, "5878": 33, "1174900": 33, "white_arrests_w_pop": 33, "miniconda3": [33, 36, 37, 38, 44], "lib": [33, 36, 37, 38, 44], "python3": [33, 36, 37, 38, 44], "packag": [33, 36, 37, 38, 44], "ipykernel_launch": 33, "py": [33, 35, 36, 37, 38, 44], "userwarn": 33, "reindex": 33, "290": 33, "1985": 33, "4199": 33, "7139": 33, "1192280": 33, "348": 33, "1986": 33, "4915": 33, "7720": 33, "1209660": 33, "406": [4, 33, 38], "1987": 33, "5137": 33, "10333": 33, "1227041": 33, "464": 33, "1988": 33, "5087": 33, "12574": 33, "1244421": 33, "522": 33, "1989": 33, "5551": 33, "14056": 33, "1261801": 33, "580": 33, "6156": 33, "12378": 33, "1279182": 33, "638": 33, "1991": 33, "5942": 33, "11408": 33, "1295637": 33, "696": 33, "1992": 33, "6162": 33, "10712": 33, "1312093": 33, "754": 33, "1993": 33, "9656": 33, "1328549": 33, "812": [33, 44], "1994": 33, "5911": 33, "9764": 33, "1345005": 33, "3844": 33, "3265": 33, "1361461": 33, "928": [33, 38], "1996": 33, "5610": 33, "7322": 33, "1377917": 33, "986": 33, "1997": 33, "5976": 33, "7646": 33, "1394373": 33, "1044": 33, "1998": 33, "5636": 33, "7852": 33, "1410829": 33, "1102": 33, "1999": 33, "5168": 33, "8985": 33, "1427285": 33, "1160": 33, "4356": 33, "7414": 33, "1443741": 33, "1218": 33, "4478": 33, "6486": 33, "1450394": 33, "1276": 33, "2002": 33, "4424": 33, "6414": 33, "1457047": 33, "1334": 33, "2003": 33, "4749": 33, "6708": 33, "1463700": 33, "1392": 33, "4301": 33, "6886": 33, "1470353": 33, "1450": 33, "4090": 33, "6328": 33, "1477006": 33, "1508": 33, "4042": 33, "5879": 33, "1483659": 33, "1566": 33, "4443": 33, "6071": 33, "1490312": 33, "1624": 33, "4336": 33, "5893": 33, "1496965": 33, "1682": 33, "4318": 33, "5749": 33, "1503618": 33, "1740": 33, "3823": 33, "5357": 33, "1510271": 33, "1798": 33, "2011": [33, 55], "3504": 33, "3957": 33, "1856": 33, "3686": 33, "1914": 33, "3183": 33, "4337": 33, "1972": 33, "2014": 33, "3491": 33, "4805": 33, "2015": 33, "3452": 33, "1946": 33, "2088": 33, "3513": 33, "1762": 33, "2146": 33, "3965": 33, "1279": 33, "2204": 33, "4132": 33, "1062": 33, "lo": 33, "angel": 33, "37964": 33, "29319": 33, "7477503": 33, "37610": 33, "27427": 33, "7616069": 33, "134": 33, "36648": 33, "28807": 33, "7754635": 33, "192": 33, "33858": 33, "36565": 33, "7893201": 33, "35303": 33, "44331": 33, "8031767": 33, "308": 33, "35659": 33, "51015": 33, "8170333": 33, "366": 33, "45254": 33, "61035": 33, "8308899": 33, "424": 33, "46020": 33, "61713": 33, "8447465": 33, "482": [33, 38], "51021": 33, "69363": 33, "8586031": 33, "540": [33, 38], "59012": 33, "69667": 33, "8724597": 33, "598": 33, "64790": 33, "55218": 33, "8863164": 33, "656": 33, "58701": 33, "42583": 33, "8928781": 33, "714": [33, 44], "59215": 33, "43212": 33, "8994398": 33, "772": [33, 44], "55079": 33, "43406": 33, "9060016": 33, "830": 33, "53467": 33, "48161": 33, "9125633": 33, "888": 33, "53218": 33, "45535": 33, "9191251": 33, "946": 33, "51277": 33, "44102": 33, "9256868": 33, "1004": 33, "50573": 33, "46951": 33, "9322485": 33, "46886": 33, "43947": 33, "9388103": 33, "1120": [33, 37], "43655": 33, "38253": 33, "9453720": 33, "40440": 33, "33499": 33, "9519338": 33, "1236": 33, "42095": 33, "33570": 33, "9549264": 33, "1294": 33, "39768": 33, "36060": 33, "9579191": 33, "1352": 33, "39633": 33, "42002": 33, "9609118": 33, "1410": 33, "37397": 33, "46060": 33, "9639044": 33, "1468": 33, "36322": 33, "48411": 33, "9668971": 33, "1526": 33, "35384": 33, "47549": 33, "9698898": 33, "1584": 33, "36250": 33, "45112": 33, "9728824": 33, "1642": 33, "36452": 33, "40928": 33, "9758751": 33, "1700": 33, "35319": 33, "32193": 33, "9788678": 33, "1758": 33, "33147": 33, "33920": 33, "9818605": 33, "1816": 33, "30818": 33, "33244": 33, "1874": 33, "29601": 33, "33775": 33, "1932": 33, "27159": 33, "35972": 33, "28251": 33, "36372": 33, "2048": 33, "28194": 33, "9753": 33, "2106": 33, "27804": 33, "8970": 33, "2164": 33, "28746": 33, "7302": 33, "2222": 33, "28865": 33, "6412": 33, "86": [33, 35, 37], "renam": [33, 35, 50], "to_csv": 33, "githubusercont": 44, "61": 35, "411101": [], "331110": [], "92": [35, 37], "779361": [], "342067": [], "222701": [], "481508": [], "588374": [], "815540": [], "472719": [], "337757": [], "2f": [35, 36, 37], "77": [35, 37, 44], "std": [35, 37, 38, 44], "expend": [], "94": 35, "corr": [], "iloc": [], "alt": [], "enabl": [], "mimetyp": [], "grumpi": [], "displai": 35, "hist": [], "dict": [], "chart": [], "mark_bar": [], "q": [], "vegalit": [], "frontend": [], "viz": [], "io": [], "user_guid": [], "troubleshoot": [], "html": [], "17": [37, 38, 44], "mark_point": [], "legal": [36, 49], "marijuana": [], "drug_rat": [], "100_000": [], "isin": 36, "394": [], "457331": [], "551801": [], "289": [], "027292": [], "271": [], "709690": [], "312": [], "159811": [], "209": [], "450372": [], "276": [], "018946": [], "358": 37, "305449": [], "228": 35, "874748": [], "473": 38, "876866": [], "411": [], "831533": [], "499": [], "572904": [], "460": [], "694485": [], "380": [], "164074": [], "432": [], "659812": [], "king": [46, 47], "035930": [], "lake": [], "369": [], "871380": [], "lassen": [], "147": [], "165387": [], "403": [], "990696": [], "261": [], "117203": [], "marin": [], "190": [], "030996": [], "mariposa": [], "969880": [], "mendocino": [], "599": [], "799767": [], "merc": [], "441": [], "290221": [], "modoc": [], "204960": [], "mono": [], "272": [], "602759": [], "monterei": [], "248": [], "094595": [], "napa": [], "247": 37, "823080": [], "nevada": [], "235": 35, "403323": [], "orang": [], "277": 36, "267304": [], "placer": [], "583530": [], "pluma": [], "492": [], "429787": [], "riversid": [], "291": [], "458787": [], "375": [36, 52], "134854": [], "benito": [], "210": [], "849718": [], "bernardino": [], "465": [], "333881": [], "diego": [], "249": [], "177208": [], "francisco": [], "873": [], "961738": [], "824184": [], "lui": [], "obispo": [], "583757": [], "mateo": [], "214": [], "668466": [], "santa": 35, "barbara": [], "225": [35, 37], "267192": [], "clara": [], "348166": [], "cruz": 35, "577393": [], "shasta": [], "470436": [], "sierra": [], "221": [], "364059": [], "siskiy": [], "352": [], "795109": [], "388": 44, "929454": [], "sonoma": [], "331": [], "905273": [], "stanislau": [], "457": [], "198700": [], "sutter": [], "695398": [], "585": [], "300555": [], "triniti": [], "427": [], "859162": [], "tular": [], "447": [], "774248": [], "tuolumn": [], "405": [], "897681": [], "264": 36, "878553": [], "yolo": [], "333": [], "788690": [], "yuba": [], "351": [], "561100": [], "301": [], "8092992253924": [], "astyp": [35, 36, 38, 44], "int": [35, 36, 38, 44], "left_on": [], "right_index": [], "outer": [], "875683": [], "407": 38, "462056": [], "349": [], "674236": [], "418": [], "522474": [], "389": 44, "075162": [], "384": [], "952860": [], "439": [], "387694": [], "762215": [], "297813": [], "316": 38, "111956": [], "post_2010": [], "arrests_sub": [], "y_t1_post": [], "y_t1_pre": [], "y_t0_post": [], "y_t0_pre": [], "799650070477355": [], "418061484004568": [], "api": [37, 38, 44], "get_robustcov_result": [37, 38, 44], "cov_typ": [37, 38], "dep": [37, 38, 44], "adj": [37, 38, 44], "sun": [37, 38, 44], "2023": 38, "prob": [37, 38, 44], "45e": [], "2094": [], "aic": [37, 38, 44], "4196": [], "344": 44, "bic": [37, 38, 44], "4212": [], "coef": [37, 38, 44], "err": [37, 38, 44], "025": [35, 37, 38, 44], "975": [37, 38, 44], "319": [], "7820": [], "131": [], "284": [], "463": [], "355": [], "101": [11, 38], "3816": [], "892": [], "959": [], "055": [], "189": [], "426": [], "106": [35, 37], "8289": [], "385": [], "568": [], "001": [37, 44], "153": [], "657": [], "4181": [], "869": [], "393": 37, "203": [], "367": [], "omnibu": [37, 38, 44], "53": [35, 38, 44], "945": [], "durbin": [37, 38, 44], "watson": [37, 38, 44], "741": [], "jarqu": [37, 38, 44], "bera": [37, 38, 44], "jb": [37, 38, 44], "81": [35, 37, 38, 44], "621": [], "skew": [37, 38, 44], "89e": [], "kurtosi": [37, 38, 44], "cond": [37, 38, 44], "data_transform": [], "data_serv": [], "arrests_long": [], "grouped_mean": [], "loess": [], "lightblu": [], "transform_regress": [], "mark_lin": [], "append": [], "layer": [], "TO": [], "eq": [], "hte": [], "_thought_": [], "cluster_ent": 38, "mislead": [], "fault": [], "linearmodel": 38, "arrests_for_panelol": [], "set_index": 38, "mod": 38, "entityeffect": 38, "timeeffect": [], "drop_absorb": [], "cluster_tim": [], "h_8_rwsn5hvg9mhp0txgc_s9v6191b": [35, 36, 37], "ipykernel_84356": [], "3310218310": [], "absorbingeffectwarn": [], "absorb": [], "0013": [], "0109": [], "0155": [], "0104": [], "1858": [], "cov": 38, "3829": [], "5366": [], "ob": [36, 38], "0000": [36, 38], "max": [35, 36, 38], "1899": [], "6633": [], "stat": [11, 28, 37, 38, 44], "ci": 38, "upper": 38, "023": [], "4358": [], "925": [], "089": [], "poolabl": 38, "282p": [], "0000distribut": 38, "0097": [], "0168": [], "0588": [], "0150": [], "4108": [], "6568": [], "0101": [], "6634": [], "1031": [], "362": [], "6320": [], "078": [], "3540": [], "619": [], "3654453326": [], "unconstrain": [34, 35], "kupp": 34, "constrain": [28, 34], "umbrella": 34, "dry": 34, "sunni": 34, "pont": 35, "le": [], "4723": [], "3200": [], "199": [], "379": 36, "38e": 37, "09": [35, 44], "678": [], "1360": [], "nonrobust": 38, "5143": [], "0893": [], "807": [], "442": [], "4519": [], "521": [], "5766": [], "4202": [], "2440": [], "634": 44, "243": [], "2937": [], "904": [], "5466": [], "584": [], "244": 37, "04e": 37, "126": 35, "specifi": [35, 36, 38, 43, 47, 48, 57], "202": [], "596": [], "566": [], "04": [35, 38, 44], "14e": [], "662": [], "1336": [], "1350": [], "782": [], "5353": [], "1612": [], "628": [], "485": [], "4000": [], "484": 38, "2435": [], "414": [], "3278": [], "9827": [], "671": [], "826": [], "881": [], "1938": [], "4619": [], "591": 35, "1977": [], "1796": [], "711": 36, "781": [], "007": 44, "558": [], "3396": [], "068": [37, 44], "9634": [], "702": [], "797": [], "563": [], "364": [], "736": 37, "7997": [], "309": [], "009": [37, 44], "020": 44, "1353": [], "120": [28, 36], "182": [37, 38], "9667": [], "819": [], "541": [], "128": [], "646": 37, "579": [], "179": [], "409": [], "01e": 38, "36e": [], "arestrong": 37, "multicollinear": 37, "bewar": [], "inadvert": 57, "air": [43, 50], "531": [], "11e": [], "616": 37, "1254": [], "1852": [], "4340": [], "2284": [], "811": [], "421": [], "6423": [], "964": 37, "2719": [], "096": [], "951": [], "3308": [], "1676": [], "704": [], "567": [], "573": [], "2403": [], "746": [], "4306": [], "408": [], "9162": [], "1539": [], "879": [], "383": [], "1728": [], "4434": [], "011": 37, "994": [], "5742": [], "1609": [], "415": [], "618": 37, "539": [], "2225": [], "857": [], "4215": [], "006": [37, 44], "1325": [], "1545": [], "1705": [], "943": [], "777": [], "440": 37, "429": [], "4738": [], "738": [], "3240": [], "0049": [], "012": 44, "015": [37, 44], "1625": [], "4854": [], "833": [], "1644": [], "4650": [], "769": [], "136": [], "037": [37, 44], "103": [], "848": [], "3185": [], "082": 37, "7544": [], "883": [], "988": [], "051": [], "520": [], "755": [], "1823": [], "341": [], "695": [], "031": 37, "1438": [], "912": [], "452": [], "0412": [], "472": 38, "612": [], "112": [], "910": [], "992": [], "610": [], "430": [], "697": [], "181": [], "82e": 44, "478": 37, "54e": [], "353": 38, "390": 38, "20e": [], "675": [], "1369": [], "4925": [], "378": [], "835": [], "4169": [], "438": [], "5680": [], "562": [37, 44], "642": [], "7895": [], "650": 38, "326": 44, "654": [], "1939": [], "931": [], "3977": [], "7333": [], "639": 44, "2570": [], "953": [], "5384": [], "513": [37, 38], "8105": [], "1595": [], "941": [], "1170": [], "193": [], "5195": [], "814": [], "269": 38, "940": [], "79e": [], "635": [], "01": [35, 44], "21e": [], "660": [], "391": [], "7038": [], "1588": [], "834": [], "806": 44, "3563": [], "030": 37, "2779": [], "622": 38, "2929": [], "3402": [], "1573": [], "413": [], "4285": [], "267": [], "1354": [], "9011": [], "760": [], "079": [37, 44], "162": [], "552": [], "2872": [], "354": [], "2797": [], "6787": [], "1381": [], "501": [], "047": [37, 44], "5555": [], "167": [], "6417": [], "330": [], "048": [], "8717": [], "302": [], "195": [], "017": [37, 44], "1340": [], "056": 44, "133": 36, "688": [], "6296": [], "972": 36, "115": 44, "038": 37, "710": 37, "549": [], "874": [], "311": [], "63e": [], "885": [], "39e": [], "grandmoth": [], "ago": [], "mom": [], "admittedli": [], "databas": 50, "param": 37, "4152": [], "m2": [], "564": [], "12e": [], "661": [], "1338": [], "232e": [], "4465": [], "758": [], "3404": [], "206": 4, "176e": [], "2796": [], "6184": [], "73e": [], "259": 38, "8139": [], "109": [], "998": 37, "021": [], "479": [], "371": [], "314": [], "4806": [], "360": [35, 44], "876": [], "005": 37, "532": [], "764": 44, "96": [35, 36], "4327": [], "856": [], "008": 37, "723": [], "142": 37, "5821": [], "958": [], "515": [], "1123": [], "222": 38, "154": [], "058": [], "4670": [], "839": [], "016": [37, 44], "813": [], "121": 37, "595": 35, "07e": [], "204": [], "premium": [], "milag": [], "151404": [], "wv": 36, "123453": [], "251": [], "tx": 36, "187982": [], "ma": 36, "unincorpor": [], "122356": [], "tn": 36, "nonprofit": [], "210750": [], "42900": [], "ia": 36, "063": [], "sat": [], "56e": [], "63018": [], "5515": [], "260e": [], "5513": [], "261e": [], "887e": [], "669": [], "95e": [], "416e": [], "735": [], "820": [], "242": [], "27e": [], "2214": [], "974": 44, "10578": [], "287": 36, "608": [], "iffi": [], "frequenc": [45, 55], "chi2": 37, "_i_": [], "freq": [], "032": 37, "122": 38, "74e": 38, "7675": [], "11150": [], "536e": [], "11146": [], "539e": [], "4382": [], "420": [38, 44], "449": [], "1206": [], "507": [], "152": [], "2398": [], "014": 37, "682": [], "266": 28, "213": 37, "0367": [], "024": [], "069": [], "46681": [], "1670": [], "377": [], "438205": [], "317647": [], "198413": [], "474900": [], "ctab": 37, "4282": [], "3340": [], "324": [], "1212": [], "523": [], "dof": 37, "chi2_conting": 37, "2993875943569016e": [], "mo": 36, "000000": 35, "700": [], "va": 36, "fl": 36, "md": 36, "882353": [], "332106": [], "nj": 36, "IN": 36, "171": 44, "mn": 36, "390058": [], "207616": [], "262319": [], "375000": [], "500000": 35, "grad": [], "remot": [], "quadrat": [44, 47], "2760": [], "2551": [], "2397": [], "173": [], "tini": [], "576": [], "275": 35, "230": 35, "223": [], "263": [], "285": [], "7809": [], "740": [], "706": [], "615": [], "387": [], "337": 44, "for_match": [], "reset_index": [], "31200": [], "20020": [], "22859": [], "73860": [], "5510": [], "33800": [], "5511": [], "23920": [], "5512": [], "37440": [], "5514": [], "26000": [], "1204727749": [], "8949614": [], "129": [], "5378": [], "1204742613": [], "479154": [], "1205072671": [], "3262901": [], "508": 44, "5390": [], "1205171280": [], "4727237": [], "509": [], "5392": [], "1210524158": [], "7436352": [], "511": [], "110": 37, "5405": [], "1210539313": [], "933855": [], "for_p": [], "199313e": [], "199422e": [], "204728e": [], "204743e": [], "205073e": [], "205171e": [], "210524e": [], "210539e": [], "fast": [], "5509": [], "930000": [], "108": 37, "070189": [], "240000": [], "134e": [], "3736": [], "7480": [], "5306": [], "7506": [], "2119": [], "469e": [], "018": [37, 44], "92e": [], "036": [], "378e": [], "019": [37, 44], "86e": [], "18e": [], "83e": [], "040": 37, "860": [], "227": [], "234": [], "41e": [], "294": [], "851": [], "057": 37, "19e": [], "61753": [], "235e": [], "5308": [], "909e": [], "293": [], "84e": [], "98e": [], "374e": [], "763": [], "003": [37, 44], "22e": [], "52e": [], "2934": [], "035": [], "33100": [], "529": [], "util": [], "post_process": [], "matching_object": [], "36": 35, "238": [], "786": 44, "62e": [], "132": 37, "61189": [], "230e": [], "4984": [], "252e": [], "325": [], "761e": [], "2429": [], "28e": [], "24e": [], "8344": [], "9150": [], "1067": [], "818": [], "6252": [], "476": [], "6753": [], "9175": [], "1140": [], "922": [], "8989": [], "844": [], "4517": [], "991": 44, "3220": [], "6308": [], "1202": [], "997": [], "677": [], "5579": [], "862": [], "8584": [], "0505": [], "868": [], "889": [], "6882": [], "03e": [], "251e": [], "923": [], "43e": 38, "266e": [], "08e": [], "46e": [], "9235": [], "0616": [], "1189": [], "062": [], "767": [], "6903": [], "976": [37, 44], "16e": [], "347e": [], "2975": [], "342": [], "528": [], "7639": [], "93e": 37, "114e": [], "3231": [], "653": [], "75e": [], "4799": [], "550": 37, "279e": [], "3245": [], "734": [], "942": [], "6430": [], "9142": [], "9921": [], "771": 36, "4363": [], "2990": [], "164": [], "23e": [], "609": [], "6378": [], "3577": [], "4178": [], "527": [], "127": 38, "1812": [], "617": [], "627e": [], "66e": [], "4103": [], "023e": [], "3835": [], "666": [], "77e": [], "2706": [], "153e": [], "3175": [], "916": [], "78e": [], "5300": [], "382e": [], "5130": [], "694": [], "3762": [], "501e": [], "3427": [], "926": [], "17e": [], "8293": [], "693": [], "418e": [], "3040": [], "664": [], "8218": [], "6849": [], "3954": [], "3121": [], "194": [], "028": 44, "3e": [], "730": [], "303": 38, "381e": [], "3368": [], "7209": [], "369e": [], "3918": [], "748": [], "493": 37, "6007": [], "9190": [], "4689": [], "915": [], "218": [], "895": [], "061e": [], "3616": [], "372": [], "935": [], "3523": [], "982": [], "601e": [], "7731": [], "556": [], "070": 37, "909": [], "1788": [], "7046": [], "4787": [], "690": [], "374": [], "709": [], "7597": [], "684e": [], "6555": [], "900": [35, 37], "569": [], "010": [37, 44], "97e": [], "3989": [], "067": [], "4e": [], "4328": [], "098": [], "25e": [], "3776": [], "3595": [], "547": [], "720": 44, "085": 37, "32e": [], "864": [], "826e": [], "3694": [], "55e": [], "1e": [35, 38], "242e": [], "3244": [], "837": [], "828": [], "88e": [], "6059": [], "104e": [], "3171": [], "4824": [], "506e": [], "3496": [], "8211": [], "049": [], "391e": [], "3137": [], "745": [], "7755": [], "337e": [], "3345": [], "99e": [], "6814": [], "297e": [], "5671": [], "022": 37, "1853": [], "4845": [], "0790": [], "5203": [], "125": [35, 37], "5e": [], "5355": [], "335": [], "2248": [], "8602": [], "5067": [], "398": [], "444": [], "7685": [], "469": [], "155e": [], "4710": [], "979": [], "2313": [], "897": [], "7114": [], "5598": [], "3632": [], "908": [], "050": [35, 44], "42e": [], "538": [], "272e": [], "3067": [], "87e": [], "6711": [], "3443": [], "339": [], "6447": [], "428": [], "9324": [], "3384": [], "603": [], "6e": [], "2688": [], "932": [], "505e": [], "3658": [], "7881": [], "76e": [37, 44], "2856": [], "308e": [], "3310": [], "96e": 37, "6590": [], "177e": [], "3252": [], "81e": 44, "5391": [], "516e": [], "3677": [], "7954": [], "9224": [], "6049": [], "2690": [], "524": [], "3949": [], "365e": [], "3460": [], "095": [], "944": [], "6864": [], "165e": [], "3698": [], "161": 36, "151": [], "002": [37, 44], "4404": [], "402": [], "2961": [], "611": [], "65e": [], "4889": [], "7052": [], "4496": [], "3127": [], "920": [], "437": [], "9064": [], "0230": [], "3380": [], "497": [], "681": [], "57e": [], "2436": [], "761": [], "681e": [], "3013": [], "09e": [], "8897": [], "8731": [], "3296": [], "699": [], "774": [], "125e": [], "7993": [], "659": [], "5580": [], "69e": [], "13e": 38, "046": 37, "459": [], "5880": [], "043": [], "703": [], "26e": [], "887": [], "270": [], "006e": [], "8297": [], "064": [], "6201": [], "7396": [], "8710": [], "376": [], "707": [], "59e": [], "349e": [], "8853": [], "843": [], "3865": [], "6016": [], "8132": [], "9691": [], "581": 38, "535": [], "7435": [], "2407": [], "7281": [], "280": [], "307": [35, 37], "6839": [], "8434": [], "9441": [], "604": [], "546": [], "58e": 38, "5918": [], "5652": [], "5278": [], "262": 38, "4429": [], "631e": [], "9894": [], "838": 35, "099": 44, "3086": [], "114": [36, 37], "499e": [], "6719": [], "026": [], "1819": [], "273": [], "8015": [], "9218": [], "732": [], "34e": [], "171e": [], "124e": [], "8626": [], "461": 36, "8596": [], "970": [], "1156": [], "964e": [], "9254": [], "939": [], "034": [], "1498": [], "286e": [], "47e": [], "6046": [], "434": 35, "53e": [], "265": [], "8046": [], "9594": [], "978": 35, "85e": 37, "91e": [], "9042": [], "15e": [], "3909": [], "886": 35, "086e": [], "33e": [], "117": [], "7e": 38, "5231": [], "914e": [], "8999": [], "435": [], "033": [], "68e": [], "1501": [], "949": [], "203e": [], "630": [], "4151": [], "5319": [], "5648": [], "737": [], "462": [], "6922": [], "341e": [], "7534": [], "780": [], "075": 35, "1357": [], "560": [], "719e": [], "3924": [], "381": [], "49e": [], "9500": [], "746e": [], "237": 44, "8624": [], "6897": [], "6770": [], "72e": [], "146e": [], "8462": [], "899": [], "8e": [], "741e": [], "5589": [], "6454": [], "143e": [], "5721": [], "800": 35, "216": [], "658e": [], "61e": [], "307e": [], "840": 37, "066": 37, "1514": [], "84": [35, 44], "9730": [], "48e": [], "3419": [], "8384": [], "9046": [], "824e": [], "279": [], "201": 38, "9720": [], "87": 35, "403e": [], "205": 37, "027": [], "2667": [], "326e": [], "445": [], "574e": [], "8531": [], "065": 37, "985": [], "816": [], "8870": [], "8793": [], "4968": [], "614": [], "785": 44, "074": 37, "791": [], "91": 35, "9791": [], "880": [], "288": [], "8799": [], "744": [], "687e": [], "150": 35, "6076": [], "4593": [], "8182": [], "9052": [], "5470": [], "9761": [], "637": [], "995": 35, "199e": [], "5085": [], "2e": 38, "219": [], "7572": [], "457e": [], "9432": [], "605": [], "31e": [], "6080": [], "404": [], "98": 35, "2197": [], "3011": [], "144": 44, "9289": [], "2093": [], "3098": [], "282": [], "3215": [], "121e": [], "7876": [], "423": [], "155": [], "4235": [], "9598": [], "102": [44, 50], "2597": [], "8743": [], "35e": [], "847": 36, "014e": [], "9066": [], "7638": [], "542": [], "104": [], "252": 36, "2631": [], "983": [], "145e": [], "107": [], "364e": [], "71e": [], "962": [], "4795": [], "8027": [], "8034": [], "597": [], "551": 37, "05e": [], "8716": [], "5745": [], "06e": [], "822": [], "946e": [], "7351": [], "516": [], "606": [], "113": [37, 44], "293e": [], "882": 35, "908e": [], "185": [], "236": [], "2798": [], "0105": [], "8785": [], "2988": [], "473e": [], "577": [], "698e": [], "124": [37, 44], "4669": [], "861": 44, "704e": [], "8908": [], "767e": [], "093": [], "1747": [], "291e": [], "5091": [], "347": [], "536": [], "29e": [], "2931": [], "559": [], "209e": [], "795e": [], "6490": [], "6948": [], "1460": [], "9793": [], "4111": [], "7736": [], "668": 37, "407e": [], "338e": [], "094": [], "274": [], "958e": [], "5205": [], "9462": [], "1890": 44, "7889": [], "2394": [], "5638": [], "399": [], "3164": [], "2175": [], "4884": [], "51e": [], "467e": [], "045": [], "083e": [], "6228": [], "141": 38, "4420": [], "8608": [], "5997": [], "7337": [], "137": 44, "4087": [], "2387": 36, "8100": [], "7939": [], "1789": [], "8029": [], "739": [], "989": [], "323": [], "37e": [], "7802": [], "643": 44, "139": [], "692": [], "3178": [], "02e": [], "94e": [], "140": 44, "651e": [], "229": [], "8251": [], "4595": [], "676": [], "1373": [], "8309": [], "948": 37, "143": 44, "5545": [], "8845": [], "5862": [], "5947": [], "5771": [], "921": [], "9556": [], "0440": [], "783": [], "146": [], "903e": [], "1707": [], "239": 38, "012e": [], "670": [], "097": [], "052e": [], "157": 37, "867": [], "249e": [], "7332": [], "914": [], "1887": [], "074e": [], "174e": [], "373": [], "379e": [], "076": 37, "2454": [], "878": [], "004": [37, 44], "3961": [], "2072": [], "67e": 44, "160": [37, 38], "811e": [], "8356": [], "451": [], "1729": [], "6091": [], "1910": [], "8574": [], "477": [], "9087": [], "0830": [], "586": [], "133e": [], "054": [], "292": [], "283e": [], "6795": [], "165": [37, 44], "166": 37, "551e": [], "3002": [], "990": [], "947e": [], "168": 44, "007e": [], "7103": [], "417": [], "156": 44, "3857": [], "169": [], "9600": [], "934": [], "170": 38, "615e": [], "7177": [], "9576": [], "172": [], "626e": [], "629e": [], "314e": [], "458": 37, "7983": [], "176": 37, "8331": [], "5679": [], "7787": [], "9729": [], "6943": [], "898": [], "5825": [], "8426": [], "9047": [], "9527": [], "061": 44, "5061": [], "4958": [], "9108": [], "578": [], "9156": [], "0300": [], "7253": [], "999": [35, 36], "5065": [], "6042": [], "8525": [], "602": [], "8180": [], "956": [], "1688": [], "4654": [], "4051": [], "6253": [], "894": [], "9630": [], "825": [], "184": [], "566e": [], "3739": [], "789": 44, "8333": 36, "281": [], "158e": [], "186": [], "8134": [], "088": [], "187": [], "6652": [], "8781": [], "3548": [], "268": [], "053": 37, "3878": [], "254": [], "122e": [], "5407": [], "661e": [], "803": [], "071": [], "2321": [], "191": [], "3036": [], "3270": [], "6940": [], "9690": [], "9281": [], "647": [], "455": 38, "9444": [], "8116": [], "902": 44, "2498": [], "3312": [], "853": [], "9e": [], "9595": [], "1493": [], "798": [], "2753": [], "6229": [], "6585": [], "5757": [], "7328": [], "9890": [], "7484": [], "328": [], "7343": [], "801": [], "136e": [], "8594": [], "013": 44, "4510": [], "7508": [], "9207": [], "3016": [], "489": [], "1594": [], "737e": [], "2251": [], "1237": [], "8204": [], "6666": [], "464e": [], "9850": [], "486": [], "4674": [], "706e": [], "6442": [], "648": [], "4427": [], "733e": [], "7640": [], "6087": [], "6907": [], "651": [37, 44], "578e": [], "973": 44, "1093": [], "8388": [], "7382": [], "081": 37, "351e": [], "858": [], "1299": [], "215": [], "488": [], "5271": [], "613": [], "8944": [], "5337": [], "794": [], "090": [], "1411": [], "217": [], "9643": [], "642e": [], "987": [], "9429": [], "8190": [], "059": [37, 38], "220": 38, "038e": [], "7271": [], "3058": [], "526": [], "622e": [], "588": [], "3804": [], "878e": [], "5199": [], "8586": [], "224": [], "9192": [], "1466": [], "636": [], "525": [], "2641": [], "2389": [], "226": 37, "8830": [], "2891": [], "6639": [], "4186": [], "397": [], "233e": [], "1135": [], "428e": [], "454": [], "6264": [], "041": [37, 38], "517": [], "8271": [], "2748": [], "7245": [], "759": [37, 44], "5933": [], "299e": [], "8519": [], "6289": [], "960": [], "233": [], "285e": [], "8491": [], "3796": [], "735e": [], "766e": [], "217e": [], "8349": [], "4200": [], "141e": [], "4505": [], "533": [], "2581": [], "613e": [], "258": 38, "2127": [], "712e": [], "240": 44, "6376": [], "9154": [], "44e": [], "241": [], "3359": [], "7031": [], "6189": [], "543": [], "587": [], "8774": [], "753": 44, "8724": [], "775": [], "788e": [], "286": [], "9383": [], "071e": [], "2703": [], "321": [], "245": [], "8153": [], "4624": [], "5281": [], "9970": [], "4036": [], "2630": [], "9765": [], "4698": [], "5639": [], "083": 37, "1290": [], "0204": [], "8692": [], "476e": [], "616e": [], "4398": [], "9569": [], "726": [], "084": 44, "2247": [], "701": [42, 44], "253": [], "801e": [], "5819": [], "5313": [], "470": [], "9352": [], "6145": [], "712": [], "64e": [], "474e": [], "5626": [], "575": [], "6945": [], "662e": [], "260": [], "075e": [], "7093": [], "214e": [], "9508": [], "6499": [], "474": [], "094e": [], "872": [], "2479": [], "7477": [], "6210": [], "2882": [], "138e": [], "097e": [], "8629": [], "836e": [], "7924": [], "317": [], "2824": [], "361e": [], "204e": [], "485e": [], "8880": [], "672": 37, "2561": [], "149e": [], "9891": [], "3781": [], "4694": [], "687": [], "5173": [], "7930": [], "966e": [], "402e": [], "278": [], "2322": [], "2439": [], "903": [], "119e": [], "345e": [], "6306": [], "1085": [], "930": [], "8403": [], "4354": [], "778": [], "3681": [], "0429": [], "283": [], "5339": [], "8789": [], "9936": [], "537": [], "452e": [], "8179": [], "1519": [], "7684": [], "0660": [], "775e": [], "5134": [], "756": [], "456": [], "7680": [], "2038": [], "8041": [], "0146": [], "468": [], "581e": [], "7099": [], "1889": [], "7663": [], "1814": [], "571": [], "567e": [], "7319": [], "1323": 38, "652": [], "2555": [], "433": 4, "665": [37, 44], "9840": [], "996": 37, "296": 38, "1096": [], "1249": [], "4502": [], "2586": [], "298": [], "8732": [], "4700": [], "583": 38, "986e": [], "907": [], "329e": [], "4581": [], "0131": 37, "7593": [], "484e": [], "7473": [], "222e": [], "8772": [], "5022": [], "2514": [], "2672": [], "7217": [], "728": [], "336e": [], "116e": [], "9796": [], "8045": [], "973e": [], "179e": 38, "5120": [], "504": 36, "310": [], "268e": [], "624e": [], "3524": [], "9191": [], "1488": [], "9873": [], "313": [], "765e": [], "412": [], "680": [], "793e": [], "7170": [], "3875": [], "4379": [], "933": [], "5807": [], "9640": [], "6758": [], "859": 37, "7442": [], "794e": [], "9335": [], "924": [], "318": [], "4980": [], "2142": [], "8582": [], "1051": [], "3237": [], "320": [], "431e": [], "6968": [], "416": [], "3176": [], "6523": [], "846": [], "950": [], "853e": [], "5726": [], "625": [], "2501": [], "1256": [], "7866": [], "751": [], "951e": [], "325e": [], "742": [], "8657": [], "2875": [], "9851": [], "7463": [], "2414": [], "039": [37, 44], "981": [], "22245": [], "534": [], "model2": [], "result2": [], "matched_data2": [], "19512": [], "904e": [], "386": 38, "128e": [], "8904": [], "805": 38, "855": [], "6653": [], "matplotlib": [35, 36], "pyplot": [35, 36], "plt": [35, 36], "unnam": [], "spirit": [], "unemp": [], "emppop": [], "baptist": [], "mormon": [], "nfatal2124": [], "afat": [], "pop1517": [], "pop1820": [], "pop2124": [], "milestot": [], "unempu": [], "emppopu": [], "gsp": [], "10544": [], "152344": [], "692039": [], "539379": [], "355700": [], "32829": [], "437988": [], "3942002": [], "208999": [], "593750": [], "221553": [], "43750": [], "290000": [], "06250": [], "28516": [], "799999": [], "022125": [], "10732": [], "797852": [], "147030": [], "788991": [], "333599": [], "34341": [], "834015": [], "3960008": [], "202000": [], "078125": [], "219125": [], "46875": [], "15625": [], "31032": [], "900002": [], "046558": [], "11108": [], "791016": [], "168087": [], "714286": [], "311501": [], "35924": [], "872009": [], "3988991": [], "196999": [], "968750": [], "216724": [], "09375": [], "288000": [], "32961": [], "500004": [], "062798": [], "11332": [], "626953": [], "271137": [], "652542": [], "289499": [], "37579": [], "742004": [], "4021007": [], "194999": [], "734375": [], "214349": [], "03125": [], "284000": [], "31250": [], "35091": [], "100002": [], "027490": [], "11661": [], "506836": [], "514496": [], "609907": [], "267401": [], "39311": [], "716003": [], "4049993": [], "203999": [], "890625": [], "212000": [], "00000": 35, "263000": [], "28125": [], "36259": [], "700001": [], "032143": [], "nuniqu": [35, 36], "10000": [], "polynomi": [], "polyfit": [], "scatterplot": [], "line2d": [], "0x16c6a9b40": [], "quad": [], "091": [], "334": [], "553": [], "8533": [], "044": 37, "768": 36, "3646": [], "865": [], "487": [], "905": [], "4776": [], "6550": [], "086": [], "az": 36, "5677": [], "5095": [], "4843": [], "919": 37, "ct": 36, "8623": [], "de": [35, 36], "3076": [], "448": 37, "729": [], "2681": [], "5246": [], "852": [], "5439": [], "092": 37, "id": [36, 42], "6690": [], "il": 36, "9616": [], "4615": [], "k": 36, "2232": [], "984": [], "ky": 36, "la": [36, 50], "8471": [], "490": [], "641": [], "7064": [], "1079": [], "8972": [], "419": 38, "2963": [], "821": [], "0291": [], "mt": 36, "3604": [], "365": [], "2905": [], "nd": 36, "6234": [], "396": [], "ne": 36, "5222": [], "nh": 36, "2545": [], "667": [], "842": [], "1057": [], "nm": 36, "4264": [], "927": [37, 44], "nv": 36, "6008": [], "1867": [], "6744": [], "175": [4, 35], "5451": [], "1680": [], "pa": 36, "ri": 36, "2651": [], "sc": 36, "5572": [], "sd": 36, "0037": [], "788": [], "8757": [], "ut": 36, "1640": [], "2902": [], "vt": 36, "9660": [], "382": [], "6595": [], "854": [], "wi": 36, "338": [], "8968": [], "wy": 36, "2285": [], "466": [], "6559": [], "491": [], "863": [], "beertax_dm": [], "fat_rate_dm": [], "000196": [], "168e": 38, "0407": [], "3805": [], "3775": [], "unadjust": [], "0006": 44, "1878": [], "0256": [], "2861": [], "2939": [], "8925": [], "2563": [], "8295": [], "060": [], "0162": [], "2245": [], "4582": [], "5398": [], "3521": [], "5330": [], "1264": [], "2329": [], "1533": [], "0951": [], "0160": [], "9261": [], "1267": [], "0635": [], "530": [], "covid": [], "pandem": [], "atc": [], "q4": [], "q5": [], "nobodi": [], "calori": [], "intak": [], "beverag": [], "hhid": 38, "intmonth": 38, "hurespli": 38, "hrhtype": 38, "minsamp": 38, "hrlonglk": 38, "hrsampl": 38, "hrhhid2": 38, "serial": 38, "hhnum": 38, "ym_file": [], "ym": [], "ch02": [], "ch35": 38, "ch613": 38, "ch1417": 38, "ch05": 38, "ihigrdc": 38, "docc00": 38, "dind02": 38, "000110339935453": 38, "januari": 38, "unmarri": 38, "fam": 38, "0701": 38, "07011": 38, "administr": [38, 43], "000110359424339": 38, "0711": 38, "07111": 38, "practition": 38, "000110651278174": 38, "0601": 38, "06011": 38, "wareh": 38, "007680515071194": 38, "0611": 38, "06112": 38, "implied_hourly_wag": [], "mean_femal": [], "mean_mal": [], "1204": [], "On": [43, 45], "827": [], "514": 28, "age_squar": [], "2625": [], "4441e": [], "122603": 38, "888e": [], "122599": 38, "833e": [], "062e": [], "6349": [], "443": [], "2740": [], "18297": [], "733": 44, "27620": [], "OF": [], "THE": [], "has_highschool": [], "has_ba": [], "m_educ": [], "8573": [], "4296e": [], "859e": [], "122597": [], "579e": [], "373e": [], "756e": [], "937": [], "496": [], "9737": [], "3958": [], "359": [], "555": [], "14257": [], "849": [], "20565": [], "673": [], "m_industri": [], "4253e": [], "851e": [], "122339": [], "854e": [], "1138": [], "8766": 36, "1701": [], "4193": [], "2477": [], "forestri": [], "1131": [], "1132": [], "8666": [], "3722": [], "793": [], "6372": [], "8220": [], "1133": [], "5656": [], "2100": [], "2999": [], "fish": [], "hunt": [], "trap": 28, "3510": [], "2980": [], "4528": [], "918": [], "agricultur": [], "6207": [], "2024": 37, "796": [], "750": 35, "oil": [], "392e": [], "3072": [], "coal": [], "2121": [], "528e": [], "2550": [], "metal": [], "ore": [], "2122": [], "384e": [], "4184": [], "087": [], "nonmetal": [], "miner": [], "quarri": [], "2123": [], "538e": [], "2391": 44, "495": [], "431": [], "773e": [], "1513": [], "electr": [], "transmiss": [], "pt": [], "2211": [], "162e": [], "1437": [], "s2212": [], "588e": [], "2480": [], "2212": [], "2685": [], "steam": [], "irrig": [], "22131": [], "22133": [], "5944": [], "3370": [], "2059": [], "9829": [], "sewag": [], "22132": [], "8219": [], "6616": [], "3000": [], "8332": [], "056e": [], "1126": [], "8347": [], "grain": 37, "oilse": [], "mill": [], "3111": [], "3112": [], "2351": [], "5394": [], "confectioneri": [], "3113": [], "8933": [], "3087": [], "1430": [], "fruit": [], "veget": [], "preserv": [36, 48], "specialti": [], "3114": [], "2238": [], "7515": [], "2458": [], "725": [], "911": [], "2580": [], "7057": [], "dairi": [], "6859": [], "2203": [], "2541": [], "slaughter": [], "3116": [], "8284": [], "2715": [], "3343": [], "311811": [], "1774": [], "8294": [], "2453": [], "6583": [], "957": [], "3034": [], "3118": [], "exc": [], "4588": [], "2350": [], "395": [37, 38], "2607": [], "392": [], "6608": [], "seafood": [], "miscellan": 36, "3117": [], "3119": [], "9160": [], "3042": [], "2207": [], "4833": [], "2859": [], "0902": [], "3663": [], "4321": [], "9058": [], "1956": [], "5223": [], "tobacco": [], "3122": [], "7325": [], "1456": [], "fiber": [], "yarn": [], "thread": [], "3131": [], "5169": [], "8050": [], "8640": [], "knit": [], "3132": [], "31324": [], "3205": [], "4471": [], "3167": [], "3003": [], "9414": [], "textil": [], "coat": [], "3133": [], "8272": [], "8244": 38, "carpet": [], "rug": [], "31411": [], "1664": [], "3750": [], "5371": [], "9331": [], "3206": [], "0346": [], "3374": [], "3407": [], "9819": [], "3151": [], "5465": [], "8039": [], "6312": [], "866": 37, "sew": [], "apparel": [], "3152": [], "3536": [], "0852": [], "2485": [], "422": [], "8408": [], "accessori": [], "3159": [], "1030": [], "1607": [], "9100": [], "footwear": [], "3162": [], "478e": [], "5328": [], "4338": [], "963": 38, "leather": [], "tan": [], "3161": [], "3169": [], "2374": [], "0553": [], "6157": [], "9694": [], "pulp": [], "paperboard": [], "3221": [], "264e": [], "8510": [], "32221": [], "9113": [], "32222": [], "32223": [], "32229": [], "7723": [], "9346": [], "3395": [], "1068": [], "3648": [], "2945": [], "1712": [], "7005": [], "548": [], "petroleum": [], "32411": [], "739e": [], "2234": [], "32419": [], "8945": [], "7389": [], "5426": [], "1689": [], "resin": [], "synthet": [], "rubber": [], "filament": [], "7943": [], "2560": [], "2408": [], "3222": [], "chemic": [], "3253": [], "754e": [], "8765": [], "pharmaceut": 45, "medicin": [43, 45], "3254": [], "377e": [], "paint": [], "adhes": [], "b46": [], "3255": [], "586e": [], "3584": [], "8831": [], "soap": [], "compound": [], "cosmet": [], "3256": [], "137e": [], "2837": [], "5809": [], "3251": [], "3259": [], "plastic": [], "3261": [], "4034": [], "0463": [], "1804": [], "7571": [], "686": [], "tire": [], "32621": [], "298e": [], "3637": [], "570": [], "5854": [], "32622": [], "32629": [], "3975": [], "2268": [], "3134": [], "2168": [], "potteri": [], "ceram": [], "32711": [], "2984": [], "4031": [], "6013": [], "8802": [], "clai": [], "32712": [], "2829": [], "502": [], "8221": [], "glass": [], "3272": [], "2191": [], "7411": [], "2614": [], "2932": [], "7315": [], "cement": [], "lime": [], "gypsum": [], "3273": [], "3274": [], "6765": [], "1364": [], "2187": [], "080": 37, "2478": [], "3279": [], "3390": [], "5201": [], "2515": [], "9296": [], "iron": [], "steel": [], "3311": [], "098e": [], "1963": [], "7132": [], "aluminum": [], "3313": [], "3558": [], "601": [], "674": [], "6098": [], "nonferr": [], "3314": [], "9701": [], "8019": [], "3984": [], "1891": [], "foundri": [], "3315": [], "5445": [], "2055": [], "3417": [], "1252": [], "forg": [], "stamp": [], "1715": [], "0691": [], "3721": [], "645": [], "9009": [], "cutleri": [], "8808": [], "3925": [], "4913": [], "073": [37, 44], "3324": [], "7136": [], "9478": [], "1831": [], "896": [], "3546": [], "screw": [], "nut": 57, "bolt": [], "3327": [], "3821": [], "1968": [], "052": 36, "824": [], "7679": [], "engrav": [], "heat": [], "alli": [], "3328": [], "5874": [], "3997": [], "3353": [], "752": [], "623": [], "ordnanc": [], "332992": [], "332995": [], "139e": [], "3325": [], "3326": [], "3329": [], "332993": [], "332994": [], "5931": [], "6094": [], "1880": [], "2244": [], "9618": [], "332": [], "4324": [], "5660": [], "7461": 44, "33311": [], "009e": [], "2528": [], "5132": [], "33312": [], "33313": [], "421e": [], "2319": 44, "9664": [], "3095": [], "3463": [], "4982": [], "metalwork": [], "3335": [], "4830": [], "2648": [], "600": 36, "1694": [], "turbin": [], "3336": [], "8186": [], "2951": [], "3879": [], "582": [], "955": [], "3332": [], "3334": [], "3339": [], "9758": [], "8177": [], "6801": [], "3365": 44, "389e": [], "2296": [], "audio": [], "3342": [], "728e": [], "2782": [], "electromed": [], "instrument": [], "876e": [], "2124": [], "831": 37, "electron": [], "3344": [], "3346": [], "893e": [], "1535": [], "329": [], "applianc": [], "3352": [], "9869": [], "3063": [], "3295": [], "3351": [], "092e": [], "7284": [], "vehicl": [], "3361": [], "3362": [], "3363": [], "8727": [], "1319": [], "6359": [], "aircraft": [], "336411": [], "336413": [], "999e": [], "1454": [], "743": [], "aerospac": [], "336414": [], "336415": [], "336419": [], "932e": [], "3846": [], "railroad": [], "stock": 55, "102e": [], "5066": [], "1084": [], "boat": [], "3366": [], "779": [], "7078": [], "3369": [], "8638": [], "4587": [], "8438": [], "9542": [], "sawmil": [], "wood": [], "3211": [], "4960": [], "2021": 28, "9599": [], "veneer": [], "plywood": [], "5189": [], "9036": [], "4529": [], "3687": [], "prefabr": [], "mobil": 43, "321991": [], "321992": [], "5435": [], "6788": [], "4140": [], "2680": [], "3936": [], "2236": [], "7907": [], "2156": [], "9836": [], "1298": [], "5612": [], "3391": [], "411e": [], "1565": [], "amus": [], "sport": [], "33992": [], "33993": [], "2138": [], "4970": [], "2826": [], "757": 44, "3401": [], "7678": [], "3399": [], "4899": [], "8913": [], "1693": [], "893": [], "1580": [], "1163": [], "6909": [], "merchant": [], "wholesal": [], "4231": [], "8269": [], "6204": [], "2427": [], "3511": [], "furnitur": [], "furnish": [], "4232": [], "7603": [], "698": [], "4895": [], "lumber": [], "4233": [], "7793": [], "7344": [], "2415": [], "3060": [], "042": [37, 44], "commerci": 56, "4234": [], "1896": 37, "519": 44, "2031": [], "4274": [], "9198": [], "823": [], "7558": [], "4195": [], "076e": [], "2213": [], "6418": [], "4265": [], "7256": [], "2269": [], "4238": [], "8008": [], "recycl": [], "42393": [], "9854": [], "3166": [], "6248": [], "6166": [], "durabl": [], "4239": [], "9834": [], "9299": [], "3813": [], "2360": [], "4241": [], "9631": [], "5826": [], "4061": [], "1671": [], "sundri": [], "wholesalerss": [], "4242": [], "4246": [], "663e": [], "2150": [], "731": [], "notion": [], "4243": [], "8318": [], "9813": [], "1937": [], "groceri": [], "4244": [], "5788": [], "8515": [], "1461": [], "2923": [], "8653": [], "farm": [], "4245": [], "2950": 37, "5444": [], "3014": [], "2957": [], "8858": [], "4247": [], "555e": [], "2434": [], "368": [], "4248": [], "5327": [], "6504": [], "2713": [], "42491": [], "3704": [], "nondur": [], "4249": [], "5692": [], "3790": [], "2543": [], "agent": [], "broker": [], "4251": [], "1193": [], "5585": [], "3485": [], "8025": [], "3868": [], "4101": [], "7998": [], "8077": [], "4411": [], "8101": [], "2705": [], "1331": [], "817": [], "5490": [], "4412": [], "7648": [], "0634": [], "2446": [], "850": 38, "2852": [], "4413": [], "1683": 38, "3592": [], "3007": [], "1227": [], "7563": [], "1726": [], "498": [], "4611": [], "443111": [], "5737": [], "7708": [], "6879": [], "7784": [], "0374": [], "1730": [], "4392": [], "4441": [], "44413": [], "1277": [], "4693": [], "1425": [], "4072": [], "hardwar": [], "2386": [], "327": [], "5456": [], "3896": [], "721": [], "lawn": [], "garden": [], "4442": [], "2166": [], "2082": [], "1915": [], "4451": [], "1616": [], "4452": [], "2629": [], "8689": [], "2684": [], "980": [], "7891": [], "077": [], "wine": [], "liquor": [], "4453": [], "1459": [], "4922": [], "7841": [], "689": [], "pharmaci": [], "44611": [], "4348": [], "1489": [], "512": [], "8283": [], "4951": [], "1951": [], "4459": [], "gasolin": [], "station": [], "1103": [], "5162": [], "1800": [], "4633": [], "2426": [], "cloth": [], "shoe": [], "44821": [], "4483": [], "2557": [], "3712": [], "1658": [], "1941": [], "5779": [], "3418": [], "4758": [], "8641": [], "jewelri": [], "luggag": [], "2215": [], "2885": [], "6310": [], "4999": [], "5275": [], "2639": [], "7650": [], "1114": [], "6393": [], "836": [], "needlework": [], "45113": [], "668e": [], "7083": [], "2800": 38, "5295": [], "1476": [], "5755": [], "8103": [], "45121": [], "2523": [], "8203": [], "450": [], "5079": [], "s45211": 38, "2063": [], "7215": [], "1315": [], "4641": [], "merchandis": [], "1100": [], "1773": [], "2375": [], "518": [], "4577": [], "florist": [], "4531": [], "3223": [], "4774": [], "6135": [], "stationeri": [], "45321": [], "5986": [], "0326": [], "2732": [], "4533": [], "8427": [], "7584": [], "2908": [], "2727": [], "gift": [], "novelti": [], "souvenir": [], "45322": [], "3744": [], "5060": [], "3044": [], "4539": [], "4518": [], "5257": [], "1904": [], "454111": [], "8738": [], "4826": [], "auction": [], "454112": [], "6663": [], "3104": [], "454113": [], "5161": [], "2790": [], "vend": [], "4542": [], "7982": [], "6144": [], "1008": [], "45431": [], "2986": [], "3140": [], "545": 35, "8566": [], "45439": [], "4085": [], "6284": [], "3751": [], "717": [], "3267": [], "4490": [], "2046": [], "3477": [], "4544": [], "475": 52, "208e": [], "1622": [], "8898": [], "rail": [], "1954": [], "483": [], "727e": [], "truck": 38, "7630": [], "0133": [], "1291": [], "5098": [], "bu": [], "urban": 48, "transit": 57, "4851": [], "4852": [], "4855": [], "4859": [], "9145": [], "1719": [], "5829": [], "taxi": [], "limousin": [], "4853": [], "8472": [], "8000": [], "673e": [], "480": [], "scenic": [], "sightse": [], "2172": [], "4842": [], "8118": [], "incident": [], "6852": [], "5261": [], "postal": 36, "6028": [], "1553": [], "9072": [], "courier": [], "messeng": [], "7625": [], "2671": [], "4540": [], "storag": [], "2103": [], "1611": [], "554": 44, "891": 35, "2205": [], "newspap": [], "51111": [], "1191": [], "2376": [], "3465": [], "5848": [], "softwar": [], "5111": [], "2354": [], "685": [], "346": 44, "5617": [], "5112": [], "952": 37, "motion": [], "5121": [], "2032": [], "5122": [], "6398": [], "3136": [], "radio": [], "televis": [], "broadcast": [], "cabl": [], "5151": [], "5152": [], "5175": [], "1620": [], "936": [], "8595": [], "portal": [], "51913": [], "618e": [], "2601": [], "wire": [], "telecommun": [], "carrier": [], "5171": [], "524e": [], "515e": [], "1711": [], "host": [42, 56], "5182": [], "263e": [], "3120": [], "6518": [], "archiv": [], "51912": [], "4295": [], "1435": [], "2627": [], "9445": [], "5191": [], "52211": [], "52219": [], "436e": [], "1242": [], "561": [], "52212": [], "52213": [], "5783": [], "7155": [], "2066": [], "depositori": [], "814e": [], "1415": [], "810": [], "commod": 35, "fund": 43, "invest": [42, 49, 57], "1217": [], "9944": [], "estat": 48, "2280": [], "1274": [], "6691": [], "automot": [], "leas": [], "5321": [], "2069": [], "0345": [], "2606": [], "7178": [], "tape": [], "disk": [], "53223": [], "6701": [], "784": [], "53221": [], "53222": [], "53229": [], "5323": [], "1012": [], "0036": 37, "3219": [], "5298": [], "intang": [], "asset": 28, "5324": [], "446e": [], "2815": [], "8942": [], "607": [], "5411": [], "004e": [], "1333": [], "029": 44, "prepar": [], "bookkeep": [], "payrol": [], "5412": [], "386e": [], "1453": [], "architectur": [], "5413": [], "585e": [], "5414": [], "6793": [], "0642": [], "2382": [], "5415": [], "509e": [], "1205": [], "5416": [], "045e": [], "5417": [], "997e": [], "1515": [], "5418": [], "1681": [], "veterinari": [], "54194": [], "5952": [], "7522": [], "1921": [], "2186": [], "809": [], "9718": [], "5419": [], "226e": [], "8199": [], "enterpris": [], "7092": [], "9170": [], "2364": [], "5613": [], "5211": [], "0769": [], "1475": [], "2318": [], "5614": 38, "2759": [], "4388": [], "1603": [], "633": [], "5902": [], "reserv": [], "5615": [], "8363": [], "5104": [], "2115": [], "954": [], "4217": [], "5616": [], "6381": [], "1510": [], "2835": [], "3085": [], "dwell": [], "56173": [], "2131": [], "7452": [], "1447": [], "2910": [], "1473": [], "5799": [], "5611": [], "5619": [], "3873": [], "7759": [], "wast": [], "remedi": [], "6367": [], "7567": [], "1659": [], "724": [], "9620": [], "elementari": [], "secondari": [], "6111": [], "0227": [], "1556": [], "2906": [], "junior": [], "6112": [], "6113": [], "6187": [], "1199": [], "6114": [], "6115": [], "8042": [], "8479": [], "6116": [], "6117": [], "7034": [], "8796": [], "1821": [], "physician": [], "6211": [], "1328": [], "8253": [], "dentist": [], "6212": [], "7495": [], "9965": [], "4369": [], "chiropractor": [], "62131": [], "2199": [], "3757": [], "3638": [], "4932": [], "optometrist": [], "62132": [], "3748": [], "7228": [], "2592": [], "6213": [], "4644": [], "4511": [], "2678": [], "outpati": [], "6214": [], "6209": [], "1278": [], "3703": [], "8715": [], "6216": [], "1292": [], "3263": [], "1418": [], "1487": [], "6215": [], "6219": [], "9278": [], "7353": [], "1326": [], "6678": [], "1143": [], "8956": [], "6231": [], "1585": [], "6208": [], "1312": [], "4158": [], "residenti": [38, 48], "6232": 38, "6233": 38, "6239": 38, "0647": [], "1470": [], "2775": [], "2989": [], "6241": [], "1112": [], "7260": [], "3728": [], "1503": [], "6242": [], "3755": [], "2794": [], "1722": [], "9234": [], "vocat": [], "rehabilit": [], "6243": [], "1419": [], "3375": [], "716": [], "1185": [], "child": [40, 48], "6244": [], "3177": [], "7836": [], "1434": [], "5989": [], "artist": [], "art": 55, "spectat": [], "5905": [], "7767": [], "1907": [], "2167": [], "9644": [], "museum": [], "galleri": [], "4334": [], "4099": [], "71395": [], "8548": [], "7123": [], "5529": [], "2288": [], "gambl": [], "713": [], "8607": [], "1324": [], "4289": [], "901": 37, "accommod": 42, "7211": [], "2165": [], "2804": [], "2442": [], "506": [], "park": [], "camp": [], "board": 50, "7212": [], "7213": [], "6767": [], "restaur": [], "722": [], "7224": [], "3845": [], "3157": [], "1378": [], "6277": [], "0522": [], "2704": [], "977": [], "8111": [], "811192": [], "4106": [], "0577": [], "1389": [], "1383": [], "6828": [], "wash": [], "3871": [], "3298": [], "2919": [], "1851": [], "8112": [], "8832": [], "3202": [], "9258": [], "8113": [], "5347": [], "4836": [], "8114": [], "81143": [], "4203": [], "0746": [], "3150": [], "barber": [], "812111": [], "9681": [], "4421": [], "9867": [], "7467": [], "beauti": [], "salon": [], "812112": [], "1777": [], "2348": [], "nail": [], "812113": [], "81219": [], "8031": [], "2039": [], "dryclean": [], "laundri": [], "8123": [], "2282": [], "7262": [], "2206": [], "938": [], "2042": [], "funer": [], "cemeteri": [], "crematori": [], "8122": [], "2626": [], "3135": [], "8771": [], "3518": [], "8129": [], "2217": [], "4546": [], "4147": [], "877": [], "religi": [], "8131": [], "2863": [], "7055": [], "5780": [], "civic": [], "grantmak": [], "8133": [], "8513": [], "9769": [], "961": [], "5644": [], "81393": [], "934e": [], "polit": [43, 44], "646e": [], "2179": [], "3089": [], "5909": [], "1865": 44, "765": [], "6746": [], "execut": [], "legisl": 57, "92111": [], "92112": [], "92114": [], "92115": [], "6798": [], "3444": [], "1320": [], "4210": [], "9385": [], "92113": [], "795": [], "92119": [], "9480": [], "2676": [], "justic": [], "8924": [], "4905": [], "1197": [], "6577": [], "787": [], "6796": [], "9979": [], "1359": [], "708": [], "4131": [], "environment": 50, "8922": [], "1751": [], "econom": [28, 43, 45, 50, 55], "1490": [], "affair": [], "755e": [], "1346": [], "991e": [], "762": [], "815": [], "3093": [], "2084": [], "14403": [], "21479": [], "smallest": [37, 49], "eigenvalu": 37, "singular": 37, "fell": [], "12995": [], "10860": [], "2134": [], "read_dta": [], "sm": 37, "pvalu": [30, 37], "ttest_ind": 37, "03": [35, 37], "statisticallli": [], "spuriou": 37, "quick": [28, 37, 43, 44, 55], "dirti": [35, 37], "1744": 37, "1760": 37, "4917640058792273": [], "darn": 37, "isol": [37, 45, 49], "ness": 37, "t2": 37, "p2": 37, "callback": [35, 37], "Thats": [], "1f": [], "3f": 35, "4870": 37, "1128": 37, "4868": 37, "1141": 37, "0965": 37, "0320": 37, "2969": 37, "18927": 37, "heteroscedast": [37, 44], "02": [35, 37, 44], "4861": 37, "0821": 37, "0017": 37, "953e": 37, "0025": 37, "0047": 37, "0316": 37, "0032": 37, "0186": 37, "0112": 37, "18631": 37, "non_college_grad": [], "1116": [], "4863": [], "1161": [], "0759": [], "0090": [], "0281": [], "0123": 37, "0188": [], "0110": [], "18624": [], "noncolleg": [], "salt": 37, "underpow": 37, "reject": [28, 37, 46], "null": [28, 35, 37], "college_grad": [], "00198": [], "3499": [], "0736": [], "0286": [], "0019": [], "0108": [], "0197": [], "14157": [], "90e": [], "1366": [], "1361": [], "0408": [], "0062": [], "592": [], "0460": [], "4394": [], "1122": 37, "4860": 37, "1187": 37, "0807": 37, "0021": 37, "971": 37, "0001": [35, 37], "0026": 37, "947": 37, "0048": 37, "0287": 37, "0038": 37, "18630": 37, "insignific": 37, "fifteen": [], "percent": 44, "caveat": 37, "acknowledg": 37, "workplac": [37, 38], "unrel": 37, "broader": 37, "perhap": [28, 38, 45, 48], "intra": 38, "regard": 38, "has_college_educ": 38, "8393": 38, "4365e": 38, "873e": 38, "639e": 38, "7144": 38, "054e": 38, "18030": 38, "27634": 38, "semi": 38, "colon": 38, "suppress": 38, "voil\u00e0": 38, "plm": 38, "whatev": [38, 55, 57], "typeerror": 38, "str": [36, 38], "fe_group": 38, "group_cod": 38, "int16": 38, "semicolon": 38, "nce8": [36, 37, 38], "opt": [35, 36, 37, 38], "1871": 38, "valuewarn": [37, 38], "rank": [28, 37, 38], "bottom": [28, 38, 46], "ordinari": 38, "dimens": 38, "catch": [38, 57], "multiindex": 38, "hate": 38, "multi": [38, 49], "43344": 38, "19200": 38, "60000": 38, "32640": 38, "38400": 38, "cps_w_multiindex": 38, "1183": 38, "missingvaluewarn": 38, "__init__": 38, "exog": 38, "check_rank": 38, "1414": 38, "6716": 38, "122341": 38, "747": 38, "593e": 38, "886e": 38, "065e": 38, "9511": 38, "665e": 38, "405e": 38, "924e": 38, "365p": 38, "entityid": 38, "0x2f61875e0": 38, "kid": [35, 39, 40, 43], "perspect": [39, 42], "stabl": [39, 45], "uh": 39, "local": [28, 39, 50], "sensit": [39, 47, 56], "ton": [35, 39, 50], "nyc": 39, "demean": 39, "y_i": 39, "hurrican": 39, "dip": 39, "disrupt": 39, "stick": 39, "algebra": 39, "slope": [40, 44], "shock": 40, "chief": 40, "uncorrel": 40, "leverag": 40, "htose": 40, "higherarch": 40, "hierarhc": 40, "hausman": 40, "accompanyingli": 40, "frequent": 40, "wavi": 40, "confess": 40, "diagon": 40, "smarter": 40, "princip": 40, "execis": 40, "mix": [35, 36, 40], "intens": 41, "wrestl": [41, 54, 55, 56], "aris": [28, 41], "unavoid": 41, "exposit": 41, "comment": 41, "facet": 41, "embrac": [28, 41], "urg": 41, "emblemat": 41, "intellectu": 41, "arbitrag": 41, "port": 41, "insight": [41, 52], "richli": 41, "unfamiliar": 41, "orient": 41, "infuriatingli": 41, "salient": 41, "consolid": 41, "transcrib": 41, "concis": 41, "depriv": 41, "connect": [41, 52], "bedrock": 41, "lectur": [41, 47], "prolong": 41, "modern": 41, "flit": 41, "cultiv": 41, "hello": 42, "promis": [42, 44, 49], "throw": [42, 46], "intellig": [42, 50], "ticket": 42, "pilot": [28, 42, 48], "reap": 42, "sizeabl": 42, "burgeon": 42, "pitfal": 42, "endeavor": [42, 55], "curricula": 42, "hardest": 42, "deliveri": 42, "unifi": 42, "complement": 42, "depth": [42, 47], "introduct": 42, "heavili": 42, "interdisciplinari": 42, "grasp": 42, "inferenti": 42, "concurr": 42, "comfort": [28, 35, 36, 42], "facilit": 42, "collabor": [42, 56], "bilingu": 42, "git": 42, "pickup": 42, "workshop": 42, "preliminari": [42, 57], "schedul": [42, 48], "constrast": 43, "stream": 43, "subscript": [43, 50], "signup": 43, "hing": 43, "email": 43, "music": 43, "unverifi": 43, "banal": 43, "textbook": 43, "sutva": [43, 49], "generaliz": 43, "elit": 43, "univer": 43, "emori": 43, "vanderbilt": 43, "unc": 43, "whole": [43, 45, 47, 50, 57], "luxuri": 43, "detroit": 43, "wealth": [28, 43], "cultur": 43, "brand": 43, "imag": [43, 50], "unrepres": 43, "unsurprisingli": 43, "dose": 43, "asian": 43, "island": 43, "sclerosi": 43, "mutat": 43, "descend": 43, "longest": 43, "psychologi": 43, "volunt": 43, "western": 43, "democrat": [43, 44, 50, 55], "facial": 43, "recognit": 43, "overlook": 43, "declar": 43, "billboard": 43, "infinit": [11, 43], "perman": 43, "tv": 43, "000th": 43, "famou": 43, "india": [28, 43], "clinic": [43, 45], "absente": 43, "ngo": [28, 43], "mit": 43, "economist": 43, "clock": 43, "punish": 43, "attend": [28, 43], "doubl": 43, "exempt": 43, "equilibrium": 43, "angu": 43, "deaton": 43, "nanci": 43, "cartwright": 43, "rct": 43, "monitor": 43, "environ": [43, 50], "rand": [35, 43], "particip": 43, "catastroph": 43, "coverag": 43, "oregon": 43, "ohp": 43, "medicaid": 43, "lotteri": 43, "elig": [28, 43, 56], "winner": 43, "uninsur": 43, "expans": 43, "tension": 43, "interfac": 43, "dog": 43, "bark": 43, "hurri": 43, "gloss": 44, "deserv": 44, "registr": 44, "republican": 44, "tenur": 44, "faculti": 44, "turnout": 44, "north": [44, 55], "carolina": [44, 55], "dichotom": 44, "problemat": [44, 45, 49], "css_tutori": 44, "exercise_data": 44, "voter_turnout": 44, "unaffili": 44, "7416": 44, "07": [35, 44], "5768": 44, "9919": 44, "154e": 44, "9917": 44, "156e": 44, "0075": 44, "4426": 44, "2128": 44, "5748": 44, "150e": 44, "151e": 44, "7754": 44, "0562": 44, "2361": 44, "343": 44, "5735": 44, "148e": 44, "9916": 44, "7988": 44, "0797": 44, "0606": 44, "2341": 44, "dem": 44, "linearhypothesi": 44, "t_test": 44, "contrastresult": 44, "c0": 44, "0191": 44, "voila": 44, "7383": 44, "436": 44, "pro": [44, 47], "alon": 44, "age_x_femal": 44, "917": 44, "5764": 44, "9915": 44, "157e": 44, "6961": 44, "0933": 44, "0009": 44, "0015": 44, "1883": 44, "2388": 44, "340": 44, "declin": 44, "plu": 44, "simplest": 44, "beta_2": [44, 47], "beta_3": [44, 47], "voted_": 44, "linearli": 44, "old_x_femal": 44, "5717": 44, "144e": 44, "147e": 44, "6761": 44, "1015": 44, "0138": 44, "0111": 44, "1820": 44, "peak": 44, "ggplot": 44, "ae": 44, "plotninewarn": 44, "implementedfor": 44, "9223363270683622540": 44, "lingo": 45, "homogen": 45, "heterogen": 45, "fda": 45, "approv": 45, "chronic": [45, 55], "hail": 45, "changer": 45, "undergo": 45, "minu": 45, "crippl": 45, "disabl": 45, "bucket": 45, "proportion": 45, "latino": 45, "indirect": 45, "spillov": 45, "vaccin": 45, "immun": 45, "sick": 45, "indirectli": 45, "embodi": 45, "newsfe": 45, "apart": 45, "youtub": [46, 47], "nitti": 46, "gritti": 46, "winnow": 46, "proce": [36, 46, 57], "dissimilar": 46, "unpair": 46, "thrown": 46, "root": 46, "euclidean": 46, "strength": 46, "weak": 46, "strike": 46, "strict": 46, "maximium": 46, "gari": [46, 47], "minunt": 46, "ho": 47, "imai": 47, "stuart": 47, "streamlin": 47, "concepu": 47, "framwork": 47, "insert": 47, "tremend": 47, "02315": 47, "extrapol": [47, 55], "funni": 47, "imbalanc": [35, 47], "blue": 47, "badli": 47, "uncomfort": 47, "drew": 47, "parabola": 47, "invert": 47, "theoret": [47, 57], "nervou": 47, "grei": 47, "determinist": 47, "situt": 47, "con": 47, "fashion": 47, "impov": 47, "charl": 48, "ketter": 48, "1920": 48, "1947": 48, "invok": 48, "kingdom": 48, "fundat": 48, "ancient": 48, "ruin": [48, 55], "poster": 48, "pile": 48, "archeologist": 48, "bone": 48, "toothbrush": 48, "detect": [28, 48], "archeolog": 48, "ground": 48, "penetr": 48, "radar": 48, "scan": [48, 55], "foundat": [48, 55], "spot": 48, "glanc": 48, "feasabl": 48, "excav": 48, "importantli": 48, "sorri": 48, "topologi": 48, "hydrologi": 48, "soil": 48, "geographi": [48, 55], "emmin": 48, "doabl": 48, "africa": 48, "infant": 48, "mortal": 48, "migrant": 48, "literatur": [28, 49], "warrant": 49, "unexpect": 49, "srm": 49, "optimist": 49, "hmmm": 49, "rock": 49, "solid": [49, 52, 57], "benjamini": 49, "hochberg": 49, "westfal": 49, "bonferroni": 49, "conserv": 49, "unrealist": 49, "exhaust": [50, 56], "ethnic": 50, "tabular": 50, "shapefil": 50, "shorter": 50, "nhgi": 50, "stabil": 50, "wharton": 50, "membership": 50, "\u00e1": 50, "cart": 50, "microsoft": 50, "planetari": 50, "wildlif": 50, "aw": 50, "registri": 50, "genom": 50, "nih": 50, "telescop": 50, "mortgag": [50, 53], "overst": 50, "freeli": 50, "conflict": 50, "terror": 50, "pollut": 50, "flood": 50, "freedom": 50, "airbnb": [50, 56], "traffic": 50, "underpin": [50, 57], "geospati": 50, "ihgi": 50, "internation": 50, "privaci": [11, 50], "withheld": 50, "raster": 50, "nasa": 50, "elev": 50, "plant": 50, "grow": 50, "wavelength": 50, "crop": 50, "imageri": 50, "infrastructur": 50, "factori": 50, "offici": [50, 55], "obscen": 50, "noaa": 50, "govt": 50, "awesom": 50, "skeptic": [52, 57], "mindset": 52, "untest": 52, "8am": 52, "morn": 52, "annoi": 52, "rubric": 52, "sparingli": 52, "exception": 52, "425": 52, "demonstr": [28, 52, 57], "meati": 52, "paragraph": [52, 57], "succinct": 52, "superfici": 52, "skate": 52, "surfac": 52, "dedic": 52, "prompt": [35, 52, 55], "stuck": 54, "illus": 54, "debug": 54, "unse": 54, "prece": 54, "fragment": 55, "disciplin": 55, "myopic": 55, "strive": 55, "merit": 55, "inquiri": 55, "unseen": 55, "unobserv": 55, "desir": 55, "opioid": 55, "overdos": 55, "pain": 55, "enact": 55, "ger": 55, "aspect": [55, 57], "phenomena": 55, "centuri": 55, "appreci": 55, "arros": 55, "carmen": 55, "reinhart": 55, "kenneth": 55, "rogoff": 55, "eight": 55, "folli": 55, "hundr": 55, "sixti": 55, "pundit": 55, "regularli": 55, "decri": 55, "crise": [55, 56], "feroc": 55, "wipe": 55, "death": 55, "hiv": 55, "gai": 55, "dy": 55, "cigarett": 55, "lung": 55, "climat": 55, "quot": 55, "temperatur": 55, "earth": 55, "unfair": 55, "noodl": 55, "casual": 55, "fancier": 55, "necessit": 55, "novel": 55, "shed": 55, "latent": 55, "rare": 55, "vera": 55, "rubin": 55, "rotat": [35, 55], "star": 55, "galaxi": 55, "ken": [55, 57], "crisi": 55, "truth": 55, "demand": 55, "judgement": 55, "curv": 55, "physic": 55, "particl": 55, "she": 55, "cold": 55, "minimum": [28, 55], "iowa": 55, "presidenti": 55, "causus": 55, "politician": 55, "presid": 55, "awfulli": 55, "occasion": 55, "stumbl": 55, "reiter": 55, "circumstanti": 55, "nutshel": [55, 57], "father": 55, "causat": 55, "simplif": 55, "wealthi": 55, "caucus": 55, "trendi": 55, "mammogram": 55, "radiologist": 55, "tumor": 55, "tomorrow": 55, "mri": 55, "sml": 55, "garbag": 55, "analogu": 55, "ridicul": 55, "benign": 55, "meaningless": 55, "contextu": 55, "februari": 56, "13th": 56, "12pm": 56, "reinvent": 56, "wheel": 56, "revis": 56, "pedestrian": 56, "freewai": 56, "bureaucrat": 56, "unclear": 56, "fraud": 56, "deter": 56, "entitl": 56, "recipi": 56, "largest": 56, "shoot": 56, "mental": 56, "societ": 56, "tenni": 56, "hinder": 56, "tournament": 56, "phone": 56, "churn": 56, "yourselv": 56, "curat": 56, "translat": 57, "guidelin": [28, 57], "policymak": 57, "slowli": 57, "lai": 57, "graf": 57, "journalist": 57, "wall": 57, "farther": 57, "broadli": 57, "conclud": 57, "brief": 57, "drown": 57, "bog": 57, "linchpin": 57, "hook": 57, "caught": 57, "player": 57, "laid": 57, "fellow": 57, "cross": 57, "dot": 57, "masteri": 57, "deligi": 57, "erron": 57, "homework": 57, "afford": 57, "honest": 57, "humil": 57, "sought": 57, "appendic": 57, "bore": 57, "opinion": 57, "exercise_abtest": 11, "ex4_avg_oec": 11, "ex5_avg_guardrail": 11, "ex7_ttest_pvalu": 11, "ex9_ttest_pvalue_click": 11, "ex11_guard_": 11, "ex11_guard_pvalu": 11, "ex11_oec_": 11, "ex11_oec_pvalu": 11, "ex14_se_treat": 11, "assist": [11, 36], "finit": 11, "government": 28, "bandhan": 28, "west": 28, "bengal": 28, "cash": 28, "transfer": 28, "virtuou": 28, "forti": 28, "poorest": 28, "ultra": 28, "tup": 28, "brac": 28, "bangladesh": 28, "multifacet": 28, "unlock": 28, "abhijit": 28, "banerje": 28, "esther": 28, "duflo": 28, "garima": 28, "sharma": 28, "uncondit": 28, "stipend": 28, "rupe": 28, "pariti": 28, "ppp": 28, "capita": 28, "menu": 28, "cow": 28, "goat": 28, "convers": [28, 37], "bandham": 28, "set_opt": [35, 36, 37], "mode": [35, 36, 37], "copy_on_writ": [35, 36, 37], "hh": [], "cash_transf": [], "tup_cash_transf": [], "pc_exp_month_bl": 28, "pc_exp_month_el1": [], "pc_exp_month_el2": 28, "pc_exp_month_el3": [], "152084": [], "816093": [], "286613": [], "728490": [], "388021": [], "816334": [], "899952": [], "277290": [], "698770": [], "222298": [], "547070": [], "601420": [], "839483": [], "802390": [], "763836": [], "879470": [], "511020": [], "258686": [], "585903": [], "133247": [], "930300": [], "072914": [], "625847": [], "612293": [], "582490": [], "765170": [], "787525": [], "300316": [], "075207": [], "112366": [], "774239": [], "511593": [], "183617": [], "493570": [], "494990": [], "819830": [], "082634": [], "052082": [], "_bl": 28, "expend_avg": [], "expend_std": [], "ttestindpow": 28, "instanti": 28, "my_pow": 28, "sqrt": 28, "plot_pow": 28, "solve_pow": 28, "effect_s": 28, "unrest": 28, "nobs1": 28, "treat_ob": [], "0f": [35, 36], "obscur": 28, "thirty_percent_lift": [], "nthat": [], "modifi": [28, 35], "bump": 35, "min_effect": [], "usd": [], "pct": [], "scenario": 28, "arang": [28, 35], "nob": [], "ate_2": [], "ate_2_in_std": [], "num_treat": [], "num_control": [], "final_pow": [], "recalcul": [], "10_000": [], "ate": [], "hh_treated_sampl": [], "hh_control_sampl": [], "ttest_result": [], "ballpark": [], "lean": [], "hamlet": 28, "quintil": 28, "seven": 28, "ii": 28, "iii": 28, "landhold": 28, "acr": 28, "iv": 28, "ownership": 28, "vi": [28, 36], "vii": 28, "beg": 28, "intent": 28, "uptak": 28, "simul": 28, "bootstrap": 28, "origination_colnam": 36, "cltv": 36, "seller": 36, "conform": 36, "harp": 36, "valuat": 36, "service_colnam": 36, "defect": 36, "settlement": 36, "modif": 36, "defer": 36, "recoveri": 36, "loss": 36, "eltv": 36, "accru": 36, "sep": [35, 36], "ipykernel_20548": 36, "3651092739": 36, "dtypewarn": [35, 36], "low_memori": [35, 36], "163509": 36, "200404": 36, "201903": 36, "93000": 36, "frm": 36, "sf": 36, "63300": 36, "f04q10238951": 36, "abn": 36, "amro": 36, "inc": 36, "citimortgag": 36, "200509": 36, "year_first": 36, "month_first": 36, "quarter_first": 36, "year_decimal_first": 36, "year_orig": 36, "quarter_orig": 36, "same_quart": 36, "next_quarter_same_year": 36, "next_quarter_next_year": 36, "year_report": 36, "month_report": 36, "year_decimal_report": 36, "sort_index": 36, "0833": 36, "14436": 36, "16613": 36, "16970": 36, "1667": 36, "17088": 36, "2500": 36, "17051": 36, "3333": 36, "16975": 36, "4167": 36, "16899": 36, "5000": 36, "16788": 36, "5833": 36, "16629": 36, "6667": 36, "16494": 36, "7500": 36, "16342": 36, "16203": 36, "9167": 36, "16038": 36, "15861": 36, "15683": 36, "15535": 36, "15370": 36, "15192": 36, "15052": 36, "14940": 36, "14823": 36, "14704": 36, "14586": 36, "14466": 36, "13159": 36, "11743": 36, "10369": 36, "7129": 36, "5561": 36, "3416": 36, "2342": 36, "1397": 36, "two_year": 36, "ever_delinqu": 36, "earlier": 36, "471": 36, "isna": 36, "has_msa": 36, "msa_has_delinqu": 36, "no_delinqu": 36, "few_delinqu": 36, "2479956568": 36, "futurewarn": [35, 36], "callabl": 36, "0x104c5a480": 36, "seriesgroupbi": 36, "bound": [36, 37], "denver": 36, "9999": 36, "for_ml": 36, "punctuat": 36, "credit_scor": 36, "first_time_homebuyer_flag": 36, "mortgage_insurance_percentage_mi_": 36, "occupancy_statu": 36, "original_debttoincome_dti_ratio": 36, "original_upb": 36, "original_loantovalue_ltv": 36, "original_interest_r": 36, "prepayment_penalty_mortgage_ppm_flag": 36, "amortization_type_formerly_product_typ": 36, "property_st": 36, "property_typ": 36, "original_loan_term": 36, "interest_only_io_ind": 36, "loan_sequence_numb": 36, "12117": 36, "pu": 36, "3224": 36, "1741": 36, "mh": 36, "eyebal": 36, "designmatrix": 36, "17052": 36, "dc": 36, "gu": 36, "OR": 36, "asarrai": 36, "this_obj": 36, "x_test": [35, 36], "y_test": [35, 36], "confusion_matrix": [35, 36], "gb": 36, "y_pred": 36, "y_pred_proba": 36, "auc_scor": 36, "conf_matrix": 36, "preprocess": 36, "_label": 36, "dataconversionwarn": 36, "1d": 36, "n_sampl": 36, "ravel": 36, "column_or_1d": 36, "3146": 36, "domin": 36, "pd_confusion_matrix": 36, "squeez": [35, 36], "rownam": [35, 36], "colnam": [35, 36], "mortgages_2007": 36, "sample_orig_2007": 36, "servicing_2007": 36, "sample_svcg_2007orig_3year": 36, "507551674": 36, "workflow": 36, "script": 36, "parameter": 36, "invit": 36, "forget": 36, "combined_2007": 36, "same_quarter_2007": 36, "next_quarter_same_year_2007": 36, "next_quarter_next_year_2007": 36, "two_years_2007": 36, "for_ml_2007": 36, "y_2007": 36, "x_2007": 36, "morgag": 36, "y_2007_pred_proba": 36, "conf_matrix_2007": 36, "false_r": 36, "14487": 36, "5076": 36, "1562": 36, "nope": 36, "induc": 36, "uncertainti": [4, 36], "json": [], "outfil": [], "dump": [], "ex2_pvalue_": 37, "5f": 37, "00004": 37, "6f": 37, "000040": 37, "college_degre": 37, "fit_model": 37, "1186": 37, "0875": 37, "0060": 37, "0023": 37, "968": 37, "0012": 37, "0405": 37, "18623": 37, "exog_nam": 37, "ipykernel_18376": 37, "838979874": 37, "deprecationwarn": 37, "ndim": 37, "scalar": 37, "deprec": [35, 37], "laptop": 35, "max_column": 35, "cleanest": 35, "column_nam": 35, "read_excel": 35, "202010": 35, "var_titl": 35, "_02": 35, "columnlist": 35, "tolist": 35, "na_valu": 35, "ipykernel_42350": 35, "3209276034": 35, "id_client": 35, "clerk_typ": 35, "payment_dai": 35, "application_submission_typ": 35, "quant_additional_card": 35, "postal_address_typ": 35, "education_level": 35, "state_of_birth": 35, "city_of_birth": 35, "nacion": 35, "flag_residencial_phon": 35, "residencial_phone_area_cod": 35, "flag_mobile_phon": 35, "flag_email": 35, "other_incom": 35, "flag_visa": 35, "flag_mastercard": 35, "flag_din": 35, "flag_american_express": 35, "flag_other_card": 35, "quant_special_banking_account": 35, "personal_assets_valu": 35, "professional_st": 35, "professional_c": 35, "professional_borough": 35, "flag_professional_phon": 35, "professional_phone_area_cod": 35, "months_in_the_job": 35, "profession_cod": 35, "mate_profession_cod": 35, "education_level_02": 35, "flag_home_address_docu": 35, "flag_rg": 35, "flag_cpf": 35, "flag_income_proof": 35, "flag_acsp_record": 35, "professional_zip_3": 35, "rn": 35, "assu": 35, "santana": 35, "mato": 35, "centro": 35, "carga": 35, "rj": 35, "rio": 35, "janeiro": 35, "campo": 35, "garanhun": 35, "parnamirim": 35, "boa": 35, "esperanca": 35, "cabo": 35, "carvalho": 35, "1200": 35, "50000": 35, "41788": 35, "48651": 35, "46223": 35, "000000e": 35, "13468": 35, "42244": 35, "42687": 35, "21116": 35, "17662": 35, "25000": 35, "869920": 35, "006540": 35, "14840": 35, "650520": 35, "961600": 35, "544223": 35, "252225": 35, "727149": 35, "802280": 35, "678437": 35, "434760": 35, "111440": 35, "097460": 35, "001320": 35, "001740": 35, "002040": 35, "357840": 35, "322372e": 35, "336140": 35, "397015": 35, "009320": 35, "061784": 35, "484316": 35, "797926": 35, "296003": 35, "275700": 35, "24852": 35, "260820": 35, "14433": 35, "901067": 35, "608385": 35, "080606": 35, "32285": 35, "193655": 35, "202105": 35, "511833": 35, "867833": 35, "668841": 35, "398284": 35, "7846": 35, "959327": 35, "515142": 35, "314679": 35, "296586": 35, "036308": 35, "041677": 35, "045121": 35, "479953": 35, "235798e": 35, "472392": 35, "622626": 35, "383453": 35, "220104": 35, "532261": 35, "212168": 35, "955688": 35, "988286": 35, "98905": 35, "439086": 35, "12500": 35, "750000": 35, "37500": 35, "250000": 35, "959000": 35, "194344": 35, "target_label_bad_1": 35, "to_drop": 35, "isnul": 35, "numeric_column": 35, "cat_column": 35, "1606787409": 35, "downcast": 35, "retain": 35, "infer_object": 35, "no_silent_downcast": 35, "30805": 35, "19130": 35, "col": 35, "to_numer": 35, "coerc": 35, "seaborn": 35, "sn": 35, "set_them": 35, "style": 35, "whitegrid": 35, "apps_sampl": 35, "figsiz": 35, "subplot": 35, "histplot": 35, "kde": 35, "tight_layout": 35, "countplot": 35, "xtick": 35, "tweak": 35, "marit": 35, "spell": 35, "400": 35, "logisticgam": 35, "elaps": 35, "eta": 35, "devianc": 35, "fit_intercept": 35, "max_it": 35, "tol": 35, "true_neg": 35, "false_neg": 35, "false_omission_r": 35, "5978": 35, "2101": 35, "cutpoint": 35, "get_neg_stat": 35, "y_true": 35, "zip": 35, "omission_r": 35, "prob_cutoff": 35, "false_negative_r": 35, "linspac": 35, "basic_gam": 35, "theme": 35, "v0_8": 35, "queri": 35, "basic_gam_reason": 35, "min_reason": 35, "good_at_min": 35, "most_true_neg": 35, "generate_x_grid": 35, "l": 35, "invers": 35, "wiggl": 35, "gam_convex": 35, "df_gam_convex": 35, "most_true_negs_convex": 35, "lam": 35, "1e3": 35, "gam_random_lam": 35, "df_gam_random_lam": 35, "most_true_negs_lam": 35, "te": 35, "gam_interact": 35, "mpl_toolkit": 35, "mplot3d": 35, "meshgrid": 35, "z": 35, "3d": 35, "reshap": 35, "plot_surfac": 35, "cmap": 35, "viridi": 35, "edgecolor": 35, "set_titl": 35, "subclassif": 4, "propens": 4, "placebo": 4, "confint_proportions_2indep": 28}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"backward": [0, 2], "design": [0, 2, 23, 57], "overview": [0, 2], "1": [0, 2, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 32, 35, 36, 37, 49, 55], "defin": [0, 2, 49], "your": [0, 1, 2, 7, 11, 16, 22, 31, 33, 46, 48, 49, 56, 57], "problem": [0, 2, 42, 48, 56], "2": [0, 1, 2, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35, 36, 37, 44, 49, 56], "question": [0, 2, 15, 17, 18, 19, 23, 32, 48, 55, 56], "you": [0, 2, 3, 7, 15, 44, 49, 54], "wish": [0, 2], "answer": [0, 2, 15, 56], "A": [0, 2, 3, 11, 31, 46, 49], "digress": [0, 2], "supervis": [0, 2], "machin": [0, 2, 7], "learn": [0, 2, 7, 33], "ud": 1, "midterm": 1, "2022": 1, "part": [1, 56], "estim": [1, 11, 29, 30, 37], "The": [1, 3, 8, 11, 16, 23, 25, 26, 27, 28, 36, 44, 45, 47, 48], "effect": [1, 8, 10, 11, 20, 24, 30, 37, 38, 39, 40, 44, 45], "educ": 1, "employ": 1, "get": [1, 2, 22], "know": [1, 22], "data": [1, 2, 7, 11, 21, 22, 25, 31, 33, 35, 36, 42, 46, 50, 56, 57], "subset": 1, "peopl": 1, "over": 1, "25": 1, "labor": 1, "forc": 1, "measur": [1, 11, 30, 37, 46], "good": [2, 50], "why": [2, 8, 55], "i": [2, 7, 8, 12, 46, 48, 55], "have": [2, 7, 15], "import": [2, 11], "3": [2, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 49, 55, 56], "write": [2, 57], "down": 2, "what": [2, 5, 8, 12, 30, 37, 44, 48], "an": [2, 7], "would": 2, "look": [2, 54], "like": 2, "falsifi": 2, "4": [2, 7, 11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49, 55], "do": [2, 3, 22, 41, 48, 49], "need": [2, 8, 9, 20, 22, 24, 48], "5": [2, 7, 11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49], "where": [2, 50], "can": [2, 46], "That": [2, 50], "wrap": 2, "up": 2, "beyond": 3, "experi": [3, 11, 12, 23, 28, 30, 37, 45], "b": [3, 11, 49], "test": [3, 11, 23, 33, 49], "isn": [3, 55], "t": [3, 55], "alwai": [3, 7], "feasibl": 3, "legal": [3, 13], "ethic": 3, "go": 3, "futur": [3, 25, 36], "don": 3, "want": 3, "limit": [3, 11, 25, 30, 36, 37, 45], "Not": 3, "enough": 3, "abl": 3, "must": [3, 44], "explain": 3, "class": 4, "schedul": 4, "research": 5, "discret": 5, "descript": [5, 9, 55], "analysi": [5, 24, 30, 31, 37], "faith": 5, "represent": 5, "choos": [5, 7, 56], "To": [5, 7, 22, 25, 36, 40, 48, 50], "ask": [5, 48], "present": 5, "context": [5, 28, 31], "valu": 5, "peek": 6, "endogen": 6, "stop": 6, "recommend": 7, "respons": 7, "train": 7, "carefulli": 7, "onli": 7, "us": [7, 44, 46, 56], "opaqu": 7, "model": [7, 21, 25, 35, 36, 40, 46, 47], "when": [7, 44, 46], "function": 7, "form": [7, 22], "constraint": 7, "compar": 7, "predict": [7, 25, 32, 36, 55], "sub": 7, "popul": 7, "No": 7, "option": 7, "tool": 7, "interpret": [7, 10, 20, 21, 22, 35, 44, 49], "constrain": 7, "neural": 7, "network": 7, "introspect": 7, "evalu": [8, 14], "real": [8, 48], "studi": [8, 14, 26, 27], "sun": 8, "bright": 8, "dog": 8, "too": 8, "baselin": 8, "differ": [8, 41, 55], "we": [8, 30, 37], "all": 8, "three": 8, "evaul": 8, "differenti": 8, "treatment": [8, 45], "come": 8, "next": [8, 48], "well": 8, "thi": [8, 21, 35, 49, 55], "ha": 8, "been": 8, "unsatisfi": 8, "discuss": 9, "exercis": [9, 11, 12, 13, 15, 17, 20, 21, 22, 24, 25, 28, 29, 30, 31, 32, 35, 36, 37], "8": [9, 11, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37], "takeawai": 9, "absolut": [9, 20, 22, 24], "posit": [9, 20, 22, 24, 55], "solut": [9, 20, 22, 24, 34, 53, 54], "causal": [10, 18, 19, 26, 27, 32, 39, 47, 55], "gender": [10, 29], "udac": 11, "websit": 11, "": [11, 21, 22, 35, 45, 48, 49], "pick": 11, "valid": [11, 43, 49], "6": [11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49], "7": [11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37], "9": [11, 18, 19, 21, 22, 25, 28, 29, 30, 35, 36, 37], "10": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "11": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "12": [11, 21, 22, 25, 29, 30, 35, 36, 37], "13": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "14": [11, 21, 22, 25, 28, 29, 35, 36], "counter": 12, "factual": 12, "experiment": 12, "ideal": 12, "counterfactu": 12, "random": 12, "identifi": [12, 57], "marijuana": 13, "violent": 13, "crime": [13, 15], "gym": 14, "membership": 14, "car": 14, "insur": 14, "billboard": 14, "polic": 15, "expenditur": 15, "exploratori": [15, 32, 56], "after": 15, "first": [16, 56], "stakehold": [16, 17, 31, 48], "propos": [16, 31], "task": [16, 31], "convert": [17, 48], "prompt": [17, 48], "action": [17, 48], "time": [18, 19, 55], "cholera": [18, 19], "indic": [20, 38, 44], "variabl": [20, 38, 44], "omit": 20, "bia": 20, "interact": [20, 44], "credit": [21, 28, 35], "risk": [21, 25, 35, 36], "prep": [21, 35], "fit": [21, 35], "let": [21, 22, 35], "see": [21, 35], "15": [11, 21, 22, 25, 28, 35, 36], "16": [21, 22, 25, 35, 36], "17": [21, 25, 35, 36], "match": [22, 46, 47], "packag": 22, "python": 22, "v": 22, "r": 22, "instal": 22, "dame": 22, "flame": 22, "setup": 22, "output": 22, "back": 22, "dataset": 22, "check": [22, 30, 37, 46, 49], "analyz": [22, 46], "other": [22, 50], "optim": 23, "ab": 23, "traffic": 24, "death": 24, "fix": [24, 38, 39, 40, 44], "demean": 24, "mortgag": [25, 36], "delinqu": [25, 36], "gradescop": [11, 25, 30, 36, 37], "autograd": [11, 25, 30, 36, 37], "submiss": [11, 25, 30, 36, 37], "clean": [25, 36], "organ": [25, 36], "now": [25, 36], "18": [25, 36], "make": [26, 27, 48], "potenti": [26, 27], "outcom": [26, 27], "concret": [26, 27], "map": [26, 27], "framework": [26, 27], "observ": [26, 27], "infer": [26, 27, 39, 47, 55], "discrimin": 29, "workplac": 29, "resum": [30, 37], "balanc": [30, 37, 46], "race": [30, 37], "heterogen": [30, 37], "did": [30, 37], "just": [30, 37], "solicit": 31, "inform": 31, "from": [31, 41], "project": 31, "vote": 31, "access": 31, "colleg": 31, "campus": 31, "background": [31, 57], "object": 31, "our": 31, "approach": 31, "gener": 32, "classifi": 32, "passiv": 32, "groupbi": 33, "arrest": 33, "group": [33, 38], "structur": 33, "assumpt": [33, 47], "poverti": [], "acm": 34, "corport": 34, "implement": [38, 49], "cluster": [38, 40], "computation": 38, "effici": 38, "hierarch": 40, "standard": 40, "error": 40, "thing": [40, 44, 49], "rememb": 40, "how": [41, 46], "read": [41, 48, 52], "academ": 41, "edit": 41, "activ": 41, "Be": 41, "patient": 41, "exampl": [41, 55], "domain": 41, "NOT": 41, "summar": 41, "llm": 41, "welcom": 42, "solv": 42, "pre": 42, "requisit": 42, "non": [42, 57], "mid": 42, "student": 42, "syllabu": 42, "intern": [43, 49], "extern": [43, 49], "consider": 43, "trade": 43, "off": 43, "between": [43, 44], "conclus": [43, 55, 57], "dummi": 44, "ar": [44, 49, 50, 54], "ONE": 44, "understand": [44, 56], "two": 44, "categori": 44, "more": 44, "than": 44, "constant": 44, "keep": 44, "straight": 44, "oper": 44, "multipl": 44, "averag": 45, "who": 45, "fine": 45, "print": 45, "ATE": 45, "sutva": 45, "done": 46, "summari": [46, 47, 57], "prune": [46, 47], "similar": 46, "should": [46, 49], "specif": [46, 48], "depend": 47, "imbal": 47, "better": [47, 56], "thought": [47, 55], "cost": 47, "In": 47, "mani": 48, "nick": 49, "think": 49, "about": 49, "befor": 49, "step": 49, "0": 49, "sure": 49, "goal": 49, "plan": [28, 49], "run": 49, "result": [49, 57], "consid": 49, "find": 50, "public": 50, "start": 50, "point": 50, "interest": [50, 54], "sourc": 50, "spatial": 50, "gi": 50, "compon": 50, "satellit": 50, "list": 50, "great": 50, "reflect": 52, "ok": 54, "still": 54, "taxonomi": 55, "versu": 55, "norm": 55, "nope": 55, "diseas": 55, "surveil": 55, "global": 55, "warm": 55, "eda": 55, "last": 55, "manipul": 55, "hard": 55, "classif": 55, "without": 55, "assign": 56, "specifi": 56, "scienc": 57, "report": 57, "technic": 57, "audienc": 57, "introduct": 57, "execut": 57, "appendix": 57, "power": 28, "calcul": 28, "extra": 28, "extens": 28, "footnot": 28}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Backwards Design": [[0, "Backwards-Design"], [2, "Backwards-Design"]], "Overview": [[0, "Overview"], [2, "Overview"]], "1) Define Your Problem": [[0, "1)-Define-Your-Problem"], [2, "1)-Define-Your-Problem"]], "2) Define the Question You Wish to Answer": [[0, "2)-Define-the-Question-You-Wish-to-Answer"], [2, "2)-Define-the-Question-You-Wish-to-Answer"]], "A Digression on Supervised Machine Learning": [[0, "A-Digression-on-Supervised-Machine-Learning"], [2, "A-Digression-on-Supervised-Machine-Learning"]], "UDS Midterm 2022, Part 2": [[1, "UDS-Midterm-2022,-Part-2"]], "Estimating The Effect of Education on Employment": [[1, "Estimating-The-Effect-of-Education-on-Employment"]], "Getting to Know Your Data": [[1, "Getting-to-Know-Your-Data"]], "Subsetting for People over 25 in the Labor Force": [[1, "Subsetting-for-People-over-25-in-the-Labor-Force"]], "Measuring Education": [[1, "Measuring-Education"]], "Education and Employment": [[1, "Education-and-Employment"]], "Defining a Good Question": [[2, "Defining-a-Good-Question"]], "Why is Having a Good Question Important?": [[2, "Why-is-Having-a-Good-Question-Important?"]], "3) Write Down What An Answer Would Look Like": [[2, "3)-Write-Down-What-An-Answer-Would-Look-Like"]], "Falsifiability": [[2, "Falsifiability"]], "4) What Data Do You Need?": [[2, "4)-What-Data-Do-You-Need?"]], "5) Where Can You Get That Data?": [[2, "5)-Where-Can-You-Get-That-Data?"]], "Wrapping Up": [[2, "Wrapping-Up"]], "Beyond The Experiment": [[3, "Beyond-The-Experiment"]], "A/B Testing Isn\u2019t Always Feasible": [[3, "A/B-Testing-Isn't-Always-Feasible"]], "A/B Testing Isn\u2019t Always Legal or Ethical": [[3, "A/B-Testing-Isn't-Always-Legal-or-Ethical"]], "Going Beyond Testing for the Future": [[3, "Going-Beyond-Testing-for-the-Future"]], "Don\u2019t want to be limited": [[3, "Don't-want-to-be-limited"]], "Not enough to be able to do it; you must be able to explain it": [[3, "Not-enough-to-be-able-to-do-it;-you-must-be-able-to-explain-it"]], "Researcher Discretion in Descriptive Analysis": [[5, "Researcher-Discretion-in-Descriptive-Analysis"]], "Faithful Representation": [[5, "Faithful-Representation"]], "Choosing What To Ask and Present": [[5, "Choosing-What-To-Ask-and-Present"]], "Context": [[5, "Context"], [31, "Context"]], "Values": [[5, "Values"]], "Peeking / Endogenous Stopping": [[6, "Peeking-/-Endogenous-Stopping"]], "Recommendations for Responsible Machine Learning": [[7, "Recommendations-for-Responsible-Machine-Learning"]], "1. Choose Your Training Data Carefully": [[7, "1.-Choose-Your-Training-Data-Carefully"]], "2. Only Use Opaque Models When You Have To": [[7, "2.-Only-Use-Opaque-Models-When-You-Have-To"]], "3. Use Models with Functional Form Constraints": [[7, "3.-Use-Models-with-Functional-Form-Constraints"]], "4. Compare Predictions for Sub-Populations": [[7, "4.-Compare-Predictions-for-Sub-Populations"]], "5. \u201cNo\u201d is Always An Option": [[7, "5.-%22No%22-is-Always-An-Option"]], "Tools for Interpretable / Constrained Machine Learning": [[7, "Tools-for-Interpretable-/-Constrained-Machine-Learning"]], "Interpretable Models": [[7, "Interpretable-Models"]], "Tools for Neural Networks": [[7, "Tools-for-Neural-Networks"]], "Constrained Models": [[7, "Constrained-Models"]], "Tools for Introspection": [[7, "Tools-for-Introspection"]], "Evaluating Real Studies": [[8, "Evaluating-Real-Studies"]], "The Sun Is Bright for Dogs Too": [[8, "The-Sun-Is-Bright-for-Dogs-Too"]], "Evaluating Baseline Differences": [[8, "Evaluating-Baseline-Differences"]], "Why we need all three": [[8, "Why-we-need-all-three"]], "Evaulating Differential Treatment Effects": [[8, "Evaulating-Differential-Treatment-Effects"]], "What Comes Next?": [[8, "What-Comes-Next?"]], "Well this has been unsatisfying": [[8, "Well-this-has-been-unsatisfying"]], "Discussion of Descriptive Exercises": [[9, "Discussion-of-Descriptive-Exercises"]], "Exercise 8": [[9, "Exercise-8"], [15, "Exercise-8"], [20, "Exercise-8"], [21, "Exercise-8"], [22, "Exercise-8"], [24, "Exercise-8"], [25, "Exercise-8"], [29, "Exercise-8"], [30, "Exercise-8"], [11, "Exercise-8"], [36, "Exercise-8"], [37, "Exercise-8"], [35, "Exercise-8"], [28, "Exercise-8"]], "Takeaways": [[9, "Takeaways"]], "Absolutely positively need the solutions?": [[9, "Absolutely-positively-need-the-solutions?"], [20, "Absolutely-positively-need-the-solutions?"], [22, "Absolutely-positively-need-the-solutions?"], [24, "Absolutely-positively-need-the-solutions?"]], "Interpreting Causal Effects of Gender": [[10, "Interpreting-Causal-Effects-of-Gender"]], "Counter-Factuals and Experimental Ideals": [[12, "Counter-Factuals-and-Experimental-Ideals"]], "What is a Counterfactual?": [[12, "What-is-a-Counterfactual?"]], "What is a randomized experiment?": [[12, "What-is-a-randomized-experiment?"]], "Identifying Counter-Factuals": [[12, "Identifying-Counter-Factuals"]], "Exercise 1:": [[12, "Exercise-1:"], [29, "Exercise-1:"]], "Exercise 2:": [[12, "Exercise-2:"], [17, "Exercise-2:"], [29, "Exercise-2:"]], "Exercise 3:": [[12, "Exercise-3:"]], "Exercise 1": [[13, "Exercise-1"], [15, "Exercise-1"], [17, "Exercise-1"], [20, "Exercise-1"], [21, "Exercise-1"], [22, "Exercise-1"], [24, "Exercise-1"], [25, "Exercise-1"], [31, "Exercise-1"], [32, "Exercise-1"], [30, "Exercise-1"], [11, "Exercise-1"], [36, "Exercise-1"], [37, "Exercise-1"], [35, "Exercise-1"], [28, "Exercise-1"]], "Exercise 2": [[13, "Exercise-2"], [15, "Exercise-2"], [20, "Exercise-2"], [21, "Exercise-2"], [22, "Exercise-2"], [24, "Exercise-2"], [25, "Exercise-2"], [31, "Exercise-2"], [32, "Exercise-2"], [30, "Exercise-2"], [11, "Exercise-2"], [36, "Exercise-2"], [37, "Exercise-2"], [35, "Exercise-2"], [28, "Exercise-2"]], "Exercise 3": [[13, "Exercise-3"], [15, "Exercise-3"], [20, "Exercise-3"], [21, "Exercise-3"], [22, "Exercise-3"], [24, "Exercise-3"], [25, "Exercise-3"], [29, "Exercise-3"], [31, "Exercise-3"], [30, "Exercise-3"], [11, "Exercise-3"], [36, "Exercise-3"], [37, "Exercise-3"], [35, "Exercise-3"], [28, "Exercise-3"]], "Exercise 4": [[13, "Exercise-4"], [15, "Exercise-4"], [20, "Exercise-4"], [21, "Exercise-4"], [22, "Exercise-4"], [24, "Exercise-4"], [25, "Exercise-4"], [29, "Exercise-4"], [30, "Exercise-4"], [11, "Exercise-4"], [36, "Exercise-4"], [37, "Exercise-4"], [35, "Exercise-4"], [28, "Exercise-4"]], "Exercise 5": [[13, "Exercise-5"], [15, "Exercise-5"], [20, "Exercise-5"], [21, "Exercise-5"], [22, "Exercise-5"], [24, "Exercise-5"], [25, "Exercise-5"], [29, "Exercise-5"], [30, "Exercise-5"], [11, "Exercise-5"], [36, "Exercise-5"], [37, "Exercise-5"], [35, "Exercise-5"], [28, "Exercise-5"]], "Exercise 6": [[13, "Exercise-6"], [15, "Exercise-6"], [20, "Exercise-6"], [21, "Exercise-6"], [22, "Exercise-6"], [24, "Exercise-6"], [24, "id1"], [25, "Exercise-6"], [29, "Exercise-6"], [30, "Exercise-6"], [11, "Exercise-6"], [36, "Exercise-6"], [37, "Exercise-6"], [35, "Exercise-6"], [28, "Exercise-6"]], "Exercise 7": [[13, "Exercise-7"], [15, "Exercise-7"], [20, "Exercise-7"], [21, "Exercise-7"], [22, "Exercise-7"], [24, "Exercise-7"], [25, "Exercise-7"], [29, "Exercise-7"], [30, "Exercise-7"], [11, "Exercise-7"], [36, "Exercise-7"], [37, "Exercise-7"], [35, "Exercise-7"], [28, "Exercise-7"]], "Marijuana Legalization and Violent Crime": [[13, "Marijuana-Legalization-and-Violent-Crime"]], "Evaluating Studies": [[14, "Evaluating-Studies"]], "Study 1: Gym Memberships": [[14, "Study-1:-Gym-Memberships"]], "Study 2: Car Insurance": [[14, "Study-2:-Car-Insurance"]], "Study 3: Billboard": [[14, "Study-3:-Billboard"]], "Crime and Policing Expenditures Exploratory Questions": [[15, "Crime-and-Policing-Expenditures-Exploratory-Questions"]], "Exercises": [[15, "Exercises"], [28, "Exercises"]], "After you have answered\u2026": [[15, "After-you-have-answered..."]], "Your First Stakeholder": [[16, "Your-First-Stakeholder"]], "The Proposal": [[16, "The-Proposal"]], "Your Task": [[16, "Your-Task"], [31, "Your-Task"]], "Converting Stakeholder Prompts into Actionable Questions": [[17, "Converting-Stakeholder-Prompts-into-Actionable-Questions"]], "Causality in the Time of Cholera": [[18, "Causality-in-the-Time-of-Cholera"], [19, "Causality-in-the-Time-of-Cholera"]], "Question 1:": [[18, "Question-1:"], [19, "Question-1:"]], "Question 2:": [[18, "Question-2:"], [19, "Question-2:"]], "Question 3:": [[18, "Question-3:"], [19, "Question-3:"]], "Question 4": [[18, "Question-4"], [19, "Question-4"]], "Question 5": [[18, "Question-5"], [19, "Question-5"]], "Question 6": [[18, "Question-6"], [19, "Question-6"]], "Question 7:": [[18, "Question-7:"], [19, "Question-7:"]], "Question 8:": [[18, "Question-8:"], [19, "Question-8:"]], "Question 9:": [[18, "Question-9:"], [19, "Question-9:"]], "Interpreting Indicator Variables": [[20, "Interpreting-Indicator-Variables"]], "Indicator Variables and Omitted Variable Bias": [[20, "Indicator-Variables-and-Omitted-Variable-Bias"]], "Interaction Effects": [[20, "Interaction-Effects"]], "Exercise 9": [[21, "Exercise-9"], [22, "Exercise-9"], [25, "Exercise-9"], [29, "Exercise-9"], [30, "Exercise-9"], [11, "Exercise-9"], [36, "Exercise-9"], [37, "Exercise-9"], [35, "Exercise-9"], [28, "Exercise-9"]], "Exercise 10": [[21, "Exercise-10"], [22, "Exercise-10"], [25, "Exercise-10"], [29, "Exercise-10"], [30, "Exercise-10"], [11, "Exercise-10"], [36, "Exercise-10"], [37, "Exercise-10"], [35, "Exercise-10"], [28, "Exercise-10"]], "Exercise 11": [[21, "Exercise-11"], [22, "Exercise-11"], [25, "Exercise-11"], [29, "Exercise-11"], [30, "Exercise-11"], [11, "Exercise-11"], [36, "Exercise-11"], [37, "Exercise-11"], [35, "Exercise-11"], [28, "Exercise-11"]], "Exercise 12": [[21, "Exercise-12"], [22, "Exercise-12"], [25, "Exercise-12"], [29, "Exercise-12"], [30, "Exercise-12"], [11, "Exercise-12"], [36, "Exercise-12"], [37, "Exercise-12"], [35, "Exercise-12"]], "Exercise 13": [[21, "Exercise-13"], [22, "Exercise-13"], [25, "Exercise-13"], [29, "Exercise-13"], [30, "Exercise-13"], [11, "Exercise-13"], [36, "Exercise-13"], [37, "Exercise-13"], [35, "Exercise-13"], [28, "Exercise-13"]], "Exercise 14": [[21, "Exercise-14"], [22, "Exercise-14"], [25, "Exercise-14"], [29, "Exercise-14"], [11, "Exercise-14"], [36, "Exercise-14"], [35, "Exercise-14"], [28, "Exercise-14"]], "Interpretable Modelling of Credit Risk": [[21, "Interpretable-Modelling-of-Credit-Risk"], [35, "Interpretable-Modelling-of-Credit-Risk"]], "Data Prep": [[21, "Data-Prep"], [35, "Data-Prep"]], "Model Fitting": [[21, "Model-Fitting"], [35, "Model-Fitting"]], "Let\u2019s See This Interpretability!": [[21, "Let's-See-This-Interpretability!"], [35, "Let's-See-This-Interpretability!"]], "Exercise 15": [[21, "Exercise-15"], [22, "Exercise-15"], [25, "Exercise-15"], [11, "Exercise-15"], [36, "Exercise-15"], [35, "Exercise-15"], [28, "Exercise-15"]], "Exercise 16": [[21, "Exercise-16"], [22, "Exercise-16"], [25, "Exercise-16"], [36, "Exercise-16"], [35, "Exercise-16"]], "Exercise 17": [[21, "Exercise-17"], [25, "Exercise-17"], [36, "Exercise-17"], [35, "Exercise-17"]], "Matching Exercise": [[22, "Matching-Exercise"]], "Matching Packages: Python v. R": [[22, "Matching-Packages:-Python-v.-R"]], "Installing dame-flame.": [[22, "Installing-dame-flame."]], "Data Setup": [[22, "Data-Setup"]], "Getting To Know Your Data": [[22, "Getting-To-Know-Your-Data"]], "Matching!": [[22, "Matching!"]], "Let\u2019s Do Matching with DAME": [[22, "Let's-Do-Matching-with-DAME"]], "Interpreting DAME output": [[22, "Interpreting-DAME-output"]], "Getting Back a Dataset": [[22, "Getting-Back-a-Dataset"]], "Check Your Matches and Analyze": [[22, "Check-Your-Matches-and-Analyze"]], "Other Forms of Matching": [[22, "Other-Forms-of-Matching"]], "Optimal AB Testing Design": [[23, "Optimal-AB-Testing-Design"]], "The Experiment": [[23, "The-Experiment"]], "Question 2": [[23, "Question-2"]], "Question 3": [[23, "Question-3"]], "Traffic Death Analysis": [[24, "Traffic-Death-Analysis"]], "Fixed Effects by Demeaning": [[24, "Fixed-Effects-by-Demeaning"]], "Predicting Mortgage Delinquency Risk": [[25, "Predicting-Mortgage-Delinquency-Risk"], [36, "Predicting-Mortgage-Delinquency-Risk"]], "Gradescope Autograding": [[25, "Gradescope-Autograding"], [30, "Gradescope-Autograding"], [11, "Gradescope-Autograding"], [36, "Gradescope-Autograding"], [37, "Gradescope-Autograding"]], "Submission Limits": [[25, "Submission-Limits"], [30, "Submission-Limits"], [11, "Submission-Limits"], [36, "Submission-Limits"], [37, "Submission-Limits"]], "Data Cleaning and Organization": [[25, "Data-Cleaning-and-Organization"], [36, "Data-Cleaning-and-Organization"]], "Modelling Delinquency Risk": [[25, "Modelling-Delinquency-Risk"], [36, "Modelling-Delinquency-Risk"]], "Now To The Future": [[25, "Now-To-The-Future"], [36, "Now-To-The-Future"]], "Exercise 18": [[25, "Exercise-18"], [36, "Exercise-18"]], "Making Potential Outcomes Concrete": [[26, "Making-Potential-Outcomes-Concrete"]], "The Study": [[26, "The-Study"], [27, "The-Study"]], "Mapping to the Potential Outcomes Framework": [[26, "Mapping-to-the-Potential-Outcomes-Framework"], [27, "Mapping-to-the-Potential-Outcomes-Framework"]], "Observability": [[26, "Observability"], [27, "Observability"]], "Causal Inference": [[26, "Causal-Inference"], [27, "Causal-Inference"]], "Making Potential Outcomes Concrete 2": [[27, "Making-Potential-Outcomes-Concrete-2"]], "Estimating Gender Discrimination in the Workplace": [[29, "Estimating-Gender-Discrimination-in-the-Workplace"]], "Soliciting Information From Your Stakeholder": [[31, "Soliciting-Information-From-Your-Stakeholder"]], "Stakeholder Project Proposal": [[31, "Stakeholder-Project-Proposal"]], "A Data Analysis of Voting Access on College Campuses": [[31, "A-Data-Analysis-of-Voting-Access-on-College-Campuses"]], "Background": [[31, "Background"], [57, "Background"]], "Objectives": [[31, "Objectives"]], "Our Approach": [[31, "Our-Approach"]], "Generating and Classifying Questions": [[32, "Generating-and-Classifying-Questions"]], "Exploratory Question:": [[32, "Exploratory-Question:"], [32, "id1"]], "Passive-Predictive Question:": [[32, "Passive-Predictive-Question:"], [32, "id2"]], "Causal Question:": [[32, "Causal-Question:"], [32, "id3"]], "Groupby and Arrest Data": [[33, "Groupby-and-Arrest-Data"]], "Learning the Group Structure of Your Data": [[33, "Learning-the-Group-Structure-of-Your-Data"]], "Testing Your Assumptions": [[33, "Testing-Your-Assumptions"]], "Acme Corportation Solution": [[34, "Acme-Corportation-Solution"]], "Fixed Effects: Indicator Variables for Groups": [[38, "Fixed-Effects:-Indicator-Variables-for-Groups"]], "Implementing Fixed Effects": [[38, "Implementing-Fixed-Effects"]], "Clustering": [[38, "Clustering"]], "Computationally Efficient Fixed Effects": [[38, "Computationally-Efficient-Fixed-Effects"]], "Fixed Effects and Causal Inference": [[39, "Fixed-Effects-and-Causal-Inference"]], "Fixed Effects and Hierarchical Models": [[40, "Fixed-Effects-and-Hierarchical-Models"]], "Fixed Effects & Clustered Standard Errors": [[40, "Fixed-Effects-&-Clustered-Standard-Errors"]], "Things To Remember:": [[40, "Things-To-Remember:"]], "How to Read (Academic Edition)": [[41, "How-to-Read-(Academic-Edition)"]], "Read Actively": [[41, "Read-Actively"]], "Be Patient with Examples From Different Domains": [[41, "Be-Patient-with-Examples-From-Different-Domains"]], "Do NOT Summarize with LLMs": [[41, "Do-NOT-Summarize-with-LLMs"]], "Welcome to Solving Problems with Data!": [[42, "welcome-to-solving-problems-with-data"]], "Pre-Requisites for Non-MIDS Students": [[42, "pre-requisites-for-non-mids-students"]], "Syllabus": [[42, "syllabus"]], "Internal and External Validity": [[43, "Internal-and-External-Validity"]], "Internal Validity": [[43, "Internal-Validity"]], "External Validity": [[43, "External-Validity"]], "External Validity Considerations": [[43, "External-Validity-Considerations"]], "Trade-Offs Between Internal and External Validity": [[43, "Trade-Offs-Between-Internal-and-External-Validity"]], "Conclusion": [[43, "Conclusion"], [55, "Conclusion"]], "Using and Interpreting Indicator (Dummy) Variables": [[44, "Using-and-Interpreting-Indicator-(Dummy)-Variables"]], "What are indicator variables?": [[44, "What-are-indicator-variables?"]], "The ONE thing that you must understand when using indicator variables:": [[44, "The-ONE-thing-that-you-must-understand-when-using-indicator-variables:"]], "Indicator Variables with Two Category Variable": [[44, "Indicator-Variables-with-Two-Category-Variable"]], "Indicator Variables for variables with more than 2 categories": [[44, "Indicator-Variables-for-variables-with-more-than-2-categories"]], "Interactions with Constant Variables": [[44, "Interactions-with-Constant-Variables"]], "Keeping Things Straight": [[44, "Keeping-Things-Straight"]], "The * operator": [[44, "The-*-operator"]], "Interactions Between Multiple Indicator Variables": [[44, "Interactions-Between-Multiple-Indicator-Variables"]], "Fixed Effects": [[44, "Fixed-Effects"]], "Limitations of Experiments (and Average Treatment Effects)": [[45, "Limitations-of-Experiments-(and-Average-Treatment-Effects)"]], "Who\u2019s Average?": [[45, "Who's-Average?"]], "The Fine Print of ATE": [[45, "The-Fine-Print-of-ATE"]], "SUTVA": [[45, "SUTVA"]], "How Matching is Done (A Summary)": [[46, "How-Matching-is-Done-(A-Summary)"]], "Pruning Your Data": [[46, "Pruning-Your-Data"]], "Measuring Similarity": [[46, "Measuring-Similarity"]], "When Can / Should I Use Matching?": [[46, "When-Can-/-Should-I-Use-Matching?"]], "Checking Balance": [[46, "Checking-Balance"]], "Analyze!": [[46, "Analyze!"]], "Specific Models": [[46, "Specific-Models"]], "Matching": [[47, "Matching"]], "Model Dependency": [[47, "Model-Dependency"]], "Model Dependency, Causal Inference, and Imbalance": [[47, "Model-Dependency,-Causal-Inference,-and-Imbalance"]], "Matching: Better thought of as pruning": [[47, "Matching:-Better-thought-of-as-pruning"]], "The Cost of Matching": [[47, "The-Cost-of-Matching"]], "Causal Inference Assumptions": [[47, "Causal-Inference-Assumptions"]], "In Summary": [[47, "In-Summary"]], "Converting Stakeholder Prompts into Questions": [[48, "Converting-Stakeholder-Prompts-into-Questions"]], "What\u2019s The Real Problem / Need": [[48, "What's-The-Real-Problem-/-Need"]], "What Questions Do I Need To Ask?": [[48, "What-Questions-Do-I-Need-To-Ask?"]], "Make Your Questions Specific and Actionable": [[48, "Make-Your-Questions-Specific-and-Actionable"]], "Many Questions?": [[48, "Many-Questions?"]], "What to Read Next": [[48, "What-to-Read-Next"]], "Nick\u2019s Things to Think About Before A/B Testing": [[49, "Nick's-Things-to-Think-About-Before-A/B-Testing"]], "Step 0: Are You Sure You Should Do This?": [[49, "Step-0:-Are-You-Sure-You-Should-Do-This?"]], "Step 1: Define Your Goals": [[49, "Step-1:-Define-Your-Goals"]], "Step 2: Plan Implementation": [[49, "Step-2:-Plan-Implementation"]], "Step 3: Run!": [[49, "Step-3:-Run!"]], "Step 4: Check Internal Validity": [[49, "Step-4:-Check-Internal-Validity"]], "Step 5: Interpret Results": [[49, "Step-5:-Interpret-Results"]], "Step 6: Consider External Validity": [[49, "Step-6:-Consider-External-Validity"]], "Reading Reflections": [[52, "Reading-Reflections"]], "Looking for the solutions?": [[54, "Looking-for-the-solutions?"]], "OK, if you are still interested in looking at the solutions\u2026": [[54, "OK,-if-you-are-still-interested-in-looking-at-the-solutions..."]], "Taxonomy of Questions": [[55, "Taxonomy-of-Questions"]], "Positive versus Normative Questions": [[55, "Positive-versus-Normative-Questions"]], "Descriptive Questions": [[55, "Descriptive-Questions"]], "Descriptive Example 1: Nope, This Time Isn\u2019t Different": [[55, "Descriptive-Example-1:-Nope,-This-Time-Isn't-Different"]], "Descriptive Example 3: Disease Surveillance": [[55, "Descriptive-Example-3:-Disease-Surveillance"]], "Descriptive Example 4: Global Warming": [[55, "Descriptive-Example-4:-Global-Warming"]], "Descriptive Questions and EDA": [[55, "Descriptive-Questions-and-EDA"]], "Last Thoughts": [[55, "Last-Thoughts"]], "Causal Questions and Prediction-with-Manipulation": [[55, "Causal-Questions-and-Prediction-with-Manipulation"]], "Why Causal Inference is Hard": [[55, "Why-Causal-Inference-is-Hard"]], "Causal Inference, Manipulations, and Prediction": [[55, "Causal-Inference,-Manipulations,-and-Prediction"]], "Classification Questions / Prediction-Without-Manipulation": [[55, "Classification-Questions-/-Prediction-Without-Manipulation"]], "\u201cWithout Manipulation\u201d?": [[55, "%22Without-Manipulation%22?"]], "Using Exploratory Questions to Better Understanding Your Problem": [[56, "Using-Exploratory-Questions-to-Better-Understanding-Your-Problem"]], "Your First Assignment": [[56, "Your-First-Assignment"]], "Part 2: Choosing a Problem": [[56, "Part-2:-Choosing-a-Problem"]], "Part 3: Specifying and Answering Questions": [[56, "Part-3:-Specifying-and-Answering-Questions"]], "Data": [[56, "Data"]], "Writing Data Science Report for Non-Technical Audiences": [[57, "Writing-Data-Science-Report-for-Non-Technical-Audiences"]], "Identify your audience": [[57, "Identify-your-audience"]], "Introduction / Executive Summary": [[57, "Introduction-/-Executive-Summary"]], "Your Design": [[57, "Your-Design"]], "Your Results": [[57, "Your-Results"]], "Conclusions": [[57, "Conclusions"]], "Appendix": [[57, "Appendix"]], "Resume Experiment Analysis": [[30, "Resume-Experiment-Analysis"], [37, "Resume-Experiment-Analysis"]], "Checking for Balance": [[30, "Checking-for-Balance"], [37, "Checking-for-Balance"]], "Estimating Effect of Race": [[30, "Estimating-Effect-of-Race"], [37, "Estimating-Effect-of-Race"]], "Estimating Heterogeneous Effects": [[30, "Estimating-Heterogeneous-Effects"], [37, "Estimating-Heterogeneous-Effects"]], "What Did We Just Measure?": [[30, "What-Did-We-Just-Measure?"], [37, "What-Did-We-Just-Measure?"]], "A/B Testing the Udacity Website": [[11, "A/B-Testing-the-Udacity-Website"]], "Udacity\u2019s Test": [[11, "Udacity's-Test"]], "Import the Data": [[11, "Import-the-Data"]], "Pick your measures": [[11, "Pick-your-measures"]], "Validating The Data": [[11, "Validating-The-Data"]], "Estimating the Effect of Experiment": [[11, "Estimating-the-Effect-of-Experiment"]], "Where To Find Public Data": [[50, "Where-To-Find-Public-Data"]], "Good Starting Points": [[50, "Good-Starting-Points"]], "Other Interesting Data Sources": [[50, "Other-Interesting-Data-Sources"]], "Data with a Spatial/GIS Component": [[50, "Data-with-a-Spatial/GIS-Component"]], "Public Satellite Data": [[50, "Public-Satellite-Data"]], "Other Lists of Data That Are Great": [[50, "Other-Lists-of-Data-That-Are-Great"]], "Solutions": [[53, "Solutions"]], "Power Calculations and Experiment Planning": [[28, "Power-Calculations-and-Experiment-Planning"]], "The Context": [[28, "The-Context"]], "Extra Credit Extension": [[28, "Extra-Credit-Extension"]], "Footnotes": [[28, "Footnotes"]], "Class Schedule": [[4, "class-schedule"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["DRAFT_ml_bias", "UDS_midterm_part2_2022", "backwards_design", "causal_inference_beyond_ab_testing", "class_schedule", "descriptive_questions", "endogenous_stopping", "ethical_ml_recommendations", "evaluating_real_studies", "exercises/discussion_exploratory", "exercises/discussion_regressions_incomeineq", "exercises/exercise_abtesting", "exercises/exercise_counterfactuals", "exercises/exercise_diffindiff", "exercises/exercise_evaluating_studies", "exercises/exercise_exploratory", "exercises/exercise_first_class_capstone_proposal", "exercises/exercise_generating_questions", "exercises/exercise_ghostmap_1", "exercises/exercise_ghostmap_2", "exercises/exercise_indicators", "exercises/exercise_interpretable", "exercises/exercise_matching", "exercises/exercise_optimalABthresholds", "exercises/exercise_panel", "exercises/exercise_passive_prediction", "exercises/exercise_potential_outcomes1", "exercises/exercise_potential_outcomes2", "exercises/exercise_power_calculations", "exercises/exercise_regressions_incomeineq", "exercises/exercise_resume_experiment", "exercises/exercise_stakeholder_management", "exercises/exercise_taxonomy_of_questions", "exercises/setup_diffindiff", "exercises/solutions_first_class_capstone_proposal", "exercises/solutions_interpretable", "exercises/solutions_passive_prediction", "exercises/solutions_resume_experiment", "fixed_effects", "fixed_effects_and_causal_inference", "fixed_effects_v_hierarchical", "how_to_read", "index", "internal_v_external_validity", "interpreting_indicator_vars", "limitations_of_ATE", "matching_how", "matching_why", "moving_from_problems_to_questions", "nick_ab_testing_checklist", "public_data", "pvalues_and_decision_making", "reading_reflections", "solutions", "solutions_warning", "taxonomy_of_questions", "team_assignments/UDS_TeamProject_Exploratory", "writing_to_stakeholders"], "filenames": ["DRAFT_ml_bias.ipynb", "UDS_midterm_part2_2022.ipynb", "backwards_design.ipynb", "causal_inference_beyond_ab_testing.ipynb", "class_schedule.rst", "descriptive_questions.ipynb", "endogenous_stopping.ipynb", "ethical_ml_recommendations.ipynb", "evaluating_real_studies.ipynb", "exercises/discussion_exploratory.ipynb", "exercises/discussion_regressions_incomeineq.ipynb", "exercises/exercise_abtesting.ipynb", "exercises/exercise_counterfactuals.ipynb", "exercises/exercise_diffindiff.ipynb", "exercises/exercise_evaluating_studies.ipynb", "exercises/exercise_exploratory.ipynb", "exercises/exercise_first_class_capstone_proposal.ipynb", "exercises/exercise_generating_questions.ipynb", "exercises/exercise_ghostmap_1.ipynb", "exercises/exercise_ghostmap_2.ipynb", "exercises/exercise_indicators.ipynb", "exercises/exercise_interpretable.ipynb", "exercises/exercise_matching.ipynb", "exercises/exercise_optimalABthresholds.ipynb", "exercises/exercise_panel.ipynb", "exercises/exercise_passive_prediction.ipynb", "exercises/exercise_potential_outcomes1.ipynb", "exercises/exercise_potential_outcomes2.ipynb", "exercises/exercise_power_calculations.ipynb", "exercises/exercise_regressions_incomeineq.ipynb", "exercises/exercise_resume_experiment.ipynb", "exercises/exercise_stakeholder_management.ipynb", "exercises/exercise_taxonomy_of_questions.ipynb", "exercises/setup_diffindiff.ipynb", "exercises/solutions_first_class_capstone_proposal.ipynb", "exercises/solutions_interpretable.ipynb", "exercises/solutions_passive_prediction.ipynb", "exercises/solutions_resume_experiment.ipynb", "fixed_effects.ipynb", "fixed_effects_and_causal_inference.ipynb", "fixed_effects_v_hierarchical.ipynb", "how_to_read.ipynb", "index.rst", "internal_v_external_validity.ipynb", "interpreting_indicator_vars.ipynb", "limitations_of_ATE.ipynb", "matching_how.ipynb", "matching_why.ipynb", "moving_from_problems_to_questions.ipynb", "nick_ab_testing_checklist.ipynb", "public_data.ipynb", "pvalues_and_decision_making.ipynb", "reading_reflections.ipynb", "solutions.ipynb", "solutions_warning.ipynb", "taxonomy_of_questions.ipynb", "team_assignments/UDS_TeamProject_Exploratory.ipynb", "writing_to_stakeholders.ipynb"], "titles": ["Backwards Design", "UDS Midterm 2022, Part 2", "Backwards Design", "Beyond The Experiment", "Class Schedule", "Researcher Discretion in Descriptive Analysis", "Peeking / Endogenous Stopping", "Recommendations for Responsible Machine Learning", "Evaluating Real Studies", "Discussion of Descriptive Exercises", "Interpreting Causal Effects of Gender", "A/B Testing the Udacity Website", "Counter-Factuals and Experimental Ideals", "Marijuana Legalization and Violent Crime", "Evaluating Studies", "Crime and Policing Expenditures Exploratory Questions", "Your First Stakeholder", "Converting Stakeholder Prompts into Actionable Questions", "Causality in the Time of Cholera", "Causality in the Time of Cholera", "Interpreting Indicator Variables", "Interpretable Modelling of Credit Risk", "Matching Exercise", "Optimal AB Testing Design", "Traffic Death Analysis", "Predicting Mortgage Delinquency Risk", "Making Potential Outcomes Concrete", "Making Potential Outcomes Concrete 2", "Power Calculations and Experiment Planning", "Estimating Gender Discrimination in the Workplace", "Resume Experiment Analysis", "Soliciting Information From Your Stakeholder", "Generating and Classifying Questions", "Groupby and Arrest Data", "Acme Corportation Solution", "Interpretable Modelling of Credit Risk", "Predicting Mortgage Delinquency Risk", "Resume Experiment Analysis", "Fixed Effects: Indicator Variables for Groups", "Fixed Effects and Causal Inference", "Fixed Effects and Hierarchical Models", "How to Read (Academic Edition)", "Welcome to Solving Problems with Data!", "Internal and External Validity", "Using and Interpreting Indicator (Dummy) Variables", "Limitations of Experiments (and Average Treatment Effects)", "How Matching is Done (A Summary)", "Matching", "Converting Stakeholder Prompts into Questions", "Nick\u2019s Things to Think About Before A/B Testing", "Where To Find Public Data", "<no title>", "Reading Reflections", "Solutions", "Looking for the solutions?", "Taxonomy of Questions", "Using Exploratory Questions to Better Understanding Your Problem", "Writing Data Science Report for Non-Technical Audiences"], "terms": {"i": [0, 1, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 52, 54, 56, 57], "wai": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 16, 22, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "develop": [0, 2, 5, 7, 17, 18, 19, 21, 22, 28, 35, 41, 42, 43, 45, 48, 52, 55], "an": [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 54, 55, 56, 57], "effici": [0, 2, 3, 7, 22, 24, 29, 30, 32, 37, 40, 41], "strategi": [0, 2, 11, 16, 24, 40, 45, 46, 48, 49, 57], "complet": [0, 2, 11, 16, 18, 19, 21, 22, 25, 30, 35, 36, 37, 47, 48, 57], "new": [0, 2, 3, 5, 7, 8, 11, 13, 14, 20, 21, 22, 23, 25, 28, 31, 34, 35, 36, 39, 41, 43, 44, 45, 49, 55, 57], "data": [0, 3, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 18, 20, 23, 24, 26, 27, 28, 29, 30, 34, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 55], "scienc": [0, 2, 3, 4, 5, 7, 13, 16, 18, 26, 27, 28, 31, 41, 42, 45, 48, 50, 55], "project": [0, 2, 3, 4, 11, 16, 21, 26, 27, 34, 35, 42, 50, 52, 56, 57], "my": [0, 2, 4, 5, 7, 21, 22, 25, 33, 35, 36, 43, 44, 45, 47, 48, 55], "view": [0, 2, 7, 8, 11, 23, 36, 44], "one": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 15, 16, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 55, 56, 57], "most": [0, 2, 5, 7, 13, 16, 21, 22, 28, 30, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 57], "import": [0, 1, 3, 4, 5, 7, 13, 16, 21, 22, 24, 28, 29, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 48, 55, 56, 57], "skill": [0, 2, 3, 13, 15, 30, 37, 41, 42, 50, 52, 54, 55, 57], "profession": [0, 2, 3, 42], "scientist": [0, 2, 3, 5, 7, 16, 22, 31, 38, 40, 41, 42, 44, 48, 57], "If": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 18, 19, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50], "don": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 55, 56, 57], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 56, 57], "have": [0, 1, 3, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "lot": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 21, 22, 28, 29, 35, 38, 40, 41, 43, 45, 47, 48, 49, 50, 55, 56, 57], "experi": [0, 2, 4, 5, 6, 7, 8, 39, 41, 42, 43, 47, 49, 53, 55, 56, 57], "mai": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 57], "obviou": [0, 2, 5, 7, 37, 39, 43, 44], "why": [0, 1, 3, 4, 5, 6, 7, 11, 21, 22, 25, 26, 27, 30, 31, 34, 35, 36, 37, 41, 42, 44, 45, 46, 47, 52, 56, 57], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57], "even": [0, 2, 3, 6, 7, 8, 11, 12, 13, 14, 22, 23, 25, 28, 30, 33, 35, 36, 37, 38, 40, 42, 43, 45, 55], "call": [0, 1, 2, 3, 6, 7, 8, 11, 12, 13, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 44, 46, 47, 49, 50, 55], "That": [0, 3, 5, 7, 8, 11, 12, 18, 19, 22, 25, 28, 30, 36, 37, 39, 41, 43, 44, 45, 46, 47, 55, 56, 57], "": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 54, 55, 56, 57], "becaus": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 21, 22, 24, 26, 27, 28, 29, 30, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 55, 56, 57], "student": [0, 2, 5, 7, 11, 13, 16, 26, 30, 31, 37, 38, 40, 41, 43, 50, 54, 55], "come": [0, 1, 2, 3, 5, 7, 11, 14, 21, 22, 25, 28, 29, 35, 36, 38, 41, 42, 43, 44, 45, 47, 48, 50, 55, 56], "from": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "classroom": [0, 2, 12, 40, 42], "exercis": [0, 1, 2, 4, 10, 16, 18, 19, 23, 26, 27, 33, 41, 42, 54], "site": [0, 2, 7, 8, 11, 23, 31, 33, 36, 37, 38, 42, 44, 48, 50, 54, 56], "like": [0, 1, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "kaggl": [0, 2, 7, 56], "These": [0, 2, 11, 12, 20, 22, 50, 52], "type": [0, 2, 3, 7, 8, 11, 15, 16, 20, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 44, 47, 48, 55, 56, 57], "ar": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 52, 55, 56, 57], "excel": [0, 2, 7, 21, 35], "opportun": [0, 2, 3, 13, 41, 52], "usual": [0, 2, 3, 11, 12, 25, 29, 30, 36, 37, 39, 42, 43, 45, 50, 55, 57], "case": [0, 2, 3, 5, 7, 11, 12, 18, 19, 21, 22, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 37, 38, 40, 42, 43, 44, 45, 48, 55, 57], "unbeknownst": [0, 2], "been": [0, 1, 2, 5, 7, 9, 11, 12, 13, 16, 17, 22, 24, 25, 26, 27, 30, 31, 32, 36, 37, 39, 41, 43, 46, 47, 48, 55, 57], "carefulli": [0, 2, 33, 43, 57], "tailor": [0, 2, 57], "clearli": [0, 2, 5, 7, 8, 12, 44, 47, 55], "goal": [0, 2, 3, 5, 7, 11, 16, 22, 26, 27, 28, 41, 46, 52, 54, 56, 57], "thei": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 57], "set": [0, 2, 5, 7, 8, 9, 11, 13, 14, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 55, 56], "clean": [0, 1, 2, 17, 22, 33, 56], "filter": [0, 2, 5], "provid": [0, 1, 2, 3, 5, 7, 8, 11, 16, 21, 25, 28, 31, 33, 35, 36, 37, 41, 42, 45, 48, 50, 54, 55, 56, 57], "onli": [0, 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 55], "relev": [0, 2, 3, 22, 28, 32, 41, 49, 57], "variabl": [0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 21, 22, 24, 25, 28, 29, 30, 33, 35, 36, 37, 39, 40, 46, 47, 48, 50, 55, 56], "done": [0, 2, 5, 7, 12, 13, 29, 32, 40, 41, 49, 55, 56, 57], "good": [0, 3, 4, 6, 7, 8, 11, 20, 21, 22, 23, 25, 28, 31, 35, 36, 38, 40, 41, 42, 43, 45, 46, 47, 49, 52, 55, 57], "reason": [0, 2, 3, 5, 7, 8, 9, 10, 12, 14, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 40, 41, 43, 45, 47, 49, 52, 55, 57], "instructor": [0, 2, 5, 52], "focus": [0, 1, 2, 15, 29, 30, 37, 43], "attent": [0, 1, 2, 22, 25, 36, 41, 57], "try": [0, 2, 3, 7, 8, 11, 12, 17, 18, 19, 21, 22, 25, 26, 27, 28, 29, 35, 36, 38, 39, 41, 43, 44, 45, 47, 48, 55, 56, 57], "model": [0, 1, 2, 4, 5, 11, 13, 16, 20, 22, 24, 29, 30, 34, 37, 38, 39, 41, 42, 43, 44, 55, 57], "select": [0, 2, 6, 7, 11, 21, 28, 30, 35, 37], "interpret": [0, 1, 2, 5, 13, 16, 17, 23, 24, 26, 29, 30, 37, 42, 43, 45, 57], "But": [0, 2, 3, 5, 6, 7, 8, 10, 13, 15, 21, 22, 26, 28, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 55, 57], "result": [0, 2, 5, 6, 7, 9, 10, 11, 15, 16, 18, 20, 22, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 55], "often": [0, 1, 2, 3, 5, 6, 7, 21, 24, 28, 29, 31, 33, 35, 38, 40, 41, 42, 43, 44, 45, 47, 48, 50, 52, 55, 56, 57], "awai": [0, 2, 9, 23, 46, 48, 55, 57], "impress": [0, 2, 15], "what": [0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 55, 56, 57], "do": [0, 1, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 50, 52, 54, 55, 56, 57], "work": [0, 1, 2, 3, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 27, 28, 29, 31, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 57], "statist": [0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 15, 16, 20, 22, 23, 25, 28, 30, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 55, 57], "In": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 52, 55, 57], "realiti": [0, 2, 7, 43, 44, 46], "howev": [0, 1, 2, 6, 7, 11, 18, 21, 22, 24, 25, 33, 35, 36, 38, 39, 40, 42, 44, 45, 46, 55], "thing": [0, 2, 3, 5, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22, 23, 26, 27, 29, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 52, 55, 57], "doe": [0, 1, 2, 3, 5, 7, 10, 11, 12, 13, 15, 21, 22, 23, 24, 28, 29, 30, 31, 33, 35, 37, 38, 39, 40, 41, 44, 45, 47, 48, 49, 55], "articul": [0, 2], "concret": [0, 2, 7, 8, 16, 28, 31, 44, 57], "feasibl": [0, 2, 18, 19, 22, 45, 49], "object": [0, 2, 3, 5, 8, 11, 22, 33, 35, 36], "b": [0, 2, 4, 5, 6, 7, 12, 13, 23, 24, 28, 30, 32, 33, 37, 40, 42, 45, 52], "achiev": [0, 2, 3, 11, 31, 49], "And": [0, 2, 3, 5, 7, 8, 9, 12, 22, 24, 25, 28, 29, 30, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 54, 55, 57], "best": [0, 2, 3, 5, 7, 8, 9, 12, 16, 22, 25, 28, 31, 35, 36, 41, 43, 45, 46, 47, 48, 50, 54, 55], "go": [0, 1, 2, 5, 7, 8, 9, 10, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 30, 31, 35, 36, 37, 40, 41, 43, 44, 46, 50], "about": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 56, 57], "accomplish": [0, 2, 30, 37, 40], "both": [0, 1, 2, 3, 5, 7, 8, 10, 13, 15, 16, 18, 19, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 40, 43, 44, 45, 46, 47, 49, 50, 55, 56, 57], "As": [0, 2, 3, 5, 6, 7, 8, 10, 11, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 50, 55, 56, 57], "name": [0, 1, 2, 11, 13, 16, 20, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 39, 44, 48, 50], "impli": [0, 2, 10, 15, 24, 28, 29, 30, 37, 38, 40, 48, 55], "idea": [0, 2, 6, 7, 13, 28, 38, 40, 41, 43, 45, 46, 47, 48, 50], "start": [0, 2, 3, 4, 6, 7, 8, 11, 21, 22, 23, 25, 28, 29, 30, 35, 36, 37, 41, 43, 44, 46, 47, 48, 49, 55, 57], "where": [0, 1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 21, 22, 24, 25, 27, 28, 31, 33, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 52, 55, 57], "want": [0, 1, 2, 5, 6, 7, 8, 11, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57], "end": [0, 2, 3, 4, 5, 6, 7, 8, 11, 16, 21, 22, 24, 25, 28, 30, 31, 34, 35, 36, 37, 44, 46, 47, 49, 55], "up": [0, 4, 5, 7, 8, 11, 14, 15, 16, 17, 21, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 43, 45, 46, 47, 55, 57], "figur": [0, 1, 2, 6, 8, 22, 25, 28, 33, 35, 36, 41, 44, 47, 48, 54, 55, 56], "out": [0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 16, 21, 22, 25, 28, 30, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 56, 57], "exactli": [0, 2, 5, 6, 10, 11, 16, 22, 26, 27, 30, 31, 33, 37, 43, 44, 46, 47, 57], "need": [0, 3, 4, 7, 13, 16, 17, 21, 23, 25, 28, 29, 31, 33, 34, 35, 36, 44, 46, 49, 50, 56, 57], "get": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 23, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "actual": [0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 16, 21, 22, 25, 26, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 50, 55, 57], "common": [0, 2, 3, 7, 13, 28, 38, 40, 43, 45, 46, 55, 56], "manag": [0, 2, 4, 5, 7, 28, 42, 52, 57], "rang": [0, 2, 3, 23, 28, 36, 41, 47], "differ": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57], "domain": [0, 2, 7, 8, 21, 32, 35, 52, 55, 56], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57], "alreadi": [0, 2, 7, 8, 16, 43, 46, 48, 49, 55, 56], "familiar": [0, 2, 13, 21, 22, 28, 35, 40, 42, 55], "broad": [0, 2, 5, 18, 19, 21, 35, 41, 57], "term": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 16, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 40, 41, 43, 44, 46, 47, 49, 55, 56, 57], "class": [0, 2, 3, 5, 7, 8, 10, 13, 16, 21, 28, 29, 35, 36, 41, 42, 43, 44, 47, 48, 50, 52, 55, 56, 57], "we": [0, 1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 55, 56, 57], "focu": [0, 2, 5, 22, 28, 29, 30, 31, 37, 38, 39, 41, 42, 43, 47, 55], "five": [0, 2, 20, 28], "step": [0, 2, 8, 22, 25, 28, 30, 31, 35, 36, 37, 46, 50, 55], "solv": [0, 2, 4, 7, 16, 28, 31, 47, 48, 54, 56], "help": [0, 2, 3, 5, 7, 11, 12, 16, 17, 18, 21, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 40, 43, 45, 47, 48, 50, 52, 55, 56, 57], "would": [0, 1, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 40, 43, 45, 46, 47, 48, 50, 55, 56, 57], "look": [0, 1, 3, 5, 6, 7, 8, 11, 12, 16, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 55, 56, 57], "determin": [0, 1, 2, 5, 7, 11, 12, 16, 25, 30, 36, 37, 43, 45, 48, 56], "order": [0, 2, 7, 16, 18, 19, 22, 26, 27, 28, 31, 34, 41], "gener": [0, 2, 4, 5, 7, 11, 13, 21, 22, 23, 25, 29, 30, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "identifi": [0, 1, 2, 7, 11, 13, 17, 18, 19, 21, 22, 25, 28, 33, 35, 36, 38, 43, 44, 48, 50, 55, 56], "those": [0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 16, 18, 22, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57], "bring": [0, 2, 7, 25, 34, 36, 38, 42, 43, 48], "them": [0, 2, 3, 5, 7, 8, 11, 12, 16, 17, 21, 22, 26, 27, 28, 31, 35, 38, 40, 41, 43, 44, 46, 47, 48, 50, 55, 56, 57], "togeth": [0, 2, 11], "first": [0, 1, 2, 3, 7, 8, 9, 11, 12, 13, 15, 17, 21, 22, 24, 25, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 55, 57], "should": [0, 2, 3, 5, 7, 8, 9, 11, 13, 15, 16, 21, 22, 23, 25, 26, 28, 30, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 55, 56, 57], "straightforward": [0, 2, 25, 36], "yet": [0, 2, 3, 9, 13, 21, 22, 35, 44, 48, 55], "surpris": [0, 2, 37, 43], "how": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48, 50, 54, 55, 56, 57], "never": [0, 2, 3, 5, 7, 8, 9, 11, 13, 22, 41, 47, 48, 52, 55, 57], "explicitli": [0, 2, 7, 35, 45, 55], "address": [0, 2, 7, 11, 16, 17, 25, 26, 31, 36, 40, 42, 43, 47, 48, 56, 57], "peopl": [0, 2, 3, 5, 7, 8, 11, 12, 13, 14, 17, 18, 21, 22, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 41, 43, 44, 45, 47, 48, 50, 52, 54, 55, 56, 57], "excit": [0, 2, 17, 45], "sai": [0, 2, 3, 5, 6, 7, 8, 11, 21, 22, 26, 27, 28, 30, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 55, 57], "some": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 17, 21, 22, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 55, 56, 57], "alwai": [0, 2, 5, 8, 12, 13, 16, 21, 22, 23, 26, 27, 30, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 56], "when": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 50, 55, 56, 57], "make": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 49, 51, 55, 56, 57], "sure": [0, 2, 3, 5, 8, 11, 15, 21, 22, 23, 24, 25, 26, 30, 32, 33, 35, 36, 37, 42, 43, 44, 45, 48, 55, 57], "can": [0, 1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 54, 55, 56, 57], "addit": [0, 2, 7, 8, 11, 13, 21, 22, 29, 30, 31, 35, 37, 38, 42, 44, 45, 57], "stakehold": [0, 2, 4, 5, 7, 21, 25, 28, 35, 36, 42, 56, 57], "agre": [0, 2, 43, 56], "There": [0, 2, 6, 8, 11, 12, 16, 21, 22, 29, 35, 36, 40, 41, 43, 45, 46, 50, 52], "noth": [0, 2, 11, 35, 37, 49, 55], "wors": [0, 2, 28, 35, 38, 41, 43], "than": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 42, 43, 45, 47, 49, 50, 52, 54, 55, 57], "spend": [0, 2, 3, 7, 8, 12, 26, 27, 28, 45, 47, 48, 54], "week": [0, 2, 11, 16, 23, 28, 29, 33, 39, 43, 47, 49, 52], "discov": [0, 2, 7, 23, 43, 48, 55], "valu": [0, 1, 2, 6, 7, 8, 11, 13, 16, 20, 21, 22, 23, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 44, 45, 47, 49, 51, 55], "here": [0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 57], "few": [0, 2, 3, 7, 13, 21, 24, 27, 28, 33, 35, 36, 37, 41, 42, 43, 45, 46, 50, 55, 57], "exampl": [0, 2, 3, 4, 5, 7, 8, 11, 12, 14, 20, 22, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 48, 56, 57], "know": [0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15, 16, 20, 21, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 41, 43, 44, 47, 48, 49, 50, 55, 56, 57], "reduc": [0, 2, 3, 5, 7, 11, 12, 13, 14, 15, 17, 23, 24, 30, 32, 37, 45, 47, 48, 55, 56], "mass": [0, 2, 26], "incarcer": [0, 2, 4], "busi": [0, 2, 3, 5, 8, 13, 38, 42, 43, 49, 50, 52, 55], "potenti": [0, 1, 2, 4, 7, 8, 11, 16, 18, 19, 21, 24, 25, 29, 30, 31, 35, 36, 37, 43, 45, 47, 49, 57], "custom": [0, 2, 3, 8, 12, 17, 43, 47, 55, 57], "who": [0, 1, 2, 3, 5, 7, 8, 10, 11, 14, 16, 17, 18, 19, 21, 22, 26, 27, 28, 29, 30, 31, 32, 35, 37, 40, 41, 43, 44, 47, 50, 54, 55, 56, 57], "alzheim": [0, 2, 55], "test": [0, 2, 4, 5, 6, 7, 8, 13, 16, 18, 19, 21, 22, 25, 28, 30, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 57], "earli": [0, 2, 4, 6, 18, 19, 31, 48, 49, 57], "intervent": [0, 2, 3, 11, 28, 43, 45, 55], "although": [0, 2, 11, 12, 28], "everyon": [0, 1, 2, 11, 25, 29, 35, 36, 40, 43, 45, 50, 55], "u": [0, 1, 2, 4, 7, 8, 11, 13, 16, 17, 21, 22, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 43, 44, 45, 47, 48, 50, 55, 57], "fundament": [0, 2, 5, 18, 19, 22, 32, 42, 43, 47, 55], "practic": [0, 2, 3, 4, 5, 6, 7, 13, 15, 41, 42, 44, 45, 49, 55], "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48, 50, 52, 55, 57], "quantifi": [0, 2], "world": [0, 1, 2, 3, 5, 7, 8, 12, 25, 27, 30, 36, 37, 39, 41, 42, 43, 45, 47, 49, 50, 55, 56], "For": [0, 2, 3, 7, 8, 11, 12, 13, 14, 16, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 55, 57], "ran": [0, 2, 3, 5, 6, 8, 11, 13, 22, 39, 47, 49], "our": [0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 55, 57], "regress": [0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 16, 20, 22, 24, 29, 30, 37, 38, 39, 44, 46, 47, 48, 57], "birth": [0, 2, 30, 37], "weight": [0, 2, 20, 21, 22, 26, 29, 35, 38, 49], "variou": [0, 2, 30, 37], "demograph": [0, 2, 11, 31, 43, 50], "whether": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 20, 21, 22, 25, 26, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 55, 56, 57], "mother": [0, 2], "smoke": [0, 2, 7, 55], "dure": [0, 2, 5, 12, 13, 18, 25, 36, 47], "pregnanc": [0, 2], "were": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 18, 19, 20, 25, 27, 28, 29, 30, 33, 36, 37, 38, 43, 44, 45, 47, 48, 49, 55, 57], "matern": [0, 2], "associ": [0, 1, 2, 25, 28, 30, 36, 37, 44, 55], "lower": [0, 2, 7, 10, 14, 16, 29, 30, 37, 38, 44, 57], "signific": [0, 1, 2, 6, 11, 13, 22, 28, 30, 35, 37, 42, 44, 49, 55], "level": [0, 1, 2, 7, 11, 12, 15, 21, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 47, 50, 57], "after": [0, 1, 2, 5, 7, 8, 11, 13, 19, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 39, 43, 44, 45, 47, 48, 54, 55], "control": [0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 20, 22, 24, 26, 27, 28, 29, 30, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49], "other": [0, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 55, 56, 57], "confound": [0, 2, 3, 18, 19], "someon": [0, 1, 2, 3, 5, 7, 12, 26, 30, 32, 37, 38, 45, 54, 56, 57], "run": [0, 2, 3, 5, 6, 7, 8, 11, 13, 14, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 48, 50, 57], "commerc": [0, 2, 23], "websit": [0, 2, 6, 8, 23, 28, 30, 37, 55], "user": [0, 2, 3, 4, 7, 8, 11, 13, 23, 33, 36, 37, 38, 43, 44, 45, 46, 49, 55, 56], "visit": [0, 2, 8, 11], "randomli": [0, 2, 3, 8, 11, 12, 28, 30, 37, 45, 57], "assign": [0, 1, 2, 3, 4, 7, 8, 11, 22, 25, 28, 30, 36, 37, 38, 39, 41, 42, 43, 45, 49, 52, 57], "see": [0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 17, 18, 19, 22, 25, 27, 28, 30, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 54, 55, 57], "two": [0, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 40, 43, 45, 46, 47, 48, 52, 55, 57], "version": [0, 2, 9, 11, 12, 21, 22, 28, 35, 36, 43], "land": [0, 2, 3, 48], "page": [0, 2, 3, 11, 15, 23, 31, 55, 57], "track": [0, 2, 11, 13, 17, 35, 43], "purchas": [0, 2, 25, 28, 36], "behavior": [0, 2, 3, 7, 8, 11, 16, 22, 33, 35, 36, 43, 45, 55, 57], "analyz": [0, 2, 6, 11, 13, 24, 30, 37, 45, 47, 55, 56, 57], "re": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "which": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "more": [0, 1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "effect": [0, 2, 3, 4, 6, 7, 12, 13, 14, 16, 21, 22, 23, 26, 27, 28, 29, 34, 35, 36, 41, 42, 43, 47, 48, 49, 55, 56, 57], "bui": [0, 2, 8, 25, 28, 36, 48, 55, 57], "train": [0, 2, 5, 25, 28, 36, 42, 43, 48, 55, 56, 57], "algorithm": [0, 2, 5, 7, 22, 41, 43, 46, 47, 48, 55], "cancer": [0, 2, 55], "x": [0, 2, 7, 9, 12, 21, 24, 33, 35, 36, 44, 47, 55], "rai": [0, 2], "evalu": [0, 2, 3, 4, 5, 7, 11, 22, 23, 25, 28, 31, 36, 40, 42, 43, 47, 49, 52, 55, 57], "its": [0, 2, 5, 7, 8, 13, 16, 21, 22, 23, 25, 27, 31, 35, 36, 38, 41, 43, 47, 48, 55], "perform": [0, 5, 7, 16, 25, 30, 34, 36, 37, 38, 40, 41, 56], "patient": [0, 2, 5, 6, 7, 17, 27, 30, 37, 43, 55], "well": [0, 2, 3, 5, 6, 7, 10, 13, 22, 23, 24, 28, 30, 34, 36, 37, 41, 42, 44, 46, 47, 48, 50, 55, 57], "next": [0, 2, 6, 7, 11, 22, 25, 29, 35, 36, 40, 43, 44], "ask": [0, 2, 7, 8, 11, 18, 25, 28, 30, 31, 32, 36, 37, 41, 43, 45, 47, 50, 52, 55, 56, 57], "yourself": [0, 2, 3, 5, 7, 9, 20, 22, 24, 28, 41, 43], "motiv": [0, 2, 3, 21, 35, 42, 57], "The": [0, 2, 4, 5, 6, 7, 12, 13, 14, 18, 19, 20, 21, 22, 24, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 50, 52, 54, 55, 56, 57], "part": [0, 2, 6, 7, 11, 18, 21, 23, 28, 29, 30, 34, 35, 37, 38, 41, 42, 43, 46, 55, 57], "character": [0, 5, 21, 35], "predict": [0, 2, 4, 14, 16, 17, 21, 22, 28, 35, 43, 44, 47, 48, 50, 53, 56], "label": [0, 1, 2, 7, 15, 21, 22, 35, 48, 50, 55], "unlabel": [0, 2], "form": [0, 5, 9, 12, 21, 23, 25, 28, 29, 35, 36, 38, 47, 48, 55], "think": [0, 2, 3, 5, 7, 8, 11, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 52, 54, 55, 56, 57], "entiti": [0, 2, 7, 13, 24, 38, 39, 43], "observ": [0, 1, 2, 3, 7, 11, 12, 13, 16, 18, 19, 21, 22, 24, 25, 28, 30, 33, 35, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 49, 55, 57], "all": [0, 1, 2, 3, 5, 7, 9, 11, 13, 14, 15, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 57], "replic": [0, 2, 7, 11, 25, 28, 36], "gave": [0, 2, 7, 8, 17, 22, 32, 45], "rise": [0, 2, 7, 8, 55], "due": [0, 2, 3, 10, 25, 36, 40, 52, 56, 57], "pictur": [0, 2], "anim": [0, 2], "feed": [0, 2, 3, 7, 46], "bunch": [0, 2, 43], "undergradu": [0, 1, 2, 43], "american": [0, 1, 2, 5, 30, 37, 38, 43, 50], "univers": [0, 2, 16, 30, 31, 37, 43, 44, 55], "photo": [0, 2, 5], "everi": [0, 1, 2, 3, 7, 23, 25, 26, 33, 35, 36, 45, 55, 57], "time": [0, 1, 2, 3, 6, 7, 8, 9, 11, 13, 16, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 57], "photograph": [0, 2], "obvious": [0, 2, 3, 7, 9, 11, 13, 15, 16, 21, 22, 25, 30, 35, 36, 37, 44, 48, 57], "success": [0, 2, 7, 11, 43, 52], "depend": [0, 2, 3, 5, 12, 16, 21, 24, 28, 30, 31, 35, 37, 38, 39, 43, 44, 45, 49, 52, 55, 57], "context": [0, 2, 26, 27, 29, 43, 49, 50, 55, 57], "much": [0, 1, 2, 3, 7, 11, 13, 17, 20, 21, 22, 26, 29, 30, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 55, 56], "studi": [0, 1, 2, 3, 5, 6, 7, 12, 17, 28, 30, 31, 36, 37, 38, 41, 42, 43, 47, 49, 50, 55, 57], "cours": [0, 2, 3, 4, 5, 11, 22, 36, 41, 42, 43, 44, 46, 49, 52, 55, 56, 57], "aspir": [0, 2], "bit": [0, 2, 37, 55, 57], "recogn": [0, 2, 22, 40, 41, 44, 55], "understand": [0, 2, 3, 5, 6, 7, 16, 18, 23, 24, 31, 33, 38, 39, 40, 41, 42, 43, 45, 47, 55, 57], "limit": [0, 2, 5, 7, 12, 13, 21, 35, 38, 39, 40, 41, 43, 47, 57], "surprisingli": [0, 2], "long": [0, 1, 2, 3, 4, 6, 7, 13, 16, 28, 31, 34, 38, 41, 43, 49, 52], "thought": [0, 2, 3, 5, 7, 28, 31, 38, 41, 43, 52], "incap": [0, 2], "harbor": [0, 2, 12], "racial": [0, 1, 2, 5, 7, 22, 30, 33, 37], "sexist": [0, 2], "prejudic": [0, 2], "just": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 28, 29, 33, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 54, 55, 56, 57], "built": [0, 2, 50], "math": [0, 2, 6, 10, 23, 40, 41, 44, 45], "racist": [0, 2, 5, 43], "compani": [0, 2, 3, 5, 7, 11, 12, 14, 16, 21, 25, 27, 31, 35, 36, 43, 45, 48, 50, 56], "amazon": [0, 2], "tri": [0, 2, 22, 43, 47], "build": [0, 2, 7, 16, 25, 32, 36, 48, 55], "decid": [0, 1, 2, 3, 5, 11, 13, 26, 28, 43, 46, 48, 49, 57], "hire": [0, 2, 3, 5, 7, 12, 16, 17, 25, 28, 30, 32, 36, 37, 57], "though": [0, 1, 2, 3, 5, 7, 11, 13, 15, 21, 22, 24, 25, 35, 36, 37, 38, 39, 41, 42, 44, 46, 55, 56], "human": [0, 2, 3, 7, 18, 19, 43, 55], "employe": [0, 2, 3, 27, 29, 30, 37], "had": [0, 2, 6, 8, 11, 12, 13, 22, 25, 28, 36, 37, 39, 42, 43, 44, 45, 55, 56], "past": [0, 2, 3, 7, 8, 11, 13, 22, 23, 27, 28, 30, 36, 37, 41, 48, 50, 55, 56], "subject": [0, 2, 3, 11, 13, 25, 28, 29, 36, 40, 41, 42, 43, 49], "made": [0, 2, 5, 7, 8, 18, 19, 22, 28, 36, 42, 47, 52], "supervisor": [0, 2], "resum": [0, 2, 53], "itself": [0, 1, 2, 5, 16, 23, 52, 54, 55], "veri": [0, 1, 2, 3, 6, 7, 9, 12, 13, 20, 25, 28, 29, 31, 35, 36, 37, 38, 41, 43, 45, 46, 47, 48, 50, 52, 55, 57], "staff": [0, 2], "person": [0, 1, 2, 3, 5, 7, 11, 16, 21, 27, 30, 31, 33, 35, 37, 43, 44, 45, 56, 57], "inherit": [0, 2], "bias": [0, 2, 5, 7, 40], "oop": [0, 2], "suddenli": [0, 2, 43], "realiz": [0, 2, 7, 9, 18, 25, 36, 43, 55], "recruit": [0, 2, 43], "engin": [0, 2, 21, 25, 35, 36, 41], "didn": [0, 2, 4, 7, 11, 30, 37, 43, 48, 55], "women": [0, 2, 5, 7, 10, 29, 30, 37, 43, 44, 45], "abandon": [0, 2], "ok": [0, 2, 3, 5, 7, 11, 22, 28, 35, 36, 38, 40, 43, 44, 46, 47, 57], "bia": [0, 1, 2, 4, 5, 7, 22, 38], "now": [0, 1, 2, 3, 5, 7, 8, 9, 11, 13, 15, 17, 21, 22, 24, 26, 27, 28, 29, 30, 33, 35, 37, 38, 39, 41, 44, 45, 46, 47, 48, 55, 57], "open": [1, 3, 11, 16, 30, 37, 50], "book": [1, 23, 28, 41, 55], "commun": [1, 2, 5, 7, 12, 31, 41, 43, 45, 50, 57], "survei": [1, 2, 14, 22, 28, 29, 30, 37, 38, 44, 47, 50], "ac": [1, 50], "relationship": [1, 9, 12, 13, 15, 21, 22, 24, 29, 33, 35, 38, 39, 44, 47, 55], "between": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 45, 46, 47, 49, 52, 55, 57], "attain": [1, 29], "wage": [1, 10, 29, 38, 55], "conduct": [1, 28, 31, 43], "unit": [1, 5, 11, 12, 13, 18, 19, 20, 22, 24, 25, 28, 29, 30, 33, 36, 37, 45, 48, 49, 50, 55], "state": [1, 2, 5, 12, 13, 20, 24, 25, 29, 30, 31, 33, 36, 37, 48, 50, 55, 56], "censu": [1, 2, 33, 50], "bureau": [1, 2, 32, 50], "count": [1, 5, 11, 13, 25, 28, 30, 33, 35, 36, 37, 45, 55], "take": [1, 3, 5, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 25, 28, 35, 36, 38, 40, 41, 42, 44, 45, 46, 47, 49, 55, 57], "place": [1, 2, 5, 7, 11, 13, 18, 19, 21, 25, 29, 30, 31, 33, 35, 36, 37, 38, 42, 43, 45, 46, 47, 48, 50, 54, 55], "10": [1, 4, 5, 8, 15, 24, 26, 27, 33, 38, 44], "year": [1, 5, 13, 17, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 36, 37, 39, 41, 42, 44, 45, 47, 50, 55], "numer": [1, 11, 18, 19, 22, 24, 35, 38], "featur": [1, 2, 5, 16, 21, 22, 25, 30, 35, 36, 37, 45, 48, 55, 56], "popul": [1, 2, 8, 13, 22, 24, 26, 27, 28, 29, 31, 33, 37, 38, 43, 45, 47, 49, 56], "includ": [1, 5, 7, 8, 11, 13, 15, 16, 21, 22, 24, 25, 26, 29, 30, 31, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 50, 55, 56, 57], "100": [1, 5, 8, 13, 15, 21, 23, 28, 35, 36, 37, 38], "2017": [1, 28, 33], "sampl": [1, 2, 7, 8, 13, 14, 16, 21, 22, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 43, 45, 47, 49, 55, 57], "1": [1, 4, 5, 8, 23, 26, 27, 33, 38, 39, 43, 44, 45, 47, 52], "0": [1, 5, 8, 13, 15, 20, 21, 22, 23, 25, 26, 27, 28, 30, 33, 35, 36, 37, 38, 39, 44, 52], "ipum": [1, 50], "tool": [1, 2, 3, 5, 11, 16, 21, 22, 23, 24, 28, 35, 38, 39, 42, 44, 48, 52, 55], "major": [1, 5, 7, 16, 30, 37, 41, 42, 44, 49, 55, 56], "dataset": [1, 2, 5, 9, 11, 13, 16, 20, 24, 25, 29, 30, 33, 36, 37, 38, 40, 44, 46, 47, 50], "govern": [1, 2, 3, 20, 31, 43, 48, 50, 55], "agenc": [1, 48], "real": [1, 4, 5, 7, 9, 10, 12, 16, 21, 25, 28, 30, 31, 35, 36, 37, 41, 42, 43, 45, 55, 56, 57], "mean": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 50, 52, 55, 57], "you": [1, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 55, 56, 57], "being": [1, 2, 3, 5, 7, 11, 13, 16, 21, 22, 25, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 55, 56, 57], "document": [1, 16, 20, 21, 25, 35, 36, 55], "found": [1, 3, 7, 11, 13, 14, 17, 21, 22, 25, 26, 28, 29, 35, 36, 40, 41, 42, 43, 52, 55], "either": [1, 2, 3, 5, 11, 21, 22, 31, 35, 39, 42, 43, 45, 47, 50, 57], "search": [1, 21, 30, 35, 37, 50], "someth": [1, 3, 5, 7, 8, 11, 13, 18, 19, 21, 22, 25, 34, 35, 36, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57], "right": [1, 4, 7, 19, 20, 22, 31, 33, 40, 43, 44, 46, 47, 48, 52, 55, 57], "within": [1, 3, 10, 23, 24, 25, 29, 33, 36, 38, 40, 45, 52, 55], "inform": [1, 2, 5, 9, 11, 18, 19, 21, 22, 25, 28, 35, 36, 41, 43, 48, 50, 52, 56], "background": [1, 7, 41], "statu": [1, 25, 36, 56], "repres": [1, 2, 5, 7, 11, 12, 33, 35, 37, 41, 42, 43, 48], "colleg": [1, 22, 30, 37, 38], "degre": [1, 22, 30, 37, 43], "ones": [1, 7], "abil": [1, 7, 16, 41], "job": [1, 3, 5, 7, 22, 26, 27, 28, 29, 30, 33, 37, 48, 52, 57], "download": [1, 2, 13, 15, 20, 22, 24, 25, 29, 30, 33, 36, 37], "us_acs_2017_10pct_sampl": 1, "dta": [1, 20, 22, 29, 30, 37, 38], "panda": [1, 11, 33, 35, 36, 37, 38, 44], "datafram": [1, 22, 33, 35], "pd": [1, 22, 30, 33, 35, 36, 37, 38, 44], "read_stata": [1, 22, 37, 38], "normal": [1, 5, 6, 8, 11, 22, 23, 24, 38, 46, 50], "d": [1, 2, 5, 6, 8, 11, 12, 13, 21, 22, 23, 25, 27, 28, 33, 35, 36, 38, 39, 43, 44, 45, 46, 47, 48, 57], "tell": [1, 5, 7, 8, 11, 13, 17, 22, 26, 27, 28, 29, 33, 36, 38, 43, 44, 45, 48, 50, 55, 57], "dive": [1, 2, 5, 7, 48, 55], "mid": [1, 16, 31, 40], "ll": [1, 2, 3, 5, 7, 8, 11, 13, 15, 20, 21, 22, 23, 24, 28, 29, 30, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 55, 57], "spare": 1, "wrang": 1, "analysi": [1, 3, 7, 8, 11, 13, 18, 19, 21, 22, 25, 28, 29, 35, 36, 45, 47, 49, 55, 56, 57], "ag": [1, 2, 5, 10, 11, 21, 22, 28, 29, 35, 36, 38, 39, 41, 43, 44], "empstat": 1, "inctot": 1, "educd": 1, "statefip": 1, "countyfip": 1, "sex": [1, 21, 29, 35, 38], "race": [1, 7, 22, 33, 38, 44, 50], "hispan": [1, 22, 33], "thin": [1, 28], "3": [1, 4, 8, 17, 26, 27, 33, 38, 44, 45], "creat": [1, 5, 6, 7, 13, 15, 16, 20, 21, 22, 23, 25, 28, 30, 35, 36, 37, 38, 41, 43, 44, 55, 57], "indic": [1, 2, 4, 7, 11, 13, 24, 25, 29, 30, 33, 36, 37, 43, 49], "respond": [1, 8, 29, 30, 37, 38, 43, 44, 50], "color": [1, 3, 20, 23, 31, 43], "A": [1, 4, 5, 6, 8, 12, 14, 16, 21, 23, 25, 35, 36, 37, 41, 42, 43, 45, 48, 50, 52, 55, 57], "NOT": [1, 44, 50], "white": [1, 5, 7, 22, 30, 33, 37, 38, 43, 44], "non": [1, 2, 3, 5, 7, 16, 18, 20, 22, 25, 28, 29, 31, 32, 36, 38, 39, 44], "individu": [1, 11, 12, 16, 18, 19, 30, 37, 38, 39, 40, 44, 45, 50], "again": [1, 3, 8, 11, 15, 22, 24, 25, 28, 30, 36, 37, 38, 43, 44, 45, 48], "poc": 1, "categori": [1, 13, 20, 21, 22, 25, 30, 33, 35, 36, 37], "note": [1, 2, 4, 7, 11, 12, 13, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 52, 56, 57], "pleas": [1, 11, 16, 22, 25, 26, 27, 29, 30, 31, 33, 36, 37, 41, 42, 46, 52, 55, 57], "excus": [1, 45, 52], "harmon": 1, "code": [1, 7, 9, 11, 16, 20, 21, 22, 24, 25, 29, 30, 33, 35, 36, 37, 38, 42, 44, 50, 54], "across": [1, 3, 8, 10, 11, 13, 18, 19, 22, 28, 29, 30, 31, 37, 38, 39, 45, 49, 52, 55, 57], "period": [1, 13, 21, 24, 25, 35, 36, 38, 39, 41, 43, 55], "list": [1, 7, 22, 25, 34, 36, 38, 55, 56], "black": [1, 4, 5, 7, 21, 22, 30, 33, 35, 37, 38, 43, 55], "appropri": [1, 11, 25, 33, 36, 42, 46, 56, 57], "2018": [1, 13, 28, 29, 33, 45, 55], "4": [1, 4, 17, 26, 27, 31, 33, 38, 44, 45, 52], "interest": [1, 2, 5, 7, 11, 12, 14, 17, 18, 19, 22, 25, 29, 30, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 52, 55, 56, 57], "emploi": [1, 10, 22, 28, 29, 38, 42, 55], "seek": [1, 27, 30, 31, 37, 57], "restrict": [1, 22, 34, 57], "unemploi": 1, "exclud": [1, 21, 22, 35, 41], "anyon": [1, 2, 3, 5, 7, 18, 19, 29, 30, 37, 44, 45, 54], "doesn": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 21, 22, 28, 33, 35, 36, 38, 44, 45, 47, 49, 55, 57], "answer": [1, 4, 5, 6, 8, 10, 11, 12, 17, 20, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 52, 54, 55, 57], "aren": [1, 2, 3, 5, 6, 7, 8, 11, 21, 22, 23, 25, 26, 29, 33, 35, 36, 38, 40, 41, 45, 46, 47, 48, 50, 55, 57], "5": [1, 4, 5, 17, 23, 26, 27, 33, 38, 44, 47, 52], "also": [1, 2, 3, 5, 7, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "least": [1, 2, 3, 21, 22, 25, 26, 28, 29, 31, 35, 36, 37, 38, 42, 43, 44, 46, 49, 52, 55, 56], "requir": [1, 4, 5, 8, 11, 13, 16, 18, 21, 27, 28, 31, 35, 38, 40, 41, 42, 44, 45, 48, 49, 50, 52, 55, 56, 57], "whose": [1, 8, 13, 32, 55], "record": [1, 7, 20, 25, 36], "90": [1, 5, 21, 23, 25, 28, 33, 35, 36, 44], "1980": [1, 33], "1990": [1, 15, 33], "wa": [1, 3, 5, 6, 7, 11, 12, 13, 15, 16, 18, 19, 21, 22, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 43, 45, 48, 49, 55, 57], "might": [1, 2, 3, 5, 7, 8, 11, 12, 16, 20, 22, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 39, 40, 43, 45, 48, 49, 55, 56, 57], "old": [1, 11, 22, 35, 38, 44, 47, 48], "census": [1, 50], "older": [1, 5, 29, 43, 44], "e": [1, 3, 5, 7, 8, 11, 12, 13, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 47, 49, 50, 55, 56, 57], "ani": [1, 3, 5, 7, 8, 11, 12, 13, 16, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 50, 52, 55, 56, 57], "abov": [1, 2, 7, 8, 12, 13, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 43, 44, 46, 47, 48, 50, 55, 56], "deal": [1, 3, 23, 43, 44, 48, 54, 56], "worri": [1, 7, 8, 11, 12, 18, 19, 21, 23, 26, 28, 30, 35, 37, 48, 55], "parenthes": 1, "except": [1, 5, 7, 12, 22, 33, 38, 40, 44, 46, 49, 52], "insofar": 1, "littl": [1, 5, 14, 21, 22, 33, 35, 37, 39, 43, 44, 45, 47], "complic": [1, 3, 6, 7, 52, 55], "6": [1, 4, 23, 26, 27, 33, 38, 44, 45, 46], "categor": [1, 21, 22, 24, 25, 30, 35, 36, 37, 38, 44], "highest": [1, 38], "high": [1, 7, 10, 12, 13, 14, 16, 21, 24, 25, 28, 29, 30, 35, 36, 37, 39, 40, 43, 46, 47, 57], "school": [1, 7, 10, 28, 29, 30, 31, 37, 38, 39, 40, 55], "diploma": 1, "equival": [1, 11, 37, 40], "ged": 1, "altern": [1, 7, 18, 19, 28, 57], "credenti": 1, "better": [1, 3, 6, 7, 22, 25, 30, 31, 35, 36, 37, 39, 40, 41, 42, 43, 46, 52, 57], "ha": [1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 21, 22, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 55, 56, 57], "neither": [1, 44], "nor": [1, 41], "bachelor": [1, 30, 37], "assum": [1, 5, 7, 8, 14, 16, 21, 23, 24, 25, 28, 29, 30, 35, 36, 37, 38, 39, 40, 42, 47, 48, 55, 57], "advanc": [1, 3, 7, 16, 22, 42, 45, 49, 52], "master": [1, 15, 22, 29, 35, 36, 37, 38, 42, 43, 44], "doctor": [1, 27], "while": [1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 21, 25, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 50, 52, 55, 56], "number": [1, 11, 12, 13, 15, 16, 21, 22, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 43], "encod": [1, 21, 25, 33, 35, 36, 38, 44], "implement": [1, 13, 21, 22, 24, 26, 30, 31, 35, 37, 46, 47], "properli": [1, 43, 48, 55], "below": [1, 5, 7, 14, 16, 18, 19, 21, 22, 25, 26, 27, 28, 29, 35, 36, 38, 39, 43, 44, 47, 50, 55], "fine": [1, 5, 6, 7, 13, 41, 43, 47, 52], "suggest": [1, 11, 23, 26, 37, 49], "singl": [1, 3, 9, 11, 13, 21, 22, 23, 24, 25, 33, 35, 36, 37, 40, 44, 48, 56, 57], "three": [1, 2, 13, 21, 23, 25, 28, 32, 35, 36, 44, 46, 50, 55, 56, 57], "each": [1, 2, 6, 9, 11, 12, 13, 14, 15, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 39, 40, 41, 45, 46, 48, 50, 52, 55], "group": [1, 2, 8, 11, 12, 13, 14, 17, 18, 19, 22, 24, 26, 27, 28, 29, 30, 31, 32, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 55], "refer": [1, 11, 12, 13, 25, 34, 36, 44, 46, 47, 52, 55, 57], "graduat": [1, 29, 30, 37], "interchang": 1, "post": [1, 2, 3, 13, 32, 44, 55, 56], "treatment": [1, 3, 5, 6, 11, 12, 13, 14, 18, 19, 22, 26, 27, 28, 30, 37, 39, 42, 43, 44, 46, 47, 49, 55], "outcom": [1, 2, 3, 4, 7, 8, 11, 12, 13, 14, 17, 18, 19, 22, 25, 28, 29, 36, 39, 40, 41, 43, 45, 47, 49, 55, 57], "monei": [1, 3, 8, 14, 23, 27, 28, 45, 48], "mechan": [1, 16, 29, 38], "phd": [1, 21, 35], "got": [1, 8, 22, 23, 30, 37, 43, 47, 57], "under": [1, 3, 11, 22, 23, 25, 28, 30, 33, 36, 37, 40, 44, 48, 56], "sinc": [1, 2, 7, 8, 11, 13, 22, 28, 29, 30, 31, 33, 37, 38, 39, 40, 43, 44, 45, 47, 50, 55, 57], "without": [1, 2, 5, 7, 11, 14, 20, 22, 24, 25, 28, 30, 34, 36, 37, 38, 42, 45, 49, 57], "given": [1, 2, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 48, 49, 52, 55], "gone": [1, 7, 38, 50], "7": [1, 4, 23, 26, 27, 33, 38, 44, 45], "simpl": [1, 4, 5, 7, 9, 11, 13, 17, 24, 26, 27, 28, 38, 39, 41, 44, 46, 47, 55], "likelihood": [1, 7, 25, 30, 36, 37, 38, 44, 48, 55], "linear": [1, 5, 7, 9, 11, 16, 21, 22, 24, 29, 30, 35, 37, 38, 39, 42, 44, 47], "probabl": [1, 5, 7, 8, 9, 11, 21, 22, 23, 25, 28, 29, 30, 33, 35, 36, 37, 40, 43, 44, 45, 46, 47, 48, 49, 50, 55, 57], "squar": [1, 22, 29, 30, 37, 38, 39, 44, 46], "updat": [1, 22, 33], "languag": [1, 11, 18, 19, 20, 21, 35, 41, 42, 47, 55, 57], "oppos": [1, 29, 30, 37, 56], "could": [1, 2, 5, 7, 8, 11, 14, 16, 18, 19, 22, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 43, 44, 46, 48, 55, 57], "8": [1, 4, 26, 27, 33, 38, 44, 45], "add": [1, 5, 10, 11, 16, 21, 24, 29, 30, 33, 35, 36, 37, 38, 39, 44, 46, 56], "appar": [1, 6, 7, 22, 41, 47], "compar": [1, 2, 3, 8, 10, 11, 13, 16, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 34, 35, 36, 37, 45, 49, 55, 57], "9": [1, 4, 23, 26, 27, 33, 44], "formula": [1, 36, 37, 38, 44], "omit": [1, 28, 38, 44], "coeffici": [1, 2, 10, 20, 21, 22, 29, 30, 35, 36, 37, 38, 39, 44], "neg": [1, 2, 6, 11, 21, 25, 26, 30, 35, 36, 37, 44, 47], "chang": [1, 5, 11, 13, 15, 21, 22, 23, 26, 28, 29, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47, 49, 55, 56, 57], "correl": [1, 5, 7, 8, 9, 12, 14, 15, 21, 24, 35, 39, 40, 55], "explain": [1, 16, 20, 21, 24, 29, 30, 35, 37, 38, 48, 52, 55, 57], "learn": [1, 3, 4, 5, 11, 13, 16, 17, 18, 21, 22, 28, 31, 35, 40, 41, 42, 43, 44, 48, 49, 52, 54, 55, 57], "wrong": [1, 5, 7, 8, 9, 21, 30, 33, 35, 37, 44, 47, 52], "assumpt": [1, 3, 4, 7, 18, 19, 40, 43, 45, 52], "causal": [1, 3, 4, 8, 12, 15, 17, 22, 29, 41, 42, 43, 52, 56, 57], "violat": [1, 8, 45], "11": [1, 4, 26, 27, 33, 42, 44], "final": [2, 3, 5, 7, 11, 12, 13, 15, 21, 22, 23, 25, 28, 29, 35, 36, 41, 42, 44, 46, 52, 55, 56, 57], "narrow": [2, 22, 31], "small": [2, 3, 7, 11, 13, 22, 25, 30, 36, 37, 40, 43, 45, 47, 49, 50], "conceptu": [2, 18, 26, 27, 45], "framework": [2, 4, 7, 8, 11, 18, 19, 21, 30, 35, 37, 39, 45], "kei": [2, 11, 16, 25, 30, 31, 33, 36, 37, 41, 43, 57], "tractabl": 2, "meet": [2, 16, 17, 21, 26, 27, 28, 31, 34, 35, 41, 42], "criteria": [2, 4, 28, 45], "directli": [2, 3, 11, 18, 22, 25, 26, 27, 30, 36, 37, 40, 44, 55], "approach": [2, 16, 24, 26, 28, 38, 41, 42, 47, 48, 52, 55, 57], "seem": [2, 5, 7, 11, 12, 17, 22, 35, 37, 41, 43, 44, 45, 47, 48, 49, 55], "vagu": [2, 48], "immedi": [2, 21, 29, 32, 35, 48, 55], "collect": [2, 3, 5, 11, 25, 26, 28, 36, 44, 46, 48, 55], "To": [2, 4, 6, 8, 11, 13, 14, 20, 21, 26, 28, 29, 30, 31, 33, 35, 37, 38, 42, 43, 44, 45, 46, 47, 52, 55, 57], "illustr": [2, 5, 6, 7, 9, 38, 43, 46, 47, 55], "bad": [2, 3, 6, 17, 22, 35, 43, 47, 55], "describ": [2, 7, 11, 12, 13, 16, 18, 19, 22, 23, 26, 27, 30, 31, 35, 37, 38, 43, 55], "polici": [2, 5, 13, 14, 26, 32, 41, 43, 55, 57], "me": [2, 7, 21, 26, 27, 28, 35, 36, 40, 44, 50], "By": [2, 3, 9, 22, 24, 28, 31, 44, 45, 55], "contrast": [2, 5, 43, 44, 45, 55], "avail": [2, 3, 5, 7, 11, 16, 18, 19, 22, 23, 25, 31, 36, 42, 43, 48, 50, 52], "grand": [2, 35], "juri": 2, "longer": [2, 24, 35, 38, 39, 45, 49], "sentenc": [2, 41, 52], "pool": [2, 24, 35], "citizen": 2, "prosecutor": 2, "guidanc": [2, 11, 16, 25, 30, 36, 37], "theori": [2, 4, 13, 18, 19, 47, 55], "suppos": [2, 3, 5, 7, 8, 11, 21, 22, 23, 28, 35, 38, 39, 40, 43, 44, 47, 48, 55], "hold": [2, 3, 8, 26, 27, 30, 37, 43], "account": [2, 3, 7, 11, 18, 19, 22, 23, 29, 36, 38, 39, 40, 44], "said": [2, 8, 37, 39, 43, 44, 45, 55, 56, 57], "prosector": 2, "shape": [2, 7, 21, 25, 31, 35, 36, 55], "reach": [2, 7, 45, 48, 57], "recommend": [2, 11, 23, 28, 33, 43, 57], "begin": [2, 7, 8, 11, 13, 15, 16, 22, 24, 25, 29, 31, 36, 38, 42, 55, 56, 57], "attribut": [2, 8, 11, 28, 30, 37, 43], "lab": [2, 22, 43], "later": [2, 5, 21, 28, 29, 32, 35, 37, 38, 47, 55, 57], "diagnos": [2, 9], "mortem": 2, "ve": [2, 5, 7, 8, 9, 11, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57], "clear": [2, 5, 6, 7, 11, 13, 22, 31, 32, 38, 42, 45, 48, 50, 52, 55, 56, 57], "second": [2, 3, 7, 9, 16, 21, 22, 25, 29, 30, 33, 35, 36, 37, 38, 40, 41, 43, 44, 48, 56, 57], "find": [2, 3, 5, 7, 8, 11, 12, 13, 14, 18, 19, 21, 22, 23, 25, 29, 30, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 52, 55, 56], "current": [2, 11, 14, 16, 22, 23, 25, 28, 29, 36, 38, 55], "comparison": [2, 4, 7, 13, 16, 18, 19, 28, 29], "last": [2, 11, 13, 22, 25, 30, 33, 34, 36, 37, 40, 46], "moreov": [2, 5, 7, 23, 24, 41, 43, 44, 52, 54], "imagin": [2, 5, 8, 11, 16, 28, 43, 55], "crime": [2, 9, 32, 33], "commit": [2, 11, 32, 48], "tabl": [2, 29, 30, 37, 48, 57], "characterist": [2, 20, 30, 37, 46], "It": [2, 3, 4, 7, 8, 9, 13, 16, 17, 22, 26, 27, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 55, 57], "save": [2, 7, 8, 9, 22, 24, 27, 28], "lost": 2, "energi": [2, 32, 50], "Being": 2, "abl": [2, 5, 7, 8, 11, 16, 18, 21, 22, 25, 28, 30, 33, 35, 36, 37, 41, 42, 47, 50, 55, 57], "allow": [2, 3, 11, 13, 18, 21, 22, 25, 27, 28, 30, 35, 36, 37, 38, 40, 41, 43, 44, 49, 56], "statehold": 2, "happen": [2, 3, 7, 8, 10, 11, 16, 19, 22, 24, 28, 29, 38, 39, 40, 41, 43, 45, 48, 55], "serious": [2, 5, 48], "Not": [2, 17, 35, 45], "abstractli": 2, "draw": [2, 7, 24, 28, 41, 47, 52, 57], "graph": [2, 20, 48], "column": [2, 11, 16, 21, 22, 24, 25, 33, 35, 36, 38, 50], "predictor": [2, 7, 16, 25, 36], "diagnost": [2, 48, 57], "liter": [2, 5, 39, 44, 54], "ax": [2, 35, 48], "etc": [2, 7, 12, 16, 22, 25, 26, 27, 35, 36, 48, 49, 50, 55, 57], "turn": [2, 3, 7, 16, 20, 31, 38, 43, 44, 47, 55], "wasn": [2, 22, 30, 37, 43], "suffici": [2, 8, 29, 49], "show": [2, 3, 5, 6, 7, 8, 11, 21, 22, 24, 25, 28, 31, 35, 36, 37, 43, 44, 54, 55, 57], "ensur": [2, 5, 7, 11, 12, 16, 21, 22, 25, 28, 30, 31, 35, 36, 37, 41, 42, 43, 45, 49], "constitut": [2, 5, 8, 24, 30, 31, 33, 37, 38, 48, 52, 55], "avoid": [2, 7, 21, 23, 25, 26, 27, 35, 36, 43, 47, 48, 55], "told": [2, 5, 8, 18, 19, 48], "clearer": [2, 11], "written": [2, 12, 41, 55, 57], "hypothesi": [2, 11, 28, 37, 44], "follow": [2, 3, 4, 5, 7, 11, 12, 16, 17, 20, 21, 24, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 44, 45, 46, 47, 52, 55, 57], "true": [2, 5, 7, 8, 10, 11, 12, 21, 22, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 40, 41, 44, 45, 48, 57], "fals": [2, 5, 21, 22, 25, 33, 35, 36, 44], "consid": [2, 5, 7, 12, 13, 21, 25, 26, 31, 33, 35, 36, 43, 45, 47, 55], "sentec": 2, "insul": 2, "counti": [2, 9, 13, 15, 22, 31, 33, 38, 50, 55], "along": [2, 16, 25, 28, 36, 38, 43], "posit": [2, 7, 12, 13, 28, 30, 35, 37, 47], "presenc": [2, 12, 28, 31, 33, 48, 55], "zero": [2, 7, 33, 36, 37, 44, 45], "plan": [2, 23, 26, 31, 36, 43, 55, 57], "congratul": [2, 17, 22, 44], "realli": [2, 3, 5, 6, 7, 8, 9, 11, 12, 17, 20, 22, 24, 28, 31, 33, 35, 38, 40, 41, 43, 45, 46, 47, 49, 50, 55], "hard": [2, 3, 5, 7, 16, 17, 21, 22, 23, 31, 32, 35, 41, 42, 43, 50], "easi": [2, 3, 5, 6, 7, 21, 33, 35, 38, 44], "stuff": [2, 4, 41, 50], "let": [2, 5, 6, 8, 11, 14, 17, 24, 25, 28, 29, 30, 33, 36, 37, 38, 41, 43, 44, 45, 47, 55], "same": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 18, 21, 22, 25, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 50, 55, 57], "big": [2, 3, 5, 7, 21, 22, 23, 28, 35, 41, 43, 45, 47, 49, 56], "spender": 2, "variat": [2, 3, 5, 7, 9, 11, 24, 28, 29, 30, 37, 38, 39, 49], "public": [2, 3, 5, 18, 19, 31, 41, 43, 47, 48, 55, 56], "whom": [2, 21, 26, 28, 35, 39, 44, 47, 55, 57], "measur": [2, 3, 7, 8, 12, 22, 26, 27, 39, 40, 43, 49, 50, 55], "combin": [2, 4, 25, 36, 49], "similar": [2, 3, 7, 8, 11, 15, 16, 22, 29, 30, 33, 37, 40, 41, 43, 44, 47, 49, 56, 57], "resourc": [2, 3, 7, 18, 19, 31, 50, 54], "annual": [2, 22, 29, 38], "match": [2, 4, 33, 38, 43, 45], "gender": [2, 5, 7, 11, 22, 30, 33, 37, 38, 43, 44], "live": [2, 5, 8, 12, 45, 48], "nearli": [2, 7, 18, 19, 30, 31, 37], "guarante": [2, 7, 8, 55], "still": [2, 5, 7, 8, 11, 21, 22, 25, 28, 30, 35, 36, 37, 38, 48, 50], "wrangl": 2, "ahead": [2, 7, 21, 31, 35, 50], "won": [2, 5, 7, 21, 23, 29, 35, 43, 44, 45, 46], "templat": 2, "great": [2, 5, 6, 7, 8, 12, 16, 18, 22, 41, 43, 46, 49, 52, 55], "superiv": 2, "access": [2, 7, 11, 28, 30, 37, 50, 55], "pretti": [2, 3, 12, 17, 29, 35, 37], "nuanc": [2, 41, 57], "super": [2, 3, 35, 36, 37, 38, 56], "role": [3, 5, 28, 29, 31, 45, 47, 55], "infer": [3, 4, 5, 8, 12, 15, 18, 19, 22, 29, 33, 38, 41, 42, 43, 52, 57], "industri": [3, 10, 11, 18, 29, 38, 41, 43, 45], "question": [3, 4, 5, 7, 8, 11, 12, 22, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 40, 41, 42, 43, 50, 52, 57], "tech": [3, 5], "sector": [3, 29, 38], "todai": [3, 13, 17, 22, 42, 55], "constantli": [3, 44], "refin": [3, 21, 35], "product": [3, 5, 8, 12, 25, 28, 35, 36, 43, 57], "target": [3, 5, 12, 16, 25, 28, 31, 36, 47, 55], "ad": [3, 8, 11, 24, 28, 29, 30, 35, 37, 38, 41, 43, 45, 56], "increment": [3, 5], "innov": [3, 5, 7, 17, 22, 41, 55], "definit": [3, 5, 21, 35, 43, 45, 55, 57], "toolbox": 3, "read": [3, 4, 5, 6, 7, 8, 15, 18, 19, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 42, 43, 46, 47, 55, 57], "discuss": [3, 5, 7, 8, 15, 16, 17, 29, 33, 38, 40, 41, 43, 44, 45, 47, 55, 57], "critic": [3, 5, 7, 8, 30, 37, 41, 43, 44, 52, 54, 57], "gather": 3, "passiv": [3, 4, 17, 41, 53, 54, 55, 56], "somebodi": [3, 7, 49], "els": [3, 18, 19, 35, 54, 57], "rather": [3, 7, 8, 9, 24, 25, 31, 36, 38, 39, 40, 44, 50, 52, 55, 57], "manipul": [3, 7, 11, 42, 50], "random": [3, 4, 6, 7, 8, 11, 14, 21, 25, 28, 30, 35, 36, 37, 40, 42, 45, 47, 49, 57], "arm": [3, 11, 28, 30, 37, 50], "low": [3, 5, 14, 21, 22, 25, 28, 30, 35, 36, 37, 39, 40, 43, 45], "cost": [3, 14, 17, 20, 22, 23, 27, 36, 48, 49], "expens": [3, 6, 36, 49, 50], "worth": [3, 5, 7, 21, 22, 23, 30, 35, 37, 40, 44, 47, 55], "possibl": [3, 5, 7, 8, 14, 16, 18, 19, 25, 26, 27, 30, 31, 35, 36, 37, 40, 41, 47, 49, 52, 55, 57], "decis": [3, 4, 5, 7, 21, 31, 35, 45, 46, 47, 48, 49, 51, 57], "hand": [3, 5, 24, 40, 41, 43, 45, 48], "situat": [3, 7, 8, 28, 37, 40, 43, 46, 47, 48, 55], "specif": [3, 5, 7, 8, 11, 16, 24, 26, 27, 31, 32, 35, 39, 41, 43, 47, 49, 55, 56, 57], "facebook": [3, 8, 45], "twitter": 3, "satisfact": 3, "choos": [3, 6, 10, 21, 22, 35, 38, 47, 49], "certain": [3, 7, 8, 21, 22, 31, 35, 45, 47, 48, 55, 57], "function": [3, 5, 9, 11, 21, 22, 24, 25, 30, 33, 35, 36, 37, 38, 44, 47], "your": [3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 50, 52, 54, 55], "ideal": [3, 21, 35, 49, 55], "block": [3, 18, 45, 50], "One": [3, 11, 12, 16, 21, 22, 26, 27, 29, 35, 37, 38, 39, 48, 56, 57], "shot": 3, "bowl": 3, "store": [3, 8, 11, 14, 16, 25, 28, 30, 36, 37, 38, 39, 40, 43, 47, 55, 57], "n": [3, 5, 24, 28, 35, 36, 37], "event": [3, 14, 55], "strateg": 3, "scheme": 3, "anoth": [3, 5, 7, 8, 16, 17, 21, 22, 29, 35, 36, 42, 45, 50, 55, 56, 57], "entir": [3, 5, 8, 12, 16, 43, 55, 57], "price": [3, 20, 28], "wouldn": [3, 7, 28, 32, 57], "stand": [3, 28, 31, 41, 44, 45, 55], "similarli": [3, 7, 8, 45, 50, 55], "sometim": [3, 5, 7, 11, 25, 36, 41, 44, 47], "rollout": 3, "launch": [3, 31, 48], "titl": [3, 30, 35, 37], "netflix": [3, 4, 6], "premier": 3, "movi": 3, "interfer": 3, "abstract": [3, 26, 27, 28], "talk": [3, 6, 7, 8, 13, 14, 22, 34, 38, 43, 44, 46, 55, 57], "constraint": [3, 21, 25, 34, 35, 36, 37, 38, 44], "horizon": 3, "too": [3, 4, 5, 7, 9, 22, 26, 28, 32, 36, 37, 38, 42, 43, 46, 48, 49, 55, 56, 57], "popular": [3, 21, 35, 40], "quickli": [3, 7, 20, 22, 41, 48, 57], "short": [3, 8, 23, 43, 49, 52], "countri": [3, 12, 28, 31, 43, 45, 50, 55], "put": [3, 8, 14, 22, 23, 24, 26, 27, 36, 39, 44, 47, 48, 55, 57], "pick": [3, 7, 21, 22, 35, 44, 46, 47, 49, 56], "locat": [3, 5, 18, 19, 39, 40, 48, 50], "setup": 3, "shop": [3, 21, 35], "wait": [3, 5, 7, 47], "sale": [3, 8, 13, 23, 36, 39, 40, 43, 45, 57], "sens": [3, 5, 7, 15, 16, 21, 22, 24, 25, 28, 30, 35, 36, 37, 39, 42, 47, 49, 50, 55, 56], "kohavi": [3, 4, 11], "tang": [3, 4, 11], "xu": [3, 4, 11], "overal": [3, 4, 11, 13, 16, 30, 31, 37, 38, 49], "criterion": [3, 11, 49], "oec": [3, 11, 49], "durat": [3, 55], "believ": [3, 7, 24, 43, 49], "drive": [3, 7, 12, 16, 17, 24, 43, 55], "shortest": 3, "meaning": [3, 5, 8, 21, 35, 52], "option": [3, 4, 11, 14, 28, 31, 35, 36, 38], "mani": [3, 7, 11, 12, 13, 19, 21, 22, 23, 24, 25, 28, 29, 31, 35, 36, 38, 40, 41, 42, 43, 44, 47, 50, 52, 55, 56, 57], "face": [3, 5, 7, 10, 17, 31, 41, 43, 48], "social": [3, 7, 22, 28, 31, 33, 38, 40, 41, 43, 45, 49, 50, 55, 56], "media": 3, "harass": 3, "retent": 3, "mind": [3, 5, 7, 14, 21, 27, 29, 30, 35, 37, 40, 41, 43, 44, 52, 57], "2012": [3, 33], "emot": 3, "valenc": 3, "saw": [3, 8, 11, 44, 55], "happi": [3, 8, 28], "sad": 3, "mood": 3, "spill": 3, "over": [3, 5, 6, 7, 8, 13, 16, 20, 22, 23, 24, 28, 30, 33, 36, 37, 38, 39, 40, 43, 44, 46, 49, 50, 55, 56, 57], "network": [3, 17, 30, 37, 49], "toi": 3, "furiou": 3, "everyth": [3, 4, 7, 11, 22, 23, 28, 38, 40, 41, 43, 49, 55, 57], "consum": [3, 8, 16, 20, 27, 28, 41, 43, 47, 50, 57], "mayb": [3, 11, 37, 47, 57], "deliber": [3, 6], "harm": 3, "huge": [3, 5, 22, 28, 41, 43, 50, 55], "experiment": [3, 11, 28, 37], "matter": [3, 5, 8, 21, 22, 35, 39, 41, 47, 49, 56, 57], "issu": [3, 5, 7, 11, 20, 21, 23, 24, 25, 26, 30, 35, 36, 37, 41, 43, 45, 55, 56], "okcupid": 3, "publish": [3, 20, 55], "research": [3, 7, 8, 10, 16, 21, 22, 28, 31, 32, 34, 35, 41, 43, 45, 47, 48, 50, 54, 55, 57], "date": [3, 4, 11, 25, 36, 37, 38, 44, 45], "profil": 3, "honestli": [3, 55], "standard": [3, 5, 9, 11, 12, 13, 15, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 43, 44, 45, 46, 49, 57], "mess": 3, "heart": [3, 14, 43], "care": [3, 7, 8, 11, 21, 27, 29, 30, 34, 35, 37, 38, 43, 45, 47, 49, 50, 55, 56, 57], "improv": [3, 7, 11, 16, 29, 30, 32, 37, 45, 55, 56], "younger": [3, 29], "woker": 3, "offer": [3, 7, 8, 11, 12, 14, 23, 27, 28, 29, 33, 40, 41, 43, 50, 55], "childcar": 3, "subsidi": 3, "workforc": [3, 5, 29], "union": [3, 12], "benefit": [3, 30, 37, 45, 49], "contract": [3, 18], "scale": [3, 15, 28, 30, 37, 43], "larger": [3, 8, 11, 13, 29, 31, 39, 40, 44, 50], "larg": [3, 6, 8, 11, 12, 24, 27, 28, 30, 31, 32, 37, 40, 41, 43, 45, 47, 48], "area": [3, 7, 14, 16, 17, 25, 32, 36, 40, 46, 47, 48, 50, 52, 56], "increasingli": 3, "outsid": [3, 14, 47], "administ": 3, "program": [3, 16, 27, 28, 31, 36, 42, 43, 48, 54, 56], "servic": [3, 11, 16, 18, 25, 36, 38, 43, 50, 56], "pai": [3, 10, 11, 12, 13, 14, 23, 28, 29, 43], "vendor": 3, "base": [3, 6, 7, 11, 15, 20, 21, 22, 25, 28, 35, 36, 37, 38, 41, 43, 49, 50], "input": [3, 7, 16, 22, 33, 38, 55], "hour": [3, 4, 11, 29, 35, 54], "spent": [3, 7, 8, 9, 20, 22, 24, 34], "encourag": [3, 4, 16], "paid": [3, 11, 25, 29, 36], "basi": [3, 5, 7, 13, 16, 25, 36, 55], "incent": 3, "cut": [3, 7, 21, 22, 35, 41], "risk": [3, 7, 8, 16, 17, 30, 37, 50, 53], "arrang": 3, "hospit": [3, 5, 17, 38], "infect": [3, 5, 12, 18, 19], "reduct": [3, 5, 32, 45], "minim": [3, 5, 7, 21, 28, 35, 49, 56], "downtim": 3, "intern": [3, 4, 12, 17, 30, 36, 37, 48, 50, 52, 55], "ty": 3, "compens": [3, 29], "parti": [3, 31, 44], "incentiv": 3, "precis": [3, 7, 11, 13, 18, 25, 36, 37, 40, 43, 57], "effort": [3, 5, 13, 21, 23, 24, 35, 48, 55], "averag": [3, 5, 7, 8, 10, 11, 12, 13, 15, 16, 23, 24, 26, 27, 28, 29, 30, 31, 37, 39, 40, 43, 44, 47, 57], "suit": 3, "circumst": 3, "unfortun": [3, 7, 25, 36], "befor": [3, 4, 5, 7, 8, 11, 13, 14, 22, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 44, 45, 46, 47, 48, 55, 57], "finish": [3, 4, 46], "natur": [3, 5, 31, 43, 48, 50, 56], "season": [3, 23, 49], "expect": [3, 8, 11, 13, 16, 18, 19, 21, 23, 26, 28, 29, 30, 35, 36, 37, 42, 52, 57], "vari": [3, 11, 25, 29, 33, 36, 39, 44, 45, 57], "anyth": [3, 5, 7, 12, 18, 19, 21, 28, 33, 35, 38, 39, 40, 46, 49, 52, 57], "design": [3, 4, 8, 11, 13, 17, 21, 22, 29, 30, 35, 37, 38, 40, 42, 43, 47, 48, 52, 55], "g": [3, 5, 7, 8, 11, 12, 13, 15, 16, 21, 22, 25, 28, 30, 35, 36, 37, 41, 42, 43, 49, 50, 55, 57], "upward": 3, "analyst": [3, 11], "extrem": [3, 7, 26, 28, 37, 39, 40, 41, 45, 47, 55], "friendli": 3, "easier": [3, 7, 13, 21, 23, 35, 36, 52, 56], "duck": 3, "goos": 3, "rel": [3, 5, 25, 28, 30, 34, 36, 37, 45, 47, 55, 57], "difficulti": [3, 30, 37, 42], "task": [3, 11, 18, 19, 22, 25, 36], "length": [3, 20, 22, 33, 38, 45, 52], "extern": [3, 4, 30, 36, 37, 55, 57], "valid": [3, 4, 8, 16, 18, 19, 23, 25, 30, 33, 36, 37, 55, 57], "estim": [3, 5, 7, 8, 10, 13, 16, 21, 22, 23, 24, 26, 27, 28, 35, 36, 38, 39, 40, 43, 44, 45, 47, 50, 55], "wide": [3, 41], "thu": [3, 5, 7, 11, 12, 17, 21, 28, 33, 35, 39, 43, 55, 57], "differenti": [3, 7, 12, 14, 25, 29, 30, 36, 37, 40], "market": [3, 16, 28, 55], "shouldn": [3, 7, 11, 22, 30, 33, 37, 40, 47, 55], "appli": [3, 5, 11, 13, 15, 33, 34, 36, 40, 41, 42, 43, 47, 55], "logic": [3, 12, 30, 37], "almost": [3, 5, 7, 18, 19, 22, 30, 36, 37, 40, 43, 45, 46, 48, 50, 52, 55], "inevit": 3, "interact": [3, 13, 21, 23, 30, 35, 37, 43, 45, 49], "consider": [3, 7, 28, 48, 55], "colleagu": [3, 14], "tuesdai": 4, "thursdai": 4, "25": [4, 22, 23, 28, 33, 35, 36, 37, 43], "2": [4, 8, 26, 33, 38, 45, 47], "40pm": 4, "offic": [4, 13, 26, 31, 33, 38], "nick": [4, 33, 44], "00": [4, 35, 37, 38, 44], "00am": 4, "http": [4, 13, 15, 20, 22, 24, 29, 33, 35, 36, 37, 38, 44], "duke": [4, 5, 14, 16, 22, 26, 30, 31, 37, 42, 43, 50], "zoom": [4, 27], "nickeubank": [4, 13, 15, 20, 22, 24, 29, 35, 36, 37, 38, 44], "gross": 4, "hall": [4, 26], "231": 4, "echo": 4, "fridai": 4, "3pm": 4, "kashaf": 4, "4pm": 4, "pragya": 4, "wednesdai": 4, "topic": [4, 7, 47, 52, 55], "thr": 4, "jan": 4, "overview": [4, 11, 57], "acm": [4, 16], "propos": [4, 11, 13, 17, 34, 48], "tue": 4, "16": [4, 33, 37, 38, 43, 44, 47], "problem": [4, 5, 7, 8, 9, 11, 12, 16, 17, 21, 25, 31, 34, 35, 36, 37, 39, 41, 43, 45, 47, 49, 54, 55, 57], "sign": [4, 7, 35, 43], "submit": [4, 7, 11, 16, 25, 30, 31, 36, 37, 52], "syllabu": 4, "gradescop": 4, "18": [4, 20, 22, 28, 33, 35, 37, 38, 44], "histori": [4, 5, 31, 55], "30": [4, 8, 11, 22, 25, 28, 31, 33, 35, 36, 45], "min": [4, 35, 38], "video": [4, 5, 7, 11, 21, 35, 43, 46], "23": [4, 15, 35, 36, 44], "proscript": [4, 55], "v": [4, 7, 28, 31], "descript": [4, 11, 15, 22, 34, 48], "versu": [4, 16, 22, 34], "prescript": [4, 55], "exploratori": [4, 17, 55], "eda": 4, "write": [4, 9, 16, 28, 31, 33, 36, 41, 42, 44, 48, 52, 56], "notebook": [4, 11, 25, 30, 36, 37], "team": [4, 12, 16, 31, 34, 42, 56], "explor": [4, 5, 9, 11, 16, 47, 50, 55], "feb": [4, 38, 44], "aristotl": 4, "edmondson": 4, "fearless": 4, "organ": [4, 11, 12, 13, 18, 19, 28, 33, 38, 41, 48, 50, 57], "chpt": 4, "canva": 4, "review": [4, 5, 11, 16, 31, 44, 49, 55], "charter": 4, "cognit": 4, "barrier": [4, 31], "p": [4, 6, 11, 23, 28, 30, 36, 37, 38, 44, 49, 51], "82": [4, 33, 35, 37], "chapter": [4, 43], "foster": 4, "psycholog": 4, "safeti": [4, 17], "tip": 4, "ex": 4, "13": [4, 9, 10, 26, 27, 33, 44], "stop": [4, 5, 22, 35, 42, 43, 47, 48, 49], "box": [4, 21, 22, 31, 35, 44, 55], "trust": [4, 9, 11, 21, 35, 40, 44, 57], "contrain": 4, "artifici": [4, 42, 43], "stupid": [4, 48], "explicit": [4, 33, 44], "scientif": [4, 7, 55], "ml": [4, 7, 16, 21, 35], "15": [4, 5, 15, 33, 37, 44, 45, 46], "gam": [4, 21, 35], "silver": 4, "bullet": 4, "tour": [4, 55], "pygam": [4, 21, 35, 53], "20": [4, 21, 22, 23, 28, 33, 35, 36, 37, 38, 44, 46], "22": [4, 23, 31, 35, 36, 37, 38], "27": [4, 35, 36], "cunningham": 4, "pp": 4, "135": [4, 33], "independ": [4, 12, 20, 37, 42, 44, 45, 47, 49], "148": 4, "sdo": 4, "widehat": 4, "ATE": [4, 8, 11, 30, 37], "present": [4, 8, 16, 25, 36, 45, 48, 52, 56, 57], "29": [4, 22, 33, 35, 36, 44], "kohvani": 4, "19": [4, 21, 22, 33, 35, 36, 38], "21": [4, 23, 33, 35, 36], "guardrail": [11, 49], "metric": [11, 36, 43, 49], "threat": [4, 30, 37, 39], "42": [4, 25, 35, 36], "47": [4, 33, 35, 44], "ktx": [], "mar": [4, 37], "54": [4, 35, 38], "kohvai": 4, "primaci": [4, 49], "decai": 4, "39": [22, 33, 35, 36, 37, 38, 44], "unless": [6, 7, 8, 11, 49], "method": [5, 7, 16, 20, 21, 22, 23, 24, 25, 28, 29, 33, 35, 36, 37, 38, 44, 47, 49], "power": [4, 7, 11, 22, 24, 37, 38, 39, 44, 45, 46, 49, 55], "calcul": [4, 5, 11, 13, 15, 22, 23, 25, 29, 30, 36, 37, 38, 40, 43, 44, 45, 46, 49], "12": [4, 26, 27, 28, 33, 38, 44, 47], "NO": [4, 44], "14": [4, 26, 27, 31, 33, 37, 38, 44, 46], "bayesian": [], "ab": [4, 6, 11, 49], "midterm": [4, 57], "26": [4, 33, 35, 36, 37], "28": [4, 33, 35, 36, 37, 47], "fix": [4, 13, 29, 35, 43], "apr": 4, "panel": [4, 24, 38, 39], "angrist": [], "pisck": [], "mm": [], "178": 33, "208": [], "diff": [4, 13, 35], "dont": 4, "enfranchis": 4, "ethic": [4, 7, 28, 49], "mayson": 4, "2281": 4, "extra": [4, 44, 55], "ai": [4, 42], "misalign": 4, "adversari": [4, 7], "fool": [4, 7], "openai": 4, "robograd": 4, "text": [4, 7, 21, 35, 41, 42], "referenc": 4, "trustworthi": 4, "onlin": [4, 11, 23, 30, 37, 50], "guid": [4, 5, 56], "analys": [5, 9, 29, 47, 49, 50, 55, 56, 57], "extract": [5, 37], "pattern": [5, 30, 37, 55], "otherwis": [5, 20, 21, 35, 38, 44, 46, 55], "incomprehensibli": 5, "messi": [5, 29], "reader": [5, 8, 57], "digest": 5, "manner": [5, 12, 13, 25, 36, 41, 52, 55], "intrins": 5, "report": [5, 7, 8, 11, 20, 22, 25, 26, 29, 30, 31, 34, 36, 37, 43, 44, 45, 50, 56], "safe": [5, 21, 25, 30, 35, 36, 37], "discard": 5, "word": [5, 7, 8, 10, 11, 12, 13, 20, 21, 25, 26, 27, 28, 29, 31, 33, 35, 36, 38, 39, 44, 45, 46, 47, 55, 57], "entail": [5, 16, 21, 35, 55], "asid": [5, 45], "origin": [5, 7, 11, 20, 21, 22, 25, 30, 35, 36, 37, 41, 43, 46, 47], "summar": [5, 57], "summari": [5, 9, 21, 22, 35, 37, 38, 41, 44, 54], "plot": [5, 6, 7, 9, 13, 15, 16, 20, 21, 22, 24, 35, 48], "distribut": [5, 7, 13, 21, 22, 23, 35, 38, 45, 46, 47], "sophist": [5, 43, 50, 55], "cluster": [5, 13, 18, 19, 22, 24], "dimension": [5, 46], "therefor": [5, 13], "herein": [5, 45], "li": [5, 42, 45], "hazard": 5, "presum": [5, 11, 28], "irrelev": 5, "incumb": 5, "upon": [5, 52, 55], "highlight": [5, 41], "struggl": [5, 9, 20, 22, 24, 27, 31, 44, 57], "deviat": [5, 9, 15, 22, 23, 28, 39, 46, 57], "unsupervis": [5, 55], "machin": [5, 16, 17, 18, 22, 42, 43, 44, 48, 55], "principl": [5, 29, 38, 40], "compon": [5, 13, 18, 19, 26, 27, 48, 56], "pca": 5, "academ": [5, 30, 31, 37, 38, 43], "peer": [5, 31], "must": [5, 7, 12, 18, 19, 21, 26, 27, 29, 35, 48, 55, 56], "frac": [5, 24, 35], "sigma": 5, "x_i": 5, "central": [5, 14, 31, 55], "tendenc": 5, "paper": [5, 7, 21, 22, 28, 30, 35, 37, 41, 43, 44, 48, 54], "neutral": 5, "pipelin": [5, 16], "deliv": [5, 42], "choic": [5, 11, 22, 24, 28, 35, 44, 47], "taken": [5, 11, 23, 25, 36, 37, 39, 48], "signal": [5, 7], "implicitli": [5, 18, 19, 29], "With": [5, 7, 11, 13, 14, 16, 21, 25, 27, 35, 36, 37, 40, 41, 43, 44, 52, 56, 57], "whenev": [5, 7, 11, 43, 55], "am": [5, 48], "faithfulli": 5, "full": [5, 8, 11, 16, 24, 28, 29, 30, 36, 37, 38, 42, 47, 48, 49, 50, 57], "incomprehens": 5, "raw": [5, 13, 22, 29, 33, 35, 36, 37, 38, 44, 56], "eventu": [5, 11, 13, 31], "essenti": [5, 10, 48], "themselv": [5, 38], "give": [5, 7, 8, 12, 14, 15, 16, 17, 21, 22, 24, 26, 27, 28, 31, 35, 40, 42, 43, 44, 45, 46, 50, 52, 55, 56, 57], "receiv": [5, 7, 8, 11, 12, 28, 30, 31, 37, 43, 56, 57], "professor": [5, 57], "exam": 5, "score": [4, 5, 7, 15, 25, 26, 36, 38, 39, 40, 42, 46], "grade": [5, 7, 11, 25, 30, 36, 37, 38, 52, 55], "85": [5, 33, 35, 37, 44], "sound": [5, 13, 30, 37], "dig": [5, 8, 39, 48], "bimod": 5, "argu": [5, 11, 13, 25, 36, 43, 48, 55, 57], "somewhat": [5, 20, 44, 46], "around": [5, 7, 18, 19, 21, 24, 30, 35, 36, 37, 43, 45, 55, 56], "occur": [5, 11, 12, 16, 25, 28, 31, 33, 36, 55, 56, 57], "teach": [5, 7], "suspect": [5, 20, 38], "fail": [5, 11, 22, 42, 55], "worst": 5, "incom": [5, 7, 8, 21, 25, 28, 29, 35, 36, 38, 39, 40, 42, 45, 48, 50, 55, 57], "rose": 5, "earn": [5, 22, 29, 38, 50], "000": [5, 8, 13, 21, 22, 23, 24, 28, 35, 36, 37, 38, 43, 44, 45], "hear": [5, 7, 40, 47], "x_2": 5, "bin": [5, 55], "y_2": 5, "thousand": 5, "dollar": [5, 8, 23, 27, 28, 29], "yup": [5, 8, 9, 55], "fit": [5, 7, 11, 14, 22, 24, 25, 36, 37, 38, 42, 44, 47, 55], "technic": [5, 25, 36, 38, 40, 45, 47, 52], "accur": [5, 22, 29, 43, 45, 55], "captur": [5, 16, 49], "trend": [5, 13, 57], "ten": 5, "monoton": [5, 7, 16, 21, 34, 35], "protect": [5, 7, 31, 50, 56], "kind": [5, 7, 8, 11, 12, 28, 31, 36, 37, 38, 39, 43, 44, 46, 47, 50], "error": [5, 7, 11, 13, 21, 22, 24, 25, 30, 35, 36, 37, 38, 43, 44, 47, 49], "residu": [5, 11, 30, 37, 38, 44], "histogram": [5, 15], "rule": [5, 11, 31, 44, 49, 55, 56], "thumb": 5, "beyond": [4, 5, 18, 19, 31, 56], "median": [5, 13], "radic": 5, "check": [5, 6, 7, 11, 21, 25, 28, 33, 35, 36], "primari": [5, 28, 31, 38, 55], "stori": [5, 7, 8, 26, 27, 43, 47, 57], "miss": [5, 7, 21, 22, 25, 28, 29, 35, 36, 38], "point": [5, 6, 7, 8, 11, 13, 15, 21, 22, 23, 25, 28, 30, 31, 35, 36, 37, 38, 41, 44, 46, 47, 52, 57], "substant": [5, 7, 21, 35, 41, 42, 44], "behind": [5, 21, 35, 48], "notic": [5, 11, 12, 18, 52, 57], "properti": [5, 25, 33, 36], "haven": [5, 8, 21, 35, 38, 46, 55], "defin": [5, 13, 14, 16, 24, 26, 27, 45], "system": [5, 7, 13, 17, 25, 36, 38, 55], "antibiot": 5, "resist": [5, 41], "brought": [5, 47, 55], "facil": [5, 38], "director": 5, "remov": [5, 7, 25, 26, 35, 36, 39], "fabric": 5, "chair": 5, "disinfect": 5, "prescrib": 5, "impact": [5, 7, 11, 13, 16, 22, 24, 28, 38, 43, 45, 47, 48, 57], "instead": [5, 7, 11, 22, 23, 25, 26, 27, 28, 36, 38, 39, 43, 44, 45, 47, 48, 55], "futur": [5, 31, 35, 37, 55], "respons": [5, 8, 14, 16, 18, 19, 30, 31, 37, 43, 45, 52], "biggest": [5, 13, 41, 45, 46], "contributor": 5, "rais": [5, 22, 33, 52], "livestock": [5, 28], "societi": 5, "subtl": [5, 41, 55], "less": [5, 7, 8, 13, 14, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 40, 41, 43, 44, 45, 46, 47, 57], "maker": [5, 45, 57], "co_2": 5, "emiss": 5, "95": [5, 21, 23, 35, 52], "unemploy": [5, 39, 55], "profit": [5, 23, 31, 42, 56], "million": [5, 22, 23, 28], "tax": [5, 24, 32, 36, 45, 55], "moder": 5, "200": [5, 28, 35], "poverti": [5, 28], "line": [5, 9, 21, 22, 24, 35], "proport": [5, 10, 22, 28], "tend": [5, 7, 10, 12, 13, 17, 21, 22, 23, 30, 35, 37, 38, 39, 40, 45, 55, 56], "feel": [5, 7, 9, 11, 13, 25, 28, 33, 34, 36, 40, 41, 44, 54, 55], "lack": [5, 18, 19, 31, 52], "divers": [5, 31, 41], "men": [5, 7, 10, 29, 30, 37, 43, 44, 45, 55], "misogynist": 5, "life": [5, 7, 18, 19, 21, 35, 36, 45], "influenc": [5, 44, 56], "male": [5, 28, 29, 33, 38, 44], "infam": 5, "thankfulli": [5, 7, 22, 38, 57], "stake": [5, 7, 21, 35, 48], "failur": [5, 42], "watch": [5, 6, 7, 30, 37, 46], "camera": 5, "went": [5, 8, 23, 57], "hp": 5, "did": [5, 11, 13, 18, 21, 23, 25, 28, 33, 34, 35, 36, 42, 47, 49, 52, 55, 57], "ship": [5, 50], "silli": 5, "web": [5, 35], "cam": 5, "forefront": [5, 7], "technolog": 5, "seriou": [5, 17, 36, 43], "mistak": 5, "oh": [5, 8, 36, 50, 55], "googl": [5, 43, 50], "Their": 5, "tag": [5, 24, 33], "dark": 5, "skin": 5, "gorilla": 5, "releas": [5, 22, 32, 45], "reflect": [5, 22, 25, 36, 38, 40, 41, 45, 50, 57], "No": [5, 8, 30, 37, 38, 44, 48, 49, 57], "hei": 5, "roll": [5, 6, 8, 11, 28, 49], "behav": [5, 7], "predominantli": [5, 43], "light": [5, 31, 55], "ye": [5, 8, 21, 35, 36, 37, 47], "sadli": 5, "unfairli": 5, "sent": [5, 30, 37, 43, 57], "jail": [5, 13], "discrimin": [5, 7, 10, 22, 30, 31, 37, 38], "against": [5, 7, 11, 20, 22, 23, 25, 30, 36, 37, 45], "per": [5, 8, 11, 13, 20, 24, 25, 28, 29, 33, 36, 39, 44, 52], "se": [5, 38, 44, 52], "press": [5, 7, 16, 57], "especi": [5, 7, 9, 21, 22, 25, 33, 35, 36, 40, 41, 43, 45, 55, 57], "salienc": 5, "rememb": [5, 7, 8, 11, 25, 26, 27, 30, 36, 37, 43, 44, 45, 49, 55, 56, 57], "odd": [5, 8, 45, 46], "temptat": [6, 41], "known": [6, 7, 11], "boss": [6, 12, 43], "yesterdai": [6, 17], "medic": [6, 7, 14, 27, 30, 37, 43, 45, 50], "trial": [6, 11, 43, 45], "soon": [6, 7, 8, 28, 43, 54], "experienc": [6, 10, 30, 37], "side": [6, 7, 12, 16, 22, 24, 28], "intermedi": 6, "render": 6, "invalid": 6, "basic": [6, 7, 13, 21, 22, 24, 28, 29, 35, 37, 38, 42, 46, 47, 55, 57], "fluctuat": [6, 13], "enough": [6, 8, 11, 14, 22, 23, 32, 41, 43, 47, 49, 52, 55], "probabilist": 6, "outlier": [6, 9], "moment": [6, 21, 29, 30, 35, 37, 41, 45, 55], "ramesh": 6, "johari": 6, "leo": 6, "peke": 6, "david": 6, "walsh": 6, "fake": [6, 31], "condit": [6, 8, 11, 12, 20, 23, 26, 27, 31, 39, 43, 47], "sever": [6, 13, 16, 24, 38, 39, 40, 48, 55, 56], "dai": [4, 6, 7, 11, 25, 26, 28, 31, 34, 35, 36, 43, 45, 49, 52], "chosen": [6, 10, 28, 29, 31], "hit": [6, 22], "deep": [6, 16, 22], "troubl": [6, 47], "fact": [6, 7, 9, 12, 13, 18, 19, 21, 22, 28, 29, 33, 35, 38, 39, 40, 43, 45, 48, 57], "supervis": [7, 48, 55], "discourag": [7, 10], "inde": [7, 9, 21, 28, 35, 40, 41, 44, 55], "cover": [7, 21, 35, 42, 47, 50, 55, 57], "construct": [7, 9, 16, 24, 32], "action": [7, 16, 35, 45, 49, 55], "deploi": 7, "discriminatori": 7, "uncontest": 7, "grip": [7, 11], "approxim": [7, 12, 28, 38], "doubt": 7, "previou": [7, 29, 30, 37], "emul": 7, "process": [7, 11, 18, 22, 41, 43, 46, 48, 52, 54, 55], "attempt": [7, 11, 12, 16, 22, 55], "systemat": [7, 28, 35, 42], "inaccur": [7, 21, 35], "relat": [7, 8, 12, 14, 22, 30, 37, 39, 41, 56, 57], "thoughtfulli": [7, 52], "down": [7, 12, 16, 21, 22, 31, 33, 35, 36, 40, 46, 48, 49, 57], "downstream": 7, "leav": [7, 12, 22], "fight": 7, "own": [7, 11, 12, 21, 25, 35, 36, 41, 42, 48, 54, 55, 56], "flavor": [7, 25, 28, 36], "h": 7, "michael": 7, "akand": 7, "unforeseen": 7, "uneth": [7, 12], "recapitul": [7, 57], "fulli": [7, 13, 21, 35, 41, 43, 45, 49, 55], "underli": [7, 11, 22, 39], "advantag": [7, 16, 22, 37], "intepret": 7, "eleph": 7, "room": 7, "trade": [7, 18, 22, 38, 50, 56], "off": [7, 8, 21, 22, 28, 30, 36, 37, 40, 55, 57], "simplic": [7, 39], "accuraci": [7, 21, 35, 36], "tree": [7, 29], "nice": [7, 15, 22, 44], "compet": 7, "vast": 7, "fanci": [7, 9, 14], "substanti": [7, 14, 15, 27, 40], "applic": [7, 25, 30, 36, 37, 43, 46, 47, 49, 57], "claim": [7, 28, 43], "crack": 7, "formal": [7, 8], "unsolv": 7, "win": 7, "crazi": 7, "complex": [7, 22, 41, 52], "articl": [7, 30, 37, 57], "self": 7, "car": [7, 17, 20, 24, 31, 43, 44, 56], "protein": 7, "fold": [7, 55], "edg": [7, 21, 35], "comput": [7, 11, 21, 22, 24, 26, 30, 35, 37, 38, 41, 44, 50], "vision": 7, "necessari": [7, 16, 21, 27, 28, 35, 43, 46, 55], "folk": [7, 50], "competit": [7, 16, 21, 35, 56], "consult": [7, 12, 16], "necessarili": [7, 10, 41, 50], "career": [7, 52], "bigger": [7, 47], "maxim": [7, 21, 35, 43], "bear": [7, 29, 30, 36, 37, 41, 42, 43, 52, 55, 57], "maintain": [7, 25, 36], "chanc": [7, 11, 28], "direct": [7, 11, 16, 20, 28, 31, 46], "mainten": [7, 36], "weird": [7, 25, 35, 36, 43, 47], "educ": [7, 10, 11, 22, 29, 30, 37, 38, 43, 45, 46, 47, 48, 50], "highli": [7, 16, 47], "imposs": [7, 12], "spit": 7, "nonsens": 7, "danger": [7, 21, 35], "financ": [7, 8], "healthcar": [7, 14, 27, 38], "contain": [7, 21, 24, 25, 35, 36, 38, 56], "virtual": 7, "bomb": [7, 12], "trigger": 7, "relatedli": [7, 43], "difficult": [7, 35, 55], "adopt": [7, 21, 35, 42], "auto": [7, 12], "grader": 7, "certainli": [7, 28, 48], "net": [7, 12, 36], "essai": [7, 55], "free": [7, 8, 11, 12, 23, 26, 50], "teacher": 7, "deepli": 7, "manipulat": 7, "particular": [7, 8, 11, 15, 21, 23, 28, 35, 38, 41, 52, 54, 55, 57], "appear": [7, 11, 22, 41, 45], "mostli": [7, 11, 18, 25, 36, 55, 57], "onc": [7, 22, 28, 29, 30, 32, 33, 37, 54, 55, 56], "quit": [7, 50, 56], "incredibli": [7, 9, 55], "mad": 7, "financi": [7, 8, 16, 34, 50, 55, 57], "game": [7, 45], "engag": [7, 16, 41, 43, 52, 57], "isn": [7, 11, 21, 22, 29, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 56], "hu": 7, "et": [7, 20], "al": [7, 20, 36], "replac": [7, 22, 26, 28, 35, 36], "proprietari": 7, "court": [7, 31], "advis": [7, 12, 31], "judg": 7, "grant": [7, 28, 31], "bail": 7, "share": [7, 11, 15, 16, 21, 22, 25, 28, 30, 35, 36, 37, 43, 45, 50, 56, 57], "juvenil": 7, "arrest": [7, 13], "adult": [7, 30, 37], "assess": [7, 41, 48], "seal": 7, "belief": [7, 33], "childhood": 7, "fate": 7, "transpar": [7, 16, 55], "nlp": 7, "headach": [7, 35, 45], "unusu": [7, 40], "bet": [7, 21, 35], "easili": [7, 9, 31, 37, 44, 45, 50], "analyt": [7, 23], "parametr": 7, "cardiac": 7, "cholesterol": [7, 14, 45], "credit": [7, 11, 16, 25, 32, 36, 53], "worthi": [7, 16], "wish": [7, 25, 28, 32, 36, 41, 44, 54, 56, 57], "ldl": 7, "cholesterdol": 7, "regular": [7, 35, 44, 47, 50, 57], "prevent": [7, 12, 21, 35, 41, 55], "forest": 7, "isoton": 7, "vincent": 7, "warmerdam": 7, "health": [7, 14, 26, 27, 38, 43, 50, 55, 56], "y": [7, 8, 9, 11, 12, 13, 18, 19, 22, 24, 26, 35, 36, 39, 44, 47, 55], "axi": [7, 15, 22, 24, 33], "regressor": 7, "sklearn": [7, 22, 25, 35, 36], "xgboost": 7, "tensor": 7, "flow": 7, "goe": [7, 22, 44, 57], "subpopul": [7, 37, 49], "concern": [7, 8, 11, 12, 25, 36, 43, 50], "dalit": 7, "brahmin": 7, "christian": 7, "muslim": 7, "coupl": [7, 22], "disproportion": [7, 43, 45], "rate": [7, 12, 13, 14, 21, 24, 25, 28, 29, 30, 35, 36, 37, 39, 43, 44, 55], "tail": [7, 11, 28], "co": [7, 36, 39, 43], "enter": [7, 11, 21, 25, 29, 35, 36], "through": [4, 7, 8, 11, 16, 18, 19, 20, 22, 38, 41, 42, 44, 50, 52, 54, 56], "swap": 7, "imput": 7, "factor": [7, 12, 21, 24, 35, 55], "Of": [7, 22, 28, 36, 43, 45, 46, 55], "third": [7, 9, 11, 16, 25, 30, 36, 37, 47, 55], "unbias": [7, 40], "regardless": [7, 44, 47], "religion": 7, "sickl": 7, "cell": [7, 56], "anemia": 7, "symptom": [7, 45], "african": 7, "descent": 7, "allel": 7, "malaria": [7, 12], "pressur": [7, 29], "region": 7, "endem": 7, "carri": [7, 18, 46], "gene": [7, 43], "strong": [7, 41, 42, 47], "At": [7, 8, 11, 21, 22, 25, 35, 36, 38, 42, 46, 48, 55, 57], "recent": [7, 13, 17, 22, 33, 41, 42, 48], "kidnei": 7, "transplant": 7, "correct": [7, 18, 19, 21, 35, 38, 40, 49, 52], "blood": 7, "flag": [7, 11, 25, 36, 57], "prioriti": [7, 16, 31], "unlik": [7, 8, 35, 37, 47, 48, 52], "adjust": [7, 21, 28, 35, 38, 40], "explan": [7, 21, 35, 40], "histor": 7, "succe": 7, "biolog": 7, "until": [7, 9, 11, 20, 22, 24, 46, 47], "rigor": [7, 13, 35, 55, 57], "emphas": [7, 47, 55, 57], "solut": [7, 11, 17, 25, 30, 36, 37, 48], "proxi": 7, "crude": [7, 13], "initi": [7, 21, 22, 25, 27, 28, 31, 35, 36, 43, 44, 48, 55], "screen": 7, "drop": [7, 8, 21, 22, 25, 29, 31, 33, 35, 36, 38, 47], "margin": [7, 41], "weakli": 7, "genet": 7, "ever": [7, 8, 22, 25, 30, 36, 37, 45], "evid": [7, 8, 13, 18, 19, 26, 28, 30, 37, 49, 55, 57], "dynam": [7, 55], "plai": [7, 21, 22, 23, 28, 35, 47, 55, 56], "greater": [7, 11, 23, 25, 28, 30, 36, 37, 55], "knowledg": [7, 21, 32, 35, 52, 55], "remind": 7, "expert": 7, "quantit": [7, 25, 28, 31, 32, 36], "expertis": [7, 16], "terribl": [7, 38], "su": [7, 17], "unus": 7, "imperfect": 7, "dramat": [7, 19, 22, 47], "campaign": 7, "constant": [7, 9, 38], "toward": [7, 21, 35, 55], "hurdl": [7, 56], "Then": [7, 12, 13, 21, 22, 28, 35, 38, 44, 46, 48, 55], "accept": [7, 8, 11, 16, 20, 22, 28, 29], "charg": [7, 11], "lawsuit": 7, "pr": [7, 36], "disast": [7, 36, 50], "optim": [7, 16, 21, 35, 56], "spars": [7, 36], "scalabl": 7, "fall": [7, 13, 17, 22, 23, 25, 36, 45, 47], "triag": [7, 27], "notori": 7, "concept": [7, 11, 28, 41, 42, 52, 57], "whiten": 7, "hybrid": 7, "portion": [7, 11, 29], "flexibl": [7, 13, 21, 35], "machineri": [7, 24], "lattic": 7, "counterfactu": [7, 55], "visual": [7, 21, 35, 42], "dtreeviz": 7, "lda": 7, "detail": [8, 16, 21, 22, 28, 29, 31, 35, 40, 44, 46, 50, 55, 56, 57], "deriv": [8, 13, 17, 26, 27, 45], "mathemat": [8, 20, 38, 39, 40, 41, 52], "advertis": [8, 43], "discount": [8, 38], "amount": [8, 13, 16, 25, 36, 39, 43, 44, 45, 55, 57], "treat": [8, 11, 13, 22, 23, 25, 28, 29, 30, 33, 36, 37, 38, 40, 45, 46, 47, 55], "untreat": [8, 22, 28, 46, 47], "seen": [8, 15, 21, 30, 33, 35, 37, 43, 54, 55], "y_0": [8, 22, 39], "y_1": [8, 22], "met": [8, 26, 27, 42, 43], "sell": [8, 13, 14, 28, 43, 45, 57], "sunglass": 8, "pawda": 8, "sourc": [8, 11, 18, 19, 28, 39, 47, 48, 56], "promot": [8, 14, 28, 47], "coupon": [8, 47, 57], "york": [8, 39, 43], "ny": [8, 36, 39], "came": [8, 20, 28, 43, 47], "revenu": [8, 40, 56], "instagram": 8, "nytim": 8, "elsewher": 8, "tempt": 8, "vacuous": 8, "willing": [8, 29, 46], "higher": [8, 10, 14, 22, 23, 26, 30, 37, 48, 49], "bar": [8, 13], "affirm": [8, 26], "wealthier": [8, 43], "relativelei": 8, "dispos": 8, "split": [8, 13, 16, 21, 25, 35, 36, 45], "weren": [8, 28, 43, 47], "height": [8, 26], "cm": 8, "happier": 8, "absent": [8, 29, 55], "balanc": [8, 11, 22, 25, 36, 47, 49, 57], "size": [8, 16, 21, 22, 28, 31, 35, 37, 38, 40, 45, 49], "lln": 8, "kick": [8, 14], "kinda": [8, 35, 45], "att": 8, "yai": 8, "platform": [8, 45], "exist": [8, 28, 31, 40, 43, 48, 50, 55, 56], "everywher": [8, 43, 50], "convinc": [8, 18, 19, 28, 57], "ourselv": [8, 22], "increas": [8, 11, 12, 16, 22, 23, 26, 28, 38, 43, 44, 45, 55], "relativlei": 8, "understim": 8, "BUT": [8, 57], "obsess": 8, "plausibl": 8, "dunno": 8, "dozen": [8, 9, 46, 55], "far": [8, 13, 21, 22, 30, 35, 37, 43, 45, 47, 50], "perfect": [8, 21, 22, 25, 29, 35, 36, 43], "absolut": [8, 12, 21, 30, 35, 37, 39, 54, 56, 57], "further": [8, 23, 31], "investig": [8, 16, 48], "advic": [8, 23, 27, 41], "strongli": 8, "friend": [8, 45], "flip": 8, "flop": 8, "sandal": 8, "cat": [8, 35, 38], "meow": 8, "dal": 8, "referr": 8, "none": [8, 28, 35], "forward": [8, 25, 36, 46, 47, 48, 54, 55], "welcom": [8, 11, 16], "certainti": 8, "hopefulli": [8, 10, 18, 22, 37, 44, 55, 57], "polic": [9, 43, 56], "expenditur": [9, 28], "massachusett": [9, 15, 30, 37], "lead": [9, 12, 16, 17, 20, 21, 22, 26, 31, 32, 35, 43, 57], "loop": [9, 15, 28, 46], "policeexpenditur": [9, 15], "crimeindex": [9, 15], "separ": [9, 15, 20, 39, 41, 45], "remark": [9, 30, 37, 43, 55], "cute": 9, "anscomb": 9, "quartet": 9, "four": [9, 11, 13, 16, 25, 30, 36, 37, 56], "bi": [9, 16], "varianc": [9, 22, 40], "fourth": [9, 16], "betrai": 9, "explanatori": [9, 40, 47], "forev": [9, 35], "rich": [9, 28, 43, 50, 52], "link": [9, 20, 21, 22, 23, 24, 29, 35, 38, 46, 50], "cheat": [9, 20, 22, 24], "preced": [10, 13, 21, 25, 35, 36], "establish": [10, 11, 28, 43], "gap": [10, 29, 33, 42], "sort": [10, 11, 25, 36, 38, 43, 47, 48, 56], "femal": [10, 22, 28, 29, 30, 37, 38, 44], "field": [10, 22, 23, 31, 41, 42], "remain": [10, 13, 22, 25, 28, 36, 48], "stem": 10, "decompos": 10, "man": [10, 29], "inequ": 10, "onboard": 11, "app": [11, 28, 35, 43, 45], "apach": 11, "licens": 11, "writeup": 11, "fair": [11, 21, 35], "materi": [11, 38, 41, 42, 47, 52, 55], "click": [11, 23, 28], "card": [11, 21, 35], "enrol": [11, 21, 27, 28, 35, 42, 43], "automat": [11, 21, 35, 38, 44], "cancel": [11, 36], "quizz": 11, "coach": 11, "support": [11, 12, 16, 18, 19, 28, 31, 38, 46], "verifi": [11, 28], "certif": [11, 30, 32, 37], "feedback": [11, 16, 56], "devot": 11, "checkout": 11, "fewer": [11, 12, 25, 30, 36, 37, 38, 45, 46, 55], "messag": 11, "continu": [11, 21, 22, 25, 28, 35, 36, 39, 43, 44], "screenshot": 11, "hope": [11, 14, 15, 23, 25, 28, 31, 36, 42, 45, 48, 52, 55], "upfront": 11, "frustrat": [11, 41], "left": [11, 30, 33, 37, 39, 46, 47], "significantli": [11, 28, 37, 41], "held": [11, 29], "capac": 11, "www": [13, 20, 23, 24], "github": [11, 13, 15, 20, 22, 24, 29, 30, 33, 35, 36, 37, 38, 42], "mids_data": [13, 15, 20, 22, 24, 29, 33, 35, 36, 37, 38], "udacity_ab_test": [], "folder": [25, 29, 35, 36, 37], "visitor": 11, "roughli": [11, 16, 20, 37], "row": [11, 13, 24, 33, 35, 38, 50], "easiest": [11, 38, 55], "stack": 11, "pageview": 11, "uniqu": [11, 21, 22, 25, 33, 35, 36], "homepag": 11, "payment": [11, 25, 36], "Or": [11, 25, 30, 36, 37, 38, 43], "m": [11, 15, 25, 35, 36, 38, 45, 47, 50], "phrase": 11, "terminologi": 11, "encount": [11, 41, 55], "unintend": 11, "consequ": [11, 12, 26, 28, 45, 55], "correctli": [11, 30, 37, 38, 43, 44, 49, 57], "deem": 11, "half": [11, 13, 21, 28, 30, 35, 37, 47, 48, 57], "shown": [11, 42], "invari": [11, 13], "affect": [11, 24, 31, 38, 39, 40, 44, 48], "pre": [11, 13, 22, 36, 43, 46, 56], "analog": [11, 38], "previous": [11, 13, 22, 41, 44, 48, 55], "qualiti": [11, 12, 22, 50], "tricki": 11, "divid": [11, 16, 28, 29, 40, 46], "emerg": [11, 17], "ttest": 11, "scipi": [11, 37], "pass": [11, 13, 21, 25, 28, 35, 36, 38], "numpi": [11, 24, 35, 36, 37], "vector": [11, 22, 36, 38], "oper": [11, 12, 16, 21, 25, 35, 36, 37], "df": [11, 22, 33, 37, 38, 44], "my_column": 11, "93": [33, 35], "consist": [11, 25, 36, 55], "magic": [11, 39, 45, 48, 55], "bivari": 11, "close": [11, 22, 29, 31, 47], "float": [11, 36, 37, 38], "decreas": [11, 12, 13, 19, 23], "covari": [22, 24, 30, 37, 38, 40, 44, 49], "perfectli": [11, 44], "mondai": [], "adapt": [12, 22, 47, 49], "permiss": [12, 23], "adrian": 12, "fresh": 12, "caus": [11, 12, 19, 25, 28, 32, 35, 36, 39, 41, 43, 48, 49, 55], "statement": [12, 15, 17, 33, 35, 55], "underlin": 12, "embed": 12, "gold": [12, 21, 35], "typic": [12, 16], "law": [12, 13, 16, 30, 37, 55], "cool": [12, 17, 45, 46], "absenc": 12, "arisen": [12, 28], "instruct": [12, 18, 19], "c": [12, 20, 22, 24, 35, 36, 37, 38, 44, 47], "infeas": 12, "briefli": 12, "nato": 12, "militari": 12, "command": [12, 28, 33], "defeat": 12, "insurg": 12, "afghanistan": 12, "kill": [12, 56], "villag": [12, 28, 45], "upset": 12, "civilian": [12, 38], "hous": 12, "member": [12, 14, 16, 28, 40, 46], "afghani": 12, "coalit": [12, 31], "forc": [12, 41], "war": [12, 13, 55], "break": [12, 22, 23, 40, 48], "hypothet": [12, 14], "farfetch": 12, "wildli": 12, "baselin": [11, 12, 14, 16, 22, 26, 27, 28, 30, 37, 39, 47, 57], "milit": 12, "insan": [12, 50], "unanswer": 12, "jason": 12, "lyall": 12, "insur": [12, 25, 27, 36, 43], "bought": [12, 48], "devic": 12, "alert": 12, "driver": [12, 17, 56], "unsaf": 12, "accid": [12, 14, 24, 56], "wonder": [12, 22], "britain": 12, "vote": [12, 44, 55], "european": [12, 43], "uk": 12, "brexit": 12, "immigr": 12, "attitud": 12, "proxim": 12, "favor": 12, "eu": 12, "2016": [12, 13, 33], "aid": [12, 21, 24, 30, 35, 37, 48, 52, 56, 57], "priorit": [12, 22], "bed": 12, "famili": [12, 25, 28, 36], "rural": [12, 43, 45, 48], "kenya": 12, "drug": [13, 33, 43, 45, 55, 56], "dealer": 13, "decad": [13, 22, 50, 55], "california": [13, 33], "lessen": 13, "penal": [13, 21, 35], "possess": 13, "arguabl": [13, 35], "2010": [13, 21, 28, 33, 35], "penalti": [13, 21, 25, 30, 35, 36, 37], "crimin": 13, "civil": 13, "guilti": 13, "produc": 13, "quantiti": [13, 26, 27, 28, 37, 44], "illeg": 13, "recreat": 13, "regulatori": [13, 16, 21, 35], "propon": 13, "contribut": [13, 22, 31, 47, 55], "violenc": 13, "gang": 13, "battl": 13, "territori": 13, "accord": [13, 31, 52], "argument": [13, 22, 25, 28, 33, 36, 47, 55], "simpli": [13, 28, 42, 55], "semest": [13, 56], "com": [13, 15, 20, 22, 23, 24, 29, 35, 36, 37, 38, 44], "uds_arrest_data": [13, 33], "csv": [13, 15, 24, 33, 44], "attornei": [13, 33], "offens": 13, "f_drugoff": [13, 33], "feloni": 13, "total_popul": [13, 33], "total": [11, 13, 22, 24, 25, 28, 30, 33, 36, 37, 44, 52], "began": [13, 28, 43, 55], "liber": 13, "2007": [13, 25, 28, 33, 36, 47], "2009": [13, 21, 25, 33, 35, 36], "violent_r": 13, "among": [13, 16, 28, 29, 30, 32, 37, 38, 40, 41, 43, 44, 45, 48], "2008": [13, 25, 33, 36], "special": [13, 21, 35, 38, 43, 50, 55], "y_": [13, 27], "avg": [13, 38], "hat": 13, "delta": 13, "_": [13, 24, 36], "took": [13, 31, 55], "ignor": [11, 13, 21, 29, 35, 37, 38], "middl": [13, 39, 44, 47, 55], "decrimin": 13, "parallel": [13, 57], "2000": [13, 33, 36, 43], "inclus": [13, 22], "geometr": 13, "confid": [13, 21, 23, 28, 35, 36, 37, 38, 43, 44, 47, 57], "panelol": [13, 24, 38], "lfe": [13, 24], "r": [13, 21, 24, 35, 36, 37, 38, 42, 44], "client": [14, 16], "offset": 14, "worthwhil": [14, 55], "durham": [14, 55], "nc": [14, 36], "index": [14, 15, 22, 26, 33, 36, 38], "rest": [14, 43, 47, 55, 56], "consumpt": [14, 20, 24, 27, 28, 32], "healthier": 14, "rental": 14, "renter": 14, "deduct": 14, "fee": 14, "pocket": 14, "lose": [14, 29, 38, 47, 57], "hassl": 14, "fleet": 14, "agreement": [14, 21, 35], "tesla": 14, "dealership": 14, "hillsboro": 14, "town": 14, "heard": 14, "center": [14, 42, 48], "examin": [15, 22, 33, 55], "blob": [15, 22, 37, 38], "descriptive_exercis": 15, "crime_expend_ma": 15, "monthli": [15, 25, 28, 36], "budget": [15, 28], "late": [15, 25, 36, 43], "2001": [15, 30, 33, 37], "county_cod": 15, "print": [15, 23, 35, 36, 37], "output": [15, 16, 24, 38, 44], "gonna": [15, 28, 35, 57], "75": [15, 33, 35, 36], "83": [15, 33, 35, 37], "62": [15, 35, 37], "55": [15, 35], "88": [15, 33, 35], "format": [15, 50], "guess": [15, 20, 23, 43, 48, 55], "knew": [15, 57], "till": [15, 36, 38, 46], "scatter": [15, 20, 24], "advisori": 16, "firm": [16, 25, 36, 44, 50], "compliant": 16, "authent": 16, "capston": [16, 31, 34], "undertaken": [16, 31], "corpor": [16, 31], "intersect": 16, "top": [16, 48, 57], "bank": 16, "fintech": 16, "lend": 16, "core": [16, 17, 31, 47, 48, 55], "capabl": 16, "lender": 16, "led": [16, 31], "reli": 16, "challeng": [16, 42, 43], "tradit": [16, 31], "partial": [16, 21, 22, 35], "shaplei": 16, "regul": [16, 55], "delinqu": 16, "loan": [16, 25, 34, 36, 50], "burden": 16, "champion": 16, "gradient": [16, 21, 35], "boost": [16, 21, 35], "gbm": [16, 34], "viabil": 16, "ebm": [16, 21, 34, 35], "publicli": [16, 48, 50], "complianc": [16, 43, 49], "overlai": 16, "enforc": 16, "kdd": 16, "cup": 16, "191k": 16, "481": 16, "mail": [16, 43], "creation": [16, 21, 31, 35], "weekli": [16, 29, 38, 39], "stretch": 16, "methodologi": 16, "advers": 16, "satisfi": [16, 45], "contact": [16, 28], "redact": 16, "outlin": [16, 57], "undertak": [16, 49, 55, 57], "deliver": [16, 31], "uglier": 17, "realist": 17, "motor": [17, 48], "conglomer": 17, "america": [17, 48], "manufactur": [17, 20], "announc": [17, 50, 57], "enhanc": 17, "brake": 17, "lane": 17, "departur": 17, "warn": [17, 21, 35, 36, 37, 38, 44, 54], "keep": [17, 21, 22, 25, 34, 35, 36, 41, 43, 46, 47, 52, 55, 57], "drowsi": 17, "ey": [17, 33], "squirt": 17, "water": [17, 18, 19], "wake": 17, "fortun": 17, "weaker": 17, "prone": 17, "injuri": 17, "activ": [17, 26, 50, 52, 54, 55], "tracker": 17, "sheet": 18, "aloud": [18, 19], "devis": [18, 19], "waterborn": [18, 19], "pathogen": [18, 19], "technologi": [18, 19], "falsifi": [18, 19], "inconsist": [18, 19, 44], "germ": [18, 19], "spread": [18, 19], "worksheet": [18, 19], "walk": [18, 19], "john": [18, 19, 55], "snow": [18, 19], "london": [18, 19], "diseas": [18, 19, 45], "miasma": 18, "lesson": [18, 22, 46], "1854": [18, 19, 44], "street": [18, 19, 57], "pump": [18, 19], "neighborhood": [18, 19, 43, 50, 55], "soho": [18, 19], "suppli": [18, 19], "drink": [18, 19, 26], "cook": [18, 19], "household": [18, 19, 28, 38, 45], "chore": [18, 19], "indoor": [18, 19], "plumb": [18, 19], "unheard": [18, 19], "meant": [11, 18, 19, 50, 55], "obtain": [18, 19, 48], "corner": [18, 19], "throughout": [18, 19, 25, 36, 39, 55], "citi": [18, 19, 25, 36, 38, 39, 40, 55, 56], "despit": [18, 43, 55], "worker": [18, 29], "breweri": 18, "outbreak": 18, "food": [18, 28], "bakeri": 18, "exhibit": 18, "involv": [18, 56, 57], "retail": [18, 38], "drank": [18, 26], "beer": [18, 24], "hydrat": 18, "brew": 18, "boil": 18, "famous": [18, 55], "map": [18, 35, 41], "counter": [18, 29, 41, 55], "factual": [18, 29, 55], "Will": [18, 19], "space": [18, 19, 20, 21, 31, 35, 38, 46, 50, 56], "incorrect": [18, 19, 21, 35], "brewer": 18, "theoriz": 19, "contamin": 19, "author": 19, "dismantl": 19, "handl": [19, 33, 36], "septemb": 19, "subsequ": [19, 22, 25, 33, 36, 41, 56], "7th": 19, "canon": [20, 36], "mileag": 20, "74": [20, 33, 35, 36], "automobil": 20, "april": 20, "1979": 20, "epa": 20, "fuel": 20, "compil": [20, 50, 55], "chamber": 20, "1983": [20, 33], "automobile_dataset": 20, "file": [11, 20, 25, 29, 30, 33, 36, 37, 44, 50], "internet": 20, "codebook": 20, "mpg": 20, "rep78": 20, "repair": 20, "1978": 20, "headroom": 20, "trunk": 20, "cu": 20, "ft": 20, "lb": 20, "circl": [20, 57], "displac": 20, "gear_ratio": 20, "gear": 20, "ratio": [11, 20, 25, 28, 36, 49], "foreign": 20, "guzzler": 20, "mile": 20, "gallon": 20, "ga": [20, 36], "guzzl": 20, "marker": 20, "red": [20, 47], "green": 20, "confirm": [20, 28, 44], "q3": 20, "poorli": [20, 35, 43, 48, 50], "poor": [20, 28, 40, 43], "respect": [20, 21, 35, 37, 43, 44, 49], "abroad": 20, "grandma": 20, "domest": 20, "main": [20, 24, 47, 57], "layman": 20, "cynthia": [21, 35], "rudin": [21, 35], "commentari": [21, 35], "arxiv": [21, 35], "plethora": [21, 35], "alter": [21, 35], "appeal": [21, 35], "inher": [21, 35], "flaw": [21, 35, 55], "favorit": [21, 35], "passag": [21, 35, 41], "her": [21, 35], "faith": [21, 35], "cannot": [21, 22, 35, 43, 44, 55], "fidel": [21, 35], "equal": [21, 25, 28, 35, 36, 44], "represent": [21, 35], "extens": [21, 35], "tenth": [21, 35], "14th": [21, 35], "pacif": [21, 35, 43], "asia": [21, 35, 48], "discoveri": [21, 35, 55], "mine": [21, 35], "confer": [21, 31, 35], "pakdd": [21, 35], "2006": [21, 25, 33, 35, 36], "privat": [21, 35], "brazilian": [21, 35], "partner": [21, 35, 56], "timi": [21, 35], "pure": [21, 35], "coincid": [21, 35], "dissert": [21, 35], "confus": [21, 25, 35, 36, 44, 52, 55], "glm": [21, 35], "mvgam": [21, 35], "pioneer": [21, 28, 35], "statsmodel": [21, 22, 28, 30, 35, 37, 38, 44], "hide": [21, 35, 45], "plain": [21, 26, 27, 35, 43], "sight": [21, 35], "meta": [21, 35], "prophet": [21, 35], "seri": [21, 33, 35], "forecast": [21, 35], "librari": [21, 22, 25, 30, 35, 36, 37, 38, 44], "padd": [21, 35], "repositori": [21, 35, 50], "pakdd2010_variableslist": [21, 35], "xl": [21, 35], "pakdd2010_modeling_data": [21, 35], "txt": [21, 25, 29, 35, 36], "string": [21, 22, 25, 30, 35, 36, 37, 38], "load": [11, 21, 22, 23, 24, 25, 28, 30, 35, 36, 37, 38, 44, 56], "latin": [21, 33, 35, 48], "latin8": [21, 35], "prior": [21, 28, 35, 42], "utf": [21, 35], "hint": [21, 22, 24, 25, 33, 35, 36], "strictli": [21, 35, 52], "stage": [21, 35], "missing": [21, 35], "quant_depend": [21, 35], "quant_car": [21, 35], "months_in_resid": [21, 35], "personal_monthly_incom": [21, 35], "quant_banking_account": [21, 35], "marital_statu": [21, 35], "occupation_typ": [21, 35], "residence_typ": [21, 35], "residencial_st": [21, 35], "residencial_c": [21, 35], "residencial_borough": [21, 35], "residencial_zip_3": [21, 35], "banana": [21, 35], "log": [21, 30, 35, 37, 38, 44, 47], "geograph": [21, 31, 35, 50], "segreg": [21, 35], "resid": [21, 28, 35, 55], "resolv": [21, 35], "residencial_": [21, 35], "train_test_split": [21, 25, 35, 36], "80": [21, 28, 33, 35], "target_label_bad": [21, 35], "classif": [21, 25, 35, 36], "gridsearch": [21, 35], "spline": [21, 35], "slow": [21, 35, 38], "50": [21, 27, 28, 33, 35, 36, 38, 44, 45], "residencial_zip": [21, 35], "minut": [21, 35, 46], "configur": [21, 35], "naiv": [21, 35], "matrix": [21, 24, 25, 35, 36, 37, 38, 40], "extend": [21, 35, 39], "default": [11, 21, 22, 25, 33, 34, 35, 36], "omiss": [21, 25, 35, 36], "predict_proba": [21, 25, 35, 36], "shift": [21, 35], "emphasi": [21, 35], "threshold": [21, 22, 23, 25, 28, 35, 36, 46], "toler": [21, 35], "interv": [21, 23, 28, 35, 44], "partial_depend": [21, 35], "pdep": [21, 35], "confi": [21, 35], "xx": [21, 35], "width": [21, 35], "valueerror": [21, 22, 35, 38], "recod": [21, 35], "refit": [21, 35], "impos": [21, 34, 35, 56], "concav": [21, 35], "convex": [21, 35], "overfit": [11, 21, 35], "smooth": [21, 35, 44], "paramet": [21, 28, 30, 35, 37, 38], "lambda": [21, 33, 35], "push": [21, 28, 35, 45], "smoother": [21, 35, 44], "grid": [21, 35], "doc": [21, 28, 35], "explainableboostingclassifi": [21, 35], "classmat": [21, 35], "prefer": [21, 22, 30, 35, 37, 40, 42, 55, 57], "glassbox": [21, 35], "x_train": [21, 35, 36], "y_train": [21, 35, 36], "catch_warn": [21, 35], "simplefilt": [21, 35], "ebm_glob": [21, 35], "explain_glob": [21, 35], "ebm_loc": [21, 35], "explain_loc": [21, 35], "matchit": 22, "rpy2": 22, "statistician": [22, 40], "awar": [22, 28, 45, 55, 56], "matur": [22, 36], "purpos": [22, 36, 38, 40, 55], "techniqu": [22, 42], "frontier": 22, "hyper": 22, "pip": [22, 38], "conda": [22, 38], "exact": [22, 37, 43], "pair": [22, 33, 46, 47, 56], "repeat": [22, 28], "trick": [22, 35], "massiv": [22, 43, 55], "computation": [22, 24], "amaz": [22, 30, 37, 50, 55], "month": [22, 25, 27, 28, 35, 36, 43, 45], "cp": [22, 29, 36, 38], "current_population_survei": [22, 29, 38], "cps_for_match": 22, "content": [22, 42], "overlap": [22, 46, 47], "unsur": [11, 22], "imbal": [22, 30, 37, 46], "annual_earn": [22, 38], "has_colleg": 22, "plotnin": [22, 44], "geom_smooth": [22, 44], "lowess": [22, 44], "altair": 22, "transform_loess": 22, "tutori": [22, 44], "speak": [22, 41], "discret": [22, 44, 48], "employ": [22, 29, 30, 37], "merg": [22, 25, 33, 36, 50], "covert": 22, "convert": [22, 25, 28, 36, 38, 44], "class94": 22, "interg": 22, "belong": [22, 29, 38, 39, 44, 55], "passion": 22, "var": [4, 22, 35, 36, 37], "pull": [22, 38], "integ": [22, 44], "reset": 22, "dame_flam": 22, "syntax": [22, 44], "my_data": 22, "verbos": [22, 35], "want_p": 22, "treatment_column_nam": 22, "outcome_column_nam": 22, "printout": 22, "iter": 22, "unmatch": 22, "empti": 22, "hasn": [22, 55], "370": [22, 44], "644": 22, "1150": 22, "3187": 22, "4365": 22, "1684": 22, "1199312680": 22, "0957854": 22, "684": 22, "subset": [22, 25, 29, 36], "secret": 22, "sauc": 22, "ridg": 22, "elimin": [22, 47], "626": 22, "494": 22, "180": [22, 36], "3626": 22, "5310": 22, "frozenset": 22, "1199421883": 22, "1095908": 22, "recal": [11, 22, 23, 30, 37, 43], "becom": [22, 28, 36, 39, 43, 44, 55], "manual": 22, "early_stop_iter": 22, "evolv": [22, 55], "pe_each_it": 22, "pe": [22, 35], "falloff": 22, "complaint": 22, "entri": [22, 33, 38], "simplified_rac": 22, "discretized_ag": 22, "24": [22, 25, 28, 33, 35, 36, 37, 47], "copi": [22, 35, 36, 38], "def": [22, 35], "get_datafram": 22, "result_of_fit": 22, "input_data": 22, "loc": [22, 35, 37], "is_uniqu": [22, 36], "match_group": 22, "np": [22, 25, 28, 35, 36, 37], "nan": [22, 25, 33, 35, 36, 38], "match_group_s": 22, "idx": 22, "enumer": [22, 35], "units_per_group": 22, "len": [22, 35, 36], "t_in_group": 22, "groupbi": [22, 36], "transform": [22, 35, 36], "sum": [22, 33, 36], "treament": 22, "num": [22, 28, 35, 36], "control_weight": 22, "num_control_ob": 22, "drop_dupl": [22, 36], "renorm": 22, "assert": [11, 22, 25, 30, 33, 35, 36, 37, 55], "notnul": [22, 36, 38], "return": [22, 32, 33, 35, 42, 43, 55], "wl": 22, "matched_data": 22, "smf": [22, 37, 38, 44], "educt": 22, "ba": [22, 29], "tast": 22, "permut": 22, "closest": 22, "multipl": [22, 24, 25, 36, 39, 42, 43, 56], "twice": [22, 28, 30, 37, 39], "malt": 22, "mahalanobi": [22, 46], "distanc": [22, 31, 46], "ulik": 22, "clever": 22, "arbitrari": 22, "explod": [22, 55], "aeml": 22, "planner": [23, 28], "georgi": 23, "georgiev": [4, 23], "hi": [23, 36, 47, 55], "toolkit": 23, "processor": 23, "latenc": 23, "delai": 23, "chip": 23, "justifi": 23, "05": [23, 28, 35, 37, 44], "millisecond": 23, "smaller": [23, 28, 30, 37, 38, 40, 46, 47, 48], "god": 23, "forbid": 23, "500": [23, 35], "costli": [11, 23, 49], "revers": 23, "labor": [23, 28], "50m": 23, "15m": 23, "wanna": [23, 44], "sequenti": 23, "agil": 23, "valuabl": [23, 47], "5m": 23, "hover": 23, "interpet": 23, "99": [23, 35, 36, 38, 45], "densiti": 23, "lift": 23, "f": [23, 35, 36, 37, 38, 44], "alcohol": [24, 56], "fatal": [24, 55, 56], "336": 24, "34": [24, 35, 36, 37, 44], "beertax": 24, "drunk": 24, "intuit": [24, 40, 41], "us_driving_fat": 24, "frame": 24, "fat_rat": 24, "pop": [24, 29, 44], "python": [24, 40, 42, 56], "navig": 24, "ol": [24, 37, 38, 44], "align": 24, "fatalityrate_i": 24, "beta_0": [24, 44], "beta_1": [24, 44, 47], "beertax_i": 24, "notat": [24, 41, 44], "whei": 24, "fatalityrate_": 24, "alpha": [24, 28, 47, 49], "beta": [24, 49], "beertax_": 24, "psi": 24, "z_i": 24, "epsilon_": 24, "sum_": 24, "overlin": 24, "fatalityr": 24, "_i": 24, "epsilon": [24, 44, 47], "substract": 24, "equat": [24, 44, 55], "yield": 24, "overset": 24, "sim": [24, 38], "x_": 24, "intercept": [24, 35, 36, 37, 38, 40, 44], "from_formula": [24, 38], "arrai": [24, 28, 33, 36, 37, 38], "phenomenon": [24, 55], "state_i": 24, "year_t": 24, "homeown": [25, 36], "newli": [25, 36], "home": [25, 36, 43], "freddi": [25, 36], "mac": [25, 36], "calendar": [25, 36], "dictionari": [11, 25, 30, 36, 37], "exercise_passive_predict": [25, 36], "ipynb": [11, 25, 30, 36, 37], "upload": [11, 25, 30, 36, 37], "ex2_merge_typ": [25, 36], "ex4_num_mortgag": [25, 36], "ex5_num_ob": [25, 36], "ex7_num_mortgag": [25, 36], "ex7_share_delinqu": [25, 36], "ex10_num_ob": [11, 25, 36], "ex12_roc_auc": [25, 36], "ex14_false_omission_r": [25, 36], "ex16_num_ob": [25, 36], "ex16_share_delinqu": [25, 36], "ex17_false_omission_r": [25, 36], "clariti": [11, 25, 30, 36, 37], "supplement": [25, 36], "scope": [25, 36], "sample_orig_2004": [25, 36], "2004": [25, 33, 36], "sample_svcg_2004orig_3year": [25, 36], "2005": [25, 33, 36], "url": [25, 30, 36, 37], "AND": [25, 36, 43], "Be": [25, 36], "keyword": [25, 33, 36, 38], "inner": [25, 36], "join": [25, 36], "quarter": [25, 36], "vanilla": [25, 36], "sequenc": [25, 36, 48, 55], "behalf": [25, 36], "element": [25, 26, 27, 36, 37], "cycl": [25, 28, 36], "perceiv": [25, 30, 36, 37], "anomali": [25, 36], "mismatch": [25, 36, 49], "investor": [25, 36], "commonli": [25, 36, 38, 46], "section": [25, 36, 55, 57], "cleanli": [25, 36], "correspond": [25, 26, 27, 30, 36, 37], "borrow": [25, 36, 55], "instal": [25, 36, 38], "ddlpi": [25, 36], "banker": [25, 36], "mba": [25, 36], "acquir": [25, 36], "reo": [25, 36], "59": [25, 33, 35, 36], "60": [25, 35, 36, 44], "89dai": [25, 36], "119dai": [25, 36], "ra": [25, 36], "acquisit": [25, 36], "issuanc": [25, 36], "tidi": [25, 36], "holder": [25, 31, 36, 48], "metropolitan": [25, 36], "msa": [25, 36], "divis": [25, 36], "deploy": [25, 36], "homebuy": [25, 36], "percentag": [11, 25, 28, 29, 30, 36, 37, 44], "mi": [25, 35, 36, 38, 43, 48], "occup": [25, 36, 38], "debt": [25, 36], "dti": [25, 36], "upb": [25, 36], "ltv": [25, 36], "channel": [25, 36], "prepay": [25, 36], "ppm": [25, 36], "amort": [25, 36], "formerli": [25, 36], "o": [25, 36], "distinct": [25, 36, 47, 55], "hot": [25, 36, 44], "seed": [25, 36, 50], "fan": [25, 36], "patsi": [25, 36], "dmatric": [25, 36], "binari": [25, 28, 36, 44], "number_of_borrow": [25, 36], "number_of_unit": [25, 36], "model_select": [25, 35, 36], "test_siz": [25, 35, 36], "random_st": [25, 35, 36], "gradientboostingclassifi": [25, 36], "ensembl": [25, 36], "roc_auc_scor": [25, 36], "roc": [25, 36], "auc": [25, 36, 42], "round": [11, 25, 30, 36, 37], "decim": [11, 25, 30, 36, 37, 47], "instabl": [25, 36], "classifi": [25, 36], "viabl": [25, 36], "riski": [25, 36], "08": [25, 35, 36, 44], "saniti": [11, 25, 36], "cutoff": [25, 35, 36], "retrospect": [25, 28, 36], "move": [25, 26, 27, 36, 38, 44, 47, 55], "stai": [25, 36, 45], "onto": [26, 27, 41], "wellb": 26, "sit": 26, "front": [26, 57], "bodi": [26, 28, 31, 57], "bmi": 26, "soda": 26, "dine": 26, "diet": 26, "sugar": 26, "healthi": [26, 55], "sugari": 26, "campu": [26, 30, 31, 37], "0_i": 26, "1_i": 26, "d_i": 26, "english": [26, 27, 41], "neq": [26, 27, 39], "hr": 27, "depart": [27, 38], "wemakewidget": 27, "llc": 27, "skyrocket": 27, "wmw": 27, "nurs": [27, 38, 43], "via": [27, 31], "send": [27, 43, 57], "exchang": [27, 28], "appoint": 27, "bonu": 27, "mandatori": 27, "enrolle": 27, "woman": [29, 44], "morg18": [29, 38], "stata": 29, "readm": [29, 50], "nation": [29, 48, 55], "lfsr94": [29, 38], "uhours": [29, 38], "35": [28, 29, 35, 36, 38, 44], "couldn": [29, 55], "chose": [29, 30, 37, 43, 57], "earnwk": [29, 38], "hourli": 29, "48": [29, 33, 35, 38], "implicit": [29, 45, 47], "pretend": 29, "grade92": [29, 38], "nest": [29, 38, 39, 40, 55], "structur": [29, 31, 38, 40, 43, 55, 57], "ind02": [29, 38], "hierarch": [4, 29, 38], "serv": [29, 31, 56], "slightli": [29, 35, 38, 57], "wherea": 29, "introduc": [29, 43, 55], "harder": [30, 37, 52], "express": [30, 37], "870": [30, 33, 37], "fictici": [30, 37], "advert": [30, 37], "boston": [30, 37], "chicago": [30, 37], "alloc": [30, 37], "children": [28, 30, 37, 38, 40, 45, 48], "subscrib": [28, 30, 37], "kwame": [30, 37], "anthoni": [30, 37], "appiah": [30, 37], "capit": [28, 30, 37], "w": [30, 37], "journal": [30, 37, 57], "exercise_resume_experi": [30, 37], "ex2_pvalue_computerskil": [30, 37], "ex2_pvalue_femal": [30, 37], "ex2_pvalue_yearsexp": [30, 37], "ex3_pvalue_educ": [30, 37], "ex4_valid": [30, 37], "ex5_pvalu": [30, 37], "ex5_white_advantage_perc": [30, 37], "ex5_white_advantage_percentage_point": [30, 37], "ex6_black_pvalu": [30, 37], "ex8_black_colleg": [30, 37], "ex8_black_nocolleg": [30, 37], "ex8_college_heterogen": [30, 37], "ex9_gender_and_discrimin": [30, 37], "ex10_experiment_v_u": [30, 37], "profoundli": [30, 37], "outset": [30, 37], "unbalanc": [30, 36, 37], "resume_experi": [30, 37], "fictiti": [30, 37], "interview": [30, 37], "yearsexp": [30, 37], "computerskil": [30, 37], "ofjob": [30, 37], "qualif": [30, 37], "magnitud": [30, 31, 37, 40], "tabul": [30, 37], "dropout": [30, 37], "chi": [30, 37], "conting": [30, 37, 52], "crosstab": [30, 35, 36, 37], "markdown": [30, 37], "back": [30, 37, 39, 47, 48, 57], "heteroskedast": [30, 37, 44], "robust": [30, 31, 37, 38, 40, 44, 57], "hc3": [30, 37, 44], "upsid": [30, 37, 41], "downsid": [30, 37, 41], "particularli": [30, 37, 41, 55], "migrain": [30, 37, 45], "aimovig": [30, 37, 45], "denot": [11, 30, 37], "lookup": [30, 37], "paus": [30, 37, 55, 57], "followup": [28, 30, 31, 37], "ident": [30, 37, 46], "piec": [30, 37, 41, 48], "crucial": [30, 37, 55, 57], "successfulli": [31, 48], "csr": 31, "2020": [28, 31, 44], "partnership": 31, "expand": 31, "summer": 31, "41": [28, 31, 35], "leader": 31, "elect": [31, 50], "poll": 31, "ballot": 31, "satellit": 31, "thank": 31, "incred": 31, "500k": 31, "cast": 31, "2013": [31, 33], "suprem": 31, "shelbi": 31, "struck": 31, "provis": [31, 56], "1965": 31, "act": [28, 31, 43, 49], "voter": [31, 44], "preclear": 31, "feder": 31, "2019": [31, 33, 38, 55], "leadership": 31, "1600": 31, "becam": 31, "closur": 31, "comprehens": [31, 55], "sponsor": 31, "aim": [31, 55], "eas": 31, "thereof": 31, "dropbox": [31, 33], "youth": 31, "equip": 31, "young": [31, 41, 49, 55], "backup": 31, "advocaci": 31, "surround": 31, "shine": 31, "brighter": 31, "greatest": 31, "proactiv": 31, "2022": 31, "institut": [31, 50], "qualit": 31, "extent": 31, "hbcu": 31, "msi": 31, "primarili": [31, 42, 47, 50, 55], "minor": [31, 38], "mere": 31, "travel": 31, "nearest": 31, "booth": 31, "foot": 31, "transport": [31, 38], "landscap": [31, 48], "dichotomi": 31, "tank": 32, "combat": 32, "global": [32, 42, 56], "warm": 32, "implic": [28, 32, 57], "leed": 32, "prison": 32, "recidiv": 32, "former": 32, "inmat": 32, "curiou": 32, "violent": 33, "scroll": [33, 43], "mb": 33, "43": [33, 35, 38], "read_csv": [33, 35, 36, 44], "openjustic": 33, "doj": 33, "ca": [33, 36], "gov": [33, 50], "06": [33, 35, 38, 44], "onlinearrestdata1980": 33, "44": [33, 35], "head": [33, 35, 37, 38, 44, 48], "age_group": 33, "f_sexoff": 33, "f_alloth": 33, "f_total": 33, "m_total": 33, "s_total": 33, "alameda": 33, "505": 33, "1351": 33, "188": 33, "79": [33, 35, 38], "2149": 33, "2286": 33, "295": 33, "butt": 33, "calavera": 33, "contra": 33, "costa": 33, "116": 33, "446": [33, 44], "37": [33, 35, 38, 44], "629": 33, "557": 33, "31": [33, 35, 36, 44], "el": 33, "dorado": 33, "45": [33, 35, 38, 46], "value_count": [33, 35, 36, 44], "26590": 33, "23767": 33, "23328": 33, "21188": 33, "dtype": [33, 35, 36, 38, 44], "int64": [33, 35, 36, 44], "46": [33, 35], "17438": 33, "17258": 33, "40": [28, 33, 35, 44, 45], "69": [33, 35, 36], "17082": 33, "16305": 33, "16040": 33, "70": [33, 35, 36], "10750": 33, "duplic": [33, 35, 36], "social_security_numb": 33, "111111111": 33, "222222222": 33, "333333333": 33, "second_column": 33, "bool": 33, "instanc": [28, 33, 38], "repit": 33, "sub": [28, 33, 36, 45, 49], "49": [33, 35, 37], "secur": 33, "boolean": [33, 44], "idenfi": 33, "backward": 33, "51": [33, 35, 44], "assertionerror": 33, "traceback": 33, "lt": [33, 36, 44], "ipython": 33, "f30d4b630726": 33, "gt": [33, 36, 37, 44], "modul": [28, 33], "56": [33, 35], "collaps": [33, 35], "aggreg": [33, 50], "57": [33, 35], "arrests_collaps": 33, "as_index": 33, "4504": 33, "9377": 33, "3569": 33, "257": 33, "1651": 33, "19358": 33, "71342": 33, "2338": 33, "alpin": 33, "119": 33, "amador": 33, "305": 33, "306": 33, "683": 33, "149": [33, 44], "207": 33, "1365": 33, "52": [33, 35, 36], "130": [33, 35, 38, 44], "297": 33, "679": 33, "ball": 33, "sort_valu": [33, 36], "colusa": 33, "89": [33, 35], "138": 33, "655": 33, "1596": 33, "3851": 33, "1089": 33, "929": 33, "7539": 33, "25788": 33, "590": 33, "del": 33, "nort": 33, "183": [33, 35], "357": [33, 44], "1078": 33, "198": 33, "574": [33, 44], "118": 33, "1080": 33, "3266": 33, "fresno": 33, "2367": 33, "3855": 33, "804": 33, "105": [33, 35], "719": 33, "7850": 33, "37907": 33, "1178": [33, 37], "glenn": 33, "67": [33, 35, 36, 44], "111": 33, "38": [33, 35, 36, 37, 38], "250": [33, 35, 37], "766": [33, 38], "humboldt": 33, "211": 33, "593": 33, "196": 33, "33": [33, 35, 36, 38], "212": 33, "1245": 33, "5953": 33, "197": 33, "imperi": 33, "565": 33, "1045": 33, "97": [33, 35], "163": 33, "1886": 33, "6512": 33, "inyo": 33, "158": [33, 38], "315": 33, "663": 33, "kern": 33, "1732": 33, "3530": 33, "1098": 33, "401": 33, "6896": 33, "26372": 33, "890": 33, "63": [33, 35, 38], "64": [33, 35, 36], "mids_data_prep": 33, "county_demograph": 33, "census_ts_nominal_counti": 33, "gisjoin": [33, 50], "statefp": 33, "statenh": 33, "countyfp": 33, "countynh": 33, "b18aa": 33, "cv4aa": 33, "cv4ab": 33, "cv4ac": 33, "cv4ad": 33, "cv4ae": 33, "cv4af": 33, "cv4ag": 33, "cv4ah": 33, "cv4ai": 33, "cv4aj": 33, "g0100010": 33, "1970": 33, "alabama": 33, "autauga": 33, "17511": 33, "g0100030": 33, "baldwin": 33, "48650": 33, "g0100050": 33, "barbour": 33, "12134": 33, "g0100070": 33, "bibb": 33, "9953": 33, "g0100090": 33, "blount": 33, "26205": 33, "65": [33, 35], "66": [33, 35], "b18ab": 33, "b18ac": 33, "b18ad": 33, "b18ae": 33, "dropna": [33, 35], "514559": 33, "265294": 33, "17996": 33, "103958": 33, "41887": 33, "744282": 33, "130795": 33, "244309": 33, "21154": 33, "884": 33, "232": 33, "6471": 33, "73615": 33, "2622": 33, "1859": 33, "31207": 33, "31742": 33, "2272": 33, "3195": 33, "159": [33, 38], "41873": 33, "350": [33, 37, 38], "799": 33, "28913": 33, "3357": 33, "san": 33, "joaquin": 33, "266886": 33, "19288": 33, "4474": [33, 36], "21738": 33, "237799": 33, "18443": 33, "23765": 33, "631": 33, "29087": 33, "845": 33, "2447": 33, "34325": 33, "9608": 33, "621490": 33, "88813": 33, "5830": 33, "183969": 33, "48714": 33, "549409": 33, "86851": 33, "109486": 33, "2636": 33, "32658": 33, "72081": 33, "1962": 33, "3803": 33, "73874": 33, "16056": 33, "12800": 33, "ventura": 33, "565804": 33, "15163": 33, "8068": 33, "197342": 33, "36941": 33, "400868": 33, "13082": 33, "57841": 33, "1371": 33, "18589": 33, "164936": 33, "2081": 33, "7316": 33, "138882": 33, "18352": 33, "12764": 33, "madera": 33, "94456": 33, "5629": 33, "4136": 33, "40344": 33, "6300": 33, "57380": 33, "5009": 33, "4430": 33, "649": 33, "2405": 33, "37076": 33, "620": 33, "2670": 33, "36731": 33, "3895": 33, "9635": 33, "sacramento": 33, "783240": 33, "121804": 33, "13359": 33, "233704": 33, "71392": 33, "706655": 33, "118073": 33, "148459": 33, "3406": 33, "51016": 33, "76585": 33, "3731": 33, "7063": 33, "88135": 33, "20376": 33, "9606": 33, "36982": 33, "304": 33, "705": [4, 33], "1222": 33, "1341": 33, "35465": 33, "300": [28, 33, 40], "965": 33, "1019": 33, "1517": 33, "123": [33, 36], "322": 33, "6510": 33, "tehama": 33, "45593": 33, "256": 33, "966": 33, "2810": 33, "43049": 33, "246": [33, 35], "1174": 33, "32": [33, 35, 36, 37], "2544": 33, "145": 33, "2425": 33, "3321": 33, "18469": 33, "177": 33, "299": 33, "17811": 33, "363": 33, "658": 33, "255": 33, "12792": 33, "solano": 33, "210751": 33, "60750": 33, "3212": 33, "107273": 33, "31358": 33, "168628": 33, "58743": 33, "64134": 33, "1463": 33, "21020": 33, "42123": 33, "3115": 33, "41773": 33, "10338": 33, "68": [33, 35, 36, 37, 38], "race_table_var": 33, "fillna": 33, "71": [33, 35, 36, 44], "72": [33, 35, 36, 37], "3319": 33, "1105379": 33, "3320": 33, "1097": 33, "19314": 33, "3322": 33, "143851": 33, "3323": 33, "20710": 33, "float64": 33, "73": [33, 35, 36], "58": [33, 35], "arrests_w_pop": 33, "_merg": [33, 36], "left_onli": 33, "2030": 33, "right_onli": [33, 36], "76": [33, 35, 36, 37], "fill": [33, 42], "interpol": 33, "wave": [33, 55], "1995": 33, "78": [33, 35], "ascend": 33, "interpolated_total_popul": 33, "1981": 33, "4699": 33, "3926": 33, "1122759": 33, "1982": 33, "4389": 33, "4436": 33, "1140139": 33, "174": 33, "4500": 33, "5086": 33, "1157519": 33, "1984": 33, "3714": 33, "5878": 33, "1174900": 33, "white_arrests_w_pop": 33, "miniconda3": [33, 36, 37, 38, 44], "lib": [33, 36, 37, 38, 44], "python3": [33, 36, 37, 38, 44], "packag": [33, 36, 37, 38, 44], "ipykernel_launch": 33, "py": [33, 35, 36, 37, 38, 44], "userwarn": 33, "reindex": 33, "290": 33, "1985": 33, "4199": 33, "7139": 33, "1192280": 33, "348": 33, "1986": 33, "4915": 33, "7720": 33, "1209660": 33, "406": [4, 33, 38], "1987": 33, "5137": 33, "10333": 33, "1227041": 33, "464": 33, "1988": 33, "5087": 33, "12574": 33, "1244421": 33, "522": 33, "1989": 33, "5551": 33, "14056": 33, "1261801": 33, "580": 33, "6156": 33, "12378": 33, "1279182": 33, "638": 33, "1991": 33, "5942": 33, "11408": 33, "1295637": 33, "696": 33, "1992": 33, "6162": 33, "10712": 33, "1312093": 33, "754": 33, "1993": 33, "9656": 33, "1328549": 33, "812": [33, 44], "1994": 33, "5911": 33, "9764": 33, "1345005": 33, "3844": 33, "3265": 33, "1361461": 33, "928": [33, 38], "1996": 33, "5610": 33, "7322": 33, "1377917": 33, "986": 33, "1997": 33, "5976": 33, "7646": 33, "1394373": 33, "1044": 33, "1998": 33, "5636": 33, "7852": 33, "1410829": 33, "1102": 33, "1999": 33, "5168": 33, "8985": 33, "1427285": 33, "1160": 33, "4356": 33, "7414": 33, "1443741": 33, "1218": 33, "4478": 33, "6486": 33, "1450394": 33, "1276": 33, "2002": 33, "4424": 33, "6414": 33, "1457047": 33, "1334": 33, "2003": 33, "4749": 33, "6708": 33, "1463700": 33, "1392": 33, "4301": 33, "6886": 33, "1470353": 33, "1450": 33, "4090": 33, "6328": 33, "1477006": 33, "1508": 33, "4042": 33, "5879": 33, "1483659": 33, "1566": 33, "4443": 33, "6071": 33, "1490312": 33, "1624": 33, "4336": 33, "5893": 33, "1496965": 33, "1682": 33, "4318": 33, "5749": 33, "1503618": 33, "1740": 33, "3823": 33, "5357": 33, "1510271": 33, "1798": 33, "2011": [33, 55], "3504": 33, "3957": 33, "1856": 33, "3686": 33, "1914": 33, "3183": 33, "4337": 33, "1972": 33, "2014": 33, "3491": 33, "4805": 33, "2015": 33, "3452": 33, "1946": 33, "2088": 33, "3513": 33, "1762": 33, "2146": 33, "3965": 33, "1279": 33, "2204": 33, "4132": 33, "1062": 33, "lo": 33, "angel": 33, "37964": 33, "29319": 33, "7477503": 33, "37610": 33, "27427": 33, "7616069": 33, "134": 33, "36648": 33, "28807": 33, "7754635": 33, "192": 33, "33858": 33, "36565": 33, "7893201": 33, "35303": 33, "44331": 33, "8031767": 33, "308": 33, "35659": 33, "51015": 33, "8170333": 33, "366": 33, "45254": 33, "61035": 33, "8308899": 33, "424": 33, "46020": 33, "61713": 33, "8447465": 33, "482": [33, 38], "51021": 33, "69363": 33, "8586031": 33, "540": [33, 38], "59012": 33, "69667": 33, "8724597": 33, "598": 33, "64790": 33, "55218": 33, "8863164": 33, "656": 33, "58701": 33, "42583": 33, "8928781": 33, "714": [33, 44], "59215": 33, "43212": 33, "8994398": 33, "772": [33, 44], "55079": 33, "43406": 33, "9060016": 33, "830": 33, "53467": 33, "48161": 33, "9125633": 33, "888": 33, "53218": 33, "45535": 33, "9191251": 33, "946": 33, "51277": 33, "44102": 33, "9256868": 33, "1004": 33, "50573": 33, "46951": 33, "9322485": 33, "46886": 33, "43947": 33, "9388103": 33, "1120": [33, 37], "43655": 33, "38253": 33, "9453720": 33, "40440": 33, "33499": 33, "9519338": 33, "1236": 33, "42095": 33, "33570": 33, "9549264": 33, "1294": 33, "39768": 33, "36060": 33, "9579191": 33, "1352": 33, "39633": 33, "42002": 33, "9609118": 33, "1410": 33, "37397": 33, "46060": 33, "9639044": 33, "1468": 33, "36322": 33, "48411": 33, "9668971": 33, "1526": 33, "35384": 33, "47549": 33, "9698898": 33, "1584": 33, "36250": 33, "45112": 33, "9728824": 33, "1642": 33, "36452": 33, "40928": 33, "9758751": 33, "1700": 33, "35319": 33, "32193": 33, "9788678": 33, "1758": 33, "33147": 33, "33920": 33, "9818605": 33, "1816": 33, "30818": 33, "33244": 33, "1874": 33, "29601": 33, "33775": 33, "1932": 33, "27159": 33, "35972": 33, "28251": 33, "36372": 33, "2048": 33, "28194": 33, "9753": 33, "2106": 33, "27804": 33, "8970": 33, "2164": 33, "28746": 33, "7302": 33, "2222": 33, "28865": 33, "6412": 33, "86": [33, 35, 37], "renam": [33, 35, 50], "to_csv": 33, "githubusercont": 44, "61": 35, "411101": [], "331110": [], "92": [35, 37], "779361": [], "342067": [], "222701": [], "481508": [], "588374": [], "815540": [], "472719": [], "337757": [], "2f": [35, 36, 37], "77": [35, 37, 44], "std": [35, 37, 38, 44], "expend": [], "94": 35, "corr": [], "iloc": [], "alt": [], "enabl": [], "mimetyp": [], "grumpi": [], "displai": 35, "hist": [], "dict": [], "chart": [], "mark_bar": [], "q": [], "vegalit": [], "frontend": [], "viz": [], "io": [], "user_guid": [], "troubleshoot": [], "html": [], "17": [37, 38, 44], "mark_point": [], "legal": [36, 49], "marijuana": [], "drug_rat": [], "100_000": [], "isin": 36, "394": [], "457331": [], "551801": [], "289": [], "027292": [], "271": [], "709690": [], "312": [], "159811": [], "209": [], "450372": [], "276": [], "018946": [], "358": 37, "305449": [], "228": 35, "874748": [], "473": 38, "876866": [], "411": [], "831533": [], "499": [], "572904": [], "460": [], "694485": [], "380": [], "164074": [], "432": [], "659812": [], "king": [46, 47], "035930": [], "lake": [], "369": [], "871380": [], "lassen": [], "147": [], "165387": [], "403": [], "990696": [], "261": [], "117203": [], "marin": [], "190": [], "030996": [], "mariposa": [], "969880": [], "mendocino": [], "599": [], "799767": [], "merc": [], "441": [], "290221": [], "modoc": [], "204960": [], "mono": [], "272": [], "602759": [], "monterei": [], "248": [], "094595": [], "napa": [], "247": 37, "823080": [], "nevada": [], "235": 35, "403323": [], "orang": [], "277": 36, "267304": [], "placer": [], "583530": [], "pluma": [], "492": [], "429787": [], "riversid": [], "291": [], "458787": [], "375": [36, 52], "134854": [], "benito": [], "210": [], "849718": [], "bernardino": [], "465": [], "333881": [], "diego": [], "249": [], "177208": [], "francisco": [], "873": [], "961738": [], "824184": [], "lui": [], "obispo": [], "583757": [], "mateo": [], "214": [], "668466": [], "santa": 35, "barbara": [], "225": [35, 37], "267192": [], "clara": [], "348166": [], "cruz": 35, "577393": [], "shasta": [], "470436": [], "sierra": [], "221": [], "364059": [], "siskiy": [], "352": [], "795109": [], "388": 44, "929454": [], "sonoma": [], "331": [], "905273": [], "stanislau": [], "457": [], "198700": [], "sutter": [], "695398": [], "585": [], "300555": [], "triniti": [], "427": [], "859162": [], "tular": [], "447": [], "774248": [], "tuolumn": [], "405": [], "897681": [], "264": 36, "878553": [], "yolo": [], "333": [], "788690": [], "yuba": [], "351": [], "561100": [], "301": [], "8092992253924": [], "astyp": [35, 36, 38, 44], "int": [35, 36, 38, 44], "left_on": [], "right_index": [], "outer": [], "875683": [], "407": 38, "462056": [], "349": [], "674236": [], "418": [], "522474": [], "389": 44, "075162": [], "384": [], "952860": [], "439": [], "387694": [], "762215": [], "297813": [], "316": 38, "111956": [], "post_2010": [], "arrests_sub": [], "y_t1_post": [], "y_t1_pre": [], "y_t0_post": [], "y_t0_pre": [], "799650070477355": [], "418061484004568": [], "api": [37, 38, 44], "get_robustcov_result": [37, 38, 44], "cov_typ": [37, 38], "dep": [37, 38, 44], "adj": [37, 38, 44], "sun": [37, 38, 44], "2023": 38, "prob": [37, 38, 44], "45e": [], "2094": [], "aic": [37, 38, 44], "4196": [], "344": 44, "bic": [37, 38, 44], "4212": [], "coef": [37, 38, 44], "err": [37, 38, 44], "025": [35, 37, 38, 44], "975": [37, 38, 44], "319": [], "7820": [], "131": [], "284": [], "463": [], "355": [], "101": [11, 38], "3816": [], "892": [], "959": [], "055": [], "189": [], "426": [], "106": [35, 37], "8289": [], "385": [], "568": [], "001": [37, 44], "153": [], "657": [], "4181": [], "869": [], "393": 37, "203": [], "367": [], "omnibu": [37, 38, 44], "53": [35, 38, 44], "945": [], "durbin": [37, 38, 44], "watson": [37, 38, 44], "741": [], "jarqu": [37, 38, 44], "bera": [37, 38, 44], "jb": [37, 38, 44], "81": [35, 37, 38, 44], "621": [], "skew": [37, 38, 44], "89e": [], "kurtosi": [37, 38, 44], "cond": [37, 38, 44], "data_transform": [], "data_serv": [], "arrests_long": [], "grouped_mean": [], "loess": [], "lightblu": [], "transform_regress": [], "mark_lin": [], "append": [], "layer": [], "TO": [], "eq": [], "hte": [], "_thought_": [], "cluster_ent": 38, "mislead": [], "fault": [], "linearmodel": 38, "arrests_for_panelol": [], "set_index": 38, "mod": 38, "entityeffect": 38, "timeeffect": [], "drop_absorb": [], "cluster_tim": [], "h_8_rwsn5hvg9mhp0txgc_s9v6191b": [35, 36, 37], "ipykernel_84356": [], "3310218310": [], "absorbingeffectwarn": [], "absorb": [], "0013": [], "0109": [], "0155": [], "0104": [], "1858": [], "cov": 38, "3829": [], "5366": [], "ob": [36, 38], "0000": [36, 38], "max": [35, 36, 38], "1899": [], "6633": [], "stat": [11, 28, 37, 38, 44], "ci": 38, "upper": 38, "023": [], "4358": [], "925": [], "089": [], "poolabl": 38, "282p": [], "0000distribut": 38, "0097": [], "0168": [], "0588": [], "0150": [], "4108": [], "6568": [], "0101": [], "6634": [], "1031": [], "362": [], "6320": [], "078": [], "3540": [], "619": [], "3654453326": [], "unconstrain": [34, 35], "kupp": 34, "constrain": [28, 34], "umbrella": 34, "dry": 34, "sunni": 34, "pont": 35, "le": [], "4723": [], "3200": [], "199": [], "379": 36, "38e": 37, "09": [35, 44], "678": [], "1360": [], "nonrobust": 38, "5143": [], "0893": [], "807": [], "442": [], "4519": [], "521": [], "5766": [], "4202": [], "2440": [], "634": 44, "243": [], "2937": [], "904": [], "5466": [], "584": [], "244": 37, "04e": 37, "126": 35, "specifi": [35, 36, 38, 43, 47, 48, 57], "202": [], "596": [], "566": [], "04": [35, 38, 44], "14e": [], "662": [], "1336": [], "1350": [], "782": [], "5353": [], "1612": [], "628": [], "485": [], "4000": [], "484": 38, "2435": [], "414": [], "3278": [], "9827": [], "671": [], "826": [], "881": [], "1938": [], "4619": [], "591": 35, "1977": [], "1796": [], "711": 36, "781": [], "007": 44, "558": [], "3396": [], "068": [37, 44], "9634": [], "702": [], "797": [], "563": [], "364": [], "736": 37, "7997": [], "309": [], "009": [37, 44], "020": 44, "1353": [], "120": [28, 36], "182": [37, 38], "9667": [], "819": [], "541": [], "128": [], "646": 37, "579": [], "179": [], "409": [], "01e": 38, "36e": [], "arestrong": 37, "multicollinear": 37, "bewar": [], "inadvert": 57, "air": [43, 50], "531": [], "11e": [], "616": 37, "1254": [], "1852": [], "4340": [], "2284": [], "811": [], "421": [], "6423": [], "964": 37, "2719": [], "096": [], "951": [], "3308": [], "1676": [], "704": [], "567": [], "573": [], "2403": [], "746": [], "4306": [], "408": [], "9162": [], "1539": [], "879": [], "383": [], "1728": [], "4434": [], "011": 37, "994": [], "5742": [], "1609": [], "415": [], "618": 37, "539": [], "2225": [], "857": [], "4215": [], "006": [37, 44], "1325": [], "1545": [], "1705": [], "943": [], "777": [], "440": 37, "429": [], "4738": [], "738": [], "3240": [], "0049": [], "012": 44, "015": [37, 44], "1625": [], "4854": [], "833": [], "1644": [], "4650": [], "769": [], "136": [], "037": [37, 44], "103": [], "848": [], "3185": [], "082": 37, "7544": [], "883": [], "988": [], "051": [], "520": [], "755": [], "1823": [], "341": [], "695": [], "031": 37, "1438": [], "912": [], "452": [], "0412": [], "472": 38, "612": [], "112": [], "910": [], "992": [], "610": [], "430": [], "697": [], "181": [], "82e": 44, "478": 37, "54e": [], "353": 38, "390": 38, "20e": [], "675": [], "1369": [], "4925": [], "378": [], "835": [], "4169": [], "438": [], "5680": [], "562": [37, 44], "642": [], "7895": [], "650": 38, "326": 44, "654": [], "1939": [], "931": [], "3977": [], "7333": [], "639": 44, "2570": [], "953": [], "5384": [], "513": [37, 38], "8105": [], "1595": [], "941": [], "1170": [], "193": [], "5195": [], "814": [], "269": 38, "940": [], "79e": [], "635": [], "01": [35, 44], "21e": [], "660": [], "391": [], "7038": [], "1588": [], "834": [], "806": 44, "3563": [], "030": 37, "2779": [], "622": 38, "2929": [], "3402": [], "1573": [], "413": [], "4285": [], "267": [], "1354": [], "9011": [], "760": [], "079": [37, 44], "162": [], "552": [], "2872": [], "354": [], "2797": [], "6787": [], "1381": [], "501": [], "047": [37, 44], "5555": [], "167": [], "6417": [], "330": [], "048": [], "8717": [], "302": [], "195": [], "017": [37, 44], "1340": [], "056": 44, "133": 36, "688": [], "6296": [], "972": 36, "115": 44, "038": 37, "710": 37, "549": [], "874": [], "311": [], "63e": [], "885": [], "39e": [], "grandmoth": [], "ago": [], "mom": [], "admittedli": [], "databas": 50, "param": 37, "4152": [], "m2": [], "564": [], "12e": [], "661": [], "1338": [], "232e": [], "4465": [], "758": [], "3404": [], "206": 4, "176e": [], "2796": [], "6184": [], "73e": [], "259": 38, "8139": [], "109": [], "998": 37, "021": [], "479": [], "371": [], "314": [], "4806": [], "360": [35, 44], "876": [], "005": 37, "532": [], "764": 44, "96": [35, 36], "4327": [], "856": [], "008": 37, "723": [], "142": 37, "5821": [], "958": [], "515": [], "1123": [], "222": 38, "154": [], "058": [], "4670": [], "839": [], "016": [37, 44], "813": [], "121": 37, "595": 35, "07e": [], "204": [], "premium": [], "milag": [], "151404": [], "wv": 36, "123453": [], "251": [], "tx": 36, "187982": [], "ma": 36, "unincorpor": [], "122356": [], "tn": 36, "nonprofit": [], "210750": [], "42900": [], "ia": 36, "063": [], "sat": [], "56e": [], "63018": [], "5515": [], "260e": [], "5513": [], "261e": [], "887e": [], "669": [], "95e": [], "416e": [], "735": [], "820": [], "242": [], "27e": [], "2214": [], "974": 44, "10578": [], "287": 36, "608": [], "iffi": [], "frequenc": [45, 55], "chi2": 37, "_i_": [], "freq": [], "032": 37, "122": 38, "74e": 38, "7675": [], "11150": [], "536e": [], "11146": [], "539e": [], "4382": [], "420": [38, 44], "449": [], "1206": [], "507": [], "152": [], "2398": [], "014": 37, "682": [], "266": 28, "213": 37, "0367": [], "024": [], "069": [], "46681": [], "1670": [], "377": [], "438205": [], "317647": [], "198413": [], "474900": [], "ctab": 37, "4282": [], "3340": [], "324": [], "1212": [], "523": [], "dof": 37, "chi2_conting": 37, "2993875943569016e": [], "mo": 36, "000000": 35, "700": [], "va": 36, "fl": 36, "md": 36, "882353": [], "332106": [], "nj": 36, "IN": 36, "171": 44, "mn": 36, "390058": [], "207616": [], "262319": [], "375000": [], "500000": 35, "grad": [], "remot": [], "quadrat": [44, 47], "2760": [], "2551": [], "2397": [], "173": [], "tini": [], "576": [], "275": 35, "230": 35, "223": [], "263": [], "285": [], "7809": [], "740": [], "706": [], "615": [], "387": [], "337": 44, "for_match": [], "reset_index": [], "31200": [], "20020": [], "22859": [], "73860": [], "5510": [], "33800": [], "5511": [], "23920": [], "5512": [], "37440": [], "5514": [], "26000": [], "1204727749": [], "8949614": [], "129": [], "5378": [], "1204742613": [], "479154": [], "1205072671": [], "3262901": [], "508": 44, "5390": [], "1205171280": [], "4727237": [], "509": [], "5392": [], "1210524158": [], "7436352": [], "511": [], "110": 37, "5405": [], "1210539313": [], "933855": [], "for_p": [], "199313e": [], "199422e": [], "204728e": [], "204743e": [], "205073e": [], "205171e": [], "210524e": [], "210539e": [], "fast": [], "5509": [], "930000": [], "108": 37, "070189": [], "240000": [], "134e": [], "3736": [], "7480": [], "5306": [], "7506": [], "2119": [], "469e": [], "018": [37, 44], "92e": [], "036": [], "378e": [], "019": [37, 44], "86e": [], "18e": [], "83e": [], "040": 37, "860": [], "227": [], "234": [], "41e": [], "294": [], "851": [], "057": 37, "19e": [], "61753": [], "235e": [], "5308": [], "909e": [], "293": [], "84e": [], "98e": [], "374e": [], "763": [], "003": [37, 44], "22e": [], "52e": [], "2934": [], "035": [], "33100": [], "529": [], "util": [], "post_process": [], "matching_object": [], "36": 35, "238": [], "786": 44, "62e": [], "132": 37, "61189": [], "230e": [], "4984": [], "252e": [], "325": [], "761e": [], "2429": [], "28e": [], "24e": [], "8344": [], "9150": [], "1067": [], "818": [], "6252": [], "476": [], "6753": [], "9175": [], "1140": [], "922": [], "8989": [], "844": [], "4517": [], "991": 44, "3220": [], "6308": [], "1202": [], "997": [], "677": [], "5579": [], "862": [], "8584": [], "0505": [], "868": [], "889": [], "6882": [], "03e": [], "251e": [], "923": [], "43e": 38, "266e": [], "08e": [], "46e": [], "9235": [], "0616": [], "1189": [], "062": [], "767": [], "6903": [], "976": [37, 44], "16e": [], "347e": [], "2975": [], "342": [], "528": [], "7639": [], "93e": 37, "114e": [], "3231": [], "653": [], "75e": [], "4799": [], "550": [4, 37], "279e": [], "3245": [], "734": [], "942": [], "6430": [], "9142": [], "9921": [], "771": 36, "4363": [], "2990": [], "164": [], "23e": [], "609": [], "6378": [], "3577": [], "4178": [], "527": [], "127": 38, "1812": [], "617": [], "627e": [], "66e": [], "4103": [], "023e": [], "3835": [], "666": [], "77e": [], "2706": [], "153e": [], "3175": [], "916": [], "78e": [], "5300": [], "382e": [], "5130": [], "694": [], "3762": [], "501e": [], "3427": [], "926": [], "17e": [], "8293": [], "693": [], "418e": [], "3040": [], "664": [], "8218": [], "6849": [], "3954": [], "3121": [], "194": [], "028": 44, "3e": [], "730": [], "303": 38, "381e": [], "3368": [], "7209": [], "369e": [], "3918": [], "748": [], "493": 37, "6007": [], "9190": [], "4689": [], "915": [], "218": [], "895": [], "061e": [], "3616": [], "372": [], "935": [], "3523": [], "982": [], "601e": [], "7731": [], "556": 4, "070": 37, "909": [], "1788": [], "7046": [], "4787": [], "690": [], "374": [], "709": [], "7597": [], "684e": [], "6555": [], "900": [35, 37], "569": [], "010": [37, 44], "97e": [], "3989": [], "067": [], "4e": [], "4328": [], "098": [], "25e": [], "3776": [], "3595": [], "547": [], "720": 44, "085": 37, "32e": [], "864": [], "826e": [], "3694": [], "55e": [], "1e": [35, 38], "242e": [], "3244": [], "837": [], "828": [], "88e": [], "6059": [], "104e": [], "3171": [], "4824": [], "506e": [], "3496": [], "8211": [], "049": [], "391e": [], "3137": [], "745": [], "7755": [], "337e": [], "3345": [], "99e": [], "6814": [], "297e": [], "5671": [], "022": 37, "1853": [], "4845": [], "0790": [], "5203": [], "125": [35, 37], "5e": [], "5355": [], "335": [], "2248": [], "8602": [], "5067": [], "398": [], "444": [], "7685": [], "469": [], "155e": [], "4710": [], "979": [], "2313": [], "897": [], "7114": [], "5598": [], "3632": [], "908": [], "050": [35, 44], "42e": [], "538": [], "272e": [], "3067": [], "87e": [], "6711": [], "3443": [], "339": [], "6447": [], "428": [], "9324": [], "3384": [], "603": [], "6e": [], "2688": [], "932": [], "505e": [], "3658": [], "7881": [], "76e": [37, 44], "2856": [], "308e": [], "3310": [], "96e": 37, "6590": [], "177e": [], "3252": [], "81e": 44, "5391": [], "516e": [], "3677": [], "7954": [], "9224": [], "6049": [], "2690": [], "524": [], "3949": [], "365e": [], "3460": [], "095": [], "944": [], "6864": [], "165e": [], "3698": [], "161": 36, "151": [], "002": [37, 44], "4404": [], "402": [], "2961": [], "611": [], "65e": [], "4889": [], "7052": [], "4496": [], "3127": [], "920": [], "437": [], "9064": [], "0230": [], "3380": [], "497": [], "681": [], "57e": [], "2436": [], "761": [], "681e": [], "3013": [], "09e": [], "8897": [], "8731": [], "3296": [], "699": [], "774": [], "125e": [], "7993": [], "659": [], "5580": [], "69e": [], "13e": 38, "046": 37, "459": [], "5880": [], "043": [], "703": [], "26e": [], "887": [], "270": [], "006e": [], "8297": [], "064": [], "6201": [], "7396": [], "8710": [], "376": [], "707": [], "59e": [], "349e": [], "8853": [], "843": [], "3865": [], "6016": [], "8132": [], "9691": [], "581": 38, "535": [], "7435": [], "2407": [], "7281": [], "280": [], "307": [35, 37], "6839": [], "8434": [], "9441": [], "604": [], "546": [], "58e": 38, "5918": [], "5652": [], "5278": [], "262": 38, "4429": [], "631e": [], "9894": [], "838": 35, "099": 44, "3086": [], "114": [36, 37], "499e": [], "6719": [], "026": [], "1819": [], "273": [], "8015": [], "9218": [], "732": [], "34e": [], "171e": [], "124e": [], "8626": [], "461": 36, "8596": [], "970": [], "1156": [], "964e": [], "9254": [], "939": [], "034": [], "1498": [], "286e": [], "47e": [], "6046": [], "434": 35, "53e": [], "265": [], "8046": [], "9594": [], "978": 35, "85e": 37, "91e": [], "9042": [], "15e": [], "3909": [], "886": 35, "086e": [], "33e": [], "117": [], "7e": 38, "5231": [], "914e": [], "8999": [], "435": [], "033": [], "68e": [], "1501": [], "949": [], "203e": [], "630": [], "4151": [], "5319": [], "5648": [], "737": [], "462": [], "6922": [], "341e": [], "7534": [], "780": [], "075": 35, "1357": [], "560": [], "719e": [], "3924": [], "381": [], "49e": [], "9500": [], "746e": [], "237": 44, "8624": [], "6897": [], "6770": [], "72e": [], "146e": [], "8462": [], "899": [], "8e": [], "741e": [], "5589": [], "6454": [], "143e": [], "5721": [], "800": 35, "216": [], "658e": [], "61e": [], "307e": [], "840": 37, "066": 37, "1514": [], "84": [35, 44], "9730": [], "48e": [], "3419": [], "8384": [], "9046": [], "824e": [], "279": [], "201": 38, "9720": [], "87": 35, "403e": [], "205": 37, "027": [], "2667": [], "326e": [], "445": [], "574e": [], "8531": [], "065": 37, "985": [], "816": [], "8870": [], "8793": [], "4968": [], "614": [], "785": 44, "074": 37, "791": [], "91": 35, "9791": [], "880": [], "288": [], "8799": [], "744": [], "687e": [], "150": 35, "6076": [], "4593": [], "8182": [], "9052": [], "5470": [], "9761": [], "637": [], "995": 35, "199e": [], "5085": [], "2e": 38, "219": [], "7572": [], "457e": [], "9432": [], "605": [], "31e": [], "6080": [], "404": [], "98": 35, "2197": [], "3011": [], "144": 44, "9289": [], "2093": [], "3098": [], "282": [], "3215": [], "121e": [], "7876": [], "423": [], "155": [], "4235": [], "9598": [], "102": [44, 50], "2597": [], "8743": [], "35e": [], "847": 36, "014e": [], "9066": [], "7638": [], "542": [], "104": [], "252": 36, "2631": [], "983": [], "145e": [], "107": [], "364e": [], "71e": [], "962": [], "4795": [], "8027": [], "8034": [], "597": [], "551": 37, "05e": [], "8716": [], "5745": [], "06e": [], "822": [], "946e": [], "7351": [], "516": [], "606": [], "113": [37, 44], "293e": [], "882": 35, "908e": [], "185": [], "236": [], "2798": [], "0105": [], "8785": [], "2988": [], "473e": [], "577": [], "698e": [], "124": [37, 44], "4669": [], "861": 44, "704e": [], "8908": [], "767e": [], "093": [], "1747": [], "291e": [], "5091": [], "347": [], "536": [], "29e": [], "2931": [], "559": [], "209e": [], "795e": [], "6490": [], "6948": [], "1460": [], "9793": [], "4111": [], "7736": [], "668": 37, "407e": [], "338e": [], "094": [], "274": [], "958e": [], "5205": [], "9462": [], "1890": 44, "7889": [], "2394": [], "5638": [], "399": [], "3164": [], "2175": [], "4884": [], "51e": [], "467e": [], "045": [], "083e": [], "6228": [], "141": 38, "4420": [], "8608": [], "5997": [], "7337": [], "137": 44, "4087": [], "2387": 36, "8100": [], "7939": [], "1789": [], "8029": [], "739": [], "989": [], "323": [], "37e": [], "7802": [], "643": 44, "139": [], "692": [], "3178": [], "02e": [], "94e": [], "140": 44, "651e": [], "229": [], "8251": [], "4595": [], "676": [], "1373": [], "8309": [], "948": 37, "143": 44, "5545": [], "8845": [], "5862": [], "5947": [], "5771": [], "921": [], "9556": [], "0440": [], "783": [], "146": [], "903e": [], "1707": [], "239": 38, "012e": [], "670": [], "097": [], "052e": [], "157": 37, "867": [], "249e": [], "7332": [], "914": [], "1887": [], "074e": [], "174e": [], "373": [], "379e": [], "076": 37, "2454": [], "878": [], "004": [37, 44], "3961": [], "2072": [], "67e": 44, "160": [37, 38], "811e": [], "8356": [], "451": [], "1729": [], "6091": [], "1910": [], "8574": [], "477": [], "9087": [], "0830": [], "586": [], "133e": [], "054": [], "292": [], "283e": [], "6795": [], "165": [37, 44], "166": 37, "551e": [], "3002": [], "990": [], "947e": [], "168": 44, "007e": [], "7103": [], "417": [], "156": 44, "3857": [], "169": [], "9600": [], "934": [], "170": 38, "615e": [], "7177": [], "9576": [], "172": [], "626e": [], "629e": [], "314e": [], "458": 37, "7983": [], "176": 37, "8331": [], "5679": [], "7787": [], "9729": [], "6943": [], "898": [], "5825": [], "8426": [], "9047": [], "9527": [], "061": 44, "5061": [], "4958": [], "9108": [], "578": [], "9156": [], "0300": [], "7253": [], "999": [35, 36], "5065": [], "6042": [], "8525": [], "602": [], "8180": [], "956": [], "1688": [], "4654": [], "4051": [], "6253": [], "894": [], "9630": [], "825": [], "184": [], "566e": [], "3739": [], "789": 44, "8333": 36, "281": [], "158e": [], "186": [], "8134": [], "088": [], "187": [], "6652": [], "8781": [], "3548": [], "268": [], "053": 37, "3878": [], "254": [], "122e": [], "5407": [], "661e": [], "803": [], "071": [], "2321": [], "191": [], "3036": [], "3270": [], "6940": [], "9690": [], "9281": [], "647": [], "455": 38, "9444": [], "8116": [], "902": 44, "2498": [], "3312": [], "853": [], "9e": [], "9595": [], "1493": [], "798": [], "2753": [], "6229": [], "6585": [], "5757": [], "7328": [], "9890": [], "7484": [], "328": [], "7343": [], "801": [], "136e": [], "8594": [], "013": 44, "4510": [], "7508": [], "9207": [], "3016": [], "489": [], "1594": [], "737e": [], "2251": [], "1237": [], "8204": [], "6666": [], "464e": [], "9850": [], "486": [], "4674": [], "706e": [], "6442": [], "648": [], "4427": [], "733e": [], "7640": [], "6087": [], "6907": [], "651": [37, 44], "578e": [], "973": 44, "1093": [], "8388": [], "7382": [], "081": 37, "351e": [], "858": [], "1299": [], "215": [], "488": [], "5271": [], "613": [], "8944": [], "5337": [], "794": [], "090": [], "1411": [], "217": [], "9643": [], "642e": [], "987": [], "9429": [], "8190": [], "059": [37, 38], "220": 38, "038e": [], "7271": [], "3058": [], "526": [], "622e": [], "588": [], "3804": [], "878e": [], "5199": [], "8586": [], "224": [], "9192": [], "1466": [], "636": [], "525": [], "2641": [], "2389": [], "226": 37, "8830": [], "2891": [], "6639": [], "4186": [], "397": [], "233e": [], "1135": [], "428e": [], "454": [], "6264": [], "041": [37, 38], "517": [], "8271": [], "2748": [], "7245": [], "759": [37, 44], "5933": [], "299e": [], "8519": [], "6289": [], "960": [], "233": [], "285e": [], "8491": [], "3796": [], "735e": [], "766e": [], "217e": [], "8349": [], "4200": [], "141e": [], "4505": [], "533": [], "2581": [], "613e": [], "258": 38, "2127": [], "712e": [], "240": 44, "6376": [], "9154": [], "44e": [], "241": [], "3359": [], "7031": [], "6189": [], "543": [], "587": [], "8774": [], "753": 44, "8724": [], "775": [], "788e": [], "286": [], "9383": [], "071e": [], "2703": [], "321": [], "245": [], "8153": [], "4624": [], "5281": [], "9970": [], "4036": [], "2630": [], "9765": [], "4698": [], "5639": [], "083": 37, "1290": [], "0204": [], "8692": [], "476e": [], "616e": [], "4398": [], "9569": [], "726": [], "084": 44, "2247": [], "701": [42, 44], "253": [], "801e": [], "5819": [], "5313": [], "470": [], "9352": [], "6145": [], "712": [], "64e": [], "474e": [], "5626": [], "575": [], "6945": [], "662e": [], "260": [], "075e": [], "7093": [], "214e": [], "9508": [], "6499": [], "474": [], "094e": [], "872": [], "2479": [], "7477": [], "6210": [], "2882": [], "138e": [], "097e": [], "8629": [], "836e": [], "7924": [], "317": [], "2824": [], "361e": [], "204e": [], "485e": [], "8880": [], "672": 37, "2561": [], "149e": [], "9891": [], "3781": [], "4694": [], "687": [], "5173": [], "7930": [], "966e": [], "402e": [], "278": [], "2322": [], "2439": [], "903": [], "119e": [], "345e": [], "6306": [], "1085": [], "930": [], "8403": [], "4354": [], "778": [], "3681": [], "0429": [], "283": [], "5339": [], "8789": [], "9936": [], "537": [], "452e": [], "8179": [], "1519": [], "7684": [], "0660": [], "775e": [], "5134": [], "756": [], "456": [], "7680": [], "2038": [], "8041": [], "0146": [], "468": [], "581e": [], "7099": [], "1889": [], "7663": [], "1814": [], "571": [], "567e": [], "7319": [], "1323": 38, "652": [], "2555": [], "433": 4, "665": [37, 44], "9840": [], "996": 37, "296": 38, "1096": [], "1249": [], "4502": [], "2586": [], "298": [], "8732": [], "4700": [], "583": 38, "986e": [], "907": [], "329e": [], "4581": [], "0131": 37, "7593": [], "484e": [], "7473": [], "222e": [], "8772": [], "5022": [], "2514": [], "2672": [], "7217": [], "728": [], "336e": [], "116e": [], "9796": [], "8045": [], "973e": [], "179e": 38, "5120": [], "504": 36, "310": [], "268e": [], "624e": [], "3524": [], "9191": [], "1488": [], "9873": [], "313": [], "765e": [], "412": [], "680": [], "793e": [], "7170": [], "3875": [], "4379": [], "933": [], "5807": [], "9640": [], "6758": [], "859": 37, "7442": [], "794e": [], "9335": [], "924": [], "318": [], "4980": [], "2142": [], "8582": [], "1051": [], "3237": [], "320": [], "431e": [], "6968": [], "416": [], "3176": [], "6523": [], "846": [], "950": [], "853e": [], "5726": [], "625": [], "2501": [], "1256": [], "7866": [], "751": [], "951e": [], "325e": [], "742": [], "8657": [], "2875": [], "9851": [], "7463": [], "2414": [], "039": [37, 44], "981": [], "22245": [], "534": [], "model2": [], "result2": [], "matched_data2": [], "19512": [], "904e": [], "386": 38, "128e": [], "8904": [], "805": 38, "855": [], "6653": [], "matplotlib": [35, 36], "pyplot": [35, 36], "plt": [35, 36], "unnam": [], "spirit": [], "unemp": [], "emppop": [], "baptist": [], "mormon": [], "nfatal2124": [], "afat": [], "pop1517": [], "pop1820": [], "pop2124": [], "milestot": [], "unempu": [], "emppopu": [], "gsp": [], "10544": [], "152344": [], "692039": [], "539379": [], "355700": [], "32829": [], "437988": [], "3942002": [], "208999": [], "593750": [], "221553": [], "43750": [], "290000": [], "06250": [], "28516": [], "799999": [], "022125": [], "10732": [], "797852": [], "147030": [], "788991": [], "333599": [], "34341": [], "834015": [], "3960008": [], "202000": [], "078125": [], "219125": [], "46875": [], "15625": [], "31032": [], "900002": [], "046558": [], "11108": [], "791016": [], "168087": [], "714286": [], "311501": [], "35924": [], "872009": [], "3988991": [], "196999": [], "968750": [], "216724": [], "09375": [], "288000": [], "32961": [], "500004": [], "062798": [], "11332": [], "626953": [], "271137": [], "652542": [], "289499": [], "37579": [], "742004": [], "4021007": [], "194999": [], "734375": [], "214349": [], "03125": [], "284000": [], "31250": [], "35091": [], "100002": [], "027490": [], "11661": [], "506836": [], "514496": [], "609907": [], "267401": [], "39311": [], "716003": [], "4049993": [], "203999": [], "890625": [], "212000": [], "00000": 35, "263000": [], "28125": [], "36259": [], "700001": [], "032143": [], "nuniqu": [35, 36], "10000": [], "polynomi": [], "polyfit": [], "scatterplot": [], "line2d": [], "0x16c6a9b40": [], "quad": [], "091": [], "334": [], "553": [], "8533": [], "044": 37, "768": 36, "3646": [], "865": [], "487": [], "905": [], "4776": [], "6550": [], "086": [], "az": 36, "5677": [], "5095": [], "4843": [], "919": 37, "ct": 36, "8623": [], "de": [35, 36], "3076": [], "448": 37, "729": [], "2681": [], "5246": [], "852": [], "5439": [], "092": 37, "id": [4, 36, 42], "6690": [], "il": 36, "9616": [], "4615": [], "k": 36, "2232": [], "984": [], "ky": 36, "la": [36, 50], "8471": [], "490": [], "641": [], "7064": [], "1079": [], "8972": [], "419": 38, "2963": [], "821": [], "0291": [], "mt": 36, "3604": [], "365": [], "2905": [], "nd": 36, "6234": [], "396": [], "ne": 36, "5222": [], "nh": 36, "2545": [], "667": [], "842": [], "1057": [], "nm": 36, "4264": [], "927": [37, 44], "nv": 36, "6008": [], "1867": [], "6744": [], "175": [4, 35], "5451": [], "1680": [], "pa": 36, "ri": 36, "2651": [], "sc": 36, "5572": [], "sd": 36, "0037": [], "788": [], "8757": [], "ut": 36, "1640": [], "2902": [], "vt": 36, "9660": [], "382": [], "6595": [], "854": [], "wi": 36, "338": [], "8968": [], "wy": 36, "2285": [], "466": [], "6559": [], "491": [], "863": [], "beertax_dm": [], "fat_rate_dm": [], "000196": [], "168e": 38, "0407": [], "3805": [], "3775": [], "unadjust": [], "0006": 44, "1878": [], "0256": [], "2861": [], "2939": [], "8925": [], "2563": [], "8295": [], "060": [], "0162": [], "2245": [], "4582": [], "5398": [], "3521": [], "5330": [], "1264": [], "2329": [], "1533": [], "0951": [], "0160": [], "9261": [], "1267": [], "0635": [], "530": [], "covid": [], "pandem": [], "atc": [], "q4": [], "q5": [], "nobodi": [], "calori": [], "intak": [], "beverag": [], "hhid": 38, "intmonth": 38, "hurespli": 38, "hrhtype": 38, "minsamp": 38, "hrlonglk": 38, "hrsampl": 38, "hrhhid2": 38, "serial": 38, "hhnum": 38, "ym_file": [], "ym": [], "ch02": [], "ch35": 38, "ch613": 38, "ch1417": 38, "ch05": 38, "ihigrdc": 38, "docc00": 38, "dind02": 38, "000110339935453": 38, "januari": 38, "unmarri": 38, "fam": 38, "0701": 38, "07011": 38, "administr": [38, 43], "000110359424339": 38, "0711": 38, "07111": 38, "practition": 38, "000110651278174": 38, "0601": 38, "06011": 38, "wareh": 38, "007680515071194": 38, "0611": 38, "06112": 38, "implied_hourly_wag": [], "mean_femal": [], "mean_mal": [], "1204": [], "On": [43, 45], "827": [], "514": 28, "age_squar": [], "2625": [], "4441e": [], "122603": 38, "888e": [], "122599": 38, "833e": [], "062e": [], "6349": [], "443": [], "2740": [], "18297": [], "733": 44, "27620": [], "OF": [], "THE": [], "has_highschool": [], "has_ba": [], "m_educ": [], "8573": [], "4296e": [], "859e": [], "122597": [], "579e": [], "373e": [], "756e": [], "937": [], "496": [], "9737": [], "3958": [], "359": [], "555": [], "14257": [], "849": [], "20565": [], "673": [], "m_industri": [], "4253e": [], "851e": [], "122339": [], "854e": [], "1138": [], "8766": 36, "1701": [], "4193": [], "2477": [], "forestri": [], "1131": [], "1132": [], "8666": [], "3722": [], "793": [], "6372": [], "8220": [], "1133": [], "5656": [], "2100": [], "2999": [], "fish": [], "hunt": [], "trap": 28, "3510": [], "2980": [], "4528": [], "918": [], "agricultur": [], "6207": [], "2024": 37, "796": [], "750": 35, "oil": [], "392e": [], "3072": [], "coal": [], "2121": [], "528e": [], "2550": [], "metal": [], "ore": [], "2122": [], "384e": [], "4184": [], "087": [], "nonmetal": [], "miner": [], "quarri": [], "2123": [], "538e": [], "2391": 44, "495": [], "431": [], "773e": [], "1513": [], "electr": [], "transmiss": [], "pt": [], "2211": [], "162e": [], "1437": [], "s2212": [], "588e": [], "2480": [], "2212": [], "2685": [], "steam": [], "irrig": [], "22131": [], "22133": [], "5944": [], "3370": [], "2059": [], "9829": [], "sewag": [], "22132": [], "8219": [], "6616": [], "3000": [], "8332": [], "056e": [], "1126": [], "8347": [], "grain": 37, "oilse": [], "mill": [], "3111": [], "3112": [], "2351": [], "5394": [], "confectioneri": [], "3113": [], "8933": [], "3087": [], "1430": [], "fruit": [], "veget": [], "preserv": [36, 48], "specialti": [], "3114": [], "2238": [], "7515": [], "2458": [], "725": [], "911": [], "2580": [], "7057": [], "dairi": [], "6859": [], "2203": [], "2541": [], "slaughter": [], "3116": [], "8284": [], "2715": [], "3343": [], "311811": [], "1774": [], "8294": [], "2453": [], "6583": [], "957": [], "3034": [], "3118": [], "exc": [], "4588": [], "2350": [], "395": [37, 38], "2607": [], "392": [], "6608": [], "seafood": [], "miscellan": 36, "3117": [], "3119": [], "9160": [], "3042": [], "2207": [], "4833": [], "2859": [], "0902": [], "3663": [], "4321": [], "9058": [], "1956": [], "5223": [], "tobacco": [], "3122": [], "7325": [], "1456": [], "fiber": [], "yarn": [], "thread": [], "3131": [], "5169": [], "8050": [], "8640": [], "knit": [], "3132": [], "31324": [], "3205": [], "4471": [], "3167": [], "3003": [], "9414": [], "textil": [], "coat": [], "3133": [], "8272": [], "8244": 38, "carpet": [], "rug": [], "31411": [], "1664": [], "3750": [], "5371": [], "9331": [], "3206": [], "0346": [], "3374": [], "3407": [], "9819": [], "3151": [], "5465": [], "8039": [], "6312": [], "866": 37, "sew": [], "apparel": [], "3152": [], "3536": [], "0852": [], "2485": [], "422": [], "8408": [], "accessori": [], "3159": [], "1030": [], "1607": [], "9100": [], "footwear": [], "3162": [], "478e": [], "5328": [], "4338": [], "963": 38, "leather": [], "tan": [], "3161": [], "3169": [], "2374": [], "0553": [], "6157": [], "9694": [], "pulp": [], "paperboard": [], "3221": [], "264e": [], "8510": [], "32221": [], "9113": [], "32222": [], "32223": [], "32229": [], "7723": [], "9346": [], "3395": [], "1068": [], "3648": [], "2945": [], "1712": [], "7005": [], "548": [], "petroleum": [], "32411": [], "739e": [], "2234": [], "32419": [], "8945": [], "7389": [], "5426": [], "1689": [], "resin": [], "synthet": [], "rubber": [], "filament": [], "7943": [], "2560": [], "2408": [], "3222": [], "chemic": [], "3253": [], "754e": [], "8765": [], "pharmaceut": 45, "medicin": [43, 45], "3254": [], "377e": [], "paint": [], "adhes": [], "b46": [], "3255": [], "586e": [], "3584": [], "8831": [], "soap": [], "compound": [], "cosmet": [], "3256": [], "137e": [], "2837": [], "5809": [], "3251": [], "3259": [], "plastic": [], "3261": [], "4034": [], "0463": [], "1804": [], "7571": [], "686": [], "tire": [], "32621": [], "298e": [], "3637": [], "570": [], "5854": [], "32622": [], "32629": [], "3975": [], "2268": [], "3134": [], "2168": [], "potteri": [], "ceram": [], "32711": [], "2984": [], "4031": [], "6013": [], "8802": [], "clai": [], "32712": [], "2829": [], "502": [], "8221": [], "glass": [], "3272": [], "2191": [], "7411": [], "2614": [], "2932": [], "7315": [], "cement": [], "lime": [], "gypsum": [], "3273": [], "3274": [], "6765": [], "1364": [], "2187": [], "080": 37, "2478": [], "3279": [], "3390": [], "5201": [], "2515": [], "9296": [], "iron": [], "steel": [], "3311": [], "098e": [], "1963": [], "7132": [], "aluminum": [], "3313": [], "3558": [], "601": [], "674": [], "6098": [], "nonferr": [], "3314": [], "9701": [], "8019": [], "3984": [], "1891": [], "foundri": [], "3315": [], "5445": [], "2055": [], "3417": [], "1252": [], "forg": [], "stamp": [], "1715": [], "0691": [], "3721": [], "645": [], "9009": [], "cutleri": [], "8808": [], "3925": [], "4913": [], "073": [37, 44], "3324": [], "7136": [], "9478": [], "1831": [], "896": [], "3546": [], "screw": [], "nut": 57, "bolt": [], "3327": [], "3821": [], "1968": [], "052": 36, "824": [], "7679": [], "engrav": [], "heat": [], "alli": [], "3328": [], "5874": [], "3997": [], "3353": [], "752": [], "623": [], "ordnanc": [], "332992": [], "332995": [], "139e": [], "3325": [], "3326": [], "3329": [], "332993": [], "332994": [], "5931": [], "6094": [], "1880": [], "2244": [], "9618": [], "332": [], "4324": [], "5660": [], "7461": 44, "33311": [], "009e": [], "2528": [], "5132": [], "33312": [], "33313": [], "421e": [], "2319": 44, "9664": [], "3095": [], "3463": [], "4982": [], "metalwork": [], "3335": [], "4830": [], "2648": [], "600": 36, "1694": [], "turbin": [], "3336": [], "8186": [], "2951": [], "3879": [], "582": [], "955": [], "3332": [], "3334": [], "3339": [], "9758": [], "8177": [], "6801": [], "3365": 44, "389e": [], "2296": [], "audio": [], "3342": [], "728e": [], "2782": [], "electromed": [], "instrument": [], "876e": [], "2124": [], "831": 37, "electron": [], "3344": [], "3346": [], "893e": [], "1535": [], "329": [], "applianc": [], "3352": [], "9869": [], "3063": [], "3295": [], "3351": [], "092e": [], "7284": [], "vehicl": [], "3361": [], "3362": [], "3363": [], "8727": [], "1319": [], "6359": [], "aircraft": [], "336411": [], "336413": [], "999e": [], "1454": [], "743": [], "aerospac": [], "336414": [], "336415": [], "336419": [], "932e": [], "3846": [], "railroad": [], "stock": 55, "102e": [], "5066": [], "1084": [], "boat": [], "3366": [], "779": [], "7078": [], "3369": [], "8638": [], "4587": [], "8438": [], "9542": [], "sawmil": [], "wood": [], "3211": [], "4960": [], "2021": 28, "9599": [], "veneer": [], "plywood": [], "5189": [], "9036": [], "4529": [], "3687": [], "prefabr": [], "mobil": 43, "321991": [], "321992": [], "5435": [], "6788": [], "4140": [], "2680": [], "3936": [], "2236": [], "7907": [], "2156": [], "9836": [], "1298": [], "5612": [], "3391": [], "411e": [], "1565": [], "amus": [], "sport": [], "33992": [], "33993": [], "2138": [], "4970": [], "2826": [], "757": 44, "3401": [], "7678": [], "3399": [], "4899": [], "8913": [], "1693": [], "893": [], "1580": [], "1163": [], "6909": [], "merchant": [], "wholesal": [], "4231": [], "8269": [], "6204": [], "2427": [], "3511": [], "furnitur": [], "furnish": [], "4232": [], "7603": [], "698": [], "4895": [], "lumber": [], "4233": [], "7793": [], "7344": [], "2415": [], "3060": [], "042": [37, 44], "commerci": 56, "4234": [], "1896": 37, "519": 44, "2031": [], "4274": [], "9198": [], "823": [], "7558": [], "4195": [], "076e": [], "2213": [], "6418": [], "4265": [], "7256": [], "2269": [], "4238": [], "8008": [], "recycl": [], "42393": [], "9854": [], "3166": [], "6248": [], "6166": [], "durabl": [], "4239": [], "9834": [], "9299": [], "3813": [], "2360": [], "4241": [], "9631": [], "5826": [], "4061": [], "1671": [], "sundri": [], "wholesalerss": [], "4242": [], "4246": [], "663e": [], "2150": [], "731": [], "notion": [], "4243": [], "8318": [], "9813": [], "1937": [], "groceri": [], "4244": [], "5788": [], "8515": [], "1461": [], "2923": [], "8653": [], "farm": [], "4245": [], "2950": 37, "5444": [], "3014": [], "2957": [], "8858": [], "4247": [], "555e": [], "2434": [], "368": [], "4248": [], "5327": [], "6504": [], "2713": [], "42491": [], "3704": [], "nondur": [], "4249": [], "5692": [], "3790": [], "2543": [], "agent": [], "broker": [], "4251": [], "1193": [], "5585": [], "3485": [], "8025": [], "3868": [], "4101": [], "7998": [], "8077": [], "4411": [], "8101": [], "2705": [], "1331": [], "817": [], "5490": [], "4412": [], "7648": [], "0634": [], "2446": [], "850": 38, "2852": [], "4413": [], "1683": 38, "3592": [], "3007": [], "1227": [], "7563": [], "1726": [], "498": [], "4611": [], "443111": [], "5737": [], "7708": [], "6879": [], "7784": [], "0374": [], "1730": [], "4392": [], "4441": [], "44413": [], "1277": [], "4693": [], "1425": [], "4072": [], "hardwar": [], "2386": [], "327": [], "5456": [], "3896": [], "721": [], "lawn": [], "garden": [], "4442": [], "2166": [], "2082": [], "1915": [], "4451": [], "1616": [], "4452": [], "2629": [], "8689": [], "2684": [], "980": [], "7891": [], "077": [], "wine": [], "liquor": [], "4453": [], "1459": [], "4922": [], "7841": [], "689": [], "pharmaci": [], "44611": [], "4348": [], "1489": [], "512": [], "8283": [], "4951": [], "1951": [], "4459": [], "gasolin": [], "station": [], "1103": [], "5162": [], "1800": [], "4633": [], "2426": [], "cloth": [], "shoe": [], "44821": [], "4483": [], "2557": [], "3712": [], "1658": [], "1941": [], "5779": [], "3418": [], "4758": [], "8641": [], "jewelri": [], "luggag": [], "2215": [], "2885": [], "6310": [], "4999": [], "5275": [], "2639": [], "7650": [], "1114": [], "6393": [], "836": [], "needlework": [], "45113": [], "668e": [], "7083": [], "2800": 38, "5295": [], "1476": [], "5755": [], "8103": [], "45121": [], "2523": [], "8203": [], "450": [], "5079": [], "s45211": 38, "2063": [], "7215": [], "1315": [], "4641": [], "merchandis": [], "1100": [], "1773": [], "2375": [], "518": [], "4577": [], "florist": [], "4531": [], "3223": [], "4774": [], "6135": [], "stationeri": [], "45321": [], "5986": [], "0326": [], "2732": [], "4533": [], "8427": [], "7584": [], "2908": [], "2727": [], "gift": [], "novelti": [], "souvenir": [], "45322": [], "3744": [], "5060": [], "3044": [], "4539": [], "4518": [], "5257": [], "1904": [], "454111": [], "8738": [], "4826": [], "auction": [], "454112": [], "6663": [], "3104": [], "454113": [], "5161": [], "2790": [], "vend": [], "4542": [], "7982": [], "6144": [], "1008": [], "45431": [], "2986": [], "3140": [], "545": 35, "8566": [], "45439": [], "4085": [], "6284": [], "3751": [], "717": [], "3267": [], "4490": [], "2046": [], "3477": [], "4544": [], "475": 52, "208e": [], "1622": [], "8898": [], "rail": [], "1954": [], "483": [], "727e": [], "truck": 38, "7630": [], "0133": [], "1291": [], "5098": [], "bu": [], "urban": 48, "transit": 57, "4851": [], "4852": [], "4855": [], "4859": [], "9145": [], "1719": [], "5829": [], "taxi": [], "limousin": [], "4853": [], "8472": [], "8000": [], "673e": [], "480": [], "scenic": [], "sightse": [], "2172": [], "4842": [], "8118": [], "incident": [], "6852": [], "5261": [], "postal": 36, "6028": [], "1553": [], "9072": [], "courier": [], "messeng": [], "7625": [], "2671": [], "4540": [], "storag": [], "2103": [], "1611": [], "554": 44, "891": 35, "2205": [], "newspap": [], "51111": [], "1191": [], "2376": [], "3465": [], "5848": [], "softwar": [], "5111": [], "2354": [], "685": [], "346": 44, "5617": [], "5112": [], "952": 37, "motion": [], "5121": [], "2032": [], "5122": [], "6398": [], "3136": [], "radio": [], "televis": [], "broadcast": [], "cabl": [], "5151": [], "5152": [], "5175": [], "1620": [], "936": [], "8595": [], "portal": [], "51913": [], "618e": [], "2601": [], "wire": [], "telecommun": [], "carrier": [], "5171": [], "524e": [], "515e": [], "1711": [], "host": [42, 56], "5182": [], "263e": [], "3120": [], "6518": [], "archiv": [], "51912": [], "4295": [], "1435": [], "2627": [], "9445": [], "5191": [], "52211": [], "52219": [], "436e": [], "1242": [], "561": [], "52212": [], "52213": [], "5783": [], "7155": [], "2066": [], "depositori": [], "814e": [], "1415": [], "810": [], "commod": 35, "fund": 43, "invest": [42, 49, 57], "1217": [], "9944": [], "estat": 48, "2280": [], "1274": [], "6691": [], "automot": [], "leas": [], "5321": [], "2069": [], "0345": [], "2606": [], "7178": [], "tape": [], "disk": [], "53223": [], "6701": [], "784": [], "53221": [], "53222": [], "53229": [], "5323": [], "1012": [], "0036": 37, "3219": [], "5298": [], "intang": [], "asset": 28, "5324": [], "446e": [], "2815": [], "8942": [], "607": [], "5411": [], "004e": [], "1333": [], "029": 44, "prepar": [], "bookkeep": [], "payrol": [], "5412": [], "386e": [], "1453": [], "architectur": [], "5413": [], "585e": [], "5414": [], "6793": [], "0642": [], "2382": [], "5415": [], "509e": [], "1205": [], "5416": [], "045e": [], "5417": [], "997e": [], "1515": [], "5418": [], "1681": [], "veterinari": [], "54194": [], "5952": [], "7522": [], "1921": [], "2186": [], "809": [], "9718": [], "5419": [], "226e": [], "8199": [], "enterpris": [], "7092": [], "9170": [], "2364": [], "5613": [], "5211": [], "0769": [], "1475": [], "2318": [], "5614": 38, "2759": [], "4388": [], "1603": [], "633": [], "5902": [], "reserv": [], "5615": [], "8363": [], "5104": [], "2115": [], "954": [], "4217": [], "5616": [], "6381": [], "1510": [], "2835": [], "3085": [], "dwell": [], "56173": [], "2131": [], "7452": [], "1447": [], "2910": [], "1473": [], "5799": [], "5611": [], "5619": [], "3873": [], "7759": [], "wast": [], "remedi": [], "6367": [], "7567": [], "1659": [], "724": [], "9620": [], "elementari": [], "secondari": [], "6111": [], "0227": [], "1556": [], "2906": [], "junior": [], "6112": [], "6113": [], "6187": [], "1199": [], "6114": [], "6115": [], "8042": [], "8479": [], "6116": [], "6117": [], "7034": [], "8796": [], "1821": [], "physician": [], "6211": [], "1328": [], "8253": [], "dentist": [], "6212": [], "7495": [], "9965": [], "4369": [], "chiropractor": [], "62131": [], "2199": [], "3757": [], "3638": [], "4932": [], "optometrist": [], "62132": [], "3748": [], "7228": [], "2592": [], "6213": [], "4644": [], "4511": [], "2678": [], "outpati": [], "6214": [], "6209": [], "1278": [], "3703": [], "8715": [], "6216": [], "1292": [], "3263": [], "1418": [], "1487": [], "6215": [], "6219": [], "9278": [], "7353": [], "1326": [], "6678": [], "1143": [], "8956": [], "6231": [], "1585": [], "6208": [], "1312": [], "4158": [], "residenti": [38, 48], "6232": 38, "6233": 38, "6239": 38, "0647": [], "1470": [], "2775": [], "2989": [], "6241": [], "1112": [], "7260": [], "3728": [], "1503": [], "6242": [], "3755": [], "2794": [], "1722": [], "9234": [], "vocat": [], "rehabilit": [], "6243": [], "1419": [], "3375": [], "716": [], "1185": [], "child": [40, 48], "6244": [], "3177": [], "7836": [], "1434": [], "5989": [], "artist": [], "art": 55, "spectat": [], "5905": [], "7767": [], "1907": [], "2167": [], "9644": [], "museum": [], "galleri": [], "4334": [], "4099": [], "71395": [], "8548": [], "7123": [], "5529": [], "2288": [], "gambl": [], "713": [], "8607": [], "1324": [], "4289": [], "901": 37, "accommod": 42, "7211": [], "2165": [], "2804": [], "2442": [], "506": [], "park": [], "camp": [], "board": 50, "7212": [], "7213": [], "6767": [], "restaur": [], "722": [], "7224": [], "3845": [], "3157": [], "1378": [], "6277": [], "0522": [], "2704": [], "977": [], "8111": [], "811192": [], "4106": [], "0577": [], "1389": [], "1383": [], "6828": [], "wash": [], "3871": [], "3298": [], "2919": [], "1851": [], "8112": [], "8832": [], "3202": [], "9258": [], "8113": [], "5347": [], "4836": [], "8114": [], "81143": [], "4203": [], "0746": [], "3150": [], "barber": [], "812111": [], "9681": [], "4421": [], "9867": [], "7467": [], "beauti": [], "salon": [], "812112": [], "1777": [], "2348": [], "nail": [], "812113": [], "81219": [], "8031": [], "2039": [], "dryclean": [], "laundri": [], "8123": [], "2282": [], "7262": [], "2206": [], "938": [], "2042": [], "funer": [], "cemeteri": [], "crematori": [], "8122": [], "2626": [], "3135": [], "8771": [], "3518": [], "8129": [], "2217": [], "4546": [], "4147": [], "877": [], "religi": [], "8131": [], "2863": [], "7055": [], "5780": [], "civic": [], "grantmak": [], "8133": [], "8513": [], "9769": [], "961": [], "5644": [], "81393": [], "934e": [], "polit": [43, 44], "646e": [], "2179": [], "3089": [], "5909": [], "1865": 44, "765": [], "6746": [], "execut": [], "legisl": 57, "92111": [], "92112": [], "92114": [], "92115": [], "6798": [], "3444": [], "1320": [], "4210": [], "9385": [], "92113": [], "795": [], "92119": [], "9480": [], "2676": [], "justic": [], "8924": [], "4905": [], "1197": [], "6577": [], "787": [], "6796": [], "9979": [], "1359": [], "708": [], "4131": [], "environment": 50, "8922": [], "1751": [], "econom": [28, 43, 45, 50, 55], "1490": [], "affair": [], "755e": [], "1346": [], "991e": [], "762": [], "815": [], "3093": [], "2084": [], "14403": [], "21479": [], "smallest": [37, 49], "eigenvalu": 37, "singular": 37, "fell": [], "12995": [], "10860": [], "2134": [], "read_dta": [], "sm": 37, "pvalu": [30, 37], "ttest_ind": 37, "03": [35, 37], "statisticallli": [], "spuriou": 37, "quick": [28, 37, 43, 44, 55], "dirti": [35, 37], "1744": 37, "1760": 37, "4917640058792273": [], "darn": 37, "isol": [37, 45, 49], "ness": 37, "t2": 37, "p2": 37, "callback": [35, 37], "Thats": [], "1f": [], "3f": 35, "4870": 37, "1128": 37, "4868": 37, "1141": 37, "0965": 37, "0320": 37, "2969": 37, "18927": 37, "heteroscedast": [37, 44], "02": [35, 37, 44], "4861": 37, "0821": 37, "0017": 37, "953e": 37, "0025": 37, "0047": 37, "0316": 37, "0032": 37, "0186": 37, "0112": 37, "18631": 37, "non_college_grad": [], "1116": [], "4863": [], "1161": [], "0759": [], "0090": [], "0281": [], "0123": 37, "0188": [], "0110": [], "18624": [], "noncolleg": [], "salt": 37, "underpow": 37, "reject": [28, 37, 46], "null": [28, 35, 37], "college_grad": [], "00198": [], "3499": [], "0736": [], "0286": [], "0019": [], "0108": [], "0197": [], "14157": [], "90e": [], "1366": [], "1361": [], "0408": [], "0062": [], "592": [], "0460": [], "4394": [], "1122": 37, "4860": 37, "1187": 37, "0807": 37, "0021": 37, "971": 37, "0001": [35, 37], "0026": 37, "947": 37, "0048": 37, "0287": 37, "0038": 37, "18630": 37, "insignific": 37, "fifteen": [], "percent": 44, "caveat": 37, "acknowledg": 37, "workplac": [37, 38], "unrel": 37, "broader": 37, "perhap": [28, 38, 45, 48], "intra": 38, "regard": 38, "has_college_educ": 38, "8393": 38, "4365e": 38, "873e": 38, "639e": 38, "7144": 38, "054e": 38, "18030": 38, "27634": 38, "semi": 38, "colon": 38, "suppress": 38, "voil\u00e0": 38, "plm": 38, "whatev": [38, 55, 57], "typeerror": 38, "str": [36, 38], "fe_group": 38, "group_cod": 38, "int16": 38, "semicolon": 38, "nce8": [36, 37, 38], "opt": [35, 36, 37, 38], "1871": 38, "valuewarn": [37, 38], "rank": [28, 37, 38], "bottom": [28, 38, 46], "ordinari": 38, "dimens": 38, "catch": [38, 57], "multiindex": 38, "hate": 38, "multi": [38, 49], "43344": 38, "19200": 38, "60000": 38, "32640": 38, "38400": 38, "cps_w_multiindex": 38, "1183": 38, "missingvaluewarn": 38, "__init__": 38, "exog": 38, "check_rank": 38, "1414": 38, "6716": 38, "122341": 38, "747": 38, "593e": 38, "886e": 38, "065e": 38, "9511": 38, "665e": 38, "405e": 38, "924e": 38, "365p": 38, "entityid": 38, "0x2f61875e0": 38, "kid": [35, 39, 40, 43], "perspect": [39, 42], "stabl": [39, 45], "uh": 39, "local": [28, 39, 50], "sensit": [39, 47, 56], "ton": [35, 39, 50], "nyc": 39, "demean": 39, "y_i": 39, "hurrican": 39, "dip": 39, "disrupt": 39, "stick": 39, "algebra": 39, "slope": [40, 44], "shock": 40, "chief": 40, "uncorrel": 40, "leverag": 40, "htose": 40, "higherarch": 40, "hierarhc": 40, "hausman": 40, "accompanyingli": 40, "frequent": 40, "wavi": 40, "confess": 40, "diagon": 40, "smarter": 40, "princip": 40, "execis": 40, "mix": [35, 36, 40], "intens": 41, "wrestl": [41, 54, 55, 56], "aris": [28, 41], "unavoid": 41, "exposit": 41, "comment": 41, "facet": 41, "embrac": [28, 41], "urg": 41, "emblemat": 41, "intellectu": 41, "arbitrag": 41, "port": 41, "insight": [41, 52], "richli": 41, "unfamiliar": 41, "orient": 41, "infuriatingli": 41, "salient": 41, "consolid": 41, "transcrib": 41, "concis": 41, "depriv": 41, "connect": [41, 52], "bedrock": 41, "lectur": [4, 41, 47], "prolong": 41, "modern": 41, "flit": 41, "cultiv": 41, "hello": 42, "promis": [42, 44, 49], "throw": [42, 46], "intellig": [42, 50], "ticket": 42, "pilot": [28, 42, 48], "reap": 42, "sizeabl": 42, "burgeon": 42, "pitfal": 42, "endeavor": [42, 55], "curricula": 42, "hardest": 42, "deliveri": 42, "unifi": 42, "complement": 42, "depth": [42, 47], "introduct": 42, "heavili": 42, "interdisciplinari": 42, "grasp": 42, "inferenti": 42, "concurr": 42, "comfort": [28, 35, 36, 42], "facilit": 42, "collabor": [42, 56], "bilingu": 42, "git": 42, "pickup": 42, "workshop": 42, "preliminari": [42, 57], "schedul": [42, 48], "constrast": 43, "stream": 43, "subscript": [43, 50], "signup": 43, "hing": 43, "email": 43, "music": 43, "unverifi": 43, "banal": 43, "textbook": 43, "sutva": [43, 49], "generaliz": 43, "elit": 43, "univer": 43, "emori": 43, "vanderbilt": 43, "unc": 43, "whole": [43, 45, 47, 50, 57], "luxuri": 43, "detroit": 43, "wealth": [28, 43], "cultur": 43, "brand": 43, "imag": [43, 50], "unrepres": 43, "unsurprisingli": 43, "dose": 43, "asian": 43, "island": 43, "sclerosi": 43, "mutat": 43, "descend": 43, "longest": 43, "psychologi": 43, "volunt": 43, "western": 43, "democrat": [43, 44, 50, 55], "facial": 43, "recognit": 43, "overlook": 43, "declar": 43, "billboard": 43, "infinit": [11, 43], "perman": 43, "tv": 43, "000th": 43, "famou": 43, "india": [28, 43], "clinic": [43, 45], "absente": 43, "ngo": [28, 43], "mit": 43, "economist": 43, "clock": 43, "punish": 43, "attend": [28, 43], "doubl": 43, "exempt": 43, "equilibrium": 43, "angu": 43, "deaton": 43, "nanci": 43, "cartwright": 43, "rct": 43, "monitor": 43, "environ": [43, 50], "rand": [35, 43], "particip": 43, "catastroph": 43, "coverag": 43, "oregon": 43, "ohp": 43, "medicaid": 43, "lotteri": 43, "elig": [28, 43, 56], "winner": 43, "uninsur": 43, "expans": 43, "tension": 43, "interfac": 43, "dog": 43, "bark": 43, "hurri": 43, "gloss": 44, "deserv": 44, "registr": 44, "republican": 44, "tenur": 44, "faculti": 44, "turnout": 44, "north": [44, 55], "carolina": [44, 55], "dichotom": 44, "problemat": [44, 45, 49], "css_tutori": 44, "exercise_data": 44, "voter_turnout": 44, "unaffili": 44, "7416": 44, "07": [35, 44], "5768": 44, "9919": 44, "154e": 44, "9917": 44, "156e": 44, "0075": 44, "4426": 44, "2128": 44, "5748": 44, "150e": 44, "151e": 44, "7754": 44, "0562": 44, "2361": 44, "343": 44, "5735": 44, "148e": 44, "9916": 44, "7988": 44, "0797": 44, "0606": 44, "2341": 44, "dem": 44, "linearhypothesi": 44, "t_test": 44, "contrastresult": 44, "c0": 44, "0191": 44, "voila": 44, "7383": 44, "436": 44, "pro": [44, 47], "alon": 44, "age_x_femal": 44, "917": 44, "5764": 44, "9915": 44, "157e": 44, "6961": 44, "0933": 44, "0009": 44, "0015": 44, "1883": 44, "2388": 44, "340": 44, "declin": 44, "plu": 44, "simplest": 44, "beta_2": [44, 47], "beta_3": [44, 47], "voted_": 44, "linearli": 44, "old_x_femal": 44, "5717": 44, "144e": 44, "147e": 44, "6761": 44, "1015": 44, "0138": 44, "0111": 44, "1820": 44, "peak": 44, "ggplot": 44, "ae": 44, "plotninewarn": 44, "implementedfor": 44, "9223363270683622540": 44, "lingo": 45, "homogen": 45, "heterogen": 45, "fda": 45, "approv": 45, "chronic": [45, 55], "hail": 45, "changer": 45, "undergo": 45, "minu": 45, "crippl": 45, "disabl": 45, "bucket": 45, "proportion": 45, "latino": 45, "indirect": 45, "spillov": 45, "vaccin": 45, "immun": 45, "sick": 45, "indirectli": 45, "embodi": 45, "newsfe": 45, "apart": 45, "youtub": [46, 47], "nitti": 46, "gritti": 46, "winnow": 46, "proce": [36, 46, 57], "dissimilar": 46, "unpair": 46, "thrown": 46, "root": 46, "euclidean": 46, "strength": 46, "weak": 46, "strike": 46, "strict": 46, "maximium": 46, "gari": [46, 47], "minunt": 46, "ho": 47, "imai": 47, "stuart": 47, "streamlin": 47, "concepu": 47, "framwork": 47, "insert": 47, "tremend": 47, "02315": 47, "extrapol": [47, 55], "funni": 47, "imbalanc": [35, 47], "blue": 47, "badli": 47, "uncomfort": 47, "drew": 47, "parabola": 47, "invert": 47, "theoret": [47, 57], "nervou": 47, "grei": 47, "determinist": 47, "situt": 47, "con": 47, "fashion": 47, "impov": 47, "charl": 48, "ketter": 48, "1920": 48, "1947": 48, "invok": 48, "kingdom": 48, "fundat": 48, "ancient": 48, "ruin": [48, 55], "poster": 48, "pile": 48, "archeologist": 48, "bone": 48, "toothbrush": 48, "detect": [28, 48], "archeolog": 48, "ground": 48, "penetr": 48, "radar": 48, "scan": [48, 55], "foundat": [48, 55], "spot": 48, "glanc": 48, "feasabl": 48, "excav": 48, "importantli": 48, "sorri": 48, "topologi": 48, "hydrologi": 48, "soil": 48, "geographi": [48, 55], "emmin": 48, "doabl": 48, "africa": 48, "infant": 48, "mortal": 48, "migrant": 48, "literatur": [28, 49], "warrant": 49, "unexpect": 49, "srm": 49, "optimist": 49, "hmmm": 49, "rock": 49, "solid": [49, 52, 57], "benjamini": 49, "hochberg": 49, "westfal": 49, "bonferroni": 49, "conserv": 49, "unrealist": 49, "exhaust": [50, 56], "ethnic": 50, "tabular": 50, "shapefil": 50, "shorter": 50, "nhgi": 50, "stabil": 50, "wharton": 50, "membership": 50, "\u00e1": 50, "cart": 50, "microsoft": 50, "planetari": 50, "wildlif": 50, "aw": 50, "registri": 50, "genom": 50, "nih": 50, "telescop": 50, "mortgag": [50, 53], "overst": 50, "freeli": 50, "conflict": 50, "terror": 50, "pollut": 50, "flood": 50, "freedom": 50, "airbnb": [50, 56], "traffic": 50, "underpin": [50, 57], "geospati": 50, "ihgi": 50, "internation": 50, "privaci": [11, 50], "withheld": 50, "raster": 50, "nasa": 50, "elev": 50, "plant": 50, "grow": 50, "wavelength": 50, "crop": 50, "imageri": 50, "infrastructur": 50, "factori": 50, "offici": [50, 55], "obscen": 50, "noaa": 50, "govt": 50, "awesom": 50, "skeptic": [52, 57], "mindset": 52, "untest": 52, "8am": 52, "morn": 52, "annoi": 52, "rubric": 52, "sparingli": 52, "exception": 52, "425": 52, "demonstr": [28, 52, 57], "meati": 52, "paragraph": [52, 57], "succinct": 52, "superfici": 52, "skate": 52, "surfac": 52, "dedic": 52, "prompt": [35, 52, 55], "stuck": 54, "illus": 54, "debug": 54, "unse": 54, "prece": 54, "fragment": 55, "disciplin": 55, "myopic": 55, "strive": 55, "merit": 55, "inquiri": 55, "unseen": 55, "unobserv": 55, "desir": 55, "opioid": 55, "overdos": 55, "pain": 55, "enact": 55, "ger": 55, "aspect": [55, 57], "phenomena": 55, "centuri": 55, "appreci": 55, "arros": 55, "carmen": 55, "reinhart": 55, "kenneth": 55, "rogoff": 55, "eight": 55, "folli": 55, "hundr": 55, "sixti": 55, "pundit": 55, "regularli": 55, "decri": 55, "crise": [55, 56], "feroc": 55, "wipe": 55, "death": 55, "hiv": 55, "gai": 55, "dy": 55, "cigarett": 55, "lung": 55, "climat": 55, "quot": 55, "temperatur": 55, "earth": 55, "unfair": 55, "noodl": 55, "casual": 55, "fancier": 55, "necessit": 55, "novel": 55, "shed": 55, "latent": 55, "rare": 55, "vera": 55, "rubin": 55, "rotat": [35, 55], "star": 55, "galaxi": 55, "ken": [55, 57], "crisi": 55, "truth": 55, "demand": 55, "judgement": 55, "curv": 55, "physic": 55, "particl": 55, "she": 55, "cold": 55, "minimum": [28, 55], "iowa": 55, "presidenti": 55, "causus": 55, "politician": 55, "presid": 55, "awfulli": 55, "occasion": 55, "stumbl": 55, "reiter": 55, "circumstanti": 55, "nutshel": [55, 57], "father": 55, "causat": 55, "simplif": 55, "wealthi": 55, "caucus": 55, "trendi": 55, "mammogram": 55, "radiologist": 55, "tumor": 55, "tomorrow": 55, "mri": 55, "sml": 55, "garbag": 55, "analogu": 55, "ridicul": 55, "benign": 55, "meaningless": 55, "contextu": 55, "februari": 56, "13th": 56, "12pm": 56, "reinvent": 56, "wheel": 56, "revis": 56, "pedestrian": 56, "freewai": 56, "bureaucrat": 56, "unclear": 56, "fraud": 56, "deter": 56, "entitl": 56, "recipi": 56, "largest": 56, "shoot": 56, "mental": 56, "societ": 56, "tenni": 56, "hinder": 56, "tournament": 56, "phone": 56, "churn": 56, "yourselv": 56, "curat": 56, "translat": 57, "guidelin": [28, 57], "policymak": 57, "slowli": 57, "lai": 57, "graf": 57, "journalist": 57, "wall": 57, "farther": 57, "broadli": 57, "conclud": 57, "brief": 57, "drown": 57, "bog": 57, "linchpin": 57, "hook": 57, "caught": 57, "player": 57, "laid": 57, "fellow": 57, "cross": 57, "dot": 57, "masteri": 57, "deligi": 57, "erron": 57, "homework": 57, "afford": 57, "honest": 57, "humil": 57, "sought": 57, "appendic": 57, "bore": 57, "opinion": 57, "exercise_abtest": 11, "ex4_avg_oec": 11, "ex5_avg_guardrail": 11, "ex7_ttest_pvalu": 11, "ex9_ttest_pvalue_click": 11, "ex11_guard_": 11, "ex11_guard_pvalu": 11, "ex11_oec_": 11, "ex11_oec_pvalu": 11, "ex14_se_treat": 11, "assist": [11, 36], "finit": 11, "government": 28, "bandhan": 28, "west": 28, "bengal": 28, "cash": 28, "transfer": 28, "virtuou": 28, "forti": 28, "poorest": 28, "ultra": 28, "tup": 28, "brac": 28, "bangladesh": 28, "multifacet": 28, "unlock": 28, "abhijit": 28, "banerje": 28, "esther": 28, "duflo": 28, "garima": 28, "sharma": 28, "uncondit": 28, "stipend": 28, "rupe": 28, "pariti": 28, "ppp": 28, "capita": 28, "menu": 28, "cow": 28, "goat": 28, "convers": [28, 37], "bandham": 28, "set_opt": [35, 36, 37], "mode": [35, 36, 37], "copy_on_writ": [35, 36, 37], "hh": [], "cash_transf": [], "tup_cash_transf": [], "pc_exp_month_bl": 28, "pc_exp_month_el1": [], "pc_exp_month_el2": 28, "pc_exp_month_el3": [], "152084": [], "816093": [], "286613": [], "728490": [], "388021": [], "816334": [], "899952": [], "277290": [], "698770": [], "222298": [], "547070": [], "601420": [], "839483": [], "802390": [], "763836": [], "879470": [], "511020": [], "258686": [], "585903": [], "133247": [], "930300": [], "072914": [], "625847": [], "612293": [], "582490": [], "765170": [], "787525": [], "300316": [], "075207": [], "112366": [], "774239": [], "511593": [], "183617": [], "493570": [], "494990": [], "819830": [], "082634": [], "052082": [], "_bl": 28, "expend_avg": [], "expend_std": [], "ttestindpow": 28, "instanti": 28, "my_pow": 28, "sqrt": 28, "plot_pow": 28, "solve_pow": 28, "effect_s": 28, "unrest": 28, "nobs1": 28, "treat_ob": [], "0f": [35, 36], "obscur": 28, "thirty_percent_lift": [], "nthat": [], "modifi": [28, 35], "bump": 35, "min_effect": [], "usd": [], "pct": [], "scenario": 28, "arang": [28, 35], "nob": [], "ate_2": [], "ate_2_in_std": [], "num_treat": [], "num_control": [], "final_pow": [], "recalcul": [], "10_000": [], "ate": [], "hh_treated_sampl": [], "hh_control_sampl": [], "ttest_result": [], "ballpark": [], "lean": [], "hamlet": 28, "quintil": 28, "seven": 28, "ii": 28, "iii": 28, "landhold": 28, "acr": 28, "iv": 28, "ownership": 28, "vi": [28, 36], "vii": 28, "beg": 28, "intent": 28, "uptak": 28, "simul": 28, "bootstrap": 28, "origination_colnam": 36, "cltv": 36, "seller": 36, "conform": 36, "harp": 36, "valuat": 36, "service_colnam": 36, "defect": 36, "settlement": 36, "modif": 36, "defer": 36, "recoveri": 36, "loss": 36, "eltv": 36, "accru": 36, "sep": [35, 36], "ipykernel_20548": 36, "3651092739": 36, "dtypewarn": [35, 36], "low_memori": [35, 36], "163509": 36, "200404": 36, "201903": 36, "93000": 36, "frm": 36, "sf": 36, "63300": 36, "f04q10238951": 36, "abn": 36, "amro": 36, "inc": 36, "citimortgag": 36, "200509": 36, "year_first": 36, "month_first": 36, "quarter_first": 36, "year_decimal_first": 36, "year_orig": 36, "quarter_orig": 36, "same_quart": 36, "next_quarter_same_year": 36, "next_quarter_next_year": 36, "year_report": 36, "month_report": 36, "year_decimal_report": 36, "sort_index": 36, "0833": 36, "14436": 36, "16613": 36, "16970": 36, "1667": 36, "17088": 36, "2500": 36, "17051": 36, "3333": 36, "16975": 36, "4167": 36, "16899": 36, "5000": 36, "16788": 36, "5833": 36, "16629": 36, "6667": 36, "16494": 36, "7500": 36, "16342": 36, "16203": 36, "9167": 36, "16038": 36, "15861": 36, "15683": 36, "15535": 36, "15370": 36, "15192": 36, "15052": 36, "14940": 36, "14823": 36, "14704": 36, "14586": 36, "14466": 36, "13159": 36, "11743": 36, "10369": 36, "7129": 36, "5561": 36, "3416": 36, "2342": 36, "1397": 36, "two_year": 36, "ever_delinqu": 36, "earlier": 36, "471": 36, "isna": 36, "has_msa": 36, "msa_has_delinqu": 36, "no_delinqu": 36, "few_delinqu": 36, "2479956568": 36, "futurewarn": [35, 36], "callabl": 36, "0x104c5a480": 36, "seriesgroupbi": 36, "bound": [36, 37], "denver": 36, "9999": 36, "for_ml": 36, "punctuat": 36, "credit_scor": 36, "first_time_homebuyer_flag": 36, "mortgage_insurance_percentage_mi_": 36, "occupancy_statu": 36, "original_debttoincome_dti_ratio": 36, "original_upb": 36, "original_loantovalue_ltv": 36, "original_interest_r": 36, "prepayment_penalty_mortgage_ppm_flag": 36, "amortization_type_formerly_product_typ": 36, "property_st": 36, "property_typ": 36, "original_loan_term": 36, "interest_only_io_ind": 36, "loan_sequence_numb": 36, "12117": 36, "pu": 36, "3224": 36, "1741": 36, "mh": 36, "eyebal": 36, "designmatrix": 36, "17052": 36, "dc": 36, "gu": 36, "OR": 36, "asarrai": 36, "this_obj": 36, "x_test": [35, 36], "y_test": [35, 36], "confusion_matrix": [35, 36], "gb": 36, "y_pred": 36, "y_pred_proba": 36, "auc_scor": 36, "conf_matrix": 36, "preprocess": 36, "_label": 36, "dataconversionwarn": 36, "1d": 36, "n_sampl": 36, "ravel": 36, "column_or_1d": 36, "3146": 36, "domin": 36, "pd_confusion_matrix": 36, "squeez": [35, 36], "rownam": [35, 36], "colnam": [35, 36], "mortgages_2007": 36, "sample_orig_2007": 36, "servicing_2007": 36, "sample_svcg_2007orig_3year": 36, "507551674": 36, "workflow": 36, "script": 36, "parameter": 36, "invit": 36, "forget": 36, "combined_2007": 36, "same_quarter_2007": 36, "next_quarter_same_year_2007": 36, "next_quarter_next_year_2007": 36, "two_years_2007": 36, "for_ml_2007": 36, "y_2007": 36, "x_2007": 36, "morgag": 36, "y_2007_pred_proba": 36, "conf_matrix_2007": 36, "false_r": 36, "14487": 36, "5076": 36, "1562": 36, "nope": 36, "induc": 36, "uncertainti": 36, "json": [], "outfil": [], "dump": [], "ex2_pvalue_": 37, "5f": 37, "00004": 37, "6f": 37, "000040": 37, "college_degre": 37, "fit_model": 37, "1186": 37, "0875": 37, "0060": 37, "0023": 37, "968": 37, "0012": 37, "0405": 37, "18623": 37, "exog_nam": 37, "ipykernel_18376": 37, "838979874": 37, "deprecationwarn": 37, "ndim": 37, "scalar": 37, "deprec": [35, 37], "laptop": 35, "max_column": 35, "cleanest": 35, "column_nam": 35, "read_excel": 35, "202010": 35, "var_titl": 35, "_02": 35, "columnlist": 35, "tolist": 35, "na_valu": 35, "ipykernel_42350": 35, "3209276034": 35, "id_client": 35, "clerk_typ": 35, "payment_dai": 35, "application_submission_typ": 35, "quant_additional_card": 35, "postal_address_typ": 35, "education_level": 35, "state_of_birth": 35, "city_of_birth": 35, "nacion": 35, "flag_residencial_phon": 35, "residencial_phone_area_cod": 35, "flag_mobile_phon": 35, "flag_email": 35, "other_incom": 35, "flag_visa": 35, "flag_mastercard": 35, "flag_din": 35, "flag_american_express": 35, "flag_other_card": 35, "quant_special_banking_account": 35, "personal_assets_valu": 35, "professional_st": 35, "professional_c": 35, "professional_borough": 35, "flag_professional_phon": 35, "professional_phone_area_cod": 35, "months_in_the_job": 35, "profession_cod": 35, "mate_profession_cod": 35, "education_level_02": 35, "flag_home_address_docu": 35, "flag_rg": 35, "flag_cpf": 35, "flag_income_proof": 35, "flag_acsp_record": 35, "professional_zip_3": 35, "rn": 35, "assu": 35, "santana": 35, "mato": 35, "centro": 35, "carga": 35, "rj": 35, "rio": 35, "janeiro": 35, "campo": 35, "garanhun": 35, "parnamirim": 35, "boa": 35, "esperanca": 35, "cabo": 35, "carvalho": 35, "1200": 35, "50000": 35, "41788": 35, "48651": 35, "46223": 35, "000000e": 35, "13468": 35, "42244": 35, "42687": 35, "21116": 35, "17662": 35, "25000": 35, "869920": 35, "006540": 35, "14840": 35, "650520": 35, "961600": 35, "544223": 35, "252225": 35, "727149": 35, "802280": 35, "678437": 35, "434760": 35, "111440": 35, "097460": 35, "001320": 35, "001740": 35, "002040": 35, "357840": 35, "322372e": 35, "336140": 35, "397015": 35, "009320": 35, "061784": 35, "484316": 35, "797926": 35, "296003": 35, "275700": 35, "24852": 35, "260820": 35, "14433": 35, "901067": 35, "608385": 35, "080606": 35, "32285": 35, "193655": 35, "202105": 35, "511833": 35, "867833": 35, "668841": 35, "398284": 35, "7846": 35, "959327": 35, "515142": 35, "314679": 35, "296586": 35, "036308": 35, "041677": 35, "045121": 35, "479953": 35, "235798e": 35, "472392": 35, "622626": 35, "383453": 35, "220104": 35, "532261": 35, "212168": 35, "955688": 35, "988286": 35, "98905": 35, "439086": 35, "12500": 35, "750000": 35, "37500": 35, "250000": 35, "959000": 35, "194344": 35, "target_label_bad_1": 35, "to_drop": 35, "isnul": 35, "numeric_column": 35, "cat_column": 35, "1606787409": 35, "downcast": 35, "retain": 35, "infer_object": 35, "no_silent_downcast": 35, "30805": 35, "19130": 35, "col": 35, "to_numer": 35, "coerc": 35, "seaborn": 35, "sn": 35, "set_them": 35, "style": 35, "whitegrid": 35, "apps_sampl": 35, "figsiz": 35, "subplot": 35, "histplot": 35, "kde": 35, "tight_layout": 35, "countplot": 35, "xtick": 35, "tweak": 35, "marit": 35, "spell": 35, "400": 35, "logisticgam": 35, "elaps": 35, "eta": 35, "devianc": 35, "fit_intercept": 35, "max_it": 35, "tol": 35, "true_neg": 35, "false_neg": 35, "false_omission_r": 35, "5978": 35, "2101": 35, "cutpoint": 35, "get_neg_stat": 35, "y_true": 35, "zip": 35, "omission_r": 35, "prob_cutoff": 35, "false_negative_r": 35, "linspac": 35, "basic_gam": 35, "theme": 35, "v0_8": 35, "queri": 35, "basic_gam_reason": 35, "min_reason": 35, "good_at_min": 35, "most_true_neg": 35, "generate_x_grid": 35, "l": 35, "invers": 35, "wiggl": 35, "gam_convex": 35, "df_gam_convex": 35, "most_true_negs_convex": 35, "lam": 35, "1e3": 35, "gam_random_lam": 35, "df_gam_random_lam": 35, "most_true_negs_lam": 35, "te": 35, "gam_interact": 35, "mpl_toolkit": 35, "mplot3d": 35, "meshgrid": 35, "z": 35, "3d": 35, "reshap": 35, "plot_surfac": 35, "cmap": 35, "viridi": 35, "edgecolor": 35, "set_titl": 35, "subclassif": 4, "propens": 4, "placebo": 4, "confint_proportions_2indep": 28}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"backward": [0, 2], "design": [0, 2, 23, 57], "overview": [0, 2], "1": [0, 2, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 31, 32, 35, 36, 37, 49, 55], "defin": [0, 2, 49], "your": [0, 1, 2, 7, 11, 16, 22, 31, 33, 46, 48, 49, 56, 57], "problem": [0, 2, 42, 48, 56], "2": [0, 1, 2, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35, 36, 37, 44, 49, 56], "question": [0, 2, 15, 17, 18, 19, 23, 32, 48, 55, 56], "you": [0, 2, 3, 7, 15, 44, 49, 54], "wish": [0, 2], "answer": [0, 2, 15, 56], "A": [0, 2, 3, 11, 31, 46, 49], "digress": [0, 2], "supervis": [0, 2], "machin": [0, 2, 7], "learn": [0, 2, 7, 33], "ud": 1, "midterm": 1, "2022": 1, "part": [1, 56], "estim": [1, 11, 29, 30, 37], "The": [1, 3, 8, 11, 16, 23, 25, 26, 27, 28, 36, 44, 45, 47, 48], "effect": [1, 8, 10, 11, 20, 24, 30, 37, 38, 39, 40, 44, 45], "educ": 1, "employ": 1, "get": [1, 2, 22], "know": [1, 22], "data": [1, 2, 7, 11, 21, 22, 25, 31, 33, 35, 36, 42, 46, 50, 56, 57], "subset": 1, "peopl": 1, "over": 1, "25": 1, "labor": 1, "forc": 1, "measur": [1, 11, 30, 37, 46], "good": [2, 50], "why": [2, 8, 55], "i": [2, 7, 8, 12, 46, 48, 55], "have": [2, 7, 15], "import": [2, 11], "3": [2, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 49, 55, 56], "write": [2, 57], "down": 2, "what": [2, 5, 8, 12, 30, 37, 44, 48], "an": [2, 7], "would": 2, "look": [2, 54], "like": 2, "falsifi": 2, "4": [2, 7, 11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49, 55], "do": [2, 3, 22, 41, 48, 49], "need": [2, 8, 9, 20, 22, 24, 48], "5": [2, 7, 11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49], "where": [2, 50], "can": [2, 46], "That": [2, 50], "wrap": 2, "up": 2, "beyond": 3, "experi": [3, 11, 12, 23, 28, 30, 37, 45], "b": [3, 11, 49], "test": [3, 11, 23, 33, 49], "isn": [3, 55], "t": [3, 55], "alwai": [3, 7], "feasibl": 3, "legal": [3, 13], "ethic": 3, "go": 3, "futur": [3, 25, 36], "don": 3, "want": 3, "limit": [3, 11, 25, 30, 36, 37, 45], "Not": 3, "enough": 3, "abl": 3, "must": [3, 44], "explain": 3, "class": 4, "schedul": 4, "research": 5, "discret": 5, "descript": [5, 9, 55], "analysi": [5, 24, 30, 31, 37], "faith": 5, "represent": 5, "choos": [5, 7, 56], "To": [5, 7, 22, 25, 36, 40, 48, 50], "ask": [5, 48], "present": 5, "context": [5, 28, 31], "valu": 5, "peek": 6, "endogen": 6, "stop": 6, "recommend": 7, "respons": 7, "train": 7, "carefulli": 7, "onli": 7, "us": [7, 44, 46, 56], "opaqu": 7, "model": [7, 21, 25, 35, 36, 40, 46, 47], "when": [7, 44, 46], "function": 7, "form": [7, 22], "constraint": 7, "compar": 7, "predict": [7, 25, 32, 36, 55], "sub": 7, "popul": 7, "No": 7, "option": 7, "tool": 7, "interpret": [7, 10, 20, 21, 22, 35, 44, 49], "constrain": 7, "neural": 7, "network": 7, "introspect": 7, "evalu": [8, 14], "real": [8, 48], "studi": [8, 14, 26, 27], "sun": 8, "bright": 8, "dog": 8, "too": 8, "baselin": 8, "differ": [8, 41, 55], "we": [8, 30, 37], "all": 8, "three": 8, "evaul": 8, "differenti": 8, "treatment": [8, 45], "come": 8, "next": [8, 48], "well": 8, "thi": [8, 21, 35, 49, 55], "ha": 8, "been": 8, "unsatisfi": 8, "discuss": 9, "exercis": [9, 11, 12, 13, 15, 17, 20, 21, 22, 24, 25, 28, 29, 30, 31, 32, 35, 36, 37], "8": [9, 11, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37], "takeawai": 9, "absolut": [9, 20, 22, 24], "posit": [9, 20, 22, 24, 55], "solut": [9, 20, 22, 24, 34, 53, 54], "causal": [10, 18, 19, 26, 27, 32, 39, 47, 55], "gender": [10, 29], "udac": 11, "websit": 11, "": [11, 21, 22, 35, 45, 48, 49], "pick": 11, "valid": [11, 43, 49], "6": [11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37, 49], "7": [11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 29, 30, 35, 36, 37], "9": [11, 18, 19, 21, 22, 25, 28, 29, 30, 35, 36, 37], "10": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "11": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "12": [11, 21, 22, 25, 29, 30, 35, 36, 37], "13": [11, 21, 22, 25, 28, 29, 30, 35, 36, 37], "14": [11, 21, 22, 25, 28, 29, 35, 36], "counter": 12, "factual": 12, "experiment": 12, "ideal": 12, "counterfactu": 12, "random": 12, "identifi": [12, 57], "marijuana": 13, "violent": 13, "crime": [13, 15], "gym": 14, "membership": 14, "car": 14, "insur": 14, "billboard": 14, "polic": 15, "expenditur": 15, "exploratori": [15, 32, 56], "after": 15, "first": [16, 56], "stakehold": [16, 17, 31, 48], "propos": [16, 31], "task": [16, 31], "convert": [17, 48], "prompt": [17, 48], "action": [17, 48], "time": [18, 19, 55], "cholera": [18, 19], "indic": [20, 38, 44], "variabl": [20, 38, 44], "omit": 20, "bia": 20, "interact": [20, 44], "credit": [21, 28, 35], "risk": [21, 25, 35, 36], "prep": [21, 35], "fit": [21, 35], "let": [21, 22, 35], "see": [21, 35], "15": [11, 21, 22, 25, 28, 35, 36], "16": [21, 22, 25, 35, 36], "17": [21, 25, 35, 36], "match": [22, 46, 47], "packag": 22, "python": 22, "v": 22, "r": 22, "instal": 22, "dame": 22, "flame": 22, "setup": 22, "output": 22, "back": 22, "dataset": 22, "check": [22, 30, 37, 46, 49], "analyz": [22, 46], "other": [22, 50], "optim": 23, "ab": 23, "traffic": 24, "death": 24, "fix": [24, 38, 39, 40, 44], "demean": 24, "mortgag": [25, 36], "delinqu": [25, 36], "gradescop": [11, 25, 30, 36, 37], "autograd": [11, 25, 30, 36, 37], "submiss": [11, 25, 30, 36, 37], "clean": [25, 36], "organ": [25, 36], "now": [25, 36], "18": [25, 36], "make": [26, 27, 48], "potenti": [26, 27], "outcom": [26, 27], "concret": [26, 27], "map": [26, 27], "framework": [26, 27], "observ": [26, 27], "infer": [26, 27, 39, 47, 55], "discrimin": 29, "workplac": 29, "resum": [30, 37], "balanc": [30, 37, 46], "race": [30, 37], "heterogen": [30, 37], "did": [30, 37], "just": [30, 37], "solicit": 31, "inform": 31, "from": [31, 41], "project": 31, "vote": 31, "access": 31, "colleg": 31, "campus": 31, "background": [31, 57], "object": 31, "our": 31, "approach": 31, "gener": 32, "classifi": 32, "passiv": 32, "groupbi": 33, "arrest": 33, "group": [33, 38], "structur": 33, "assumpt": [33, 47], "poverti": [], "acm": 34, "corport": 34, "implement": [38, 49], "cluster": [38, 40], "computation": 38, "effici": 38, "hierarch": 40, "standard": 40, "error": 40, "thing": [40, 44, 49], "rememb": 40, "how": [41, 46], "read": [41, 48, 52], "academ": 41, "edit": 41, "activ": 41, "Be": 41, "patient": 41, "exampl": [41, 55], "domain": 41, "NOT": 41, "summar": 41, "llm": 41, "welcom": 42, "solv": 42, "pre": 42, "requisit": 42, "non": [42, 57], "mid": 42, "student": 42, "syllabu": 42, "intern": [43, 49], "extern": [43, 49], "consider": 43, "trade": 43, "off": 43, "between": [43, 44], "conclus": [43, 55, 57], "dummi": 44, "ar": [44, 49, 50, 54], "ONE": 44, "understand": [44, 56], "two": 44, "categori": 44, "more": 44, "than": 44, "constant": 44, "keep": 44, "straight": 44, "oper": 44, "multipl": 44, "averag": 45, "who": 45, "fine": 45, "print": 45, "ATE": 45, "sutva": 45, "done": 46, "summari": [46, 47, 57], "prune": [46, 47], "similar": 46, "should": [46, 49], "specif": [46, 48], "depend": 47, "imbal": 47, "better": [47, 56], "thought": [47, 55], "cost": 47, "In": 47, "mani": 48, "nick": 49, "think": 49, "about": 49, "befor": 49, "step": 49, "0": 49, "sure": 49, "goal": 49, "plan": [28, 49], "run": 49, "result": [49, 57], "consid": 49, "find": 50, "public": 50, "start": 50, "point": 50, "interest": [50, 54], "sourc": 50, "spatial": 50, "gi": 50, "compon": 50, "satellit": 50, "list": 50, "great": 50, "reflect": 52, "ok": 54, "still": 54, "taxonomi": 55, "versu": 55, "norm": 55, "nope": 55, "diseas": 55, "surveil": 55, "global": 55, "warm": 55, "eda": 55, "last": 55, "manipul": 55, "hard": 55, "classif": 55, "without": 55, "assign": 56, "specifi": 56, "scienc": 57, "report": 57, "technic": 57, "audienc": 57, "introduct": 57, "execut": 57, "appendix": 57, "power": 28, "calcul": 28, "extra": 28, "extens": 28, "footnot": 28}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Backwards Design": [[0, "Backwards-Design"], [2, "Backwards-Design"]], "Overview": [[0, "Overview"], [2, "Overview"]], "1) Define Your Problem": [[0, "1)-Define-Your-Problem"], [2, "1)-Define-Your-Problem"]], "2) Define the Question You Wish to Answer": [[0, "2)-Define-the-Question-You-Wish-to-Answer"], [2, "2)-Define-the-Question-You-Wish-to-Answer"]], "A Digression on Supervised Machine Learning": [[0, "A-Digression-on-Supervised-Machine-Learning"], [2, "A-Digression-on-Supervised-Machine-Learning"]], "UDS Midterm 2022, Part 2": [[1, "UDS-Midterm-2022,-Part-2"]], "Estimating The Effect of Education on Employment": [[1, "Estimating-The-Effect-of-Education-on-Employment"]], "Getting to Know Your Data": [[1, "Getting-to-Know-Your-Data"]], "Subsetting for People over 25 in the Labor Force": [[1, "Subsetting-for-People-over-25-in-the-Labor-Force"]], "Measuring Education": [[1, "Measuring-Education"]], "Education and Employment": [[1, "Education-and-Employment"]], "Defining a Good Question": [[2, "Defining-a-Good-Question"]], "Why is Having a Good Question Important?": [[2, "Why-is-Having-a-Good-Question-Important?"]], "3) Write Down What An Answer Would Look Like": [[2, "3)-Write-Down-What-An-Answer-Would-Look-Like"]], "Falsifiability": [[2, "Falsifiability"]], "4) What Data Do You Need?": [[2, "4)-What-Data-Do-You-Need?"]], "5) Where Can You Get That Data?": [[2, "5)-Where-Can-You-Get-That-Data?"]], "Wrapping Up": [[2, "Wrapping-Up"]], "Beyond The Experiment": [[3, "Beyond-The-Experiment"]], "A/B Testing Isn\u2019t Always Feasible": [[3, "A/B-Testing-Isn't-Always-Feasible"]], "A/B Testing Isn\u2019t Always Legal or Ethical": [[3, "A/B-Testing-Isn't-Always-Legal-or-Ethical"]], "Going Beyond Testing for the Future": [[3, "Going-Beyond-Testing-for-the-Future"]], "Don\u2019t want to be limited": [[3, "Don't-want-to-be-limited"]], "Not enough to be able to do it; you must be able to explain it": [[3, "Not-enough-to-be-able-to-do-it;-you-must-be-able-to-explain-it"]], "Researcher Discretion in Descriptive Analysis": [[5, "Researcher-Discretion-in-Descriptive-Analysis"]], "Faithful Representation": [[5, "Faithful-Representation"]], "Choosing What To Ask and Present": [[5, "Choosing-What-To-Ask-and-Present"]], "Context": [[5, "Context"], [31, "Context"]], "Values": [[5, "Values"]], "Peeking / Endogenous Stopping": [[6, "Peeking-/-Endogenous-Stopping"]], "Recommendations for Responsible Machine Learning": [[7, "Recommendations-for-Responsible-Machine-Learning"]], "1. Choose Your Training Data Carefully": [[7, "1.-Choose-Your-Training-Data-Carefully"]], "2. Only Use Opaque Models When You Have To": [[7, "2.-Only-Use-Opaque-Models-When-You-Have-To"]], "3. Use Models with Functional Form Constraints": [[7, "3.-Use-Models-with-Functional-Form-Constraints"]], "4. Compare Predictions for Sub-Populations": [[7, "4.-Compare-Predictions-for-Sub-Populations"]], "5. \u201cNo\u201d is Always An Option": [[7, "5.-%22No%22-is-Always-An-Option"]], "Tools for Interpretable / Constrained Machine Learning": [[7, "Tools-for-Interpretable-/-Constrained-Machine-Learning"]], "Interpretable Models": [[7, "Interpretable-Models"]], "Tools for Neural Networks": [[7, "Tools-for-Neural-Networks"]], "Constrained Models": [[7, "Constrained-Models"]], "Tools for Introspection": [[7, "Tools-for-Introspection"]], "Evaluating Real Studies": [[8, "Evaluating-Real-Studies"]], "The Sun Is Bright for Dogs Too": [[8, "The-Sun-Is-Bright-for-Dogs-Too"]], "Evaluating Baseline Differences": [[8, "Evaluating-Baseline-Differences"]], "Why we need all three": [[8, "Why-we-need-all-three"]], "Evaulating Differential Treatment Effects": [[8, "Evaulating-Differential-Treatment-Effects"]], "What Comes Next?": [[8, "What-Comes-Next?"]], "Well this has been unsatisfying": [[8, "Well-this-has-been-unsatisfying"]], "Discussion of Descriptive Exercises": [[9, "Discussion-of-Descriptive-Exercises"]], "Exercise 8": [[9, "Exercise-8"], [15, "Exercise-8"], [20, "Exercise-8"], [21, "Exercise-8"], [22, "Exercise-8"], [24, "Exercise-8"], [25, "Exercise-8"], [29, "Exercise-8"], [30, "Exercise-8"], [11, "Exercise-8"], [36, "Exercise-8"], [37, "Exercise-8"], [35, "Exercise-8"], [28, "Exercise-8"]], "Takeaways": [[9, "Takeaways"]], "Absolutely positively need the solutions?": [[9, "Absolutely-positively-need-the-solutions?"], [20, "Absolutely-positively-need-the-solutions?"], [22, "Absolutely-positively-need-the-solutions?"], [24, "Absolutely-positively-need-the-solutions?"]], "Interpreting Causal Effects of Gender": [[10, "Interpreting-Causal-Effects-of-Gender"]], "Counter-Factuals and Experimental Ideals": [[12, "Counter-Factuals-and-Experimental-Ideals"]], "What is a Counterfactual?": [[12, "What-is-a-Counterfactual?"]], "What is a randomized experiment?": [[12, "What-is-a-randomized-experiment?"]], "Identifying Counter-Factuals": [[12, "Identifying-Counter-Factuals"]], "Exercise 1:": [[12, "Exercise-1:"], [29, "Exercise-1:"]], "Exercise 2:": [[12, "Exercise-2:"], [17, "Exercise-2:"], [29, "Exercise-2:"]], "Exercise 3:": [[12, "Exercise-3:"]], "Exercise 1": [[13, "Exercise-1"], [15, "Exercise-1"], [17, "Exercise-1"], [20, "Exercise-1"], [21, "Exercise-1"], [22, "Exercise-1"], [24, "Exercise-1"], [25, "Exercise-1"], [31, "Exercise-1"], [32, "Exercise-1"], [30, "Exercise-1"], [11, "Exercise-1"], [36, "Exercise-1"], [37, "Exercise-1"], [35, "Exercise-1"], [28, "Exercise-1"]], "Exercise 2": [[13, "Exercise-2"], [15, "Exercise-2"], [20, "Exercise-2"], [21, "Exercise-2"], [22, "Exercise-2"], [24, "Exercise-2"], [25, "Exercise-2"], [31, "Exercise-2"], [32, "Exercise-2"], [30, "Exercise-2"], [11, "Exercise-2"], [36, "Exercise-2"], [37, "Exercise-2"], [35, "Exercise-2"], [28, "Exercise-2"]], "Exercise 3": [[13, "Exercise-3"], [15, "Exercise-3"], [20, "Exercise-3"], [21, "Exercise-3"], [22, "Exercise-3"], [24, "Exercise-3"], [25, "Exercise-3"], [29, "Exercise-3"], [31, "Exercise-3"], [30, "Exercise-3"], [11, "Exercise-3"], [36, "Exercise-3"], [37, "Exercise-3"], [35, "Exercise-3"], [28, "Exercise-3"]], "Exercise 4": [[13, "Exercise-4"], [15, "Exercise-4"], [20, "Exercise-4"], [21, "Exercise-4"], [22, "Exercise-4"], [24, "Exercise-4"], [25, "Exercise-4"], [29, "Exercise-4"], [30, "Exercise-4"], [11, "Exercise-4"], [36, "Exercise-4"], [37, "Exercise-4"], [35, "Exercise-4"], [28, "Exercise-4"]], "Exercise 5": [[13, "Exercise-5"], [15, "Exercise-5"], [20, "Exercise-5"], [21, "Exercise-5"], [22, "Exercise-5"], [24, "Exercise-5"], [25, "Exercise-5"], [29, "Exercise-5"], [30, "Exercise-5"], [11, "Exercise-5"], [36, "Exercise-5"], [37, "Exercise-5"], [35, "Exercise-5"], [28, "Exercise-5"]], "Exercise 6": [[13, "Exercise-6"], [15, "Exercise-6"], [20, "Exercise-6"], [21, "Exercise-6"], [22, "Exercise-6"], [24, "Exercise-6"], [24, "id1"], [25, "Exercise-6"], [29, "Exercise-6"], [30, "Exercise-6"], [11, "Exercise-6"], [36, "Exercise-6"], [37, "Exercise-6"], [35, "Exercise-6"], [28, "Exercise-6"]], "Exercise 7": [[13, "Exercise-7"], [15, "Exercise-7"], [20, "Exercise-7"], [21, "Exercise-7"], [22, "Exercise-7"], [24, "Exercise-7"], [25, "Exercise-7"], [29, "Exercise-7"], [30, "Exercise-7"], [11, "Exercise-7"], [36, "Exercise-7"], [37, "Exercise-7"], [35, "Exercise-7"], [28, "Exercise-7"]], "Marijuana Legalization and Violent Crime": [[13, "Marijuana-Legalization-and-Violent-Crime"]], "Evaluating Studies": [[14, "Evaluating-Studies"]], "Study 1: Gym Memberships": [[14, "Study-1:-Gym-Memberships"]], "Study 2: Car Insurance": [[14, "Study-2:-Car-Insurance"]], "Study 3: Billboard": [[14, "Study-3:-Billboard"]], "Crime and Policing Expenditures Exploratory Questions": [[15, "Crime-and-Policing-Expenditures-Exploratory-Questions"]], "Exercises": [[15, "Exercises"], [28, "Exercises"]], "After you have answered\u2026": [[15, "After-you-have-answered..."]], "Your First Stakeholder": [[16, "Your-First-Stakeholder"]], "The Proposal": [[16, "The-Proposal"]], "Your Task": [[16, "Your-Task"], [31, "Your-Task"]], "Converting Stakeholder Prompts into Actionable Questions": [[17, "Converting-Stakeholder-Prompts-into-Actionable-Questions"]], "Causality in the Time of Cholera": [[18, "Causality-in-the-Time-of-Cholera"], [19, "Causality-in-the-Time-of-Cholera"]], "Question 1:": [[18, "Question-1:"], [19, "Question-1:"]], "Question 2:": [[18, "Question-2:"], [19, "Question-2:"]], "Question 3:": [[18, "Question-3:"], [19, "Question-3:"]], "Question 4": [[18, "Question-4"], [19, "Question-4"]], "Question 5": [[18, "Question-5"], [19, "Question-5"]], "Question 6": [[18, "Question-6"], [19, "Question-6"]], "Question 7:": [[18, "Question-7:"], [19, "Question-7:"]], "Question 8:": [[18, "Question-8:"], [19, "Question-8:"]], "Question 9:": [[18, "Question-9:"], [19, "Question-9:"]], "Interpreting Indicator Variables": [[20, "Interpreting-Indicator-Variables"]], "Indicator Variables and Omitted Variable Bias": [[20, "Indicator-Variables-and-Omitted-Variable-Bias"]], "Interaction Effects": [[20, "Interaction-Effects"]], "Exercise 9": [[21, "Exercise-9"], [22, "Exercise-9"], [25, "Exercise-9"], [29, "Exercise-9"], [30, "Exercise-9"], [11, "Exercise-9"], [36, "Exercise-9"], [37, "Exercise-9"], [35, "Exercise-9"], [28, "Exercise-9"]], "Exercise 10": [[21, "Exercise-10"], [22, "Exercise-10"], [25, "Exercise-10"], [29, "Exercise-10"], [30, "Exercise-10"], [11, "Exercise-10"], [36, "Exercise-10"], [37, "Exercise-10"], [35, "Exercise-10"], [28, "Exercise-10"]], "Exercise 11": [[21, "Exercise-11"], [22, "Exercise-11"], [25, "Exercise-11"], [29, "Exercise-11"], [30, "Exercise-11"], [11, "Exercise-11"], [36, "Exercise-11"], [37, "Exercise-11"], [35, "Exercise-11"], [28, "Exercise-11"]], "Exercise 12": [[21, "Exercise-12"], [22, "Exercise-12"], [25, "Exercise-12"], [29, "Exercise-12"], [30, "Exercise-12"], [11, "Exercise-12"], [36, "Exercise-12"], [37, "Exercise-12"], [35, "Exercise-12"]], "Exercise 13": [[21, "Exercise-13"], [22, "Exercise-13"], [25, "Exercise-13"], [29, "Exercise-13"], [30, "Exercise-13"], [11, "Exercise-13"], [36, "Exercise-13"], [37, "Exercise-13"], [35, "Exercise-13"], [28, "Exercise-13"]], "Exercise 14": [[21, "Exercise-14"], [22, "Exercise-14"], [25, "Exercise-14"], [29, "Exercise-14"], [11, "Exercise-14"], [36, "Exercise-14"], [35, "Exercise-14"], [28, "Exercise-14"]], "Interpretable Modelling of Credit Risk": [[21, "Interpretable-Modelling-of-Credit-Risk"], [35, "Interpretable-Modelling-of-Credit-Risk"]], "Data Prep": [[21, "Data-Prep"], [35, "Data-Prep"]], "Model Fitting": [[21, "Model-Fitting"], [35, "Model-Fitting"]], "Let\u2019s See This Interpretability!": [[21, "Let's-See-This-Interpretability!"], [35, "Let's-See-This-Interpretability!"]], "Exercise 15": [[21, "Exercise-15"], [22, "Exercise-15"], [25, "Exercise-15"], [11, "Exercise-15"], [36, "Exercise-15"], [35, "Exercise-15"], [28, "Exercise-15"]], "Exercise 16": [[21, "Exercise-16"], [22, "Exercise-16"], [25, "Exercise-16"], [36, "Exercise-16"], [35, "Exercise-16"]], "Exercise 17": [[21, "Exercise-17"], [25, "Exercise-17"], [36, "Exercise-17"], [35, "Exercise-17"]], "Matching Exercise": [[22, "Matching-Exercise"]], "Matching Packages: Python v. R": [[22, "Matching-Packages:-Python-v.-R"]], "Installing dame-flame.": [[22, "Installing-dame-flame."]], "Data Setup": [[22, "Data-Setup"]], "Getting To Know Your Data": [[22, "Getting-To-Know-Your-Data"]], "Matching!": [[22, "Matching!"]], "Let\u2019s Do Matching with DAME": [[22, "Let's-Do-Matching-with-DAME"]], "Interpreting DAME output": [[22, "Interpreting-DAME-output"]], "Getting Back a Dataset": [[22, "Getting-Back-a-Dataset"]], "Check Your Matches and Analyze": [[22, "Check-Your-Matches-and-Analyze"]], "Other Forms of Matching": [[22, "Other-Forms-of-Matching"]], "Optimal AB Testing Design": [[23, "Optimal-AB-Testing-Design"]], "The Experiment": [[23, "The-Experiment"]], "Question 2": [[23, "Question-2"]], "Question 3": [[23, "Question-3"]], "Traffic Death Analysis": [[24, "Traffic-Death-Analysis"]], "Fixed Effects by Demeaning": [[24, "Fixed-Effects-by-Demeaning"]], "Predicting Mortgage Delinquency Risk": [[25, "Predicting-Mortgage-Delinquency-Risk"], [36, "Predicting-Mortgage-Delinquency-Risk"]], "Gradescope Autograding": [[25, "Gradescope-Autograding"], [30, "Gradescope-Autograding"], [11, "Gradescope-Autograding"], [36, "Gradescope-Autograding"], [37, "Gradescope-Autograding"]], "Submission Limits": [[25, "Submission-Limits"], [30, "Submission-Limits"], [11, "Submission-Limits"], [36, "Submission-Limits"], [37, "Submission-Limits"]], "Data Cleaning and Organization": [[25, "Data-Cleaning-and-Organization"], [36, "Data-Cleaning-and-Organization"]], "Modelling Delinquency Risk": [[25, "Modelling-Delinquency-Risk"], [36, "Modelling-Delinquency-Risk"]], "Now To The Future": [[25, "Now-To-The-Future"], [36, "Now-To-The-Future"]], "Exercise 18": [[25, "Exercise-18"], [36, "Exercise-18"]], "Making Potential Outcomes Concrete": [[26, "Making-Potential-Outcomes-Concrete"]], "The Study": [[26, "The-Study"], [27, "The-Study"]], "Mapping to the Potential Outcomes Framework": [[26, "Mapping-to-the-Potential-Outcomes-Framework"], [27, "Mapping-to-the-Potential-Outcomes-Framework"]], "Observability": [[26, "Observability"], [27, "Observability"]], "Causal Inference": [[26, "Causal-Inference"], [27, "Causal-Inference"]], "Making Potential Outcomes Concrete 2": [[27, "Making-Potential-Outcomes-Concrete-2"]], "Estimating Gender Discrimination in the Workplace": [[29, "Estimating-Gender-Discrimination-in-the-Workplace"]], "Soliciting Information From Your Stakeholder": [[31, "Soliciting-Information-From-Your-Stakeholder"]], "Stakeholder Project Proposal": [[31, "Stakeholder-Project-Proposal"]], "A Data Analysis of Voting Access on College Campuses": [[31, "A-Data-Analysis-of-Voting-Access-on-College-Campuses"]], "Background": [[31, "Background"], [57, "Background"]], "Objectives": [[31, "Objectives"]], "Our Approach": [[31, "Our-Approach"]], "Generating and Classifying Questions": [[32, "Generating-and-Classifying-Questions"]], "Exploratory Question:": [[32, "Exploratory-Question:"], [32, "id1"]], "Passive-Predictive Question:": [[32, "Passive-Predictive-Question:"], [32, "id2"]], "Causal Question:": [[32, "Causal-Question:"], [32, "id3"]], "Groupby and Arrest Data": [[33, "Groupby-and-Arrest-Data"]], "Learning the Group Structure of Your Data": [[33, "Learning-the-Group-Structure-of-Your-Data"]], "Testing Your Assumptions": [[33, "Testing-Your-Assumptions"]], "Acme Corportation Solution": [[34, "Acme-Corportation-Solution"]], "Fixed Effects: Indicator Variables for Groups": [[38, "Fixed-Effects:-Indicator-Variables-for-Groups"]], "Implementing Fixed Effects": [[38, "Implementing-Fixed-Effects"]], "Clustering": [[38, "Clustering"]], "Computationally Efficient Fixed Effects": [[38, "Computationally-Efficient-Fixed-Effects"]], "Fixed Effects and Causal Inference": [[39, "Fixed-Effects-and-Causal-Inference"]], "Fixed Effects and Hierarchical Models": [[40, "Fixed-Effects-and-Hierarchical-Models"]], "Fixed Effects & Clustered Standard Errors": [[40, "Fixed-Effects-&-Clustered-Standard-Errors"]], "Things To Remember:": [[40, "Things-To-Remember:"]], "How to Read (Academic Edition)": [[41, "How-to-Read-(Academic-Edition)"]], "Read Actively": [[41, "Read-Actively"]], "Be Patient with Examples From Different Domains": [[41, "Be-Patient-with-Examples-From-Different-Domains"]], "Do NOT Summarize with LLMs": [[41, "Do-NOT-Summarize-with-LLMs"]], "Welcome to Solving Problems with Data!": [[42, "welcome-to-solving-problems-with-data"]], "Pre-Requisites for Non-MIDS Students": [[42, "pre-requisites-for-non-mids-students"]], "Syllabus": [[42, "syllabus"]], "Internal and External Validity": [[43, "Internal-and-External-Validity"]], "Internal Validity": [[43, "Internal-Validity"]], "External Validity": [[43, "External-Validity"]], "External Validity Considerations": [[43, "External-Validity-Considerations"]], "Trade-Offs Between Internal and External Validity": [[43, "Trade-Offs-Between-Internal-and-External-Validity"]], "Conclusion": [[43, "Conclusion"], [55, "Conclusion"]], "Using and Interpreting Indicator (Dummy) Variables": [[44, "Using-and-Interpreting-Indicator-(Dummy)-Variables"]], "What are indicator variables?": [[44, "What-are-indicator-variables?"]], "The ONE thing that you must understand when using indicator variables:": [[44, "The-ONE-thing-that-you-must-understand-when-using-indicator-variables:"]], "Indicator Variables with Two Category Variable": [[44, "Indicator-Variables-with-Two-Category-Variable"]], "Indicator Variables for variables with more than 2 categories": [[44, "Indicator-Variables-for-variables-with-more-than-2-categories"]], "Interactions with Constant Variables": [[44, "Interactions-with-Constant-Variables"]], "Keeping Things Straight": [[44, "Keeping-Things-Straight"]], "The * operator": [[44, "The-*-operator"]], "Interactions Between Multiple Indicator Variables": [[44, "Interactions-Between-Multiple-Indicator-Variables"]], "Fixed Effects": [[44, "Fixed-Effects"]], "Limitations of Experiments (and Average Treatment Effects)": [[45, "Limitations-of-Experiments-(and-Average-Treatment-Effects)"]], "Who\u2019s Average?": [[45, "Who's-Average?"]], "The Fine Print of ATE": [[45, "The-Fine-Print-of-ATE"]], "SUTVA": [[45, "SUTVA"]], "How Matching is Done (A Summary)": [[46, "How-Matching-is-Done-(A-Summary)"]], "Pruning Your Data": [[46, "Pruning-Your-Data"]], "Measuring Similarity": [[46, "Measuring-Similarity"]], "When Can / Should I Use Matching?": [[46, "When-Can-/-Should-I-Use-Matching?"]], "Checking Balance": [[46, "Checking-Balance"]], "Analyze!": [[46, "Analyze!"]], "Specific Models": [[46, "Specific-Models"]], "Matching": [[47, "Matching"]], "Model Dependency": [[47, "Model-Dependency"]], "Model Dependency, Causal Inference, and Imbalance": [[47, "Model-Dependency,-Causal-Inference,-and-Imbalance"]], "Matching: Better thought of as pruning": [[47, "Matching:-Better-thought-of-as-pruning"]], "The Cost of Matching": [[47, "The-Cost-of-Matching"]], "Causal Inference Assumptions": [[47, "Causal-Inference-Assumptions"]], "In Summary": [[47, "In-Summary"]], "Converting Stakeholder Prompts into Questions": [[48, "Converting-Stakeholder-Prompts-into-Questions"]], "What\u2019s The Real Problem / Need": [[48, "What's-The-Real-Problem-/-Need"]], "What Questions Do I Need To Ask?": [[48, "What-Questions-Do-I-Need-To-Ask?"]], "Make Your Questions Specific and Actionable": [[48, "Make-Your-Questions-Specific-and-Actionable"]], "Many Questions?": [[48, "Many-Questions?"]], "What to Read Next": [[48, "What-to-Read-Next"]], "Nick\u2019s Things to Think About Before A/B Testing": [[49, "Nick's-Things-to-Think-About-Before-A/B-Testing"]], "Step 0: Are You Sure You Should Do This?": [[49, "Step-0:-Are-You-Sure-You-Should-Do-This?"]], "Step 1: Define Your Goals": [[49, "Step-1:-Define-Your-Goals"]], "Step 2: Plan Implementation": [[49, "Step-2:-Plan-Implementation"]], "Step 3: Run!": [[49, "Step-3:-Run!"]], "Step 4: Check Internal Validity": [[49, "Step-4:-Check-Internal-Validity"]], "Step 5: Interpret Results": [[49, "Step-5:-Interpret-Results"]], "Step 6: Consider External Validity": [[49, "Step-6:-Consider-External-Validity"]], "Reading Reflections": [[52, "Reading-Reflections"]], "Looking for the solutions?": [[54, "Looking-for-the-solutions?"]], "OK, if you are still interested in looking at the solutions\u2026": [[54, "OK,-if-you-are-still-interested-in-looking-at-the-solutions..."]], "Taxonomy of Questions": [[55, "Taxonomy-of-Questions"]], "Positive versus Normative Questions": [[55, "Positive-versus-Normative-Questions"]], "Descriptive Questions": [[55, "Descriptive-Questions"]], "Descriptive Example 1: Nope, This Time Isn\u2019t Different": [[55, "Descriptive-Example-1:-Nope,-This-Time-Isn't-Different"]], "Descriptive Example 3: Disease Surveillance": [[55, "Descriptive-Example-3:-Disease-Surveillance"]], "Descriptive Example 4: Global Warming": [[55, "Descriptive-Example-4:-Global-Warming"]], "Descriptive Questions and EDA": [[55, "Descriptive-Questions-and-EDA"]], "Last Thoughts": [[55, "Last-Thoughts"]], "Causal Questions and Prediction-with-Manipulation": [[55, "Causal-Questions-and-Prediction-with-Manipulation"]], "Why Causal Inference is Hard": [[55, "Why-Causal-Inference-is-Hard"]], "Causal Inference, Manipulations, and Prediction": [[55, "Causal-Inference,-Manipulations,-and-Prediction"]], "Classification Questions / Prediction-Without-Manipulation": [[55, "Classification-Questions-/-Prediction-Without-Manipulation"]], "\u201cWithout Manipulation\u201d?": [[55, "%22Without-Manipulation%22?"]], "Using Exploratory Questions to Better Understanding Your Problem": [[56, "Using-Exploratory-Questions-to-Better-Understanding-Your-Problem"]], "Your First Assignment": [[56, "Your-First-Assignment"]], "Part 2: Choosing a Problem": [[56, "Part-2:-Choosing-a-Problem"]], "Part 3: Specifying and Answering Questions": [[56, "Part-3:-Specifying-and-Answering-Questions"]], "Data": [[56, "Data"]], "Writing Data Science Report for Non-Technical Audiences": [[57, "Writing-Data-Science-Report-for-Non-Technical-Audiences"]], "Identify your audience": [[57, "Identify-your-audience"]], "Introduction / Executive Summary": [[57, "Introduction-/-Executive-Summary"]], "Your Design": [[57, "Your-Design"]], "Your Results": [[57, "Your-Results"]], "Conclusions": [[57, "Conclusions"]], "Appendix": [[57, "Appendix"]], "Resume Experiment Analysis": [[30, "Resume-Experiment-Analysis"], [37, "Resume-Experiment-Analysis"]], "Checking for Balance": [[30, "Checking-for-Balance"], [37, "Checking-for-Balance"]], "Estimating Effect of Race": [[30, "Estimating-Effect-of-Race"], [37, "Estimating-Effect-of-Race"]], "Estimating Heterogeneous Effects": [[30, "Estimating-Heterogeneous-Effects"], [37, "Estimating-Heterogeneous-Effects"]], "What Did We Just Measure?": [[30, "What-Did-We-Just-Measure?"], [37, "What-Did-We-Just-Measure?"]], "A/B Testing the Udacity Website": [[11, "A/B-Testing-the-Udacity-Website"]], "Udacity\u2019s Test": [[11, "Udacity's-Test"]], "Import the Data": [[11, "Import-the-Data"]], "Pick your measures": [[11, "Pick-your-measures"]], "Validating The Data": [[11, "Validating-The-Data"]], "Estimating the Effect of Experiment": [[11, "Estimating-the-Effect-of-Experiment"]], "Where To Find Public Data": [[50, "Where-To-Find-Public-Data"]], "Good Starting Points": [[50, "Good-Starting-Points"]], "Other Interesting Data Sources": [[50, "Other-Interesting-Data-Sources"]], "Data with a Spatial/GIS Component": [[50, "Data-with-a-Spatial/GIS-Component"]], "Public Satellite Data": [[50, "Public-Satellite-Data"]], "Other Lists of Data That Are Great": [[50, "Other-Lists-of-Data-That-Are-Great"]], "Solutions": [[53, "Solutions"]], "Power Calculations and Experiment Planning": [[28, "Power-Calculations-and-Experiment-Planning"]], "The Context": [[28, "The-Context"]], "Extra Credit Extension": [[28, "Extra-Credit-Extension"]], "Footnotes": [[28, "Footnotes"]], "Class Schedule": [[4, "class-schedule"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/source/class_schedule.csv b/source/class_schedule.csv index 12f9046..7bb5ec6 100644 --- a/source/class_schedule.csv +++ b/source/class_schedule.csv @@ -65,9 +65,11 @@ Experiments: External Validity (In Practice): - `Don't stop experiments early! `_ -",- `Power Ex `_ +",`Power Ex `_ "Thrs, Mar 21",Review Day,AB Testing Review, -"Tues, Mar 26",Causal Questions: Experiments,Decision Making Under Uncertainty, +"Tues, Mar 26",Causal Questions: Experiments,"- Statistical Decision Theory (on Canvas). 550-556 + +(This is same as IDS 705 Lecture 8 Reading)", "Thrs, Mar 28",**MIDTERM**,**MIDTERM**, "Tues, Apr 2",Causal Questions: Regression,- Causal Beyond Experiments, "Thrs, Apr 4",Causal Questions: Indicators and Fixed Effects,"- `Fixed Effects (through comparison with hierarchical) `_ diff --git a/source/class_schedule_xlsx.xlsx b/source/class_schedule_xlsx.xlsx index 3f00659d6898bd12f76d196526cd4fc58dc66b5f..daf44c37de77d20d973584cff4e2ce8688a91606 100644 GIT binary patch delta 6168 zcmV+z80Y8WaGr6n{Rjj{5d@2q0SO;}n=lZ5pS1sg{7#KYAPFj+APHKfwyL_U-JU83 zOt1==*``S~?Z59#Lb@!|lyxYvv3>sh-Q9QQ{KKXyt!E|`7j=lpnS(4=ry}F^Dny?b zi9JS^(zMQKDQXs?7pBmMi}&x&*Frumg?O?6pjII&v~B{7Ra&r$sx#5B8dh?DAuFn3 zC|6iDlF>{RjOnVxuH*Q)qP#|1gg~BxA@ZE3Y$npSVzu6aNLEq}^i{zd)uUDEDR32) zPihr!g`~?8+};q++DQ2M@Fxy5ZhsOi9UWEiR0<_>eFo5Y zOZv!v;$T7!La;fG!D&cCEZH-EH#yw1lKvZ6`Fkw?6^uCljYdFPomK(}-W$=pJvSF! zoaek`_gm>&v}tZ=WinMFtE5WLGp<<{q7e+mnjK8YwuxI_!YXkFgdlvem-DT(GM3Y} z)C&-D4-baEKXE-{3Brg<&16kAn~GY44tIY2ujV@JX(2%2)*buSa><~7us~nnE3`BX z=u+KMU0AIwLxevoa30qw8{-w%MZ3gp&GQ#1-Hd9gQVx~OuoA6=?iabzmKMBU&aNOapXf8B3B-`?s`%36VenX|G9ZuN2g!62C5dZK zy}56@vteY%!(?DbBpx|`e&og8X#NA7k$#X0+UjDb00SMOA*B0g>6&i(72*Uf&t7SK zcXp3$`rn#P#xS#vT z_^JT9WHc~_P!NVzhz{t?wsaDBY||Xj!N2h7u2kUF^;X@LK?*g0pdQU_oV6u`JKS8m zU8IpE19O(V%sS=cetSyG6y$HZ&Tv8;cVb*;8-1m8*Mssn(2Tut>Vp{LCoJ+@nhWWW>mLO4WhR3F-$jB6gZ_a(|-X^yYeTeWLBveDU~@oN63h$Ft~k`{?d2`ns5Z>5ssF z3@C=2Lt*!s$NjTR41*8}eXzs8*#!Uq*pt{CA%Dw`+aMH%_m%n%h<%Lhc-+Q{GpZ7e zI#L%^r(O5QM;Q#&u9OjQlt;im%lcp_c62+82D@-NZ zO-X-zf0}%x#ChIUT$vV1dICou7w_NA55{g?1K`>tTji3T)xk?Ektk=j_z zJ%9e%4Rf6ZUiBiaSQ^JU(_FT6AQbi;k*38xIL+;L z*G+`c9U|6JNq_30lxR^rZ(3vdTH(5nNyY^^T6|OdrlU>Yf8(U3u*R9%M@VKv%(u&* zu^HpyLb_f5U6>?e7WOh6;1!j=Eu`e(!hcGyu<09N`2`lX%N9FXmGn=1ekNEap@^@= zIQEw==9R<~4yz&->XLp+iq$lsY%%W>=%<8(d(|eMuU|lc@PH->CEj#jp!Q2pDu_Q& z5;Ase%r;1$aZ-#Xu9pN8F1*~sFnyV3nDxJV-_S-=c5!{(9wT__v;3`cO#@zQJq%c1m-aY6Q#jM7==tMiI#XD@enjW_Vr;v zX0zyl60vjM=+WgY93;5ay#(vCB+sHG&*D7&uaNbY|C7xg7=Ldmk^r;)u-^!>VBN#o zqRzVQ??>8(MIK2u+_$ZV5)WyThsvpczTY3+^>MwN-e3Rh-p`rIcKzG+rKf*A<=O79 z$*;Gk@Bg}cf4jdt&e`FM%`T@Kn|>u*`b$s$|F|4Z`;W_Mf19vIVn$=F#H_|Ti4`8) z6TO+E-N2D-XMc_kI7%!BjuI>2V8;Z`nG;tR)qGx2B^#N}XX0WGbbK+d>SEw5u@X45 zvva1HLs;Etq8!w5=JfFc=B`{}PKV}f`-}|L(n!qv9I%$10rLV1V>D6Bk8$Qj$h@qw z-R*b(c>VS5{`1H16;>jlOXf(tpD_}N87Tagz3bX2y?=?S4N7K^VME8a5v5yZq6Rvx zQ6RKh%l>uJOE}++CaUIqFQ{NB!5B=rITpIa$AaCeK#YamLo8VO5tGDxsUxw_-xhn8 za8DgvHwuKpZrK~uzHe-m<71>?3i>#U#ORPG1{0%EAT(^t?jWa$DQ6C!8FPHfQ-hJv zXcSto9e+FmIh+`ijjGX5Ky8F4Co(|t*O_R zwOY!8#W}%O`cDyX8}&}wlwi{hr1adY5_8XdN)-8&Pc9AzjpB3|JnH0DJ_V}BOhotG z>LMhy&0_cSm7aOPE!4g$Sc*dNtGpM@Kcas2uzwnWlr)P|f<q+IZ!JJcQKrU3R3c~BmXe0Zh zN~}gEB5izpnZJ}Ti^~vSITuGAtooz6$>K) zL`4b;c=S__rkKL4{$}H(!WHDW zo@f+b28{Agg@RmxHMI9XGX4jXX(DS1H%RW%w+#RQW+ju}A})XUZSzvt#yRKWwKsNl zv#G0+2WbG=l19;t!0gri_j`JTKp?=r-K$E)2$<=f?w;=F>E_M*rzm7&k*Yw(Z)?qZ zqsBz+Nk52(Z);!fF07*(Q<}#<4`nRg)}}($-oJbO>WxyGVQsA5)<#+JeTZLK&)VAAy=xhW|XRZ_L0Y|*#H6w`6UEYl)z5BaIEJ;@O)C4Lh!pEjSvOV_kXC{wOwI^A-nxtUsx z_13=-eO594o!~HA^=-2ot*F>MU*T+)Q8DQa0)lLDlL|lZ$Rp1k!>C#@?41cB^I644 zXFO9pe93>l&KC1Hm1C{$d&1xigck)xHLm7Xa}GD#$2ndfO;51rjIH+?(JP& zp5OI8U+wK}-mqCY(ca$A*X-<5_x5(pI%8py)@*OtvwDE}I;VQQS3GmVE@OlNg|lKv zZtNm>5jBvc~z&N#H2K>B)r z(nl3b_4Fw4Dsn8Olc|#N3A;ZHxPle-nR#)YY4$^?f1*^bkjp2NNqx#g5%S3cQe(_R zlgD|g11}VIAB(LZw#;9d=^uvrr+b%W3Dc4}&e4XuOqy=+8+}ww%Zsx&t2tn9muAIg zy{~_FpS!o!w3-bDOpmx`e&EMHY8D~SvOts8-nx=uvHR{NyX6C+r_5$o0q%D&jOpT4 z%>_GTeNp#hWKX#EM(@XOli$Bit!`TdSCb!jl>DUMc3Q_Ox7O=d%wk=iYA;U%~gi?Qq z)?9w2U{`MR71Qoh*M^L6Ap3UJ<)<3}4HXE249KG$4%0i_8$2KQrah#xpX3%abIPh^zVtP;R|%pi?0Samqdi!;voF(UOU_3v4x9 zm18Rx+qfxh<3c#0tdjKCugC_0GSEa07#WJqEcHJ~Yd2i-i92%&&hC!PrYL_Cq3g+5 zizi(Y%Z%LLMpJgFe?%sY5}5)gYj!8u2cg;TFxDIj%xtjJYOpAX**Nfp+ek5ZbwPv5)AqamipiGDh&92iSkApurL9l&xHcB*WvK`!`Gaiq*+Ff%2 zyIw@VO(v4y6&*)BiPQ^}P2jk0c^X3*Eh)- z&cEw|t>oDLneA`a!ud@Cz_tqT@8UAf!2dHM%J`lt3Q`l0?i$R$tL9Ww^=12o6$^*PtB2aw7NAF@(+t@gn^QahK*>ryF6tT~dZ*Dmw9&R|61Wax z6fb)uCl)?RGB|%dN3$cIQhZqGyx=bo^aF_iDlX?600*|Wca7GJ#8*!C_V8@D!2KCO zMvAr=Db)qj8U!Bkf?J&>)w^XF+8WC7?dYm^ae4UdW7sY64D22C^PTD1VPlY=+#W=K z`^LU766_0nV$hS3&#pc#nFX=UQP;VzGvF;~XP~0NOy+<4bIK7C_#j(M0E1zNFyIzY zoQ1DOp(Q-2rU1N=)dyQ_ILDo)cf<>Q*J5yL%jK8n3}%MOXL+*1#r_Wv2R)73zdH@O zs`xXLhgW%KCW&=ldQXceD}x;@!ntSA#$kh0Myz%whcVI?8c?S^O#`A&fb1jy->tEo zq|T06}M1v9{PoHNcpYct9L=Nd|RNisv}hm z!qS)9~ukMfaDpuiqZ756{{U&gkReAMy2fcj$b3d>B3g za}m~kpEr2l&dJEyingiTtjQ21uCflJb+1kgk}Q8Zc(CPd5CZJ5(<}^uxXX#buvk4J z4kY|KE+M$#Ab2v-io__8y9WXAs6FJ-3Z3c#!2`O(2g&q9_iAa|WJ=$sT@lO1oG2_J zwnMb2l`a($O;kw^+YhWFu1wk-s$u<$0zk=Xr9q8}-s^jMAJ}4bRZ(msE;B zD++%+YXOqBh+7i^Hz=&Jrj&?w6*4c9)dfnjn8@^T+eteh1k{-&3Y!#rfXwE5Yz4Dt zSxi}M#G~1TZtt@sVa-;D?bOgi6lk=dS>XxFMpp|CT)*!6y8u&TyMY3P169i|k+}kBy-kN_O2VR?p2*Hw|=xMrRo~osy^ZL~eK_wK` z^Xq#k7DNdc;-WQ4S-&vqEQwqvyqcTGcMi~Qy>+v(cKjzoIn zVZ|3TJL6%5t4XYNN-TxJfR<^4ZHJnO%`_SsN3m1*~vWp6Y&|*6`z>D0Q z7V`&mnmlAL*%0P^s#P%cme5^~$=B)xM<4S2L^61KQaicy)x^B{2o#%WOL)?05pjS&$r95=<@^DDy zp=d~(ki51RL9yRf4K^j##L0u=u0hx=)9B_jZTz2K%^TG2asLE8fYaAh3N0BvX$S$ zG)%Lfg&u@Kj(Cb$Q=Gr2g*WO0!WxYBD5jP-LOK!gP^g?le9yQFtWtllU~qvMh1t+L zI_|dzPOIHN>Ns=WQ>sa+QS)icvg3nqu~?u*irhGmVTeXLja8sjldmLtmugJ7x#L`+j{XJob2^EN`>}1|hTI2tQMa z66$xumBeS+2n-JH#qf-W%YFRik;Ve6bsFeUW5(=?e8vnA?9X5+Y&64ztF5kCmS4h$ zxM~AjBLQCXBFy_@khqq<%|;~TaD91(JZ zOR!8Z%Www$<4NWlkWz12kr5FA4RB`9lf7=-xOYeARh&kLP0a+cEWYuD)zcgz;N z7YFyw$idh&O@GkDT@05$#2<^N*RHBBRl6$=C`$yVTm!R}&YmUTc#qpJrZx#4&D$Lo z%-Drn_fmqm+n-v`Wk>Bw^k@*Ci$(hqN98@ff5_)3i%4|klh7yAJR+138eM<3ub_<@^PAIvh@pMEy0z3kpl!r5d@2qqBgY& zeXzs8*#!Uq*ppy4JsUSj?$Wmn003qs000yK000000000000000(37|~CmRRb!e2`P q003tK000pH000000000000000xs&=gJ_0*4lR7ve1_(9)0002qr}<+5 delta 6102 zcmV;{7b)nTapG{W{Rjj$?kek(0SO;}+At7)pS1rF`8{gTq%z}T6`{|I z#2q0=8!9qdO2H!Z!ZiAD@&4WUTB@g|lur%-2pyrqm^#E*rvw?$1L#xtL;3}$~ zn%YfeRRhG5m)yLxpvbAx@Ny-jqRSH8-jIQ_QSb}kPdsRP-AS-?bX3JtCAG}W89?JL z=_CJ%hY2|d!R9yyry==Rv1e|7bGT=vf;X}X_E^Cy81eoajexXTt%MM~H=+&p+|jDQ^|aw7tP-zJ2*MY8Io~QLV>xX~ zvj8D?@L(7OOf?;m)uB)m)1`D84vDUfA&LmBx2C zt9@MC{?>GBKdi&{uDj=KtzWfbhtB4Ki%hN~Gy<1iy1_7j(YjrE;F&2R)EjyJe(odV zs{-hfVc!};L0DQ5I-nD8=_K&DwmG1Kf8oP++MqF zq>-aSdzQM)TIJ(zdrHd`5jmE z3@C=2Lt%HB$KA6`41*93$L6nK&jkPgrWgPK7yy&6HyVGOlTDACFc60CmHHnn--Cg$ zs6ipCYNJ(G>Y-}4?b$Iyuwr9sn|!G1fA1JVvQjS5BCw6|`@A#uuzWmfMfPBwG;K+f zD5eBjVJg{fOZxNmdG?7C=XqOkWm+id2^@V~ef+RI7`t-~fG0?3T}d17yMi$%8qnND zrh^v0)W&~m?(x-bnd>a@Y7l9~(m2kU=CY+Dp|JNbOkGO>Ya@CMtsfy46!#dvYh>pp zniluqG`G9Hn+c;kL~Nvz{xm=-(V}?Sw#M>}!n}`3#sxWAyiWqx9Km~f^l&n-R6H6CdrtEy$lCVSG($7h;o+p&8mO}ykl5lWu#>Df@4^SXHph-fBH{DmL z{Szn^#1E8&irpBq3(^-{6r+h7B*BCWFZVDmU#Ga-{TY127){y5_3e0y;CZO>Z}{<}GR0l95F&gQrqp`429v<4@zjxm@h4K~6kWMWIS#QzZw zLG$C#A4X)hh%h$MJ8$&lau$vf-0DGs{aKP{QIcnI9+J8hvcd8{lg%C&f3HOnV74Fj z8$lMVdsti4S-1WDNIS5|BguyQw)IfrAx-j7IS$Xa+r7WsFX!X?>!02GDKpt_c)Pp| z^slEp+x<29<@)sfUw<2}x0m}VJAAR(`FLg1uVhPq8R-8X=fiRTaX#*^53H4#(O4%j ztFc~Ug$MUUZ{}z>a3tHAf1?AA63c<3#0ogrGl5g)#MMPLpI21LMyB(bxR?VSU(Bnz z7&uF;1kUX2lqu#ARzI022X&k|ef)sAD_5A)p*h<=BV)C+67xPstYc@uynw=(Oce7b z&b$bjmsPgA{vPhHzrNjm{usZ)N+fj29EtZcMItc+h2ODvT^pr0e^IqT$qX`V==e6G zbjwWCK&Q0|gjVa=zfO7y=ljV-)tv7I6$~X9gDE%1LYMehuv-;~v9NoH1xr6-l9(@b zBo_MHV$Txpse|iQfl$~TdxP5djjeLrL<**$kF!XO4tZiQFPHyE> zpnA+ibkD6WLQ>l-c0XU~nFriL?W=;NC=|cSd(r$O>SqtDe*s8Ivp6MKlokS*6i-%1 zg$onk0IFE|cGUqyWO2Q^rO;X2Jd8qd{xS-kSEV{HqH?CDKQ6bPR4yCLIfVw~Le;7u zyxvSUvOlWCYGfkP#>bcWOZl?64Dpq7an!-8KdGA>eZoe6c#yYcPExsCFwPX3dPRU} zE&8)kt6cDqe^6-3UqoZp-vU;q&f#cLsKw%86e_z;%w)UiO{E@H;I-we{38H2eTCMk zRDnV)e;Qf%4tw7!*$6Tu(K@l(T9AZgHgecIY!<$1&W*#TLkiW8-^hSBh6;X}mK@dbg@^*?rhZ{!L=Vu@MniUlI6}4Mt-(>P3#rhDLGE zXOw^V3lroD)Qi3U$?!h_lXD_#3Ln?5mxK)f0M{gw=prtEe%-tjwsFq6u=WOLH=DXD zd5{K>Eol_Z2+UsHf4`?k0s|7*w|id<0%p3WyQlkky8Y(;V-&K9NL3)?x3y-yQDY+Z zq#wkix3w>~m)3EODa~V_hcXs#Ycrv0@87+C^+qYpur^k2Yh$gGQ`=VFSVUaaWg=pH zGn8q>H6GJ{k*$(ca9@pu&{1eRjmDuJ@gS}-PiC=(+(x^`vN-sjiSzuElUD8B8x_2J zqu*U{E#BDr-5Z;p^UrQ&5_sz$UPyK(AXc#RkSkSMGfve$`^aO~Y_5L?si_j|8kU#@ zVp>|7iTTpQ_3!#JoWNS_CY6IwM2Zb&tP`uLNa@pmU$9ccw%fEhE^Vp#gBZ)u7b)xU zn2$sxV!c@@r?vhalu=$9Bs!P~HmS1<@$~otm7Ih14ZDv?C{wOwI@@xlg_&B7YU^K$ z0V^5*R&bcD{IS`MR+Ma>uW&ZYD4FyI0YSF7NrfMH@s*1 zKI;yL!rNq0(#R=AV%awr0d`4|L`A;!^0Uo)BG%&W}w4X~`Vtc*9*LO*iy?(_k*72$K@-#r+_@eOk6d&XB zyGtoUsvp-VrchzsH+n3vaFk1P8cx%HZrR7Shw(3aHtEC;jq5qVh<5Y!nb%hl4+pFk+OIyEZPglw4xvksY+UMXepifl-Vqy6rweMmtQK_ zr5oKNn`5u_UtYzPaDc$esYbX9jfHX9|AD-)s;eUeqiM`5;pa zWyF|6c`$i>#Uvw~G8>q1hy(9IWCI>Q*Z?`h8MO4d=E@5wP1q@)0uCuHQhUC!-7h4# zUy21lLA;+Ys3-n#?iJ|w4>_fO046na1?1G#(j~-I50Y6tSo&=VtSkqXuiE1*;;}MH zHydsc>s0!gDVH{$kqKO$B&kGP)yIHx)xLpFb2*4p_Bj}h^&B3pm}tAeR>M^}wsNtJ zo6Lszv z$o*|RV^{h|WYQ>+DR8o8w~~Djn*9!AEucVQgPm4`MM2CafiL9li!#W=@4aF7B(uVv z+-U6ID5C-K-J^K1PD)zqP_R#er!lJ9vWx#zP-@^a6HbU*Wy1p`$VJl11-bDI8AGVm zuj(8NQ7bv0Z`8#(Qq)NLci@P3Apjs>_TFj#5dr%?ZgNOyN?FwGsBxkhvtqZo2 zWBX^e?^nY4O#;BS=HTDOWh}t|Ga{DpJyjH>CLrAk%)jME;Jz(?PGmO@T>ojkJAo;m z9=G59?nURtQjT2V^YzR8MUf{e8OKXEMzYFi7gs#-mL-2Z3DErGr-zD->+;(?K-)ADETU?n!2~7n6-3fFBQjU%Vr4m&72w+`;N{>i3*VeFs(~0`2rUzUV)FG_2!P7YVRnt1CMw?UuQ}AZW)GFK{>u1_qvx?N8dh%oh6=uy`w?CGhI7u4DyrPgXr(T*cV2E zeSuF5dNT4^@6(D|5ZfGeo%=ci-hy@pDjLjWe!rl993g=Zvc(iI70OCb;M z^2|&U>%R0JpQ3CT>|hbjT|gU$4O1Dh+PNIXNLy$?o$)jch&}-lxmXFXvys-CrM_x9^?t$D=>u>+kN!`Sx%>dI07ktouH1 z@V;G;k;;m;soYd#h$XI4h0!{_Q-dVu9X!~7vLA#1JM1hALm=+u#9&yg9uo%=ejS$( z+;A8?nrKC06v*Af0C?0M@o0@sb%5Xj-Qj~|_My{T**2Nc?`c=WvN0zLi-_$IEo!Bg z3W+AFB!_OkU@KMXK5nv+DTT=2nuGE@QOx!#R>X*EV^&Z~xJX!T1f#h(=gp7jKO zlD3Ge2!R_E)>uGv)AtJ3NLRhjsvfMEkcA~Nigqex)YwNm7??d)eb==6xECCJ17=J z2^iv2Ym&15+^D&3|`pyZ^b%Q=4I2I0v%RA~oebEYpxM z1h2ieqsfWjIe&Ri@qPl!awDB0(uP2%#qfqG=I%bbC&F|oi3hHBIu?2 zh<;)yOaNgKpH!}C?Xw!X_X2Y`T3FH{uRLwXY9H;IhQ=28%@elMv5_5#^v0u-FKBkg z!;p0+Jj`+@o&z4kPW+V4wNPXu?-rG)D+6wsQl#$i3No{(w&N zCka#BiZsIH&f~L^u|Erghc5VRJx@Lx!hArr3Z~u?y49E*O$HEAa?+B2Npt7iNYGxi za6&IbEu>EFDY{@7{RUz(&zx+hXz`e&cOj_(k2X!ho^F$3)Fzt!Ew6~kndr92Ou6(k zpzalwP0GO_dTla1PeRo*;Lh1Re$g+jn)Jflrdf_b$pfAA3(|Xvzn(yM581Y4@A3fX zvlt;wP{+Mo!%Fq!Ag?EXM^sPd9c&ZB{cK=TE3p7$QBzi&#$i!b2Kl7BMtw06E27?g zk7nQVU1}Arv_jc4F+*=|+Z54SDgcH5PN?v;N&aftSekE9;iDh55Yvm=H}8z1Mgmja zfN6jo8=65YX^KRzMJZhV2;(!&einKd2028U52xb%GcCOF0GQW*fVu}Uv%E3#kBCP? z<*eg-##LY~MHeO=7;2aet>cqHd+4;D@M0!OcD2QG+9;Q6Tv_hG|zVY`} z?C}&)mS@iOd5_0`qd^+@82He?Q;?tSVlIb4ON1Qj@z_c*GBOH&g1ez5yud@MGzVFk_ipAW znAJX`#p*^opd2zAjq!giQ9=!J^tFiqvoR2=&4_6!it22-%aCgu^OB+LJSL8!! zpk}|ov9M7AAlG|iMOjz@l(=d`Tq6M@^dgY_VpLhl_wv5{CX3=9g3OHW8KZ8C6}m~} z*x|5x6C3{pnDp+y0F#je6a}2iJfcjq%rGJ1m&7 z3%Bm21aY@NwVun4+Lh?hAUqd~_9c$Wdwl%PP;e^IFBjOQ|CHU-XWIq4^0RR7!l>-oyS~w1~S2KeH1UBv}>yzF# zwF$@OuVBvw005?woHsoiAJ?vzgbe@y*CYS{6aWAK000000000000735^fxC3oXb3- cOp_ou6#;ycHaI>4|1y(yI3fnjH2?qr088W0VgLXD