forked from Consensys/handel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
partitioner.go
296 lines (259 loc) · 9.57 KB
/
partitioner.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
package handel
import (
"errors"
"fmt"
"math"
)
// Partitioner is a generic interface holding the logic used to partition the
// nodes in different buckets. The only Partitioner implemented is
// binTreePartition using binomial tree to partition, as in the original San
// Fermin paper.
type Partitioner interface {
// MaxLevel returns the maximum number of levels this partitioning strategy
// will use given the list of participants
MaxLevel() int
// Returns the size of the set of peers at this level
Size(level int) int
// Levels returns the list of level ids. It does not return the level 0
// since that represents the personal contributions of the Handel node
// itself. If the levels is empty (it happens when the number of nodes is
// not a power of two), it is not included in the returned list. Note: a
// signature at the maximum level in the array + 1 is equal to a signature
// over the full list of nodes.
Levels() []int
// IdentitiesAt returns the list of Identity that composes the whole level
// in this partition scheme.
IdentitiesAt(level int) ([]Identity, error)
// IndexAtLevel returns the index inside the given level of the given global
// ID. The returned index is usable inside a bitset for the same level.
IndexAtLevel(globalID int32, level int) (int, error)
// Combine takes a list of signature paired with their level and returns all
// signatures correctly combined according to the partition strategy. The
// resulting signatures has the size denoted by the given level,i.e.
// Size(level). All signatures must be valid signatures and have their size
// be inferior or equal to the size denoted by the level. The return value
// can be nil if no incomingSig have been given.It returns a MultiSignature
// whose's BitSet's size is equal to the size of the level given in
// parameter + 1. The +1 is there because it is a combined signature,
// therefore, encompassing all signatures of levels up to the given level
// included.
Combine(sigs []*incomingSig, level int, nbs func(int) BitSet) *MultiSignature
// CombineFull is similar to Combine but it returns the full multisignature
// whose bitset's length is equal to the size of the registry.
CombineFull(sigs []*incomingSig, nbs func(int) BitSet) *MultiSignature
}
// binomialPartitioner is a partitioner implementation using the common prefix
// length as the partitioning function, as in the San Fermin paper.
type binomialPartitioner struct {
id int
bitsize int
size int
reg Registry
logger Logger
}
// NewBinPartitioner returns a binTreePartition using the given ID as its
// anchor point in the ID list, and the given registry.
func NewBinPartitioner(id int32, reg Registry, logger Logger) Partitioner {
return &binomialPartitioner{
size: reg.Size(),
reg: reg,
id: int(id),
bitsize: log2(reg.Size()),
logger: logger,
}
}
func (c *binomialPartitioner) MaxLevel() int {
return log2(c.reg.Size())
}
// IdentitiesAt returns the set of identities that corresponds to the given
// level. It uses the same logic as rangeLevel but returns directly the set of
// identities.
func (c *binomialPartitioner) IdentitiesAt(level int) ([]Identity, error) {
min, max, err := c.rangeLevel(level)
if err != nil {
return nil, err
}
ids, ok := c.reg.Identities(min, max)
if !ok {
return nil, errors.New("handel: registry can't find ids in range")
}
return ids, nil
}
func (c *binomialPartitioner) Levels() []int {
var levels []int
for i := 1; i <= c.MaxLevel(); i++ {
_, _, err := c.rangeLevel(i)
if err != nil {
continue
}
levels = append(levels, i)
}
return levels
}
func (c *binomialPartitioner) IndexAtLevel(globalID int32, level int) (int, error) {
min, max, err := c.rangeLevel(level)
if err != nil {
return 0, err
}
id := int(globalID)
if id < min || id >= max {
err := fmt.Errorf("globalID outside level's range. id=%d, min=%d, max=%d, level=%d", id, min, max, level)
c.logger.Warn(err) // If it happens it's either a bug either an attack from a byzantine node
return 0, err
}
return id - min, nil
}
// errEmptyLevel is returned when a range for a requested level is empty. This
// can happen is the number of nodes is not a power of two.
var errEmptyLevel = errors.New("empty level")
// rangeLevel returns the range [min,max[ that maps to the set of identity
// comprised at the given level from the point of view of the ID of the
// binTreePartition. At each increasing level, a node should contact nodes from
// a exponentially increasing larger set of nodes, using the binomial tree
// construction as described in the San Fermin paper. Level starts at 0 (same
// node) and ends at the bitsize length + 1 (whole ID range).
// It returns errEmptyLevel if the range corresponding to the given level is
// empty.It returns an error if the level requested is out of bound.
func (c *binomialPartitioner) rangeLevel(level int) (min int, max int, err error) {
if level < 0 || level > c.bitsize+1 {
return 0, 0, errors.New("handel: invalid level for computing candidate set")
}
max = pow2(log2(c.size))
var inverseIdx = level - 1
// Use a binary-search like algo over the bitstring of the id from highest
// bit to lower bits as long as we are above the requested common prefix
// length to pinpoint the requested range.
for idx := c.bitsize - 1; idx >= inverseIdx && idx >= 0 && min < max; idx-- {
middle := int(math.Floor(float64(max+min) / 2))
//fmt.Printf("id %d, idx %d, inverseIdx %d, bitsize %d, min %d, middle %d, max %d\n", c.id, idx, inverseIdx, c.bitsize, min, middle, max)
if isSet(uint(c.id), uint(idx)) {
// we inverse the order at the given CPL to get the candidate set.
// Otherwise we would get the same set as c.id is in (as in
// rangeLevelInverse)
if idx == inverseIdx {
max = middle
} else {
min = middle
}
} else {
// same inversion here
if idx == inverseIdx {
min = middle
} else {
max = middle
}
}
}
// >= because the minimum index is inclusive
if min >= c.size {
return 0, 0, errEmptyLevel
}
// > because the maximum index is exclusive
if max > c.size {
max = c.size
}
return min, max, nil
}
// rangeLevelInverse is similar to rangeLevel except that it computes the
// "opposite" group of what rangeLevel returns. It is typically needed to
// compute in what candidate set an ID belongs, or where does a signature in our
// candidate set fits. see CombineF function for one usage. It returns an error
// if the given level is out of bound.
func (c *binomialPartitioner) rangeLevelInverse(level int) (min int, max int, err error) {
if level < 0 || level > c.bitsize+1 {
return 0, 0, errors.New("handel: invalid level for computing candidate set")
}
max = pow2(log2(c.size))
var maxIdx = level - 1
// Use a binary-search like algo over the bitstring of the id from highest
// bit to lower bits as long as we are above the requested common prefix
// length to pinpoint the requested range.
for idx := c.bitsize - 1; idx >= maxIdx && idx >= 0 && min < max; idx-- {
middle := int(math.Floor(float64(max+min) / 2))
//fmt.Printf("id %d, idx %d, inverseIdx %d, bitsize %d, min %d, middle %d, max %d\n", c.id, idx, maxIdx, c.bitsize, min, middle, max)
if isSet(uint(c.id), uint(idx)) {
min = middle
} else {
max = middle
}
}
if max > c.size {
max = c.size
}
return min, max, nil
}
func (c *binomialPartitioner) Size(level int) int {
min, max, err := c.rangeLevel(level)
if err != nil {
if err == errEmptyLevel {
return 0
}
panic(err)
}
return max - min
}
func (c *binomialPartitioner) Combine(sigs []*incomingSig, level int, nbs func(int) BitSet) *MultiSignature {
if len(sigs) == 0 {
return nil
}
for _, s := range sigs {
if int(s.level) > level {
logf("invalid combination of signature / requested level")
return nil
}
}
// since we want to send a signature to peers of a given level, we need to
// know the range of IDs this signature needs to encompass. For this, we
// take the "rangeInverse" (the opposite set of IDs of the level we want to
// reach): the range covering all signatures with a level inferior than
// "level" - it's the range nodes at the corresponding candidate set expect
// to receive.
globalMin, globalMax, err := c.rangeLevelInverse(level)
if err != nil {
logf(err.Error())
return nil
}
size := globalMax - globalMin
bitset := nbs(size)
combined := func(s *incomingSig, final BitSet) {
// compute the offset of this signature compared to the global bitset
// index
min, _, _ := c.rangeLevel(int(s.level))
offset := min - globalMin
bs := s.ms.BitSet
for i := 0; i < bs.BitLength(); i++ {
final.Set(offset+i, bs.Get(i))
}
}
return c.combineSize(sigs, bitset, combined)
}
func (c *binomialPartitioner) CombineFull(sigs []*incomingSig, nbs func(int) BitSet) *MultiSignature {
if len(sigs) == 0 {
return nil
}
var finalBitSet = nbs(c.reg.Size())
// set the bits corresponding to the level to the final bitset
var combineBitSet = func(s *incomingSig, final BitSet) {
min, _, _ := c.rangeLevel(int(s.level))
bs := s.ms.BitSet
for i := 0; i < bs.BitLength(); i++ {
final.Set(min+i, bs.Get(i))
}
}
return c.combineSize(sigs, finalBitSet, combineBitSet)
}
// combineSize combines all given signature with he combine function on the
// bitset using `bs`.
func (c *binomialPartitioner) combineSize(sigs []*incomingSig, bs BitSet, combine func(*incomingSig, BitSet)) *MultiSignature {
var finalSig = sigs[0].ms.Signature
combine(sigs[0], bs)
for _, s := range sigs[1:] {
// combine both signatures
finalSig = finalSig.Combine(s.ms.Signature)
combine(s, bs)
}
return &MultiSignature{
BitSet: bs,
Signature: finalSig,
}
}